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Abstract The prevalence of multicellular organisms is due in part to their ability to form15

complex structures. How cells pack in these structures is a fundamental biophysical issue,16

underlying their functional properties. However, much remains unknown about how cell packing17

geometries arise, and how they are affected by random noise during growth - especially absent18

developmental programs. Here, we quantify the statistics of cellular neighborhoods of two19

different multicellular eukaryotes: lab-evolved “snowflake” yeast and the green alga Volvox carteri.20

We find that despite large differences in cellular organization, the free space associated with21

individual cells in both organisms closely fits a modified gamma distribution, consistent with22

maximum entropy predictions originally developed for granular materials. This ‘entropic’ cellular23

packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even24

in the absence of developmental regulation. Together with simulations of diverse growth25

morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a26

general feature of multicellularity, arising from conserved statistics of cellular packing.27

28

Introduction29

The evolution of multicellularity was transformative for life on Earth, occurring in at least 25 sep-30

arate lineages (Grosberg and Strathmann, 2007). The success of multicellular organisms is due31

in part to their ability to assemble cells into complex, functional arrangements. Self-assembly,32

however, is fundamentally subject to random noise (Zeravcic and Brenner, 2014; Szavits-Nossan33

et al., 2014; Damavandi and Lubensky, 2019) that affects the final emergent structure (Michel and34

Yunker, 2019). The physiology of multicellular organisms can depend sensitively on the geometry35

of cellular packing (Bi et al., 2015b; Drescher et al., 2016; Jacobeen et al., 2018b; Larson et al., 2019;36

Schmideder et al., 2021), and such noise may therefore have direct consequences on organismal37

fitness. Understanding the evolution of multicellularity, and the subsequent evolution of multicel-38

lular complexity (Bell and Mooers, 1997), requires understanding the impact of random noise on39

multicellular self-assembly. How do organisms accurately assemble functional multicellular com-40
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ponents in the presence of noise?41

Recent work has shown that extant multicellular organisms can either suppress (Hong et al.,42

2016) or leverage (Haas et al., 2018) variability in the process of reliably generating structures, and43

their tissues can change function based on cellular packing geometry (Bi et al., 2015a). This occurs44

through a coordinated developmental process involving genetic (Davidson, 2001), chemical (Sam-45

pathkumar, 2020), mechanical (Deneke and Di Talia, 2018), and bioelectric (Levin, 2004) feedbacks46

between interacting cells. However, even with coordinated developmental processes, noise during47

self-assembly results in deviations fromperfectly regular structures. Further, as these developmen-48

tal processes have not yet evolved in nascentmulticellular organisms, it is unclear howunregulated49

assembly can reliably result in reproducible packing geometries and multicellular structures.50

Multicellular organisms also exhibit diverse growth morphologies; for example, cells can re-51

main attached through incomplete cytokinesis (Bonner, 1998; Grosberg and Strathmann, 2007;52

Knoll, 2011), they can adhere through aggregative bonds (Claessen et al., 2014), and they can as-53

semble multicellular groups through successive cell division within a confining membrane (Angert,54

2005; Herron et al., 2019). These growth morphologies can have distinct intercellular connection55

topologies (Yanni et al., 2020), changing how randomness is manifested. For instance, groups56

that grow with persistent mother-daughter bonds maintain the same intercellular connections,57

‘freezing’ in place any structural randomness that arises during reproduction. In contrast, cells58

in aggregates can rearrange, so their final structure emerges from a combination of reproduc-59

tion and intercellular interactions and noise (Delarue et al., 2016; Hartmann et al., 2019). Further,60

the dimensionality of multicellular groups can vary, from quasi-two-dimensional sheets (Brunet61

et al., 2019) to groups that grow equally in three dimensions (Ratcliff et al., 2012; Tang et al., 2020;62

Butterfield, 2000). While the impact of noise on systems in thermal equilibrium is well known to63

depend sensitively on spatial dimensionality (Mermin and Wagner, 1966; Hohenberg, 1967; Vivek64

et al., 2017), no such information is yet at hand for biological development, which is intrinsically out65

of equilibrium. The growth morphology, connection topology, and dimensionality therefore alto-66

gether determine a multicellular architecture. Randomness resulting from many sources, such as67

stochastic cell division, variability in cell growth, intercellular interactions, and more, subsequently68

occurs as perturbations to this idealized form. It would appear that noise manifests in a unique,69

context-dependent manner in each of these different multicellular systems.70

Here, we provide experimental evidence that, rather than being context-dependent, fluctua-71

tions in cell packing geometry instead follow a universal distribution, independent of the presence72

or absence of developmental regulation. We quantify the distributions of cellular space in two dif-73

ferent types of organisms: experimentally-evolvedmulticellular yeast (Ratcliff et al., 2012) andwild-74

type multicellular green algae (Goldstein, 2015). In both cases, maximum entropy considerations75

(Aste and Di Matteo, 2008) (see inset box) accurately predict the cell packing distribution. Building76

on these observations, we use computational models of diverse prescribed growth rules, mimick-77

ing extant biological morphologies, to show that cells are ubiquitously packed according to the78

maximum entropy principle. Detailed analysis of the case of green algae shows that correlations,79

i.e., the lack of structural randomness, produce deviations frommaximumentropy predictions, but80

that even a relatively small amount of randomness is sufficient to generate cellular packings that81

largely follow maximum entropy predictions. Next, we explore the evolutionary consequences of82

cell packing. We use the cell packing distribution to predict the distribution of snowflake yeast83

group sizes, an emergent multicellular trait that arises from cell crowding (Jacobeen et al., 2018b).84

Then, we use a theoretical analysis to show that the effects of fluctuations in intercellular space on85

the motility of green algae are small. These findings together suggest that, rather than impeding86

innovation, fluctuations in cell packing are highly repeatable, and may play a fundamental role in87

the origin and subsequent evolution of multicellular organisms.88
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Figure 1. Cell packing in two multicellular species. (A), Cross section of a multicellular yeast organism, which grows with persistent intercellularbonds. Scalebar is 5 µm. The inset shows a smaller section, with ellipsoidal fits to individual cells along with their corresponding Voronoipolyhedra. Black overlays indicate the connection topology between yeast cells; not all connections are labeled. (B), Darkfield microscopy imageof Volvox carteri, scalebar is 100 µm. Inset: a small piece of the Voronoi-tessellated surface; black points are somatic cell positions. (C),Distributions of Voronoi polyhedron volumes as a function of cell size normalized by average size vc for snowflake yeast. In orange is thehistogram for all cells; the other three distributions correspond to different subsections of Voronoi volumes. The cells were grouped intospherical shells with radius R and width ΔR from the cluster center of mass. Shown are shells with edges [0, 6.2), [6.2, 9.7), and [9.7, 20.4) µm. Blacklines are maximum entropy predictions. (D), Distributions of solid angles subtended by Volvox somatic cells divided by a minimum solid angle
Ωc . Solid black lines are the maximum entropy predictions. The top row shows the histogram for all cells in green and a subsection of correlatedareas in gray. Bottom row illustrates the subsectioning process: blue polygon is the center of the subsectioned region. Only the Voronoipolygons, i.e. not the somatic cells, are shown for clarity. (E,F), Empirical cumulative distribution function vs entropic predictions for alldistributions shown in c,d. The dashed black line represents hypothetical perfect agreement between observation and prediction.
Figure 1–Figure supplement 1. Random cell budding positions in multicellular yeast groups. (A), Bud scars determine the position of new cell
buds, and are distributed across the surface of yeast cells. We locate bud scars in a spherical coordinate system with polar angle � and azimuthal
angle �. (B) Distribution of measured polar angle positions of new cells. (C) Distribution of measured azimuthal angle positions.
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Results89

Maximum entropy
Within statistical physics, the maximum entropy principle relates randomness in low-level
units (e.g., cells) to the properties of the assembly (e.g., a multicellular group). It works by
enumerating all low-level configurations that conform to a set of constraints. Any particu-
lar group-level property can be generated by many different low-level configurations, but
some group-level properties may correspond tomore low-level configurations than others.
Those that are generated bymany configurations aremore likely to be observed than those
that correspond to relatively few configurations; in this way, the maximum entropy princi-
ple allows one to calculate the probability of observing different group properties, given a
set of constraints. Multicellular groups obey a simple but universal constraint: each group
has some total volume, V . This volume can be divided into N pieces, where N is the to-
tal number of cells. Each piece is associated with a particular cell, and the N pieces must
sum to the total volume of the group, V =

∑

i vi, for i = 1, 2, ..., N . Using this constraint,
and assuming no correlations, one can predict the most likely distribution of volumes for
the N pieces. This approach has been successfully used to predict the distribution of free
volumes within granular materials and foams (Aste and Di Matteo, 2008; Katgert and Van
Hecke, 2010). Here we use it to predict the distribution of cellular free volumes in the ab-
sence of spatial correlations in cell positions.
Consider the ensemble of all possible cellular configurations in a simple group. As first
derived by (Aste and Di Matteo, 2008) and (Aste et al., 2007) for granular materials, the
maximum entropy probability distribution p(v) of cell neighborhood volumes within V is
the modified gamma distribution

p(v) = kk

Γ(k)
(v − vc)k−1

(v̄ − vc)k
exp

(

−k
v − vc
v̄ − vc

)

(1)
where v̄ is the mean cell neighborhood volume, vc is the minimum cell neighborhood vol-
ume, Γ(k) is the gamma function, and k ≡ (v̄−vc)2∕�2v is a shape parameter that is defined by
vc , v̄, and the variance of the cell neighborhood volumes, �2v . This distribution is expected
if cell neighborhood volumes are determined independently of each other (while still con-
forming to the total volume constraint). In other words, volumes must be set randomly;
correlations between the size of separate volumes will lead to deviations from maximum
entropy predictions. If this condition holds, then maximum entropy volume distribution
predictions should be valid, regardless of other geometric or structural details. For exam-
ple, maximum entropy statistics hold in granular materials, despite the fact that they must
obey strict force and torque balance conditions (Aste and Di Matteo, 2008; Snoeijer et al.,
2004; Bi et al., 2015a). Further, the same approach applies to groups with a constraint
on total area or length; this does not change the result, and V can be replaced by A or L
without other modifications.
In practice, we divide the total group volume or area into N pieces via a Voronoi tessella-
tion. The size of the space associated with cell i includes the cell itself and the portion of
intercellular space closer to its center than to the center of any other cell. As cellsmust have
non-zero size, we therefore set vc to be the volume of a single cell without any intercellular
space (or ac , the area of a single cell).

