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Many studies have shown that the human endocrine system modulates brain function, reporting
associations between fluctuations in hormone concentrations and both brain activity and connec-
tivity. However, how hormonal fluctuations impact fast changes in brain network structure over
short timescales remains unknown. Here, we leverage “edge time series” analysis to investigate the
relationship between high-amplitude network states and quotidian variation in sex steroid and go-
nadotropic hormones in a single individual sampled over the course of two endocrine states, across
a natural menstrual cycle and under a hormonal regimen. We find that the frequency of high-
amplitude network states are associated with follicle-stimulating and luteinizing hormone, but not
the sex hormones estradiol and progesterone. Nevertheless, we show that scan-to-scan variation in
the co-fluctuation patterns expressed during network states are robustly linked with the concen-
tration of all four hormones, positing a network-level target of hormonal control. We conclude by
speculating on the role of hormones in shaping ongoing brain dynamics.

INTRODUCTION

The human brain is a complex network composed of
structurally connected neural elements that help shape
brain activity and give rise to widespread patterns of
functional coupling [1, 2]. The organization and topol-
ogy of these structural and functional networks can be
interrogated using tools from network science [3], reveal-
ing organizing principles including short processing paths
[4], hubs and rich clubs [5, 6], modular structure [7], and
cost-efficient spatial embedding [8].

Recent work has shown that whole-brain patterns of
functional coupling between brain regions vary over short
timescales [9–11]. To reconstruct changes in network
structure over time, most studies use sliding-window
analyses [12, 13]. In this approach, a functional network
is estimated using only those samples that fall within a
window of some fixed duration. The window is then ad-
vanced a certain number of frames, resulting in a time
series of functional networks. Although applied widely,
this approach has a number of drawbacks. Namely, it
forces the user to specify parameters for window length
and amount of overlap between successive windows. The
windowing procedure, itself, also makes it impossible to
precisely localize a network state to a specific moment in
time and resolve changes in network structure over short
timescales.

Recently, we proposed “edge time series” (ETS) as a
method for decomposing functional networks into time-
varying components [14–16]. This approach helps ad-
dress some of the limitations of sliding-window analyses,
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in that it is parameter-free and can resolve changes in
network structure at a framewise timescale. In previ-
ous studies, we used this method to show that fast net-
work dynamics are not smooth, but rather are bursty,
identifying long periods of quiescence punctuated by
brief, network-wide, high-amplitude “events” [14, 17, 18].
These events are of particular interest, as time-averaged
functional networks can be accurately reconstructed from
a very small number of events. We also found that the
patterns of co-fluctuation expressed during events con-
tain disproportionate amounts of information about an
individual and that events can improve brain-behavior
correlations. Despite their apparent utility, the appli-
cation of edge time series for linking brain dynamics to
cognitive, clinical, or physiological phenomena has been
limited [19, 20].

Edge time series are well-situated for investigating re-
lationships between brain connectivity and physiological
variables that also fluctuate over short timescales. A
good example is the human menstrual cycle, which is typ-
ified by variations in the sex steroid hormones estradiol
and progesterone and gonadotropins follicle-stimulating
hormone (FSH) and luteinizing hormone (LH). Briefly,
estradiol increases during the first phase of the cycle
known as the follicular phase, encouraging growth of the
uterine lining. Immediately prior to ovulation, FSH en-
courages an immature follicle to complete its develop-
ment into an egg for release from the ovaries. LH pro-
motes the release of the egg into the fallopian tubes,
followed by an increase in progesterone during the so-
called luteal phase, during which the uterine lining thick-
ens, creating a favorable environment for the egg to be
preserved. These hormones exhibit neuromodulatory ef-
fects, and their impact on brain activity has been well-
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documented. The impact of sex hormones on brain
activity has been well-documented [21, 22]. However,
most previous work has involved cross-sectional study
designs with incomplete sampling of participants’ cycles
and comprised of heterogeneous cohorts of individuals.

Recently, a series of “dense sampling” studies have
characterized quotidian variation in these hormones and
their relationships with functional connectivity and net-
work community structure [23–26]. The design of these
studies parallels that of other recent dense sampling stud-
ies [27–29], acquiring data from, in this case, a single
individual over the course of two complete menstrual cy-
cles, one in which the participant was naturally cycling
and another while on an oral hormonal contraceptive reg-
imen (referred to as Studies 1 and 2) [30]. Previous stud-
ies using these datasets have identified spatially-diffuse
increases in functional connectivity and modular flexibil-
ity coincident with peaks in estradiol; progesterone, by
contrast, was predominantly associated with reductions
in connectivity [24, 26]. However, the dynamic underpin-
nings of these associations have not been fully explored.

Here, we investigate these same data, following the
analysis pipeline from [18], in which we use edge time
series to detect events from functional magnetic reso-
nance imaging (fMRI) data and cluster whole-brain co-
fluctuation patterns into a low-dimensional set of states.
In agreement with previous studies, we find that events
can be sub-divided into two distinct clusters. In par-
ticular, we show that the frequency with which the first
cluster appears in a given scan is strongly correlated with
quotidian variation in both FSH and LH. Furthermore we
show that day-to-day variation in the edge- and system-
level configuration of the first cluster is broadly associ-
ated with both FSH and LH, as well as progesterone and
estradiol. Collectively, our results establish a new link
between high-amplitude, network-level events and the
human endocrine system, opening up new avenues for
exploring the dynamic interplay between brain-hormone
relationships.

RESULTS

Clustering high-amplitude co-fluctuations reveal
distinct patterns of connectivity

Recent methodological advances have made it possi-
ble to track rapid fluctuations in functional network ar-
chitecture, revealing the presence of “events” – short-
lived and high-amplitude patterns of network-wide fluc-
tuations [14–16]. The results of previous studies sug-
gested that events are low-dimensional, such that a small
repertoire of patterns are reiterated [17, 18]. Here, we
test whether this was also the case in an independently-
acquired dataset of a single individual.

