
Parallel Implementation of Smith-Waterman Algorithm on
FPGA

Fabio F. de Oliveira1�, Leonardo A. Dias2�, and Marcelo A. C. Fernandes1,3�*

1 Laboratory of Machine Learning and Intelligent Instrumentation, nPITI/IMD, Federal
University of Rio Grande do Norte, Natal, 59078-970, Brazil
2 Centre for Cyber Security and Privacy, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, UK
3 Department of Computer and Automation Engineering, Federal University of Rio
Grande do Norte, Natal, 59078-970, Brazil

�These authors contributed equally to this work.
* mfernandes@dca.ufrn.br

Abstract

In bioinformatics, alignment is an essential technique for finding similarities between
biological sequences. Usually, the alignment is performed with the Smith-Waterman
(SW) algorithm, a well-known sequence alignment technique of high-level precision
based on dynamic programming. However, given the massive data volume in biological
databases and their continuous exponential increase, high-speed data processing is
necessary. Therefore, this work proposes a parallel hardware design for the SW
algorithm with a systolic array structure to accelerate the Forward and Backtracking
steps. For this purpose, the architecture calculates and stores the paths in the Forward
stage for pre-organizing the alignment, which reduces the complexity of the
Backtracking stage. The backtracking starts from the maximum score position in the
matrix and generates the optimal SW sequence alignment path. The architecture was
validated on Field-Programmable Gate Array (FPGA), and synthesis analyses have
shown that the proposed design reaches up to 79.5 Giga Cell Updates per Second
(GCPUS).

1 Introduction 1

In Bioinformatic, the analysis can be divided into three parts called primary, secondary, 2

and tertiary analysis [1, 2]. The primary analysis is responsible for generating genomic 3

data information from biological material. In the primary analysis, the sequencing 4

machines create raw genomic data (or raw data). The raw data is composed of several 5

genome reads. 6

The secondary analysis involves reads alignment and trimming based on quality, and 7

at the end of this step, a whole genomic is created. Finally, tertiary analysis can be 8

characterized as interpreting results and extracting meaningful information from the 9

data. In this last step, many algorithms and techniques can be applied. Also, many 10

applications are created from these analyses. The tertiary analysis covers various 11

applications, from genome characterization to a vaccine or drug treatment creation [2]. 12

A large amount of raw data has been generated in recent years due to the 13

replacement of Sanger sequencing by Next-Generation Sequencing (NGS), also called 14

June 27, 2021 1/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

High-Throughput Sequencing (HTS) [3, 4]. Each sequencing machine can be created 15

about 7 Tera base pairs (bp) per hour (Tbp/h) [5]. The amount of raw data further 16

increased the occurrence of the COVID-19 pandemic. Disease caused by the 17

SARS-CoV-2 virus has been spreading worldwide and has been declared a pandemic by 18

the World Health Organization [6, 7]. 19

After sequencing reads, alignment methods can be performed to map and determine 20

the evolutionary line of the targeted organism, such as its phylogeny. As a result, it is 21

possible to understand the sample’s action mechanics by comparing them with cataloged 22

samples in existing databases [2, 8]. The most used meta-heuristic alignment method for 23

the sequences is the Basic Local Alignment Search Tool (BLAST) due to its fast 24

processing speed and less memory usage than deterministic alignment algorithms [9]. 25

However, different from the meta-heuristics, deterministic alignment methods offer 26

the optimal alignment for a given input sequence instead of an approximate solution. 27

The main deterministic methods are the Needleman-Wunsch (NW) and 28

Smith-Waterman (SW) algorithms for global and local alignment, respectively [10,11]. 29

Nonetheless, a significant disadvantage of these algorithms is their slow processing speed 30

and high memory usage due to the computational complexity. For example, 31

SARS-CoV-2, commonly vary from 28k to 31k base pairs (bp) in size. Thus, performing 32

thousands of large-size sequence alignments became a real challenge for extracting 33

information on the raw data. 34

Thus, it is essential that the processing of algorithms associated with the 35

bioinformatics area cover three critical requirements: high processing speed 36

(high-throughput), ultra-low-latency, and low-power [12–14]. Bioinformatics analysis 37

algorithms are critically dependent on the computational infrastructure to cover 38

high-throughput, ultra-low-latency, and low-power requirements. It can be said that 39

there are three generations of infrastructure used, which are: High-Performance 40

Computing (HPC) [15], Graphics Processing Units (GPUs) [16,17], and Custom 41

Hardware Architectures (CHA) [18–20]. 42

Genomic analysis solutions associated with the first (HPC) and second (GPUs) 43

generation of computational infrastructure use systems based only on software that can 44

be implemented using only CPUs and GPUs. However, these software-only approaches 45

cannot keep up with the growing computational demands of genomic analysis, given the 46

barriers to reducing latency in large volumes using only CPUs and GPUs. In addition, 47

as the number of nodes grows to handle increasing amounts of data, performance is not 48

scaled linearly [15,21–23]. The third (CHA) generation of infrastructure has been 49

presenting itself as an exciting alternative to satisfy high-throughput, ultra-low-latency, 50

and low-power requirements [24–29]. 51

To overcome the low-speed processing bottleneck and maintain the optimal 52

alignment of deterministic algorithms, parallel hardware implementations for the SW 53

algorithm have been proposed in the literature. The main platforms used are Field 54

Programmable Gate Arrays (FPGAs), Central Processing Units (CPUs), and GPUs. 55

FPGAs are widely known for their flexibility for parallelization and low-power 56

consumption. An FPGA is a matrix of logic blocks that allows designing different 57

circuits, such as processors, logic circuits, and even algorithm development [27]. FPGA 58

platforms can be categorized as third generation computational infrastructure in 59

bioinformatics, as it is a CHA. Also, the logical blocks within the FPGA are 60

independent, allowing operations to be carried out in parallel and only one clock cycle, 61

unlike CPUs that operate sequentially based on instructions and GPUs that require 62

constant access to memories. 63

Therefore, this work presents a parallel FPGA design with a systolic array structure 64

to accelerate both the Forward and Backtracking stages of the SW algorithm. The main 65

contributions are high-speed data processing implementation and low memory usage. 66

June 27, 2021 2/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

Thus, allowing high scalability. According to [30], the systolic array is a class of parallel 67

computing architecture that describes an array for dense linear algebraic calculations, 68

proposed by [24]. Its hardware implementation usually uses a pipeline structure, where 69

the data is propagated between Processing Elements (PEs). Besides, its main advantage 70

is to reduce the number of memory accesses throughout the data flow. Hence, systolic 71

arrays simplify the architecture and improve the system’s operating frequency. [31]. 72

1.1 Related Works 73

This subsection briefly discusses hardware-based approaches for the SW algorithm that 74

can be found in the literature, such as implementations in supercomputers [32], 75

GPUs [33–36], architectures based on Resistive Content Addressable Memories 76

(ReCAMs) [37] and FPGAs [34,38–43]. 77

GPUs are well-known for their high degree of parallelism and computing intensity. 78

However, they have a high cost, significant computing latency, and low energy efficiency. 79

The high computing latency is due to the high number of cores and low cache memory 80

to control these cores. In contrast to GPUs, FPGAs are customizable according to the 81

user’s needs, achieving better computing performance and lower latency [14,44,45]. 82

However, FPGA hardware development is usually complex and takes a long time. 83

In recent years, supercomputers have also become widely used for processing massive 84

data. In [32], a hybrid SW-NW algorithm deployed on the Sunway TaihuLight 85

supercomputer (China’s fastest supercomputer with a peak performance of 100 Peta 86

Floating-point Operations per Second (PFLOPS)) is presented. The SW-NW was 87

implemented in Message Passing Interface (MPI) and Athreads (parallel computing 88

modalities) using the SW26010, a heterogeneous multi-core processor, to achieve good 89

scalability and reduce the processing time. According to the authors, the 90

implementation combines both the local and global alignments of the SW and NW 91

algorithms. A runtime analysis for the P50909 protein was carried out with the SW-NW 92

varying from 1 to 64 nodes, where each node corresponds to a multi-thread processor, 93

reaching 9.85 Giga Cell Updates per Second (GCUPS), a speedup of 15.81× compared 94

to the runtime of a serially performed single node implementation. 95

Unlike the conventional platforms previously mentioned, the SW algorithm has also 96

been implemented on ResCAMs, as can be seen in [37]. ResCAMs is a storage 97

accelerator system that allows millions of processing units (PUs) to be deployed over 98

multiple silicon arrays. In [37], the implementation was used to compare the 99

homologous chromosomes between humans (GRCh37) and chimpanzees (panTro4), and 100

the only SW step performed was the building of the score matrix. As a result, their 101

proposal achieved 5, 300GCUPS, a 4.8× speedup over the GPU performance. Besides, it 102

also had a 1.7× better energy efficiency compared to an FPGA implementation. 103

In [38] an FPGA implementation of the BLASTP, a BLAST heuristic aimed at local 104

alignment of protein sequences, is proposed. The architecture was developing using 105

systolic arrays, and it does not need the neighborhood preprocessing step as the K-mers 106

algorithm. They also used the SW gap concept to maximize the final performance of 107

the system. Despite the good performance achieved by the proposed implementation, it 108

did not offer improvements regarding other works. 109

In [34], a heterogeneous FPGA architecture for sequence alignment is proposed. 110

