

1 Cellular organization in lab-evolved 2 and extant multicellular species 3 obeys a maximum entropy law

4 **Thomas C. Day^{1*}, Stephanie S. Höhn², Seyed A. Zamani-Dahaj^{1,3,4}, David Yanni¹,**
5 **Anthony Burnetti³, Jennifer Pentz^{3,5}, Aurelia R. Honerkamp-Smith^{2§}, Hugo**
6 **Wioland^{2¶}, Hannah R. Sleath^{2**}, William C. Ratcliff^{3*}, Raymond E. Goldstein^{2*},**
7 **Peter J. Yunker^{1*}**

*For correspondence:

day.cooper.tom@gmail.com (TCD);
sh753@cam.ac.uk (SSH);
R.E.Goldstein@damtp.cam.ac.uk
(REG);
william.ratcliff@biology.gatech.edu
(WCF); peter.yunker@gatech.edu
(PY)

†These authors contributed
equally to this work

‡These authors also contributed
equally to this work

Present address: §Department of
Physics, Lehigh University,
Bethlehem, PA, United States;
¶Institut Jacques Monod,
Université de Paris Diderot/CNRS,
Paris, France; **Department of
Chemistry, Imperial College
London, London, United Kingdom

8 1School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States;
9 2Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical
10 Sciences, University of Cambridge, Cambridge, United Kingdom; ³School of Biological
11 Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States; ⁴Quantitative
12 Biosciences Graduate Program, Georgia Institute of Technology, Atlanta, Georgia,
13 United States; ⁵Department of Molecular Biology, Umeå University, Umeå, Sweden

14 **Abstract** The prevalence of multicellular organisms is due in part to their ability to form
15 complex structures. How cells pack in these structures is a fundamental biophysical issue,
16 underlying their functional properties. However, much remains unknown about how cell packing
17 geometries arise, and how they are affected by random noise during growth - especially absent
18 developmental programs. Here, we quantify the statistics of cellular neighborhoods of two
19 different multicellular eukaryotes: lab-evolved “snowflake” yeast and the green alga *Volvox carteri*.
20 We find that despite large differences in cellular organization, the free space associated with
21 individual cells in both organisms closely fits a modified gamma distribution, consistent with
22 maximum entropy predictions originally developed for granular materials. This ‘entropic’ cellular
23 packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even
24 in the absence of developmental regulation. Together with simulations of diverse growth
25 morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a
26 general feature of multicellularity, arising from conserved statistics of cellular packing.
27

28 **Introduction**

29 The evolution of multicellularity was transformative for life on Earth, occurring in at least 25 sep-
30 arate lineages (*Grosberg and Strathmann, 2007*). The success of multicellular organisms is due
31 in part to their ability to assemble cells into complex, functional arrangements. Self-assembly,
32 however, is fundamentally subject to random noise (*Zeravcic and Brenner, 2014; Szavits-Nossan*
33 *et al., 2014; Damavandi and Lubensky, 2019*) that affects the final emergent structure (*Michel and*
34 *Yunker, 2019*). The physiology of multicellular organisms can depend sensitively on the geometry
35 of cellular packing (*Bi et al., 2015b; Drescher et al., 2016; Jacobeen et al., 2018b; Larson et al., 2019;*
36 *Schmiedeler et al., 2021*), and such noise may therefore have direct consequences on organismal
37 fitness. Understanding the evolution of multicellularity, and the subsequent evolution of multicel-
38 lular complexity (*Bell and Mooers, 1997*), requires understanding the impact of random noise on
39 multicellular self-assembly. How do organisms accurately assemble functional multicellular com-

41 ponents in the presence of noise?

42 Recent work has shown that extant multicellular organisms can either suppress (**Hong et al., 2016**),
43 or leverage (**Haas et al., 2018**) variability in the process of reliably generating structures, and
44 their tissues can change function based on cellular packing geometry (**Bi et al., 2015a**). This occurs
45 through a coordinated developmental process involving genetic (**Davidson, 2001**), chemical (**Sam-
46 pathkumar, 2020**), mechanical (**Deneke and Di Talia, 2018**), and bioelectric (**Levin, 2004**) feedbacks
47 between interacting cells. However, even with coordinated developmental processes, noise during
48 self-assembly results in deviations from perfectly regular structures. Further, as these developmen-
49 tal processes have not yet evolved in nascent multicellular organisms, it is unclear how unregulated
50 assembly can reliably result in reproducible packing geometries and multicellular structures.

51 Multicellular organisms also exhibit diverse growth morphologies; for example, cells can re-
52 main attached through incomplete cytokinesis (**Bonner, 1998; Grosberg and Strathmann, 2007; Knoll, 2011**), they can adhere through aggregative bonds (**Claessen et al., 2014**), and they can as-
53 semble multicellular groups through successive cell division within a confining membrane (**Angert,
54 2005; Herron et al., 2019**). These growth morphologies can have distinct intercellular connection
55 topologies (**Yanni et al., 2020**), changing how randomness is manifested. For instance, groups
56 that grow with persistent mother-daughter bonds maintain the same intercellular connections,
57 ‘freezing’ in place any structural randomness that arises during reproduction. In contrast, cells
58 in aggregates can rearrange, so their final structure emerges from a combination of reproduc-
59 tion and intercellular interactions and noise (**Delarue et al., 2016; Hartmann et al., 2019**). Further,
60 the dimensionality of multicellular groups can vary, from quasi-two-dimensional sheets (**Brunet
61 et al., 2019**) to groups that grow equally in three dimensions (**Ratcliff et al., 2012; Tang et al., 2020;
62 Butterfield, 2000**). While the impact of noise on systems in thermal equilibrium is well known to
63 depend sensitively on spatial dimensionality (**Mermin and Wagner, 1966; Hohenberg, 1967; Vivek
64 et al., 2017**), no such information is yet at hand for biological development, which is intrinsically out
65 of equilibrium. The growth morphology, connection topology, and dimensionality therefore alto-
66 gether determine a multicellular architecture. Randomness resulting from many sources, such as
67 stochastic cell division, variability in cell growth, intercellular interactions, and more, subsequently
68 occurs as perturbations to this idealized form. It would appear that noise manifests in a unique,
69 context-dependent manner in each of these different multicellular systems.

70 Here, we provide experimental evidence that, rather than being context-dependent, fluctua-
71 tions in cell packing geometry instead follow a universal distribution, independent of the presence
72 or absence of developmental regulation. We quantify the distributions of cellular space in two dif-
73 ferent types of organisms: experimentally-evolved multicellular yeast (**Ratcliff et al., 2012**) and wild-
74 type multicellular green algae (**Goldstein, 2015**). In both cases, maximum entropy considera-
75 tions (**Aste and Di Matteo, 2008**) (see inset box) accurately predict the cell packing distribution. Building
76 on these observations, we use computational models of diverse prescribed growth rules, mimick-
77 ing extant biological morphologies, to show that cells are ubiquitously packed according to the
78 maximum entropy principle. Detailed analysis of the case of green algae shows that correlations,
79 i.e., the lack of structural randomness, produce deviations from maximum entropy predictions, but
80 that even a relatively small amount of randomness is sufficient to generate cellular packings that
81 largely follow maximum entropy predictions. Next, we explore the evolutionary consequences of
82 cell packing. We use the cell packing distribution to predict the distribution of snowflake yeast
83 group sizes, an emergent multicellular trait that arises from cell crowding (**Jacobeen et al., 2018b**).
84 Then, we use a theoretical analysis to show that the effects of fluctuations in intercellular space on
85 the motility of green algae are small. These findings together suggest that, rather than impeding
86 innovation, fluctuations in cell packing are highly repeatable, and may play a fundamental role in
87 the origin and subsequent evolution of multicellular organisms.

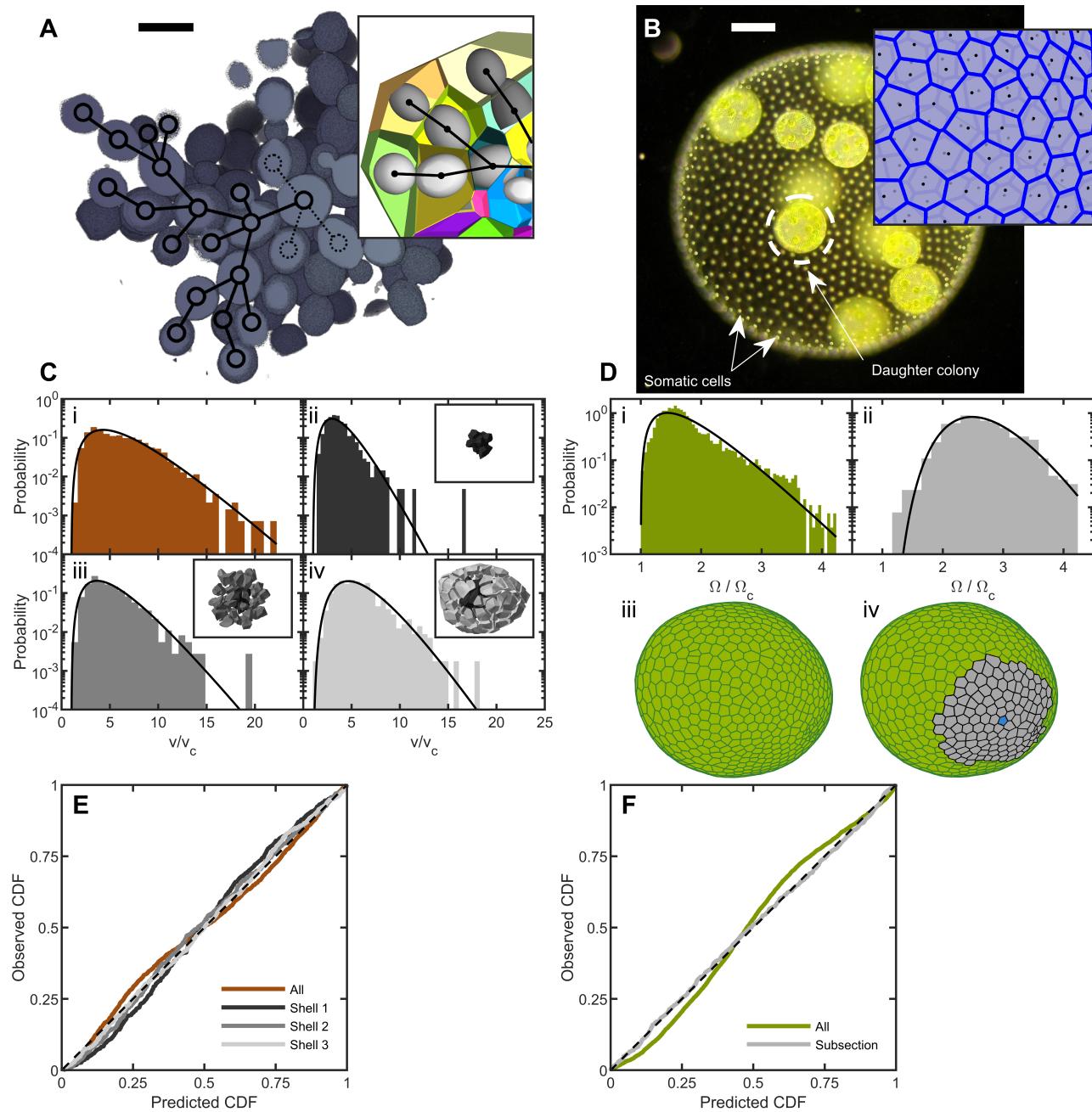


Figure 1. Cell packing in two multicellular species. **(A)**, Cross section of a multicellular yeast organism, which grows with persistent intercellular bonds. Scalebar is 5 μm . The inset shows a smaller section, with ellipsoidal fits to individual cells along with their corresponding Voronoi polyhedra. Black overlays indicate the connection topology between yeast cells; not all connections are labeled. **(B)**, Darkfield microscopy image of *Volvox carteri*, scalebar is 100 μm . Inset: a small piece of the Voronoi-tessellated surface; black points are somatic cell positions. **(C)**, Distributions of Voronoi polyhedron volumes as a function of cell size normalized by average size v_c for snowflake yeast. In orange is the histogram for all cells; the other three distributions correspond to different subsections of Voronoi volumes. The cells were grouped into spherical shells with radius R and width ΔR from the cluster center of mass. Shown are shells with edges [0, 6.2), [6.2, 9.7), and [9.7, 20.4) μm . Black lines are maximum entropy predictions. **(D)**, Distributions of solid angles subtended by *Volvox* somatic cells divided by a minimum solid angle Ω_c . Solid black lines are the maximum entropy predictions. The top row shows the histogram for all cells in green and a subsection of correlated areas in gray. Bottom row illustrates the subsectioning process: blue polygon is the center of the subsectioned region. Only the Voronoi polygons, *i.e.* not the somatic cells, are shown for clarity. **(E,F)**, Empirical cumulative distribution function vs entropic predictions for all distributions shown in **C,D**. The dashed black line represents hypothetical perfect agreement between observation and prediction.

Figure 1-Figure supplement 1. Random cell budding positions in multicellular yeast groups. **(A)**, Bud scars determine the position of new cell buds, and are distributed across the surface of yeast cells. We locate bud scars in a spherical coordinate system with polar angle θ and azimuthal angle ϕ . **(B)** Distribution of measured polar angle positions of new cells. **(C)** Distribution of measured azimuthal angle positions.

89 **Results**

Maximum entropy

Within statistical physics, the maximum entropy principle relates randomness in low-level units (e.g., cells) to the properties of the assembly (e.g., a multicellular group). It works by enumerating all low-level configurations that conform to a set of constraints. Any particular group-level property can be generated by many different low-level configurations, but some group-level properties may correspond to more low-level configurations than others. Those that are generated by many configurations are more likely to be observed than those that correspond to relatively few configurations; in this way, the maximum entropy principle allows one to calculate the probability of observing different group properties, given a set of constraints. Multicellular groups obey a simple but universal constraint: each group has some total volume, V . This volume can be divided into N pieces, where N is the total number of cells. Each piece is associated with a particular cell, and the N pieces must sum to the total volume of the group, $V = \sum_i v_i$, for $i = 1, 2, \dots, N$. Using this constraint, and assuming no correlations, one can predict the most likely distribution of volumes for the N pieces. This approach has been successfully used to predict the distribution of free volumes within granular materials and foams (Aste and Di Matteo, 2008; Katgert and Van Hecke, 2010). Here we use it to predict the distribution of cellular free volumes in the absence of spatial correlations in cell positions.