To detect and assess whether there were repeated pat-
terns of high-amplitude events, we used simple statistical
procedure to identify sequences of temporally contiguous

frames whose root summed square (RSS) exceeded that
of a null model in which regions’ activity time courses
were randomized (circular shifts). We retained only those
sequences that were motion free, i.e. did not include a
high-motion frame and were at least two frames away
from any high-motion frame. For each motion-free se-
quence, we extracted the co-fluctuations expressed dur-
ing the frame with the highest RSS value as a represen-
tative peak. In total, we detected 899 motion-free events
(14.98± 5.27 events per scan session).

To detect putative “states,” “clusters,” or “communi-
ties” of events (note that here we use these terms inter-
changeably), we vectorized event co-fluctuation patterns
and, for all pairs of events, computed their spatial simi-
larity (Pearson correlation), resulting in a 899× 899 ma-
trix. We then used a variant of modularity maximization
to assign each co-fluctuation pattern to a single cluster
(see Materials and Methods for details). As in previ-
ous studies, we found evidence for two large consensus
communities that appeared in most scan sessions and
collectively accounted for ≈70.2% of all detected states
(Fig. 2a). These clusters were highly reproducible across
repeated runs of the modularity optimization algorithm
(Fig. 2b) and divided event patterns into cohesive clus-
ters (Fig. 2c). We note that these clusters were also ro-
bust to variation in processing pipelines, after splitting
the data by experiment (see Fig. S3), and after systemat-
ically excluding data from individual scans in calculating
the correlation (Fig. S5).

Interestingly, the spatial patterns of these clusters
closely recapitulate those reported in previous studies
[14, 18]. Community 1, for instance, was characterized
by opposed fluctuations between regions in the default
mode network with those in dorsal and salience/ventral
attention networks (Fig. 2d). To better understand
whether these co-fluctuations were underpinned by a spe-
cific mode or pattern of activity, we performed a singular
value decomposition of the mean co-fluctuation matrix,
revealing, as expected, a node-level pattern character-
ized by strong fluctuations in default mode regions and
opposed fluctuations in attentional and, to some extent,
sensorimotor systems (Fig. 2e,f). Similarly, the spatial
pattern of community 2 was characterized by opposed co-
fluctuations of control and dorsal attention regions with
the default mode network (Fig. 2g-i).

The remaining communities collectively accounted for
< 30% of all events, with the next most frequent com-
munity accounting for 9.8% of all events (but appearing
in ≈ 71.7% of scan sessions). For this reason, we focus
on the first two communities for all subsequent analyses.
In the supplementary material we describe the remaining
communities in greater detail (Fig. S1).
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FIG. 1. Analysis pipeline. (a) After preprocessing, we obtained parcellated regional time series from 60 scans (spanning
two experiments). (b) For a given scan, we transformed node time series into edge time series following [14]. (c) Next, we
detected high-amplitude events in each scan and for each event extracted its representative pattern (the frame with the greatest
amplitude). In general, we obtained a different number of events per scan. (d) We aggregated event patterns from all scans
and collectively clustered them using modularity maximization. This procedure resulted in multiple community centroids (we
analyze the two largest) and a count of how many times a given community appeared on a given scan session. (e) In parallel,
we analyzed hormone data that were collected concurrent with each scan session. Our principal aim was to link features of
communities (brain states) with hormone data. (f ) In addition, we reconstructed estimates of communities for each of the 60
scan sessions and, for each edge, computed the correlation of its co-fluctuation across sessions with hormone concentrations.

State frequency is associated with LH and FSH
concentrations

Cluster analysis of co-fluctuation time series revealed
the presence of repeating patterns or states. How-
ever, the biological relevance of these states remains un-
clear. In this section, we show that the frequency with
which these states appear across scan sessions is robustly
related to endogenous variation in the gonadotropins,
luteinizing and follicle-stimulating hormone, but not sta-
tistically associated with sex hormones estradiol and pro-
gesterone.

To link high-amplitude co-fluctuations with quotidian
variation in hormone concentration (see Fig. S2), we cal-
culated for each scan session the number of times that
each community (1 and 2) appeared. We found that,
on average, communities 1 and 2 appeared 6.15 ± 3.17
and 4.37 ± 2.57 times (≈ 41% and ≈ 29% of all events;
maximum values of 18 and 11), respectively. Next,
we computed the Spearman rank correlation of these
frequencies with hormone concentrations. Note that
the rank correlation reduces statistical biases originating
from spikes in both luteinizing and follicle-stimulating
hormone around ovulation. For all reported correlations
we corrected for multiple comparisons by fixing the false
discovery rate at q = 0.05, resulting in an adjusted criti-
cal value of padj = 0.0067. We found statistically signif-
icant correlations between the frequency of community

1 with both gonadotropic hormones (ρ1,FSH = 0.47 and
ρ1,LH = 0.42; p = 0.0002 and p = 0.0007). Interest-
ingly, the correlations between community 1 and proges-
terone (ρ1,P = −0.33; p = 0.007 and community 2 with
luteinizing hormone (ρ2,LH = 0.26; p = 0.02) were both
statistically significant at uncorrected levels, but failed to
pass after multiple comparison corrections (see Fig. S6).
Note that these results hold after splitting the 60 scans
by experiment (Fig. S4) and with an alternative process-
ing pipeline that does not include global signal regression
(Fig. S7).

