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Abstract 

 

Over the last two decades, the pathogenic aggregation of TAR DNA-binding protein 43 (TDP-43) is found 

to be strongly associated with several fatal neurodegenerative diseases such as amyotrophic lateral sclerosis 

(ALS) and frontotemporal lobar degeneration (FTD), etc. While the mutations and truncation in TDP-43 

protein have been suggested to be responsible for TDP-43 pathogenesis by accelerating the aggregation 

process, the effects of these mutations on the bio-mechanism of pathologic TDP-43 protein remained poorly 

understood. Investigating this at the molecular level, we formulized an integrated workflow of molecular 

dynamic simulation and machine learning models (MD-ML). By performing an extensive structural 

analysis of three disease-related mutations (i.e. I168A, D169G, and I168A-D169G) in the conserved RNA 

recognition motifs (RRMs) of TDP-43 and we observed that the I168A-D169G double mutant delineates 

the highest packing of the protein inner core as compared to the other mutations, which may indicate more 

stability and higher chances of pathogenesis. Moreover, through our MD-ML workflow, we identified the 

biological descriptors of TDP-43 which includes the interacting residue pairs and individual protein 

residues that influence the stability of the protein and could be experimentally evaluated to develop potential 

therapeutic strategies. 
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1. Introduction 

 

The molecular mechanisms leading to the accumulation of TAR DNA-binding protein 43 (TDP-43) in the 

central nervous system is a key feature of several common neurological disorders in ageing societies, such 

as frontotemporal dementia (FTD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS) and 

limbic predominant age-related TDP-43 encephalopathy (LATE)1. The TDP-43 protein is highly conserved 

and plays a significant role in RNA regulation such as splicing, transcriptional regulation, mRNA 

stabilization2, 3, etc. Moreover, the TDP-43 is a ubiquitously expressed member of the large heterogeneous 

nuclear ribonucleoprotein (hnRNP) family that shows specific RNA/DNA binding ability by the highly 

conserved RNA recognition motifs (RRMs) of the proteins4. But during pathological conditions, several 
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post-translational modifications occur in the protein that leads to their cytoplasmic aggregation causing 

TDP-43 proteinopathies5-7. In fact, ~97% of all the cases of ALS, ~75% of patients with severe AD and 

~45% of all the cases of FTDL involve the aggregation of TDP-438, 9. And all the four diseases which are 

together known as TDP-proteinopathies2, 10 constitute the major cause of dementia in the world and are 

expected to rise notoriously in the coming years11. 

 

Over the past years, numerous studies were performed to understand the pathological mechanisms 

underlying TDP-43, and most of the studies focused on the misfolding8, mislocalization12 and aggregation13-

15 of the TDP-43 protein. Several studies were able to depict certain mutations in the C-terminal regions of 

TDP-43 such as R361S, N345K, Q343R that lead to its toxic aggregation in the cytoplasm1, 8, 16-18. Certain 

mutations in TDP-43 such as A382T, A315T, M337V were also reported to escalate its cytoplasmic 

mislocalization17, 19. Most of these mutations are introduced as post-translational modifications, the most 

common being phosphorylation and ubiquitination of the protein20. However, the underlying mechanisms 

leading to the aggregation of TDP-43 remain elusive. One of the prominent hallmarks of TDP-43 induced 

proteinopathies is marked by its depletion in the nucleus and increased aggregation into cytoplasmic 

inclusion bodies. And the rate-limiting step of this process is the cleavage of TDP-43 and generation of C-

terminal fragments by the cysteine proteases, caspase and calpain21, 22.  

 

The generation of C-terminal fragments, TDP-25 (25kD fragment) and TDP-35 (35kD fragment) by 

caspase-3 and caspase-7 is the most prominent step for the clearance of TDP-4323. Several experimental 

studies have also reported a significant delay in cell death on blockage of the caspase digestion23-25. 

Moreover, it is shown that out of the four prominent caspase cleavage consensus sites, three sites lie in the 

RNA recognition motifs (RRM) of the TDP-43 protein26.  The cleavage at D89-A90 of N-terminal domain 

(NTD) of TDP-43 generates TDP-35 that is still capable of folding correctly27. But, both the cleavage sites 

at D169-G170 and D174-C175 of the RRM of TDP-43 generate TDP-25 which lacks the NTD, nuclear 

localization signal (NLS) and most of RRM1, trapping the protein in the cytoplasm28 and thus enhancing 

its cytoplasmic aggregation29. Interestingly, certain mutations, particularly D169G in the RRM1 domain is 

reported to increase the thermal stability of the protein which becomes more accessible to cleavage by 

caspase-3 resulting in the early onset of diseases such as ALS26. They also showed that the neighbouring 

I168 residue is also very crucial for protein folding26. Recently, mutations in the RRMs are also shown to 

influence the DNA or RNA binding specificities30 indicating the role of nucleic acid-binding in TDP-43 

aggregation. However, studies on the effect of disease-related mutations on the RRM domains of the TDP-

43 is still very limited. Given the crucial role played by the disease-causing mutations in the RRM domain 

in regulating the protein conformational stability, nucleic acid binding and their role in affecting the 

cleavage sites remains largely unexplored. 
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In this paper, we perform extensive structural analysis on the impact of disease-related mutations in the 