Consider the ensemble of all possible cellular configurations in a simple group. As first derived by (Aste and Di Matteo, 2008) and (Aste et al., 2007) for granular materials, the maximum entropy probability distribution $p(v)$ of cell neighborhood volumes within V is the modified gamma distribution

$$p(v) = \frac{k^k}{\Gamma(k)} \frac{(v - v_c)^{k-1}}{(\bar{v} - v_c)^k} \exp\left(-k \frac{v - v_c}{\bar{v} - v_c}\right) \quad (1)$$

where \bar{v} is the mean cell neighborhood volume, v_c is the minimum cell neighborhood volume, $\Gamma(k)$ is the gamma function, and $k \equiv (\bar{v} - v_c)^2 / \sigma_v^2$ is a shape parameter that is defined by v_c , \bar{v} , and the variance of the cell neighborhood volumes, σ_v^2 . This distribution is expected if cell neighborhood volumes are determined independently of each other (while still conforming to the total volume constraint). In other words, volumes must be set randomly; correlations between the size of separate volumes will lead to deviations from maximum entropy predictions. If this condition holds, then maximum entropy volume distribution predictions should be valid, regardless of other geometric or structural details. For example, maximum entropy statistics hold in granular materials, despite the fact that they must obey strict force and torque balance conditions (Aste and Di Matteo, 2008; Snoeijer et al., 2004; Bi et al., 2015a). Further, the same approach applies to groups with a constraint on total area or length; this does not change the result, and V can be replaced by A or L without other modifications.

In practice, we divide the total group volume or area into N pieces via a Voronoi tessellation. The size of the space associated with cell i includes the cell itself and the portion of intercellular space closer to its center than to the center of any other cell. As cells must have non-zero size, we therefore set v_c to be the volume of a single cell without any intercellular space (or a_c , the area of a single cell).

90

91 Experimental tests of multicellular maximum entropy predictions

92 To test whether different kinds of multicellular groups pack their cells according to the maximum
93 entropy principle, we investigated cell packing in two different multicellular organisms. First, we

94 used experimentally-evolved 'snowflake' yeast (**Ratcliff et al., 2012**), a model system of undifferentiated multicellularity. Second, we used the green microalga *Volvox carteri*, a member of the 95 volvocine algae that first evolved multicellularity in the Triassic (**Starr, 1969; Herron et al., 2009**). 96

97 **Snowflake yeast**

98 Snowflake yeast grow via incomplete cytokinesis, generating branched structures in which mother- 99 daughter cells remain attached by permanently bonded cell walls (**Figure 1A**). New buds appear on 100 ellipsoidal cells at a polar angle $\langle\theta\rangle = 42^\circ \pm 23^\circ$ and azimuthal angle ϕ that is randomly distributed 101 [$\langle\phi\rangle = 180^\circ \pm 104^\circ$, **Figure 1-Figure Supplement 1**]. Therefore, cells bud in random orientations 102 throughout the cluster. Due to the apparent absence of correlations, we expect that this structural 103 randomness produces predictable distributions of cellular neighborhood volumes.

104 To determine the distribution of cell neighborhood volumes, we first must measure the position 105 of every cell in a cluster. It is difficult to image individual cells within snowflake yeast clusters due 106 to excessive light scattering. Instead, we used a serial block face scanning electron microscope 107 equipped with a microtome to scan and shave thin (50 nm) layers off a resin block with embedded 108 yeast clusters with stained cytoplasms. This process allowed us to determine the 3D structure of 109 snowflake yeast clusters and locate cell centers with nanometer precision.

110 We define the group volume as the smallest convex hull that surrounds all cells in the cluster 111 and computed the 3D Voronoi tessellation of cell centers within that (**Figure 1A**). The distribution 112 of cellular Voronoi volumes closely matched the predicted k-gamma distribution (**Figure 1C**, $k =$ 113 2.88). This agreement is quantified via "P-P plots" of the empirical cumulative distribution function 114 (CDF) plotted against the predicted k-gamma CDF. We find a root-mean-square residual $r_{RMS} =$ 115 $\sqrt{\langle(F(v) - F_i)^2\rangle} = 0.02$, where F_i is the empirical CDF and $F(v)$ is the predicted k-gamma CDF.

116 The influence of the convex hull on these results was investigated by using an alternative pro- 117 cedure in which the Voronoi volumes were binned into shells centered at the cluster's center of 118 mass (**Figure 1C,E**). We binned cells into shells with shell edges of [0, 6.2], [6.2, 9.7], and [9.7, 20.4] μm 119 away from the center of mass. We found that the distribution of Voronoi volumes within each shell 120 matched the predicted k-gamma distribution, with $r_{RMS} = \{0.037, 0.020, 0.014\}$, $k = \{3.45, 3.08, 4.63\}$ 121 in the shells shown in **Figure 1C(ii-iv)**.

122 **Volvocine algae**

123 To test if cell neighborhood volumes in extant multicellular organisms are consistent with maxi- 124 mum entropy cell packing predictions, we examined cell packing within the green microalgae *Volvox* 125 *carteri*. Development in *V. carteri*, which evolved over millions of years, is highly regulated, occurring 126 through a stereotyped morphological progression (**Kirk, 2005**). *V. carteri* embryos arise as a spheri- 127 cal cellular monolayer from palintomic cell divisions with incomplete cytokinesis, which leaves the 128 cells attached via cytoplasmic bridges. These bridges disappear when ECM is secreted by the cells, 129 filling the entire sphere, and eventually moving the cells apart. The approximately 1000 somatic 130 cells remain embedded on the surface of a translucent sphere of extracellular matrix (**Figure 1B**). 131 While six-fold coordination is the most frequent local arrangement of somatic cells, the fact that 132 the cells are embedded in a surface with spherical topology requires there to be "defects" with 133 differing coordination number (e.g. 5, 7), and these are found interspersed around the spheroid. 134 Thus, despite their developmental regulation, somatic cells exhibit a degree of disorder with re- 135 spect to coordination number. From a physics perspective, the local hexatic order in the somatic 136 cell arrangement is low (see Methods).

137 To determine the distribution of *Volvox* cell neighborhood sizes, we imaged somatic cells using 138 their chlorophyll autofluorescence in a light sheet microscope. Since the somatic cells are arranged 139 around a surface embedded in 3D space, we constructed a 2D Voronoi tessellation of somatic 140 cells on the surface. Each organism imaged had a different size, and therefore had a different 141 mean Voronoi area $\langle A \rangle$. To compare distributions across organisms, we removed the systematic 142 area differences by recording the solid angle $\Omega_i = 4\pi A_i / S$ subtended by each somatic cell, where

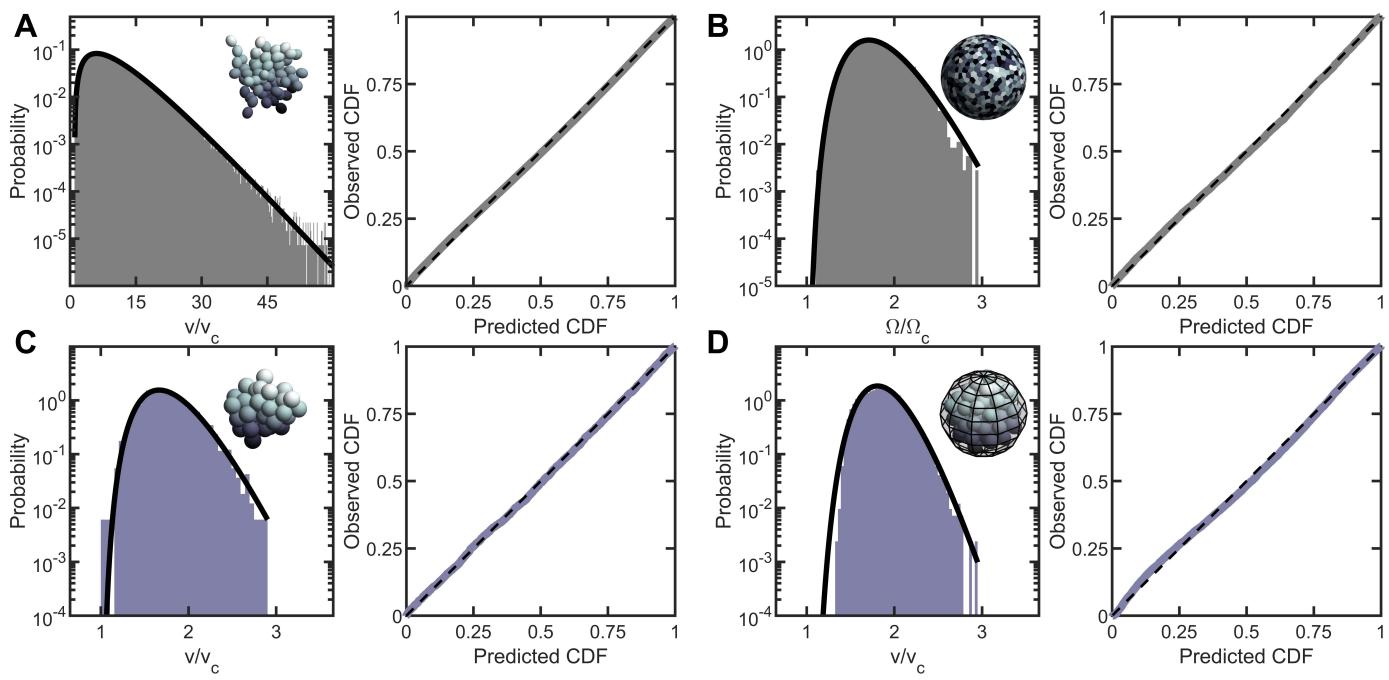


Figure 2. Entropic packing is a general feature of simple multicellularity. We simulated four different growth morphologies: **(A)** Tree-like groups formed with rigid, permanent bonds between cells, **(B)** surface-attached cells located on a spherical surface, **(C)** aggregates formed with attractive “sticky” interactions, and **(D)** groups formed by rapid cell division within a maternal membrane. In all subfigures, left panel shows the predicted and observed probability distributions, and right panel plots the observed cumulative distribution vs. the expected cumulative distribution. Histogram bars represent measured Voronoi volume distribution in simulations, and black solid line represents the maximum entropy prediction. Maximum entropy predictions accurately described the distribution of cellular volumes/areas, despite their varying mechanisms of group formation ($r_{RMS} \leq 0.01$).

Figure 2-Figure supplement 1. Three different distributions were tested for goodness-of-fit: the maximum entropy prediction (black line), the normal distribution (red), and the log-normal distribution (blue).

143 $S = \sum_i A_i$ is the total surface area of the organism. We found that the k-gamma distribution largely
 144 matched the distribution of solid angles (**Figure 1D**, $k = 2.40$, $r_{RMS} = 0.04$). However, there are
 145 systematic deviations between the data and maximum entropy predictions (**Figure 1F**).

146 We next investigated if maximum entropy predictions are more accurate within subregions with
 147 similar mean solid angles; specifically we examine regions whose mean is $\langle \Omega \rangle = 0.0185 \pm 0.0003$,
 148 obtained across six organisms. The distribution of Voronoi solid angles within these subregions
 149 closely follows the k-gamma distribution (**Figure 1F**, $k = 10.66$, $r_{RMS} = 0.01$). This observation sug-
 150 gests that while there are systematically correlated subregions of cells, within these subregions
 151 cells are largely arranged randomly. Thus, the organization of *Volvox carteri* somatic cells is consis-
 152 tent with maximum entropy predictions.

153 **Simulations of different growth morphologies**

154 We next used simulations to investigate the impact on cell packing of four different growth mor-
 155 phologies: growth via incomplete cell division (*cf.* snowflake yeast), cells distributed on a spherical
 156 surface (*cf.* *Volvox*), aggregation, and palintomy. The goal of these studies was to determine if mor-
 157 phological details and constraints impact entropic packing using simplified models that capture
 158 the essential features of the growth and behavior of these varied organisms.

159 These geometric simulations of multicellular groups that grow via incomplete cell division were
 160 inspired by previous simulations of snowflake yeast (*Jacobeen et al., 2018b,a*). Daughter cells bud
 161 from mother cells with experimentally determined polar angle and random azimuthal angle, and
 162 remain attached to mother cells with rigid bonds. We ran 9,100 simulations starting from a single
 163 cell, each of which underwent 7 generations of division, and calculated the Voronoi tessellation of

164 the final structure from each simulation. The distribution of Voronoi volumes closely matched the
165 k-gamma distribution across four orders of magnitude (**Figure 2A**, $k = 2.26$, $r_{RMS} = 0.007$).

166 Inspired by *Volvox*, we simulated cells distributed across the surface of a sphere through a ran-
167 dom Poisson point process. We completed 10 simulations, each with 1000 cells, and computed the
168 distribution of solid angles subtended by Voronoi cells. As shown in **Figure 2B**, the distribution of
169 Voronoi solid angles is consistent with maximum entropy predictions ($k = 9.29$, $r_{RMS} = 0.009$).

170 Next, we simulated organisms that stick together via reformable cell-cell adhesions, a mech-
171 anism of group formation that is common in biofilms and extant aggregative multicellular life
172 (*Claessen et al., 2014*) (i.e., *Dictyostelium* and *Myxococcus*; **Figure 2C**). In these simulations, mul-
173 ticellular aggregates were grown from a single cell. Seven generations of cell division occurred, in
174 which new cells appear on the surface of existing cells at random positions, and steric interactions
175 force cells to separate after division and occupy space. Aggregative bonds were modeled through
176 harmonic interactions of the cell centers. The observed Voronoi volume distributions were consis-
177 tent with maximum entropy predictions ($k = 7.84$ and $r_{RMS} = 0.007$).

178 Finally, we modeled cells undergoing palintomic division within a maternal cell wall, as is com-
179 mon in green algae (*Lurling and Van Donk, 1997*; *Boraas et al., 1998*; *Ratcliff et al., 2013*; *Fisher*
180 *et al., 2016*; *Herron et al., 2019*), and is reminiscent of both baeocyte production in *Stanieria* bacte-
181 ria (*Angert, 2005*) and neoproterozoic fossils of early multicellularity (*Xiao et al., 1998*) (**Figure 2D**).
182 The details of these simulations remained similar to the simulations of aggregative multicellularity,
183 with the important difference being that instead of harmonic interactions between cell centers
184 enforcing groups to stay together, cells interacted with a spherical maternal wall acting as a cor-
185 ral. The Voronoi volume distributions for these simulations were also consistent with maximum
186 entropy predictions ($k = 15.16$ and $r_{RMS} = 0.013$).

187 Taken together, the results of these simulations suggest that a broad distribution of cell neigh-
188 borhood sizes is a general feature of multicellular growth morphologies. In particular, when cell
189 locations are random under these rules, cell neighborhood size distributions closely follow the
190 k-gamma distribution.

191 **The role of spatial correlations**

192 While we have shown that the distribution of cell neighborhood volumes closely follows the k-
193 gamma distribution in two very different organisms, we have also seen that in some cases maxi-
194 mum entropy predictions are more accurate in sub-sections of an organism than across its entirety.
195 For instance, in *Volvox* we observed that r_{RMS} is much smaller within subregions with similar mean
196 solid angles than across the whole organism. This observation suggests that correlations exist in
197 the arrangement of *V. carteri* somatic cells, causing deviations from maximum entropy predictions.

