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Abstract

Over the last two decades, the pathogenic aggregation of TAR DNA-binding protein 43 (TDP-43) is found
to be strongly associated with several fatal neurodegenerative diseases such as amyotrophic lateral sclerosis
(ALS) and frontotemporal lobar degeneration (FTD), etc. While the mutations and truncation in TDP-43
protein have been suggested to be responsible for TDP-43 pathogenesis by accelerating the aggregation
process, the effects of these mutations on the bio-mechanism of pathologic TDP-43 protein remained poorly
understood. Investigating this at the molecular level, we formulized an integrated workflow of molecular
dynamic simulation and machine learning models (MD-ML). By performing an extensive structural
analysis of three disease-related mutations (i.e. [168A, D169G, and 1168A-D169G) in the conserved RNA
recognition motifs (RRMs) of TDP-43 and we observed that the [168A-D169G double mutant delineates
the highest packing of the protein inner core as compared to the other mutations, which may indicate more
stability and higher chances of pathogenesis. Moreover, through our MD-ML workflow, we identified the
biological descriptors of TDP-43 which includes the interacting residue pairs and individual protein
residues that influence the stability of the protein and could be experimentally evaluated to develop potential

therapeutic strategies.
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1. Introduction

The molecular mechanisms leading to the accumulation of TAR DNA-binding protein 43 (TDP-43) in the
central nervous system is a key feature of several common neurological disorders in ageing societies, such
as frontotemporal dementia (FTD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) and
limbic predominant age-related TDP-43 encephalopathy (LATE)*. The TDP-43 protein is highly conserved
and plays a significant role in RNA regulation such as splicing, transcriptional regulation, mMRNA
stabilization? 3, etc. Moreover, the TDP-43 is a ubiquitously expressed member of the large heterogeneous
nuclear ribonucleoprotein (hnnRNP) family that shows specific RNA/DNA binding ability by the highly

conserved RNA recognition motifs (RRMs) of the proteins®. But during pathological conditions, several
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post-translational modifications occur in the protein that leads to their cytoplasmic aggregation causing
TDP-43 proteinopathies®”. In fact, ~97% of all the cases of ALS, ~75% of patients with severe AD and
~45% of all the cases of FTDL involve the aggregation of TDP-43%°. And all the four diseases which are
together known as TDP-proteinopathies® 1° constitute the major cause of dementia in the world and are
expected to rise notoriously in the coming years'*.

Over the past years, numerous studies were performed to understand the pathological mechanisms
underlying TDP-43, and most of the studies focused on the misfolding®, mislocalization'? and aggregation®*
15 of the TDP-43 protein. Several studies were able to depict certain mutations in the C-terminal regions of
TDP-43 such as R361S, N345K, Q343R that lead to its toxic aggregation in the cytoplasm? 8 1618 Certain
mutations in TDP-43 such as A382T, A315T, M337V were also reported to escalate its cytoplasmic
mislocalization!” °, Most of these mutations are introduced as post-translational modifications, the most
common being phosphorylation and ubiquitination of the protein?®. However, the underlying mechanisms
leading to the aggregation of TDP-43 remain elusive. One of the prominent hallmarks of TDP-43 induced
proteinopathies is marked by its depletion in the nucleus and increased aggregation into cytoplasmic
inclusion bodies. And the rate-limiting step of this process is the cleavage of TDP-43 and generation of C-
terminal fragments by the cysteine proteases, caspase and calpain® 22,

The generation of C-terminal fragments, TDP-25 (25kD fragment) and TDP-35 (35kD fragment) by
caspase-3 and caspase-7 is the most prominent step for the clearance of TDP-43%, Several experimental
studies have also reported a significant delay in cell death on blockage of the caspase digestion®2°.
Moreover, it is shown that out of the four prominent caspase cleavage consensus sites, three sites lie in the
RNA recognition motifs (RRM) of the TDP-43 protein®®. The cleavage at D89-A90 of N-terminal domain
(NTD) of TDP-43 generates TDP-35 that is still capable of folding correctly?’. But, both the cleavage sites
at D169-G170 and D174-C175 of the RRM of TDP-43 generate TDP-25 which lacks the NTD, nuclear
localization signal (NLS) and most of RRM1, trapping the protein in the cytoplasm?® and thus enhancing
its cytoplasmic aggregation?. Interestingly, certain mutations, particularly D169G in the RRM1 domain is
reported to increase the thermal stability of the protein which becomes more accessible to cleavage by
caspase-3 resulting in the early onset of diseases such as ALS?. They also showed that the neighbouring
1168 residue is also very crucial for protein folding®. Recently, mutations in the RRMs are also shown to
influence the DNA or RNA binding specificities®® indicating the role of nucleic acid-binding in TDP-43
aggregation. However, studies on the effect of disease-related mutations on the RRM domains of the TDP-
43 is still very limited. Given the crucial role played by the disease-causing mutations in the RRM domain
in regulating the protein conformational stability, nucleic acid binding and their role in affecting the