Collectively, these results suggest that endogenous and
exogenously-induced changes in gonadotropic hormone
concentrations are related to the expression of distinct
brain network states. These findings posit a hormonal
basis for variation in high-amplitude network-level co-
fluctuations.

Quotidian variation in edge-level co-fluctuations and
hormone concentrations are correlated

In the previous section, we demonstrated that day-to-
day variation in gonadotropin concentration was linked
to the frequency with which particular high-amplitude
“states” are expressed. In that analysis, any co-
fluctuation pattern assigned a given community label was
treated as a recurrence of the same state. In reality, how-
ever, the whole-brain patterns classified by these state
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FIG. 2. Modularity maximization and network states. We used an event detection algorithm to identify instances of
“high-amplitude” co-fluctuations, extracting 899 brain-wide patterns. We calculated their spatial similarity and clustered them
using modularity maximization. (a) Similarity matrix, ordered by communities (b) Community co-assignment matrix. (c)
Vectorized co-fluctuation patterns ordered by communities. (d) Mean co-fluctuation matrix for cluster 1, ordered by canonical
brain systems. (e) First principal component of the co-fluctuation matrix. (f ) Elements of first principal component grouped
by brain system. Panels g-i are analogous to d-f but for cluster 2.

motifs exhibited variability between days and even within
instances during the same scan. Here, we demonstrate
that within-state variation in edge co-fluctuation magni-
tude is linked not only with gonadotropin concentration,
but also with the concentrations of sex hormones estra-
diol and progesterone.

To link edge-level co-fluctuations with hormones, we
needed estimates of communities 1 and 2 for each scan
session. To do this, we identified all co-fluctuation pat-
terns assigned to a given community on each scan session
and averaged those. Note that in the case of community

1, there was one scan in which it never appeared; in the
case of community 2, there were two. We omitted these
scans from all analyses carried out in this section. For
each of the remaining scans, we created a representa-
tive version of community 1 and 2 centroids by averaging
all co-fluctuation assigned to that community. We also
kept track of the number of samples used to compute the
representative pattern (i.e. the number of times that a
given state was present in each scan) and after aggre-
gating across all scans, regressed out this number from
each node pair, retaining the residuals and calculating
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FIG. 3. Correlations between state frequency and quotidian variation in gonadotropin concentration. (a)
Scatterplot showing concentration of follicle-stimulating hormone across scan sessions versus the frequency with which cluster
1 appeared in a given scan. (b) Scatterplot showing concentration of luteinizing hormone across scan sessions versus the
frequency with which cluster 1 appeared in a given scan.

their Spearman rank correlation with the concentrations
of progesterone, estradiol, luteinizing hormone, and fol-
licle stimulating hormone.

Mass-univariate edge-level analyses can lack statistical
power to resolve certain effects. Here, for instance, we
performed 79,800 tests (the number of edges) with the
aim of identifying those that pass a criterion for statisti-
cal significance (for visualization only, we show the edges
with the strongest positive and negative correlations em-
bedded in anatomical space in Fig. 4a-d). An alternative
strategy is to perform statistical testing at the level of
brain systems or communities. Because nodes are ag-
gregated by community, this approach necessarily limits
one’s ability to resolve focal, regional effects. However,
because the number of comparisons is reduced by an or-
der of magnitude or more, statistical power increases.

Here, we aggregated edge-level correlations by brain
system [31], transforming a correlation matrix of dimen-
sions ρregion ∈ [400 × 400] into a ρsystem ∈ [16 × 16]
matrix. The elements of ρsystem represented the mean
correlation coefficients between all pairs of regions as-
signed to any two systems. We repeated this procedure
for all four hormones (Fig. 4e-f), yielding four system-
level correlation maps. To identify significant correla-
tions, we repeated the aggregation procedure after ran-
domly permuting system labels using a “spin” test to
approximately preserve spatial dependencies between re-
gions (1000 permutations) [32].

In general, we found that the regional correlation
patterns for sex hormones were similar to one another
(rP,E = 0.27; p < 0.05). The same was true for go-
nadotropins (rFSH,LH = 0.38; p < 0.05) (Fig. 5a). Due
to their similarity and for ease of description, we com-
bined system-level correlation patterns for progesterone
with estradiol and FSH with LH, focusing on shared ef-
fects (these combined patterns are anti-correlated with
one another; p < 0.05; Fig. 5b). To summarize shared ef-
fects, we classified every pair of systems based on the con-
cordance of correlation patterns. That is, whether both,

one, or neither hormones exhibited effects in the same
direction (false discovery rate fixed at q = 0.05 resulting
in adjusted critical value of padj = 0.0036; Fig. 5c,d).

In both cases, we found evidence of broad, brain-wide
constellations formed by significant system-level corre-
lations. In the case of sex steroid hormones, correla-
tions involving the control and default mode networks
tended to be positive, while correlations involving at-
tention, somatomotor, and visual network tended to be
negative (Fig. 5c). On the other hand, in the case of
gonadotropins, positive and negative correlations were
more uniformly distributed across brain systems, with
salience/ventral attention, somatomotor, and visual net-
works ranking among the systems with the greatest over-
all number of significant correlations (Fig. 5d).

Collectively, these findings suggest that the co-
fluctuation between specific pairs of brain regions are as-
sociated with concentrations of sex steroid hormones as
well as gonadotropins. These relationships are expressed
through distributed, brain-wide constellations of edges
linking together many brain systems.