Unlike most of the works in the literature, their implementation aims to accelerate the 111

entire SW algorithm with the backtracking process. For this purpose, the architecture 112

can process long strings of data based on parallelism and partitioning strategies; and the 113

backtracking process was performed by dividing the equal parts of the similarity matrix, 114

while the search started from the lower right sub-matrix. The tests were performed for 115

512 Processing Elements (PEs), reaching 76.8GCUPS at 150MHz and 105.9GCUPS 116

(with external memory) for 200MHz. As a result, a speedup of 3.6× to 25.2× was 117

June 27, 2021 3/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

achieved regarding other SW designs implemented on FPGA and GPUs. Besides, it 118

reached a 26% reduction in power consumption compared to the GPU implementation. 119

Similarly, more FPGA approaches using systolic arrays for the NW and SW with 120

backtracking sequencing techniques have been proposed, such as [41,46]. In [41], a 121

VHDL SW implementation, using Dynamic Programming (DP) with approximation 122

correspondences for two different strategies, was proposed. It achieved 23.5GCUPS with 123

speedups between 150× to 400× compared to a 2004-era PC. Meanwhile, in [46], the 124

implementation was based on PEs to perform elementary calculations and a diagonally 125

backtracking search, also developed in VHDL. Comparisons were made with the linear 126

and affine strategies, achieving 10.5GCUPS. 127

In [42], the SW forward and backtracking processes were implemented in an FPGA. 128

The Qnet structure was adopted for communicating with the FPGA, reaching 129

25.6GCUPS, a speedup of 300× compared to a desktop computer. 130

Another FPGA alternative for implementing the SW is OpenCL and OpenMP, as 131

shown in [43]. An OpenCL conversion extension is used to synthesize the algorithm and 132

synchronize tasks in multiple Altera FPGAs through the OSWALD software to 133

accelerate the SW on heterogeneous platforms. Tests were performed using a host, a 134

host with an FPGA, a host with a GPU, a host with a Xeon processor, a single FPGA, 135

and two FPGAs. For a single FPGA, 58.5GCUPS was achieved, while two FPGAs 136

reached 114.7GCUPS. 137

Therefore, it can be noted from the literature that the key points for a 138

high-performance SW implementation on FPGA are the operating frequency and 139

number of PEs, which in turn are associated with the hardware capacity and design 140

critical path. Thus, we present an FPGA implementation for the SW algorithm using 141

systolic arrays, as in [34,41,42,46]. 142

Our approach performs both the Forward and Backtracking stages of the algorithm. 143

Unlike the approaches in the literature, we obtain the alignment path distances during 144

the Forward Stage processing and the maximum score, reducing the complexity of the 145

Backtracking Stage processing. Memories are used to propagate the distances and 146

maximum score, allowing the Backtracking step to follow the path directly. Thus, our 147

architecture achieves good performance (short critical path), reduced memory usage and 148

high scalability, and prevents memory access overlap latency, even implementing the two 149

stages of the SW algorithm. 150

2 Smith-Waterman Algorithm 151

Smith and Waterman originally proposed the SW algorithm in 1981 to performs local 152

sequence alignment of nucleotides and proteins in the biological field [11]. The sequence 153

alignment of the SW algorithm includes the Forward and Backtracking stages, which 154

are performed by the calculation results of the alignment similarity score. Besides, the 155

alignment is performed based on two input sequences called query sequence, q, and 156

dataset sequence s. The query sequence can be expressed by 157

q = [q1, . . . , qj , . . . , qN] (1)

where qj is the j-th nucleotide or amino-acid protein and N is the length of the query 158

sequence. The dataset sequence can be expressed by 159

s = [s1, . . . , si, . . . , sM] (2)

where si is the i-th nucleotide or amino-acid protein, and M is the dataset sequence 160

length. Therefore, the SW algorithm is calculated attractively for two dimensions, and 161

it has a computational complexity of O(M ×N). 162

June 27, 2021 4/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

The Forward Stage calculates the scoring matrix, H, where H is a two-dimensional 163

array that can only take values greater than or equal to 0 (i.e., H ∈ N2). This matrix is 164

generated by comparing the elements of the sequences q and s. Usually, H is generated 165

using DP, and it is initialized with zeroes in the first row and column. Subsequently, the 166

DP process is performed to calculate the sequence scores. Based in works presented 167

in [32,34,47], the recurrence relationship can be defined as 168

HM,N =


H(i, j) = max{0,E(i, j),F(i, j),H(i− 1, j − 1) + P(si, qj)}
E(i, j) = max{H(i, j − 1) + ρ,E(i, j − 1) + σ}
F(i, j) = max{H(i− 1, j) + ρ,F(i− 1, j) + σ}

(3)

where H(i, j){(i, j) ∈ N | 1 ≤ i ≤M, 1 ≤ j ≤ N}, P is the score matrix used for 169

obtaining the similarity score between si and qj , E and F are two assisted matrices 170

when calculating matrix H, ρ is the gap opening penalty and σ is gap extension penalty. 171

In the particular case of ρ = σ, a linear gap penalty model is obtained, opening and 172

extending a gap with the cost γ. P is also called a substitution matrix, where the 173

simplest version is when the diagonal receives the match value and the rest of the 174

matrix has a mismatch value. When performing all element calculations, this expression 175

is the HM,N matrix. Therefore, H(i, j) is the maximum alignment score of two 176

sub-sequences s and q. The initialization condition is 177

H(i, 0) = H(0, j) = E(i, 0) = F(0, j) = 0 ∀ {(i, j) ∈ N | 1 ≤ i ≤M, 1 ≤ j ≤ N}. (4)

The maximum score value of H(i, j) in the Forward Stage is the last sequence that 178

will be aligned. To determine the relationship, the previous neighborhood values of the 179

analyzed element are required, i.e., the values on the diagonal, horizontal, and vertical 180

positions, as illustrated in Figure 1. As can be observed, the score of w can be found 181

based on its neighborhood (x, y, v), which is H(i− 1, j − 1),H(i− 1, j),H(i, j − 1), 182

respectively. This windowing step occurs throughout the process of determining all 183

scores in H. 184

Fig 1. The direction of the score computation in the matrix during the SW Forward
Stage. To determine a score, such as w, the neighborhood values (x, y, and v) have to
be known. The green-colored cells indicate already computed values, while the yellow
cells indicate that the values to be calculated.

As shown in Figure 1, the neighborhood values x, y and v, must necessarily be 185

known to determine the value of w (i.e., H(i, j)). For this purpose, those values are 186

June 27, 2021 5/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

defined based on the sequences q and s. Thereby, the w score is determined as 187

w = max



x+ α if qi = sj

x+ β if qi 6= sj

y − γ
v − γ
0

, (5)

where γ, α, and β represent the linear gap, a match, and a mismatch, respectively. A 188

gap is a penalty that causes an empty element in the sequence (represented by a dash 189

symbol), while the other sequence continues. It can result from the query or database 190

sequence. The Equation 5 is equivalent the Equation 3, where 191

x+ (α ∨ β) = H(i− 1, j − 1) + P(si, qj), y + γ = F(i, j) and v + γ = E(i, j). Finally, 192

when fully populated, the H matrix contains the score and path information. 193

The Backtracking Stage starts after determining all the scores in the H matrix, i.e., 194

calculating the score of all cells H(M,N). Hence, the backtracking begins at the cell 195

with the highest value in the H matrix (maximum score) and trace-back the next 196

position based on the highest neighborhood value, according to Equation 5, which can 197

be on the diagonal, horizontal, or vertical direction. This is an iterative process that 198

repeats until it reaches the limit value, usually set to a score of 0. Also, a directional 199

flag indicates the path. Finally, the backtracking path determines the best local 200

alignment. The diagonal direction points to a match in the alignment, while the 201

horizontal and vertical directions indicate gaps which are represented by dashes in the s 202

and q sequences, respectively. 203

3 Implementation Description 204

The hardware architecture for the SW algorithm proposed in this work was developed 205

using systolic arrays to input two DNA sequences and increase the processing speed of 206

the local sequence alignment. An overview of the systolic array structure of the 207

proposal for N PEs is shown in Figure 2. Besides, each PE is divided into 3 modules. 208

