bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Parallel Implementation of Smith-Waterman Algorithm on
FPGA

Fabio F. de Oliveira'¥, Leonardo A. Dias?¥, and Marcelo A. C. Fernandes®3*

1 Laboratory of Machine Learning and Intelligent Instrumentation, nPITI/IMD, Federal
University of Rio Grande do Norte, Natal, 59078-970, Brazil

2 Centre for Cyber Security and Privacy, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, UK

3 Department of Computer and Automation Engineering, Federal University of Rio
Grande do Norte, Natal, 59078-970, Brazil

iThese authors contributed equally to this work.
* mfernandes@dca.ufrn.br

Abstract

In bioinformatics, alignment is an essential technique for finding similarities between
biological sequences. Usually, the alignment is performed with the Smith-Waterman
(SW) algorithm, a well-known sequence alignment technique of high-level precision
based on dynamic programming. However, given the massive data volume in biological
databases and their continuous exponential increase, high-speed data processing is
necessary. Therefore, this work proposes a parallel hardware design for the SW
algorithm with a systolic array structure to accelerate the Forward and Backtracking
steps. For this purpose, the architecture calculates and stores the paths in the Forward
stage for pre-organizing the alignment, which reduces the complexity of the
Backtracking stage. The backtracking starts from the maximum score position in the
matrix and generates the optimal SW sequence alignment path. The architecture was
validated on Field-Programmable Gate Array (FPGA), and synthesis analyses have
shown that the proposed design reaches up to 79.5 Giga Cell Updates per Second
(GCPUS).

1 Introduction

In Bioinformatic, the analysis can be divided into three parts called primary, secondary,
and tertiary analysis [1,2]. The primary analysis is responsible for generating genomic
data information from biological material. In the primary analysis, the sequencing
machines create raw genomic data (or raw data). The raw data is composed of several
genome reads.

The secondary analysis involves reads alignment and trimming based on quality, and
at the end of this step, a whole genomic is created. Finally, tertiary analysis can be
characterized as interpreting results and extracting meaningful information from the
data. In this last step, many algorithms and techniques can be applied. Also, many
applications are created from these analyses. The tertiary analysis covers various
applications, from genome characterization to a vaccine or drug treatment creation [2].

A large amount of raw data has been generated in recent years due to the
replacement of Sanger sequencing by Next-Generation Sequencing (NGS), also called

June 27, 2021

1/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

High-Throughput Sequencing (HTS) [3,4]. Each sequencing machine can be created
about 7 Tera base pairs (bp) per hour (Thp/h) [5]. The amount of raw data further
increased the occurrence of the COVID-19 pandemic. Disease caused by the
SARS-CoV-2 virus has been spreading worldwide and has been declared a pandemic by
the World Health Organization [6,7].

After sequencing reads, alignment methods can be performed to map and determine
the evolutionary line of the targeted organism, such as its phylogeny. As a result, it is
possible to understand the sample’s action mechanics by comparing them with cataloged
samples in existing databases [2,8]. The most used meta-heuristic alignment method for
the sequences is the Basic Local Alignment Search Tool (BLAST) due to its fast
processing speed and less memory usage than deterministic alignment algorithms [9].

However, different from the meta-heuristics, deterministic alignment methods offer
the optimal alignment for a given input sequence instead of an approximate solution.
The main deterministic methods are the Needleman-Wunsch (NW) and
Smith-Waterman (SW) algorithms for global and local alignment, respectively [10,11].
Nonetheless, a significant disadvantage of these algorithms is their slow processing speed
and high memory usage due to the computational complexity. For example,
SARS-CoV-2, commonly vary from 28k to 31k base pairs (bp) in size. Thus, performing
thousands of large-size sequence alignments became a real challenge for extracting
information on the raw data.

Thus, it is essential that the processing of algorithms associated with the
bioinformatics area cover three critical requirements: high processing speed
(high-throughput), ultra-low-latency, and low-power [12-14]. Bioinformatics analysis
algorithms are critically dependent on the computational infrastructure to cover
high-throughput, ultra-low-latency, and low-power requirements. It can be said that
there are three generations of infrastructure used, which are: High-Performance
Computing (HPC) [15], Graphics Processing Units (GPUs) [16,17], and Custom
Hardware Architectures (CHA) [18-20].