198 The spatial correlations in the cellular areas in *Volvox* were studied first by plotting a 3D heatmap
199 of Voronoi solid angle sizes (**Figure 3A**). It is apparent that extended spatial regions have well-
200 defined and non-random mean Voronoi solid angles. We quantified this feature by calculating
201 the spatial correlation function $C(Q)$ of the solid angle

$$202 C(Q) = \frac{\langle (\Omega - \langle \Omega \rangle) Y_Q \rangle}{\sigma_\Omega \sigma_{Y_Q}}, \quad (2)$$

203 where $Y_Q = J(Q)^{-1} \sum_j (\Omega_j - \langle \Omega \rangle)$ is the average deviation of the solid angle of a given polygon's
204 neighbors at a neighbor distance Q from the mean. Here, the number of neighbors is $J(Q)$, a
205 function of Q , which enumerates the network distance from the polygon of interest (i.e. $Q = 1$ calls
206 the nearest neighbors, of which there are $J(1)$, $Q = 2$ calls the next nearest neighbors, of which
207 there are $J(2)$, and so on). The standard deviation of the solid angle across the population is σ_Ω ,
208 and σ_{Y_Q} is the standard deviation of Y_Q across the population. We find that *Volvox* Voronoi solid
209 angles are positively correlated at distances as large as $Q = 10$ (**Figure 3A**). This analysis suggests
210 that there are systematic differences in *Volvox* group structure in different spatial regions. We

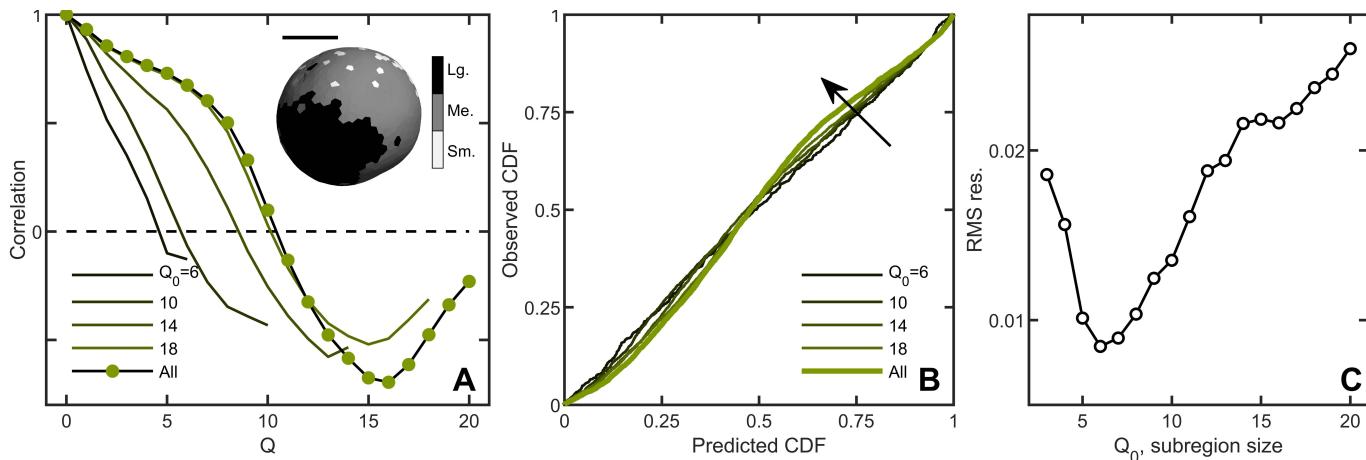


Figure 3. Correlations lead to deviations from maximum entropy predictions in *Volvox carteri*. **A** Correlation function of Voronoi polygon areas vs. network neighbor distance Q . Green circles represent all experimental *Volvox* data. Lines indicate the same correlation function calculated in subsections of size $Q_0 = \{6, 10, 14, 18\}$. Inset: visualization of spatial correlations of solid angle; one *Volvox*'s Voronoi tessellation is displayed with a three-color heatmap corresponding to polygons with areas smaller than (light gray), within (gray) and larger (black) than one standard deviation of the mean. Scale bar is 200 μm . **B**, PP plots for the observed vs predicted cumulative distribution function. In green is the *Volvox* distribution for all cells before corrections for correlations. A selection of differently-sized subsections is also plotted, corresponding to sizes $Q_0 = \{6, 10, 14, 18\}$. Arrow indicates direction of increasing Q_0 value. **C**, Root-mean-square residual deviation from maximum entropy predictions as a function of subsection size, as a function of nearest neighbor number Q_0 . As the subsection size increases (including more and more uncorrelated Voronoi areas), the deviation from predictions first decreases until $Q_0 = 6$, then increases.

210 therefore should expect to observe deviations from the k-gamma distribution, which was derived
 211 under the assumption that there are no correlations in the division of space among cells.

212 A natural question is whether maximum entropy predictions are more accurate within corre-
 213 lated subregions of an organism. We measured the Voronoi distribution in subregions with similar
 214 mean solid angles across six organisms and, for each subregion, a central node and its neighbors
 215 up to Q_0 were identified. We varied Q_0 from 3 (corresponding to, on average, 38 cells in the sub-
 216 region) to $Q_0 = 20$ (1016 cells on average in the subregion) to measure the Voronoi solid angle
 217 distributions in subregions of different sizes. Spatial correlations were weaker within smaller do-
 218 mains (**Figure 3A**), and deviations from maximum entropy predictions smaller as well (**Figure 3B**)
 219 with the minimum r_{RMS} at $Q_0 = 6$ (**Figure 3C**, average of 133 cells). These observations suggest that
 220 while there are systematic correlations between subregions, cell neighborhood sizes are largely
 221 randomly distributed within subregions.

222 The crucial role of randomness

223 How much randomness is necessary for the k-gamma distribution to predict cell neighborhood size
 224 distributions? Our analysis of the solid angle distribution of *Volvox* cells demonstrates that max-
 225 imum entropy principle predictions are relatively accurate ($r_{RMS} = 0.04$) even in the presence of
 226 some spatial correlations. However, assessing the stability of entropic distributions to corre-
 227 lative perturbations is crucial to determine how broadly applicable entropic packing may be for multi-
 228 cellular organisms. We investigated the stability of the maximum entropy distributions by simulating
 229 three different sources of correlations: (i) size polydispersity, (ii) defined growth patterns, and (iii)
 230 coordinated cellular apoptosis. In each scenario, we varied the relative strength of correlations
 231 and noise, and monitored how closely the cell neighborhood size distributions agreed with the
 232 k-gamma distribution via P-P plots and the r_{RMS} .

233 The impact of heritable size polydispersity was investigated by simulating aggregative groups
 234 consisting of large and small cells. All simulations were seeded with one small cell and one large
 235 cell. We then varied the probability ξ that a new cell is the same size as its mother from 0.5 to
 236 1.0. When $\xi = 1$, cells always produce offspring with the same radius; for $\xi = 0.5$ it is equally

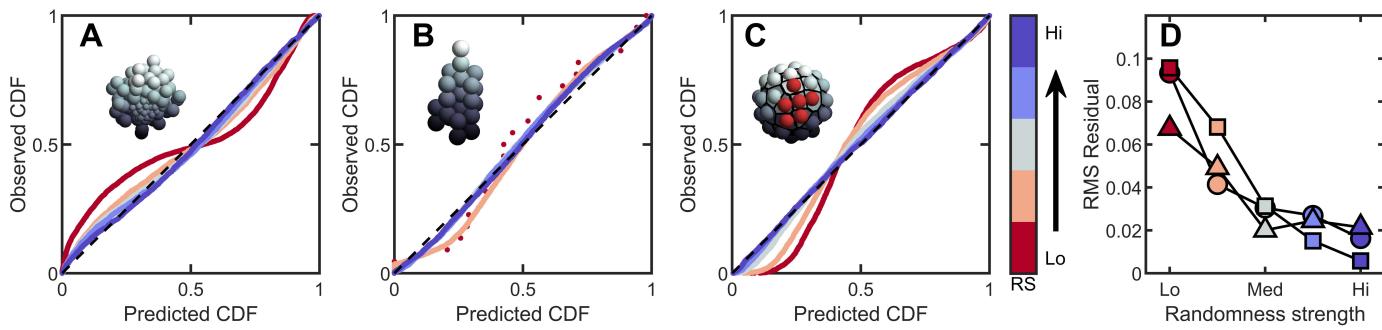


Figure 4. Introducing correlations and structure can break the maximum entropy distribution. In **A-C** are PP plots of the observed vs. predicted cumulative distribution function for three different simulations. The colors correspond to increasing levels of noisiness in the simulations, from red (strongest correlations/determinism) to blue (strongest noise). The dashed black line in each represents $y = x$, or exact predictive efficacy. **(A)** Aggregative groups with bimodal size polydispersity; noise is introduced by varying the probability that small cells reproduce into small or large cells, and vice versa. **(B)**, Tree-like groups with persistent intercellular bonds that grow according to a growth plan modified by noise in cell placement. **(C)**, Surface-bound groups with programmed cell death events that may be localized or randomly dispersed. **(D)** The root mean square deviation from predicted values for each simulation case. Circles are aggregative simulations from **A**, triangles are tree-like simulations from **B**, and squares are surface-bound simulations from **C**.

237 likely that a small cell produces a small or large daughter (and vice versa for large cells). Therefore,
 238 groups with $\xi = 1$ have correlated regions of cell size, but the degree of correlations decreases
 239 with decreasing ξ . While groups with $\xi = 1$ deviate significantly from the k-gamma distribution
 240 ($r_{RMS} = 0.09$), we observed that even a small amount of randomness results in excellent agreement
 241 between simulated groups and the k-gamma distribution (in order from $\xi = 1$ to $\xi = 0.5$, $r_{RMS} =$
 242 $\{0.09, 0.04, 0.03, 0.03, 0.02\}$).

243 Next we investigated groups with varying amounts of noise on top of defined growth patterns.
 244 In these simulations, new cells bud in precise positions; the first daughter at the position $\theta = 0 \pm \eta$,
 245 $\phi = 0 \pm \eta$ in spherical coordinates, the second at $\theta = 90 \pm \eta$, $\phi = 0 \pm \eta$, the third at $\theta = 90 \pm \eta$,
 246 $\phi = 180 \pm \eta$, etc., where the noise is uniformly distributed with zero mean and width η . For $\eta = 0$ (no
 247 noise), the distribution of Voronoi volumes was discontinuous, since cells could only access a finite
 248 number of local configurations. As expected, as η increases ($\eta = \{0, 5, 30, 60, 90\}$), r_{RMS} decreases
 249 ($r_{RMS} = \{0.07, 0.05, 0.02, 0.02, 0.02\}$).

250 Finally, we investigated groups with localized and random cell death. In these simulations,
 251 50 cells were confined to the surface of a sphere of unit radius following the protocol described
 252 above. One cell is randomly selected to die. Centered at this cell, a spherical region of radius R
 253 is defined, and then 10 cells in this region were randomly selected to die (and disappear, thereby
 254 not contributing to the Voronoi tessellation). For small R , cell death is highly localized, and thus
 255 spatially correlated. As R increases, cell death events become less localized, and therefore more
 256 random. We find that highly correlated cell death resulted in large deviations from maximum
 257 entropy predictions. Conversely, as R increases dead cells become less localized, the observed
 258 distribution becomes more accurately described by the k-gamma distribution; as R increases from
 259 $R = \{0.75, 1, 1.25, 1.5, 1.75, 2\}$, we find $r_{RMS} = \{0.10, 0.07, 0.03, 0.02, 0.01\}$.

260 In summary, absent randomness, spatial correlations lead to large deviations from the k-gamma
 261 distribution. Yet, with even a small amount of randomness, the k-gamma distribution holds signif-
 262 icant predictive power. These simulations suggest that maximum entropy predictions are likely to
 263 be robust against even moderate correlations.

264 **Parent-offspring fidelity via maximum entropy packing**

265 So far, we have shown that randomness in cellular packing leads to highly predictable packing
 266 statistics. Here we show that maximum entropy statistics can directly impact the emergence of a
 267 highly heritable multicellular trait, organism size.

268 Prior work has shown that the size of snowflake yeast at fragmentation is remarkably heritable

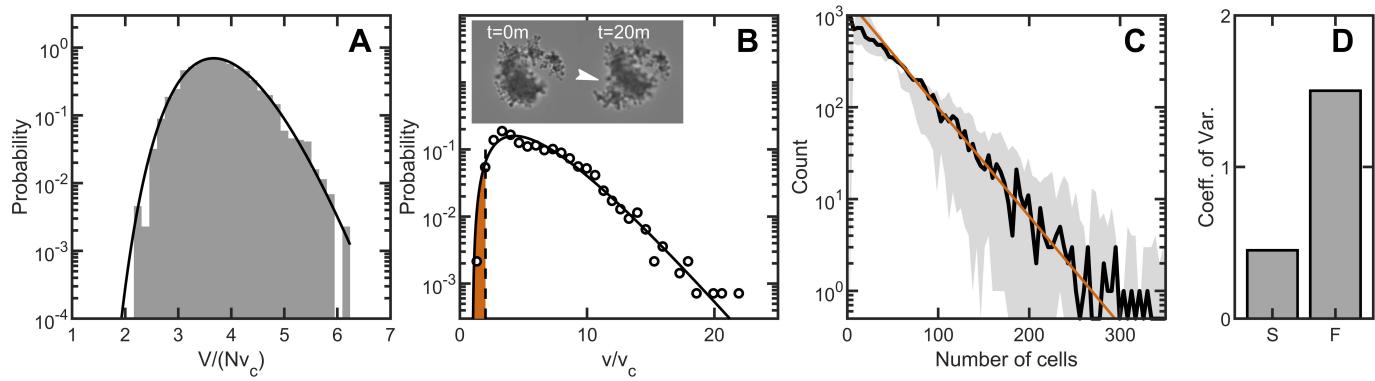


Figure 5. Maximum entropy cell packing generates a consistent and predictable life cycle in snowflake yeast. **(A)** Distribution of total cluster volume for 3000 simulated snowflake clusters, each with $N = 100$ cells. The total volume is divided by the minimum possible volume Nv_c . The k-gamma distribution (black line, $k = 23.0$, $r_{RMS} = 0.0043$) provides a good description of the data. **(B)** Distribution of all experimental Voronoi volumes (black circles) and the maximum entropy prediction (black line). The vertical black dashed line is the critical Voronoi volume $v^* = 2.02$ predicted from simulations. Orange filled region integrates up to p^* the probability that any one cell occupies a volume less than v^* . Insets: sequential brightfield microscope images of one yeast cluster undergoing group fragmentation. White arrowhead indicates location of fracture point. The images measure 150 μm across from top to bottom. **(C)**, Experimentally measured yeast cluster size distribution (solid black line) along with the prediction from weakest link theory (orange line). Gray region represents 1σ confidence bounds on the measured distribution from estimating the number of cells in a group. **(D)**, Coefficient of variation in group radius (σ/R) for snowflake groups (S) and flocculating groups (F). Data from [Pentz et al. \(2020\)](#).