DISCUSSION

Here, we built upon previous analyses of a dense-
sampling dataset in which a single participant underwent
daily MRI scans and serological sampling over the course
of two full menstrual cycles [23–26]. Leveraging “edge
time series” [14, 15], we detected high-amplitude events
in each scan session, clustering them into two large com-
munities. The first community reflects opposed activa-
tion of default mode and control regions with attentional
and sensorimotor regions. We found that the frequency
with which it appears across scan sessions was strongly
coupled to quotidian fluctuations in the gonadotropic
hormones, follicle-stimulating hormone and luteinizing
hormone. More generally, we find that variability in the
precise co-fluctuation of events assigned to the first com-
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FIG. 4. Edge- and system-level correlations with hormone concentration. We calculated the correlation of hormone
concentrations with edge-level co-fluctuation magnitudes for cluster 1. Panels a-d depict strongest correlations in anatomical
space. Node size is proportional to the mean correlation magnitude of a node’s edges. Node color was determined by brain
system. Edge color denotes positive (red) and blue (negative) correlations. Panels e-h depict full matrices of correlations (left)
alongside mean system-level correlations (right).

munity was linked to all four hormones at the level of
connections. Our work sets the stage for future studies
to investigate relationships between fast fluctuations in
network organization and hormones.

High-amplitude co-fluctuations are linked to
endocrine system

Previous applications of edge time series analysis to
functional imaging data have reported brief, intermit-
tent, and high-amplitude “events” [14, 16–18, 33]. These
studies have shown that the co-fluctuation patterns ex-
pressed during events contribute disproportionately to
the time-averaged pattern of FC, are subject-specific, can
be clustered into a small number of putative “states”, and
strengthen brain-behavior associations. For instance,
in [14], the authors show that the overall magnitude

of brain-behavior correlations increases when the brain
measures are derived for high-amplitude co-fluctuations
compared to low-amplitude. However, the physiological
underpinnings of high-amplitude co-fluctuations remain
unclear.

Here, we present evidence that both the frequency
with which high-amplitude states occur as well as their
topology are strongly correlated with day-to-day fluctua-
tions in hormone concentration. These results suggest
that the endocrine system, and specifically reproduc-
tive hormones, are a key factor in modulating “events”.
While this observation is in line with previous studies
that have reported links between reproductive hormones
and both brain activity [21, 22] and functional connectiv-
ity [23, 26, 34–40], our results extend this link to ultra-
fast network dynamics. Changes in network structure at
this timescale have been relatively unexplored in previ-
ous studies due to their cross-sectional study design and
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FIG. 5. Edge- and system-level correlations with hormone concentration. (a) Similarity of correlation patterns
between different hormones. (b) Two-dimensional histogram showing similarity of correlation patterns from combined sex
hormones (progesterone + estradiol) and gonadotropins (FSH + LH). (c) Concordance of significant correlations between
progesterone and estradiol system-level correlations. Large and small circles indicate high and low levels of concordance. Red
and blue colors indicate positive and negative correlations, respectively. The barplot to the right of the matrix is a count of
the total number of high concordance interactions in which a given system interacts. Panel d depicts analogous information
for combined gonadotropins (FSH + LH).

low temporal resolution of sliding-window methods for
estimating time-varying functional connectivity [41] (al-
though, see [24]).

While the design of our study is not well-suited to
support claims about causality, we speculate that by
modulating receptor density during the menstrual cy-
cle, hormones may shift the sensitivity of neural circuits,
yielding brain states that are increasingly excitable and
more likely to produce high-amplitude events [42–44]. In-
deed, recent studies have demonstrated that the sex hor-
mones estrogen and progesterone differentially influence
the density of steroid hormone receptors across the brain
throughout the menstrual cycle [45]. Moreover, this view
aligns with the nonlinear and nonstationary contribution
of luteinizing hormone to hormone dynamics across the
menstrual cycle; large surges in LH near ovulation dis-
rupt the phasic coupling of sex steroid and gonadotropic
hormones [41], suggesting that structural changes caused
by acute changes in hormone concentration, such as re-
ceptor density, influence network connectivity in addition
to the direct effects of hormones on cells. Sex hormones
are intrinsically involved in micro-level structural changes
as well, given that estrogen- and progesterone- mediated
changes in subcortical receptor density induce the release
of gonadotropin-releasing hormone to induce luteinizing
hormone spike [46].

Another possible explanation for why fluctuations in
reproductive hormones are associated brain network dy-
namics concerns their role as neurotransmitters. Pre-
vious studies have established links between neuro-
transmitters and connectivity, demonstrating that re-
gional variation in the concentration of neurotransmitter-
related neurons modulate large-scale brain activity, shap-
ing patterns of connectivity and the spontaneous emer-
gence of resting-state networks [47]. For example,
dopamine and serotonin oppositionally influence an-

ticorrelations between large-scale networks, such that
dopamine is associated with increases and decreases in
functional connectivity of the somatomotor and default
mode, respectively, while serotonin is associated with
the opposite [48]. Other studies have found that neu-
rotransmitter effects on functional connectivity are con-
nected to regional differences in excitatory-inhibitory re-
ceptor and hormone ratios [49]. Reproductive hormones,
although not traditionally viewed as neurotransmitters,
can nonetheless pass through the blood-brain barrier and
are known to impact brain function, including memory
and anxiety-level behavior [50]. These observations, com-
bined with the fact that edge time series are mathemati-
cally exact decompositions of functional connectivity into
time-varying contributions, opens the possibility for re-
productive hormone to impact patterns of connectivity
across time.

We note, however, that while our findings suggest a
hormonal contribution to high-amplitude events, other
factors likely also play important roles, including the
underlying anatomical connectivity, whose network or-
ganization shapes the spatial topography of event co-
fluctuations [17]. Future work should be directed to tease
apart the contributions of structural connectivity [51] as
well as other factors, including those molecular, vascular,
[52] and hemodynamic [53].