Genomic analysis solutions associated with the first (HPC) and second (GPUs)
generation of computational infrastructure use systems based only on software that can
be implemented using only CPUs and GPUs. However, these software-only approaches
cannot keep up with the growing computational demands of genomic analysis, given the
barriers to reducing latency in large volumes using only CPUs and GPUs. In addition,
as the number of nodes grows to handle increasing amounts of data, performance is not
scaled linearly [15,21-23]. The third (CHA) generation of infrastructure has been
presenting itself as an exciting alternative to satisfy high-throughput, ultra-low-latency,
and low-power requirements [24-29].

To overcome the low-speed processing bottleneck and maintain the optimal
alignment of deterministic algorithms, parallel hardware implementations for the SW
algorithm have been proposed in the literature. The main platforms used are Field
Programmable Gate Arrays (FPGAs), Central Processing Units (CPUs), and GPUs.
FPGAs are widely known for their flexibility for parallelization and low-power
consumption. An FPGA is a matrix of logic blocks that allows designing different
circuits, such as processors, logic circuits, and even algorithm development [27]. FPGA
platforms can be categorized as third generation computational infrastructure in
bioinformatics, as it is a CHA. Also, the logical blocks within the FPGA are
independent, allowing operations to be carried out in parallel and only one clock cycle,
unlike CPUs that operate sequentially based on instructions and GPUs that require
constant access to memories.

Therefore, this work presents a parallel FPGA design with a systolic array structure
to accelerate both the Forward and Backtracking stages of the SW algorithm. The main
contributions are high-speed data processing implementation and low memory usage.

June 27, 2021

2/27

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Thus, allowing high scalability. According to [30], the systolic array is a class of parallel
computing architecture that describes an array for dense linear algebraic calculations,

proposed by [24]. Its hardware implementation usually uses a pipeline structure, where
the data is propagated between Processing Elements (PEs). Besides, its main advantage
is to reduce the number of memory accesses throughout the data flow. Hence, systolic
arrays simplify the architecture and improve the system’s operating frequency. [31].

1.1 Related Works

This subsection briefly discusses hardware-based approaches for the SW algorithm that
can be found in the literature, such as implementations in supercomputers [32],
GPUs [33-36], architectures based on Resistive Content Addressable Memories

(ReCAMs) [37] and FPGAs [34,38-43].
GPUs are well-known for their high degree of parallelism and computing intensity.

However, they have a high cost, significant computing latency, and low energy efficiency.

The high computing latency is due to the high number of cores and low cache memory
to control these cores. In contrast to GPUs, FPGAs are customizable according to the
user’s needs, achieving better computing performance and lower latency [14,44,45].
However, FPGA hardware development is usually complex and takes a long time.

In recent years, supercomputers have also become widely used for processing massive
data. In [32], a hybrid SW-NW algorithm deployed on the Sunway TaihuLight
supercomputer (China’s fastest supercomputer with a peak performance of 100 Peta
Floating-point Operations per Second (PFLOPS)) is presented. The SW-NW was
implemented in Message Passing Interface (MPI) and Athreads (parallel computing
modalities) using the SW26010, a heterogeneous multi-core processor, to achieve good
scalability and reduce the processing time. According to the authors, the
implementation combines both the local and global alignments of the SW and NW
algorithms. A runtime analysis for the P50909 protein was carried out with the SW-NW
varying from 1 to 64 nodes, where each node corresponds to a multi-thread processor,
reaching 9.85 Giga Cell Updates per Second (GCUPS), a speedup of 15.81x compared
to the runtime of a serially performed single node implementation.

Unlike the conventional platforms previously mentioned, the SW algorithm has also
been implemented on ResCAMs, as can be seen in [37]. ResCAMs is a storage
accelerator system that allows millions of processing units (PUs) to be deployed over
multiple silicon arrays. In [37], the implementation was used to compare the
homologous chromosomes between humans (GRCh37) and chimpanzees (panTro4), and
the only SW step performed was the building of the score matrix. As a result, their
proposal achieved 5, 300GCUPS, a 4.8 x speedup over the GPU performance. Besides, it
also had a 1.7x better energy efficiency compared to an FPGA implementation.

In [38] an FPGA implementation of the BLASTP, a BLAST heuristic aimed at local
alignment of protein sequences, is proposed. The architecture was developing using
systolic arrays, and it does not need the neighborhood preprocessing step as the K-mers
algorithm. They also used the SW gap concept to maximize the final performance of
the system. Despite the good performance achieved by the proposed implementation, it
did not offer improvements regarding other works.