RRM1 domain of the TDP-43 protein. We address this question by formulizing a framework MD-ML, that 

integrate molecular dynamics and machine learning approaches in mainly two ways (i) structural analysis 

of the wild type and disease-causing mutant proteins bound to the nucleic acid by molecular dynamics 

simulations and (ii) identifying the functionally important regions and biological descriptors of TDP-43 in 

different mutated states that are crucial in explaining the effect of disease-causing mutations in the caspase 

cleavage sites in RRM motifs of TDP-43 using Machine Learning models. In this direction, the in-silico 

approach of molecular dynamics simulation holds promising aspects as it provides insights at the molecular 

level by mimicking the physicochemical changes that occur within the biomolecule when subjected to a 

specific condition. However, the high dimensional nature of biomolecular simulation data makes it 

challenging to extract the discriminatory features or set of collective variables (CVs) of the system31. In our 

case, the CVs that we are interested in are those optimum sets of descriptors that discriminate the different 

biomolecular states (wild type and mutated) over a specific time scale. Recently, machine learning methods 

are receiving great attention in the biological research domains including sequence structure-function 

prediction, genomics, and biological imaging32-34. Machine learning models have shown esoteric 

capabilities of learning the ensemble properties through the MD simulation data and subsequently were 

able to predict the biomolecular functions35 as well as the optimum set of CVs or important discriminating 

molecular descriptors such as long-distance interaction36 that govern the biomolecular changes during the 

trajectory. 

 

2. Material and Methods 

 

2.1 Molecular Dynamic Simulation  

 

To investigate the structural changes induced by the disease-causing mutants on the nucleic acid bound 

RRM1 domain of TDP-43 proteins, we performed 100ns long molecular dynamics (MD) simulations of the 

wild-type and three TDP-43 mutant proteins with D169G, I168A-D169G, I168A mutations in their RRM1 

domain. We selected these mutations as they are experimentally found to impact the overall stability of the 

protein26. We adopted the crystal structure of human TDP-43 in complex with a single-stranded DNA (PDB 

ID: 4Y0F.pdb) for the wild-type protein and crystal structure of human TDP-43 (PDB ID: 4Y00.pdb) for 

the D169G mutant protein26. Due to the unavailability of crystal structures, the I168A-D169G, I168A 

mutations were introduced into the wild-type protein using the PyMol’s Mutagenesis Wizard. The 

Isoleucine and Aspartic acid at positions 168 and 169 in the wild type were replaced by Alanine and Glycine 

respectively in I168A-D169G TDP-43 mutant whereas the I168A TDP-43 mutant is obtained by replacing 

Isoleucine at position 168 to Alanine. The RRM1 protein used in our study is composed of 78 amino acids 

and 10 nucleotides. A schematic representation of the protein structures and the position of mutations with 
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respect to the cleavage site is shown in Fig. 1A. All the MD simulations were carried out using the 

GROMACS software (version 2019.3) and AMBER03 protein, nucleic AMBER9437 forcefield. Each wild 

type and mutant system were solvated using a simple point charge (SPC) water model and were neutralized 

by adding Na+ and Cl- ions. Each solvated system was subjected to 50,000 steps of energy minimization 

and 100ps each of NVT and NPT equilibrations. The temperature was kept constant using a Berendsen 

thermostat and the pressure was fixed at 1 bar using The Parrinello-Rahman algorithm38. Further, 100ns 

long MD simulations were carried out at a mean temperature of 300 K and pH 7 with an integration time 

step of 2fs. The simulations were carried out under periodic boundary conditions and particle mesh Ewald 

treated the long-range electrostatic interactions. 

 

The analyses were performed using the GROMACS utilities and the coordinate dataset generated through 

the MD simulation was used to generate (i) the average contact-map for the entire trajectory of each state 

(wild type and mutants) where the contact between every ith and i+4th residues were calculated with a cutoff 

distance of 10 Å. (ii) difference of the average pairwise distances of the residues in the mutant proteins with 

respect to the WT protein and (iii) Dynamic cross-correlation (DCC) analysis was carried out to intuitively 

unravel the functionally relevant regions of protein states throughout the trajectory. Within the given 

molecule the DCC metric for a pair of residues represents the degree to which these residues move together 

and is calculated as39: 

 

𝐷𝐶𝐶(𝑖, 𝑗) =  
〈∆𝑟𝑖(𝑡).∆𝑟𝑗(𝑡)〉𝑡

√〈‖∆𝑟𝑖(𝑡)‖2〉.〈‖∆𝑟𝑗(𝑡)‖
2

〉
𝑡

              (1) 

 

where ri(t) is the vector of the ith atom’s coordinates as a function of time t, 〈∗〉 denotes the time ensemble 

average and  ∆𝑟𝑖(𝑡) = 𝑟𝑖(𝑡) − 〈𝑟𝑖(𝑡)〉𝑡 . Although the contact-map and DCC approach highlighted some 

ambiguous yet important fingerprints of each state, these approaches however provided little information 

to unmask the intricate intra- and inter-molecular relations and features that are critical for understanding 

the effect of different types of mutations in the protein. 