90

Experimental tests of multicellular maximum entropy predictions91

To test whether different kinds of multicellular groups pack their cells according to the maximum92

entropy principle, we investigated cell packing in two different multicellular organisms. First, we93
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used experimentally-evolved ‘snowflake’ yeast (Ratcliff et al., 2012), a model system of undiffer-94

entiated multicellularity. Second, we used the green microalga Volvox carteri, a member of the95

volvocine algae that first evolved multicellularity in the Triassic (Starr, 1969; Herron et al., 2009).96

Snowflake yeast97

Snowflake yeast grow via incomplete cytokinesis, generating branched structures in whichmother-98

daughter cells remain attached by permanently bonded cell walls (Figure 1A). New buds appear on99

ellipsoidal cells at a polar angle ⟨�⟩ = 42° ± 23° and azimuthal angle � that is randomly distributed100

[⟨�⟩ = 180° ± 104°, Figure 1–Figure Supplement 1]. Therefore, cells bud in random orientations101

throughout the cluster. Due to the apparent absence of correlations, we expect that this structural102

randomness produces predictable distributions of cellular neighborhood volumes.103

To determine the distribution of cell neighborhood volumes, we firstmustmeasure the position104

of every cell in a cluster. It is difficult to image individual cells within snowflake yeast clusters due105

to excessive light scattering. Instead, we used a serial block face scanning electron microscope106

equipped with a microtome to scan and shave thin (50 nm) layers off a resin block with embedded107

yeast clusters with stained cytoplasms. This process allowed us to determine the 3D structure of108

snowflake yeast clusters and locate cell centers with nanometer precision.109

We define the group volume as the smallest convex hull that surrounds all cells in the cluster110

and computed the 3D Voronoi tessellation of cell centers within that (Figure 1A). The distribution111

of cellular Voronoi volumes closely matched the predicted k-gamma distribution (Figure 1C, k =112

2.88). This agreement is quantified via “P-P plots” of the empirical cumulative distribution function113

(CDF) plotted against the predicted k-gamma CDF. We find a root-mean-square residual rRMS =114
√

⟨(F (v) − Fi)2⟩ = 0.02, where Fi is the empirical CDF and F (v) is the predicted k-gamma CDF.115

The influence of the convex hull on these results was investigated by using an alternative pro-116

cedure in which the Voronoi volumes were binned into shells centered at the cluster’s center of117

mass (Figure 1C,E). We binned cells into shells with shell edges of [0, 6.2), [6.2, 9.7), and [9.7, 20.4) µm118

away from the center of mass. We found that the distribution of Voronoi volumes within each shell119

matched the predicted k-gamma distribution, with rRMS = {0.037, 0.020, 0.014}, k = {3.45, 3.08, 4.63}120

in the shells shown in Figure 1C(ii-iv).121

Volvocine algae122

To test if cell neighborhood volumes in extant multicellular organisms are consistent with maxi-123

mumentropy cell packing predictions, we examined cell packingwithin the greenmicroalgae Volvox124

carteri. Development in V. carteri, which evolved overmillions of years, is highly regulated, occurring125

through a stereotyped morphological progression (Kirk, 2005). V. carteri embryos arise as a spheri-126

cal cellular monolayer from palintomic cell divisions with incomplete cytokinesis, which leaves the127

cells attached via cytoplasmic bridges. These bridges disappear when ECM is secreted by the cells,128

filling the entire sphere, and eventually moving the cells apart. The approximately 1000 somatic129

cells remain embedded on the surface of a translucent sphere of extracellular matrix (Figure 1B).130

While six-fold coordination is the most frequent local arrangement of somatic cells, the fact that131

the cells are embedded in a surface with spherical topology requires there to be “defects" with132

differing coordination number (e.g. 5, 7), and these are found interspersed around the spheroid.133

Thus, despite their developmental regulation, somatic cells exhibit a degree of disorder with re-134

spect to coordination number. From a physics perspective, the local hexatic order in the somatic135

cell arrangement is low (see Methods).136

To determine the distribution of Volvox cell neighborhood sizes, we imaged somatic cells using137

their chlorophyll autofluorescence in a light sheetmicroscope. Since the somatic cells are arranged138

around a surface embedded in 3D space, we constructed a 2D Voronoi tessellation of somatic139

cells on the surface. Each organism imaged had a different size, and therefore had a different140

mean Voronoi area ⟨A⟩. To compare distributions across organisms, we removed the systematic141

area differences by recording the solid angle Ωi = 4�Ai∕S subtended by each somatic cell, where142
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Figure 2. Entropic packing is a general feature of simple multicellularity. We simulated four different growth morphologies: (A) Tree-like groupsformed with rigid, permanent bonds between cells, (B) surface-attached cells located on a spherical surfac, (C) aggregates formed withattractive “sticky” interactions, and (D) groups formed by rapid cell division within a maternal membrane. In all subfigures, left panel shows thepredicted and observed probability distributions, and right panel plots the observed cumulative distribution vs. the expected cumulativedistribution. Histogram bars represent measured Voronoi volume distribution in simulations, and black solid line represents the maximumentropy prediction. Maximum entropy predictions accurately described the distribution of cellular volumes/areas, despite their varyingmechanisms of group formation (rRMS ≤ 0.01).
Figure 2–Figure supplement 1. Three different distributions were tested for goodness-of-fit: the maximum entropy prediction (black line), the
normal distribution (red), and the log-normal distribution (blue).

S =
∑

i Ai is the total surface area of the organism. We found that the k-gamma distribution largely143

matched the distribution of solid angles (Figure 1D, k = 2.40, rRMS = 0.04). However, there are144

systematic deviations between the data and maximum entropy predictions (Figure 1F).145

Wenext investigated ifmaximumentropy predictions aremore accuratewithin subregionswith146

similar mean solid angles; specifically we examine regions whose mean is ⟨Ω⟩ = 0.0185 ± 0.0003,147

obtained across six organisms. The distribution of Voronoi solid angles within these subregions148

closely follows the k-gamma distribution (Figure 1F, k = 10.66, rRMS = 0.01). This observation sug-149

gests that while there are systematically correlated subregions of cells, within these subregions150

cells are largely arranged randomly. Thus, the organization of Volvox carteri somatic cells is consis-151

tent with maximum entropy predictions.152

Simulations of different growth morphologies153

We next used simulations to investigate the impact on cell packing of four different growth mor-154

phologies: growth via incomplete cell division (cf. snowflake yeast), cells distributed on a spherical155

surface (cf. Volvox), aggregation, and palintomy. The goal of these studies was to determine if mor-156

phological details and constraints impact entropic packing using simplified models that capture157

the essential features of the growth and behavior of these varied organisms.158

These geometric simulations of multicellular groups that grow via incomplete cell division were159

inspired by previous simulations of snowflake yeast (Jacobeen et al., 2018b,a). Daughter cells bud160

from mother cells with experimentally determined polar angle and random azimuthal angle, and161

remain attached to mother cells with rigid bonds. We ran 9, 100 simulations starting from a single162

cell, each of which underwent 7 generations of division, and calculated the Voronoi tessellation of163
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the final structure from each simulation. The distribution of Voronoi volumes closely matched the164

k-gamma distribution across four orders of magnitude (Figure 2A, k = 2.26, rRMS = 0.007).165

Inspired by Volvox, we simulated cells distributed across the surface of a sphere through a ran-166

dom Poisson point process. We completed 10 simulations, each with 1000 cells, and computed the167

distribution of solid angles subtended by Voronoi cells. As shown in Figure 2B, the distribution of168

Voronoi solid angles is consistent with maximum entropy predictions (k = 9.29, rRMS = 0.009).169

Next, we simulated organisms that stick together via reformable cell-cell adhesions, a mech-170

anism of group formation that is common in biofilms and extant aggregative multicellular life171

(Claessen et al., 2014) (i.e., Dictylostelium and Myxococcus; Figure 2C). In these simulations, mul-172

ticellular aggregates were grown from a single cell. Seven generations of cell division occured, in173

which new cells appear on the surface of existing cells at random positions, and steric interactions174

force cells to separate after division and occupy space. Aggregative bonds were modeled through175

harmonic interactions of the cell centers. The observed Voronoi volume distributions were consis-176

tent with maximum entropy predictions (k = 7.84 and rRMS = 0.007).177

Finally, we modeled cells undergoing palintomic division within a maternal cell wall, as is com-178

mon in green algae (Lurling and Van Donk, 1997; Boraas et al., 1998; Ratcliff et al., 2013; Fisher179

et al., 2016; Herron et al., 2019), and is reminiscent of both baeocyte production in Stanieria bacte-180

ria (Angert, 2005) and neoproterozoic fossils of early multicellularity (Xiao et al., 1998) (Figure 2D).181

