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Abstract The prevalence of multicellular organisms is due in part to their ability to form
complex structures. How cells pack in these structures is a fundamental biophysical issue,
underlying their functional properties. However, much remains unknown about how cell packing
geometries arise, and how they are affected by random noise during growth - especially absent
developmental programs. Here, we quantify the statistics of cellular neighborhoods of two
different multicellular eukaryotes: lab-evolved “snowflake” yeast and the green alga Volvox carteri.
We find that despite large differences in cellular organization, the free space associated with
individual cells in both organisms closely fits a modified gamma distribution, consistent with
maximum entropy predictions originally developed for granular materials. This ‘entropic’ cellular
packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even
in the absence of developmental regulation. Together with simulations of diverse growth
morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a
general feature of multicellularity, arising from conserved statistics of cellular packing.

Introduction

The evolution of multicellularity was transformative for life on Earth, occurring in at least 25 sep-
arate lineages (Grosberg and Strathmann, 2007). The success of multicellular organisms is due
in part to their ability to assemble cells into complex, functional arrangements. Self-assembly,
however, is fundamentally subject to random noise (Zeravcic and Brenner, 2014; Szavits-Nossan
et al., 2014; Damavandi and Lubensky, 2019) that affects the final emergent structure (Michel and
Yunker, 2019). The physiology of multicellular organisms can depend sensitively on the geometry
of cellular packing (Bi et al., 2015b; Drescher et al., 2016; Jacobeen et al., 2018b; Larson et al., 2019;
Schmideder et al., 2021), and such noise may therefore have direct consequences on organismal
fitness. Understanding the evolution of multicellularity, and the subsequent evolution of multicel-
lular complexity (Bell and Mooers, 1997), requires understanding the impact of random noise on
multicellular self-assembly. How do organisms accurately assemble functional multicellular com-
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ponents in the presence of noise?

Recent work has shown that extant multicellular organisms can either suppress (Hong et al.,
2016) or leverage (Haas et al., 2018) variability in the process of reliably generating structures, and
their tissues can change function based on cellular packing geometry (Bi et al., 2015a). This occurs
through a coordinated developmental process involving genetic (Davidson, 2007), chemical (Sam-
pathkumar, 2020), mechanical (Deneke and Di Talia, 2018), and bioelectric (Levin, 2004) feedbacks
between interacting cells. However, even with coordinated developmental processes, noise during
self-assembly results in deviations from perfectly regular structures. Further, as these developmen-
tal processes have not yet evolved in nascent multicellular organisms, it is unclear how unregulated
assembly can reliably result in reproducible packing geometries and multicellular structures.

Multicellular organisms also exhibit diverse growth morphologies; for example, cells can re-
main attached through incomplete cytokinesis (Bonner, 1998; Grosberg and Strathmann, 2007;
Knoll, 2011), they can adhere through aggregative bonds (Claessen et al., 20714), and they can as-
semble multicellular groups through successive cell division within a confining membrane (Angert,
2005; Herron et al., 2019). These growth morphologies can have distinct intercellular connection
topologies (Yanni et al., 2020), changing how randomness is manifested. For instance, groups
that grow with persistent mother-daughter bonds maintain the same intercellular connections,
‘freezing’ in place any structural randomness that arises during reproduction. In contrast, cells
in aggregates can rearrange, so their final structure emerges from a combination of reproduc-
tion and intercellular interactions and noise (Delarue et al., 2016; Hartmann et al., 2019). Further,
the dimensionality of multicellular groups can vary, from quasi-two-dimensional sheets (Brunet
et al., 2019) to groups that grow equally in three dimensions (Ratcliff et al., 2012; Tang et al., 2020;
Butterfield, 2000). While the impact of noise on systems in thermal equilibrium is well known to
depend sensitively on spatial dimensionality (Mermin and Wagner, 1966; Hohenberg, 1967; Vivek
et al., 2077), no such information is yet at hand for biological development, which is intrinsically out
of equilibrium. The growth morphology, connection topology, and dimensionality therefore alto-
gether determine a multicellular architecture. Randomness resulting from many sources, such as
stochastic cell division, variability in cell growth, intercellular interactions, and more, subsequently
occurs as perturbations to this idealized form. It would appear that noise manifests in a unique,
context-dependent manner in each of these different multicellular systems.

Here, we provide experimental evidence that, rather than being context-dependent, fluctua-
tions in cell packing geometry instead follow a universal distribution, independent of the presence
or absence of developmental regulation. We quantify the distributions of cellular space in two dif-
ferenttypes of organisms: experimentally-evolved multicellular yeast (Ratcliff et al., 2012) and wild-
type multicellular green algae (Goldstein, 2015). In both cases, maximum entropy considerations
(Aste and Di Matteo, 2008) (see inset box) accurately predict the cell packing distribution. Building
on these observations, we use computational models of diverse prescribed growth rules, mimick-
ing extant biological morphologies, to show that cells are ubiquitously packed according to the
maximum entropy principle. Detailed analysis of the case of green algae shows that correlations,
i.e., the lack of structural randomness, produce deviations from maximum entropy predictions, but
that even a relatively small amount of randomness is sufficient to generate cellular packings that
largely follow maximum entropy predictions. Next, we explore the evolutionary consequences of
cell packing. We use the cell packing distribution to predict the distribution of snowflake yeast
group sizes, an emergent multicellular trait that arises from cell crowding (Jacobeen et al., 2018b).
Then, we use a theoretical analysis to show that the effects of fluctuations in intercellular space on
the motility of green algae are small. These findings together suggest that, rather than impeding
innovation, fluctuations in cell packing are highly repeatable, and may play a fundamental role in
the origin and subsequent evolution of multicellular organisms.
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Figure 1. Cell packing in two multicellular species. (A), Cross section of a multicellular yeast organism, which grows with persistent intercellular
bonds. Scalebar is 5um. The inset shows a smaller section, with ellipsoidal fits to individual cells along with their corresponding Voronoi
polyhedra. Black overlays indicate the connection topology between yeast cells; not all connections are labeled. (B), Darkfield microscopy image
of Volvox carteri, scalebar is 100 um. Inset: a small piece of the Voronoi-tessellated surface; black points are somatic cell positions. (C),
Distributions of Voronoi polyhedron volumes as a function of cell size normalized by average size v, for snowflake yeast. In orange is the
histogram for all cells; the other three distributions correspond to different subsections of Voronoi volumes. The cells were grouped into
spherical shells with radius R and width AR from the cluster center of mass. Shown are shells with edges [0, 6.2), [6.2,9.7), and [9.7,20.4) um. Black
lines are maximum entropy predictions. (D), Distributions of solid angles subtended by Volvox somatic cells divided by a minimum solid angle
Q.. Solid black lines are the maximum entropy predictions. The top row shows the histogram for all cells in green and a subsection of correlated
areas in gray. Bottom row illustrates the subsectioning process: blue polygon is the center of the subsectioned region. Only the Voronoi
polygons, i.e. not the somatic cells, are shown for clarity. (E,F), Empirical cumulative distribution function vs entropic predictions for all
distributions shown in ¢,d. The dashed black line represents hypothetical perfect agreement between observation and prediction.

Figure 1-Figure supplement 1. Random cell budding positions in multicellular yeast groups. (A), Bud scars determine the position of new cell
buds, and are distributed across the surface of yeast cells. We locate bud scars in a spherical coordinate system with polar angle § and azimuthal
angle ¢. (B) Distribution of measured polar angle positions of new cells. (C) Distribution of measured azimuthal angle positions.
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» Results

Maximum entropy

Within statistical physics, the maximum entropy principle relates randomness in low-level
units (e.g., cells) to the properties of the assembly (e.g., a multicellular group). It works by
enumerating all low-level configurations that conform to a set of constraints. Any particu-
lar group-level property can be generated by many different low-level configurations, but
some group-level properties may correspond to more low-level configurations than others.
Those that are generated by many configurations are more likely to be observed than those
that correspond to relatively few configurations; in this way, the maximum entropy princi-
ple allows one to calculate the probability of observing different group properties, given a
set of constraints. Multicellular groups obey a simple but universal constraint: each group
has some total volume, V. This volume can be divided into N pieces, where N is the to-
tal number of cells. Each piece is associated with a particular cell, and the N pieces must
sum to the total volume of the group, V' = Y, v, fori = 1,2,.., N. Using this constraint,
and assuming no correlations, one can predict the most likely distribution of volumes for
the N pieces. This approach has been successfully used to predict the distribution of free
volumes within granular materials and foams (Aste and Di Matteo, 2008; Katgert and Van
Hecke, 2010). Here we use it to predict the distribution of cellular free volumes in the ab-
sence of spatial correlations in cell positions.