These modules are the Forward stage, the storage process, and the Backtracking stage, 209

as seen in Section 2. Each module is illustrated in blue, green, and yellow, respectively. 210

The Forward stage has its module named as Matrix Score Module (MSM), the storage 211

process module is called as Memory Module (MM), and the Backtracking stage has its 212

module as Backtracking Stage (BS). 213

The labeled signals shown in Figure 2 are generated outside the modules. 214

Meanwhile, the non-labeled ones are generated by computations inside the modules and 215

detailed throughout this Section. The sequences q and s, defined according to 216

Equations 1 and 2, are external discrete signals used as inputs of the SW algorithm. 217

Furthermore, each signal in the sequences represents one of the four DNA nucleotides, 218

i.e., A, G, T, or C (also withstand twenty levels referring to amino acids). 219

Initially, the circuit starts when the MSM modules propagate the q and s signals. As 220

seen in Figure 2, each k-th element of the q and s sequences are shifted to each MSM 221

output to shorten and stabilize the critical path, as well as allowing the computation of 222

scores synchronously, preserving the systolic array structure. Afterward, the MSM 223

computes the score according to Equation 3, and propagates the sequence elements to 224

the next MSM; also, the computed results are sent to the respective MM in their order 225

of entry. During this process, the MM operates exclusively in writing mode while the 226

process has not reached the last computation between the two sequences. 227

The Forward stage is completed after fully computing the scores of the H matrix. 228

Also, the last MSM enables the Backtracking process. Consequently, the MM switches 229

June 27, 2021 6/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

MSM 0

MM 0

BS 0

MSM 1

MM 1

BS 1

MSM N-1

MM N-1

BS N-1

...

SW FULL

q(k)

s(k)

q(k-1)

s(k-1)

q(k-2)

s(k-2)

q(k-N+1)

s(k-N+1)

q(k-N)

s(k-N)

Fig 2. General architecture for the SW algorithm. The Forward Stage (MSM) is
represented by the blue block, the Backtracking Stage (BS) by the yellow block, and the
Memory (MM) by the green block. Only external signals are displayed, i.e., the q and s
signals.

to the read mode, and the BS reads the data computed by its respective MSM. The 230

alignment starts from the calculations performed in the MSM. Then, from the 231

respective defined PE in the Forward stage, the process starts and ends according to the 232

definitions of the SW algorithm. 233

Figure 3 shows the block design that represents each PE of the systolic array, with a 234

detailed description of the signals between the modules within one PE. As can be 235

observed, besides the two input sequences to be compared, q and s, the MSM also 236

receives an enable signal, en. After computing the score between each k-th element of 237

the two sequences (i.e., an element of the H matrix), the MSM outputs to the next PE 238

the following signals: the calculated score, Scj ; the maximum score, MaxV al, and its 239

position, AddrRAMi∧j ; the PE index; along with the input signals q, s, and en, shifted 240

in time. In addition, the MSM also outputs signals to the MM, which are the calculated 241

path direction, Direction, and the storage address of that path wAddrDir. 242

Subsequently, after fully populating the H matrix and, consequently, the D matrix, 243

the Forward stage is finished enabling the Traceback signal, which in turn begins the BS. 244

Firstly, the BS sets signal BTStart to 1, indicating the start of the Backtracking process. 245

Therefore, the mRAMi∧j are propagated back until it reaches the BS with maximum 246

score, which is identified by the signal index. From this location match, the btcontrol 247

signal is changed to allow the reading of the memory by MM. Thus, the BS receives the 248

path value from the MM at signal dj when sending the memory address rAddrDirj 249

signal. The dj value allows the BS to calculate the next requested address and 250

propagate it to the next module through the path(j) signal, representing the memory 251

address of the request path in MM. Lastly, the alignment value enters valDir, and the 252

process continues until it reaches the complete alignment. All modules are detailed in 253

the following subsections. All signals present in this Section are shown in Table 1. 254

255

June 27, 2021 7/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

MEMORY MODULE

Backtracking Stage 0

Matrix Score
Module 0

PE SW Full

Fig 3. Architecture of each PE in the systolic array. The Forward Stage is represented
by the blue block, the Backtracking Stage by the yellow block, and the Memory by the
green block.

3.1 Forward Approach 256

Firstly, based on the principles ”divide and conquer” for solving computational 257

problems, we propose a matrix used to store only the values of the recursive path, called 258

the D matrix. The D matrix is not widely used in the SW literature. However, it is 259

important to achieve a solution at lower-level programming. Besides, a matrix with two 260

different types of information, such as the H matrix, increases the hardware design 261

complexity. Matrix D needs to store only 4 levels of values which are: 0, 1, 2 and 3. 262

Each element of the matrix D needs 2 bits to be expressed, delivering a more 263

economical storage process compared to H, which can certainly need more than 2 bits 264

to represent each element. 265

As previously mentioned, the alignment process is performed based on the query and 266

dataset input sequences, q and s, respectively. Also, there can have different sizes, 267

represented by N and M , which define the size of the matrices H and D, respectively. 268

The Matrix Score Module (MSM) calculates the scores and distances in columns of 269

matrices H and D in parallel. 270

The systolic array structure developed for the matrices is composed of N PEs. 271

Therefore, for each j-th element in q, there is a j-th PE. It is based on dividing the 272

construction of the H score matrix expressed by 273

H = [g0, . . . ,gj , . . . ,gN−1] , (6)

and finding the best path in which the D matrix returns the correct sequence alignment, 274

which in turn is equivalent to the directional flags that determined the alignment path. 275

Moreover, for each PEj (which represents a column of the matrix H) there is i-th s(i) 276

June 27, 2021 8/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

Signal Stage Description

q(k) F query sequence, to be compared with the database sequence.
s(k) F database sequence.
en(k) F,S sequence that enables the PE cells.
Sc(i) F vector of scores.

MaxV al F maximum score.
AddrRAMi∧k F,B memory address of the highest maximum score.

index F,B corresponding addressing of the modules.
Direction F,S calculated value of the direction to be stored in RAM.
wAddrDir F,S storage address corresponding to the direction in RAM.
Traceback F,B flag to indicate the start of the backtracking in PE N − 1.
btcontrol S,B flag to change the state of the write-to-read memory
rAddrDir S,B choosing the corresponding value for reading in RAM.

d(i) S,B return of the value of the path passed from the RAM.
mRAMi∧k S,B addresses of the path to be followed in the alignment.
BTStart B enable flag of the backtracking after Traceback.
BTNext B flag for enabling the internal circuits to choose and process.
valDir B alignment path value for that PE.
path(j) B memory position of the current alignment in the module.

Table 1. Description of signals and the algorithm stage they are used. The Forward
Stage is represented by F, Storage Stage by F, and Backtracking Stage by B. They are
shown in the Figures 4, 7 and 8.

that varies from 0 to M − 1, according to the following 277

g =



g(0)
...

g(i)
...

g(M − 1)

 . (7)

The number of MSMs submodules corresponds to the number of elements in q, i.e., 278

{j ∈ N | 0 ≤ j < N}, as can be observed in Figure 4. Therefore, H is formed by N 279

columns, according to Equation 6. Besides, the MSM also calculates the path, the 280

maximum score value and its position, which are subsequently stored in the Memory 281

Module (MM). 282

Matrix
Score

Module 0

Matrix
Score

Module N-1

Matrix
Score

Module j

Memory Module

Forward Step

Fig 4. Hardware representation of the H score matrix on the Forward Stage. The
modules are generated from 0 to N − 1.