Relationship with results from previous analyses of
same data

Here, we make several observations that relate to re-
sults from previous studies. First, we found that the
state most strongly associated with day-to-day changes
in hormone concentrations was typified by opposed co-
fluctuations of regions in the default mode and con-
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trol networks with regions in sensorimotor and atten-
tional networks. The coupling of default mode co-
fluctuations with hormone variation is consistent with re-
sults from previous analyses of these same data showing
that estradiol fluctuations predict dynamic shifts in de-
fault mode network integration in a time-lagged fashion,
and that its community structure reconfigures concur-
rently with spikes in estradiol, luteinizing hormone, and
follicle-stimulating hormone across the ovulation window
[24, 26].

Second, we find that patterns of edge- and system-level
correlations are dissimilar between sex and gonadotropic
hormones, but similar within category. While these re-
sults suggest differential contributions of sex and go-
nadotropic hormones to high-amplitude co-fluctuation
patterns, they also seemingly contradict results from
previous studies [26], which reported opposed effects of
estradiol and progesterone.

We note, however, there are some important differences
between our study and those previous studies. In partic-
ular, our study focuses on rapid, i.e. framewise, changes
in co-fluctuation patterns. Even in sliding-window anal-
yses, access to this timescale is limited and the networks
resulting from each technique exhibit dissimilar topolog-
ical profiles [33]. In addition, our study focused on go-
nadotropic and ovarian hormones, and focused not on
distinct phases of the menstrual cycle or on peaks in
serum levels, but rather on day-to-day fluctuations in
hormone levels.

Future directions

The results of our study present several opportunities
for future investigations. First, while our study presents
a link between high-amplitude co-fluctuations and female
reproductive hormones, its implications for cognitive and
clinical processes have not been fully explored. For in-
stance, the original studies also collected behavioral data
on the participant’s level of stress, sleep, and affect across
the menstrual cycle. Future studies should investigate
the role of brain-hormone coupling in mediating behav-
ioral effects.

To our knowledge, this study is the first to our
knowledge to identify a significant relationship between
luteinizing hormone and daily changes in high-amplitude
co-fluctuations in brain connectivity across the menstrual
cycle. Many studies have demonstrated luteinizing hor-
mone’s negative association with cognition, and increased
luteinizing hormone in females after menopause is associ-
ated with poorer cognition and a higher risk of dementia
[54, 55]. Future studies should examine how luteinizing
hormone’s modulatory effects on cognition relate to daily
changes in brain network organization and connectivity
in both pre-menopausal and post-menopausal females.

While the dense-sampling framework allows for de-
tailed analyses of single individuals or small cohorts of in-
dividuals [27–29], its design makes generalizing to larger

and more variable populations challenging. Future stud-
ies should analyze relationships between network orga-
nization, hormone concentrations, and cognition within
subjects across many days of their cycle and between
subjects in different endocrine states. Variability in sex
hormone production occurs across the female lifespan,
starting at the onset of puberty and continuing across
the reproductive cycle, pregnancy, and the menopausal
transition. Targeting these major neuroendocrine transi-
tion states could yield greater insight into sex steroid
hormones’ influence on the brain’s network architec-
ture, mood, and cognition. Throughout the life course,
changes in women’s reproductive status (e.g. puberty,
use of hormonal contraceptives, pregnancy/postpartum,
and perimenopause) have been associated with increased
risk for mood disturbance including major depressive
disorder. Yet, the neurobiological pathways by which
endocrine changes give rise to depressive symptoms in
some women, but not others, is unclear. A more detailed
understanding of how sex hormone fluctuations produce
rapid changes in brain network structure could provide a
framework for understanding risk and resilience to mood
disorders.

Limitations

Although these two studies provide ample information
about daily changes in brain activity and hormone levels,
the single-subject nature of the study limits the generaliz-
ability of our results. It is possible that the relationships
between community organization and hormone concen-
trations observed in this study are a result of individual
processes in the subject that are not present in most of
the population. Further deep-phenotyping studies with
larger cohorts should be conducted to determine the gen-
eralizability of the results across the general population.

A second limitation concerns the detection and char-
acterization of edge time series and high-amplitude co-
fluctuations. Recent studies have suggested that some of
their properties can be anticipated from the static, i.e.
time-invariant, functional connectivity matrix alone [56],
downplaying their interpretation as dynamic events. De-
termining the features of higher-order network constructs
like edge time series and edge connectivity remains an ac-
tive area of research [18, 19, 33]. Additional studies are
necessary to address this and related open questions.

A final limitation concerns our interpretation of en-
docrine effects on recorded brain activity and connec-
tivity. Here, we find that hormone concentrations are
associated with high-amplitude co-fluctuations that have
been shown to shape whole-brain patterns of functional
connectivity [14, 16–18, 33]. However, hormones also im-
pact brain vasculature [57]. Because the fMRI BOLD
signal is an indirect measure of brain activity that de-
pends critically on neurovascular coupling, an alterna-
tive explanation is that true effect of gonadotropins is on
brain vasculature, which modulates the hemodynamic re-
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sponse. Future, and more targeted, studies should aim
to disentangle these effects.

Conclusions

In conclusion, our study posits a link between high-
amplitude, network-level co-fluctuations and the human
endocrine system. Specifically, we report an association
between the frequency of dynamic network states and
variation in luteinizing and follicle-stimulating hormones.
Our work addresses questions concerning the factors con-
tributing to high-amplitude co-fluctuations while opening
up new opportunities for future studies

MATERIALS AND METHODS

Datasets

Neuroimaging and endocrine data comes from a single
subject (author L.P.) scanned over a course of 30 days,
on two separate occasions (Study 1 and Study 2). The
subject had no history of neuropsychiatric diagnosis, en-
docrine disorders, or prior head trauma and no history of
smoking. She had a history of regular menstrual cycles
(no missed periods, cycle occurring every 26–28 days).
In the 12 months prior to the first 30-day data collection
period, the subject had not taken hormone-based med-
ication. In the second study, the participant was on a
hormone regimen (0.02mg ethinyl-estradiol, 0.1mg lev-
onorgestrel, Aubra, Afaxys Pharmaceuticals), which she
began 10 months prior to the start of data collection. The
pharmacological regimen used in Study 2 chronically and
selectively suppressed progesterone while leaving estra-
diol dynamics largely indistinguishable from Study 1.
The participant gave written informed consent and the
study was approved by the University of California, Santa
Barbara Human Subjects Committee.