Consider the ensemble of all possible cellular configurations in a simple group. As first
derived by (Aste and Di Matteo, 2008) and (Aste et al., 2007) for granular materials, the
maximum entropy probability distribution p(v) of cell neighborhood volumes within V is
the modified gamma distribution

Kk (v —uv,)! v—u,

pv) = TR Gov)t =P (—kl7 =0, > (1)

where 7 is the mean cell neighborhood volume, v, is the minimum cell neighborhood vol-
ume, I'(k) is the gamma function, and k = (5-v,)*/c? is a shape parameter that is defined by
v., 0, and the variance of the cell neighborhood volumes, 2. This distribution is expected
if cell neighborhood volumes are determined independently of each other (while still con-
forming to the total volume constraint). In other words, volumes must be set randomly;
correlations between the size of separate volumes will lead to deviations from maximum
entropy predictions. If this condition holds, then maximum entropy volume distribution
predictions should be valid, regardless of other geometric or structural details. For exam-
ple, maximum entropy statistics hold in granular materials, despite the fact that they must
obey strict force and torque balance conditions (Aste and Di Matteo, 2008; Snoeijer et al.,
2004; Bi et al., 2015a). Further, the same approach applies to groups with a constraint
on total area or length; this does not change the result, and V can be replaced by A or L
without other modifications.

In practice, we divide the total group volume or area into N pieces via a Voronoi tessella-
tion. The size of the space associated with cell i includes the cell itself and the portion of
intercellular space closer to its center than to the center of any other cell. As cells must have
non-zero size, we therefore set v, to be the volume of a single cell without any intercellular
space (or a,, the area of a single cell).

20

: Experimental tests of multicellular maximum entropy predictions
> To test whether different kinds of multicellular groups pack their cells according to the maximum
s entropy principle, we investigated cell packing in two different multicellular organisms. First, we
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used experimentally-evolved ‘snowflake' yeast (Ratcliff et al., 2012), a model system of undiffer-
entiated multicellularity. Second, we used the green microalga Volvox carteri, a member of the
volvocine algae that first evolved multicellularity in the Triassic (Starr, 1969; Herron et al., 2009).

Snowflake yeast

Snowflake yeast grow via incomplete cytokinesis, generating branched structures in which mother-
daughter cells remain attached by permanently bonded cell walls (Figure 7A). New buds appear on
ellipsoidal cells at a polar angle (9) = 42° + 23° and azimuthal angle ¢ that is randomly distributed
[(¢) = 180° + 104°, Figure 1-Figure Supplement 1]. Therefore, cells bud in random orientations
throughout the cluster. Due to the apparent absence of correlations, we expect that this structural
randomness produces predictable distributions of cellular neighborhood volumes.

To determine the distribution of cell neighborhood volumes, we first must measure the position
of every cell in a cluster. It is difficult to image individual cells within snowflake yeast clusters due
to excessive light scattering. Instead, we used a serial block face scanning electron microscope
equipped with a microtome to scan and shave thin (50 nm) layers off a resin block with embedded
yeast clusters with stained cytoplasms. This process allowed us to determine the 3D structure of
snowflake yeast clusters and locate cell centers with nanometer precision.

We define the group volume as the smallest convex hull that surrounds all cells in the cluster
and computed the 3D Voronoi tessellation of cell centers within that (Figure 7A). The distribution
of cellular Voronoi volumes closely matched the predicted k-gamma distribution (Figure 1C, k =
2.88). This agreement is quantified via “P-P plots” of the empirical cumulative distribution function
(CDF) plotted against the predicted k-gamma CDF. We find a root-mean-square residual rz,,¢ =
V{(F(v) = F,?) = 0.02, where F, is the empirical CDF and F(v) is the predicted k-gamma CDF.

The influence of the convex hull on these results was investigated by using an alternative pro-
cedure in which the Voronoi volumes were binned into shells centered at the cluster's center of
mass (Figure 1C,E). We binned cells into shells with shell edges of [0, 6.2), [6.2,9.7), and [9.7,20.4) um
away from the center of mass. We found that the distribution of Voronoi volumes within each shell
matched the predicted k-gamma distribution, with rg,, s = {0.037,0.020,0.014}, k = {3.45,3.08,4.63}
in the shells shown in Figure 1C(ii-iv).

Volvocine algae

To test if cell neighborhood volumes in extant multicellular organisms are consistent with maxi-
mum entropy cell packing predictions, we examined cell packing within the green microalgae Volvox
carteri. Development in V. carteri, which evolved over millions of years, is highly regulated, occurring
through a stereotyped morphological progression (Kirk, 2005). V. carteri embryos arise as a spheri-
cal cellular monolayer from palintomic cell divisions with incomplete cytokinesis, which leaves the
cells attached via cytoplasmic bridges. These bridges disappear when ECM is secreted by the cells,
filling the entire sphere, and eventually moving the cells apart. The approximately 1000 somatic
cells remain embedded on the surface of a translucent sphere of extracellular matrix (Figure 1B).
While six-fold coordination is the most frequent local arrangement of somatic cells, the fact that
the cells are embedded in a surface with spherical topology requires there to be “defects" with
differing coordination number (e.g. 5,7), and these are found interspersed around the spheroid.
Thus, despite their developmental regulation, somatic cells exhibit a degree of disorder with re-
spect to coordination number. From a physics perspective, the local hexatic order in the somatic
cell arrangement is low (see Methods).

To determine the distribution of Volvox cell neighborhood sizes, we imaged somatic cells using
their chlorophyll autofluorescence in a light sheet microscope. Since the somatic cells are arranged
around a surface embedded in 3D space, we constructed a 2D Voronoi tessellation of somatic
cells on the surface. Each organism imaged had a different size, and therefore had a different
mean Voronoi area (A). To compare distributions across organisms, we removed the systematic
area differences by recording the solid angle Q, = 4z A,/S subtended by each somatic cell, where
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Figure 2. Entropic packing is a general feature of simple multicellularity. We simulated four different growth morphologies: (A) Tree-like groups
formed with rigid, permanent bonds between cells, (B) surface-attached cells located on a spherical surfac, (C) aggregates formed with
attractive “sticky” interactions, and (D) groups formed by rapid cell division within a maternal membrane. In all subfigures, left panel shows the
predicted and observed probability distributions, and right panel plots the observed cumulative distribution vs. the expected cumulative
distribution. Histogram bars represent measured Voronoi volume distribution in simulations, and black solid line represents the maximum
entropy prediction. Maximum entropy predictions accurately described the distribution of cellular volumes/areas, despite their varying
mechanisms of group formation (rzys < 0.01).

Figure 2-Figure supplement 1. Three different distributions were tested for goodness-of-fit: the maximum entropy prediction (black line), the
normal distribution (red), and the log-normal distribution (blue).
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S =Y, A, is the total surface area of the organism. We found that the k-gamma distribution largely
matched the distribution of solid angles (Figure 1D, k = 2.40, rg;s = 0.04). However, there are
systematic deviations between the data and maximum entropy predictions (Figure 1F).

We next investigated if maximum entropy predictions are more accurate within subregions with
similar mean solid angles; specifically we examine regions whose mean is (Q) = 0.0185 + 0.0003,
obtained across six organisms. The distribution of Voronoi solid angles within these subregions
closely follows the k-gamma distribution (Figure 1F, k = 10.66, rz,,s = 0.01). This observation sug-
gests that while there are systematically correlated subregions of cells, within these subregions
cells are largely arranged randomly. Thus, the organization of Volvox carteri somatic cells is consis-
tent with maximum entropy predictions.

Simulations of different growth morphologies

We next used simulations to investigate the impact on cell packing of four different growth mor-
phologies: growth via incomplete cell division (cf. snowflake yeast), cells distributed on a spherical
surface (cf. Volvox), aggregation, and palintomy. The goal of these studies was to determine if mor-
phological details and constraints impact entropic packing using simplified models that capture
the essential features of the growth and behavior of these varied organisms.

These geometric simulations of multicellular groups that grow via incomplete cell division were
inspired by previous simulations of snowflake yeast (Jacobeen et al., 2018b,a). Daughter cells bud
from mother cells with experimentally determined polar angle and random azimuthal angle, and
remain attached to mother cells with rigid bonds. We ran 9, 100 simulations starting from a single
cell, each of which underwent 7 generations of division, and calculated the Voronoi tessellation of
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the final structure from each simulation. The distribution of Voronoi volumes closely matched the
k-gamma distribution across four orders of magnitude (Figure 2A, k = 2.26, r ;s = 0.007).

Inspired by Volvox, we simulated cells distributed across the surface of a sphere through a ran-
dom Poisson point process. We completed 10 simulations, each with 1000 cells, and computed the
distribution of solid angles subtended by Voronoi cells. As shown in Figure 2B, the distribution of
Voronoi solid angles is consistent with maximum entropy predictions (k = 9.29, rg,,s = 0.009).

Next, we simulated organisms that stick together via reformable cell-cell adhesions, a mech-
anism of group formation that is common in biofilms and extant aggregative multicellular life
(Claessen et al., 2014) (i.e., Dictylostelium and Myxococcus; Figure 2C). In these simulations, mul-
ticellular aggregates were grown from a single cell. Seven generations of cell division occured, in
which new cells appear on the surface of existing cells at random positions, and steric interactions
force cells to separate after division and occupy space. Aggregative bonds were modeled through
harmonic interactions of the cell centers. The observed Voronoi volume distributions were consis-
tent with maximum entropy predictions (k = 7.84 and rg,,¢ = 0.007).