cleavage sites remains largely unexplored.
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In this paper, we perform extensive structural analysis on the impact of disease-related mutations in the
RRM1 domain of the TDP-43 protein. We address this question by formulizing a framework MD-ML, that
integrate molecular dynamics and machine learning approaches in mainly two ways (i) structural analysis
of the wild type and disease-causing mutant proteins bound to the nucleic acid by molecular dynamics
simulations and (ii) identifying the functionally important regions and biological descriptors of TDP-43 in
different mutated states that are crucial in explaining the effect of disease-causing mutations in the caspase
cleavage sites in RRM motifs of TDP-43 using Machine Learning models. In this direction, the in-silico
approach of molecular dynamics simulation holds promising aspects as it provides insights at the molecular
level by mimicking the physicochemical changes that occur within the biomolecule when subjected to a
specific condition. However, the high dimensional nature of biomolecular simulation data makes it
challenging to extract the discriminatory features or set of collective variables (CVs) of the system?>L. In our
case, the CVs that we are interested in are those optimum sets of descriptors that discriminate the different
biomolecular states (wild type and mutated) over a specific time scale. Recently, machine learning methods
are receiving great attention in the biological research domains including sequence structure-function
prediction, genomics, and biological imaging®*. Machine learning models have shown esoteric
capabilities of learning the ensemble properties through the MD simulation data and subsequently were
able to predict the biomolecular functions®® as well as the optimum set of CVs or important discriminating
molecular descriptors such as long-distance interaction® that govern the biomolecular changes during the

trajectory.

2. Material and Methods

2.1 Molecular Dynamic Simulation

To investigate the structural changes induced by the disease-causing mutants on the nucleic acid bound
RRM1 domain of TDP-43 proteins, we performed 100ns long molecular dynamics (MD) simulations of the
wild-type and three TDP-43 mutant proteins with D169G, 1168A-D169G, 1168A mutations in their RRM1
domain. We selected these mutations as they are experimentally found to impact the overall stability of the
protein?®. We adopted the crystal structure of human TDP-43 in complex with a single-stranded DNA (PDB
ID: 4YOF.pdb) for the wild-type protein and crystal structure of human TDP-43 (PDB ID: 4Y00.pdb) for
the D169G mutant protein®. Due to the unavailability of crystal structures, the 1168A-D169G, 1168A
mutations were introduced into the wild-type protein using the PyMol’s Mutagenesis Wizard. The
Isoleucine and Aspartic acid at positions 168 and 169 in the wild type were replaced by Alanine and Glycine
respectively in 1168A-D169G TDP-43 mutant whereas the 1168A TDP-43 mutant is obtained by replacing
Isoleucine at position 168 to Alanine. The RRM1 protein used in our study is composed of 78 amino acids

and 10 nucleotides. A schematic representation of the protein structures and the position of mutations with
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respect to the cleavage site is shown in Fig. 1A. All the MD simulations were carried out using the
GROMACS software (version 2019.3) and AMBERO3 protein, nucleic AMBER94%" forcefield. Each wild
type and mutant system were solvated using a simple point charge (SPC) water model and were neutralized
by adding Na+ and CI- ions. Each solvated system was subjected to 50,000 steps of energy minimization
and 100ps each of NVT and NPT equilibrations. The temperature was kept constant using a Berendsen
thermostat and the pressure was fixed at 1 bar using The Parrinello-Rahman algorithm®. Further, 100ns
long MD simulations were carried out at a mean temperature of 300 K and pH 7 with an integration time
step of 2fs. The simulations were carried out under periodic boundary conditions and particle mesh Ewald

treated the long-range electrostatic interactions.

The analyses were performed using the GROMACS utilities and the coordinate dataset generated through
the MD simulation was used to generate (i) the average contact-map for the entire trajectory of each state
(wild type and mutants) where the contact between every it and i+4™" residues were calculated with a cutoff
distance of 10 A. (ii) difference of the average pairwise distances of the residues in the mutant proteins with
respect to the WT protein and (iii) Dynamic cross-correlation (DCC) analysis was carried out to intuitively
unravel the functionally relevant regions of protein states throughout the trajectory. Within the given
molecule the DCC metric for a pair of residues represents the degree to which these residues move together

and is calculated as®®:

(Ary (6).A7;(D))e
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DCC(i,j) = (1)

where ri(t) is the vector of the i atom’s coordinates as a function of time t, (*) denotes the time ensemble
average and Ar;(t) = r;(t) — (r;(t)); . Although the contact-map and DCC approach highlighted some
ambiguous yet important fingerprints of each state, these approaches however provided little information
to unmask the intricate intra- and inter-molecular relations and features that are critical for understanding

the effect of different types of mutations in the protein.