 

 

2.2 The Machine Learning Utilization  

 

The dataset generated by the MD simulation is high dimensional, extraneously noisy and encompasses a 

set of important features and patterns encrypted within that could explain the changes that occur within the 

biomolecular ensemble. Machine learning models carry promising potentials to identify these 

discriminatory features and fingerprints that could elevate our understanding of the key mechanisms 

underlying the behaviour of biomolecules in the specific state. 
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2.2.1 Data Pre-processing 

 

There are several ways in which the MD simulation dataset can be utilized to extract features. For a large 

system, the internal coordinates of residues could be used as feature variables but often tend to produce 

fallible conclusions due to overfitting36. For a small or moderate size ensemble, such as the TDP-43 DNA 

complex in our case, the distance-based features would provide much deeper insights as it contains a profuse 

amount of conformational and physicochemical information of the system36. Here we incorporated the 

inverse inter-atomic distance as features because it also highlights the significant local changes within the 

ensemble. For amino acid, the Cɑ and for nucleotides, the centre of mass was used to measure the inverse 

inter-residue distance.  The total of 88 residues including that of the RRM1 domain and the nucleotides 

resulted in 88(88-1)/2 variables. The 2000 frames generated for each type of state thus yield an inverse-

distance dataset of size 2000 x 3828. To meticulously probe the effects of the mutations, we adopted two 

approaches (Fig. 1E) i.e. (i) To study the individual effects of the point mutations on TDP43, we performed 

the feature extraction by pairwise concatenation of the datasets of each type of mutated state (i.e. D168G, 

D168G-I169A and I169A) with the wildtype (WT) dataset ; (ii) To unmask the globally important 

interactions and discriminatory CVs, we concatenated the labelled inverse-distance dataset of all the 

mutated and wild type states. To subdue the curse of dimensionality, we included only those interaction 

pairs as variables whose interatomic distance was greater than 10Å but also have a distance less than 10 Å 

in at least one frame. 

 

2.2.2 Machine Learning models 

 

Here, we employed supervised machine learning models over the simulation datasets - (Objective I) to 

extract the highly discriminatory features (i.e., interacting pairs) that distinguish the mutated states from 

the wildtype state of TDP43 and its binding; (Objective II) to depict the importance per residue profile of 

TDP-43 that unmasked the biological descriptors at the residue level. For the former, we employ two feature 

extraction models L1 regularization regression model (LASSO) and Extreme Gradient Boosting Machine 

(XGBoost). For the latter, we incorporate L1- L2 regularization regression model (Elastic Net) and Random 

Forest (RF) models (Fig. 1E). Based on their scaled scoring scheme, these models would extract important 

pairs of interactions but the relevance per residue was computed by averaging the importance score of all 

the pairs involving that residue followed by normalization between 0 and 1. Models were trained and tested 

over the concatenated dataset where each frame was labelled to its corresponding state. For feature 

selection, we only corroborate the supervised learning model because, unlike unsupervised models, 

supervised learning models are known for their esoteric capabilities of exploiting the class information to 

learn the encrypted discriminatory features and subtle patterns within the dataset that highlights the key 

differences between given classes. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2021. ; https://doi.org/10.1101/2021.07.28.454112doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454112
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 

2.2.2.1 Regularized Regression Models 

 

Least Absolute Shrinkage and Selection Operator (LASSO) is a regularized regression model from the 

family of generalized linear models. By penalizing the (L1-norm) regression model, LASSO reduces the 

regression coefficient to zero for those features that have low contribution in the learning of the model. This 

makes LASSO a pervasive feature selection model. Alternative to LASSO regression, Ridge regression is 

also based on the model penalization, but it involves an L2-norm40. 

For a given feature dataset D, let 𝑥𝑖𝑗  be the observation of the 𝑗𝑡ℎ variable  (1 < 𝑗 ≤ 𝑝) in the 𝑖𝑡ℎ (1 < 𝑖 ≤

𝑁) frame and consider 𝑦𝑖 be the corresponding state label of the 𝑖𝑡ℎ frame. In addition to minimizing the 

sum of squared error, the regularized model learns the regression coefficient 𝛽𝑗  for each 𝑗𝑡ℎ variable 

including the intercept 𝛽0 (eq.2) by imposing a constraint on the coefficient ∑ 𝐽(𝛽𝑘) ≤ 𝑡41. 

 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 )

2
𝑁
𝑖=1             (2) 

 

LASSO truncates the coefficient of the low-importance to zero features by imposing L1 constraint (𝐽(𝛽𝑘) =

 |𝛽𝑘|)  (eq. 3) while the Ridge shrinks  the coefficient close to zero for the low contributing variable by 

imposing L2 constrain (𝐽(𝛽𝑘) =  𝛽𝑘
2)42. 

 

𝛽̂𝑙𝑎𝑠𝑠𝑜 =  𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {
1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 )

2
𝑁
𝑖=1 + 𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1 }        (3) 

 

where λ is the penalty parameter and we find the best fitting λ using cross-validation40. While LASSO 

identifies a set of most discriminating independent inter-residual interaction pairs, it drops all the other non-

contributing as well as low-contributing variables and therefore is not suitable to account for per-residue 

importance for the system. We, therefore, employ an Elastic Net classifier to yield a per-residue importance 

profile for the mutated systems. Based on penalization, Elastic Net is a smart combination of L1 and L2 

constrain with 𝐽(𝛽𝑘) (coefficient constrain) given as:  

 

𝜆 ∑ (𝛼𝛽𝑗
2 + (1 − 𝛼)|𝛽𝑗|)

𝑝
𝑗=1                (4) 

 

where the α constant governs the intensity of Ridge and LASSO penalties41. We used the R package “caret” 

to train LASSO and Elastic Net models43. 