Finally, we modeled cells undergoing palintomic division within a maternal cell wall, as is com-
mon in green algae (Lurling and Van Donk, 1997; Boraas et al., 1998; Ratcliff et al., 2013; Fisher
et al., 2016; Herron et al., 2019), and is reminiscent of both baeocyte production in Stanieria bacte-
ria (Angert, 2005) and neoproterozoic fossils of early multicellularity (Xiao et al., 1998) (Figure 2D).
The details of these simulations remained similar to the simulations of aggregative multicellular-
ity, with the important difference being that instead of harmonic interactions between cell centers
enforcing groups to stay together, cells interacted with a spherical maternal wall acting as a cor-
ral. The Voronoi volume distributions for these simulations were also consistent with maximum
entropy predictions (k = 15.16 and rg,,s = 0.013).

Taken together, the results of these simulations suggest that a broad distribution of cell neigh-
borhood sizes is a general feature of multicellular growth morphologies. In particular, when cell
locations are random under these rules, cell neighborhood size distributions closely follow the
k-gamma distribution.

The role of spatial correlations
While we have shown that the distribution of cell neighborhood volumes closely follows the k-
gamma distribution in two very different organisms, we have also seen that in some cases maxi-
mum entropy predictions are more accurate in sub-sections of an organism than across its entirety.
For instance, in Volvox we observed that r,, ¢ is much smaller within subregions with similar mean
solid angles than across the whole organism. This observation suggests that correlations exist in
the arrangement of V. carteri somatic cells, causing deviations from maximum entropy predictions.
The spatial correlations in the cellular areas in Volvox were studied first by plotting a 3D heatmap
of Voronoi solid angle sizes (Figure 3A). It is apparent that extended spatial regions have well-
defined and non-random mean Voronoi solid angles. We quantified this feature by calculating
the spatial correlation function C(Q) of the solid angle

(Q-(Q)Yy)

0q0y,

Q) = @)
where Y, = J(Q)™' ¥,(Q; - (Q)) is the average deviation of the solid angle of a given polygon’s
neighbors at a neighbor distance Q from the mean. Here, the number of neighbors is J(Q), a
function of O, which enumerates the network distance from the polygon of interest (i.e. 0 = 1 calls
the nearest neighbors, of which there are J(1), 0 = 2 calls the next nearest neighbors, of which
there are J(2), and so on). The standard deviation of the solid angle across the population is o,
and oy, Is the standard deviation of Y, across the population. We find that Volvox Voronoi solid
angles are positively correlated at distances as large as Q = 10 (Figure 3A). This analysis suggests
that there are systematic differences in Volvox group structure in different spatial regions. We
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Figure 3. Correlations lead to deviations from maximum entropy predictions in Volvox carteri. A Correlation function of Voronoi polygon areas
vs. network neighbor distance Q. Green circles represent all experimental Volvox data. Lines indicate the same correlation function calculated in
subsections of size Q, = {6, 10, 14, 18}. Inset: visualization of spatial correlations of solid angle; one Volvox’s Voronoi tessellation is displayed with
a three-color heatmap corresponding to polygons with areas smaller than (light gray), within (gray) and larger (black) than one standard
deviation of the mean. Scale bar is 200 um. B, PP plots for the observed vs predicted cumulative distribution function. In green is the Volvox
distribution for all cells before corrections for correlations. A selection of differently-sized subsections is also plotted, corresponding to sizes

0, = {6, 10, 14, 18}. Arrow indicates direction of increasing Q, value. C, Root-mean-square residual deviation from maximum entropy predictions
as a function of subsection size, as a function of nearest neighbor number Q,. As the subsection size increases (including more and more
uncorrelated Voronoi areas), the deviation from predictions first decreases until Q, = 6, then increases.
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therefore should expect to observe deviations from the k-gamma distribution, which was derived
under the assumption that there are no correlations in the division of space among cells.

A natural question is whether maximum entropy predictions are more accurate within corre-
lated subregions of an organism. We measured the Voronoi distribution in subregions with similar
mean solid angles across six organisms and, for each subregion, a central node and its neighbors
up to Q, were identified. We varied Q, from 3 (corresponding to, on average, 38 cells in the sub-
region) to O, = 20 (1016 cells on average in the subregion) to measure the Voronoi solid angle
distributions in subregions of different sizes. Spatial correlations were weaker within smaller do-
mains (Figure 3A), and deviations from maximum entropy predictions smaller as well (Figure 3B)
with the minimum rg,,s at Q, = 6 (Figure 3C, average of 133 cells). These observations suggest that
while there are systematic correlations between subregions, cell neighborhood sizes are largely
randomly distributed within subregions.

The crucial role of randomness

How much randomness is necessary for the k-gamma distribution to predict cell neighborhood size
distributions? Our analysis of the solid angle distribution of Volvox cells demonstrates that max-
imum entropy principle predictions are relatively accurate (rg, s = 0.04) even in the presence of
some spatial correlations. However, assessing the stability of entropic distributions to correlative
perturbations is crucial to determine how broadly applicable entropic packing may be for multicel-
lular organisms. We investigated the stability of the maximum entropy distributions by simulating
three different sources of correlations: (i) size polydispersity, (ii) defined growth patterns, and (iii)
coordinated cellular apoptosis. In each scenario, we varied the relative strength of correlations
and noise, and monitored how closely the cell neighborhood size distributions agreed with the
k-gamma distribution via P-P plots and the rg,, .

The impact of heritable size polydispersity was investigated by simulating aggregative groups
consisting of large and small cells. All simulations were seeded with one small cell and one large
cell. We then varied the probability & that a new cell is the same size as its mother from 0.5 to
1.0. When ¢ = 1, cells always produce offspring with the same radius; for & = 0.5 it is equally
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(A) Aggregative groups with bimodal size polydispersity; noise is introduced by varying the probability that small cells reproduce into small or
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square deviation from predicted values for each simulation case. Circles are aggregative simulations from A, triangles are tree-like simulations
from B, and squares are surface-bound simulations from C.
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likely that a small cell produces a small or large daughter (and vice versa for large cells). Therefore,
groups with & = 1 have correlated regions of cell size, but the degree of correlations decreases
with decreasing &. While groups with ¢ = 1 deviate significantly from the k-gamma distribution
(rrars = 0.09), we observed that even a small amount of randomness results in excellent agreement
between simulated groups and the k-gamma distribution (in order from & = 1 to & = 0.5, rgy s =
{0.09,0.04,0.03,0.03,0.02}).

Next we investigated groups with varying amounts of noise on top of defined growth patterns.
In these simulations, new cells bud in precise positions; the first daughter at the position 9 =0+ 7,
¢ = 0+ 5 in spherical coordinates), the second at @ = 90 + 5, ¢ = 0 + 5, the third at & = 90 + 7,
¢ = 180 +n, etc., where the noise is uniformly distributed with zero mean and width 5. For =0 (no
noise), the distribution of Voronoi volumes was discontinuous, since cells could only access a finite
number of local configurations. As expected, as # increases (1 = {0,5, 30, 60,90}), rg,s decreases
(rras = {0.07,0.05,0.02,0.02,0.02}).

Finally, we investigated groups with localized and random cell death. In these simulations,
50 cells were confined to the surface of a sphere of unit radius following the protocol described
above. One cell is randomly selected to die. Centered at this cell, a spherical region of radius R
is defined, and then 10 cells in this region were randomly selected to die (and disappear, thereby
not contributing to the Voronoi tessellation). For small R, cell death is highly localized, and thus
spatially correlated. As R increases, cell death events become less localized, and therefore more
random. We find that highly correlated cell death resulted in large deviations from maximum
entropy predictions. Conversely, as R increases dead cells become less localized, the observed dis-
tribution becomes more accurately described by the k-gamma distribution; as R increases from
R =1{0.75,1,1.25,1.5,1.75,2}, we find rg,,s = {0.10,0.07,0.03,0.02,0.01}.

In summary, absent randomness, spatial correlations lead to large deviations from the k-gamma
distribution. Yet, with even a small amount of randomness, the k-gamma distribution holds signif-
icant predictive power. These simulations suggest that maximum entropy predictions are likely to
be robust against even moderate correlations.

Parent-offspring fidelity via maximum entropy packing
So far, we have shown that randomness in cellular packing leads to highly predictable packing
statistics. Here we show that maximum entropy statistics can directly impact the emergence of a
highly heritable multicellular trait, organism size.

Prior work has shown that the size of snowflake yeast at fragmentation is remarkably heritable
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Figure 5. Maximum entropy cell packing generates a consistent and predictable life cycle in snowflake yeast. (A) Distribution of total cluster
volume for 3000 simulated snowflake clusters, each with N = 100 cells. The total volume is divided by the minimum possible volume Nv,. The
k-gamma distribution (black line, k = 23.0, rg),s = 0.0043) provides a good description of the data. (B) Distribution of all experimental Voronoi
volumes (black circles) and the maximum entropy prediction (black line). The vertical black dashed line is the critical Voronoi volume v* = 2.02
predicted from simulations. Orange filled region integrates up to p* the probability that any one cell occupies a volume less than v*. Insets:
sequential brightfield microscope images of one yeast cluster undergoing group fragmentation. White arrowhead indicates location of fracture
point. The images measure 150 um across from top to bottom. (C), Experimentally measured yeast cluster size distribution (solid black line) along
with the prediction from weakest link theory (orange line). Gray region represents 1o confidence bounds on the measured distribution from
estimating the number of cells in a group. (D), Coefficient of variation in group radius (¢/R) for snowflake groups (S) and flocculating groups (F).
Data from Pentz et al. (2020).