2.2 The Machine Learning Utilization

The dataset generated by the MD simulation is high dimensional, extraneously noisy and encompasses a
set of important features and patterns encrypted within that could explain the changes that occur within the
biomolecular ensemble. Machine learning models carry promising potentials to identify these
discriminatory features and fingerprints that could elevate our understanding of the key mechanisms

underlying the behaviour of biomolecules in the specific state.
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2.2.1 Data Pre-processing

There are several ways in which the MD simulation dataset can be utilized to extract features. For a large
system, the internal coordinates of residues could be used as feature variables but often tend to produce
fallible conclusions due to overfitting®. For a small or moderate size ensemble, such as the TDP-43 DNA
complex in our case, the distance-based features would provide much deeper insights as it contains a profuse
amount of conformational and physicochemical information of the system®. Here we incorporated the
inverse inter-atomic distance as features because it also highlights the significant local changes within the
ensemble. For amino acid, the C, and for nucleotides, the centre of mass was used to measure the inverse
inter-residue distance. The total of 88 residues including that of the RRM1 domain and the nucleotides
resulted in 88(88-1)/2 variables. The 2000 frames generated for each type of state thus yield an inverse-
distance dataset of size 2000 x 3828. To meticulously probe the effects of the mutations, we adopted two
approaches (Fig. 1E) i.e. (i) To study the individual effects of the point mutations on TDP43, we performed
the feature extraction by pairwise concatenation of the datasets of each type of mutated state (i.e. D168G,
D168G-1169A and 1169A) with the wildtype (WT) dataset ; (ii) To unmask the globally important
interactions and discriminatory CVs, we concatenated the labelled inverse-distance dataset of all the
mutated and wild type states. To subdue the curse of dimensionality, we included only those interaction
pairs as variables whose interatomic distance was greater than 10A but also have a distance less than 10 A

in at least one frame.

2.2.2 Machine Learning models

Here, we employed supervised machine learning models over the simulation datasets - (Objective I) to
extract the highly discriminatory features (i.e., interacting pairs) that distinguish the mutated states from
the wildtype state of TDP43 and its binding; (Objective 1) to depict the importance per residue profile of
TDP-43 that unmasked the biological descriptors at the residue level. For the former, we employ two feature
extraction models L1 regularization regression model (LASSO) and Extreme Gradient Boosting Machine
(XGBoost). For the latter, we incorporate L1- L2 regularization regression model (Elastic Net) and Random
Forest (RF) models (Fig. 1E). Based on their scaled scoring scheme, these models would extract important
pairs of interactions but the relevance per residue was computed by averaging the importance score of all
the pairs involving that residue followed by normalization between 0 and 1. Models were trained and tested
over the concatenated dataset where each frame was labelled to its corresponding state. For feature
selection, we only corroborate the supervised learning model because, unlike unsupervised models,
supervised learning models are known for their esoteric capabilities of exploiting the class information to
learn the encrypted discriminatory features and subtle patterns within the dataset that highlights the key

differences between given classes.
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2.2.2.1 Regularized Regression Models

Least Absolute Shrinkage and Selection Operator (LASSO) is a regularized regression model from the
family of generalized linear models. By penalizing the (L1-norm) regression model, LASSO reduces the
regression coefficient to zero for those features that have low contribution in the learning of the model. This
makes LASSO a pervasive feature selection model. Alternative to LASSO regression, Ridge regression is
also based on the model penalization, but it involves an L2-norm“°.

For a given feature dataset D, let x;; be the observation of the j th variable (1 <j<p)inthei"(1<i<

N) frame and consider y; be the corresponding state label of the it" frame. In addition to minimizing the
sum of squared error, the regularized model learns the regression coefficient f§; for each jt" variable

including the intercept 8, (eq.2) by imposing a constraint on the coefficient Y, J(B)) < t*..

g = argming Zﬁv=1(3’i —PBo— 25;1 xij.Bj)z 2

LASSO truncates the coefficient of the low-importance to zero features by imposing L1 constraint (J (8x) =
|Bx]) (eq. 3) while the Ridge shrinks the coefficient close to zero for the low contributing variable by
imposing L2 constrain (J(B,) = B2)*.

plasso = argming {%Z?’:]_(yi —Bo — Z?:l Xijﬁj)z + /12?=1|ﬂj|} (3)

where 1 is the penalty parameter and we find the best fitting 4 using cross-validation*. While LASSO
identifies a set of most discriminating independent inter-residual interaction pairs, it drops all the other non-
contributing as well as low-contributing variables and therefore is not suitable to account for per-residue
importance for the system. We, therefore, employ an Elastic Net classifier to yield a per-residue importance
profile for the mutated systems. Based on penalization, Elastic Net is a smart combination of L1 and L2

constrain with J(B;) (coefficient constrain) given as:
AZ?:;L(“B]'Z + (1 - a)llg]D (4)

where the a constant governs the intensity of Ridge and LASSO penalties*. We used the R package “caret”
to train LASSO and Elastic Net models*.