 

2.2.2.2 RandomForest 
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Breiman et. al44 developed the random forest (RF) algorithm that utilizes the ensemble of decision trees to 

perform prediction and classification. After bootstrapping the feature dataset with replacement, allowing 

duplicate entry of the instances, the fully grown classification trees are produced by randomly sampling a 

set of variables at each split45. This way, RF performs feature selection by carrying out a bootstrapping and 

aggregation (bagging) for tree building. The decisions are then made based on the average of collective 

decisions by all the fully grown decision trees. For each generated tree, the RF quantifies the performance 

of that tree by measuring Out-Of-Bag (OOB) error based on the samples that were not included during the 

bootstrapping. The OOB has a crucial role in estimating the goodness of fit for RF while also exempting us 

from performing the cross validation. For a decision tree, the Gini impurity metric reflects how good a node 

is in splitting. In RF, the mean decrease in impurity for an individual variable over all the trees indicates 

the importance of that feature variable44. We used the R package “RandomForest” to train RF model46. A 

detailed description of the RF algorithm is included in the supplementary text. 

 

2.2.2.3 XGBoost 

 

J.H Freidman47 introduced gradient boosting algorithms that have shown competitive classification and 

prediction potentials on many occasions. Based on the gradient boosting algorithm, Chen et al.48 proposed 

a scalable tree boosting machine called extreme gradient boost (XGBoost) that performed remarkably in 

several biological research49, 50.  

The underlying principle of XGBoost is that for the given data 𝐷 =  {(𝑥𝑛, 𝑦𝑛)}𝑛=1
𝑁  , the k classification 

trees or stumps given as 𝐹 =  {𝑓1(𝑥), 𝑓2(𝑥) … , 𝑓𝑘(𝑥) } assigns a class decision score 𝑓𝑘  to the data instance 

by passing it through the leaf node as per the division points of the variable. When the data instance 𝑥𝑖 

passes through a leaf node, the 𝑓𝑘  is assigned and the prediction result is registered. The collective sum of 

prediction results by each tree accounts for the final prediction result for each instance.  The model follows: 

 

𝑦̂𝑖 = ∑ 𝑓𝑘
𝐾
𝑘=1 (𝑥𝑖), 𝑓𝑘 ∈ 𝐹                (5) 

 

Here, 𝑓𝑘(𝑥𝑖) denotes the prediction score of 𝑘𝑡ℎ leaf node. The sum of prediction results overall K stumps 

yields the prediction result  (𝑦𝑖) for the 𝑖𝑡ℎ instance 𝑥𝑖.The Objective function Obj(θ) for XGBoost is given 

as: 

 

𝑂𝑏𝑗(𝜃) =  ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)𝑛
𝑖=1 +  ∑ Ω(𝑓𝑘)𝐾

𝑘=1                (6)  

 

Where θ is the model parameter. The sum ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)𝑛
𝑖=1  accounts for the error that the model accumulates 

with l(x,y) is the error function. The second summation  ∑ Ω(𝑓𝑘)𝐾
𝑘=1  represents the model’s regularization 

term, accounting for the complexity of the trees. A thorough overview of the XGboost algorithm is 
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described in Wei li et al51. An inclusive pseudocode47 for the gradient boosting algorithm is added in the 

supplementary text. Here we employed XGBoost to identify the most influencing residue interaction pairs 

for the mutated states. We used an R package “XGBoost” to implement the algorithm52. 

 

2.2.2.4 Principal Component Analysis (PCA) 

 

In the paradigm of finding biological descriptors using a simulation dataset, the unsupervised learning 

models perform worse than the supervised learning model because of their incapability to exploit the state 

label36. While the unsupervised learning models are not suitable for the unmasking of descriptors, they are 

highly robust in dimension reduction where the feature variables are mapped to a lower-dimensional 

configurational space and thus highlighting the main characteristics of the trajectory. In this direction, the 

PCA method is the most celebrated machine learning model that reveals the dominant modes in the motion 

of biomolecules by incorporating the molecular dynamic simulation trajectory53, 54. These motions reflect 

the correlated vibrations or collective motion of a set of residues in the trajectory53.  In principle, For the N 

residue system, the 3-dimensional cartesian coordinate configuration is transformed into a 3N × 3N 

covariance matrix whose eigenvectors provide vectorial information indicating the direction of each 

component of the trajectory while the corresponding eigenvalue represents the intensity contribution of that 

particular component. We elucidated this motion of eigenvectors through ‘‘porcupine’’ plots55 for each type 

of state of TDP43 which depicts the direction and magnitude for each residue in that state. We used PyMol 

software to generate the porcupine plots56. 

The computation was performed on an Intel (R) Core (TM) i5-4310 U, 16 GB RAM, and 64-bit OS Win 

10 configuration. The R version 4.0.3. was used to prepare codes for conducting the experiments and is 

shared in the Github link. 