260 - higher, in fact, than the traits of most clonally-reproducing animals (Ratcliff et al., 2015). The size
270 to which snowflake yeast grow depends strongly on the aspect ratio of its constituent cells; more
271 elongated cells allow the growth of larger clusters before strain from cellular packing causes group
272 fragmentation (Jacobeen et al., 2018b,a). Recently, experiments with engineered yeast showed
273 that this emergent multicellular trait, group size, was in fact more heritable than the underlying
274 cellular trait upon which it was based (cellular aspect ratio), despite the fact that the mutations
275 engineered in this system only affected cellular aspect ratio directly (Zamani-Dahaj et al., 2021).
276 Simulations of multicellular chemotaxis observed a similar effect (Colizzi et al., 2020). While at
277 first glance this may seem surprising, we show below that the high heritability of snowflake yeast
278 group size arises from the direct dependence of size on the robust maximum entropy distribution
279 Of volume within groups.

280 Before addressing how fracture impacts the distribution of cluster sizes by impacting the num-
2s1  ber of cells within a group, we first must address fluctuations in size among clusters with the same
22 number of cells. Given a number of cells N in the cluster, variation in cell packing fraction results
283 in variation of the total volume. The arguments given above for predicting the distribution of indi-
2sa  vidual cell volumes also applies to the distribution of total volume (Aste and Di Matteo, 2008); the
2ss  distribution of total volume for clusters with the same number of cells should follow the k-gamma
286 distribution. To generate enough clusters with identical N to test this prediction, we used simula-
2s7  tions. We generated 3000 snowflake yeast clusters, each with 100 cells, and measured their total
288 vVolumes. The distribution of volumes is consistent (rg,,s = 0.0043, k = 23.0) with the k-gamma
280 distribution as shown in Figure 5A. Further, these fluctuations in size are small compared to the
200 differences in size gained via reproduction of cells or lost via fracture.

201 To predict the group size distribution, we consider the probability of fragmentation via a weakest-
202 link model of fracture. As the location of new cells is random (see Figure 1-Figure Supplement 1),
203 e€ach new cell has a chance of causing intercellular bond fracture. It was previously observed that
202 bonds only break if cells are highly confined, that is they have smaller Voronoi volumes; otherwise
205 flexible cellular branches simply bend (Jacobeen et al., 2018b). We model fracture as occurring
206 When a cell's Voronoi volume is below a critical value denoted by v* (Figure 5B) such that its mo-
207 tion is completely restricted. We measure v* from simulations that determine the maximum local

10 of 27


https://doi.org/10.1101/2021.07.29.454238
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454238; this version posted July 29, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

packing density for groups with same cell size and shape distributions as seen in experiments (see
Methods). The probability that a particular cell is confined to a Voronoi volume v < v* is the integral

*

p= / p(v)dv. (3)

As each cell in a cluster of N cells independently has probability p* of having v < v* (and thus
causing fracture), the probability of a cluster with N cells not fragmenting is

P(N) = (1—p)" @)

As we do not model the fate of products of fragmentation (i.e., the size of the separate pieces post-
fracture), we expect the weakest link model to be more accurate for larger clusters than it is for
smaller clusters.

We measured group size for approximately 10,000 snowflake clusters, all descendants of a sin-
gle isolate, using a particle multisizer, and found strong agreement between the experimentally
observed cluster size distribution and the weakest-link prediction (the coefficient of determination
is r2 = 0.97 for log(Counts) vs N) (Figure 5C). Hence, the predictable statistics of entropic cell packing
guides the distribution of group size among offspring of a single isolate.

For context, we compared the distribution of group size in snowflake yeast to that of flocculat-
ing yeast, which forms multicellular groups via aggregation. The multicellular size of flocculating
yeast depends on the rate of collisions with other cells and groups of cells. The growth rate of
aggregates is thus typically proportional to their size, as larger aggregates are more likely to con-
tact more cells (Pentz et al., 2020). In fact, the maximum size of a flocculating yeast aggregate is
bounded by the duration of aggregation, an extrinsic parameter, while the minimum size can be a
single cell (Stratford, 1992). Using data from (Pentz et al., 2020), we compared the group size dis-
tributions of snowflake yeast and flocculating yeast grown in the same environmental conditions.
We find that flocculating yeast groups exhibit a much larger coefficient of variation in size com-
pared to snowflake yeast groups (Pentz et al., 2020) (Figure 5D). These results demonstrate that
randomly assembled groups can exhibit more reproducible group traits than groups assembled
with correlations.

Multicellular motility is robust to cellular area heterogeneity

One of the issues arising from the existence of the broad distribution of somatic cell areas in Volvox
is the extent to which colony motility is affected by that heterogeneity. Each of the somatic cells at
the surface of a Volvox colony has two flagella that beat at ~ 30 Hz, in planes that are primarily ori-
ented in the anterior-posterior (AP) direction but with a slight lateral tilt that makes each colony spin
around its AP axis. A longstanding focus in biological fluid mechanics of multicellular flagellates
has been to understand the connection between the beating of the carpet of flagella that cover
their surface and their self-propulsion. Measurements of the flow fields around micropipette-held
(Short et al., 2006) and freely-swimming colonies (Drescher et al., 2010a) have shown that despite
the discreteness of the flagella, the flow is remarkably smooth, albeit often displaying metachronal
waves (Brumley et al., 2015), long-wavelength phase modulations of the beating pattern.

A heuristic explanation for the smoothness of the flows can be developed by noting first that
the flow arising from each flagellum, beating close to the no-slip surface of the colony, will fall off
only as aninverse power of distance r from the flagellum. Thus, the superposition of the flows from
many flagella will be sensitive to contributions from distant neighbors and will tend to wash out
local variations in flagellar actuation. This argument can be made quantitative using two different
models for the motility of such flagellates. The first is the “squirmer" model (Lighthill, 1952), in
which the flagellate is characterized by a tangential “slip" velocity u(9) on the surface, which can be
thought of as corresponding to the mean motion of the flagella tips. Here, 6 € [0, z] is the polar
angle with respect to the AP axis. In this approach the details of the fluid velocity profile below the
tips are not resolved, and in particular the no-slip condition at the surface of the ECM is ignored. In
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the second approach (Ishikawa et al., 2020), which builds on earlier work (Short et al., 2006) that
specified a force density at the colony surface instead of a slip velocity, there is a specified force
density applied at some small distance above the no-slip colony surface, and the flow field below
that locus is resolved. This approach, termed the “shear stress, no-slip" model, captures the very
large viscous dissipation that occurs in the region between the ECM and the locus of forcing. Within
either of these two approaches above the effects of area inhomogeneities can be investigated by
coarse-graining the flagella dynamics; either the local slip velocity u(9) or the local tangential force
density f(0) has noise.
In the squirmer model, the swimming speed U is (Lauga, 2020)

U= % / d0'sin 0 u,(0)V;(0), (5)
0
where 5
V.(0) = mPﬂ (cos 0)sin 0, (6)

P, is the Legendre polynomial, and the prime indicates differentiation with respect to its argument.
If we represent the effects of area inhomogeneities as noise in the slip velocity, then it is most
natural to use V, as the basis functions for the tangential slip velocity, expressed as

[}

up(0) = Y u,V,(0), (7)
n=1
where V,(0) = V,(x) = 0, guaranteeing that the slip velocity vanishes at the anterior and posterior
poles (Short et al., 2006). Accurate experimental measurements of the azimuthal velocity field
of Volvox (Drescher et al., 2010b) show that it is well-captured by that lowest mode, leading to a
modest anterior-posterior asymmetry. From the orthogonality relation for the v,

2n(n+1)

2n+1 Ouns (®)

/ dOsin OV, (0)V,(0) =

we see immediately that the contributions from all modes » > 1 vanish identically, and thus the
swimming speed is given identically by the amplitude of the lowest mode V() = sin#,

U =2u, )

Thus, within the squirmer model, motility is essentially insensitive to area inhomogeneities. This
result does not preclude effects of those higher modes, only that such effects will be on quantities
other than the swimming speed, such as the nutrient uptake rate (Magar et al., 2003).