2.2.2.2 RandomForest
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Breiman et. al** developed the random forest (RF) algorithm that utilizes the ensemble of decision trees to
perform prediction and classification. After bootstrapping the feature dataset with replacement, allowing
duplicate entry of the instances, the fully grown classification trees are produced by randomly sampling a
set of variables at each split*. This way, RF performs feature selection by carrying out a bootstrapping and
aggregation (bagging) for tree building. The decisions are then made based on the average of collective
decisions by all the fully grown decision trees. For each generated tree, the RF quantifies the performance
of that tree by measuring Out-Of-Bag (OOB) error based on the samples that were not included during the
bootstrapping. The OOB has a crucial role in estimating the goodness of fit for RF while also exempting us
from performing the cross validation. For a decision tree, the Gini impurity metric reflects how good a node
is in splitting. In RF, the mean decrease in impurity for an individual variable over all the trees indicates
the importance of that feature variable**. We used the R package “RandomForest” to train RF model*®. A

detailed description of the RF algorithm is included in the supplementary text.

2.2.2.3 XGBoost

J.H Freidman*’ introduced gradient boosting algorithms that have shown competitive classification and
prediction potentials on many occasions. Based on the gradient boosting algorithm, Chen et al.*® proposed
a scalable tree boosting machine called extreme gradient boost (XGBoost) that performed remarkably in
several biological research®® %0,

The underlying principle of XGBoost is that for the given data D = {(x,, y,,)}=, , the k classification
trees or stumps given as F = {f;(x), fo(x) ..., fir (x) } assigns a class decision score f; to the data instance
by passing it through the leaf node as per the division points of the variable. When the data instance x;
passes through a leaf node, the f is assigned and the prediction result is registered. The collective sum of

prediction results by each tree accounts for the final prediction result for each instance. The model follows:

Pi=Yk=1fu ), fr €F )

Here, f (x;) denotes the prediction score of k" leaf node. The sum of prediction results overall K stumps
yields the prediction result (y;) for the it" instance x;.The Objective function Obj(6) for XGBoost is given

as:

0bj(0) = Xty L, 9 + k=1 Ufe) (6)

Where 0 is the model parameter. The sum )i~ L(y;, ;) accounts for the error that the model accumulates
with I(x,y) is the error function. The second summation YX_, Q(f;) represents the model’s regularization

term, accounting for the complexity of the trees. A thorough overview of the XGboost algorithm is
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described in Wei li et al®. An inclusive pseudocode*’ for the gradient boosting algorithm is added in the
supplementary text. Here we employed XGBoost to identify the most influencing residue interaction pairs

for the mutated states. We used an R package “XGBoost” to implement the algorithm®2,

2.2.2.4 Principal Component Analysis (PCA)

In the paradigm of finding biological descriptors using a simulation dataset, the unsupervised learning
models perform worse than the supervised learning model because of their incapability to exploit the state
label®. While the unsupervised learning models are not suitable for the unmasking of descriptors, they are
highly robust in dimension reduction where the feature variables are mapped to a lower-dimensional
configurational space and thus highlighting the main characteristics of the trajectory. In this direction, the
PCA method is the most celebrated machine learning model that reveals the dominant modes in the motion
of biomolecules by incorporating the molecular dynamic simulation trajectory® 4. These motions reflect
the correlated vibrations or collective motion of a set of residues in the trajectory®®. In principle, For the N
residue system, the 3-dimensional cartesian coordinate configuration is transformed into a 3N x 3N
covariance matrix whose eigenvectors provide vectorial information indicating the direction of each
component of the trajectory while the corresponding eigenvalue represents the intensity contribution of that
particular component. We elucidated this motion of eigenvectors through ¢‘porcupine’” plots® for each type
of state of TDP43 which depicts the direction and magnitude for each residue in that state. We used PyMol
software to generate the porcupine plots®.

The computation was performed on an Intel (R) Core (TM) i5-4310 U, 16 GB RAM, and 64-bit OS Win
10 configuration. The R version 4.0.3. was used to prepare codes for conducting the experiments and is
shared in the Github link.

3. Results and Discussions

3.1. Molecular insights into structural changes in protein due to the disease-causing mutations.

To investigate the structural changes that undergo in the protein due to mutations, we started by analyzing
the stability of the single-stranded DNA bound wild-type (WT) and the mutant proteins from the 100ns
simulation trajectories. From the RMSD analysis of the proteins (Fig.1C), we see that the overall protein
structure is maintained for the wild type and mutant proteins and the mutations in the protein don’t impact
the overall conformational stability of the protein molecule. However, we see that the D169G mutant
protein shows the lowest RMSD as compared to the wild-type protein (Fig.1C). Several experimental
studies have indicated that the D169G mutation increases the overall stability of the protein due to enhanced
packing or hydrophobic folding of the RRM1 core domain?®. We also calculated the evolution of solvent