In [34], a heterogeneous FPGA architecture for sequence alignment is proposed.
Unlike most of the works in the literature, their implementation aims to accelerate the
entire SW algorithm with the backtracking process. For this purpose, the architecture
can process long strings of data based on parallelism and partitioning strategies; and the
backtracking process was performed by dividing the equal parts of the similarity matrix,
while the search started from the lower right sub-matrix. The tests were performed for
512 Processing Elements (PEs), reaching 76.8GCUPS at 150MHz and 105.9GCUPS
(with external memory) for 200MHz. As a result, a speedup of 3.6x to 25.2Xx was

June 27, 2021

3/27

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

achieved regarding other SW designs implemented on FPGA and GPUs. Besides, it

reached a 26% reduction in power consumption compared to the GPU implementation.

Similarly, more FPGA approaches using systolic arrays for the NW and SW with
backtracking sequencing techniques have been proposed, such as [41,46]. In [41], a
VHDL SW implementation, using Dynamic Programming (DP) with approximation
correspondences for two different strategies, was proposed. It achieved 23.5GCUPS with
speedups between 150x to 400x compared to a 2004-era PC. Meanwhile, in [46], the
implementation was based on PEs to perform elementary calculations and a diagonally
backtracking search, also developed in VHDL. Comparisons were made with the linear
and affine strategies, achieving 10.5GCUPS.

In [42], the SW forward and backtracking processes were implemented in an FPGA.

The Qnet structure was adopted for communicating with the FPGA, reaching
25.6GCUPS, a speedup of 300x compared to a desktop computer.

Another FPGA alternative for implementing the SW is OpenCL and OpenMP, as
shown in [43]. An OpenCL conversion extension is used to synthesize the algorithm and
synchronize tasks in multiple Altera FPGAs through the OSWALD software to
accelerate the SW on heterogeneous platforms. Tests were performed using a host, a
host with an FPGA, a host with a GPU, a host with a Xeon processor, a single FPGA,
and two FPGAs. For a single FPGA, 58.5GCUPS was achieved, while two FPGAs
reached 114.7GCUPS.

Therefore, it can be noted from the literature that the key points for a
high-performance SW implementation on FPGA are the operating frequency and
number of PEs, which in turn are associated with the hardware capacity and design
critical path. Thus, we present an FPGA implementation for the SW algorithm using
systolic arrays, as in [34,41,42,46].

Our approach performs both the Forward and Backtracking stages of the algorithm.
Unlike the approaches in the literature, we obtain the alignment path distances during
the Forward Stage processing and the maximum score, reducing the complexity of the
Backtracking Stage processing. Memories are used to propagate the distances and
maximum score, allowing the Backtracking step to follow the path directly. Thus, our
architecture achieves good performance (short critical path), reduced memory usage and
high scalability, and prevents memory access overlap latency, even implementing the two
stages of the SW algorithm.

2 Smith-Waterman Algorithm

Smith and Waterman originally proposed the SW algorithm in 1981 to performs local
sequence alignment of nucleotides and proteins in the biological field [11]. The sequence
alignment of the SW algorithm includes the Forward and Backtracking stages, which
are performed by the calculation results of the alignment similarity score. Besides, the
alignment is performed based on two input sequences called query sequence, q, and
dataset sequence s. The query sequence can be expressed by

q:[(Zh---anw-wQN] (1)

where ¢; is the j-th nucleotide or amino-acid protein and N is the length of the query
sequence. The dataset sequence can be expressed by

S=[S1,..18i-,5M] (2)

where s; is the ¢-th nucleotide or amino-acid protein, and M is the dataset sequence
length. Therefore, the SW algorithm is calculated attractively for two dimensions, and
it has a computational complexity of O(M x N).

June 27, 2021

4/27

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

The Forward Stage calculates the scoring matrix, H, where H is a two-dimensional
array that can only take values greater than or equal to 0 (i.e., H € N?). This matrix is
generated by comparing the elements of the sequences q and s. Usually, H is generated
using DP, and it is initialized with zeroes in the first row and column. Subsequently, the
DP process is performed to calculate the sequence scores. Based in works presented
in [32,34,47], the recurrence relationship can be defined as

H(Z>.7) = maX{O7E(iaj)’F(iaj)’H(i - 17j - 1) + P(Si7qj)}
Hyny =1 E(,j)=max{H(i,j — 1)+ p,E(;,7 — 1) + 7} (3)
F(i,j) =max{H(i—1,j) + p,F(i —1,75) + o}

where H(4,7){(i,7) e N|1 <i < M, 1< j < N}, P is the score matrix used for
obtaining the similarity score between s; and ¢;, E and F are two assisted matrices

when calculating matrix H, p is the gap opening penalty and o is gap extension penalty.