In the shear-stress, no-slip model, the velocity field in the region between the colony radius
R and the radius R(1 + ¢) at which the shear stress is applied is solved separately from that for
r > R(1+¢) and the two flow fields are matched at R(1+¢) through boundary conditions of continuity
in velocity and normal stress and the specified discontinuity in shear stress. Analogously to the
expansion of the slip velocity in the squirmer model (7), noise in that discontinuity can be expressed
by assuming that the coarse-grained shear force applied by the flagella has spatial variations, and
can be expanded in the form

£0)=Y £,V,(0). (10)
n=1
The swimming speed again depends only on the lowest-order mode in this expansion,
2¢R
U=S20 (1M
7]

and we again have insensitivity of U to inhomogeneities in the area per somatic cell.
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Discussion

In this paper, we demonstrated that universal cellular packing geometries are an inevitable conse-
quence of noisy multicellular assembly. We measured the distribution of Voronoi polytope sizes
in both nascent and extant multicellular organisms, and showed that they are consistent with the
k-gamma distribution, which arises via maximum entropy considerations. Using simulations, we
demonstrated that k-gamma distributions arise in many different growth morphologies, and do
so requiring only a relatively small amount of structural randomness. Further, we showed that the
distribution of cell neighborhood sizes can be used to distinguish the effects of randomness from
the effects of developmental patterning. Finally, we demonstrated that consistent packing statis-
tics can lead to highly reproducible, and thus heritable, multicellular traits, such as group size in
snowflake yeast. Altogether, these results indicate that entropic cell packing is a general organizing
feature of multicellularity, applying to multicellular organisms with varying growth morphologies,
connection topologies, and dimensionalities.

The effect of random noise has been an important area of research in developmental biology
(Tsimring, 2014; Lander, 2011). During development, cellular growth, reproduction, differentiation,
and patterning combine to form a multicellular organism. Random noise introduced at any stage in
this process can result in phenotypic variability, which may affect an organism'’s fitness (Wadding-
ton, 1957). But while some multicellular traits exhibit high variability, others are tightly conserved,
leading to a wide body of research addressing the origin of mechanisms underlying robustness
and stability, and the nature of feedback mechanisms that must be present to manage the large
number of stochastic fluctuations in gene expression and growth (Gregor et al., 2007; Haas et al.,
2018; Hong et al., 2016; Sampathkumar, 2020; Deneke and Di Talia, 2018). In this context, our re-
sults demonstrate that random noise can itself lead to highly reproducible multicellular traits such
as the cell packing distribution.

Our observation that heritable properties can arise from random processes is reminiscent of
the reproducible structures and phenomena generated by random noise in a wide range of physi-
cal (Shinbrot and Muzzio, 2001; Manoharan, 2015) and biological systems (Tsimring, 2014; Lander,
20117). While it may be surprising that the distribution of free space in snowflake yeast and Volvox
follow the same k-gamma distributions despite the many differences between these organisms,
this universality actually extends beyond multicellular organisms to non-living materials, such as
those seen in granular materials and foams (Katgert and Van Hecke, 2010; Varadan and Solomon,
2003; Aste and Di Matteo, 2008). This broad universality likely arises due to the simple require-
ments for application of the maximum entropy principle to packing; specifically, there must be a
total volume, individual volumes cannot overlap, and volumes must be determined independently
(subject to the total volume constraint). It is thus important to note that entropic packing is not
necessarily adaptive; it can readily emerge as a consequence of random cellular reproduction or
interactions. While entropic packing statistics may produce advantages in some cases, they could
be neutral or detrimental in others.

An example of one possible advantage granted by entropic packing is the parent-offspring fi-
delity that arises from its ensemble statistics. Since both parents and their offspring are assembled
through similar noisy processes, they achieve similar cell packing distributions. This statistical sim-
ilarity therefore details at least one heritable multicellular trait that does not rely on genetically
regulated multicellular development. Other multicellular traits that build on the cell packing distri-
bution are similarly affected by this emergent process and could become heritable as well. Such
parent-offspring heredity could play a crucial role in the evolutionary transition to multicellularity,
providing a mechanism for nascent multicellular organisms to participate in the evolutionary pro-
cess without first having to possess genetically regulated development. Over time, developmental
innovation may arise via multicellular adaptation, modifying or replacing entropic cell packing as
a mechanism of multicellular heredity. Consistent with this hypothesis, maximum entropy retains
considerable predictive power in extant multicellular organisms such as Volvox, animal embryos
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(Alsous et al., 2018), and epithelial tissue monolayers (Atia et al., 2018), each of which have canal-
ized development. There may be other examples of highly-evolved organisms which pack cells
according to maximum entropy predictions, and future work could address cell packing in, e.g.,
animal embryos, brain tissue, and more. Finally, as fragmentation is a common mode of multi-
cellular reproduction (Larson et al., 2019; Prakash et al., 2019; Angert, 2005; Keim et al., 2004;
Koyama et al., 1977), fracture driven by maximum entropy packing statistics may be relevant to
organisms other than snowflake yeast.

The broad distributions in cellular volumes we have found in two very different types of organ-
isms, with two very different modes of reproduction and growth, suggest that noise in develop-
mental geometry may be an inevitable consequence of almost any microscopic mechanism. In
this sense, they may be just as unavoidable in biological contexts as thermal fluctuations are in
systems that obey the rules of equilibrium statistical physics. As an example, we recall the “flicker
phenomenon" of erythrocytes, in which the red blood cell membrane exhibits stochastic motions
around its equilibrium biconcave discoid shape. Thought for many years to be a consequence of
specific biochemical processes associated with living systems, flickering was eventually shown by
quantitative video microscopy (Brochard and Lennon, 1975) to be consistent with equilibrium ther-
mal fluctuations of elastic biomembranes immersed in water. This was later confirmed by similar
studies of shape fluctuations exhibited by large lipid vesicles (Schneider et al., 1984). The gen-
eralization of these considerations to homeostatic tissues with cell division, rearrangements and
apoptosis has also been considered (Risler et al., 2015; Kalzigi et al., 2018). While such membrane
systems may differ greatly in the specific values of their elastic modulus (and, indeed, of their mi-
croscopic membrane constituents), the viscosity of the surrounding fluid, and their physical size,
the space-time correlation function of fluctuations about the equilibrium shape adopts a universal
form in appropriately rescaled length and frequency variables.

These results on equilibrium fluctuations provide a conceptual precedent for the results re-
ported here. A central issue that then arises from our results is how to connect any given stochastic
biochemical growth process defined at the microscopic level to the more macroscopic probability
distribution function observed for cellular volumes. Mathematically this is the same question that
arises in the theory of random walks, wherein a Langevin equation defined at the microscopic
level leads, through suitable averaging, to a Fokker-Planck equation for the probability distribution
function of displacements. Can the same procedure be implemented for growth laws?
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Methods

Yeast genotypes and growth morphology

Snowflake yeast genotypes

Multicellular yeast groups were constructed from initially unicellular Saccharomyces cerevisiae. Pe-
tite yeast groups (P-) were used in all experiments except those noted below. Snowflake yeast
were engineered by replacing a functional copy of ace2 with a nonfunctional version as described in
(Ratcliff et al., 2015) (these modified genotypes will be referred to as either snowflakes or Ace2KO).
Under daily selection for large size through settling in liquid media, groups can arise via a single mu-
tation in the ace2 gene (Ratcliff et al., 2012, 2015). When the ace2 gene is not expressed, the final
stage of cell division is not completed, and mother-daughter cells remain attached at the chitinous
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bud site. Since all cells are attached directly to their mothers, snowflake groups form a fractal-like
branched tree collective. To measure bud scar size, we used a unicellular strain of Y55 yeast; these
measurements were only used to pick parameters for snowflake yeast simulations.

Yeast growth morphology

S. cerevisiae cells reproduce by budding, a type of asexual reproduction where a new cell extrudes
from the surface of the parent cell. During budding, mother and daughter cells remain attached
via a rigid chitinous bond; in unicellular yeast, chitinase will degrade this bond as the last step in
cell division, releasing the daughter cell and leaving behind a “bud scar” on the mother surface and
a “birth scar” defining the proximal hemisphere on the daughter’s cell surface. In all experiments,
we use yeast expressing bipolar budding patterns (Chant and Pringle, 1995). The bipolar budding
patternis characterized by bud sites that typically do not form along the equator of the cell. Usually,
the first daughter buds near the distal pole. Subsequent budding sites are typically positioned
along a budding ring defined by a polar angle 6 (Figure 6). Some buds will “backbud” towards the
mother cell (i.e. on the proximal end of the cell), but most buds are placed on the distal side. By
contrast, the azimuthal positions of all buds appears to be randomly distributed.

Growth conditions

All experiments were performed on yeast grown for approximately 24 hrs in 10 mL of yeast pep-
tone dextrose (YPD, 10 g/L yeast extract, 20 g/L peptone, and 20g/L dextrose) liquid medium at
30C, and shaken at 250rpm in a Symphony Incubating Orbital Shaker model 35001I. All cultures
were therefore in the stationary phase of growth at the time of experiments.