accessible surface area (SASA) of the WT and mutant proteins throughout the simulation trajectory and
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found that mutant proteins, especially the 1168A-D169G and D169G mutation has a lower SASA indicating
stronger hydrophobic interactions of the core residues of RRM1 domain (Fig.1D).
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Fig.1: Schematic representation of the DNA bound RRM1 domain of TDP-43 and the MD-ML workflow
used for analysing the structural changes in the protein due to mutations. (A) The domain architecture of
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TDP-43 consists of an N-terminal domain (NTD) followed by two RNA recognition motifs (RRM1 and
RRM2) and a Glycine-rich C-terminal domain. The cleavage sites in the RRM1 domain (D169-G170 and
D174-C175) are shown in red strips. The sequence of the RRM1 domain is shown with a red box
highlighting the positions of the residues to be mutated. (B) The crystal structure of TDP-43 RRM1 domain
(PDB ID: 4YOF.pdb) in complex with a single-stranded DNA. The RRM1 domain consists of two a stands
and five  strands. The amino acids that are mutated, i.e., D169G (shown in red), I168 A (shown in magenta),
1168A-D169G lie in a loop between the B4 and 35 strand and one of the cleavage sites (D174) are in the 5
strand. (C-D) The Root Mean Square Deviation (RMSD) and Solvent Accessible Surface Area (SASA) of
the WT and mutant proteins (D169G, 1168A, 1168A-D169G) are shown as a function of the simulation
time(ns). (E) Schematic representation of the MD-ML workflow. The implementation of Machine Learning

algorithms over the Molecular Dynamics simulation data to interpret significant biological characteristics.

To further investigate the underlying mutation-induced molecular changes in the protein, we estimated the
structural changes occurring in the WT and mutant proteins throughout the simulation time. Firstly, we
calculated the difference of the average pairwise distances of the residues in the mutant proteins with respect
to the WT protein to view the relative structural changes occurring in the protein due to mutations. The
averaging is done over an ensemble of configurations of WT and mutant proteins generated throughout our
simulations. From Fig. 2(A, C, E), we see that some of the inter-residue distances increase in the mutant
proteins with a simultaneous decrease in other inter-residue distances. Although the global dissemination
is observed for all the mutant protein structures, the major impact is seen in the double mutant protein (Fig.
2C) where we see that the relative distances of the start (al and B1 strand) and end regions (B4 and 5
strands) of the protein decreases with respect to the mutant protein core (2, p3 strands). A similar but less
profound observation is seen for the D169G mutant protein (Fig. 2A). The relative motion of the mutant
proteins with respect to the protein core is shown in the porcupine plots in Fig. 2 (B, D, F). The porcupine
plots show the coordinated motion of the C, atoms in the mutant proteins along their first eigenvectors. The
arrowhead shows the direction of motion, and the size of the arrows gives the magnitude of the motion. The
porcupine plots further strengthen the observation of the induced movement of the protein terminal regions
towards the protein core due to the mutations. After having seen the relative changes in the protein structure
due to the mutations, we also analysed if these structural changes in the mutant proteins result in any
changes in the contact form within the mutant protein structures throughout the simulation time (Fig. S1A-
D). To get a more comprehensive outlook from our non-bonded contact formation map, we also included
how long a contact is formed between two residues in our analysis. The darker the spot in the contact map,
the longer the contact was formed between those pairs of residues. We see that the overall contact formation
in the WT and mutant protein structures remains intact but some new contact formations are observed
between the al and B5 strands in the 1168A-D169G and I168A mutant proteins. This may be due to the
removal of the bulkier isoleucine by alanine that facilitates the protein to attain a more compact structure

by promoting contact formation between the al and B5 strand, mainly between the residues Lys120 —
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Cys173; Tyr123 — Cys173 and Phel24 — Cys173. This also highlights the interactions of Cys173 as crucial
to maintaining the increased hydrophobic interactions of the protein inner core. Several biochemical studies
have identified the Cys173 to promote TDP-43 cross-linking via disulphide bond formation leading to
decreased solubility of the protein?®. We further investigated whether the structural changes in the protein-
induced due to the mutations affect the relative motions of the protein strands with respect to the protein
core. For this, we performed the dynamic cross-correlation analysis of the C, pairs of WT and mutant
proteins throughout the simulation trajectory. From Fig. S2(A-D), we see that the protein core is involved
in anticorrelated motion with the terminal regions of both the WT and the mutant proteins, whereas
significant changes in the overall correlated motion of the protein molecule due to the introduction of
mutations were not found. Recent experimental evidence is available substantiating that the D169G
mutation in the protein facilitates the hydrophobic inner core of the protein and thus makes it more stable
than the WT protein? 57, Our study reveals that along with D169, 1168 is also very crucial in maintaining
the protein conformation and the 1168A-D169G double mutant facilitates a tighter protein core,

orchestrating increased stability and thus, inducing pathogenesis.
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Fig. 2. The difference distance map of the (A) D169G (C) 1168A-D169G and (E) 1168A mutant proteins
with respect to the wild-type protein structure throughout the simulation time. The above bar represents the
secondary structure of the protein in 2D format; green regions represent beta sheets and red regions

represent alpha helix. For clear representation, every third residue in the protein sequence is labelled in the
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plots. Porcupine plot of (B) D169G (D) 1168A- D169G and (F) 1168A mutant proteins generated from the
first eigenvectors showing the direction of motion of the protein represented by the red arrowheads.