- higher, in fact, than the traits of most clonally-reproducing animals ([Ratcliff et al., 2015](#)). The size to which snowflake yeast grow depends strongly on the aspect ratio of its constituent cells; more elongated cells allow the growth of larger clusters before strain from cellular packing causes group fragmentation ([Jacobeen et al., 2018b,a](#)). Recently, experiments with engineered yeast showed that this emergent multicellular trait, group size, was in fact more heritable than the underlying cellular trait upon which it was based (cellular aspect ratio), despite the fact that the mutations engineered in this system only affected cellular aspect ratio directly ([Zamani-Dahaj et al., 2021](#)). Simulations of multicellular chemotaxis observed a similar effect ([Colizzi et al., 2020](#)). While at first glance this may seem surprising, we show below that the high heritability of snowflake yeast group size arises from the direct dependence of size on the robust maximum entropy distribution of volume within groups.

Before addressing how fracture impacts the distribution of cluster sizes by impacting the number of cells within a group, we first must address fluctuations in size among clusters with the same number of cells. Given a number of cells N in the cluster, variation in cell packing fraction results in variation of the total volume. The arguments given above for predicting the distribution of individual cell volumes also applies to the distribution of total volume ([Aste and Di Matteo, 2008](#)); the distribution of total volume for clusters with the same number of cells should follow the k-gamma distribution. To generate enough clusters with identical N to test this prediction, we used simulations. We generated 3000 snowflake yeast clusters, each with 100 cells, and measured their total volumes. The distribution of volumes is consistent ($r_{RMS} = 0.0043$, $k = 23.0$) with the k-gamma distribution as shown in [Figure 5A](#). Further, these fluctuations in size are small compared to the differences in size gained via reproduction of cells or lost via fracture.

To predict the group size distribution, we consider the probability of fragmentation via a weakest link model of fracture. As the location of new cells is random (see [Figure 1-Figure Supplement 1](#)), each new cell has a chance of causing intercellular bond fracture. It was previously observed that bonds only break if cells are highly confined, that is they have smaller Voronoi volumes; otherwise flexible cellular branches simply bend ([Jacobeen et al., 2018b](#)). We model fracture as occurring when a cell's Voronoi volume is below a critical value denoted by v^* ([Figure 5B](#)) such that its motion is completely restricted. We measure v^* from simulations that determine the maximum local

298 packing density for groups with same cell size and shape distributions as seen in experiments (see
299 Methods). The probability that a particular cell is confined to a Voronoi volume $v \leq v^*$ is the integral
300

$$p^* = \int_{v_c}^{v^*} p(v)dv. \quad (3)$$

301 As each cell in a cluster of N cells independently has probability p^* of having $v \leq v^*$ (and thus
302 causing fracture), the probability of a cluster with N cells not fragmenting is

$$P(N) = (1 - p^*)^N \quad (4)$$

303 As we do not model the fate of products of fragmentation (*i.e.*, the size of the separate pieces post-
304 fracture), we expect the weakest link model to be more accurate for larger clusters than it is for
305 smaller clusters.

306 We measured group size for approximately 10,000 snowflake clusters, all descendants of a sin-
307 gle isolate, using a particle multisizer, and found strong agreement between the experimentally
308 observed cluster size distribution and the weakest-link prediction (the coefficient of determination
309 is $r^2 = 0.97$ for $\log(\text{Counts})$ vs N) (**Figure 5C**). Hence, the predictable statistics of entropic cell packing
310 guides the distribution of group size among offspring of a single isolate.

311 For context, we compared the distribution of group size in snowflake yeast to that of flocculat-
312 ing yeast, which forms multicellular groups via aggregation. The multicellular size of flocculating
313 yeast depends on the rate of collisions with other cells and groups of cells. The growth rate of
314 aggregates is thus typically proportional to their size, as larger aggregates are more likely to con-
315 tact more cells (**Pentz et al., 2020**). In fact, the maximum size of a flocculating yeast aggregate is
316 bounded by the duration of aggregation, an extrinsic parameter, while the minimum size can be a
317 single cell (**Stratford, 1992**). Using data from (**Pentz et al., 2020**), we compared the group size dis-
318 tributions of snowflake yeast and flocculating yeast grown in the same environmental conditions.
319 We find that flocculating yeast groups exhibit a much larger coefficient of variation in size com-
320 pared to snowflake yeast groups (**Pentz et al., 2020**) (**Figure 5D**). These results demonstrate that
321 randomly assembled groups can exhibit more reproducible group traits than groups assembed
322 with correlations.

323 **Multicellular motility is robust to cellular area heterogeneity**

324 One of the issues arising from the existence of the broad distribution of somatic cell areas in *Volvox*
325 is the extent to which colony motility is affected by that heterogeneity. Each of the somatic cells at
326 the surface of a *Volvox* colony has two flagella that beat at ~ 30 Hz, in planes that are primarily ori-
327 ented in the anterior-posterior (AP) direction but with a slight lateral tilt that makes each colony spin
328 around its AP axis. A longstanding focus in biological fluid mechanics of multicellular flagellates
329 has been to understand the connection between the beating of the carpet of flagella that cover
330 their surface and their self-propulsion. Measurements of the flow fields around micropipette-held
331 (**Short et al., 2006**) and freely-swimming colonies (**Drescher et al., 2010a**) have shown that despite
332 the discreteness of the flagella, the flow is remarkably smooth, albeit often displaying metachronal
333 waves (**Brumley et al., 2015**), long-wavelength phase modulations of the beating pattern.

334 A heuristic explanation for the smoothness of the flows can be developed by noting first that
335 the flow arising from each flagellum, beating close to the no-slip surface of the colony, will fall off
336 only as an inverse power of distance r from the flagellum. Thus, the superposition of the flows from
337 many flagella will be sensitive to contributions from distant neighbors and will tend to wash out
338 local variations in flagellar actuation. This argument can be made quantitative using two different
339 models for the motility of such flagellates. The first is the "squirm" model (**Lighthill, 1952**), in
340 which the flagellate is characterized by a tangential "slip" velocity $u(\theta)$ on the surface, which can be
341 thought of as corresponding to the mean motion of the flagella tips. Here, $\theta \in [0, \pi]$ is the polar
342 angle with respect to the AP axis. In this approach the details of the fluid velocity profile below the
343 tips are not resolved, and in particular the no-slip condition at the surface of the ECM is ignored. In

344 the second approach (*Ishikawa et al., 2020*), which builds on earlier work (*Short et al., 2006*) that
345 specified a force density at the colony surface instead of a slip velocity, there is a specified force
346 density applied at some small distance above the no-slip colony surface, and the flow field below
347 that locus is resolved. This approach, termed the "shear stress, no-slip" model, captures the very
348 large viscous dissipation that occurs in the region between the ECM and the locus of forcing. Within
349 either of these two approaches above the effects of area inhomogeneities can be investigated by
350 coarse-graining the flagella dynamics; either the local slip velocity $u(\theta)$ or the local tangential force
351 density $f(\theta)$ has noise.

352 In the squirmer model, the swimming speed U is (*Lauga, 2020*)

$$U = \frac{1}{2} \int_0^\pi d\theta \sin \theta u_\theta(\theta) V_1(\theta), \quad (5)$$

353 where

$$V_n(\theta) = \frac{2}{n(n+1)} P'_n(\cos \theta) \sin \theta, \quad (6)$$

354 P_n is the Legendre polynomial, and the prime indicates differentiation with respect to its argument.
355 If we represent the effects of area inhomogeneities as noise in the slip velocity, then it is most
356 natural to use V_n as the basis functions for the tangential slip velocity, expressed as

$$u_\theta(\theta) = \sum_{n=1}^{\infty} u_n V_n(\theta), \quad (7)$$

357 where $V_n(0) = V_n(\pi) = 0$, guaranteeing that the slip velocity vanishes at the anterior and posterior
358 poles (*Short et al., 2006*). Accurate experimental measurements of the azimuthal velocity field
359 of *Volvox* (*Drescher et al., 2010b*) show that it is well-captured by that lowest mode, leading to a
360 modest anterior-posterior asymmetry. From the orthogonality relation for the V_n ,

$$\int d\theta \sin \theta V_1(\theta) V_n(\theta) = \frac{2n(n+1)}{2n+1} \delta_{1n}, \quad (8)$$

361 we see immediately that the contributions from all modes $n > 1$ vanish identically, and thus the
362 swimming speed is given identically by the amplitude of the lowest mode $V_1(\theta) = \sin \theta$,

$$U = \frac{2}{3} u_1. \quad (9)$$

363 Thus, within the squirmer model, motility is essentially insensitive to area inhomogeneities. This
364 result does not preclude effects of those higher modes, only that such effects will be on quantities
365 other than the swimming speed, such as the nutrient uptake rate (*Magar et al., 2003*).

366 In the shear-stress, no-slip model, the velocity field in the region between the colony radius
367 R and the radius $R(1+\epsilon)$ at which the shear stress is applied is solved separately from that for
368 $r > R(1+\epsilon)$ and the two flow fields are matched at $R(1+\epsilon)$ through boundary conditions of continuity
369 in velocity and normal stress and the specified discontinuity in shear stress. Analogously to the
370 expansion of the slip velocity in the squirmer model (7), noise in that discontinuity can be expressed
371 by assuming that the coarse-grained shear force applied by the flagella has spatial variations, and
372 can be expanded in the form

$$f_\theta(\theta) = \sum_{n=1}^{\infty} f_n V_n(\theta). \quad (10)$$

373 The swimming speed again depends only on the lowest-order mode in this expansion,

$$U = \frac{2\epsilon R}{3\mu} f_1, \quad (11)$$

374 and we again have insensitivity of U to inhomogeneities in the area per somatic cell.

375 Discussion

376 In this paper, we demonstrated that universal cellular packing geometries are an inevitable conse-
377 quence of noisy multicellular assembly. We measured the distribution of Voronoi polytope sizes
378 in both nascent and extant multicellular organisms, and showed that they are consistent with the
379 k-gamma distribution, which arises via maximum entropy considerations. Using simulations, we
380 demonstrated that k-gamma distributions arise in many different growth morphologies, and do
381 so requiring only a relatively small amount of structural randomness. Further, we showed that the
382 distribution of cell neighborhood sizes can be used to distinguish the effects of randomness from
383 the effects of developmental patterning. Finally, we demonstrated that consistent packing statis-
384 tics can lead to highly reproducible, and thus heritable, multicellular traits, such as group size in
385 snowflake yeast. Altogether, these results indicate that entropic cell packing is a general organizing
386 feature of multicellularity, applying to multicellular organisms with varying growth morphologies,
387 connection topologies, and dimensionalities.

388 The effect of random noise has been an important area of research in developmental biology
389 (*Tsimring, 2014; Lander, 2011*). During development, cellular growth, reproduction, differentiation,
390 and patterning combine to form a multicellular organism. Random noise introduced at any stage in
391 this process can result in phenotypic variability, which may affect an organism's fitness (*Wadding-
392 ton, 1957*). But while some multicellular traits exhibit high variability, others are tightly conserved,
393 leading to a wide body of research addressing the origin of mechanisms underlying robustness
394 and stability, and the nature of feedback mechanisms that must be present to manage the large
395 number of stochastic fluctuations in gene expression and growth (*Gregor et al., 2007; Haas et al.,
396 2018; Hong et al., 2016; Sampathkumar, 2020; Deneke and Di Talia, 2018*). In this context, our re-
397 sults demonstrate that random noise can itself lead to highly reproducible multicellular traits such
398 as the cell packing distribution.

399 Our observation that heritable properties can arise from random processes is reminiscent of
400 the reproducible structures and phenomena generated by random noise in a wide range of physi-
401 cal (*Shinbrot and Muzzio, 2001; Manoharan, 2015*) and biological systems (*Tsimring, 2014; Lander,
402 2011*). While it may be surprising that the distribution of free space in snowflake yeast and *Volvox*
403 follow the same k-gamma distributions despite the many differences between these organisms,
404 this universality actually extends beyond multicellular organisms to non-living materials, such as
405 those seen in granular materials and foams (*Katgert and Van Hecke, 2010; Varadan and Solomon,
406 2003; Aste and Di Matteo, 2008*). This broad universality likely arises due to the simple require-
407 ments for application of the maximum entropy principle to packing; specifically, there must be a
408 total volume, individual volumes cannot overlap, and volumes must be determined independently
409 (subject to the total volume constraint). It is thus important to note that entropic packing is not
410 necessarily adaptive; it can readily emerge as a consequence of random cellular reproduction or
411 interactions. While entropic packing statistics may produce advantages in some cases, they could
412 be neutral or detrimental in others.

413 An example of one possible advantage granted by entropic packing is the parent-offspring fi-
414 delity that arises from its ensemble statistics. Since both parents and their offspring are assembled
415 through similar noisy processes, they achieve similar cell packing distributions. This statistical sim-
416 ilarity therefore details at least one heritable multicellular trait that does not rely on genetically
417 regulated multicellular development. Other multicellular traits that build on the cell packing distri-
418 bution are similarly affected by this emergent process and could become heritable as well. Such
419 parent-offspring heredity could play a crucial role in the evolutionary transition to multicellularity,
420 providing a mechanism for nascent multicellular organisms to participate in the evolutionary pro-
421 cess without first having to possess genetically regulated development. Over time, developmental
422 innovation may arise via multicellular adaptation, modifying or replacing entropic cell packing as
423 a mechanism of multicellular heredity. Consistent with this hypothesis, maximum entropy retains
424 considerable predictive power in extant multicellular organisms such as *Volvox*, animal embryos

425 (*Alsous et al., 2018*), and epithelial tissue monolayers (*Atia et al., 2018*), each of which have canal-
426 ized development. There may be other examples of highly-evolved organisms which pack cells
427 according to maximum entropy predictions, and future work could address cell packing in, e.g.,
428 animal embryos, brain tissue, and more. Finally, as fragmentation is a common mode of multi-
429 cellular reproduction (*Larson et al., 2019; Prakash et al., 2019; Angert, 2005; Keim et al., 2004*;
430 *Koyama et al., 1977*), fracture driven by maximum entropy packing statistics may be relevant to
431 organisms other than snowflake yeast.

432 The broad distributions in cellular volumes we have found in two very different types of organ-
433 isms, with two very different modes of reproduction and growth, suggest that noise in develop-
434 mental geometry may be an inevitable consequence of almost any microscopic mechanism. In
435 this sense, they may be just as unavoidable in biological contexts as thermal fluctuations are in
436 systems that obey the rules of equilibrium statistical physics. As an example, we recall the “flicker
437 phenomenon” of erythrocytes, in which the red blood cell membrane exhibits stochastic motions
438 around its equilibrium biconcave discoid shape. Thought for many years to be a consequence of
439 specific biochemical processes associated with living systems, flickering was eventually shown by
440 quantitative video microscopy (*Brochard and Lennon, 1975*) to be consistent with equilibrium ther-
441 mal fluctuations of elastic biomembranes immersed in water. This was later confirmed by similar
442 studies of shape fluctuations exhibited by large lipid vesicles (*Schneider et al., 1984*). The gen-
443 eralization of these considerations to homeostatic tissues with cell division, rearrangements and
444 apoptosis has also been considered (*Risler et al., 2015; Kalziki et al., 2018*). While such membrane
445 systems may differ greatly in the specific values of their elastic modulus (and, indeed, of their mi-
446 croscopic membrane constituents), the viscosity of the surrounding fluid, and their physical size,
447 the space-time correlation function of fluctuations about the equilibrium shape adopts a universal
448 form in appropriately rescaled length and frequency variables.