The details of these simulations remained similar to the simulations of aggregative multicellular-182

ity, with the important difference being that instead of harmonic interactions between cell centers183

enforcing groups to stay together, cells interacted with a spherical maternal wall acting as a cor-184

ral. The Voronoi volume distributions for these simulations were also consistent with maximum185

entropy predictions (k = 15.16 and rRMS = 0.013).186

Taken together, the results of these simulations suggest that a broad distribution of cell neigh-187

borhood sizes is a general feature of multicellular growth morphologies. In particular, when cell188

locations are random under these rules, cell neighborhood size distributions closely follow the189

k-gamma distribution.190

The role of spatial correlations191

While we have shown that the distribution of cell neighborhood volumes closely follows the k-192

gamma distribution in two very different organisms, we have also seen that in some cases maxi-193

mumentropy predictions aremore accurate in sub-sections of an organism than across its entirety.194

For instance, in Volvox we observed that rRMS is much smaller within subregions with similar mean195

solid angles than across the whole organism. This observation suggests that correlations exist in196

the arrangement of V. carteri somatic cells, causing deviations frommaximum entropy predictions.197

The spatial correlations in the cellular areas in Volvoxwere studied first by plotting a 3Dheatmap198

of Voronoi solid angle sizes (Figure 3A). It is apparent that extended spatial regions have well-199

defined and non-random mean Voronoi solid angles. We quantified this feature by calculating200

the spatial correlation function C(Q) of the solid angle201

C(Q) =
⟨(Ω − ⟨Ω⟩) YQ⟩

�Ω�YQ
, (2)

where YQ = J (Q)−1
∑

j(Ωj − ⟨Ω⟩) is the average deviation of the solid angle of a given polygon’s202

neighbors at a neighbor distance Q from the mean. Here, the number of neighbors is J (Q), a203

function ofQ, which enumerates the network distance from the polygon of interest (i.e. Q = 1 calls204

the nearest neighbors, of which there are J (1), Q = 2 calls the next nearest neighbors, of which205

there are J (2), and so on). The standard deviation of the solid angle across the population is �Ω,206

and �YQ is the standard deviation of YQ across the population. We find that Volvox Voronoi solid207

angles are positively correlated at distances as large as Q = 10 (Figure 3A). This analysis suggests208

that there are systematic differences in Volvox group structure in different spatial regions. We209
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Figure 3. Correlations lead to deviations from maximum entropy predictions in Volvox carteri. A Correlation function of Voronoi polygon areasvs. network neighbor distance Q. Green circles represent all experimental Volvox data. Lines indicate the same correlation function calculated insubsections of size Q0 = {6, 10, 14, 18}. Inset: visualization of spatial correlations of solid angle; one Volvox’s Voronoi tessellation is displayed witha three-color heatmap corresponding to polygons with areas smaller than (light gray), within (gray) and larger (black) than one standarddeviation of the mean. Scale bar is 200 µm. B, PP plots for the observed vs predicted cumulative distribution function. In green is the Volvoxdistribution for all cells before corrections for correlations. A selection of differently-sized subsections is also plotted, corresponding to sizes
Q0 = {6, 10, 14, 18}. Arrow indicates direction of increasing Q0 value. C, Root-mean-square residual deviation from maximum entropy predictionsas a function of subsection size, as a function of nearest neighbor number Q0. As the subsection size increases (including more and moreuncorrelated Voronoi areas), the deviation from predictions first decreases until Q0 = 6, then increases.

therefore should expect to observe deviations from the k-gamma distribution, which was derived210

under the assumption that there are no correlations in the division of space among cells.211

A natural question is whether maximum entropy predictions are more accurate within corre-212

lated subregions of an organism. Wemeasured the Voronoi distribution in subregions with similar213

mean solid angles across six organisms and, for each subregion, a central node and its neighbors214

up to Q0 were identified. We varied Q0 from 3 (corresponding to, on average, 38 cells in the sub-215

region) to Q0 = 20 (1016 cells on average in the subregion) to measure the Voronoi solid angle216

distributions in subregions of different sizes. Spatial correlations were weaker within smaller do-217

mains (Figure 3A), and deviations from maximum entropy predictions smaller as well (Figure 3B)218

with theminimum rRMS atQ0 = 6 (Figure 3C, average of 133 cells). These observations suggest that219

while there are systematic correlations between subregions, cell neighborhood sizes are largely220

randomly distributed within subregions.221

The crucial role of randomness222

Howmuch randomness is necessary for the k-gammadistribution to predict cell neighborhood size223

distributions? Our analysis of the solid angle distribution of Volvox cells demonstrates that max-224

imum entropy principle predictions are relatively accurate (rRMS = 0.04) even in the presence of225

some spatial correlations. However, assessing the stability of entropic distributions to correlative226

perturbations is crucial to determine how broadly applicable entropic packing may be for multicel-227

lular organisms. We investigated the stability of the maximum entropy distributions by simulating228

three different sources of correlations: (i) size polydispersity, (ii) defined growth patterns, and (iii)229

coordinated cellular apoptosis. In each scenario, we varied the relative strength of correlations230

and noise, and monitored how closely the cell neighborhood size distributions agreed with the231

k-gamma distribution via P-P plots and the rRMS .232

The impact of heritable size polydispersity was investigated by simulating aggregative groups233

consisting of large and small cells. All simulations were seeded with one small cell and one large234

cell. We then varied the probability � that a new cell is the same size as its mother from 0.5 to235

1.0. When � = 1, cells always produce offspring with the same radius; for � = 0.5 it is equally236
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Figure 4. Introducing correlations and structure can break the maximum entropy distribution. In A-C are PP plots of the observed vs. predictedcumulative distribution function for three different simulations. The colors correspond to increasing levels of noisiness in the simulations, fromred (strongest correlations/determinism) to blue (strongest noise). The dashed black line in each represents y = x, or exact predictive efficacy.
(A) Aggregative groups with bimodal size polydispersity; noise is introduced by varying the probability that small cells reproduce into small orlarge cells, and vice versa. (B), Tree-like groups with persistent intercellular bonds that grow according to a growth plan modified by noise in cellplacement. (C), Surface-bound groups with programmed cell death events that may be localized or randomly dispersed. (D) The root meansquare deviation from predicted values for each simulation case. Circles are aggregative simulations from A, triangles are tree-like simulationsfrom B, and squares are surface-bound simulations from C.

likely that a small cell produces a small or large daughter (and vice versa for large cells). Therefore,237

groups with � = 1 have correlated regions of cell size, but the degree of correlations decreases238

with decreasing �. While groups with � = 1 deviate significantly from the k-gamma distribution239

(rRMS = 0.09), we observed that even a small amount of randomness results in excellent agreement240

between simulated groups and the k-gamma distribution (in order from � = 1 to � = 0.5, rRMS =241

{0.09, 0.04, 0.03, 0.03, 0.02}).242

Next we investigated groups with varying amounts of noise on top of defined growth patterns.243

In these simulations, new cells bud in precise positions; the first daughter at the position � = 0 ± �,244

� = 0 ± � in spherical coordinates), the second at � = 90 ± �, � = 0 ± �, the third at � = 90 ± �,245

� = 180± �, etc., where the noise is uniformly distributed with zero mean and width �. For � = 0 (no246

noise), the distribution of Voronoi volumes was discontinuous, since cells could only access a finite247

number of local configurations. As expected, as � increases (� = {0, 5, 30, 60, 90}), rRMS decreases248

(rRMS = {0.07, 0.05, 0.02, 0.02, 0.02}).249

Finally, we investigated groups with localized and random cell death. In these simulations,250

50 cells were confined to the surface of a sphere of unit radius following the protocol described251

above. One cell is randomly selected to die. Centered at this cell, a spherical region of radius R252

is defined, and then 10 cells in this region were randomly selected to die (and disappear, thereby253

not contributing to the Voronoi tessellation). For small R, cell death is highly localized, and thus254

spatially correlated. As R increases, cell death events become less localized, and therefore more255

random. We find that highly correlated cell death resulted in large deviations from maximum256

entropy predictions. Conversely, as R increases dead cells become less localized, the observed dis-257

tribution becomes more accurately described by the k-gamma distribution; as R increases from258

R = {0.75, 1, 1.25, 1.5, 1.75, 2}, we find rRMS = {0.10, 0.07, 0.03, 0.02, 0.01}.259

In summary, absent randomness, spatial correlations lead to large deviations from the k-gamma260

distribution. Yet, with even a small amount of randomness, the k-gamma distribution holds signif-261

icant predictive power. These simulations suggest that maximum entropy predictions are likely to262

be robust against even moderate correlations.263

Parent-offspring fidelity via maximum entropy packing264

So far, we have shown that randomness in cellular packing leads to highly predictable packing265

statistics. Here we show that maximum entropy statistics can directly impact the emergence of a266

highly heritable multicellular trait, organism size.267

Prior work has shown that the size of snowflake yeast at fragmentation is remarkably heritable268
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Figure 5. Maximum entropy cell packing generates a consistent and predictable life cycle in snowflake yeast. (A) Distribution of total clustervolume for 3000 simulated snowflake clusters, each with N = 100 cells. The total volume is divided by the minimum possible volume Nvc . Thek-gamma distribution (black line, k = 23.0, rRMS = 0.0043) provides a good description of the data. (B) Distribution of all experimental Voronoivolumes (black circles) and the maximum entropy prediction (black line). The vertical black dashed line is the critical Voronoi volume v∗ = 2.02predicted from simulations. Orange filled region integrates up to p∗ the probability that any one cell occupies a volume less than v∗. Insets:sequential brightfield microscope images of one yeast cluster undergoing group fragmentation. White arrowhead indicates location of fracturepoint. The images measure 150 µm across from top to bottom. (C), Experimentally measured yeast cluster size distribution (solid black line) alongwith the prediction from weakest link theory (orange line). Gray region represents 1� confidence bounds on the measured distribution fromestimating the number of cells in a group. (D), Coefficient of variation in group radius (�∕R̄) for snowflake groups (S) and flocculating groups (F).Data from Pentz et al. (2020).