Scanning electron microscopy to measure group structure

Since yeast cells have thick cell walls that limit the effectiveness of optical microscopy, we used a
Zeiss Sigma VP 3View scanning electron microscope (SEM) equipped with a Gatan 3View SBF micro-
tome installed inside a Gemini SEM column to obtain high resolution images of the internal struc-
ture of snowflake yeast groups and locate the positions of all cells. All SEM images were obtained in
collaboration with the University of lllinois’s Materials Research Laboratory at the Grainger College
of Engineering. Snowflake yeast clusters were grown overnight in YPD media, then fixed, stained
with osmium tetroxide, and embedded in resin in an eppendorf tube. A cube of resin 200 um x
200 um X 200 um (with an isotropic distribution of yeast clusters) was cut out of the resin block for
imaging. The top surface of the cube was scanned by the SEM to acquire an image with resolution
50 nm per pixel (4000 x 4000 pixels). Then, a microtome shaved a 50 nm thick layer from the top of
the specimen, and the new top surface was scanned. This process was repeated until 4000 images
were obtained so that the data cube had equal resolution in x, y, z dimensions.

Custom image analysis scripts were written for the SEM datasets. First, a local adaptive thresh-
old was used to binarize the image. A distance transform was used to identify the center of each
cell slice in a particular 2d image. A watershed algorithm was then seeded with the cell slice cen-
ters, followed by a particle tracking algorithm to label cells across image slices. After labeling, the
boundary for each cell was found, resulting in a point cloud of the exterior of each cell. Each cell
was then fitted with an ellipsoid with nine fit parameters: (x,, y,, z,) cell center, (a, b, ) cell radii,
and (0, ¢, w) for cell orientation. The net rotation matrix R was then found, where each column of
R corresponds to the direction vector of one principal axis of the ellipsoid. We consider the radii
of the principal axes (a, b, ¢) to be part of a diagonal scaling matrix .S which sets the ellipsoid size.
Since the SEM images only capture the cell cytoplasm, each principal axis was increased in size
by an additional 100 nm to account for the cell wall during visualization. Last, although there is no
possible 3d 3x3 translation matrix, a 4x4 translation matrix T' can capture the position of the cell
center (x,, ¥y, zo)- Adding one additional column and row to the matrices R and S with the diagonal
element being 1 and all other elements being 0 then means that a unit sphere centered at the ori-
gin can be mapped to any specific cell by a surface matrix M = TRS, and furthermore any point
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on the cell's surface can be mapped back to the unit sphere by the inverse of M. Then, the surface
matrices are the only information that must be stored. From this dataset, 20 clusters of 105 + 51
cells in each cluster were identified along with their intercellular mother-daughter chitin bonds.

Petite yeast cell size and shape

We measured cellular volumes from SEM images by ellipsoid fits. The average cellular volume of
petite yeast was v, = 17.44 um® + 7.33 um®. This measurement was used in our Voronoi distribution
derivations. We measured the mean cellular aspect ratio to be a« = a/b = 1.28 + 0.20.

Bud scar size

We next measured the typical size of bud scars on the surface of Y55 yeast cells. Single cells were
stained with calcafluor to highlight the chitinous bud scars (Figure 1-Figure Supplement 1). Confo-
cal z-stacks were obtained on a Nikon ATR confocal microscope equipped with a 40x oil immersion
objective. These images were visualized using the image processing software FljI, and the 3d vol-
ume viewer plugin. To track the location and size of bud scars, a custom MatLab script was written
to map the strongest calcafluor signals, since calcafluor makes bud scars brighter than other por-
tions of the cell wall. Brightness isosurfaces then isolated the bud scars from the cell wall. Next, the
isosurface points were rotated to the x — y plane by finding its principal components in a principal
component analysis. The rotated surface points were then fit with an ellipse, returning the major
and minor axes. The average of the major and minor axes returned an average interior bud scar
diameter of 1.2 um. This value was later used in simulations of yeast groups.

Bud scar locations

We measured bud scar positional distributions for petite yeast Ace2KO. Since the SEM does not
image chitinous bud scars, we approximated bud scar positions as the closest point on a mother
cell's surface to the corresponding daughter cell's proximal pole. We recorded 1990 bud scar posi-
tions in polar coordinates, as defined in Figure 1-Figure Supplement 1. There is a clearly defined
polar angle for the budding ring, while the azimuthal angle is uniformly distributed. The mean and
standard deviations of the two angular coordinates were 6 = 42° + 23°, and ¢ = 180° + 104°.

Imaging Volvox

Cultivation and Selective Plane Illumination Microscopy

The V. carteri f. nagariensis strain HK10 (UTEX 1885) was obtained from the Culture Collection of Al-
gae at the University of Texas at Austin and cultured as previously described (Brumley et al., 2014).
To visualise somatic cells, V. carteri spheroids were embedded in 1% low-melting-point agarose,
suspended in liquid medium and imaged using a custom-built Selective Plane Illumination Micro-
scope (Haas et al., 2018). Each somatic cell is mostly filled with a single chloroplast. Chlorophyll
autofluorescence was excited at 1 = 561 nm and detected at 4 = 570nm. To increase the accuracy
with which we identify somatic cell positions, z-stacks of six spheroids were acquired from three
different angles (0, 120, 240 degrees) and fused as described in the following paragraph.

Registration of cell positions

Positions of cells were registered based on fluorescence intensity using custom Matlab scripts. This
was achieved by carrying out a 2D convolution of each frame of the z-stack with a basic kernel mod-
elling the appearance of a cell - this was set to be an asymmetric double sigmoidal function. Cell
segmentation was corrected manually. Z-stacks taken from different angles were roughly aligned
using Fiji and the Matlab function fminsearch to minimise distances between the reproductive cells.
This alignment was used as starting point for alignment of the somatic cells again using fminsearch.
The positions of somatic cells were merged and averaged.
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Voronoi Tessellation
We used a Voronoi tessellation algorithm to measure the distribution of cell neighborhood sizes in
groups. We computed both 3D and 2D Voronoi tessellations.

3D Voronoi Tessellations

First, we computed 3D Voronoi tessellations within a defined boundary. These tessellations were
performed for experimental snowflake yeast data from the SEM and simulations of 3D groups
using the open-source Voronoi code Voro++ (Rycroft, 2009), wrapped in a custom MatLab script.
Voro++ takes as input the Cartesian coordinates of the cell centers and the boundary of the shape
within which to compute the tessellation. Without a boundary, all of the Voronoi cells located on
the periphery would extend to infinity. We started the tessellation process by setting the input
boundary to be a sphere; the Voronoi algorithm tessellated space within the spherical boundary.
Then, pieces of the sphere were pared away until a Voronoi tessellation within the group’s convex
hull was obtained, as described in the next paragraph.

The boundary sphere was centered on the cluster’s center of mass. Its radius was the distance
to the farthest cell center plus an additional 5 um. Upon tessellation within the sphere, each Voronoi
polyhedron is defined by Cartesian vertices r;. We group these preliminary vertices by the cells to
which they correspond, so that Q; = {r,,r,,...r,} is a list of the m vertices corresponding to cell
i € [1, N1, N being the total number of cells in the organism. We next computed the cluster's convex
hull, which is the smallest convex polyhedron that contains all cell centers. We then extended
the vertices of the convex hull by 3 um outwards from the cluster center of mass so the boundary
contained the entirety of each cell. This new boundary polyhedron, whose vertices are labeled B,
defines the cluster boundary. We then found the intersection polyhedron, Z, = O,n B by taking the
union of the dual of their vertices. This process thereby trims all Voronoi polyhedra to lie exclusively
within the cluster's convex hull. The polyhedra Z, were the final Voronoi polyhedra used for the
remaining data analysis.

Voronoi tessellation on a sphere

For Voronoi tessellations of cells on the surface of simulated spheres (see Figure 3 and Figure 4 of
the main text), we used a built-in Matlab function called "voronoisphere" for Voronoi tessellations
on a sphere.

Voronoi Tessellation on Non-Spherical Surfaces

We also computed 2D Voronoi tessellations on surfaces embedded in 3D space using custom-
written MatLab functions. This approach was used for Volvox experimental data. Performing this
computation with Volvox experiments presented a challenge as Volvox are roughly spherical, but
with varying local curvature. It was therefore necessary to compute a Voronoi tessellation on an
arbitrary surface.

The first step toward generating the proper Voronoi tessellation was computing the Delaunay
triangulation of the cells on the surface (the Voronoi tessellation is the dual of the Delaunay trian-
gulation). First, we found the Cartesian coordinates of each somatic cell (as described above), and
normalized these coordinates so that all cell centers laid on the unit sphere. Then, a Delaunay tri-
angulation of the normalized points was calculated. Edges of the triangulation that cut through the
unit sphere were eliminated, and edges that laid along the sphere surface were kept. This Delau-
nay triangulation therefore mapped out the connectivity of the somatic cells. We then projected
that triangulation onto the lumpy surface. The Voronoi polygon vertices are the circumcenters
of each Delaunay triangle. Further, any edge shared between two Delaunay triangles denotes an
edge shared between the Voronoi vertices associated with those two triangles. We found all edges
connecting the Voronoi vertices. Next, connected edges were flattened so that each Voronoi cell
was a 2D polygon. This step eliminates the curvature associated with the surface of the organism.
However, we found that the distribution of Voronoi areas was unaffected by taking either the pla-
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nar approximation or by approximating the area by taking the local curvature into account - the
average difference between Voronoi areas when approximating the surface as a plane A, vs. ap-
proximating the surface as a spherical cap A, was found to be (%) = 0.001, measured for one
organism. Therefore, we used the flattened Voronoi polygons as the final tessellation shapes.