449 These results on equilibrium fluctuations provide a conceptual precedent for the results re-
450 ported here. A central issue that then arises from our results is how to connect any given stochastic
451 biochemical growth process defined at the microscopic level to the more macroscopic probability
452 distribution function observed for cellular volumes. Mathematically this is the same question that
453 arises in the theory of random walks, wherein a Langevin equation defined at the microscopic
454 level leads, through suitable averaging, to a Fokker-Planck equation for the probability distribution
455 function of displacements. Can the same procedure be implemented for growth laws?

456 Acknowledgments

457 Core Facilities at the Carl R. Woese Institute for Genomic Biology. W.C.R. was supported by NIH
458 grant 1R35GM138030. This work was funded in whole, or in part, by the Wellcome Trust (Grant
459 207510/Z/17/Z; REG & SSH). For the purpose of open access, the authors have applied a CC BY
460 public copyright license to any Author Accepted Manuscript version arising from this submission.
461 This work was also supported in part by Established Career Fellowship EP/M017982/1 from the
462 Engineering and Physical Sciences Research Council (REG).

463 Methods

464 Yeast genotypes and growth morphology

465 Snowflake yeast genotypes

466 Multicellular yeast groups were constructed from initially unicellular *Saccharomyces cerevisiae*. Pe-
467 tite yeast groups (P-) were used in all experiments except those noted below. Snowflake yeast
468 were engineered by replacing a functional copy of *ace2* with a nonfunctional version as described in
469 (*Ratcliff et al., 2015*) (these modified genotypes will be referred to as either snowflakes or Ace2KO).
470 Under daily selection for large size through settling in liquid media, groups can arise via a single mu-
471 tation in the *ace2* gene (*Ratcliff et al., 2012, 2015*). When the *ace2* gene is not expressed, the final
472 stage of cell division is not completed, and mother-daughter cells remain attached at the chitinous

473 bud site. Since all cells are attached directly to their mothers, snowflake groups form a fractal-like
474 branched tree collective. To measure bud scar size, we used a unicellular strain of Y55 yeast; these
475 measurements were only used to pick parameters for snowflake yeast simulations.

476 **Yeast growth morphology**

477 *S. cerevisiae* cells reproduce by budding, a type of asexual reproduction where a new cell extrudes
478 from the surface of the parent cell. During budding, mother and daughter cells remain attached
479 via a rigid chitinous bond; in unicellular yeast, chitinase will degrade this bond as the last step in
480 cell division, releasing the daughter cell and leaving behind a “bud scar” on the mother surface and
481 a “birth scar” defining the proximal hemisphere on the daughter’s cell surface. In all experiments,
482 we use yeast expressing bipolar budding patterns (*Chant and Pringle, 1995*). The bipolar budding
483 pattern is characterized by bud sites that typically do not form along the equator of the cell. Usually,
484 the first daughter buds near the distal pole. Subsequent budding sites are typically positioned
485 along a budding ring defined by a polar angle θ (Figure 6). Some buds will “backbud” towards the
486 mother cell (i.e. on the proximal end of the cell), but most buds are placed on the distal side. By
487 contrast, the azimuthal positions of all buds appears to be randomly distributed.

488 **Growth conditions**

489 All experiments were performed on yeast grown for approximately 24 hrs in 10 mL of yeast pep-
490 tone dextrose (YPD, 10 g/L yeast extract, 20 g/L peptone, and 20g/L dextrose) liquid medium at
491 30C, and shaken at 250rpm in a Symphony Incubating Orbital Shaker model 3500I. All cultures
492 were therefore in the stationary phase of growth at the time of experiments.

493 **Scanning electron microscopy to measure group structure**

494 Since yeast cells have thick cell walls that limit the effectiveness of optical microscopy, we used a
495 Zeiss Sigma VP 3View scanning electron microscope (SEM) equipped with a Gatan 3View SBF micro-
496 tome installed inside a Gemini SEM column to obtain high resolution images of the internal struc-
497 ture of snowflake yeast groups and locate the positions of all cells. All SEM images were obtained in
498 collaboration with the University of Illinois’s Materials Research Laboratory at the Grainger College
499 of Engineering. Snowflake yeast clusters were grown overnight in YPD media, then fixed, stained
500 with osmium tetroxide, and embedded in resin in an eppendorf tube. A cube of resin 200 μm x
501 200 μm x 200 μm (with an isotropic distribution of yeast clusters) was cut out of the resin block for
502 imaging. The top surface of the cube was scanned by the SEM to acquire an image with resolution
503 50 nm per pixel (4000 x 4000 pixels). Then, a microtome shaved a 50 nm thick layer from the top of
504 the specimen, and the new top surface was scanned. This process was repeated until 4000 images
505 were obtained so that the data cube had equal resolution in x , y , z dimensions.

506 Custom image analysis scripts were written for the SEM datasets. First, a local adaptive thresh-
507 old was used to binarize the image. A distance transform was used to identify the center of each
508 cell slice in a particular 2d image. A watershed algorithm was then seeded with the cell slice cen-
509 ters, followed by a particle tracking algorithm to label cells across image slices. After labeling, the
510 boundary for each cell was found, resulting in a point cloud of the exterior of each cell. Each cell
511 was then fitted with an ellipsoid with nine fit parameters: (x_0, y_0, z_0) cell center, (a, b, c) cell radii,
512 and (θ, φ, ψ) for cell orientation. The net rotation matrix R was then found, where each column of
513 R corresponds to the direction vector of one principal axis of the ellipsoid. We consider the radii
514 of the principal axes (a, b, c) to be part of a diagonal scaling matrix S which sets the ellipsoid size.
515 Since the SEM images only capture the cell cytoplasm, each principal axis was increased in size
516 by an additional 100 nm to account for the cell wall during visualization. Last, although there is no
517 possible 3d 3x3 translation matrix, a 4x4 translation matrix T can capture the position of the cell
518 center (x_0, y_0, z_0) . Adding one additional column and row to the matrices R and S with the diagonal
519 element being 1 and all other elements being 0 then means that a unit sphere centered at the ori-
520 gin can be mapped to any specific cell by a surface matrix $M = TRS$, and furthermore any point

521 on the cell's surface can be mapped back to the unit sphere by the inverse of M . Then, the surface
522 matrices are the only information that must be stored. From this dataset, 20 clusters of 105 ± 51
523 cells in each cluster were identified along with their intercellular mother-daughter chitin bonds.

524 **Petite yeast cell size and shape**

525 We measured cellular volumes from SEM images by ellipsoid fits. The average cellular volume of
526 petite yeast was $v_c = 17.44 \mu\text{m}^3 \pm 7.33 \mu\text{m}^3$. This measurement was used in our Voronoi distribution
527 derivations. We measured the mean cellular aspect ratio to be $\alpha \equiv a/b = 1.28 \pm 0.20$.

528 **Bud scar size**

529 We next measured the typical size of bud scars on the surface of Y55 yeast cells. Single cells were
530 stained with calcafluor to highlight the chitinous bud scars (**Figure 1–Figure Supplement 1**). Confocal
531 z-stacks were obtained on a Nikon A1R confocal microscope equipped with a 40x oil immersion
532 objective. These images were visualized using the image processing software FIJI, and the 3d vol-
533 ume viewer plugin. To track the location and size of bud scars, a custom MatLab script was written
534 to map the strongest calcafluor signals, since calcafluor makes bud scars brighter than other por-
535 tions of the cell wall. Brightness isosurfaces then isolated the bud scars from the cell wall. Next, the
536 isosurface points were rotated to the $x - y$ plane by finding its principal components in a principal
537 component analysis. The rotated surface points were then fit with an ellipse, returning the major
538 and minor axes. The average of the major and minor axes returned an average interior bud scar
539 diameter of $1.2 \mu\text{m}$. This value was later used in simulations of yeast groups.

540 **Bud scar locations**

541 We measured bud scar positional distributions for petite yeast Ace2KO. Since the SEM does not
542 image chitinous bud scars, we approximated bud scar positions as the closest point on a mother
543 cell's surface to the corresponding daughter cell's proximal pole. We recorded 1990 bud scar posi-
544 tions in polar coordinates, as defined in **Figure 1–Figure Supplement 1**. There is a clearly defined
545 polar angle for the budding ring, while the azimuthal angle is uniformly distributed. The mean and
546 standard deviations of the two angular coordinates were $\theta = 42^\circ \pm 23^\circ$, and $\varphi = 180^\circ \pm 104^\circ$.

547 **Imaging *Volvox***

548 **Cultivation and Selective Plane Illumination Microscopy**

549 The *V. carteri f. nagariensis* strain HK10 (UTEX 1885) was obtained from the Culture Collection of Al-
550 gae at the University of Texas at Austin and cultured as previously described (**Brumley et al., 2014**).
551 To visualise somatic cells, *V. carteri* spheroids were embedded in 1% low-melting-point agarose,
552 suspended in liquid medium and imaged using a custom-built Selective Plane Illumination Micro-
553 scope (**Haas et al., 2018**). Each somatic cell is mostly filled with a single chloroplast. Chlorophyll
554 autofluorescence was excited at $\lambda = 561 \text{ nm}$ and detected at $\lambda = 570 \text{ nm}$. To increase the accuracy
555 with which we identify somatic cell positions, z-stacks of six spheroids were acquired from three
556 different angles (0, 120, 240 degrees) and fused as described in the following paragraph.

557 **Registration of cell positions**

558 Positions of cells were registered based on fluorescence intensity using custom Matlab scripts. This
559 was achieved by carrying out a 2D convolution of each frame of the z-stack with a basic kernel mod-
560 eling the appearance of a cell - this was set to be an asymmetric double sigmoidal function. Cell
561 segmentation was corrected manually. Z-stacks taken from different angles were roughly aligned
562 using Fiji and the Matlab function fminsearch to minimise distances between the reproductive cells.
563 This alignment was used as starting point for alignment of the somatic cells again using fminsearch.
564 The positions of somatic cells were merged and averaged.

565 **Voronoi Tessellation**

566 We used a Voronoi tessellation algorithm to measure the distribution of cell neighborhood sizes in
567 groups. We computed both 3D and 2D Voronoi tessellations.

568 **3D Voronoi Tessellations**

569 First, we computed 3D Voronoi tessellations within a defined boundary. These tessellations were
570 performed for experimental snowflake yeast data from the SEM and simulations of 3D groups
571 using the open-source Voronoi code Voro++ (*Rycroft, 2009*), wrapped in a custom MatLab script.
572 Voro++ takes as input the Cartesian coordinates of the cell centers and the boundary of the shape
573 within which to compute the tessellation. Without a boundary, all of the Voronoi cells located on
574 the periphery would extend to infinity. We started the tessellation process by setting the input
575 boundary to be a sphere; the Voronoi algorithm tessellated space within the spherical boundary.
576 Then, pieces of the sphere were pared away until a Voronoi tessellation within the group's convex
577 hull was obtained, as described in the next paragraph.

578 The boundary sphere was centered on the cluster's center of mass. Its radius was the distance
579 to the farthest cell center plus an additional 5 μm . Upon tessellation within the sphere, each Voronoi
580 polyhedron is defined by Cartesian vertices \mathbf{r}_j . We group these preliminary vertices by the cells to
581 which they correspond, so that $Q_i = \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m\}$ is a list of the m vertices corresponding to cell
582 $i \in [1, N]$, N being the total number of cells in the organism. We next computed the cluster's convex
583 hull, which is the smallest convex polyhedron that contains all cell centers. We then extended
584 the vertices of the convex hull by 3 μm outwards from the cluster center of mass so the boundary
585 contained the entirety of each cell. This new boundary polyhedron, whose vertices are labeled B ,
586 defines the cluster boundary. We then found the intersection polyhedron, $Z_i = Q_i \cap B$ by taking the
587 union of the dual of their vertices. This process thereby trims all Voronoi polyhedra to lie exclusively
588 within the cluster's convex hull. The polyhedra Z_i were the final Voronoi polyhedra used for the
589 remaining data analysis.

590 **Voronoi tessellation on a sphere**

591 For Voronoi tessellations of cells on the surface of simulated spheres (see *Figure 3* and *Figure 4* of
592 the main text), we used a built-in Matlab function called "voroniosphere" for Voronoi tessellations
593 on a sphere.

594 **Voronoi Tessellation on Non-Spherical Surfaces**

595 We also computed 2D Voronoi tessellations on surfaces embedded in 3D space using custom-
596 written MatLab functions. This approach was used for *Volvox* experimental data. Performing this
597 computation with *Volvox* experiments presented a challenge as *Volvox* are roughly spherical, but
598 with varying local curvature. It was therefore necessary to compute a Voronoi tessellation on an
599 arbitrary surface.

600 The first step toward generating the proper Voronoi tessellation was computing the Delaunay
601 triangulation of the cells on the surface (the Voronoi tessellation is the dual of the Delaunay tri-
602 angulation). First, we found the Cartesian coordinates of each somatic cell (as described above), and
603 normalized these coordinates so that all cell centers laid on the unit sphere. Then, a Delaunay tri-
604 angulation of the normalized points was calculated. Edges of the triangulation that cut through the
605 unit sphere were eliminated, and edges that laid along the sphere surface were kept. This Delau-
606 nay triangulation therefore mapped out the connectivity of the somatic cells. We then projected
607 that triangulation onto the lumpy surface. The Voronoi polygon vertices are the circumcenters
608 of each Delaunay triangle. Further, any edge shared between two Delaunay triangles denotes an
609 edge shared between the Voronoi vertices associated with those two triangles. We found all edges
610 connecting the Voronoi vertices. Next, connected edges were flattened so that each Voronoi cell
611 was a 2D polygon. This step eliminates the curvature associated with the surface of the organism.
612 However, we found that the distribution of Voronoi areas was unaffected by taking either the pla-

613 nar approximation or by approximating the area by taking the local curvature into account – the
614 average difference between Voronoi areas when approximating the surface as a plane A_p vs. ap-
615 proximating the surface as a spherical cap A_s was found to be $\langle \frac{A_p - A_s}{A_p} \rangle = 0.001$, measured for one
616 organism. Therefore, we used the flattened Voronoi polygons as the final tessellation shapes.

617 **Data analysis of Voronoi measurements**

618 In all cases, the output of the Voronoi algorithm is a list of Voronoi polytope sizes: in 3D, the mea-
619 surements were the final Voronoi polyhedron volumes, while in 2D the measurements were poly-
620 gon areas. Histograms of these sizes were generated to compare with the k-gamma distribution.
621 As we observe cells in direct contact with each other, the minimum size of a Voronoi volume or area
622 was defined by single cell measurements. For petite yeast cells, the mean cell size was calculated
623 from the ellipsoid fits described above to be $v_c = 17.44 \mu\text{m}^3 \pm 7.33 \mu\text{m}^3$. In simulations, the minimum
624 volume was set by the defined cell radius; in bidisperse simulations, the minimum size was set by
625 the volume of the smallest cells.