- higher, in fact, than the traits of most clonally-reproducing animals (Ratcliff et al., 2015). The size269

to which snowflake yeast grow depends strongly on the aspect ratio of its constituent cells; more270

elongated cells allow the growth of larger clusters before strain from cellular packing causes group271

fragmentation (Jacobeen et al., 2018b,a). Recently, experiments with engineered yeast showed272

that this emergent multicellular trait, group size, was in fact more heritable than the underlying273

cellular trait upon which it was based (cellular aspect ratio), despite the fact that the mutations274

engineered in this system only affected cellular aspect ratio directly (Zamani-Dahaj et al., 2021).275

Simulations of multicellular chemotaxis observed a similar effect (Colizzi et al., 2020). While at276

first glance this may seem surprising, we show below that the high heritability of snowflake yeast277

group size arises from the direct dependence of size on the robust maximum entropy distribution278

of volume within groups.279

Before addressing how fracture impacts the distribution of cluster sizes by impacting the num-280

ber of cells within a group, we first must address fluctuations in size among clusters with the same281

number of cells. Given a number of cells N in the cluster, variation in cell packing fraction results282

in variation of the total volume. The arguments given above for predicting the distribution of indi-283

vidual cell volumes also applies to the distribution of total volume (Aste and Di Matteo, 2008); the284

distribution of total volume for clusters with the same number of cells should follow the k-gamma285

distribution. To generate enough clusters with identical N to test this prediction, we used simula-286

tions. We generated 3000 snowflake yeast clusters, each with 100 cells, and measured their total287

volumes. The distribution of volumes is consistent (rRMS = 0.0043, k = 23.0) with the k-gamma288

distribution as shown in Figure 5A. Further, these fluctuations in size are small compared to the289

differences in size gained via reproduction of cells or lost via fracture.290

Topredict the group size distribution, we consider the probability of fragmentation via aweakest-291

link model of fracture. As the location of new cells is random (see Figure 1–Figure Supplement 1),292

each new cell has a chance of causing intercellular bond fracture. It was previously observed that293

bonds only break if cells are highly confined, that is they have smaller Voronoi volumes; otherwise294

flexible cellular branches simply bend (Jacobeen et al., 2018b). We model fracture as occurring295

when a cell’s Voronoi volume is below a critical value denoted by v∗ (Figure 5B) such that its mo-296

tion is completely restricted. We measure v∗ from simulations that determine the maximum local297
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packing density for groups with same cell size and shape distributions as seen in experiments (see298

Methods). The probability that a particular cell is confined to a Voronoi volume v ≤ v∗ is the integral299

300

p∗ = ∫

v∗

vc

p(v)dv. (3)
As each cell in a cluster of N cells independently has probability p∗ of having v ≤ v∗ (and thus301

causing fracture), the probability of a cluster with N cells not fragmenting is302

P (N) = (1 − p∗)N (4)
As we do not model the fate of products of fragmentation (i.e., the size of the separate pieces post-303

fracture), we expect the weakest link model to be more accurate for larger clusters than it is for304

smaller clusters.305

We measured group size for approximately 10, 000 snowflake clusters, all descendants of a sin-306

gle isolate, using a particle multisizer, and found strong agreement between the experimentally307

observed cluster size distribution and the weakest-link prediction (the coefficient of determination308

is r2 = 0.97 for log(Counts) vsN ) (Figure 5C). Hence, the predictable statistics of entropic cell packing309

guides the distribution of group size among offspring of a single isolate.310

For context, we compared the distribution of group size in snowflake yeast to that of flocculat-311

ing yeast, which forms multicellular groups via aggregation. The multicellular size of flocculating312

yeast depends on the rate of collisions with other cells and groups of cells. The growth rate of313

aggregates is thus typically proportional to their size, as larger aggregates are more likely to con-314

tact more cells (Pentz et al., 2020). In fact, the maximum size of a flocculating yeast aggregate is315

bounded by the duration of aggregation, an extrinsic parameter, while the minimum size can be a316

single cell (Stratford, 1992). Using data from (Pentz et al., 2020), we compared the group size dis-317

tributions of snowflake yeast and flocculating yeast grown in the same environmental conditions.318

We find that flocculating yeast groups exhibit a much larger coefficient of variation in size com-319

pared to snowflake yeast groups (Pentz et al., 2020) (Figure 5D). These results demonstrate that320

randomly assembled groups can exhibit more reproducible group traits than groups assembled321

with correlations.322

Multicellular motility is robust to cellular area heterogeneity323

One of the issues arising from the existence of the broad distribution of somatic cell areas in Volvox324

is the extent to which colony motility is affected by that heterogeneity. Each of the somatic cells at325

the surface of a Volvox colony has two flagella that beat at ∼ 30 Hz, in planes that are primarily ori-326

ented in the anterior-posterior (AP) direction butwith a slight lateral tilt thatmakes each colony spin327

around its AP axis. A longstanding focus in biological fluid mechanics of multicellular flagellates328

has been to understand the connection between the beating of the carpet of flagella that cover329

their surface and their self-propulsion. Measurements of the flow fields around micropipette-held330

(Short et al., 2006) and freely-swimming colonies (Drescher et al., 2010a) have shown that despite331

the discreteness of the flagella, the flow is remarkably smooth, albeit often displayingmetachronal332

waves (Brumley et al., 2015), long-wavelength phase modulations of the beating pattern.333

A heuristic explanation for the smoothness of the flows can be developed by noting first that334

the flow arising from each flagellum, beating close to the no-slip surface of the colony, will fall off335

only as an inverse power of distance r from the flagellum. Thus, the superposition of the flows from336

many flagella will be sensitive to contributions from distant neighbors and will tend to wash out337

local variations in flagellar actuation. This argument can be made quantitative using two different338

models for the motility of such flagellates. The first is the “squirmer" model (Lighthill, 1952), in339

which the flagellate is characterized by a tangential “slip" velocity u(�) on the surface, which can be340

thought of as corresponding to the mean motion of the flagella tips. Here, � ∈ [0, �] is the polar341

angle with respect to the AP axis. In this approach the details of the fluid velocity profile below the342

tips are not resolved, and in particular the no-slip condition at the surface of the ECM is ignored. In343
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the second approach (Ishikawa et al., 2020), which builds on earlier work (Short et al., 2006) that344

specified a force density at the colony surface instead of a slip velocity, there is a specified force345

density applied at some small distance above the no-slip colony surface, and the flow field below346

that locus is resolved. This approach, termed the “shear stress, no-slip" model, captures the very347

large viscous dissipation that occurs in the region between the ECMand the locus of forcing. Within348

either of these two approaches above the effects of area inhomogeneities can be investigated by349

coarse-graining the flagella dynamics; either the local slip velocity u(�) or the local tangential force350

density f (�) has noise.351

In the squirmer model, the swimming speed U is (Lauga, 2020)352

U = 1
2 ∫

�

0
d� sin � u�(�)V1(�), (5)

where353

Vn(�) =
2

n (n + 1)
P ′

n (cos �) sin �, (6)
Pn is the Legendre polynomial, and the prime indicates differentiation with respect to its argument.354

If we represent the effects of area inhomogeneities as noise in the slip velocity, then it is most355

natural to use Vn as the basis functions for the tangential slip velocity, expressed as356

u�(�) =
∞
∑

n=1
unVn(�), (7)

where Vn(0) = Vn(�) = 0, guaranteeing that the slip velocity vanishes at the anterior and posterior357

poles (Short et al., 2006). Accurate experimental measurements of the azimuthal velocity field358

of Volvox (Drescher et al., 2010b) show that it is well-captured by that lowest mode, leading to a359

modest anterior-posterior asymmetry. From the orthogonality relation for the Vn,360

∫ d� sin �V1(�)Vn(�) =
2n(n + 1)
2n + 1

�1n, (8)
we see immediately that the contributions from all modes n > 1 vanish identically, and thus the361

swimming speed is given identically by the amplitude of the lowest mode V1(�) = sin �,362

U = 2
3
u1. (9)

Thus, within the squirmer model, motility is essentially insensitive to area inhomogeneities. This363

result does not preclude effects of those higher modes, only that such effects will be on quantities364

other than the swimming speed, such as the nutrient uptake rate (Magar et al., 2003).365

In the shear-stress, no-slip model, the velocity field in the region between the colony radius366

R and the radius R(1 + �) at which the shear stress is applied is solved separately from that for367

r > R(1+�) and the two flowfields arematched atR(1+�) through boundary conditions of continuity368

in velocity and normal stress and the specified discontinuity in shear stress. Analogously to the369

expansion of the slip velocity in the squirmermodel (7), noise in that discontinuity can be expressed370

by assuming that the coarse-grained shear force applied by the flagella has spatial variations, and371

can be expanded in the form372

f�(�) =
∞
∑

n=1
fnVn(�). (10)