Neuroimaging data was collected on a Siemens 3T
Prisma scanner with a 64-channel phased-array head coil.
Scans were collected around the same time each day
(11:00 am local time). For each scanning session, a high-
resolution T1-weighted anatomical sequence (MPRAGE)
was acquired (TR = 2500 ms, TE = 2.31 ms, T1 = 934
ms, flip angle = 7°). Following this, a 10-minute rest-
ing state sequence was acquired, using a T2*-weighted
multiband echo-planar (EPI) sequence was acquired (72
oblique slices, TR = 720 ms, TE = 37 ms, voxel size 2
mm3, flip angle = 52°, multiband factor = 8). To miti-
gate against motion, a custom 3D-printed foam head case
was employed for days 8-30 of the first 30-day period, and
for days 1-30 of the second 30-day period.

Endocrine procedures

A licensed phlebotomist inserted a saline-lock intra-
venous line into the dominant or non-dominant hand
or forearm daily to evaluate hypothalamic-pituitary-
gonadal axis hormones, including serum levels of go-
nadal hormones (17β-estradiol, progesterone, and testos-
terone) and the pituitary gonadotropins luteinizing hor-
mone (LH) and follicle stimulating hormone (FSH). One
10 cc mL blood sample was collected in vacutainer SST
(BD Diagnostic Systems) each session. The sample clot-
ted at room temperature for 45 minutes until centrifu-
gation (2000×g for 10 minutes) and were then aliquoted
into three 1 mL microtubes. Serum samples were stored
at -20 ◦ until assayed. Serum concentrations were de-
termined via liquid chromatography mass-spectrometry
(for all steroid hormones) and immunoassay (for all go-
nadotropins) at the Brigham and Women’s Hospital Re-
search Assay Core. Assay sensitivities, dynamic range,
and intra-assay coefficients of variation (respectively)
were as follows: estradiol 1 pg/mL, 1-500 pg/mL, < 5%
relative standard deviation (RSD), 0.05 ng/mL, 0.05-
10 ng/mL, 9.33% RSD; testosterone, 1.0 ng/dL 1-2000
ng/dL, < 4% RSD. FSH and LH levels were determined
via chemiluminescent assay (Beckman Coulter). The as-
say sensitivity, dynamic range, and intra-assay coefficient
of variation were as follows: FSH, 0.2 mlU/mL, 0.2-200
mIU/mL, 3.1-4.3%; LH, 0.2 mIU/mL, 0.2-250 mIU/mL,
4.3-6.4%. Importantly, we note that LC-MS assessments
of exogenous hormone concentrations (attributable to
the hormone regime itself) showed that serum concen-
trations of ethinyl estradiol were very low (M =0.01
ng/mL; range 0.001-0.016 ng/mL) and below 1.5 nl?mL
for levonorgestrel (M = 0.91 ng/mL; range = 0.03-1.45
ng/mL). This ensures that the brain hormone associa-
tions reported in Study 2 are still do to endogenous estra-
diol action.

Image preprocessing

Preprocessing was performed using fMRIPrep (20.2.0)
[58], which is based on Nipype 1.5.1 [59]. The follow-
ing description of fMRIPrep’s preprocessing is based on
boilerplate distributed with the software covered by a
‘no rights reserved’ (CCO) license. Internal operations of
fMRIPrep use Nilearn 0.6.2 [60], mostly within the func-
tional processing workflow. The preprocessing pipelines
employ functions from ANTs (2.3.3), FreeSurfer (6.0.1),
FSL (5.0.9), and AFNI (20160207).

T1-weighted (T1w) images were corrected for inten-
sity non-uniformity (INU) with N4BiasFieldCorrection
[61], distributed with ANTs [62], and used as T1w-
reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow, using NKI
as target template. Brain tissue segmentation of cere-
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brospinal fluid (CSF), white-matter (WM) and gray-
matter (GM) was performed on the brain-extracted T1w
using fast [63]. Brain surfaces were reconstructed us-
ing recon-all [64], and the brain mask estimated previ-
ously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray-matter of Mindboggle
[65]. Volume-based spatial normalization to one standard
space (MNI152NLin2009cAsym) was performed through
nonlinear registration with antsRegistration, using
brain-extracted versions of both T1w reference and the
T1w template. The following template was selected for
spatial normalization: ICBM 152 Nonlinear Asymmetri-
cal template version 2009c [66]. For each of the BOLD
runs found per subject (across all tasks and sessions), the
following preprocessing was performed. First, a reference
volume and its skull-stripped version were generated us-
ing a custom methodology of fMRIPrep. Susceptibility
distortion correction (SDC) was omitted. The BOLD ref-
erence was then co-registered to the T1w reference using
bbregister (FreeSurfer) which implements boundary-
based registration [67]. Co-registration was configured
with six degrees of freedom. Head-motion parameters
with respect to the BOLD reference (transformation ma-
trices, and six corresponding rotation and translation pa-
rameters) are estimated before any spatiotemporal fil-
tering using mcflirt [68]. BOLD runs were slice-time
corrected using 3dTshift from AFNI [69]. The BOLD
time-series (including slice-timing correction when ap-
plied) were resampled onto their original, native space
by applying the transforms to correct for head-motion.
These resampled BOLD time-series will be referred to
as preprocessed BOLD in original space, or just prepro-
cessed BOLD. The BOLD time-series were resampled
into standard space, generating a preprocessed BOLD run
in MNI152NLin2009cAsym space. First, a reference vol-
ume and its skull-stripped version were generated using
a custom methodology of fMRIPrep. Several confound-
ing time-series were calculated based on the preprocessed
BOLD: framewise displacement (FD), DVARS and three
region-wise global signals. FD was computed using two
formulations following Power (absolute sum of relative
motions, [70] and Jenkinson (relative root mean square
displacement between affines, [68]). FD and DVARS are
calculated for each functional run, both using their im-
plementations in Nipype following the definitions by[70].
The three global signals are extracted within the CSF,
the WM, and the whole-brain masks. Additionally, a
set of physiological regressors were extracted to allow for
component-based noise correction [71]. Principal compo-
nents are estimated after high-pass filtering the prepro-
cessed BOLD time-series (using a discrete cosine filter
with 128s cut-off) for the two CompCor variants: tem-
poral (tCompCor) and anatomical (aCompCor). tCom-
pCor components are then calculated from the top 2%
variable voxels within the brain mask. For aComp-
Cor, three probabilistic masks (CSF, WM and combined
CSF+WM) are generated in anatomical space. The im-