626 We then calculated the expected maximum entropy distribution using only the mean and vari-
627 ance of the observed Voronoi volumes, \bar{v} and σ^2 , as inputs. Together with the minimum volume v_c ,
628 these measurements define $k = (\bar{v} - v_c)^2 / \sigma^2$, a dimensionless shape parameter (*Aste and Di Mat-
629 teo, 2008*). The maximum entropy distribution was therefore not fit to the data using, for example,
630 a least squares method, but inferred from the first two moments of the distribution.

631 *Volvox*

632 Along the surface of the *Volvox* organisms, there are gaps between some of the somatic cells due
633 to the Gonidia that lie beneath, but near the surface of the organism. These Gonidia effectively
634 occupy space on the surface, making it inaccessible to somatic cells. We excluded all Voronoi cells
635 that intersected these Gonidia gaps. We identified gaps in the soma cells by flagging Delaunay
636 triangles with exceptionally high aspect ratios. Any Voronoi polygons that intersect the flagged De-
637 launay triangles were then flagged and later excluded from the dataset. The polygons were gener-
638 ally spatially clustered, indicating that the Gonidial gaps were being correctly isolated. Roughly 90
639 polygons were excluded from each organism.

640 In *Volvox* organisms, each cell is surrounded by extracellular matrix, so cells do not contact
641 each other. Furthermore, each of the six organisms studied varied in diameter (standard devia-
642 tion in diameter was $28.2 \mu\text{m}$), yet all contained roughly the same number of somatic cells, leading
643 to systematic differences in average surface area per cell across the organisms. Quantitatively, the
644 coefficient of variation of the diameter of the groups was $CV_D = 0.05$, while the coefficient of vari-
645 ation in the number of cells in each group was roughly 10 times smaller, $CV_N = 0.006$. To counter
646 the systematic size differences between organisms, we converted the Voronoi polygon areas into
647 solid angles by dividing by the total surface area of each organism, $\Omega_i = A_i / S$; we then grouped
648 all six organisms together into one histogram. We allowed the minimum solid angle, used in the
649 k-gamma equation, to be a fit parameter in a least squares minimization procedure. There was
650 one outlier cell with solid angle $\Omega = 0.0048$ steradians; the next two smallest cells had solid angles
651 0.0068 and 0.0069 steradians. We removed the outlier; the least squares minimization procedure
652 then fit a minimum solid angle $\Omega_c = 0.0070$ steradians. We used this value for all further calcula-
653 tions. Just as in the 3D case, the mean and variance of the solid angle were measured to set the
654 expected maximum entropy distribution.

655 **Cluster size distribution measurements**

656 Cluster sizes were measured using a Beckman Coulter Multisizer 4e particle analyzer in the Cellu-
657 lar Analysis and Cytometry Core of the Shared User Management System located at the Georgia
658 Institute of Technology. Petite Ace2KO clusters were taken from steady state concentration in YPD
659 and then submerged in electrolytic fluid and passed through a $100 \mu\text{m}$ aperture tube. The volume
660 measured on the multisizer corresponds to the volume of electrolyte displaced by the cluster. The

661 number of cells in each cluster was then estimated by $N = V/v_c$, where V is the volume of organ-
662 ism measured by the Coulter Counter, and v_c is the average cell volume from SEM measurements,
663 $v_c = 17.44 \mu\text{m}^3$.

664 **Cumulative Distribution Function statistics**

665 To quantify goodness-of-fit for predicted maximum entropy distributions, we compared the predi-
666 cated cumulative distribution function (CDF), $F(x)$, to the empirical CDF, F_i , using P-P plots. Exactly
667 predicted points will lie on the line $y = x$ in these plots. We measured the root-mean-square resid-
668 ual from the line $y = x$,

$$r_{RMS} = \sqrt{\langle (F_i - F(x))^2 \rangle} \quad (12)$$

669 **Measurements of Ψ_6 in *V. carteri***

670 From the light sheet images of *Volvox*, we obtained the Cartesian coordinates of each somatic cell.
671 From Delaunay triangulation, we then obtained a list of every cell's closest neighbors. Each cell and
672 its NN nearest neighbors did not generally lie in a plane due to local curvature of the *Volvox* surface.
673 We therefore calculated in-plane and out-of-plane components using principal component analysis.
674 The in-plane components were then used to write the positions of each nearest neighbor in polar
675 coordinates. The formula for calculating Ψ_6 is

$$\Psi_6 = \left| \left\langle \frac{1}{NN} \sum_{j=1}^{NN} e^{6i\theta_j} \right\rangle \right| \quad (13)$$

676 where θ_j defines the polar angle coordinates around the cell of interest and $\langle \dots \rangle$ denotes averaging
677 over all cells. We calculated Ψ_6 separately for each of six different organisms; we report $\Psi_6 =$
678 0.03 ± 0.01 .

679 **Correlation of Voronoi Areas**

680 In *Volvox* organisms, we calculated the spatial correlation of polygon areas. First, we extracted the
681 list of cell neighbors from the Delaunay triangulation of the organism surface. Nearest neighbors
682 were designated as living a network distance of 1 away from a cell of interest; next nearest neigh-
683 bors live a network distance of 2 away from the cell of interest, etc. The number of neighbors a
684 network distance of Q away is then $J(Q)$, which is empirically determined. The network correlation
685 function is then

$$C(Q) = \frac{\langle (\Omega - \langle \Omega \rangle) Y_Q \rangle}{\sigma_\Omega \sigma_{Y_Q}} \quad (14)$$

686 where $Y_Q = J(Q)^{-1} \sum_j (\Omega_j - \langle \Omega \rangle)$ is the average deviation of the solid angle of a given polygon's
687 neighbors from the mean. The standard deviation of the solid angle across the population is σ_Ω ,
688 and σ_{Y_Q} is the standard deviation of Y_Q across the population.

689 **Simulation methods**

690 Simulations of snowflake yeast groups

691 Simulations of snowflake yeast groups were adapted from previously published work by *Jacobeen*
692 *et al.* (2018a,b) that found simulations of snowflake yeast growth morphology accurately replicated
693 experimentally measured cellular packing fractions and average group sizes. In the present work,
694 cells were modeled as prolate ellipsoids of revolution with a semi-major axis $a = 2.88 \mu\text{m}$ and semi-
695 minor axis $b = 2.29 \mu\text{m}$, characterized by the aspect ratio $\alpha \equiv a/b = 1.26$. Each generation, every cell
696 attempted to reproduce; however, if new cells closely overlapped with existing cells (i.e. their bud
697 scars are closer than $1.2 \mu\text{m}$), they were eliminated. Setting the number of generations (for example,
698 7) sets the maximum possible number of cells in the group at the end of the simulation ($2^7 = 128$),
699 and roughly sets the expected number of cells in the group (~ 100). In our simulations, cells were
700 80% likely to bud first from the distal pole (i.e. $\theta = 0 \pm 10$ degrees). Subsequent cells budded at a

701 polar angle θ , and with an azimuthal angle randomly chosen from a uniform distribution $\varphi \in [0, 2\pi]$;
702 in other words, after the first bud, cells generally appeared along a “budding ring”. There was a
703 20% chance that the first bud would appear along this budding ring instead of exactly at the pole.
704 After 3 bud scars, there was a 50% chance that new cells bud on the proximal side ($\pi - \theta$) instead of
705 the distal side. The orientation of the new cell is determined by the surface normal to the mother
706 cell at the position of the bud site; the major axis of the new cell lies along the surface normal.

707 To compare exhaustively the distribution of Voronoi volumes between simulations and the k-
708 gamma distribution, we simulated 9,100 clusters. In each simulation, clusters were allowed to grow
709 for 7 generations of cell division, corresponding to an average of 94.2 ± 10.9 cells per cluster. The
710 budding ring was defined by the polar angle $\theta = 45^\circ$, a close approximation to the experimentally
711 measured mean polar angle. These simulations did not include intercellular forces. The cell centers
712 were recorded and then Voronoi tessellations were made within each cluster’s convex hull.

713 Simulations of *V. carteri*

714 We simulated a *Volvox*-like group with $N = 1000$ cells confined to the surface of a sphere. Cells were
715 placed on the surface of a sphere of unit radius by randomly selecting polar and azimuthal co-
716 ordinates in a Poisson point process. The process proceeds as follows: each new cell was randomly
717 placed, and its distance from all other cells was calculated. If the new cell is within a threshold dis-
718 tance d from any existing cell, it was removed and a new cell was placed elsewhere on the spherical
719 surface. This process was iterated until all 1000 cells were placed. We chose a minimum separa-
720 tion distance of $d = 0.088$, which allowed reasonably rapid convergence. We then calculated the
721 Voronoi tessellation and the correlation function as described above.

722 Simulations of two additional growth morphologies

723 We next sought to model two additional classes of growth morphologies: sticky aggregates and
724 cells contained within a maternal membrane. In both simulations, cells were modeled as spheres
725 with unit radius.

726 Aggregative groups

727 First, we considered a multicellular model of sticky aggregates, mimicking group formation in, for
728 example, flocculating yeast and bacterial aggregates. In our simulations, groups were grown from
729 a single cell. New spherical daughters appeared at a polar angle θ and azimuthal angle φ . Within
730 each step, there was stochasticity in the budding location: cells would appear at $\theta = \theta_0 \pm 15^\circ$. The
731 azimuthal angle was always drawn from a uniform distribution on the interval $[0^\circ, 360^\circ]$.

732 Cells interacted with both steric and attractive interactions in overdamped dynamics. Steric
733 interactions were modeled through a harmonic potential when two cells overlapped, with a cutoff
734 once cells were no longer overlapping. That is, for two cells i and j (radii R_i and R_j) separated by
735 the vector $\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i$, the steric force acting on cell i from cell j is

$$\mathbf{F}_{ij} = \begin{cases} 0 & |\mathbf{r}_{ij}| > (R_i + R_j) \\ \kappa_s (|\mathbf{r}_{ij}| - (R_i + R_j)) \hat{\mathbf{r}}_{ij} & |\mathbf{r}_{ij}| \leq (R_i + R_j) \end{cases} \quad (15)$$

736 Attractive interactions (i.e., sticky, aggregative bonds) were also modeled through a harmonic po-
737 tential, but these interactions had both a lower bound and upper bound cutoff.

$$\mathbf{G}_{ij} = \begin{cases} 0 & |\mathbf{r}_{ij}| > 2(R_i + R_j) \\ -\kappa_a (|\mathbf{r}_{ij}| - a(R_i + R_j)) \hat{\mathbf{r}}_{ij} & (R_i + R_j) \leq |\mathbf{r}_{ij}| \leq 2(R_i + R_j) \\ 0 & |\mathbf{r}_{ij}| < (R_i + R_j), \end{cases} \quad (16)$$

738 where a sets the location of the attractive well minimum. We used $a = 0.9$, so that the attractive
739 interactions allow a small amount of cell overlap.

740 **Size polydispersity**

741 In simulations in which we introduced size polydispersity, cells were allowed to reproduce into two
742 separate sizes, $R_1 = 1$ and $R_2 = 2$. The probability of budding cells of the same size as the mother
743 cell is denoted ξ . When $\xi = 1$, the mother cell always produces cells of the same size, while when
744 $\xi = 0.5$, there is a 50% chance that the mother cell produces a cell of size R_1 or R_2 , independent of
745 the radius of the mother. Simulations were seeded with a pair of contacting cells, one each of the
746 two radii. The simulation then proceeded with subsequent rounds of cell division and mechanical
747 relaxation.

748 **Groups confined within a membrane**

749 In another common mode of group formation, cells divide repeatedly within a confining mem-
750 brane. This type of group formation has been observed in experimentally-evolved multicellular
751 algae derived from unicellular *Chlamydomonas reinhardtii* (Herron et al., 2019), and is reminiscent
752 of both baecocyte production in *Stanieria* bacteria (Angert, 2005), and neoproterozoic embryo fos-
753 sils (Xiao et al., 1998). In a simulation model, we adopted the essential components of this class of
754 growth: groups grow from a single spherical cell, cells divide stochastically, and cells interact steri-
755 cally with both a maternal cell wall and each other. Typically, palintomic cell division occurs rapidly,
756 meaning that the packing fraction remains the same within the maternal cell wall. We simulated
757 this by increasing the radius of the cell membrane after each cell division, but before allowing any
758 mechanical relaxations.

759 Steric forces between a cell and the maternal cell wall were modeled as being proportional
760 to the non-overlapping volume of the cell and the maternal cell wall. In other words, if a cell is
761 not contacting the membrane, there is no force acting on it. However, if the cell is contacting the
762 membrane, the force is proportional to how much of the cell volume lies outside the membrane.
763 Each cell was assigned volume $v_c = 4/3 * \pi r^3$. The overlapping volume of the cell and the membrane
764 is labeled v_i . The force the cell experiences from the membrane is then

$$\mathbf{F}_i = \kappa_m(v_c - v_i)\hat{\mathbf{r}}_i, \quad (17)$$

765 where $\hat{\mathbf{r}}_i$ is a unit vector pointing to the center of the maternal membrane. Additionally, steric
766 interactions between cells were calculated as described above for aggregative groups.

767 **Groups confined to a spherical surface**

768 Some groups form by arranging cells around a central core of extracellular matrix (ECM). To simu-
769 late such groups, we modeled a sphere of ECM with cells arranged randomly along the surface. Cell
770 positions were chosen by selecting a position in spherical coordinates from uniform polar $\theta \in [0, \pi]$
771 and uniform azimuthal $\phi \in [0, 2\pi]$ distributions. The only rule implemented in cell placement is that
772 no two cells can be located closer than two cell radii from one another. If a new cell is chosen to
773 be located too close to any existing cells, it is eliminated and a new position is chosen. We iterated
774 this process until N cells were placed on the ECM surface.

775 First, we chose to place $N = 50$ cells on the surface. Therefore, the maximum cell radius allowing
776 all 50 cells to be placed is 0.283 units (where the total sphere has unit radius). We chose the cell
777 radius to be 0.1980 units, which allowed for reasonably rapid random placement of all 50 cells
778 (other choices of cell radii demonstrate qualitatively similar results). We then used a built-in Matlab
779 spherical Voronoi tessellation algorithm to calculate the solid angle subtended by each cell.

780 **Simulated cellular apoptosis**

781 In simulations with apoptosis events, cell death occurred after group generation (as described in
782 the above subsection on aggregative groups). Briefly, groups were generated by iterated genera-
783 tions of cell division starting from a single cell. After this process, one cell was chosen at random
784 to die. Then, all cells within a localization radius R were flagged. Of the flagged cells, 9 more were
785 chosen at random to die. Therefore, small localization radii correspond to highly localized death

786 events, where 10 juxtaposed cells may die together. As the localization radius increases, there are
787 more flagged cells, and therefore more randomness in cell death. All other cells were unaffected
788 by the cell death process.

789 Tree-like groups with precisely defined cell placement/location

790 We also investigated groups with precisely defined growth patterns. The spherical cells were held
791 together with fixed, chitin-like bonds. The first cell was placed at the origin. It then proceeded to
792 bud 3 daughter cells, each of which also budded subsequent cells. The exact budding pattern is
793 described below.