June 27, 2021 9/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

The SW algorithm in this work is initialized by the en(k) signal, which enables the 283

memory components in the MSM and MM modules to allocate the two sequences q(k) 284

and s(k). The en(k) is a sequence of pulses of value 1 with size equal to the s sequence. 285

Thus, the sequences are transmitted at each sampling time to the Forward Module. The 286

signals are received in MSM, and the respective q(k) is allocated according to its 287

position, while s(k) is propagated to the MSM based on the internal counter within 288

each module. The counters within each MSM module are activated with each pulse of 289

the en(k) signal. 290

Each k-th q element is compared to all elements in s, iteratively. If the values are 291

equal, a value from the Match constant is propagated; otherwise, the value of 292

Mismatch is propagated. Match corresponds to a reward for similarity, while 293

Mismatch is a penalty for inequality between values. Afterward, the addition block 294

sum the values according to 295

gj(i) =

{
gj−1(i− 1) + α qj = s(i)

gj−1(i− 1) + β qj 6= s(i)
, (8)

where α and β are arbitrary values that correspond to the match value and mismatch 296

values, respectively. 297

Subsequently, the score value, Scj−1(i− 1), and correspondence value, α ∧ β, are 298

added to define a portion of gj(i). The Scj−1(i− 1) value is equivalent to the 299

H(i− 1)(j − 1) value (i.e., gj−1(i− 1)). The values of Sc−j(i), MaxV alue(−1), 300

AddrRAMi∧j(−1) and index(−1) are initialized with 0. At the same time, the 301

Scj−1(i), which is the score value of the previous block, it is received and operated with 302

the value of Gap. In addition, the value of the scoring operation of this block in the 303

previous time, Scj(i− 1), is also operated with the Gap. Thus completing the 304

computation of gj(i) that can be seen in the Equations 5 and 9. 305

Figure 5 shows the submodule that constitutes each MSM module. The three blocks 306

in pink are used to perform the addition and subtraction operations, representing the 307

SW’s relations to generate the M elements. Thereby, the process of choosing the 308

maximum value among the calculated scores is carried out based on equation 5 as 309

follows 310

gj(i) = max



0

gj−1(i− 1) + α qj = s(i)

gj−1(i− 1) + β qj 6= s(i)

gj−1(i)− γ
gj(i− 1)− γ

, (9)

where γ is an arbitrary value that represents the chosen linear gap value. This 311

expression is equivalent to Equation 3. 312

The output of the pink blocks, called opr, are propagated to the next submodule for 313

choosing the maximum score and distance path, as shown in Figure 5. This submodule 314

is built with a set of multiplexers and relational circuits that can find the maximum 315

score value with the coded distance of the path by comparing the opr signals, as seen in 316

Figure 6. 317

Selecting path distances is based on a simple encoding of three levels representing 318

the alignment action to be adopted: 2, 1, and 3. Therefore, the levels 2, 1, and 3 319

represent a match, a gap in the target sequence q and s, respectively, as described in 320

Section 2. The encoding process of directions is performed in the Forward step, as 321

illustrated in Figure 6. During this process, the same signals used to calculate the H 322

score matrix are needed, i.e., the oprj−1(i− 1), oprj−1(i) and oprj(i− 1), as seen in 323

Figure 5. These values are compared in relational circuits and subsequently chosen 324

according to the criteria of the SW, as seen in the Figure 6. 325

June 27, 2021 10/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

q(k)
==
s(k)

reg

reg

enable
SWITCH

Mismatch

Match

select

false

true

+
regreg

Gap
-

-

Selection Maximum
Value and Direction

reg

regvalue

indicator

out

set one
q value

const

signal
out

Matrix Score Module (Forwad Step)

enable

Fig 5. Submodules that constitute a Matrix Score Module. The representation of the
circuit and signals is only related to the forward stage.

Relational
a>b

a

b

Relational
a>b

a

b

Relational
a>b

Concat Direction

Selection Maximum Direction

sel

0

1

sel

0

1

sel

0

1

Fig 6. Circuits that constitute the submodule for finding the maximum score and
distance path within an MSM. The relational circuits are represented in purple and the
multiplexers in yellow.

Then, for demonstrating the realization of the path coding process is done, the 326

information in Figure 1 is used. When looking at the Figure 1, four variables are 327

distributed in an H score matrix. The variables x = H(i− 1, j − 1), y = H(i− 1, j) 328

and v = H(i, j − 1) are known values, while w is a score to be computed. Starting from 329

w = H(i, j) as the observed cell for determining a generic path and x, y and v as the 330

neighborhood. An integer value is associated with the dj corresponding to the address 331

of w, according to the maximum value determined in the neighborhood, these values are 332

assigned according to the expression 333

dj(i) =


1 | y − γ > x+ (α ∨ β), y > v

2 | x+ (α ∨ β) ≥ y − γ, x+ (α ∨ β) ≥ v − γ
3 | v − γ > x+ (α ∨ β), v > y

, (10)

where 1, 2 and 3 is the vertical, diagonal, and horizontal paths, respectively. The 334

Equation 10 is equivalent to the circuit implementation illustrated in the Figure 6, 335

where (x+ (α ∨ β)) = oprj−1(i− 1), (y − γ) = oprj(i− 1) and (v − γ) = oprj−1(i). 336

Besides, (α ∨ β) = α for a match and (α ∨ β) = β for a mismatch. 337

June 27, 2021 11/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

Algorithm 1: SW Foward Stage pseudo-code based in structure this proposal

Input : query sequence q
Input : dataset sequence s
Output : distance path matrix D
Output : row position of maximum score posMi
Output : column position of maximum score posMj
//length query sequence N , length dataset sequence M , match value α,

mismatch value β and linear gap value γ;
for for k = 0 to M ×N step 1 do do

Initialize the DP matrix H and D with zeros;
end
//Forward Stage;
for for j = 0 to N − 1 do

for for i = 0 to M − 1 do
if q(j) = s(i) then

sel← α;
else

sel← β;
end
//H(i+ 1, j + 1) computation;
x = H(i, j) + sel; y = H(i, j + 1) + γ; v = H(i+ 1, j) + γ;
score← 0, direction← 0;
if x > y ∧ x > v then

score← x; direction← 2;
else

if y > v then
score← y; direction← 1;

else
score← v; direction← 3;

end

end
// Stores the score in matrix H and the direction in matrix D calculated;
H(i+ 1, j + 1) = score; D(i+ 1, j + 1) = direction;
// checking which is the highest calculated score;
if maxV al < score then

maxV al← score; posMi← i+ 1; posMj ← j + 1;
end

end

end
return D, posMi, posMj;

June 27, 2021 12/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

After the process of selection the score and direction, it has the choice of the 338

maximum score based on a logic of multiplexers and relational blocks. There is a 339

counter, called cntR, to determines the number of times that the selection of the score 340

and direction is carried out, i.e., the H matrix row that the process is on. This is 341

necessary to determine the AddrRAMi address. At the beginning of MSM processing, 342

index(j − 1) is added to 1, just once for each MSM, becoming index(j) and 343

determining the address of this MSM. For the determination of Maxval, it is seen 344

whether the previous value is less than the current computed score value, then the 345

calculated current score value becomes the Maxval, AddrRAMj = index(j) and 346

respective row process value is AddrRAMi. It is noted the AddrRAMi∧j signal are 347

corresponding to the location of the maximum score value. 348

In parallel with the process of determining the maximum score value, there is the 349

process of storing the directions. Thus, the output Direction of the submodule is 350

prepared in set with the value wAddrDir, which comes from the H matrix row 351

calculated at that moment, allowing to write in order in RAM memory according to the 352

respective positions of H matrix (i.e., same position of D matrix). 353

Finally, according to the systolic structure, after the MSM processing is over, the 354

signals are parallelly sent to the next MSM. Thereupon, q(k), s(k), and en(k) are 355

shifted in time, that is, q(k − 1), s(k − 1), and en(k − 1), to match the calculation 356

structure of the H matrix, as seen in the Figure 4. Besides, the calculated signals Sc(i), 357

MaxV al, AddrRAMi∧j and index are also propagated to the next MSM to preserve 358

the scores calculating structure. This process repeats until the last element of s is 359

calculated with the last element of q; a counter in is used to determine that moment 360

since the values of the sequences are previously informed to all PEs. The Forward stage 361

finishes with the calculation of the last element of the matrix, i.e., H(M − 1)(N − 1). 362

Consequently, the signal Traceback is enabled, indicating the end of the process in all 363

MSM, and the addresses AddrRAMi∧j corresponding to the maximum score value is 364

sent to the next step (i.e., Backtracking process). 365

Algorithm 1 presents the SW pseudo-code for Forward stage and storage process 366

structures. The Algorithm 1, is prepared to perform the calculation of scores and 367

storage of matrices H and D. The input is the signals q and s, which is Equation 1 and 368

2, respectively. The first loop, in the Algorithm 1, represents each N element used, as 369

seen in Figure 2. The second Loop is the interactions made by the signal En to allow 370

the calculation of each element of s in each PE. The first conditional structure is the 371

multiplexer for making choices in the MSM, as seen in Figure 5. Submodule Selection 372

Maximum Value and Direction, Figure 6, is represented by the second conditional 373

structure, which compares variables x, y and v. The outputs are D matrix stored in 374