In the particular case of p = o, a linear gap penalty model is obtained, opening and
extending a gap with the cost 7. P is also called a substitution matrix, where the
simplest version is when the diagonal receives the match value and the rest of the
matrix has a mismatch value. When performing all element calculations, this expression
is the Hjs y matrix. Therefore, H(, j) is the maximum alignment score of two
sub-sequences s and q. The initialization condition is

H(i,0) = H(0,j) = E(i,0) = F(0,j) =0V {(i,j) e N|1<i< M,1<j < N}. (4)

The maximum score value of H(4, j) in the Forward Stage is the last sequence that
will be aligned. To determine the relationship, the previous neighborhood values of the
analyzed element are required, i.e., the values on the diagonal, horizontal, and vertical
positions, as illustrated in Figure 1. As can be observed, the score of w can be found
based on its neighborhood (z,y,v), which is H(i — 1,7 — 1),H(i — 1,5),H(i,j — 1),
respectively. This windowing step occurs throughout the process of determining all

scores in H.

Hyn [qj—2 qj-1 q; gj+1]

)

§i—2 - > —>»
=

Si-1 > T > Yy >
oAy ANy

8i > v > w —>
S S

Si+1 - - S

Fig 1. The direction of the score computation in the matrix during the SW Forward
Stage. To determine a score, such as w, the neighborhood values (z,y, and v) have to
be known. The green-colored cells indicate already computed values, while the yellow
cells indicate that the values to be calculated.

As shown in Figure 1, the neighborhood values z,y and v, must necessarily be
known to determine the value of w (i.e., H(4,7)). For this purpose, those values are

June 27, 2021

5/27

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

defined based on the sequences q and s. Thereby, the w score is determined as

r+a ifg=s;
r+ 0 ifg #s;

w =max {y— 7 ; (5)
v -7y
0

where 7, «, and 3 represent the linear gap, a match, and a mismatch, respectively. A
gap is a penalty that causes an empty element in the sequence (represented by a dash
symbol), while the other sequence continues. It can result from the query or database
sequence. The Equation 5 is equivalent the Equation 3, where
z+(aVvp)=H@GE—-1,j—1)+P(s;,q5), y+v=F(,7) and v+~ = E(¢, j). Finally,
when fully populated, the H matrix contains the score and path information.

The Backtracking Stage starts after determining all the scores in the H matrix, i.e.,
calculating the score of all cells H(M, N). Hence, the backtracking begins at the cell
with the highest value in the H matrix (maximum score) and trace-back the next
position based on the highest neighborhood value, according to Equation 5, which can
be on the diagonal, horizontal, or vertical direction. This is an iterative process that
repeats until it reaches the limit value, usually set to a score of 0. Also, a directional
flag indicates the path. Finally, the backtracking path determines the best local
alignment. The diagonal direction points to a match in the alignment, while the
horizontal and vertical directions indicate gaps which are represented by dashes in the s
and q sequences, respectively.

3 Implementation Description

The hardware architecture for the SW algorithm proposed in this work was developed
using systolic arrays to input two DNA sequences and increase the processing speed of
the local sequence alignment. An overview of the systolic array structure of the
proposal for N PEs is shown in Figure 2. Besides, each PE is divided into 3 modules.
These modules are the Forward stage, the storage process, and the Backtracking stage,

as seen in Section 2. Each module is illustrated in blue, green, and yellow, respectively.

The Forward stage has its module named as Matrix Score Module (MSM), the storage
process module is called as Memory Module (MM), and the Backtracking stage has its
module as Backtracking Stage (BS).

The labeled signals shown in Figure 2 are generated outside the modules.
Meanwhile, the non-labeled ones are generated by computations inside the modules and
detailed throughout this Section. The sequences q and s, defined according to
Equations 1 and 2, are external discrete signals used as inputs of the SW algorithm.
Furthermore, each signal in the sequences represents one of the four DNA nucleotides,
ie, A, G, T, or C (also withstand twenty levels referring to amino acids).