 

3. Results and Discussions 

 

3.1. Molecular insights into structural changes in protein due to the disease-causing mutations. 

 

To investigate the structural changes that undergo in the protein due to mutations, we started by analyzing 

the stability of the single-stranded DNA bound wild-type (WT) and the mutant proteins from the 100ns 

simulation trajectories. From the RMSD analysis of the proteins (Fig.1C), we see that the overall protein 

structure is maintained for the wild type and mutant proteins and the mutations in the protein don’t impact 

the overall conformational stability of the protein molecule. However, we see that the D169G mutant 

protein shows the lowest RMSD as compared to the wild-type protein (Fig.1C). Several experimental 

studies have indicated that the D169G mutation increases the overall stability of the protein due to enhanced 

packing or hydrophobic folding of the RRM1 core domain26. We also calculated the evolution of solvent 

accessible surface area (SASA) of the WT and mutant proteins throughout the simulation trajectory and 
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found that mutant proteins, especially the I168A-D169G and D169G mutation has a lower SASA indicating 

stronger hydrophobic interactions of the core residues of RRM1 domain (Fig.1D).  
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Fig.1: Schematic representation of the DNA bound RRM1 domain of TDP-43 and the MD-ML workflow 

used for analysing the structural changes in the protein due to mutations. (A) The domain architecture of 
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TDP-43 consists of an N-terminal domain (NTD) followed by two RNA recognition motifs (RRM1 and 

RRM2) and a Glycine-rich C-terminal domain. The cleavage sites in the RRM1 domain (D169-G170 and 

D174-C175) are shown in red strips. The sequence of the RRM1 domain is shown with a red box 

highlighting the positions of the residues to be mutated. (B) The crystal structure of TDP-43 RRM1 domain 

(PDB ID: 4Y0F.pdb) in complex with a single-stranded DNA.  The RRM1 domain consists of two ɑ stands 

and five β strands. The amino acids that are mutated, i.e., D169G (shown in red), I168A (shown in magenta), 

I168A-D169G lie in a loop between the β4 and β5 strand and one of the cleavage sites (D174) are in the β5 

strand. (C-D) The Root Mean Square Deviation (RMSD) and Solvent Accessible Surface Area (SASA) of 

the WT and mutant proteins (D169G, I168A, I168A-D169G) are shown as a function of the simulation 

time(ns). (E) Schematic representation of the MD-ML workflow. The implementation of Machine Learning 

algorithms over the Molecular Dynamics simulation data to interpret significant biological characteristics. 

 

To further investigate the underlying mutation-induced molecular changes in the protein, we estimated the 

structural changes occurring in the WT and mutant proteins throughout the simulation time. Firstly, we 

calculated the difference of the average pairwise distances of the residues in the mutant proteins with respect 

to the WT protein to view the relative structural changes occurring in the protein due to mutations. The 

averaging is done over an ensemble of configurations of WT and mutant proteins generated throughout our 

simulations. From Fig. 2(A, C, E), we see that some of the inter-residue distances increase in the mutant 

proteins with a simultaneous decrease in other inter-residue distances. Although the global dissemination 

is observed for all the mutant protein structures, the major impact is seen in the double mutant protein (Fig. 

2C) where we see that the relative distances of the start (ɑ1 and β1 strand) and end regions (β4 and β5 

strands) of the protein decreases with respect to the mutant protein core (β2, β3 strands). A similar but less 

profound observation is seen for the D169G mutant protein (Fig. 2A). The relative motion of the mutant 

proteins with respect to the protein core is shown in the porcupine plots in Fig. 2 (B, D, F). The porcupine 

plots show the coordinated motion of the Cα atoms in the mutant proteins along their first eigenvectors. The 

arrowhead shows the direction of motion, and the size of the arrows gives the magnitude of the motion. The 

porcupine plots further strengthen the observation of the induced movement of the protein terminal regions 

towards the protein core due to the mutations. After having seen the relative changes in the protein structure 

due to the mutations, we also analysed if these structural changes in the mutant proteins result in any 

changes in the contact form within the mutant protein structures throughout the simulation time (Fig. S1A-

D). To get a more comprehensive outlook from our non-bonded contact formation map, we also included 

how long a contact is formed between two residues in our analysis. The darker the spot in the contact map, 

the longer the contact was formed between those pairs of residues. We see that the overall contact formation 

in the WT and mutant protein structures remains intact but some new contact formations are observed 

between the ɑ1 and β5 strands in the I168A-D169G and I168A mutant proteins. This may be due to the 

removal of the bulkier isoleucine by alanine that facilitates the protein to attain a more compact structure 

by promoting contact formation between the ɑ1 and β5 strand, mainly between the residues Lys120 – 
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Cys173; Tyr123 – Cys173 and Phe124 – Cys173. This also highlights the interactions of Cys173 as crucial 

to maintaining the increased hydrophobic interactions of the protein inner core. Several biochemical studies 

have identified the Cys173 to promote TDP-43 cross-linking via disulphide bond formation leading to 

decreased solubility of the protein23. We further investigated whether the structural changes in the protein-

induced due to the mutations affect the relative motions of the protein strands with respect to the protein 

core. For this, we performed the dynamic cross-correlation analysis of the Cɑ pairs of WT and mutant 

proteins throughout the simulation trajectory. From Fig. S2(A-D), we see that the protein core is involved 

in anticorrelated motion with the terminal regions of both the WT and the mutant proteins, whereas 

significant changes in the overall correlated motion of the protein molecule due to the introduction of 

mutations were not found. Recent experimental evidence is available substantiating that the D169G 

mutation in the protein facilitates the hydrophobic inner core of the protein and thus makes it more stable 

than the WT protein26, 57. Our study reveals that along with D169, I168 is also very crucial in maintaining 

the protein conformation and the I168A-D169G double mutant facilitates a tighter protein core, 

orchestrating increased stability and thus, inducing pathogenesis.  