MM and the position of the maximum values defined in MSM. 375

3.2 Memory Module (MM) 376

The MM communicates with both the MSM and the BS, as shown in 7. During the 377

Forward Stage, the data regarding the distance values are written to the MM. 378

Meanwhile, during the BS, the memory addresses to align the sequences are fetched 379

from the MM. The size of each memory is defined by the size of the s sequence; also, 380

there is a flag to indicate that the memory is in write mode while computing the H 381

matrix and, subsequently, in fetch mode, in the backtracking process. 382

The MM consists of Random Access Memories (RAMs) used to store the path 383

directions, Direction, obtained in the MSM that is thereafter needed in the BS module. 384

Hence, the RAMs are in write mode throughout the Forward Stage and reading mode 385

during Backtracking. The RAM input ports are the address and data busses and write 386

enable mode. Besides, the memory size of each memory is defined based on the size of 387

June 27, 2021 13/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

Matrix Score
Module j

Memory Module

Backtracking
Module j

Processing Element

Fig 7. Representation of the simplified Memory Module structure. This model is
practically as is the complete processing PE of each column of the H matrix.

the sequence s, which in turn, the amount of RAM memories is equal to the number of 388

PEs in the systolic array. 389

The enable signal, en, is used as write enable for each RAM in the MM. Therefore, 390

en = 1 defines the write mode, while en = 0 the read mode. In addition, the btcontrol 391

signal selects which module controls the RAM address bus. Hence, for btcontrol = 0 the 392

memory addresses are defined by the MSM module through wAddrDir signal, while 393

btcontrol = 1 selects the BS module to define the addresses via rAddrDir signal. 394

Thus, in write mode (en = 1 and btcontrol = 0) the wAddrDir signal defines the 395

address of the RAMs where the Direction value is stored by the MSM. Subsequently, 396

after the H matrix is fully calculated, the Traceback is enabled to indicate the end of 397

the Forward Stage, and the MM goes into reading mode (en = 0 and btcontrol = 1). 398

Accordingly, the rAddrDir signal defines the address space the BS fetches the data 399

corresponding to the value reported by the trace-back. 400

3.3 Backtracking Approach 401

The backtracking process starts when the Traceback signal is enabled in the MSM by 402

counters that determine the last PE and the last processed element of s, as described in 403

Forward Stage. As previously mentioned in subsection 3.1, the MSM propagates to the 404

MM the maximum score address that is used as the starting point for alignment, as 405

shown in Figure 8. Meantime, the Figure 9 details the submodules used to create each 406

BS module. The submodules in green are circuits for controlling and synchronizing all 407

signals during the module operation, while the blue submodule performs the alignment 408

path described in this section. 409

Firstly, after Traceback is enabled, the BTStart signal is enabled, and the addresses 410

of the maximum score element, AddrRAMi(N − 1) and AddrRAMj(N − 1), are sent to 411

the respective BS. Also, the values of AddrRAMi(N − 1) and AddrRAMji(N − 1) are 412

assigned to mRAMi(N − 1) and mRAMj(N − 1), respectively, by the BT Enable 413

submodule. It is important to emphasize that if the mRAMj(N − 1) value (i.e., 414

AddrRAMj(N − 1)) is not already in the BS PE, it will trace-back by checking the 415

Memory Index submodule. This process happens until it reaches the PE corresponding 416

to the maximum score location. Afterward, the Memory Index submodule assigns 417

June 27, 2021 14/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

MEMORY MODULE

Backtracking
Module 0

Backtracking
Module j

Backtracking
Module N-1

Matrix
Score

Module j

Matrix
Score

Module
N-1

Matrix
Score

Module 0

Backtracking Step

Fig 8. Backtracking Module structure in the FPGA. The operation of this block starts
after the Forward Step.

BT
Enable

Direction
Process

Alignment
Block

Finish
Processing

Continue
Processing

BT
Start

Backtracking Module

Fig 9. Submodules that constitute the Backtracking Stage Module. The green
submodules represent the control submodules, while the blue submodule represents the
circuit that performs the alignment.

June 27, 2021 15/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

mRAMi value to rAddrDir to read the memories in the MM, which in turn, returns 418

the d(i) value to the Direction Process submodule, as can be seen in Figure 9. 419

Secondly, the alignment process starts. The circuits used to build the alignment 420

submodule are shown in Figure 10. As can be observed, the input dj(i) is used as the 421

multiplexer selector to perform the Equation 10. Therefore, for dj(i) = 3, BS remains in 422

the same memory position and moves back one BS module, i.e., horizontal displacement. 423

While for dj(i) = 1, only the memory position decreases by 1, and BS is verified by the 424

Direction Process and Continue Processing submodules (i.e., vertical displacement). 425

Meanwhile, for dj(i) = 2, the memory position also decreases by 1, and it moves to the 426

previous module with the displacement in the memory position. The circuit after the 427

first multiplexer prevents negative addresses in the memory. 428

0
sel
d0
d1
d2
d3

1a

b

a

b
sel

d0

d1

Alignment Block

Fig 10. Logical circuits used to build the Alignment Block submodule.

Given that the path to align the first element is found, the Alignment Block 429

submodule receives the rAddrDirj and dj(i) signals to define the path to be followed 430

by the next BS, as seen in Figure 9. Initially, a logical circuit enables the BT Start and 431

Direction Process submodules to propagate those signals to the Alignment Block. The 432

Direction Process and Continue Processing submodules carry out checks to define which 433

BS module is active, that is, for dj(i) = 1, the data processing is held in the current BS 434

module, and for dj(i) 6= 1, the signal BTNext is enabled, indicating the end of data 435

processing in the current PE to start in the next one. 436

After finding the module for the maximum score, the mRAMi and mRAMj signs 437

finish their function. Thus, from the determination of the BS with the maximum score, 438

the path(j) sign is used as a guide for locating the alignment of each module. Then, the 439

data in MM is requested and the dj value is returned for verification and establishment 440

of alignment. The verification and establishment of the alignment path is done by the 441

Memory Index, Direction Process, and Continue Processing submodules. Decisions 442

related to dj value are made in Alignment Block submodule, as illustrated in Figure 10. 443

Finally, the Finish Processing and Continue Processing submodules finish the data 444

processing in the module. Thereby, the valDir output of each submodule is used to 445

construct the alignment path, along with the maximum score position values. The 446

trace-back continues until it reaches PE0 or finds a path direction with a value of 0. 447

Algorithm 2 presents the SW pseudo-code for Backtracking stage this proposal. The 448

Backtracking stage, Algorithm 2, is ready to perform the alignment in a list using the 449

path informed in D, starting from the positions of the maximum score, as seen in this 450

Section. Inputs for this step are provided by Algorithm 1. The loop for this step 451

represents all Backtracking stage modules from N − 1 to 0. The conditional structure of 452

Algorithm 2 is the representation of submodule Alignment Block, Figure 10, which 453

allows it to trace-back. And the return of the alignment path is storing the data, 454

valDir, in RAM memory. 455

June 27, 2021 16/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

Algorithm 2: SW Backracking Stage pseudo-code based in structure this
proposal

Input : query sequence q
Input : dataset sequence s
Input : distance path matrix D
Input : row position of maximum score posMi
Input : column position of maximum score posMj
Output : alignment sequences list A
Output : alignment path sequences list path
//Backtracking Stage;
auxi = posMi; auxj = posMj,; aux← D(auxi, auxj);A← [];
path← concat(path, aux);
while aux > 0 do

A← concat(A, [q(auxj − 1); s(auxi− 1)]);
if aux = 2 then

auxi = auxi− 1, auxj = auxj − 1;
else

if aux = 3 then
auxj = auxj − 1;

else
if aux = 1 then

auxi = auxi− 1;
else

break;
end

end

end
aux← D(auxi, auxj);
path← concat(path, aux);

end
return A, path;

June 27, 2021 17/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

4 Results and Discussion 456

This section presents the synthesis results for the architecture described in the previous 457

section and analyses it regarding the following key points: critical path, operation 458

frequency, number of PEs, and performance. The performance measures the time to 459

calculate an element of the scoring matrix. 460

The development of the algorithm was carried out using the development platform 461

provided by the FPGA manufacturer, in this case, Xilinx [48]. This platform allows the 462

user to develop circuits using the block diagram strategy instead of VHDL or Verilog. 463

The architecture was deployed on the FPGA Virtex-6 XC6VLX240T and compared to 464

state-of-the-art works. Usually, hardware implementations of the SW algorithm in the 465

literature were implemented only the Forward Stage or both the Forward and 466

Backtracking Stages. In our proposal, both stages were implemented. 467

The performance for hardware implementations of the SW algorithm is usually 468

measured in Giga Cell Update Per Second (GCPUS), which in turn is defined as 469

GCUPS =
number of cells

total processing time× 109
, (11)

in which a cell can be one vector or matrix element to be computed. This metric can 470

also be described based on the clock frequency, that is, 471

GCUPS = number of cells× clock frequency× 109. (12)