The swimming speed again depends only on the lowest-order mode in this expansion,373

U = 2�R
3�

f1, (11)
and we again have insensitivity of U to inhomogeneities in the area per somatic cell.374
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Discussion375

In this paper, we demonstrated that universal cellular packing geometries are an inevitable conse-376

quence of noisy multicellular assembly. We measured the distribution of Voronoi polytope sizes377

in both nascent and extant multicellular organisms, and showed that they are consistent with the378

k-gamma distribution, which arises via maximum entropy considerations. Using simulations, we379

demonstrated that k-gamma distributions arise in many different growth morphologies, and do380

so requiring only a relatively small amount of structural randomness. Further, we showed that the381

distribution of cell neighborhood sizes can be used to distinguish the effects of randomness from382

the effects of developmental patterning. Finally, we demonstrated that consistent packing statis-383

tics can lead to highly reproducible, and thus heritable, multicellular traits, such as group size in384

snowflake yeast. Altogether, these results indicate that entropic cell packing is a general organizing385

feature of multicellularity, applying to multicellular organisms with varying growth morphologies,386

connection topologies, and dimensionalities.387

The effect of random noise has been an important area of research in developmental biology388

(Tsimring, 2014; Lander, 2011). During development, cellular growth, reproduction, differentiation,389

and patterning combine to form amulticellular organism. Randomnoise introduced at any stage in390

this process can result in phenotypic variability, which may affect an organism’s fitness (Wadding-391

ton, 1957). But while some multicellular traits exhibit high variability, others are tightly conserved,392

leading to a wide body of research addressing the origin of mechanisms underlying robustness393

and stability, and the nature of feedback mechanisms that must be present to manage the large394

number of stochastic fluctuations in gene expression and growth (Gregor et al., 2007; Haas et al.,395

2018; Hong et al., 2016; Sampathkumar, 2020; Deneke and Di Talia, 2018). In this context, our re-396

sults demonstrate that random noise can itself lead to highly reproducible multicellular traits such397

as the cell packing distribution.398

Our observation that heritable properties can arise from random processes is reminiscent of399

the reproducible structures and phenomena generated by random noise in a wide range of physi-400

cal (Shinbrot and Muzzio, 2001;Manoharan, 2015) and biological systems (Tsimring, 2014; Lander,401

2011). While it may be surprising that the distribution of free space in snowflake yeast and Volvox402

follow the same k-gamma distributions despite the many differences between these organisms,403

this universality actually extends beyond multicellular organisms to non-living materials, such as404

those seen in granular materials and foams (Katgert and Van Hecke, 2010; Varadan and Solomon,405

2003; Aste and Di Matteo, 2008). This broad universality likely arises due to the simple require-406

ments for application of the maximum entropy principle to packing; specifically, there must be a407

total volume, individual volumes cannot overlap, and volumes must be determined independently408

(subject to the total volume constraint). It is thus important to note that entropic packing is not409

necessarily adaptive; it can readily emerge as a consequence of random cellular reproduction or410

interactions. While entropic packing statistics may produce advantages in some cases, they could411

be neutral or detrimental in others.412

An example of one possible advantage granted by entropic packing is the parent-offspring fi-413

delity that arises from its ensemble statistics. Since both parents and their offspring are assembled414

through similar noisy processes, they achieve similar cell packing distributions. This statistical sim-415

ilarity therefore details at least one heritable multicellular trait that does not rely on genetically416

regulated multicellular development. Other multicellular traits that build on the cell packing distri-417

bution are similarly affected by this emergent process and could become heritable as well. Such418

parent-offspring heredity could play a crucial role in the evolutionary transition to multicellularity,419

providing a mechanism for nascent multicellular organisms to participate in the evolutionary pro-420

cess without first having to possess genetically regulated development. Over time, developmental421

innovation may arise via multicellular adaptation, modifying or replacing entropic cell packing as422

a mechanism of multicellular heredity. Consistent with this hypothesis, maximum entropy retains423

considerable predictive power in extant multicellular organisms such as Volvox, animal embryos424
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(Alsous et al., 2018), and epithelial tissue monolayers (Atia et al., 2018), each of which have canal-425

ized development. There may be other examples of highly-evolved organisms which pack cells426

according to maximum entropy predictions, and future work could address cell packing in, e.g.,427

animal embryos, brain tissue, and more. Finally, as fragmentation is a common mode of multi-428

cellular reproduction (Larson et al., 2019; Prakash et al., 2019; Angert, 2005; Keim et al., 2004;429

Koyama et al., 1977), fracture driven by maximum entropy packing statistics may be relevant to430

organisms other than snowflake yeast.431

The broad distributions in cellular volumes we have found in two very different types of organ-432

isms, with two very different modes of reproduction and growth, suggest that noise in develop-433

mental geometry may be an inevitable consequence of almost any microscopic mechanism. In434

this sense, they may be just as unavoidable in biological contexts as thermal fluctuations are in435

systems that obey the rules of equilibrium statistical physics. As an example, we recall the “flicker436

phenomenon" of erythrocytes, in which the red blood cell membrane exhibits stochastic motions437

around its equilibrium biconcave discoid shape. Thought for many years to be a consequence of438

specific biochemical processes associated with living systems, flickering was eventually shown by439

quantitative videomicroscopy (Brochard and Lennon, 1975) to be consistent with equilibrium ther-440

mal fluctuations of elastic biomembranes immersed in water. This was later confirmed by similar441

studies of shape fluctuations exhibited by large lipid vesicles (Schneider et al., 1984). The gen-442

eralization of these considerations to homeostatic tissues with cell division, rearrangements and443

apoptosis has also been considered (Risler et al., 2015; Kalziqi et al., 2018). While such membrane444

systems may differ greatly in the specific values of their elastic modulus (and, indeed, of their mi-445

croscopic membrane constituents), the viscosity of the surrounding fluid, and their physical size,446

the space-time correlation function of fluctuations about the equilibrium shape adopts a universal447

form in appropriately rescaled length and frequency variables.448

These results on equilibrium fluctuations provide a conceptual precedent for the results re-449

ported here. A central issue that then arises fromour results is how to connect any given stochastic450

biochemical growth process defined at the microscopic level to the more macroscopic probability451

distribution function observed for cellular volumes. Mathematically this is the same question that452

arises in the theory of random walks, wherein a Langevin equation defined at the microscopic453

level leads, through suitable averaging, to a Fokker-Planck equation for the probability distribution454

function of displacements. Can the same procedure be implemented for growth laws?455
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Methods463

Yeast genotypes and growth morphology464

Snowflake yeast genotypes465

Multicellular yeast groups were constructed from initially unicellular Saccharomyces cerevisiae. Pe-466

tite yeast groups (P-) were used in all experiments except those noted below. Snowflake yeast467

were engineered by replacing a functional copy of ace2with a nonfunctional version as described in468

(Ratcliff et al., 2015) (thesemodified genotypes will be referred to as either snowflakes or Ace2KO).469

Under daily selection for large size through settling in liquidmedia, groups can arise via a singlemu-470

tation in the ace2 gene (Ratcliff et al., 2012, 2015). When the ace2 gene is not expressed, the final471

stage of cell division is not completed, andmother-daughter cells remain attached at the chitinous472
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bud site. Since all cells are attached directly to their mothers, snowflake groups form a fractal-like473

branched tree collective. To measure bud scar size, we used a unicellular strain of Y55 yeast; these474

measurements were only used to pick parameters for snowflake yeast simulations.475

Yeast growth morphology476

S. cerevisiae cells reproduce by budding, a type of asexual reproduction where a new cell extrudes477

from the surface of the parent cell. During budding, mother and daughter cells remain attached478

via a rigid chitinous bond; in unicellular yeast, chitinase will degrade this bond as the last step in479

cell division, releasing the daughter cell and leaving behind a “bud scar” on themother surface and480

a “birth scar” defining the proximal hemisphere on the daughter’s cell surface. In all experiments,481

we use yeast expressing bipolar budding patterns (Chant and Pringle, 1995). The bipolar budding482

pattern is characterized by bud sites that typically do not form along the equator of the cell. Usually,483

the first daughter buds near the distal pole. Subsequent budding sites are typically positioned484

along a budding ring defined by a polar angle � (Figure 6). Some buds will “backbud” towards the485

mother cell (i.e. on the proximal end of the cell), but most buds are placed on the distal side. By486

contrast, the azimuthal positions of all buds appears to be randomly distributed.487

Growth conditions488

All experiments were performed on yeast grown for approximately 24 hrs in 10 mL of yeast pep-489

tone dextrose (YPD, 10 g/L yeast extract, 20 g/L peptone, and 20g/L dextrose) liquid medium at490

30C, and shaken at 250rpm in a Symphony Incubating Orbital Shaker model 3500I. All cultures491

were therefore in the stationary phase of growth at the time of experiments.492

Scanning electron microscopy to measure group structure493

Since yeast cells have thick cell walls that limit the effectiveness of optical microscopy, we used a494

Zeiss Sigma VP 3View scanning electronmicroscope (SEM) equipped with a Gatan 3View SBFmicro-495

tome installed inside a Gemini SEM column to obtain high resolution images of the internal struc-496

ture of snowflake yeast groups and locate the positions of all cells. All SEM images were obtained in497

collaboration with the University of Illinois’s Materials Research Laboratory at the Grainger College498

of Engineering. Snowflake yeast clusters were grown overnight in YPD media, then fixed, stained499

with osmium tetroxide, and embedded in resin in an eppendorf tube. A cube of resin 200 µm x500