Data analysis of Voronoi measurements

In all cases, the output of the Voronoi algorithm is a list of Voronoi polytope sizes: in 3D, the mea-
surements were the final Voronoi polyhedron volumes, while in 2D the measurements were poly-
gon areas. Histograms of these sizes were generated to compare with the k-gamma distribution.
As we observe cells in direct contact with each other, the minimum size of a Voronoi volume or area
was defined by single cell measurements. For petite yeast cells, the mean cell size was calculated
from the ellipsoid fits described above to be v, = 17.44 um® + 7.33 um?. In simulations, the minimum
volume was set by the defined cell radius; in bidisperse simulations, the minimum size was set by
the volume of the smallest cells.

We then calculated the expected maximum entropy distribution using only the mean and vari-
ance of the observed Voronoi volumes, & and ¢2, as inputs. Together with the minimum volume v,,
these measurements define k = (5 — v,)*/0?, a dimensionless shape parameter (Aste and Di Mat-
teo, 2008). The maximum entropy distribution was therefore not fit to the data using, for example,
a least squares method, but inferred from the first two moments of the distribution.

Volvox

Along the surface of the Volvox organisms, there are gaps between some of the somatic cells due
to the Gonidia that lie beneath, but near the surface of the organism. These Gonidia effectively
occupy space on the surface, making it inaccessible to somatic cells. We excluded all Voronoi cells
that intersected these Gonidia gaps. We identified gaps in the soma cells by flagging Delaunay
triangles with exceptionally high aspect ratios. Any Voronoi polygons that intersect the flagged De-
launay triangles were then flagged and later excluded from the dataset. The polygons were gener-
ally spatially clustered, indicating that the Gonidial gaps were being correctly isolated. Roughly 90
polygons were excluded from each organism.

In Volvox organisms, each cell is surrounded by extracellular matrix, so cells do not contact
each other. Furthermore, each of the six organisms studied varied in diameter (standard devia-
tion in diameter was 28.2 um), yet all contained roughly the same number of somatic cells, leading
to systematic differences in average surface area per cell across the organisms. Quantitatively, the
coefficient of variation of the diameter of the groups was CV,, = 0.05, while the coefficient of vari-
ation in the number of cells in each group was roughly 10 times smaller, CV, = 0.006. To counter
the systematic size differences between organisms, we converted the Voronoi polygon areas into
solid angles by dividing by the total surface area of each organism, Q, = A,/S; we then grouped
all six organisms together into one histogram. We allowed the minimum solid angle, used in the
k-gamma equation, to be a fit parameter in a least squares minimization procedure. There was
one outlier cell with solid angle Q = 0.0048 steradians; the next two smallest cells had solid angles
0.0068 and 0.0069 steradians. We removed the outlier; the least squares minimization procedure
then fit a minimum solid angle Q. = 0.0070 steradians. We used this value for all further calcula-
tions. Just as in the 3D case, the mean and variance of the solid angle were measured to set the
expected maximum entropy distribution.

Cluster size distribution measurements

Cluster sizes were measured using a Beckman Coulter Multisizer 4e particle analyzer in the Cellu-
lar Analysis and Cytometry Core of the Shared User Management System located at the Georgia
Institute of Technology. Petite Ace2KO clusters were taken from steady state concentration in YPD
and then submerged in electrolytic fluid and passed through a 100 um aperture tube. The volume
measured on the multisizer corresponds to the volume of electrolyte displaced by the cluster. The
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number of cells in each cluster was then estimated by N = V' /v,, where V is the volume of organ-
ism measured by the Coulter Counter, and v, is the average cell volume from SEM measurements,
v, = 17.44 ym>.

Cumulative Distribution Function statistics

To quantify goodness-of-fit for predicted maximum entropy distributions, we compared the predi-
cated cumulative distribution function (CDF), F(x), to the empirical CDF, F;, using P-P plots. Exactly
predicted points will lie on the line y = x in these plots. We measured the root-mean-square resid-

ual from the line y = x,
rrus = \/{(F; = F(x))?) (12)

Measurements of ¥, in V. carteri

From the light sheet images of Volvox, we obtained the Cartesian coordinates of each somatic cell.
From Delaunay triangulation, we then obtained a list of every cell’s closest neighbors. Each cell and
its N N nearest neighbors did not generally lie in a plane due to local curvature of the Volvox surface.
We therefore calculated in-plane and out-of-plane components using principal component analysis.
The in-plane components were then used to write the positions of each nearest neighbor in polar
coordinates. The formula for calculating ¥, is

1 NN

— 6i6;

W = |<ﬁj§e Ml (13)
where 6, defines the polar angle coordinates around the cell of interest and (...) denotes averaging
over all cells. We calculated ¥, separately for each of six different organisms; we report ¥, =
0.03 £0.01.

Correlation of Voronoi Areas
In Volvox organisms, we calculated the spatial correlation of polygon areas. First, we extracted the
list of cell neighbors from the Delaunay triangulation of the organism surface. Nearest neighbors
were designated as living a network distance of 1 away from a cell of interest; next nearest neigh-
bors live a network distance of 2 away from the cell of interest, etc. The number of neighbors a
network distance of Q away is then J(Q), which is empirically determined. The network correlation
function is then

0q0y,
where Y, = J(Q)™' ¥,(Q; — (Q)) is the average deviation of the solid angle of a given polygon’s
neighbors from the mean. The standard deviation of the solid angle across the population is o,
and oy, is the standard deviation of ¥, across the population.

Simulation methods

Simulations of snowflake yeast groups

Simulations of snowflake yeast groups were adapted from previously published work by Jacobeen
et al. (2018a,b) that found simulations of snowflake yeast growth morphology accurately replicated
experimentally measured cellular packing fractions and average group sizes. In the present work,
cells were modeled as prolate ellipsoids of revolution with a semi-major axis a = 2.88 um and semi-
minor axis b = 2.29 um, characterized by the aspect ratio a = a/b = 1.26. Each generation, every cell
attempted to reproduce; however, if new cells closely overlapped with existing cells (i.e. their bud
scars are closer than 1.2 um), they were eliminated. Setting the number of generations (for example,
7) sets the maximum possible number of cells in the group at the end of the simulation (27 = 128),
and roughly sets the expected number of cells in the group (~ 100). In our simulations, cells were
80% likely to bud first from the distal pole (i.e. § = 0 + 10 degrees). Subsequent cells budded at a
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polar angle 6, and with an azimuthal angle randomly chosen from a uniform distribution ¢ € [0,2x];
in other words, after the first bud, cells generally appeared along a “budding ring”. There was a
20% chance that the first bud would appear along this budding ring instead of exactly at the pole.
After 3 bud scars, there was a 50% chance that new cells bud on the proximal side (x — 9) instead of
the distal side. The orientation of the new cell is determined by the surface normal to the mother
cell at the position of the bud site; the major axis of the new cell lies along the surface normal.

To compare exhaustively the distribution of Voronoi volumes between simulations and the k-
gamma distribution, we simulated 9, 100 clusters. In each simulation, clusters were allowed to grow
for 7 generations of cell division, corresponding to an average of 94.2 + 10.9 cells per cluster. The
budding ring was defined by the polar angle 6 = 45°, a close approximation to the experimentally
measured mean polar angle. These simulations did notinclude intercellular forces. The cell centers
were recorded and then Voronoi tessellations were made within each cluster’s convex hull.

Simulations of V. carteri

We simulated a Volvox-like group with N = 1000 cells confined to the surface of a sphere. Cells were
placed on the surface of a sphere of unit radius by randomly selecting polar and azimuthal coor-
dinates in a Poisson point process. The process proceeds as follows: each new cell was randomly
placed, and its distance from all other cells was calculated. If the new cell is within a threshold dis-
tance d from any existing cell, it was removed and a new cell was placed elsewhere on the spherical
surface. This process was iterated until all 1000 cells were placed. We chose a minimum separa-
tion distance of d = 0.088, which allowed reasonably rapid convergence. We then calculated the
Voronoi tessellation and the correlation function as described above.

Simulations of two additional growth morphologies

We next sought to model two additional classes of growth morphologies: sticky aggregates and
cells contained within a maternal membrane. In both simulations, cells were modeled as spheres
with unit radius.

Aggregative groups

First, we considered a multicellular model of sticky aggregates, mimicking group formation in, for
example, flocculating yeast and bacterial aggregates. In our simulations, groups were grown from
a single cell. New spherical daughters appeared at a polar angle 8 and azimuthal angle ¢. Within
each step, there was stochasticity in the budding location: cells would appear at 6 = 6, + 15°. The
azimuthal angle was always drawn from a uniform distribution on the interval [0°, 360°].