 

 

 
 

 

Fig. 2.  The difference distance map of the (A) D169G (C) I168A-D169G and (E) I168A mutant proteins 

with respect to the wild-type protein structure throughout the simulation time. The above bar represents the 

secondary structure of the protein in 2D format; green regions represent beta sheets and red regions 

represent alpha helix. For clear representation, every third residue in the protein sequence is labelled in the 
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plots. Porcupine plot of (B) D169G (D) I168A- D169G and (F) I168A mutant proteins generated from the 

first eigenvectors showing the direction of motion of the protein represented by the red arrowheads. 

 

3.2 Effect of mutations on interactions of the protein with DNA 

 

Studies have suggested that the disruption of RNA or DNA binding to the RRM1 domain of TDP-43 

through mutation or truncation can alter the protein solubility leading to the appearance of aggregates in 

the nucleus30, 58. To investigate the effects of mutation on the interaction of the RRM1 domain with the 

DNA molecule, we calculated the evolution of distance between the WT and mutant proteins with respect 

to the DNA molecule. Fig. 3 presents the evolution of the average pair-wise distance between the WT and 

mutant proteins with the DNA throughout the simulation time. We see that the average residual distance 

between the core (mainly β4 and β5) and the terminal region (ɑ1 and β1) of I168A-D169G double mutant 

protein increases the most as evident from the colour-code representing the higher average residual distance 

between them (Fig. 3C). We also calculated the protein-DNA contact formation in the WT and mutant 

protein throughout the simulation time and find that most of the contact form with the DNA takes place 

between the protein core and initial alpha-helix and beta-strand regions of the protein (Fig. S3A-D). From 

the propensity of contact formation, we see that the introduction of mutations, especially the I168A leads 

to the disruption of contacts between the protein core, mainly loop4 (between β2 and β3) and the DNA. 

 

 
 

Fig. 3. Average residual distance between the (A) Wild-type (B) D169G mutant (C) I168A-D169G and (D) 

I168A mutant proteins with the DNA throughout the simulation time. The colour-code represents the 

(A) (B)

(D)(C)
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evolution of the average residual protein-DNA distance from 0 to 50Å. The protein and DNA residues are 

presented by their single-letter codes. 

 

 

3.3 Identifying the biological important descriptors of TDP-43 in different mutated states 

 

After having seen the structural changes occurring in the protein due to the disease-associated mutations, 

we now investigate the biological descriptors and the functionally important regions of the protein using 

Machine Learning models. In this direction, we trained various state-of-the-art supervised learning models 

to classify the states by learning the ensemble's features. Interestingly, all the supervised learning models 

have performed excellently in learning the differences among different states of mutation as they attain a 

high classification accuracy of 99.9% on a 5-fold cross-validation test (Table S1). The receiver operating 

curve (ROC) and area under it (AUC) remained very high as well (Fig. S4), thus empowering the results 

obtained. The list of the most optimum hyperparameters for each type of learning model that were used is 

provided in the supplementary (Table S2). While probing all the four types of states together, the regularized 

regression models (LASSO and ElasticNet) remained time expensive for both objectives. This was also 

observed when conducting a pair-wise WT vs Mutant state analysis. 

 

3.3.1 Objective I – Identify the discriminatory features of the RRM1 domain of TDP-43 

 

To identify the discriminatory features, we employ LASSO and XGBoost on the labelled frame of feature 

datasets. The importance of each feature is yielded by averaging the importance for the interacting pairs 

obtained by the models. Figure 4A & 4C presents the average globally important protein inter-residue and 

protein-DNA residue interaction map respectively where the importance of interaction is shown by the 

colour key, where the darker shade represents the higher importance of the interaction. Here, with 

“globally” we tend to mean that the analysis was carried out by training the features of all the mutant states 

together. The importance interaction map for the pair-wise analysis of each mutant state is provided in the 

supplementary (Fig. S5). Some of the important protein-protein and protein-DNA interactions are shown 

in the cartoon representations (Fig. 4B & 4D) of the protein complex. For the protein, we find that most of 

the important discriminating interactions involve the residues in the protein core (Fig. 4A). The residue 

pairs having the higher important discriminating scores were found to be M132 - V135, L120 - M132, 

L111-K136, D119-V133. These interactions can be experimentally assessed by biomedical researchers to 

develop potential therapeutics for the TDP-43 associated diseases. This also indicates the crucial role played 

by the protein's inner core in maintaining the stability of the protein and its interaction with the DNA. These 

results obtained through the machine learning models are in line with the studies that have suggested that 

the D169G mutant enhances the stability of TDP-43 by increasing the hydrophobicity or compactness of 

the core of the RRM1 domain. 
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Fig.4. Global average Importance Interaction map of (A) Protein-protein interactions and (C) protein-DNA 

interactions. The colour intensity shows the importance of the interaction where the darker shade represents 

higher importance. For clear representation, every third residue in the protein sequence is labelled in the 

plots. Schematic representation of some of the important (B) protein-protein interactions and (D) protein-

DNA interactions. The residues are represented in their single-letter amino acid code. The dashed lines 

indicate the interacting residue pairs. 