200 µm x 200 µm (with an isotropic distribution of yeast clusters) was cut out of the resin block for501

imaging. The top surface of the cube was scanned by the SEM to acquire an image with resolution502

50 nm per pixel (4000 x 4000 pixels). Then, a microtome shaved a 50 nm thick layer from the top of503

the specimen, and the new top surface was scanned. This process was repeated until 4000 images504

were obtained so that the data cube had equal resolution in x, y, z dimensions.505

Custom image analysis scripts were written for the SEM datasets. First, a local adaptive thresh-506

old was used to binarize the image. A distance transform was used to identify the center of each507

cell slice in a particular 2d image. A watershed algorithm was then seeded with the cell slice cen-508

ters, followed by a particle tracking algorithm to label cells across image slices. After labeling, the509

boundary for each cell was found, resulting in a point cloud of the exterior of each cell. Each cell510

was then fitted with an ellipsoid with nine fit parameters: (x0, y0, z0) cell center, (a, b, c) cell radii,511

and (�, ',  ) for cell orientation. The net rotation matrix R was then found, where each column of512

R corresponds to the direction vector of one principal axis of the ellipsoid. We consider the radii513

of the principal axes (a, b, c) to be part of a diagonal scaling matrix S which sets the ellipsoid size.514

Since the SEM images only capture the cell cytoplasm, each principal axis was increased in size515

by an additional 100 nm to account for the cell wall during visualization. Last, although there is no516

possible 3d 3x3 translation matrix, a 4x4 translation matrix T can capture the position of the cell517

center (x0, y0, z0). Adding one additional column and row to the matrices R and S with the diagonal518

element being 1 and all other elements being 0 then means that a unit sphere centered at the ori-519

gin can be mapped to any specific cell by a surface matrixM = TRS, and furthermore any point520
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on the cell’s surface can be mapped back to the unit sphere by the inverse ofM . Then, the surface521

matrices are the only information that must be stored. From this dataset, 20 clusters of 105 ± 51522

cells in each cluster were identified along with their intercellular mother-daughter chitin bonds.523

Petite yeast cell size and shape524

We measured cellular volumes from SEM images by ellipsoid fits. The average cellular volume of525

petite yeast was vc = 17.44 µm3 ± 7.33 µm3. This measurement was used in our Voronoi distribution526

derivations. We measured the mean cellular aspect ratio to be � ≡ a∕b = 1.28 ± 0.20.527

Bud scar size528

We next measured the typical size of bud scars on the surface of Y55 yeast cells. Single cells were529

stained with calcafluor to highlight the chitinous bud scars (Figure 1–Figure Supplement 1). Confo-530

cal z-stacks were obtained on a Nikon A1R confocal microscope equipped with a 40× oil immersion531

objective. These images were visualized using the image processing software FIJI, and the 3d vol-532

ume viewer plugin. To track the location and size of bud scars, a customMatLab script was written533

to map the strongest calcafluor signals, since calcafluor makes bud scars brighter than other por-534

tions of the cell wall. Brightness isosurfaces then isolated the bud scars from the cell wall. Next, the535

isosurface points were rotated to the x− y plane by finding its principal components in a principal536

component analysis. The rotated surface points were then fit with an ellipse, returning the major537

and minor axes. The average of the major and minor axes returned an average interior bud scar538

diameter of 1.2 µm. This value was later used in simulations of yeast groups.539

Bud scar locations540

We measured bud scar positional distributions for petite yeast Ace2KO. Since the SEM does not541

image chitinous bud scars, we approximated bud scar positions as the closest point on a mother542

cell’s surface to the corresponding daughter cell’s proximal pole. We recorded 1990 bud scar posi-543

tions in polar coordinates, as defined in Figure 1–Figure Supplement 1. There is a clearly defined544

polar angle for the budding ring, while the azimuthal angle is uniformly distributed. The mean and545

standard deviations of the two angular coordinates were � = 42° ± 23°, and ' = 180° ± 104°.546

Imaging Volvox547

Cultivation and Selective Plane Illumination Microscopy548

The V. carteri f. nagariensis strain HK10 (UTEX 1885) was obtained from the Culture Collection of Al-549

gae at the University of Texas at Austin and cultured as previously described (Brumley et al., 2014).550

To visualise somatic cells, V. carteri spheroids were embedded in 1% low-melting-point agarose,551

suspended in liquid medium and imaged using a custom-built Selective Plane Illumination Micro-552

scope (Haas et al., 2018). Each somatic cell is mostly filled with a single chloroplast. Chlorophyll553

autofluorescence was excited at � = 561 nm and detected at � = 570 nm. To increase the accuracy554

with which we identify somatic cell positions, z-stacks of six spheroids were acquired from three555

different angles (0, 120, 240 degrees) and fused as described in the following paragraph.556

Registration of cell positions557

Positions of cells were registered based on fluorescence intensity using customMatlab scripts. This558

was achieved by carrying out a 2D convolution of each frame of the z-stack with a basic kernel mod-559

elling the appearance of a cell - this was set to be an asymmetric double sigmoidal function. Cell560

segmentation was corrected manually. Z-stacks taken from different angles were roughly aligned561

using Fiji and theMatlab function fminsearch tominimise distances between the reproductive cells.562

This alignment was used as starting point for alignment of the somatic cells again using fminsearch.563

The positions of somatic cells were merged and averaged.564
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Voronoi Tessellation565

We used a Voronoi tessellation algorithm to measure the distribution of cell neighborhood sizes in566

groups. We computed both 3D and 2D Voronoi tessellations.567

3D Voronoi Tessellations568

First, we computed 3D Voronoi tessellations within a defined boundary. These tessellations were569

performed for experimental snowflake yeast data from the SEM and simulations of 3D groups570

using the open-source Voronoi code Voro++ (Rycroft, 2009), wrapped in a custom MatLab script.571

Voro++ takes as input the Cartesian coordinates of the cell centers and the boundary of the shape572

within which to compute the tessellation. Without a boundary, all of the Voronoi cells located on573

the periphery would extend to infinity. We started the tessellation process by setting the input574

boundary to be a sphere; the Voronoi algorithm tessellated space within the spherical boundary.575

Then, pieces of the sphere were pared away until a Voronoi tessellation within the group’s convex576

hull was obtained, as described in the next paragraph.577

The boundary sphere was centered on the cluster’s center of mass. Its radius was the distance578

to the farthest cell center plus an additional 5 µm. Upon tessellationwithin the sphere, each Voronoi579

polyhedron is defined by Cartesian vertices rj. We group these preliminary vertices by the cells to580

which they correspond, so that Qi = {r1, r2, ..., rm} is a list of the m vertices corresponding to cell581

i ∈ [1, N],N being the total number of cells in the organism. Wenext computed the cluster’s convex582

hull, which is the smallest convex polyhedron that contains all cell centers. We then extended583

the vertices of the convex hull by 3 µm outwards from the cluster center of mass so the boundary584

contained the entirety of each cell. This new boundary polyhedron, whose vertices are labeled B,585

defines the cluster boundary. We then found the intersection polyhedron,Zi = Qi∩B by taking the586

union of the dual of their vertices. This process thereby trims all Voronoi polyhedra to lie exclusively587

within the cluster’s convex hull. The polyhedra Zi were the final Voronoi polyhedra used for the588

remaining data analysis.589

Voronoi tessellation on a sphere590

For Voronoi tessellations of cells on the surface of simulated spheres (see Figure 3 and Figure 4 of591

the main text), we used a built-in Matlab function called "voronoisphere" for Voronoi tessellations592

on a sphere.593

Voronoi Tessellation on Non-Spherical Surfaces594

We also computed 2D Voronoi tessellations on surfaces embedded in 3D space using custom-595

written MatLab functions. This approach was used for Volvox experimental data. Performing this596

computation with Volvox experiments presented a challenge as Volvox are roughly spherical, but597

with varying local curvature. It was therefore necessary to compute a Voronoi tessellation on an598

arbitrary surface.599

The first step toward generating the proper Voronoi tessellation was computing the Delaunay600

triangulation of the cells on the surface (the Voronoi tessellation is the dual of the Delaunay trian-601

gulation). First, we found the Cartesian coordinates of each somatic cell (as described above), and602

normalized these coordinates so that all cell centers laid on the unit sphere. Then, a Delaunay tri-603

angulation of the normalized points was calculated. Edges of the triangulation that cut through the604

unit sphere were eliminated, and edges that laid along the sphere surface were kept. This Delau-605

nay triangulation therefore mapped out the connectivity of the somatic cells. We then projected606

that triangulation onto the lumpy surface. The Voronoi polygon vertices are the circumcenters607

of each Delaunay triangle. Further, any edge shared between two Delaunay triangles denotes an608

edge shared between the Voronoi vertices associated with those two triangles. We found all edges609

connecting the Voronoi vertices. Next, connected edges were flattened so that each Voronoi cell610

was a 2D polygon. This step eliminates the curvature associated with the surface of the organism.611

However, we found that the distribution of Voronoi areas was unaffected by taking either the pla-612
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nar approximation or by approximating the area by taking the local curvature into account – the613

average difference between Voronoi areas when approximating the surface as a plane Ap vs. ap-614

proximating the surface as a spherical cap As was found to be ⟨

Ap−As
Ap

⟩ = 0.001, measured for one615

organism. Therefore, we used the flattened Voronoi polygons as the final tessellation shapes.616