Cells interacted with both steric and attractive interactions in overdamped dynamics. Steric
interactions were modeled through a harmonic potential when two cells overlapped, with a cutoff
once cells were no longer overlapping. That is, for two cells i and j (radii R, and R;) separated by
the vectorr,; =r; —r,, the steric force acting on cell i from cell j is

_Jo [r;| > (R, +R)) (15)
Ks (|r _(Ri+Rj)) £, Iyl (R +R))

ij

ijl J

Attractive interactions (i.e., sticky, aggregative bonds) were also modeled through a harmonic po-
tential, but these interactions had both a lower bound and upper bound cutoff.

0 Ir;| > 2(R, + R))
G, =1-r,(r,l —a(R, + R)F; (R +R)<|r;| <2(R,+R)) (16)
0 Ir;| < (R, + R)),

where a sets the location of the attractive well minimum. We used a = 0.9, so that the attractive
interactions allow a small amount of cell overlap.
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Size polydispersity

In simulations in which we introduced size polydispersity, cells were allowed to reproduce into two
separate sizes, R, = 1 and R, = 2. The probability of budding cells of the same size as the mother
cell is denoted &. When ¢ = 1, the mother cell always produces cells of the same size, while when
£ =0.5, there is a 50% chance that the mother cell produces a cell of size R, or R,, independent of
the radius of the mother. Simulations were seeded with a pair of contacting cells, one each of the
two radii. The simulation then proceeded with subsequent rounds of cell division and mechanical
relaxation.

Groups confined within a membrane

In another common mode of group formation, cells divide repeatedly within a confining mem-
brane. This type of group formation has been observed in experimentally-evolved multicellular
algae derived from unicellular Chlamydomonas reinhardtii (Herron et al., 2019), and is reminiscent
of both baeocyte production in Stanieria bacteria (Angert, 2005), and neoproterozoic embryo fos-
sils (Xiao et al., 1998). In a simulation model, we adopted the essential components of this class of
growth: groups grow from a single spherical cell, cells divide stochastically, and cells interact steri-
cally with both a maternal cell wall and each other. Typically, palintomic cell division occurs rapidly,
meaning that the packing fraction remains the same within the maternal cell wall. We simulated
this by increasing the radius of the cell membrane after each cell division, but before allowing any
mechanical relaxations.

Steric forces between a cell and the maternal cell wall were modeled as being proportional
to the non-overlapping volume of the cell and the maternal cell wall. In other words, if a cell is
not contacting the membrane, there is no force acting on it. However, if the cell is contacting the
membrane, the force is proportional to how much of the cell volume lies outside the membrane.
Each cell was assigned volume v, = 4/3 = pi. The overlapping volume of the cell and the membrane
is labeled v,. The force the cell experiences from the membrane is then

F, = x, (v, — v)F,, (17)

where £, is a unit vector pointing to the center of the maternal membrane. Additionally, steric
interactions between cells were calculated as described above for aggregative groups.

Groups confined to a spherical surface

Some groups form by arranging cells around a central core of extracellular matrix (ECM). To simu-
late such groups, we modeled a sphere of ECM with cells arranged randomly along the surface. Cell
positions were chosen by selecting a position in spherical coordinates from uniform polar 6 € [0, z]
and uniform azimuthal ¢ € [0, 2x] distributions. The only rule implemented in cell placementis that
no two cells can be located closer than two cell radii from one another. If a new cell is chosen to
be located too close to any existing cells, it is eliminated and a new position is chosen. We iterated
this process until N cells were placed on the ECM surface.

First, we chose to place N = 50 cells on the surface. Therefore, the maximum cell radius allowing
all 50 cells to be placed is 0.283 units (where the total sphere has unit radius). We chose the cell
radius to be 0.1980 units, which allowed for reasonably rapid random placement of all 50 cells
(other choices of cell radii demonstrate qualitatively similar results). We then used a built-in Matlab
spherical Voronoi tessellation algorithm to calculate the solid angle subtended by each cell.

Simulated cellular apoptosis

In simulations with apoptosis events, cell death occurred after group generation (as described in
the above subsection on aggregative groups). Briefly, groups were generated by iterated genera-
tions of cell division starting from a single cell. After this process, one cell was chosen at random
to die. Then, all cells within a localization radius R were flagged. Of the flagged cells, 9 more were
chosen at random to die. Therefore, small localization radii correspond to highly localized death
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events, where 10 juxtaposed cells may die together. As the localization radius increases, there are
more flagged cells, and therefore more randomness in cell death. All other cells were unaffected
by the cell death process.

Tree-like groups with precisely defined cell placement/location

We also investigated groups with precisely defined growth patterns. The spherical cells were held
together with fixed, chitin-like bonds. The first cell was placed at the origin. It then proceeded to
bud 3 daughter cells, each of which also budded subsequent cells. The exact budding pattern is
described below.

Daughter cells were placed as follows. In spherical coordinates on the surface of the mother
cell, the first daughter cell was placed at (§ =0 +#, ¢ =0+ 7), the second at (0 =90 + 1, ¢ =90 + ),
and the third at (9 = 90 + 5, ¢ = 270 + i), where 7 is the strength of random noise added.

The first daughter cell's coordinate system was rotated 90°+5 around the z-axis from the mother
cell; in other words, for the first daughter cell, x— x/, y—» y/, and z— 2/, where X’ = R,(x/2 + n)x,
y =R, (z/2+n)y, and 2’ = R,(x/2+n)z, and R, is the rotation matrix around the z-axis. This daughter
cell then proceeded to bud daughters in the exact same pattern as its mother; however, because
its local coordinates were rotated, the budding positions were also rotated 90° with respect to the
mother cell's buds. This process was iterated for 5 generations of cell division. When n = 0, this
corresponds to only 3 cells overlapping 3 other cells. The 3 overlapping cells were then removed.

After each round of cell division, cells were allowed to relax mechanically in overdamped dy-
namics according to steric repulsive interactions and sticky, rigid bond interactions to their mother
cell. The steric interactions were the same as described above. Fixed bond interactions were mod-
eled as follows. When new cells appear, they incur a bud scar on the mother cell's surface and a
birth scar on the daughter cell's surface. The position of the bud scar, r;,, and the birth scar, ry;,
were recorded and tracked. The vector pointing from the bud scar (on the mother’s surface) to the
birth scar (on the daughter’s surface) was called r = ry; — r,,. Then, the force acting on a cell from
it's mother cell was

F . =x(r|-2)Ff (18)

mother

where k was the chitin bond strength. In addition, cells experienced forces from all of their daugh-
ter buds (given by the same relationship and the same chitin bond strength). The initially seeded
cell did not experience forces from a mother cell.

For n = 0 (i.e., no noise), the distribution of Voronoi volumes was visually discontinuous, since
cells could only access a finite number of local configurations. As the noise strength increased, the
maximum entropy predictions were gradually recovered.

Appendix
It may appear surprising that the distribution of cell volumes is not governed by the Central Limit
Theorem (CLT), i.e. the volumes are not distributed normally. After all, Voronoi polytope volumes
are generated from many randomly interacting pieces - should not these many different random
fluctuations sum to a CLT-like scenario? A simple comparison between the modified gamma dis-
tribution, a normal distribution, and a log-normal distribution shows in fact that both the normal
distribution and the log-normal distribution fail to capture essential characteristics of the volume
packing, while the k-gamma distribution does. For snowflake yeast, the reason for this disagree-
ment is that as each new cell is added to a cluster, it changes the entire volume distribution, since
the new cell occupies space which was previously unoccupied. It therefore changes the volumes
of all its nearest neighbors; if they flex to accommodate the new cell, then those neighbors change
the Voronoi volumes of their neighbors, and so on. Therefore, adding a new cell does not sample
the same distribution as before - the distribution itself changes, rendering the limit inapplicable.
In the case of the Volvox, the somatic cells are originally connected together only by cytoplas-
mic bridges, forming a small sphere. As the ECM is generated the sphere “inflates”. This process,
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in which many random fluctuations in the amount of ECM excreted by each cell over time can in-
tegrate together, seems appropriate for CLT-like arguments. However, it is worth noting that the
cells are generally locally oriented with a hexagonal symmetry. In order to maintain a non-wrinkled
surface, more ECM must be secreted in some local regions, such as the corners of the hexagons,
than in other places, such as at the hexagon edges. Since there is no local wrinkling observed, the
secretion of ECM from the somatic cells cannot be a completely random process orientationally. In
other words, the ECM excretion process is controlled, which implies that the CLT does not properly
capture the sampling space. Instead, the cells inevitably occupy positions on the surface of the
sphere that vary from organism to organism; the maximum entropy distribution of their Voronoi
areas is then the k-gamma distribution.
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Figure 1-Figure supplement 1. Random cell budding positions in multicellular yeast groups. (A),
Bud scars determine the position of new cell buds, and are distributed across the surface of yeast
cells. We locate bud scars in a spherical coordinate system with polar angle 8 and azimuthal angle
¢. (B) Distribution of measured polar angle positions of new cells. (C) Distribution of measured

azimuthal angle positions.
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Figure 2-Figure supplement 1. Three different distributions were tested for goodness-of-fit: the
maximum entropy prediction (black line), the normal distribution (red), and the log-normal distri-

bution (blue).
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