3.2 Effect of mutations on interactions of the protein with DNA

Studies have suggested that the disruption of RNA or DNA binding to the RRM1 domain of TDP-43
through mutation or truncation can alter the protein solubility leading to the appearance of aggregates in
the nucleus® %8, To investigate the effects of mutation on the interaction of the RRM1 domain with the
DNA molecule, we calculated the evolution of distance between the WT and mutant proteins with respect
to the DNA molecule. Fig. 3 presents the evolution of the average pair-wise distance between the WT and
mutant proteins with the DNA throughout the simulation time. We see that the average residual distance
between the core (mainly p4 and 5) and the terminal region (al and B1) of 1168A-D169G double mutant
protein increases the most as evident from the colour-code representing the higher average residual distance
between them (Fig. 3C). We also calculated the protein-DNA contact formation in the WT and mutant
protein throughout the simulation time and find that most of the contact form with the DNA takes place
between the protein core and initial alpha-helix and beta-strand regions of the protein (Fig. S3A-D). From
the propensity of contact formation, we see that the introduction of mutations, especially the 1168A leads
to the disruption of contacts between the protein core, mainly loop4 (between 2 and 3) and the DNA.
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Fig. 3. Average residual distance between the (A) Wild-type (B) D169G mutant (C) 1168A-D169G and (D)
I1168A mutant proteins with the DNA throughout the simulation time. The colour-code represents the
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evolution of the average residual protein-DNA distance from 0 to 50A. The protein and DNA residues are
presented by their single-letter codes.

3.3 Identifying the biological important descriptors of TDP-43 in different mutated states

After having seen the structural changes occurring in the protein due to the disease-associated mutations,
we now investigate the biological descriptors and the functionally important regions of the protein using
Machine Learning models. In this direction, we trained various state-of-the-art supervised learning models
to classify the states by learning the ensemble's features. Interestingly, all the supervised learning models
have performed excellently in learning the differences among different states of mutation as they attain a
high classification accuracy of 99.9% on a 5-fold cross-validation test (Table S1). The receiver operating
curve (ROC) and area under it (AUC) remained very high as well (Fig. S4), thus empowering the results
obtained. The list of the most optimum hyperparameters for each type of learning model that were used is
provided in the supplementary (Table S2). While probing all the four types of states together, the regularized
regression models (LASSO and ElasticNet) remained time expensive for both objectives. This was also
observed when conducting a pair-wise WT vs Mutant state analysis.

3.3.1 Objective | — Identify the discriminatory features of the RRM1 domain of TDP-43

To identify the discriminatory features, we employ LASSO and XGBoost on the labelled frame of feature
datasets. The importance of each feature is yielded by averaging the importance for the interacting pairs
obtained by the models. Figure 4A & 4C presents the average globally important protein inter-residue and
protein-DNA residue interaction map respectively where the importance of interaction is shown by the
colour key, where the darker shade represents the higher importance of the interaction. Here, with
“globally” we tend to mean that the analysis was carried out by training the features of all the mutant states
together. The importance interaction map for the pair-wise analysis of each mutant state is provided in the
supplementary (Fig. S5). Some of the important protein-protein and protein-DNA interactions are shown
in the cartoon representations (Fig. 4B & 4D) of the protein complex. For the protein, we find that most of
the important discriminating interactions involve the residues in the protein core (Fig. 4A). The residue
pairs having the higher important discriminating scores were found to be M132 - V135, L120 - M132,
L111-K136, D119-V133. These interactions can be experimentally assessed by biomedical researchers to
develop potential therapeutics for the TDP-43 associated diseases. This also indicates the crucial role played
by the protein's inner core in maintaining the stability of the protein and its interaction with the DNA. These
results obtained through the machine learning models are in line with the studies that have suggested that
the D169G mutant enhances the stability of TDP-43 by increasing the hydrophobicity or compactness of
the core of the RRM1 domain.
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plots. Schematic representation of some of the important (B) protein-protein interactions and (D) protein-
DNA interactions. The residues are represented in their single-letter amino acid code. The dashed lines

indicate the interacting residue pairs.

In Fig. 4B, we have schematically shown some of the important interactions which involve the mutation
site, D169 and the W172 and D174 residues in the B5 strand of the protein where the protein is generally
cleaved. We see that D169 residue has important interactions with the residues of the protein core such as
G146 (shown in the diagram), W123, and also has important discriminatory interactions with the residues
of loop 1 (between al helix and B1 strand) such as P112. Moreover, both the mutation site residue, D169
and 1168 are found to have important discriminatory interactions with T115 which is also experimentally
validated to be crucial in maintaining the protein stability?®. The cleavage-prone residues in the 5 strand
are found to have important interactions with the protein core residues, such as W172 - G146, F147 - D174,
F149 - D174, V161 - D174. The importance of the core residues can also be seen in the interaction of the
protein with the DNA where the core residues such as Q134, F147, G146 is found to have an important

interaction with the DNA molecule.
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3.3.2 Objective I1- Identifying individual important residues in the RRM1 domain of TDP-43