Initially, the circuit starts when the MSM modules propagate the q and s signals. As
seen in Figure 2, each k-th element of the q and s sequences are shifted to each MSM
output to shorten and stabilize the critical path, as well as allowing the computation of
scores synchronously, preserving the systolic array structure. Afterward, the MSM
computes the score according to Equation 3, and propagates the sequence elements to
the next MSM; also, the computed results are sent to the respective MM in their order
of entry. During this process, the MM operates exclusively in writing mode while the
process has not reached the last computation between the two sequences.

The Forward stage is completed after fully computing the scores of the H matrix.
Also, the last MSM enables the Backtracking process. Consequently, the MM switches

June 27, 2021

6,/27

187

188

189

190

191

192

193

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

SW FULL
a(k) q(k-1) ak2), Q(k-N+1) q(k-N),
0 msmo BPK ysmq B, SN, sm -1 SN,
R |
MM 0 MM 1 e MM N-1
[I
«—— BSO <~—— BS1 <«—— - «—— BSN-1 «——

Fig 2. General architecture for the SW algorithm. The Forward Stage (MSM) is
represented by the blue block, the Backtracking Stage (BS) by the yellow block, and the
Memory (MM) by the green block. Only external signals are displayed, i.e., the q and s
signals.

to the read mode, and the BS reads the data computed by its respective MSM. The
alignment starts from the calculations performed in the MSM. Then, from the
respective defined PE in the Forward stage, the process starts and ends according to the
definitions of the SW algorithm.

Figure 3 shows the block design that represents each PE of the systolic array, with a
detailed description of the signals between the modules within one PE. As can be
observed, besides the two input sequences to be compared, q and s, the MSM also
receives an enable signal, en. After computing the score between each k-th element of
the two sequences (i.e., an element of the H matrix), the MSM outputs to the next PE
the following signals: the calculated score, Sc;; the maximum score, MazVal, and its
position, AddrRAM;;; the PE index; along with the input signals ¢, s, and en, shifted
in time. In addition, the MSM also outputs signals to the MM, which are the calculated
path direction, Direction, and the storage address of that path wAddrDir.

Subsequently, after fully populating the H matrix and, consequently, the D matrix,

the Forward stage is finished enabling the Traceback signal, which in turn begins the BS.
Firstly, the BS sets signal BT+ to 1, indicating the start of the Backtracking process.

Therefore, the mRAM;,; are propagated back until it reaches the BS with maximum
score, which is identified by the signal index. From this location match, the btcontrol
signal is changed to allow the reading of the memory by MM. Thus, the BS receives the
path value from the MM at signal d; when sending the memory address rAddrDir;
signal. The d; value allows the BS to calculate the next requested address and
propagate it to the next module through the path(j) signal, representing the memory
address of the request path in MM. Lastly, the alignment value enters valDir, and the
process continues until it reaches the complete alignment. All modules are detailed in
the following subsections. All signals present in this Section are shown in Table 1.

June 27, 2021

7/27

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

PE SW Full

q(k—1)

a(k) ge=1

s(k) en(k—1)

MazVal
en(k) Matrix Score
Module 0 AddrRAM;;

Traceback

Direction

wAddrDir

MEMORY MODULE

btcontroly rAddrDiry| do(i)’

AddrRAM;;
Traceback
mRAM;(0) mRAM; (1)
mRAM]) Backtracking Stage 0 mRAM;)
- BTun(0) Blsun)
valDir(0) valDir(1)

Fig 3. Architecture of each PE in the systolic array. The Forward Stage is represented
by the blue block, the Backtracking Stage by the yellow block, and the Memory by the
green block.

3.1 Forward Approach

Firstly, based on the principles ”divide and conquer” for solving computational
problems, we propose a matrix used to store only the values of the recursive path, called
the D matrix. The D matrix is not widely used in the SW literature. However, it is
important to achieve a solution at lower-level programming. Besides, a matrix with two
different types of information, such as the H matrix, increases the hardware design
complexity. Matrix D needs to store only 4 levels of values which are: 0, 1, 2 and 3.
Each element of the matrix D needs 2 bits to be expressed, delivering a more
economical storage process compared to H, which can certainly need more than 2 bits
to represent each element.

As previously mentioned, the alignment process is performed based on the query and
dataset input sequences, q and s, respectively. Also, there can have different sizes,
represented by N and M, which define the size of the matrices H and D, respectively.
The Matrix Score Module (MSM) calculates the scores and distances in columns of
matrices H and D in parallel.