The latter equation is often used to compare the systolic array efficiency. Since the 472

number of cells is equivalent to the number of PEs, and the clock frequency defines the 473

operating frequency, it is unnecessary to measure the total runtime of the algorithm. 474

4.1 Hardware Architecture Validation 475

To validate the architecture proposed in this work, the sequences q and s were randomly 476

generated and varying the match, mismatch, and linear gap values. The analysis was 477

carried out for 8 PEs, and q and s size varied from 8 to 32. 478

Firstly, the correctness of the matrices H and D was verified by monitoring the 479

MSM outputs, such as Sc and Direction, as described in Section 2. Secondly, it was 480

verified if the D matrix elements were stored in the correct memory positions in the 481

MM. Lastly, the operation of the BS modules was also verified by monitoring the 482

path(j + 1) bus and the Memory Index submodule. 483

Following, the Alignment Block and Direction Process are observed to check if the 484

memory accesses are in accordance with the path(j + 1) value, that is, according to 485

Equation 10. Also, the Finish Processing and Continue Processing submodules are 486

monitored to verify the values propagated for a match (2), horizontal gap (3), and 487

vertical gap (1). 488

The data bit-width was defined by the maximum size of the input sequences, limited 489

by FPGA memory capacity. Hence, the input sequence bit-width was set to 3 while 490

constants were defined according to its value. Besides, the bit-width for the MSM buses 491

that perform mathematical operations was defined as logtotal−PEs×α. Meanwhile, the 492

sequence counters for s is logs−size. 493

Figure 11 shows the architecture deployed and running on the Virtex-6 FPGA. The 494

host computer (i7-3632QM CPU and 8GB of RAM) was used to plot the results and 495

compare them to a software implementation presented in [49], as shown in Figure 12. In 496

the Figure 12, it can be seen that the y axis refers to the s sequence, while the x axis 497

refers to the q sequence. To increase the resolution of the image, only the parts of the 498

sequences that are aligned are used, where the position at which the alignment starts 499

June 27, 2021 18/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

and the maximum score value are shown in the title of the illustration. The value of 500

Row refers to the position in the s, whereas Column is related to the element of the q. 501

The amount of sequence alignment performed is represented by Number of Alignments. 502

The architecture parameters for the demo were set to match = 5, mismatch = −5, 503

gap = 1, and 128 PEs. Hence, the size of the sequence q is also 128. Meanwhile, the 504

size of the sequence s was set to 8, 192, resulting in a total of 1, 048, 576 calculated cells. 505

Sequence q is loaded into memory at each iteration, where it can vary between 4 506

different 128 nucleotide sequences in the demonstration. The demo is available at [50]. 507

Fig 11. Photo of the hardware architecture deployed on the Virtex-6 FPGA and the
host computer used to plot the results.

4.2 Synthesis Analysis 508

Analysis of the synthesis results for the SW hardware implementation were carried out 509

for two FPGAs: Virtex-6 XC6VLX240T and Virtex-7 XC7VX485T. Table 2 presents 510

the hardware area occupation and frequency for a different number of PEs. The size of 511

the input sequences were defined according to the number of PEs. 512

FPGA Array Slice LUTS Memory Frequency
Model Size (PE) /(%) /(%) (MHz)

Virtex-7 512 103, 778 (34%) 8, 192(6%) 155
Virtex-6 512 103, 807 (68%) 8, 192(14%) 120
Virtex-6 256 47, 725 (31%) 2, 048 (3.5%) 112
Virtex-6 128 24, 386 (16%) 512 (1%) 117
Virtex-6 64 10, 803 (7%) 128 (0.2%) 157

Table 2. Area occupation results based on the FPGA synthesis of our SW
implementation, with forward and backtracking stages.

513

The critical path of the design was ≈ 8.34ns and ≈ 6.44ns for the Virtex-6 and 514

Virtex-7, respectively. Therefore, the maximum clock frequency was 120MHz for the 515

Virtex-6 and 155MHz for the Virtex-7. Regarding the FPGA area occupation, 516

increasing the number of PEs also increases the hardware resources used. For 512 PEs 517

June 27, 2021 19/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

C G G C T C A G T A T C G T C G C A T T G A T A G C T A C C A T T A C G C T A G A C T A C T C G G G G C G T G A C C T T G T C T T G A T T C A C G G C T T G T C C T T A T G A C C C C A T T T T T A T T A A T C C A G C C A T T C C T A T G C C G A G G A T A T
T

C

C

T

G

A

G

T

A

A

C

A

A

T

C

G

T

T

C

A

A

C

A

G

A

T

A

G

G

T

C

T

G

G

C

G

T

A

A

T

C

SW algorithm
 Maximum Value = 452; Row = 5883; Colunm = 127; Number of Alignments= 1

sequnece q

se
qu

ne
ce

 s

C G G - C T C A - G T A T C G T - - C G C A - - - - T T - - - G A T A G C T A C

C - G A C T - A A G T A T - G T A G C G C A C A A C T T C C C G - - A - C T - C

C A - T - - - - T A - - C G - C T A G - - A C - T - A C T C - G G G G - C - G -

C - G T A G G G T A A G C G G C T - G T G A C C T G A - T C C G G G G A C A G G

- T G A C C - - T T G - T - - - C T - - - T G A - - T T C - A - C - - G G C - -

C T G A C C C C T T G C T A A A C T G A G T G A A A T T C T A T C A A G G - G A

- - - T - T G - - T C - C T T A - T G - - A - C C C - C A T T T T - T - A T T -

G A A T C T G C A T C A C T T A C T G G C A A C C C A C A - - T T G T C A - T C

- - A - A T - C C - - - A G C - - - - - C A T T - - C - - C T A - - T - G C C G

G C A G A T G C C G T G A G C T G A T A C A T T T A C G G C T A A A T T G - - G

A - G - - G - - - - - - - A - - - T A T

A T G A T G G G T C T C G A C C C T A T

Fig 12. Illustration of the results obtained from our proposal in co-simulation. The
image is the most detailed representation of the monitor in Figure 11. It can see that
the y-axis refers to the s, while the x-axis refers to the q. The position at which the
alignment starts is indicated by Row and Column. The maximum score value found is
presented by Maximum Value. The amount of sequence alignment performed is
represented by Number of Alignments.

in the Virtex-6, a total of 68% of the Slice Look-Up Tables (LUTs) were used in 518

contrast to only 7% for 64 PEs. Concerning the frequency, a slight decrease is observed 519

as the number of PE increases due to an increase in the critical path. Concerning the 520

Virtex-7, there are unused FPGA resources as less than 35% of Slices LUTs were used. 521

Therefore, it can be used to increase the number of PEs and, thus, the performance. 522

4.3 Comparison with other works 523

Comparisons with state-of-the-art works were also performed. The performance of 524

systolic array-based implementations increases with the number of PEs. Hence, the 525

comparisons were carried out for the maximum number of PE in each proposal. 526

The works presented in Table 3 are available in [34]. The second column indicates 527

whether the backtracking stage was also developed on FPGA or only the forward. 528

Meantime, the third to fifth columns present the number of PEs, operating frequency, 529

and performance, respectively. The performance was obtained according to Equation 12. 530

As can be seen, our approach and the one proposed by [34] were the only ones to 531

implement a high number of PEs. However, in [34] only the backtracking path was 532

deployed on the FPGA, and a submatrix structure is used to load the path chosen for 533

alignment. Meanwhile, our architecture relies on a memory storage structure and the 534

definition of the maximum score to align the sequences. 535

536

Furthermore, a comparison with [34] was also carried out regarding the FPGA area 537

occupation, and it is presented in Table 4. The second and third columns present the 538

FPGA and the number of PEs used, respectively. Meanwhile, the third and fourth 539

columns present the slices and memory blocks occupied, and the fifth column the 540

operating frequency. 541

June 27, 2021 20/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

Related Backtracking PE number Frequency Performance
Works (Yes or No) in array (MHz) (GCUPS)

2005 [51] No 252 50 13.9
2006 [41] Yes 303 77.5 23.5
2007 [52] No 384 66.7 25.6
2007 [53] No 128 125 16.0
2008 [42] Yes 256 100 25.6
2009 [46] Yes 168 62.5 10.5
2011 [54] No 100 111 11.1× 12
2012 [55] No – 250 –
2012 [56] No < 100 125 16× 8
2012 [57] No 100 175 17.5
2012 [47] No 128 60 7.62
2014 [58] No 200 200 40
2017 [34] Yes 512 150 76.8
2017* [34] Yes 512 200 105.9
This work Yes 512 155 79.5

Table 3. Table adapted from paper [34]. it compares the proposed SW using
reconfigurable hardware based on the operating frequency, number of PEs and
performance in GCUPS. It also shows if the works use backtracking or not in the
implementation. * indicates the approach uses external memory to accelerate the
alignment process.