While unravelling the important interacting pairs, it is also necessary to identify the contribution of the
individual residues of the RRM1 domain that plays a crucial role in maintaining the stability of the protein.
For a given residue, its importance is calculated by averaging the importance of all the identified interaction
pairs that include that particular residue. Since LASSO and XGBoost drop all the moderate to low
contributing interactions, they are abysmal to depict the true per residue importance profile. Consequently,
the ElasticNet and RandomForest models were employed. Interestingly, the per residue importance profile
indicated that the protein core comprised of the B3 and B4 strand of the RRM1 motif shows the highest
importance per residue (Fig. 5A). The highest importance per residue in the 33 and 4 strands are found for
the residues Q134 and G148. Among the top 15 highest important residues (marked by dashed lines in Fig.
5A) include the 1166 and 1168 residues of p4 and residues spanning the p1 and al strand.

Global Average Important residue
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Fig. 5. (A) Global average Important residue map of all the residues in the RRM1 motif of TDP-43 protein.

The green and yellow bars represent the alpha-helix and beta-strand respectively. (B) Gradient colour coded
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important residue cartoon representation of the RRM1 protein. The redder shade represents higher
importance and the transition from red to blue indicates a decrease in the importance scores.

Fig. 5B shows a schematic representation of the residue importance where the redder shade represents
higher importance, and the blue shade represents less importance. This also suggests that the residues in the
al strand, especially E117 and L120 shown by lighter blue shade are as important as the mutant residues
and can also influence the protein stability, which can be experimentally tested by mutagenesis studies.
Although similar observation is seen for the interaction map of the individual mutant proteins [Fig. S6], the
per residue importance of the protein core region is highest for the 1168A-D169G double mutant as
compared to the other two mutations. Hence, our analysis not only elucidates the underlying molecular
basis of disease-associated mutations in the TDP-43 protein but also helps in identifying the crucial residues

involved in the protein stability which can be genetically engineered to address its pathogenesis.

4. Conclusion

Recently, neurodegenerative disorders linking to TDP-43 malfunction have increased considerably and
mutational modifications in the protein are found to expedite its toxic cytoplasmic aggregation®. In this
work, we performed an extensive structural analysis on the effect of common disease-causing mutations on
the RRM1 domain of TDP-43 protein combining molecular dynamics simulations with machine learning
models through the MD-ML workflow. Out of the three mutations studied, D169G, 1168A-D169G and
[168A, we found that the 168 A-D169G double mutant shows the highest packing of the protein inner core,
indicating more stability and hence can lead to the enhanced level of pathogenesis which needs to be
experimentally validated in the future. Moreover, using machine learning approaches, we identified the
important (i) protein-protein and protein-DNA interacting pairs and (ii) individual protein residues that are
crucial in maintaining the stability of the protein molecule. We showed that along with the protein residues
in the mutation sites, the residues in the cleavage sites are also involved in important interactions with the
protein core. Moreover, the per residue importance profile shows the crucial role of the protein inner core
in maintaining the stability of the protein. In addition to that, residues in the al strand are found to be
important which can be experimentally validated for their influence on the protein stability and hence its
pathogenesis. This information will help biomedical researchers working in emerging strategies towards

TDP-43 disaggregation and develop prospective therapeutics in the future.
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Supplementary for

Unravelling the effects of disease associated mutations in TDP-43 protein via
molecular dynamics simulation and machine learning.

Abhibhav Sharma, Pinki Dey

The Random Forest (RF)

Let the feature dataset used for training is bootstrapped B = {(Fl-, SHON, | F;, € RM,S €{1,2,...,c}}, where F;
are the feature set (variables) and S represents its respective label (the mutation state). Let N and M denotes the
cardinality of samples used for training and the features respectively. For F be a given input instance and the

prediction of the K" tree T}, is represented as SK. The prediction obtained by the RF as an ensemble of K is:
$ = max vote {SF}¥
Pseudo-Code

The input be the bootstrapped training dataset B
|mtry| = subspace size,
|K| = number of tress

e Fork — 1toK do:
a. By samples are selected from the input to produce bootstrapped B
mtry features are chosen at random.
Form - 1 to [|mtry|| do
The amount of decrease in the node impurity (Gini Impurity) is calculate
Most contributing variable in the impurity decline is chosen and the node is then split
into two daughter/child nodes

L

e The ensemble of the K trees produce a RF

While bootstrapping the feature dataset, due to the sampling with replacement not all the samples were used to
prune the tree. These samples are called the in-bag samples. The left-out instances are coined as out-of-
bag (OOB) sample. The OOB samples are exploited to calculate the error in prediction for each generated
random forest also called as the OOB error rate.