 

In Fig. 4B, we have schematically shown some of the important interactions which involve the mutation 

site, D169 and the W172 and D174 residues in the β5 strand of the protein where the protein is generally 

cleaved. We see that D169 residue has important interactions with the residues of the protein core such as 

G146 (shown in the diagram), W123, and also has important discriminatory interactions with the residues 

of loop 1 (between ɑ1 helix and β1 strand) such as P112. Moreover, both the mutation site residue, D169 

and I168 are found to have important discriminatory interactions with T115 which is also experimentally 

validated to be crucial in maintaining the protein stability26. The cleavage-prone residues in the β5 strand 

are found to have important interactions with the protein core residues, such as W172 - G146, F147 - D174, 

F149 - D174, V161 - D174. The importance of the core residues can also be seen in the interaction of the 

protein with the DNA where the core residues such as Q134, F147, G146 is found to have an important 

interaction with the DNA molecule.  
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3.3.2 Objective II- Identifying individual important residues in the RRM1 domain of TDP-43 

 

While unravelling the important interacting pairs, it is also necessary to identify the contribution of the 

individual residues of the RRM1 domain that plays a crucial role in maintaining the stability of the protein. 

For a given residue, its importance is calculated by averaging the importance of all the identified interaction 

pairs that include that particular residue. Since LASSO and XGBoost drop all the moderate to low 

contributing interactions, they are abysmal to depict the true per residue importance profile. Consequently, 

the ElasticNet and RandomForest models were employed. Interestingly, the per residue importance profile 

indicated that the protein core comprised of the β3 and β4 strand of the RRM1 motif shows the highest 

importance per residue (Fig. 5A). The highest importance per residue in the β3 and β4 strands are found for 

the residues Q134 and G148. Among the top 15 highest important residues (marked by dashed lines in Fig. 

5A) include the I166 and I168 residues of β4 and residues spanning the β1 and ɑ1 strand.  

  

 

Fig. 5. (A) Global average Important residue map of all the residues in the RRM1 motif of TDP-43 protein. 

The green and yellow bars represent the alpha-helix and beta-strand respectively. (B) Gradient colour coded 
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important residue cartoon representation of the RRM1 protein. The redder shade represents higher 

importance and the transition from red to blue indicates a decrease in the importance scores. 

 

Fig. 5B shows a schematic representation of the residue importance where the redder shade represents 

higher importance, and the blue shade represents less importance. This also suggests that the residues in the 

ɑ1 strand, especially E117 and L120 shown by lighter blue shade are as important as the mutant residues 

and can also influence the protein stability, which can be experimentally tested by mutagenesis studies. 

Although similar observation is seen for the interaction map of the individual mutant proteins [Fig. S6], the 

per residue importance of the protein core region is highest for the I168A-D169G double mutant as 

compared to the other two mutations. Hence, our analysis not only elucidates the underlying molecular 

basis of disease-associated mutations in the TDP-43 protein but also helps in identifying the crucial residues 

involved in the protein stability which can be genetically engineered to address its pathogenesis.  

 

4. Conclusion 

 

Recently, neurodegenerative disorders linking to TDP-43 malfunction have increased considerably and 

mutational modifications in the protein are found to expedite its toxic cytoplasmic aggregation8. In this 

work, we performed an extensive structural analysis on the effect of common disease-causing mutations on 

the RRM1 domain of TDP-43 protein combining molecular dynamics simulations with machine learning 

models through the MD-ML workflow. Out of the three mutations studied, D169G, I168A-D169G and 

I168A, we found that the I168A-D169G double mutant shows the highest packing of the protein inner core, 

indicating more stability and hence can lead to the enhanced level of pathogenesis which needs to be 

experimentally validated in the future. Moreover, using machine learning approaches, we identified the 

important (i) protein-protein and protein-DNA interacting pairs and (ii) individual protein residues that are 

crucial in maintaining the stability of the protein molecule. We showed that along with the protein residues 

in the mutation sites, the residues in the cleavage sites are also involved in important interactions with the 

protein core. Moreover, the per residue importance profile shows the crucial role of the protein inner core 

in maintaining the stability of the protein. In addition to that, residues in the ɑ1 strand are found to be 

important which can be experimentally validated for their influence on the protein stability and hence its 

pathogenesis. This information will help biomedical researchers working in emerging strategies towards 

TDP-43 disaggregation and develop prospective therapeutics in the future.    
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The Random Forest (RF) 

Let the feature dataset used for training is bootstrapped  𝐵 = {(𝐹𝑖, 𝑆𝑖)𝑖=1
𝑁  | 𝐹𝑖  ∈  R𝑀 , 𝑆 ∈ {1,2, … , 𝑐}}, where 𝐹𝑖 

are the feature set (variables) and 𝑆 represents its respective label (the mutation state). Let N and M denotes the 

cardinality of samples used for training and the features respectively. For 𝐹 be a given input instance and the 

prediction of the 𝐾𝑡ℎ tree 𝑇𝑘 is represented as 𝑆𝑘̂. The prediction obtained by the RF as an ensemble of 𝐾 is: 

𝑆̂ = 𝑚𝑎𝑥 𝑣𝑜𝑡𝑒 {𝑆𝑘̂}1
𝐾 

Pseudo-Code 

The input be the bootstrapped training dataset 𝐵 

|𝑚𝑡𝑟𝑦| = 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑠𝑖𝑧𝑒, 

|𝐾| = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑠𝑠 

 

• For 𝑘 → 1 𝑡𝑜 𝐾 𝑑𝑜: 

a. B𝑘 samples are selected from the input to produce bootstrapped 𝐵 

b. 𝑚𝑡𝑟𝑦 features are chosen at random. 

c. For 𝑚 → 1 𝑡𝑜 ‖𝑚𝑡𝑟𝑦‖ do 

d. The amount of decrease in the node impurity (Gini Impurity) is calculate 

e. Most contributing variable in the impurity decline is chosen and the node is then split 

into two daughter/child nodes 

 

• The ensemble of the 𝐾 trees produce a RF 

 

While bootstrapping the feature dataset, due to the sampling with replacement not all the samples were used to 

prune the tree. These samples are called the in-bag samples. The left-out instances are coined as out-of-

bag (OOB) sample. The OOB samples are exploited to calculate the error in prediction for each generated 

random forest also called as the OOB error rate. 