794 Daughter cells were placed as follows. In spherical coordinates on the surface of the mother
795 cell, the first daughter cell was placed at $(\theta = 0 \pm \eta, \phi = 0 \pm \eta)$, the second at $(\theta = 90 \pm \eta, \phi = 90 \pm \eta)$,
796 and the third at $(\theta = 90 \pm \eta, \phi = 270 \pm \eta)$, where η is the strength of random noise added.

797 The first daughter cell's coordinate system was rotated $90^\circ \pm \eta$ around the z -axis from the mother
798 cell; in other words, for the first daughter cell, $x \rightarrow x'$, $y \rightarrow y'$, and $z \rightarrow z'$, where $\mathbf{x}' = \mathbf{R}_z(\pi/2 + \eta)\mathbf{x}$,
799 $\mathbf{y}' = \mathbf{R}_z(\pi/2 + \eta)\mathbf{y}$, and $\mathbf{z}' = \mathbf{R}_z(\pi/2 + \eta)\mathbf{z}$, and \mathbf{R}_z is the rotation matrix around the z -axis. This daughter
800 cell then proceeded to bud daughters in the exact same pattern as its mother; however, because
801 its local coordinates were rotated, the budding positions were also rotated 90° with respect to the
802 mother cell's buds. This process was iterated for 5 generations of cell division. When $\eta = 0$, this
803 corresponds to only 3 cells overlapping 3 other cells. The 3 overlapping cells were then removed.

804 After each round of cell division, cells were allowed to relax mechanically in overdamped dy-
805 namics according to steric repulsive interactions and sticky, rigid bond interactions to their mother
806 cell. The steric interactions were the same as described above. Fixed bond interactions were mod-
807 eled as follows. When new cells appear, they incur a bud scar on the mother cell's surface and a
808 birth scar on the daughter cell's surface. The position of the bud scar, \mathbf{r}_{bu} , and the birth scar, \mathbf{r}_{bi} ,
809 were recorded and tracked. The vector pointing from the bud scar (on the mother's surface) to the
810 birth scar (on the daughter's surface) was called $\mathbf{r} = \mathbf{r}_{bi} - \mathbf{r}_{bu}$. Then, the force acting on a cell from
811 its mother cell was

$$\mathbf{F}_{mother} = \kappa (|\mathbf{r}| - 2) \hat{\mathbf{r}} \quad (18)$$

812 where κ was the chitin bond strength. In addition, cells experienced forces from all of their daugh-
813 ter buds (given by the same relationship and the same chitin bond strength). The initially seeded
814 cell did not experience forces from a mother cell.

815 For $\eta = 0$ (i.e., no noise), the distribution of Voronoi volumes was visually discontinuous, since
816 cells could only access a finite number of local configurations. As the noise strength increased, the
817 maximum entropy predictions were gradually recovered.

818 Appendix

819 It may appear surprising that the distribution of cell volumes is not governed by the Central Limit
820 Theorem (CLT), i.e. the volumes are not distributed normally. After all, Voronoi polytope volumes
821 are generated from many randomly interacting pieces - should not these many different random
822 fluctuations sum to a CLT-like scenario? A simple comparison between the modified gamma dis-
823 tribution, a normal distribution, and a log-normal distribution shows in fact that both the normal
824 distribution and the log-normal distribution fail to capture essential characteristics of the volume
825 packing, while the k-gamma distribution does. For snowflake yeast, the reason for this disagree-
826 ment is that as each new cell is added to a cluster, it changes the entire volume distribution, since
827 the new cell occupies space which was previously unoccupied. It therefore changes the volumes
828 of all its nearest neighbors; if they flex to accommodate the new cell, then those neighbors change
829 the Voronoi volumes of their neighbors, and so on. Therefore, adding a new cell does not sample
830 the same distribution as before - the distribution itself changes, rendering the limit inapplicable.

831 In the case of the *Volvox*, the somatic cells are originally connected together only by cytoplas-
832 mic bridges, forming a small sphere. As the ECM is generated the sphere "inflates". This process,

833 in which many random fluctuations in the amount of ECM excreted by each cell over time can in-
834 tegrate together, seems appropriate for CLT-like arguments. However, it is worth noting that the
835 cells are generally locally oriented with a hexagonal symmetry. In order to maintain a non-wrinkled
836 surface, more ECM must be secreted in some local regions, such as the corners of the hexagons,
837 than in other places, such as at the hexagon edges. Since there is no local wrinkling observed, the
838 secretion of ECM from the somatic cells cannot be a completely random process orientationally. In
839 other words, the ECM excretion process is controlled, which implies that the CLT does not properly
840 capture the sampling space. Instead, the cells inevitably occupy positions on the surface of the
841 sphere that vary from organism to organism; the maximum entropy distribution of their Voronoi
842 areas is then the k-gamma distribution.

843 **References**

844 **Alsous JI**, Villoutreix P, Stoop N, Shvartsman SY, Dunkel J. Entropic effects in cell lineage tree packings. *Nature*
845 *Physics*. 2018; doi: <http://dx.doi.org/10.1038/s41567-018-0202-0>.

846 **Angert ER**. Alternatives to binary fission in bacteria. *Nature Reviews Microbiology*. 2005; 3(March):214–224.
847 doi: <http://dx.doi.org/10.1038/nrmicro1096>.

848 **Aste T**, Di Matteo T. Emergence of Gamma distributions in granular materials and packing models. *Physical*
849 *Review E*. 2008; 77(2):1–8. doi: <http://dx.doi.org/10.1103/PhysRevE.77.021309>.

850 **Aste T**, Di Matteo T, Saadatfar M, Senden TJ, Schröter M, Swinney HL. An invariant distribution in static granular
851 media. *Europhysics Letters*. 2007; 79(2). doi: <http://dx.doi.org/10.1209/0295-5075/79/24003>.

852 **Atia L**, Bi D, Sharma Y, Mitchel JA, Gweon B, Koehler SA, Decamp SJ, Lan B, Kim JH, Hirsch R, Pegoraro AF, Lee KH,
853 Starr JR, Weitz DA, Martin AC, Park JA, Butler JP, Fredberg JJ. Geometric constraints during epithelial jamming.
854 *Nature Physics*. 2018; 14(6):613–620. doi: <http://dx.doi.org/10.1038/s41567-018-0089-9>.

855 **Bell G**, Mooers AO. Size and complexity among multicellular organisms. *Biological Journal of the Linnean*
856 *Society*. 1997; 60(3):345–363. doi: <http://dx.doi.org/10.1111/j.1095-8312.1997.tb01500.x>.

857 **Bi D**, Henkes S, Daniels KE, Chakraborty B. The statistical physics of athermal materials. *Annual Review of Con-*
858 *densed Matter Physics*. 2015; 6:63–83. doi: <http://dx.doi.org/10.1146/annurev-conmatphys-031214-014336>.

859 **Bi D**, Lopez JH, Schwarz JM, Manning ML. A density-independent rigidity transition in biological tissues. *Nature*
860 *Physics*. 2015; 11(12):1074–1079. doi: <http://dx.doi.org/10.1038/nphys3471>.

861 **Bonner JT**. The origins of multicellularity. *Integrative Biology: Issues, News, and Reviews*. 1998; 1(1):27–36. doi:
862 [http://dx.doi.org/10.1002/\(sici\)1520-6602\(1998\)1:1<27::aid-inbi4>3.3.co;2-y](http://dx.doi.org/10.1002/(sici)1520-6602(1998)1:1<27::aid-inbi4>3.3.co;2-y).

863 **Boraas ME**, Seale DB, Boxhorn JE. Phagotrophy by flagellate selects for colonial prey: A possible origin of mul-
864 *ticellularity*. *Evolutionary Ecology*. 1998; 12(2):153–164. doi: <http://dx.doi.org/10.1023/A:1006527528063>.

865 **Brochard F**, Lennon JF. Frequency spectrum of the flicker phenomenon in erythrocytes. *Journale de Physique*.
866 1975; 36:1035–1047. doi: <http://dx.doi.org/10.1051/jphys:0197500360110103500>.

867 **Brumley DR**, Wan KY, Polin M, Goldstein RE. Flagellar synchronization through direct hydrodynamic interac-
868 *tions*. *eLife*. 2014; 3:1–15. doi: <http://dx.doi.org/10.7554/elife.02750>.

869 **Brumley DR**, Polin M, Pedley TJ, Goldstein RE. Metachronal waves in the flagellar beating of *Volvox*
870 and their hydrodynamic origin. *Journal of the Royal Society Interface*. 2015; 12:20141358. doi:
871 <http://dx.doi.org/10.1098/rsif.2014.1358>.

872 **Brunet T**, Larson BT, Linden TA, Vermeij MJA, McDonald K, King N. Light-regulated collective contractility in a
873 multicellular choanoflagellate. *Science*. 2019; 366:326–334. doi: <http://dx.doi.org/10.1126/science.aay2346>.

874 **Butterfield NJ**. *Bangiomorpha pubescens* n. gen., n. sp.: implications for the evolution of sex, multicellularity,
875 and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. *Paleobiology*. 2000; 26(3):386–404. doi:
876 [http://dx.doi.org/10.1666/0094-8373\(2000\)026<0386:BPNGNS>2.0.CO;2](http://dx.doi.org/10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2).

877 **Chant J**, Pringle JR. Patterns of bud-site selection in the yeast *Saccharomyces cerevisiae*. *Journal of Cell Biology*.
878 1995; 129(3):751–765. doi: <http://dx.doi.org/10.1083/jcb.129.3.751>.

879 **Claessen D**, Rozen DE, Kuipers OP, Søgaard-Andersen L, Van Wezel GP. Bacterial solutions to multicellularity:
880 A tale of biofilms, filaments and fruiting bodies. *Nature Reviews Microbiology*. 2014; 12(2):115–124. doi:
881 <http://dx.doi.org/10.1038/nrmicro3178>.

882 **Colizzi ES**, Vroomans RMA, Merks RMH. Evolution of multicellularity by collective integration of spatial information. *eLife*. 2020; 9:1–57. doi: <10.7554/eLife.56349>.

884 **Damavandi OK**, Lubensky DK. Statistics of noisy growth with mechanical feedback in elastic
885 tissues. *Proceedings of the National Academy of Sciences*. 2019; 116(12):5350–5355. doi:
886 <http://dx.doi.org/10.1073/pnas.1816100116>.

887 **Davidson EH**. Chapter 1 - Regulatory Hardwiring: A Brief Overview of the Genomic Control Apparatus and its
888 Causal Role in Development and Evolution. In: Davidson EH, editor. *Genomic Regulatory Systems* San Diego:
889 Academic Press; 2001.p. 1–23. doi: <https://doi.org/10.1016/B978-012205351-1.50001-X>.

890 **Delarue M**, Hartung J, Schreck C, Gniewek P, Hu L, Herminghaus S, Hallatschek O. Self-driven jamming in
891 growing microbial populations. *Nature Physics*. 2016; 12. doi: <http://dx.doi.org/10.1038/NPHYS3741>.

892 **Deneke VE**, Di Talia S. Chemical waves in cell and developmental biology. *Journal of Cell Biology*. 2018;
893 217(4):1193–1204. doi: <http://dx.doi.org/10.1083/jcb.201701158>.

894 **Drescher K**, Goldstein RE, Michel N, Polin M, Tuval I. Direct measurement of the flow
895 field around swimming microorganisms. *Physical Review Letters*. 2010; 105:168101. doi:
896 <http://dx.doi.org/10.1103/PhysRevLett.105.168101>.

897 **Drescher K**, Goldstein RE, Tuval I. Fidelity of adaptive phototaxis. *Proceedings of the National Academy of
898 Science*. 2010; 107:11171–11176. doi: <http://dx.doi.org/10.1073/pnas.1000901107>.

899 **Drescher K**, Dunkel J, Nadell CD, Van Teeffelen S, Grnja I, Wingreen NS, Stone HA, Bassler BL. Architectural
900 transitions in *Vibrio cholerae* biofilms at single-cell resolution. *Proceedings of the National Academy of Sciences*.
901 2016; 113(14):E2066–E2072. doi: <http://dx.doi.org/10.1073/pnas.1601702113>.

902 **Fisher RM**, Bell T, West SA. Multicellular group formation in response to predators in the alga *Chlorella vulgaris*.
903 *Journal of Evolutionary Biology*. 2016; 29:551–559. doi: <http://dx.doi.org/10.1111/jeb.12804>.

904 **Goldstein RE**. Green algae as model organisms for biological fluid dynamics. *Annual Review of Fluid Mechanics*.
905 2015; 47:343–375. doi: <http://dx.doi.org/10.1146/annurev-fluid-010313-141426>.

906 **Gregor T**, Tank DW, Wieschaus EF, Bialek W. Probing the Limits to Positional Information. *Cell*. 2007; 130(1):153–
907 164. doi: <http://dx.doi.org/10.1016/j.cell.2007.05.025>.

908 **Grosberg RK**, Strathmann RR. The Evolution of Multicellularity: A Minor Major Transition?
909 Annual Review of Ecology, Evolution, and Systematics. 2007; 38(1):621–654. doi:
910 <http://dx.doi.org/10.1146/annurev.ecolsys.36.102403.114735>.

911 **Haas PA**, Höhn SSMH, Honerkamp-Smith AR, Kirkegaard JB, Goldstein RE. The noisy basis of morphogenesis:
912 Mechanisms and mechanics of cell sheet folding inferred from developmental variability. *PLoS Biology*. 2018;
913 16(7):1–37. doi: <http://dx.doi.org/10.1371/journal.pbio.2005536>.

914 **Hartmann R**, Singh PK, Pearce P, Mok R, Song B, Díaz-Pascual F, Dunkel J, Drescher K. Emergence of
915 three-dimensional order and structure in growing biofilms. *Nature Physics*. 2019; 15(3):251–256. doi:
916 <http://dx.doi.org/10.1038/s41567-018-0356-9>.

917 **Herron MD**, Borin JM, Boswell JC, Walker J, Chen ICK, Knox CA, Boyd M, Rosenzweig F, Ratcliff WC. De
918 novo origins of multicellularity in response to predation. *Scientific Reports*. 2019; 9(1):1–9. doi:
919 <http://dx.doi.org/10.1038/s41598-019-39558-8>.

920 **Herron MD**, Hackett JD, Aylward FO, Michod RE. Triassic origin and early radiation of multicellular
921 volvocine algae. *Proceedings of the National Academy of Sciences*. 2009; 106(9):3254–3258. doi:
922 <http://dx.doi.org/10.1073/pnas.0811205106>.

923 **Hohenberg PC**. Existence of long-range order in one and two dimensions. *Physical Review*. 1967; 158(2):383–
924 386. doi: <http://dx.doi.org/10.1103/PhysRev.158.383>.

925 **Hong L**, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska AL, Zhou Y, Chen C, Kiss A, Zhu M, Hamant
926 O, Smith RS, Komatsuzaki T, Li CB, Boudaoud A, Roeder AHK. Variable Cell Growth Yields Reproducible
927 OrganDevelopment through Spatiotemporal Averaging. *Developmental Cell*. 2016; 38(1):15–32. doi:
928 <http://dx.doi.org/10.1016/j.devcel.2016.06.016>.