The OOB value is given as:

5 5 B . , . .
SO00B = (ﬁ) Ykeo, ¥, where 6;, = o i’ and i denotes the out-of-bag and in-bag sampled instances, ||6;]|
U

is the number of OOB instances. The OOB prediction error is:

1 Noos
7008 — _© Z (s, 5008)
008 4

Here W(.) is the error function and Nygp is OOB sample’s size.
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Gradient Boosting Algorithm

Boosting algorithms are gravitating a lot of attention in recent years. Of this, gradient boosting algorithm (GBM)
are classification and regression models, that generates a prediction model through an ensemble of weak
decision tress. Although a tree-based model, GBM outperforms the random forest models in terms of accuracy
and speed [1,2,3]. The GBM model is built in a stage-wise fashion while introducing an arbitrary differentiable
loss function [4,5]. Friedman introduced GBM models for regression and from there on the regularization and
generalization of GBM emerged [6,7].

Here we state the pseudocode of a GBM machine. A preeminent view of GBM can be found in Friedman et al.

[5].
Let the Data set be X as {(x;, y;)}/=,. Let the differentiable loss function be defined as L(y, F(x)) and the
number of iterations be M

The algorithm then follows:

e The model is initialized as constant value. The constant here is basically the mean target value.

n
Fo() = arg min, ) L)

i=1

e Form=1toM:
e The pseudo-residuals are calculated as:

- [aL(}’i;F(xi))]

Fori=1..
OF (x;) ori n

F(x)=Fm-1 (%)

e The weak learner is fitted closed under the scaling of the calculated pseudo-residuals
h,, (x). This mean that the training is carried out over the new derived data set

HETR ) Ly

e By solving the optimization problem, the y,, is calculates:

n
Y = argymin > LQyi, Fn1(6) + V()

i=1

e The model is the updated

Fn(x) = Fpoq1 (%) + Ymhm(x)

e Output Fp (%)
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CV Table

Model Mutation Type  Accuracy Sensitivity  Specificity Precision

D168G 0.999 0.998 1.000 1.000

Random Forest D168G_|169A 1.000 1.000 1.000 1.000

1169A 0.996 0.992 1.000 1.000

D168G 1.000 1.000 1.000 1.000

Elastic Net D168G_I169A 1.000 1.000 1.000 1.000

11694 0.995 0.950 1.000 1.000

D168G 1.000 1.000 1.000 1.000

LASSO D168G_I169A 1.000 1.000 1.000 1.000

1169A 0.999 0.998 1.000 1.000

D168G 1.000 1.000 1.000 1.000

XGBoost D168G_I169A 1.000 1.000 1.000 1.000

1169A 0.997 0.995 1.000 1.000

Table S1. The classification performance metric of all the models for each type of mutation type. Accuracy =
TP + TN/(TP+TN+FP+FN), Sensitivity =TP/(TP+FN), Specificity =TN/(TN+FP) and Precision = TP/(TP+FP)
where TP, TN, FP and FN are True Positive, True Negative, False positive and False Negative classifications
respectively.

Hyperparameter Table
Model Critical Parameters Note
LASSO method ="glmnet", The alpha is not declared, setting 0
lambda=seq(0.0001, 1, length =5} by default thus performing LASSO
ntree=300, ntree employed here is the default value
RandomForest mtry=8 which was tested against 250, 300 and 400.

method ="glmnet",
Elastic Net alpha=seq(0,1,length=10),
lambda=seq(0.0001, 1, length =5}

Both aplha and beta were
searched within the given possible set

Objective = Multi:softprob,
eval_metric =mlogloss,
num_class =4,

¥GBoost nrounds = 1000, The other parameters were kept in default
eta=0.01,
max.depth=3,
gamma=0,
subsample=1

Table S2. The hyperparameters employed for the machine learning models.
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Fig. S1. Contact map for (A) Wild-type (B) D169G (C) I1168A-D169G (D) 1168A proteins calculated
throughout the simulation time. The darker the spot in the contact map, the longer the contact was
formed between the pair of residues.
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Fig. S2. Dynamic cross-correlation map of (A) Wild-type (B) D169G (C) 1168A-D169G (D) 1168A
proteins throughout the simulation time. The negative value represents anti-correlated motion whereas
the positive value represents correlated motion.
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was formed between the pair of residues.
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Fig. S4. The ROC curve for each type of model (A) RandomForest, (B) Elastic Net, (C) LASSO, (D)
XGBoost; plotted for the five-fold test dataset. The AUC (Area Under Curve) is observed to be 100%
for all models when trained for all labelled mutated states.
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Fig. S5. Importance Interaction map of Protein-protein interactions (A,C,E) and protein-DNA
interactions(B, D, F) for (A,B) D169G (C,D) 1168A-D169G (E,F) I1168A mutant proteins. The colour
intensity shows the importance of the interaction where the darker shade represents higher importance.
For clear representation, ever third residue in the protein sequence are labelled in the plots.
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Fig. S6. Important residue map of all the residues in the RRM1 motif for (A) D169G (B) [168A-
D169G (C) 1168 A proteins. The green and yellow bars represent the alpha helix and beta strand respectively.
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