Related FPGA Array Slices Memory Frequency
Works Model Size (PE) /(%) /(%) (MHz)

This work XC7VX485T 512 35, 286/(46%) 0 BRAM/(0%) 155
2017 [34] XC7VX485T 512 57, 870/(76%) 896 BRAM/(87%) 200

Table 4. Table with the summaries of the results of the FPGA synthesis works of SW
implementation (hardware SW with backtracking step). The Slice column is related to
the logical distribution and refers to the occupied slices in the synthesis.

June 27, 2021 21/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

542

As shown in Table 4, for the same number of PEs, our architecture occupied 35, 286 543

slices and 0 BRAMs in contrast to 57, 870 slices and 896 block RAMs (28 Mbits 544

memory) in [34]. Also, the total area occupation was higher than 60%, compared to 545

46% on ours, due to the substitution matrix. Therefore, our proposal has high 546

scalability due to the low resource usage (can reach up to 1, 024 PEs for the 547

XC7VX485T). Besides, our implementation proposal can be implemented in smaller 548

FPGAs, such as the Virtex-6 XC6VLX240T, with a reasonable nucleotide sequence. 549

Regarding the operation frequency, our proposal can reach up to 155 MHz. So, it is 550

observed that the proposals with the best performances have a similar structure, even 551

with different approaches to the solution. Our proposal and [34] achieving the same 552

performance for the frequency of 150 MHz. 553

Therefore, our work uses fewer hardware resources to perform the alignment process 554

due to the chosen backtracking approach. As the backtracking stage results in high 555

computational complexity, we simplified the process using the path mapping through 556

the maximum value in D and H, resulting in linear computational complexity. On the 557

other hand, the architecture proposed by [34] uses considerably more memory resources 558

due to data partitioning and prefetching for the backtracking step. Despite both works 559

achieving similar performance due to the systolic array, there are significant differences 560

in the alignment approach chosen for the FPGA implementation. 561

The hardware implementation of the alignment process through our approach, 562

developed based on a chain of directions and the maximum score address, is a key 563

contribution for the low use of memories and, thus, achieve high hardware scalability. 564

Hence, the proposed method can compress the data, using only 3 bits in a fixed-point 565

implementation. 566

5 Conclusion 567

This paper presented a parallel FPGA platform design to accelerate both the Forward 568

and Backtracking stages of the SW algorithm. The main contributions were the 569

high-speed data processing implementation and low memory usage that allowed high 570

scalability. In order to satisfy the high-throughput, ultra-low-latency and low-power 571

requirements and to alleviate the raw data processing problem in bioinformatics. From 572

the strategy of storing alignment path distances and maximum score position during 573

Forward Stage processing. It was possible to reduce the complexity of Backtracking 574

Stage processing which allowed to follow the path directly. The proposal architecture 575

achieved a satisfactory critical path, reduced memory usage and high scalability for 576

two-step SW algorithm. Synthesis results showed that the proposed method could 577

support up to 1, 024 PEs in only one FPGA, using the Xilinx Virtex-7 XC7VX485T. 578

The main advantage is the low hardware resource usage and high performance of 79.5 579

GCUPS, with an operating frequency of up to 155MHz, without using external 580

resources. 581

Acknowledgments 582

The authors wish to acknowledge the financial support of the Coordenação de 583

Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) for their financial support. 584

June 27, 2021 22/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

References

1. Masseroli M, Canakoglu A, Pinoli P, Kaitoua A, Gulino A, Horlova O, et al.
Processing of big heterogeneous genomic datasets for tertiary analysis of Next
Generation Sequencing data. Bioinformatics. 2018;35(5):729–736.
doi:10.1093/bioinformatics/bty688.

2. Pereira R, Oliveira J, Sousa M. Bioinformatics and Computational Tools for
Next-Generation Sequencing Analysis in Clinical Genetics. Journal of Clinical
Medicine. 2020;9(1). doi:10.3390/jcm9010132.

3. Schuster S. Next-generation sequencing transforms today’s biology. Nature
methods. 2008;5:16–8. doi:10.1038/nmeth1156.

4. Kumar G, Kocour M. Applications of next-generation sequencing in fisheries
research: A review. Fisheries Research. 2017;186:11–22.
doi:https://doi.org/10.1016/j.fishres.2016.07.021.

5. Tanjo T, Kawai Y, Tokunaga K, Ogasawara O, Nagasaki M. Practical guide for
managing large-scale human genome data in research. Journal of Human
Genetics. 2020;66. doi:10.1038/s10038-020-00862-1.

6. Lyng GD, Sheils NE, Kennedy CJ, Griffin DO, Berke EM. Identifying optimal
COVID-19 testing strategies for schools and businesses: Balancing testing
frequency, individual test technology, and cost. PLOS ONE. 2021;16(3):1–13.
doi:10.1371/journal.pone.0248783.

7. Mazzarelli A, Giancola ML, Farina A, Marchioni L, Rueca M, Gruber CEM, et al.
16S rRNA gene sequencing of rectal swab in patients affected by COVID-19.
PLOS ONE. 2021;16(2):1–15. doi:10.1371/journal.pone.0247041.

8. Miller D, Martin MA, Harel N, Kustin T, Tirosh O, Meir M, et al. Full genome
viral sequences inform patterns of SARS-CoV-2 spread into and within Israel.
Nature Communications. 2020;11:5518. doi:10.1038/s41467-020-19248-0.

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. Journal of Molecular Biology. 1990;215(3):403 – 410.
doi:https://doi.org/10.1016/S0022-2836(05)80360-2.

10. Needleman SB, Wunsch CD. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology. 1970;48(3):443 – 453. doi:https://doi.org/10.1016/0022-2836(70)90057-4.

11. Smith TF, Waterman MS. Identification of common molecular subsequences.
Journal of Molecular Biology. 1981;147(1):195 – 197.
doi:https://doi.org/10.1016/0022-2836(81)90087-5.

12. Afifi S, Gholamhosseini H, Sinha R. Hardware Implementations of SVM on
FPGA: AState-of-the-Art Review of Current Practice. International Journal of
Innovative Science, Engineering & Technology (IJISET). 2015;2:733–752.

13. Aijaz A, Dohler M, Aghvami AH, Friderikos V, Frodigh M. Realizing the Tactile
Internet: Haptic Communications over Next Generation 5G Cellular Networks.
IEEE Wireless Communications. 2017;24(2):82–89.
doi:10.1109/MWC.2016.1500157RP.

June 27, 2021 23/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

14. Houtgast EJ, Sima VM, Bertels K, Al-Ars Z. Hardware acceleration of
BWA-MEM genomic short read mapping for longer read lengths. Computational
Biology and Chemistry. 2018;75:54–64.
doi:https://doi.org/10.1016/j.compbiolchem.2018.03.024.

15. Courneya JP, Mayo A. High-performance computing service for bioinformatics
and data science. Journal of the Medical Library Association : JMLA.
2018;106:494–495. doi:10.5195/jmla.2018.512.

16. Arenas M, Mora A, Romero G, Castillo P. GPU Computation in Bioinformatics.
A review. Advances in Intelligent Modelling and Simulation. 2012; p. 433–440.

17. Khan D, Shedole S. Accelerated Deep Learning in Proteomics—A Review.
Innovation in Electrical Power Engineering, Communication, and Computing
Technology. 2020; p. 291–300.

18. González-Domı́nguez J, Ramos S, Touriño J, Schmidt B. Parallel pairwise
epistasis detection on heterogeneous computing architectures. IEEE Transactions
on Parallel and Distributed Systems. 2015;27(8):2329–2340.

19. Letras M, Bustio-Mart́ınez L, Cumplido R, Hernández-León R, Feregrino-Uribe C.
On the design of hardware architectures for parallel frequent itemsets mining.
Expert Systems with Applications. 2020;157:113440.

20. Juvonen MPT, Coutinho JGF, Wang JL, Lo BL, Luk W, Mencer O, et al.
Custom hardware architectures for posture analysis. In: Proceedings. 2005 IEEE
International Conference on Field-Programmable Technology, 2005.; 2005. p.
77–84.