929 Ishikawa T, Pedley TJ, Drescher K, Goldstein RE. Stability of dancing *Volvox*. *Journal of Fluid Mechanics*. 2020; 930 903:A11. doi: <http://dx.doi.org/10.1017/jfm.2020.613>.

931 Jacobeen S, Graba EC, Brandys CG, Day TC, Ratcliff WC, Yunker PJ. Geometry, packing, and 932 evolutionary paths to increased multicellular size. *Physical Review E*. 2018; 97(5):1–6. doi: 933 <http://dx.doi.org/10.1103/PhysRevE.97.050401>.

934 Jacobeen S, Pentz JT, Graba EC, Brandys CG, Ratcliff WC, Yunker PJ. Cellular packing, mechanical 935 stress and the evolution of multicellularity. *Nature Physics*. 2018; 14(March):286–291. doi: 936 <http://dx.doi.org/10.1038/s41567-017-0002-y>.

937 Kalziqi A, Yanni D, Thomas J, Ng SL, Vivek S, Hammer BK, Yunker PJ. Immotile Active Matter: Activity from Death 938 and Reproduction. *Physical Review Letters*. 2018; 120(1):18101. doi: <10.1103/PhysRevLett.120.018101>.

939 Katgert G, Van Hecke M. Jamming and geometry of two-dimensional foams. *Europhysics Letters*. 2010; 92(3). 940 doi: <http://dx.doi.org/10.1209/0295-5075/92/34002>.

941 Keim CN, Martins JL, Abreu F, Soares A, Lins H, Barros D, Borojevic R, Lins U, Farina M. Multicellular 942 life cycle of magnetotactic prokaryotes. *FEMS Microbiology Letters*. 2004; 240:203–208. doi: 943 <http://dx.doi.org/10.1016/j.femsle.2004.09.035>.

944 Kirk DL. A twelve-step program for evolving multicellularity and a division of labor. *BioEssays*. 2005; 27(3):299– 945 310. doi: <http://dx.doi.org/10.1002/bies.20197>.

946 Knoll AH. The Multiple Origins of Complex Multicellularity. *Annual Review of Earth and Planetary Sciences*. 947 2011; 39(1):217–239. doi: <http://dx.doi.org/10.1146/annurev.earth.031208.100209>.

948 Koyama T, Yamada M, Matsuhashi M. Formation of regular packets of *Staphylococcus aureus* cells. *Journal of 949 Bacteriology*. 1977; 129(3):1518–1523. doi: <http://dx.doi.org/10.1128/jb.129.3.1518-1523.1977>.

950 Lander AD. Pattern, growth and control. *Cell*. 2011; 144(6):955–969. doi: 951 <http://dx.doi.org/10.1016/j.cell.2011.03.009>.

952 Larson BT, Ruiz-Herrero T, Lee S, Kumar S, Mahadevan L, King N. Biophysical principles of choanoflagellate 953 self-organization. *Proceedings of the National Academy of Sciences*. 2019; 117(3):1303–1311. doi: 954 <http://dx.doi.org/10.1073/pnas.1909447117>.

955 Lauga E. *The Fluid Dynamics of Cell Motility*. Cambridge University Press; 2020.

956 Levin M. The embryonic origins of left-right asymmetry. *Critical Reviews of Oral Biology and Medicine*. 2004; 957 15(4):197–206. doi: <http://dx.doi.org/10.1177/154411130401500403>.

958 Lighthill MJ. On the squirming motion of nearly spherical deformable bodies through liquids at very 959 small Reynolds numbers. *Communications on Pure and Applied Mathematics*. 1952; 5:109–118. doi: 960 <http://dx.doi.org/10.1002/cpa.3160050201>.

961 Lurding M, Van Donk E. Morphological changes in *Scenedesmus* induced by infochemicals 962 released in situ from zooplankton grazers. *Limnology & Oceanography*. 1997; 42(4):783–788. doi: 963 <http://dx.doi.org/10.4319/lo.1997.42.4.0783>.

964 Magar V, Goto T, Pedley TJ. Nutrient Uptake by a Self-Propelled Steady Squirmer. *Quarterly Journal of Mechanics 965 and Applied Mathematics*. 2003; 56:65–91. doi: <http://dx.doi.org/10.1093/qjmam/56.1.65>.

966 Manoharan VN. Colloidal matter: Packing, geometry, and entropy. *Science*. 2015; 349(6251). doi: 967 <http://dx.doi.org/10.1126/science.1253751>.

968 Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two- 969 dimensional isotropic Heisenberg models. *Physical Review Letters*. 1966; 17(22):1133–1136. doi: 970 <http://dx.doi.org/10.1103/PhysRevLett.17.1133>.

971 Michel JA, Yunker PJ. Structural hierarchy confers error tolerance in biological materials. *Proceedings of the 972 National Academy of Science*. 2019; 116(8):2875–2880. doi: <http://dx.doi.org/10.1073/pnas.1813801116>.

973 Pentz JT, Márquez-Zacarías P, Bozdag GO, Burnett A, Yunker PJ, Libby E, Ratcliff WC. Ecological Advantages 974 and Evolutionary Limitations of Aggregative Multicellular Development. *Current Biology*. 2020; 30(21):4155– 975 4164.e6. doi: <http://dx.doi.org/10.1016/j.cub.2020.08.006>.

976 **Prakash VN**, Bull MS, Prakash M. Motility induced fracture reveals a ductile-to-brittle crossover in a simple
977 animal's epithelial. *Nature Physics*. 2019; 17:504–511. doi: <http://dx.doi.org/10.1038/s41567-020-01134-7>.

978 **Ratcliff WC**, Denison RF, Borrello M, Travisano M. Experimental evolution of multicellularity. *Proceedings of the
979 National Academy of Sciences*. 2012; 109(5):1595–1600. doi: <http://dx.doi.org/10.1073/pnas.1115323109>.

980 **Ratcliff WC**, Fankhauser JD, Rogers DW, Greig D, Travisano M. Origins of multicellular evolvability in snowflake
981 yeast. *Nature Communications*. 2015; 6(May 2014):1–9. doi: <http://dx.doi.org/10.1038/ncomms7102>.

982 **Ratcliff WC**, Herron MD, Howell K, Pentz JT, Rosenzweig F, Travisano M. Experimental evolution of an alternating
983 uni- and multicellular life cycle in *Chlamydomonas reinhardtii*. *Nature Communications*. 2013; 4(May). doi:
984 <http://dx.doi.org/10.1038/ncomms3742>.

985 **Risler T**, Peilloux A, Prost J. Homeostatic Fluctuations of a Tissue Surface. *Physical Review Letters*. 2015;
986 115:258104. doi: <http://dx.doi.org/10.1103/PhysRevLett.115.258104>.

987 **Rycroft CH**. VORO ++ : A three-dimensional Voronoi cell library in C ++. *Chaos*. 2009; 19(041111). doi:
988 <http://dx.doi.org/10.1063/1.3215722>.

989 **Sampathkumar A**. Mechanical feedback-loop regulation of morphogenesis in plants. *Development*. 2020;
990 147(16). doi: <http://dx.doi.org/10.1242/dev.177964>.

991 **Schmideder S**, Müller H, Barthel L, Niessen L, Meyer V, Briesen H. Universal law for diffusive mass
992 transport through mycelial networks. *Biotechnology and Bioengineering2*. 2021; (118):930–943. doi:
993 <http://dx.doi.org/10.1002/bit.27622>.

994 **Schneider MB**, Jenkins JT, Webb WW. Thermal fluctuations of large quasi-spherical bimolecular phospholipid
995 vesicles. *Biophysical Journal*. 1984; 45:891–899. doi: [http://dx.doi.org/10.1016/S0006-3495\(84\)84235-6](http://dx.doi.org/10.1016/S0006-3495(84)84235-6).

996 **Shinbrot T**, Muzzio FJ. Noise to order. *Nature*. 2001; 410(6825):251–258. doi:
997 <http://dx.doi.org/10.1038/35065689>.

998 **Short MB**, Solari CA, Ganguly S, Powers TR, Kessler JO, Goldstein RE. Flows driven by flagella of multicellular
999 organisms enhance long-range molecular transport. *Proceedings of the National Academy of Science*. 2006;
1000 1103:8315–8319. doi: <http://dx.doi.org/10.1073/pnas.0600566103>.

1001 **Snoeijer JH**, Vlugt TJH, van Hecke M, van Saarloos W. Force Network Ensemble: A New Approach to Static Gran-
1002 ular Matter. *Physical Review Letters*. 2004; 92(5):4. doi: <http://dx.doi.org/10.1103/PhysRevLett.92.054302>.

1003 **Starr RC**. Structure, reproduction and differentiation in *Volvox carteri f. nagariensis* lyengar, strains HK9 and
1004 10. *Archiv für Protistenkunde*. 1969; 111:204–222.

1005 **Stratford M**. Yeast Flocculation : A New Perspective. *Advances in Microbial Physiology*. 1992; 33. doi:
1006 [http://dx.doi.org/10.1016/S0065-2911\(08\)60215-5](http://dx.doi.org/10.1016/S0065-2911(08)60215-5).

1007 **Szavits-Nossan J**, Eden K, Morris RJ, Macphee CE, Evans MR, Allen RJ. Inherent variability in the
1008 kinetics of autocatalytic protein self-assembly. *Physical Review Letters*. 2014; 113(9):1–5. doi:
1009 <http://dx.doi.org/10.1103/PhysRevLett.113.098101>.

1010 **Tang Q**, Pang K, Yuan X, Xiao S. A one-billion-year-old multicellular chlorophyte. *Nature Ecology & Evolution*.
1011 2020; 4(4):543–549. doi: <http://dx.doi.org/10.1038/s41559-020-1122-9>.

1012 **Tsimring LS**. Noise in biology. *Reports on Progress in Physics*. 2014; 77(2). doi: <http://dx.doi.org/10.1088/0034-4885/77/2/026601>.

1013 **Varadan P**, Solomon MJ. Direct visualization of long-range heterogeneous structure in dense colloidal gels.
1014 *Langmuir*. 2003; 19(3):509–512. doi: <http://dx.doi.org/10.1021/la026303j>.

1015 **Vivek S**, Kelleher CP, Chaikin PM, Weeks ER. Long-wavelength fluctuations and the glass transition in two
1016 dimensions and three dimensions. *Proceedings of the National Academy of Sciences*. 2017; 114(8):1850–
1017 1855. doi: <http://dx.doi.org/10.1073/pnas.1607226113>.

1018 **Waddington CH**. *The Strategy of the Genes*. Routledge; 1957.

1019 **Xiao S**, Zhang Y, Knoll AH. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic
1020 phosphorite. *Nature*. 1998; 391(February):553–558. doi: <http://dx.doi.org/10.1038/35318>.

1022 Yanni D, Jacobeen S, Márquez-Zacarías P, Weitz JS, Ratcliff WC, Yunker PJ. Topological con-
1023 straints in early multicellularity favor reproductive division of labor. *eLife*. 2020; 9:e54348. doi:
1024 <http://dx.doi.org/10.7554/eLife.54348>.

1025 Zamani-Dahaj SA, Burnett A, Day TC, Yunker PJ, Ratcliff WC, Herron MD. Spontaneous emergence of multicel-
1026 lular heritability. *bioRxiv*. 2021; <https://www.biorxiv.org/content/early/2021/07/20/2021.07.19.452990.1>, doi:
1027 [10.1101/2021.07.19.452990](https://doi.org/10.1101/2021.07.19.452990).

1028 Zeravcic Z, Brenner MP. Self-replicating colloidal clusters. *Proceedings of the National Academy of Sciences*.
1029 2014; 111(5):1748–1753. doi: <http://dx.doi.org/10.1073/pnas.1313601111>.

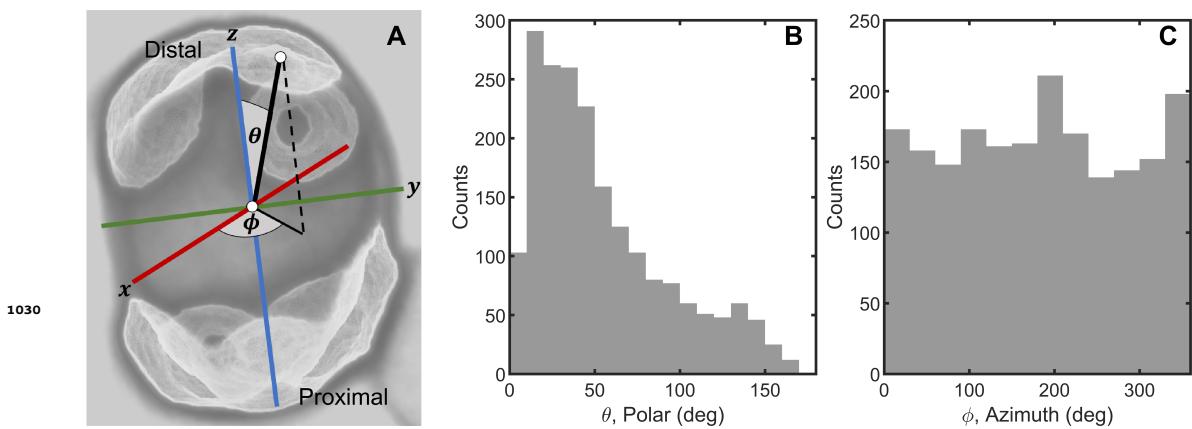


Figure 1-Figure supplement 1. Random cell budding positions in multicellular yeast groups. **(A)**, Bud scars determine the position of new cell buds, and are distributed across the surface of yeast cells. We locate bud scars in a spherical coordinate system with polar angle θ and azimuthal angle ϕ . **(B)** Distribution of measured polar angle positions of new cells. **(C)** Distribution of measured azimuthal angle positions.

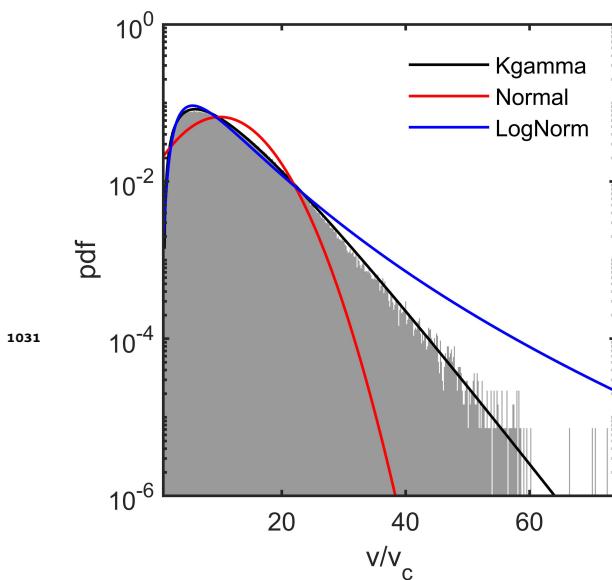


Figure 2-Figure supplement 1. Three different distributions were tested for goodness-of-fit: the maximum entropy prediction (black line), the normal distribution (red), and the log-normal distribution (blue).