Data analysis of Voronoi measurements617

In all cases, the output of the Voronoi algorithm is a list of Voronoi polytope sizes: in 3D, the mea-618

surements were the final Voronoi polyhedron volumes, while in 2D the measurements were poly-619

gon areas. Histograms of these sizes were generated to compare with the k-gamma distribution.620

Aswe observe cells in direct contact with each other, theminimum size of a Voronoi volume or area621

was defined by single cell measurements. For petite yeast cells, the mean cell size was calculated622

from the ellipsoid fits described above to be vc = 17.44 µm3 ±7.33 µm3. In simulations, the minimum623

volume was set by the defined cell radius; in bidisperse simulations, the minimum size was set by624

the volume of the smallest cells.625

We then calculated the expected maximum entropy distribution using only the mean and vari-626

ance of the observed Voronoi volumes, v̄ and �2, as inputs. Together with the minimum volume vc ,627

these measurements define k = (v̄ − vc)2∕�2, a dimensionless shape parameter (Aste and Di Mat-628

teo, 2008). The maximum entropy distribution was therefore not fit to the data using, for example,629

a least squares method, but inferred from the first two moments of the distribution.630

Volvox631

Along the surface of the Volvox organisms, there are gaps between some of the somatic cells due632

to the Gonidia that lie beneath, but near the surface of the organism. These Gonidia effectively633

occupy space on the surface, making it inaccessible to somatic cells. We excluded all Voronoi cells634

that intersected these Gonidia gaps. We identified gaps in the soma cells by flagging Delaunay635

triangles with exceptionally high aspect ratios. Any Voronoi polygons that intersect the flagged De-636

launay triangles were then flagged and later excluded from the dataset. The polygons were gener-637

ally spatially clustered, indicating that the Gonidial gaps were being correctly isolated. Roughly 90638

polygons were excluded from each organism.639

In Volvox organisms, each cell is surrounded by extracellular matrix, so cells do not contact640

each other. Furthermore, each of the six organisms studied varied in diameter (standard devia-641

tion in diameter was 28.2 µm), yet all contained roughly the same number of somatic cells, leading642

to systematic differences in average surface area per cell across the organisms. Quantitatively, the643

coefficient of variation of the diameter of the groups was CVD = 0.05, while the coefficient of vari-644

ation in the number of cells in each group was roughly 10 times smaller, CVN = 0.006. To counter645

the systematic size differences between organisms, we converted the Voronoi polygon areas into646

solid angles by dividing by the total surface area of each organism, Ωi = Ai∕S; we then grouped647

all six organisms together into one histogram. We allowed the minimum solid angle, used in the648

k-gamma equation, to be a fit parameter in a least squares minimization procedure. There was649

one outlier cell with solid angle Ω = 0.0048 steradians; the next two smallest cells had solid angles650

0.0068 and 0.0069 steradians. We removed the outlier; the least squares minimization procedure651

then fit a minimum solid angle Ωc = 0.0070 steradians. We used this value for all further calcula-652

tions. Just as in the 3D case, the mean and variance of the solid angle were measured to set the653

expected maximum entropy distribution.654

Cluster size distribution measurements655

Cluster sizes were measured using a Beckman Coulter Multisizer 4e particle analyzer in the Cellu-656

lar Analysis and Cytometry Core of the Shared User Management System located at the Georgia657

Institute of Technology. Petite Ace2KO clusters were taken from steady state concentration in YPD658

and then submerged in electrolytic fluid and passed through a 100 µm aperture tube. The volume659

measured on the multisizer corresponds to the volume of electrolyte displaced by the cluster. The660
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number of cells in each cluster was then estimated by N = V ∕vc , where V is the volume of organ-661

ism measured by the Coulter Counter, and vc is the average cell volume from SEMmeasurements,662

vc = 17.44 µm3.663

Cumulative Distribution Function statistics664

To quantify goodness-of-fit for predicted maximum entropy distributions, we compared the predi-665

cated cumulative distribution function (CDF), F (x), to the empirical CDF, Fi, using P-P plots. Exactly666

predicted points will lie on the line y = x in these plots. We measured the root-mean-square resid-667

ual from the line y = x,668

rRMS =
√

⟨(Fi − F (x))2⟩ (12)
Measurements of Ψ6 in V. carteri669

From the light sheet images of Volvox, we obtained the Cartesian coordinates of each somatic cell.670

FromDelaunay triangulation, we then obtained a list of every cell’s closest neighbors. Each cell and671

itsNN nearest neighbors did not generally lie in a plane due to local curvature of the Volvox surface.672

We therefore calculated in-plane andout-of-plane components using principal component analysis.673

The in-plane components were then used to write the positions of each nearest neighbor in polar674

coordinates. The formula for calculating Ψ6 is675

Ψ6 = |⟨

1
NN

NN
∑

j=1
e6i�j ⟩| (13)

where �j defines the polar angle coordinates around the cell of interest and ⟨...⟩ denotes averaging676

over all cells. We calculated Ψ6 separately for each of six different organisms; we report Ψ6 =677

0.03 ± 0.01.678

Correlation of Voronoi Areas679

In Volvox organisms, we calculated the spatial correlation of polygon areas. First, we extracted the680

list of cell neighbors from the Delaunay triangulation of the organism surface. Nearest neighbors681

were designated as living a network distance of 1 away from a cell of interest; next nearest neigh-682

bors live a network distance of 2 away from the cell of interest, etc. The number of neighbors a683

network distance ofQ away is then J (Q), which is empirically determined. The network correlation684

function is then685

C(Q) =
⟨(Ω − ⟨Ω⟩)YQ⟩

�Ω�YQ
(14)

where YQ = J (Q)−1
∑

j(Ωj − ⟨Ω⟩) is the average deviation of the solid angle of a given polygon’s686

neighbors from the mean. The standard deviation of the solid angle across the population is �Ω,687

and �YQ is the standard deviation of YQ across the population.688

Simulation methods689

Simulations of snowflake yeast groups690

Simulations of snowflake yeast groups were adapted from previously published work by Jacobeen691

et al. (2018a,b) that found simulations of snowflake yeast growthmorphology accurately replicated692

experimentally measured cellular packing fractions and average group sizes. In the present work,693

cells were modeled as prolate ellipsoids of revolution with a semi-major axis a = 2.88 µm and semi-694

minor axis b = 2.29 µm, characterized by the aspect ratio � ≡ a∕b = 1.26. Each generation, every cell695

attempted to reproduce; however, if new cells closely overlapped with existing cells (i.e. their bud696

scars are closer than 1.2 µm), theywere eliminated. Setting the number of generations (for example,697

7) sets the maximum possible number of cells in the group at the end of the simulation (27 = 128),698

and roughly sets the expected number of cells in the group (∼ 100). In our simulations, cells were699

80% likely to bud first from the distal pole (i.e. � = 0 ± 10 degrees). Subsequent cells budded at a700
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polar angle �, andwith an azimuthal angle randomly chosen from a uniformdistribution' ∈ [0, 2�];701

in other words, after the first bud, cells generally appeared along a “budding ring”. There was a702

20% chance that the first bud would appear along this budding ring instead of exactly at the pole.703

After 3 bud scars, there was a 50% chance that new cells bud on the proximal side (� − �) instead of704

the distal side. The orientation of the new cell is determined by the surface normal to the mother705

cell at the position of the bud site; the major axis of the new cell lies along the surface normal.706

To compare exhaustively the distribution of Voronoi volumes between simulations and the k-707

gamma distribution, we simulated 9, 100 clusters. In each simulation, clusters were allowed to grow708

for 7 generations of cell division, corresponding to an average of 94.2 ± 10.9 cells per cluster. The709

budding ring was defined by the polar angle � = 45°, a close approximation to the experimentally710

measuredmeanpolar angle. These simulations did not include intercellular forces. The cell centers711

were recorded and then Voronoi tessellations were made within each cluster’s convex hull.712

Simulations of V. carteri713

We simulated a Volvox-like groupwithN = 1000 cells confined to the surface of a sphere. Cells were714

placed on the surface of a sphere of unit radius by randomly selecting polar and azimuthal coor-715

dinates in a Poisson point process. The process proceeds as follows: each new cell was randomly716

placed, and its distance from all other cells was calculated. If the new cell is within a threshold dis-717

tance d from any existing cell, it was removed and a new cell was placed elsewhere on the spherical718

surface. This process was iterated until all 1000 cells were placed. We chose a minimum separa-719

tion distance of d = 0.088, which allowed reasonably rapid convergence. We then calculated the720

Voronoi tessellation and the correlation function as described above.721

Simulations of two additional growth morphologies722

We next sought to model two additional classes of growth morphologies: sticky aggregates and723

cells contained within a maternal membrane. In both simulations, cells were modeled as spheres724

with unit radius.725

Aggregative groups726

First, we considered a multicellular model of sticky aggregates, mimicking group formation in, for727

example, flocculating yeast and bacterial aggregates. In our simulations, groups were grown from728

a single cell. New spherical daughters appeared at a polar angle � and azimuthal angle '. Within729

each step, there was stochasticity in the budding location: cells would appear at � = �0 ± 15°. The730

azimuthal angle was always drawn from a uniform distribution on the interval [0°, 360°].731

Cells interacted with both steric and attractive interactions in overdamped dynamics. Steric732

interactions were modeled through a harmonic potential when two cells overlapped, with a cutoff733

once cells were no longer overlapping. That is, for two cells i and j (radii Ri and Rj ) separated by734

the vector rij = rj − ri, the steric force acting on cell i from cell j is735

Fij =
⎧

⎪

⎨

⎪

⎩

0 |rij| > (Ri + Rj)