 

The OOB value is given as: 

 𝑆̂𝑂𝑂𝐵 = (
1

‖𝜃𝑖′‖
) ∑ 𝑆̂𝑘

𝑘𝜖𝜃𝑖′
 , where 𝜃𝑖′ =

B

𝜃𝑖
, i’ and i denotes the out-of-bag and in-bag sampled instances, ‖𝜃𝑖‖ 

is the number of OOB instances. The OOB prediction error is: 

 

𝐸𝑟𝑟̂𝑂𝑂𝐵 =
1

𝑁𝑂𝑂𝐵
∑ Ψ(S, 𝑆̂𝑂𝑂𝐵)

𝑁𝑂𝑂𝐵

𝑖=1

 

 

Here Ψ(. ) is the error function and 𝑁𝑂𝑂𝐵 is OOB sample’s size. 
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Gradient Boosting Algorithm 

Boosting algorithms are gravitating a lot of attention in recent years. Of this, gradient boosting algorithm (GBM) 

are classification and regression models, that generates a prediction model through an ensemble of weak 

decision tress. Although a tree-based model, GBM outperforms the random forest models in terms of accuracy 

and speed [1,2,3]. The GBM model is built in a stage-wise fashion while introducing an arbitrary differentiable 

loss function [4,5]. Friedman introduced GBM models for regression and from there on the regularization and 

generalization of GBM emerged [6,7]. 

Here we state the pseudocode of a GBM machine. A preeminent view of GBM can be found in Friedman et al. 

[5]. 

Let the Data set be 𝑋 as {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 . Let the differentiable loss function be defined as 𝐿(𝑦, 𝐹(𝑥)) and the 

number of iterations be 𝑀 

The algorithm then follows: 

• The model is initialized as constant value. The constant here is basically the mean target value. 

𝐹0(𝑥) =  𝑎𝑟𝑔 𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝛾) 

𝑛

𝑖=1

 

• For 𝑚 = 1 𝑡𝑜 𝑀: 

• The pseudo-residuals are calculated as: 

𝑟𝑖𝑚 = [
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)

    𝐹𝑜𝑟 𝑖 = 1 … 𝑛 

• The weak learner is fitted closed under the scaling of the calculated pseudo-residuals 

ℎ𝑚(𝑥). This mean that the training is carried out over the new derived data set 

{(𝑥𝑖, 𝑟𝑖𝑚)}𝑖=1
𝑛 . 

• By solving the optimization problem, the 𝛾𝑚 is calculates: 

𝛾𝑚 =  𝑎𝑟𝑔𝛾𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚(𝑥𝑖))

𝑛

𝑖=1

 

• The model is the updated 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚(𝑥) 

• Output 𝐹𝑀(𝑥) 
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CV Table 

 

Table S1. The classification performance metric of all the models for each type of mutation type. Accuracy = 

TP + TN/(TP+TN+FP+FN), Sensitivity =TP/(TP+FN), Specificity =TN/(TN+FP) and Precision = TP/(TP+FP) 

where TP, TN, FP and FN are True Positive, True Negative, False positive and False Negative classifications 

respectively. 

 

Hyperparameter Table 

 

Table S2. The hyperparameters employed for the machine learning models. 
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Fig. S1. Contact map for (A) Wild-type (B) D169G (C) I168A-D169G (D) I168A proteins calculated 

throughout the simulation time. The darker the spot in the contact map, the longer the contact was 

formed between the pair of residues. 

 

 

 

Fig. S2. Dynamic cross-correlation map of (A) Wild-type (B) D169G (C) I168A-D169G (D) I168A 

proteins throughout the simulation time. The negative value represents anti-correlated motion whereas 

the positive value represents correlated motion. 

 

(A)

(B) (C) (D)D169G mutant protein I168A-D169G  mutant protein I168A mutant protein

WT protein
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Fig. S3. Protein-DNA contact map for (A) Wild-type (B) D169G (C) I168A-D169G (D) I168A 

proteins throughout the simulation time. The darker the spot in the contact map, the longer the contact 

was formed between the pair of residues. 

 

ROC AUC 
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Fig. S4. The ROC curve for each type of model (A) RandomForest, (B) Elastic Net, (C) LASSO, (D) 

XGBoost; plotted for the five-fold test dataset. The AUC (Area Under Curve) is observed to be 100% 

for all models when trained for all labelled mutated states. 

 

 

 

 

Fig. S5. Importance Interaction map of Protein-protein interactions (A,C,E) and protein-DNA 

interactions(B, D, F) for (A,B) D169G (C,D) I168A-D169G (E,F) I168A mutant proteins. The colour 

intensity shows the importance of the interaction where the darker shade represents higher importance. 

For clear representation, ever third residue in the protein sequence are labelled in the plots. 

 

(A) (B)

(C)

(E)

(D)

(F)
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Fig. S6.  Important residue map of all the residues in the RRM1 motif for (A) D169G (B) I168A-

D169G (C) I168A proteins. The green and yellow bars represent the alpha helix and beta strand respectively. 
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