plementation differs from that of Behzadi et al. in that
instead of eroding the masks by 2 pixels on BOLD space,
the aCompCor masks are subtracted a mask of pixels
that likely contain a volume fraction of GM. This mask
is obtained by dilating a GM mask extracted from the
FreeSurfer’s aseg segmentation, and it ensures compo-
nents are not extracted from voxels containing a minimal
fraction of GM. Finally, these masks are resampled into
BOLD space and binarized by thresholding at 0.99 (as in
the original implementation). Components are also cal-
culated separately within the WM and CSF masks. For
each CompCor decomposition, the k components with
the largest singular values are retained, such that the re-
tained components’ time series are sufficient to explain 50
percent of variance across the nuisance mask (CSF, WM,
combined, or temporal). The remaining components are
dropped from consideration. The head-motion estimates
calculated in the correction step were also placed within
the corresponding confounds file. The confound time
series derived from head motion estimates and global
signals were expanded with the inclusion of temporal
derivatives and quadratic terms for each [72]. Frames
that exceeded a threshold of 0.5 mm FD or 1.5 stan-
dardised DVARS were annotated as motion outliers. All
resamplings can be performed with a single interpola-
tion step by composing all the pertinent transformations
(i.e. head-motion transform matrices, susceptibility dis-
tortion correction when available, and co-registrations to
anatomical and output spaces). Gridded (volumetric) re-
samplings were performed using antsApplyTransforms,
configured with Lanczos interpolation to minimize the
smoothing effects of other kernels [73]. Non-gridded (sur-
face) resamplings were performed using mri vol2surf
(FreeSurfer).

Parcellation

The Schaefer parcellation [31] was used to delineate
400 regions on the cortical surface. To transfer the par-
cellation from fsaverage to subject space, FreeSurfer’s
mris ca label function was used in conjunction with a
pre-trained Gaussian classifier surface atlas [74] to reg-
ister cortical surfaces based on individual curvature and
sulcal patterns. The result is a volumetric parcellation
rendered in subject anatomical space that follows the cor-
tical ribbon estimated via FreeSurfer’s recon-all pro-
cess.

Functional Connectivity

Each preprocessed BOLD image was linearly de-
trended, band-pass filtered (0.008-0.08 Hz), confound re-
gressed and standardized using Nilearn’s signal.clean
function, which removes confounds orthogonally to the
temporal filters. The confound regression strategy in-
cluded six motion estimates, mean signal from a white
matter, cerebrospinal fluid, and whole brain mask,
derivatives of these previous nine regressors, and squares
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of these 18 terms [72]. Spike regressors were not applied.
The 36 parameter strategy (with and without spike re-
gression) has been show to be a relatively effective option
to reduce motion-related artifacts [75]. An alternative
preprocessesing strategy was also employed to evaluate
the stability of the findings. This strategy included six
motion estimates, derivatives of these previous six regres-
sors, and squares of these 12 terms, in addition to five
anatomical CompCor components [71]. Following these
preprocessing operations, the mean signal was taken at
each node in volumetric anatomical space.

Edge time series

Let zi = [zi(1), . . . zi(T )] be the z-scored time series
for region i. Most network neuroscience analyses define
the functional connectivity between pairs of regions {i, j}
as the Pearson correlation of their activity, i.e. rij =

1
T−1

∑
t zi(t) · zj(t).

Recently, we proposed a “temporal unwrapping” of
functional connection weights by omitting the summa-
tion. That is, we calculate the instantaneous magnitude
and sign of co-fluctuation between pairs of brain regions
as eij(t) = zi(t) · zj(t) [14, 15, 18]. This approach has
the benefit of resolving changes in pairwise interactions
at a temporal resolution of single frames. It also is deeply
related to the Pearson correlation and functional connec-
tivity – the temporal average of a region pairs’ edge time
series is exactly equal to its connection weight. In this
way, edge time series can be viewed as precise temporal
decompositions of functional connectivity. In this study,
we calculated edge time series for every pair of cortical
and subcortical regions for every scan session.