�s
(

|rij| − (Ri + Rj)
)

r̂ij |rij| ≤ (Ri + Rj)
(15)

Attractive interactions (i.e., sticky, aggregative bonds) were also modeled through a harmonic po-736

tential, but these interactions had both a lower bound and upper bound cutoff.737

Gij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 |rij| > 2(Ri + Rj)

−�a(|rij| − a(Ri + Rj))r̂ij (Ri + Rj) ≤ |rij| ≤ 2(Ri + Rj)

0 |rij| < (Ri + Rj),

(16)

where a sets the location of the attractive well minimum. We used a = 0.9, so that the attractive738

interactions allow a small amount of cell overlap.739
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Size polydispersity740

In simulations in which we introduced size polydispersity, cells were allowed to reproduce into two741

separate sizes, R1 = 1 and R2 = 2. The probability of budding cells of the same size as the mother742

cell is denoted �. When � = 1, the mother cell always produces cells of the same size, while when743

� = 0.5, there is a 50% chance that the mother cell produces a cell of size R1 or R2, independent of744

the radius of the mother. Simulations were seeded with a pair of contacting cells, one each of the745

two radii. The simulation then proceeded with subsequent rounds of cell division and mechanical746

relaxation.747

Groups confined within a membrane748

In another common mode of group formation, cells divide repeatedly within a confining mem-749

brane. This type of group formation has been observed in experimentally-evolved multicellular750

algae derived from unicellular Chlamydomonas reinhardtii (Herron et al., 2019), and is reminiscent751

of both baeocyte production in Stanieria bacteria (Angert, 2005), and neoproterozoic embryo fos-752

sils (Xiao et al., 1998). In a simulation model, we adopted the essential components of this class of753

growth: groups grow from a single spherical cell, cells divide stochastically, and cells interact steri-754

cally with both amaternal cell wall and each other. Typically, palintomic cell division occurs rapidly,755

meaning that the packing fraction remains the same within the maternal cell wall. We simulated756

this by increasing the radius of the cell membrane after each cell division, but before allowing any757

mechanical relaxations.758

Steric forces between a cell and the maternal cell wall were modeled as being proportional759

to the non-overlapping volume of the cell and the maternal cell wall. In other words, if a cell is760

not contacting the membrane, there is no force acting on it. However, if the cell is contacting the761

membrane, the force is proportional to how much of the cell volume lies outside the membrane.762

Each cell was assigned volume vc = 4∕3 ∗ pi. The overlapping volume of the cell and themembrane763

is labeled vi. The force the cell experiences from the membrane is then764

Fi = �m(vc − vi)r̂i, (17)
where r̂i is a unit vector pointing to the center of the maternal membrane. Additionally, steric765

interactions between cells were calculated as described above for aggregative groups.766

Groups confined to a spherical surface767

Some groups form by arranging cells around a central core of extracellular matrix (ECM). To simu-768

late such groups, wemodeled a sphere of ECMwith cells arranged randomly along the surface. Cell769

positions were chosen by selecting a position in spherical coordinates from uniform polar � ∈ [0, �]770

and uniform azimuthal' ∈ [0, 2�] distributions. The only rule implemented in cell placement is that771

no two cells can be located closer than two cell radii from one another. If a new cell is chosen to772

be located too close to any existing cells, it is eliminated and a new position is chosen. We iterated773

this process until N cells were placed on the ECM surface.774

First, we chose to placeN = 50 cells on the surface. Therefore, themaximumcell radius allowing775

all 50 cells to be placed is 0.283 units (where the total sphere has unit radius). We chose the cell776

radius to be 0.1980 units, which allowed for reasonably rapid random placement of all 50 cells777

(other choices of cell radii demonstrate qualitatively similar results). We then used a built-inMatlab778

spherical Voronoi tessellation algorithm to calculate the solid angle subtended by each cell.779

Simulated cellular apoptosis780

In simulations with apoptosis events, cell death occurred after group generation (as described in781

the above subsection on aggregative groups). Briefly, groups were generated by iterated genera-782

tions of cell division starting from a single cell. After this process, one cell was chosen at random783

to die. Then, all cells within a localization radius R were flagged. Of the flagged cells, 9more were784

chosen at random to die. Therefore, small localization radii correspond to highly localized death785
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events, where 10 juxtaposed cells may die together. As the localization radius increases, there are786

more flagged cells, and therefore more randomness in cell death. All other cells were unaffected787

by the cell death process.788

Tree-like groups with precisely defined cell placement/location789

We also investigated groups with precisely defined growth patterns. The spherical cells were held790

together with fixed, chitin-like bonds. The first cell was placed at the origin. It then proceeded to791

bud 3 daughter cells, each of which also budded subsequent cells. The exact budding pattern is792

described below.793

Daughter cells were placed as follows. In spherical coordinates on the surface of the mother794

cell, the first daughter cell was placed at (� = 0 ± �, � = 0 ± �), the second at (� = 90 ± �, � = 90 ± �),795

and the third at (� = 90 ± �, � = 270 ± �), where � is the strength of random noise added.796

The first daughter cell’s coordinate systemwas rotated 90°±� around the z-axis from themother797

cell; in other words, for the first daughter cell, x ←→ x′, y ←→ y′, and z ←→ z′, where x′ = Rz(�∕2 + �)x,798

y′ = Rz(�∕2+�)y, and z′ = Rz(�∕2+�)z, andRz is the rotationmatrix around the z-axis. This daughter799

cell then proceeded to bud daughters in the exact same pattern as its mother; however, because800

its local coordinates were rotated, the budding positions were also rotated 90° with respect to the801

mother cell’s buds. This process was iterated for 5 generations of cell division. When � = 0, this802

corresponds to only 3 cells overlapping 3 other cells. The 3 overlapping cells were then removed.803

After each round of cell division, cells were allowed to relax mechanically in overdamped dy-804

namics according to steric repulsive interactions and sticky, rigid bond interactions to their mother805

cell. The steric interactions were the same as described above. Fixed bond interactions were mod-806

eled as follows. When new cells appear, they incur a bud scar on the mother cell’s surface and a807

birth scar on the daughter cell’s surface. The position of the bud scar, rbu, and the birth scar, rbi,808

were recorded and tracked. The vector pointing from the bud scar (on the mother’s surface) to the809

birth scar (on the daughter’s surface) was called r = rbi − rbu. Then, the force acting on a cell from810

it’s mother cell was811

Fmotℎer = � (|r| − 2) r̂ (18)
where � was the chitin bond strength. In addition, cells experienced forces from all of their daugh-812

ter buds (given by the same relationship and the same chitin bond strength). The initially seeded813

cell did not experience forces from a mother cell.814

For � = 0 (i.e., no noise), the distribution of Voronoi volumes was visually discontinuous, since815

cells could only access a finite number of local configurations. As the noise strength increased, the816

maximum entropy predictions were gradually recovered.817

Appendix818

It may appear surprising that the distribution of cell volumes is not governed by the Central Limit819

Theorem (CLT), i.e. the volumes are not distributed normally. After all, Voronoi polytope volumes820

are generated from many randomly interacting pieces - should not these many different random821

fluctuations sum to a CLT-like scenario? A simple comparison between the modified gamma dis-822

tribution, a normal distribution, and a log-normal distribution shows in fact that both the normal823

distribution and the log-normal distribution fail to capture essential characteristics of the volume824

packing, while the k-gamma distribution does. For snowflake yeast, the reason for this disagree-825

ment is that as each new cell is added to a cluster, it changes the entire volume distribution, since826

the new cell occupies space which was previously unoccupied. It therefore changes the volumes827

of all its nearest neighbors; if they flex to accommodate the new cell, then those neighbors change828

the Voronoi volumes of their neighbors, and so on. Therefore, adding a new cell does not sample829

the same distribution as before - the distribution itself changes, rendering the limit inapplicable.830

In the case of the Volvox, the somatic cells are originally connected together only by cytoplas-831

mic bridges, forming a small sphere. As the ECM is generated the sphere “inflates”. This process,832
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in which many random fluctuations in the amount of ECM excreted by each cell over time can in-833

tegrate together, seems appropriate for CLT-like arguments. However, it is worth noting that the834

cells are generally locally oriented with a hexagonal symmetry. In order tomaintain a non-wrinkled835

surface, more ECM must be secreted in some local regions, such as the corners of the hexagons,836

than in other places, such as at the hexagon edges. Since there is no local wrinkling observed, the837

secretion of ECM from the somatic cells cannot be a completely random process orientationally. In838

other words, the ECM excretion process is controlled, which implies that the CLT does not properly839

capture the sampling space. Instead, the cells inevitably occupy positions on the surface of the840

sphere that vary from organism to organism; the maximum entropy distribution of their Voronoi841

areas is then the k-gamma distribution.842
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Figure 1–Figure supplement 1. Random cell budding positions in multicellular yeast groups. (A),
Bud scars determine the position of new cell buds, and are distributed across the surface of yeast
cells. We locate bud scars in a spherical coordinate system with polar angle � and azimuthal angle
�. (B) Distribution of measured polar angle positions of new cells. (C) Distribution of measured
azimuthal angle positions.
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Figure 2–Figure supplement 1. Three different distributions were tested for goodness-of-fit: the
maximum entropy prediction (black line), the normal distribution (red), and the log-normal distri-
bution (blue).
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