21. Franke K, Crowgey E. Accelerating next generation sequencing data analysis: an
evaluation of optimized best practices for Genome Analysis Toolkit algorithms.
Genomics & Informatics. 2020;18:e10. doi:10.5808/GI.2020.18.1.e10.

22. Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing units in
bioinformatics, computational biology and systems biology. Briefings in
Bioinformatics. 2016;18(5):870–885. doi:10.1093/bib/bbw058.

23. Manconi A, Moscatelli M, Gnocchi M, Armano G, Milanesi L. A GPU-based high
performance computing infrastructure for specialized NGS analyses. In: PeerJ
Preprints; 2016. p. 3.

24. Kung. Why systolic architectures? Computer. 1982;15(1):37–46.
doi:10.1109/MC.1982.1653825.

25. Kung HT, McDanel B, Zhang SQ. Packing Sparse Convolutional Neural Networks
for Efficient Systolic Array Implementations: Column Combining Under Joint
Optimization. In: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’19. New York, NY, USA: Association for Computing Machinery; 2019.
p. 821–834. Available from: https://doi.org/10.1145/3297858.3304028.

26. Sze V. Designing Hardware for Machine Learning: The Important Role Played by
Circuit Designers. IEEE Solid-State Circuits Magazine. 2017;9(4):46–54.
doi:10.1109/MSSC.2017.2745798.

27. Dias LA, Ferreira JC, Fernandes MAC. Parallel Implementation of K-Means
Algorithm on FPGA. IEEE Access. 2020;8:41071–41084.
doi:10.1109/ACCESS.2020.2976900.

June 27, 2021 24/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

28. Dias LA, Damasceno AM, Gaura E, Fernandes MA. A full-parallel
implementation of Self-Organizing Maps on hardware. Neural Networks. 2021;.

29. Barros WK, Dias LA, Fernandes MA. Fully Parallel Implementation of Otsu
Automatic Image Thresholding Algorithm on FPGA. Sensors. 2021;21(12):4151.

30. Hughey R, Lopresti DP. Architecture of a programmable systolic array. In:
[1988] Proceedings. International Conference on Systolic Arrays; 1988. p. 41–49.

31. He D, He J, Liu J, Yang J, Yan Q, Yang Y. An FPGA-Based LSTM Acceleration
Engine for Deep Learning Frameworks. Electronics. 2021;10(6).
doi:10.3390/electronics10060681.

32. Zhang H, Fu Y, Feng L, Zhang Y, Hua R. Implementation of Hybrid Alignment
Algorithm for Protein Database Search on the SW26010 Many-Core Processor.
IEEE Access. 2019;7:128054–128063.

33. Banerjee SS, El-Hadedy M, Lim JB, Kalbarczyk ZT, Chen D, Lumetta SS, et al.
ASAP: Accelerated Short-Read Alignment on Programmable Hardware. IEEE
Transactions on Computers. 2019;68(3):331–346.

34. Fei X, Dan Z, Lina L, Xin M, Chunlei Z. FPGASW: Accelerating Large-Scale
Smith–Waterman Sequence Alignment Application with Backtracking on FPGA
Linear Systolic Array. Interdisciplinary Sciences: Computational Life Sciences.
2017;10. doi:10.1007/s12539-017-0225-8.

35. Liu Y, Maskell D, Schmidt B. CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
research notes. 2009;2:73. doi:10.1186/1756-0500-2-73.

36. Rognes T. Faster Smith-Waterman database searches by inter-sequence SIMD
parallelisation. BMC bioinformatics. 2011;12:221. doi:10.1186/1471-2105-12-221.

37. Kaplan R, Yavits L, Ginosar R, Weiser U. A Resistive CAM
Processing-in-Storage Architecture for DNA Sequence Alignment. IEEE Micro.
2017;37(4):20–28.

38. Li Y, Lu Y. BLASTP-ACC: Parallel Architecture and Hardware Accelerator
Design for BLAST-Based Protein Sequence Alignment. IEEE Transactions on
Biomedical Circuits and Systems. 2019;13(6):1771–1782.

39. Cadenelli N, Jaksic Z, Polo J, Carrera D. Considerations in using OpenCL on
GPUs and FPGAs for throughput-oriented genomics workloads. Future
Generation Computer Systems. 2019;94:148 – 159.
doi:https://doi.org/10.1016/j.future.2018.11.028.

40. Saavedra A, Lehnert H, Hernández C, Carvajal G, Figueroa M. Mining
Discriminative K-Mers in DNA Sequences Using Sketches and Hardware
Acceleration. IEEE Access. 2020;8:114715–114732.

41. Court T, Herbordt M. Families of FPGA-Based Accelerators for Approximate
String Matching. Microprocessors and microsystems. 2007;31:135–145.
doi:10.1016/j.micpro.2006.04.001.

42. Lloyd S, Snell QO. Sequence Alignment with Traceback on Reconfigurable
Hardware. In: 2008 International Conference on Reconfigurable Computing and
FPGAs; 2008. p. 259–264.

June 27, 2021 25/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

43. Rucci E, Garcia C, Botella G, Giusti AED, Naiouf M, Prieto-Matias M.
OSWALD: OpenCL Smith–Waterman on Altera’s FPGA for Large Protein
Databases. The International Journal of High Performance Computing
Applications. 2018;32(3):337–350. doi:10.1177/1094342016654215.

44. Siddiqui F, Amiri S, Minhas UI, Deng T, Woods R, Rafferty K, et al.
FPGA-Based Processor Acceleration for Image Processing Applications. Journal
of Imaging. 2019;5(1). doi:10.3390/jimaging5010016.

45. Pilz S, Porrmann F, Kaiser M, Hagemeyer J, Hogan JM, Rückert U. Accelerating
Binary String Comparisons with a Scalable, Streaming-Based System
Architecture Based on FPGAs. Algorithms. 2020;13(2). doi:10.3390/a13020047.

46. Benkrid K, Liu Y, Benkrid A. A Highly Parameterized and Efficient
FPGA-Based Skeleton for Pairwise Biological Sequence Alignment. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.
2009;17(4):561–570. doi:10.1109/TVLSI.2008.2005314.

47. Sebastiao N, Roma N, Flores P. Integrated Hardware Architecture for Efficient
Computation of the n-Best Bio-Sequence Local Alignments in Embedded
Platforms. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
2012;20(7):1262–1275. doi:10.1109/TVLSI.2011.2157541.

48. Xilinx. System Generator for DSP; 2008, Accessed on Jan 30, 2020. Available
from: https://www.xilinx.com/.

49. Vasco P. Smith-Waterman-Algorithm; 2019, Accessed on June 04, 2021. Available
from: https://github.com/pedrovasco96/Smith-Waterman-Algorithm/.

50. Oliveira F, Fernandes M. Smith-Waterman-Algorithm Demo; 2021, Accessed on
June 22, 2021. Available from: https://drive.google.com/drive/folders/
1Mr78U1MNA6HvKV1fWA248Zp05LCGdJN0?usp=sharing.

51. Oliver T, Schmidt B, Maskell D. Hyper customized processors for bio-sequence
database scanning on FPGAs; 2005. p. 229–237.

52. Zhang P, Tan G, Gao G. Implementation of the Smith-Waterman algorithm on a
reconfigurable supercomputing platform; 2007. p. 39–48.

53. Storaasli O, Yu W, Strenski D, Maltby J. Performance Evaluation of
FPGA-Based Biological Applications. Seattle; 2007.

54. Alachiotis N, Berger SA, Stamatakis A. Accelerating Phylogeny-Aware Short
DNA Read Alignment with FPGAs. In: 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines; 2011. p.
226–233.

55. Olson CB, Kim M, Clauson C, Kogon B, Ebeling C, Hauck S, et al. Hardware
Acceleration of Short Read Mapping. In: 2012 IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines; 2012. p.
161–168.

56. Preuber TB, Knodel O, Spallek RG. Short-Read Mapping by a Systolic Custom
FPGA Computation. In: 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines; 2012. p. 169–176.

June 27, 2021 26/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

57. Tang W, Wang W, Duan B, Zhang C, Tan G, Zhang P, et al. Accelerating
Millions of Short Reads Mapping on a Heterogeneous Architecture with FPGA
Accelerator. In: 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines; 2012. p. 184–187.

58. Chen P, Wang C, Li X, Zhou X. Accelerating the Next Generation Long Read
Mapping with the FPGA-Based System. IEEE/ACM Transactions on
Computational Biology and Bioinformatics. 2014;11(5):840–852.
doi:10.1109/TCBB.2014.2326876.

June 27, 2021 27/27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.07.27.454006doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