Event detection

The brainwide level of network activity at any instant
can be summarized as the root sum of square over all
edges co-fluctuations:

RSS(t) =
∑
i,j 6=i

eij(t). (1)

In previous studies we demonstrated that RSS exhibits
“bursty” behavior, such that most time points express
low-amplitude co-fluctuations while a relatively small
number exhibit large RSS values [18]. These “events”
are thought to reflect underlying anatomical connectiv-
ity [17], are highly individualized [18], and contribute
disproportionately to the time-averaged pattern of func-
tional connectivity [14, 16].

Recently, we proposed a simple statistical test for de-
tecting events. This test works by comparing observed
RSS values with those generated under a temporal null
model in which regional time series are circularly-shifted
by a random offset in either direction. This procedure
generates a null distribution of RSS values against which
an empirical value can be compared statistically. For

each frame we estimated a non-parametric p-value by
counting the fraction of null RSS values that exceeded
the observed value. We compared p-values against an ad-
justed critical value while fixing the false discovery rate
at q = 0.05 [76]. Note that this null model necessarily de-
stroys the correlation structure (functional connectivity)
and can be viewed as a principled method for selecting a
threshold for events.

Once a statistical threshold for events is determined,
we identify temporal contiguous sequences of supra-
threshold frames, which we refer to as event segments.
We discard any such segments that include a high-motion
frame or are within two frames of a high-motion frame
and, from those segments, extract as a representative co-
fluctuation pattern the frame corresponding to the peak
RSS. We repeat this procedure for all scans, retaining
the peak co-fluctuation patterns.

Cluster definition

In previous studies, we demonstrated that high-
amplitude co-fluctuations patterns can be clustered into a
series of states [18]. To do this, we compute the similarity
(correlation) between all pairs co-fluctuation patterns ex-
tracted during event segments. This results in a pattern
× pattern matrix, which we submitted to a generalized
version of the Louvain algorithm [77, 78] for modular-
ity maximization algorithm [79]. Modularity maximiza-
tion is a computational heuristic for detecting commu-
nity structure in networked data. It defines communities
(clusters) as groups elements whose internal density of
connections maximally exceed what would be expected.
In this context, we defined the expected weight of con-
nections to be equal to the mean similarity between all
pairs of patterns.

Modularity maximization with the Louvain algorithm
is non-deterministic and, depending upon initial condi-
tions, can yield dissimilar results. Accordingly, we ran
the algorithm 1000 times with different random seeds.
We resolved variability across these different seeds using
a consensus clustering algorithm in which we iteratively
clustered the module co-assignment matrix until conver-
gence (see any of [18, 80, 81] for details of this algo-
rithm). The resulting consensus partition assigned each
co-fluctuation pattern to non-overlapping clusters.
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G. Rosenthal, P. E. Vértes, M. Shinn, A. Alexander-
Bloch, P. Fonagy, R. J. Dolan, et al., Cerebral Cortex
28, 281 (2018).

[33] F. Z. Esfahlani, L. Byrge, J. Tanner, O. Sporns,
D. Kennedy, and R. Betzel, bioRxiv (2021).
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FIG. S1. Centroids for remaining co-fluctuation communities. In the main text we clustered “event” co-fluctuation
patterns and analyzed the top two communities by frequency. Here, we show the centroids for the remaining 30 communities.
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FIG. S2. Hormone fluctuations across experimental sessions. Here, we show variation of progesterone, estradiol,
follicle-stimulating hormone, and luteinizing hormone across the Study 1 and Study 2 datasets.
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FIG. S3. Robustness of communities 1 and 2 to processing decisions. In the main text we clustered “event” co-
fluctuation patterns and analyzed the top two communities by frequency. To demonstrate the robustness of these two com-
munities, we repeated this procedure, by splitting the 60 scan sessions into their two respective experiments (Study 1 and
Study 2; panels a-d and e-h, respectively). We also analyzed data processed without global signal regression (panels i-l). In
each quartet of panels, we highlight the top two communities by frequency. In panel m, we show the similarity of community
centroids to one another. In general, we find that when splitting data by experiment, we maintain an excellent correspondence
with the original data. We also find a strong correspondence between the original data and data processed without global
signal regression.
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FIG. S4. Robustness of correlation between state frequency and gonadotropins. In the main text we reported
correlations between gonadotropin concentration and the frequency (counts) of community (brain state) 1 with luteinizing and
follicle-stimulating hormone. Here, we repeat the analysis after splitting the data by experiment (Study 1 versus Study 2). (a)
Scatterplot of community frequency and luteinizing hormone (black is combined correlation, yellow is Study 1, blue is Study
2). (b) Analogous plot, but for follicle-stimulating hormone.

FIG. S5. Impact of “leave one out” analysis on state frequency and gonadotropin correlations. Distribution of
correlation coefficients after removing data from single scans and recomputing the Spearman correlation coefficient. In this
plot, red corresponds follicle-stimulating hormone and blue corresponds to luteinizing hormone.

FIG. S6. Correlations of sex hormone concentration with frequency of community 1. In the main text, we reported
positive correlations between gonadotropic hormones and the frequency of community 1. Here, we report analogous results
for sex hormones (a) estradiol and (b) progesterone. Note that the correlation with estradiol is statistically significant only
without correcting for multiple comparisons.
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FIG. S7. Effect of global signal regression on state frequency and correlations. In the main text we analyzed fMRI
data that had been processed using a pipeline that included global signal regression. Here, we report results using the same
data but processed without global signal regression. The analysis procedures were performed identically for both datasets.
After obtaining consensus clusters, we mapped communities to those obtained following the global signal regression pipeline.
Panels a and b show correlations between state frequencies (how often a given community appeared on any one scan session),
for communities 1 and 2. We find a positive correspondence in both cases. In the main text we also computed the correlation
between state frequency and hormone concentration. We find that without global signal regression, the overall magnitude of
correlations is decrease. However, the overall pattern of correlations is largely preserved (see panel c).
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