The systolic array structure developed for the matrices is composed of N PEs.
Therefore, for each j-th element in q, there is a j-th PE. It is based on dividing the
construction of the H score matrix expressed by

H=[go,....gj---.8n-1], (6)

and finding the best path in which the D matrix returns the correct sequence alignment,

which in turn is equivalent to the directional flags that determined the alignment path.

Moreover, for each PE; (which represents a column of the matrix H) there is i-th s(i)

June 27, 2021

8/27

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Signal Stage | Description
q(k) F query sequence, to be compared with the database sequence.
s(k) F database sequence.
en(k) F.S | sequence that enables the PE cells.
Sc(i) F vector of scores.
MazxVal F maximum score.
AddrRAM;n; | F,B | memory address of the highest maximum score.
index F,B | corresponding addressing of the modules.
Direction F,S | calculated value of the direction to be stored in RAM.

wAddrDir F,S | storage address corresponding to the direction in RAM.
Traceback F.B | flag to indicate the start of the backtracking in PE N — 1.

btcontrol S,B | flag to change the state of the write-to-read memory

rAddr Dir S,B | choosing the corresponding value for reading in RAM.
d(i) S,B | return of the value of the path passed from the RAM.

MmRAM; S.B addresses of the path to be followed in the alignment.

BTsiart B enable flag of the backtracking after T'raceback.

BT Neaxt B flag for enabling the internal circuits to choose and process.

valDir B alignment path value for that PE.

path(j) B memory position of the current alignment in the module.

Table 1. Description of signals and the algorithm stage they are used. The Forward
Stage is represented by F, Storage Stage by F, and Backtracking Stage by B. They are
shown in the Figures 4, 7 and 8.

that varies from 0 to M — 1, according to the following

g(ﬂfl-l)

The number of MSMs submodules corresponds to the number of elements in q, i.e.,
{j e N|0 < j < N}, as can be observed in Figure 4. Therefore, H is formed by N
columns, according to Equation 6. Besides, the MSM also calculates the path, the
maximum score value and its position, which are subsequently stored in the Memory
Module (MM).

Forward Step
alh)] k- 1)) alk—i-1) alk— N +1) alk - N)
en(k)) en(k—1) en(k — 5) en(k—j—1) en(k — NLI)} en(k— N)
(k) s(k—1) s(k—4) s(k—j—1) s(k—N+1) s(k—N)

Se_1 () Seo(@) Sej_1(4) ECTONN Sen_(i) Sex-1(3),
MaxValﬂ gs;rrig MazVal(0) Manal(j;ll I\S/I:t)rri: MazVal j), Manal(Nﬁ I\S/I:;rri: MazVal(N — 1)
Addrpay, (—1) Module Addr gy (0) Addrpan (j — 1), Module] MJ,({) Addrpay (N — 2)Module N-1 Addrgay (N - 1)

— Addrgay, (0) — Addrran () — Addrpay; (N — 1)
Addrram., (;1), indez(0) Addrra, , (4 ;12 index(j) Addrra,, (N ;2)> index(N — 1)
indez(—*l)> Direction indeav:(j—*l)> Wn indez(N;Zl Mn
W wAddrDir W
Memory Module RAM RAM RAM
0 i N-1

Fig 4. Hardware representation of the H score matrix on the Forward Stage. The
modules are generated from 0 to V — 1.

June 27, 2021

9/27

277

278

279

280

281

282

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

The SW algorithm in this work is initialized by the en(k) signal, which enables the
memory components in the MSM and MM modules to allocate the two sequences ¢(k)

and s(k). The en(k) is a sequence of pulses of value 1 with size equal to the s sequence.

Thus, the sequences are transmitted at each sampling time to the Forward Module. The
signals are received in MSM, and the respective g(k) is allocated according to its
position, while s(k) is propagated to the MSM based on the internal counter within
each module. The counters within each MSM module are activated with each pulse of
the en(k) signal.

Each k-th ¢ element is compared to all elements in s, iteratively. If the values are
equal, a value from the Match constant is propagated; otherwise, the value of
Mismatch is propagated. Match corresponds to a reward for similarity, while
Mismatch is a penalty for inequality between values. Afterward, the addition block
sum the values according to

(7)) = gi—1(i—1)+a q;=s(i)
&0 {gjl(i —1)+8 g #s@i) (8)

where a and 8 are arbitrary values that correspond to the match value and mismatch
values, respectively.

Subsequently, the score value, Sc;_1(i — 1), and correspondence value, a A 3, are
added to define a portion of g;(i). The Sc;_1(i — 1) value is equivalent to the
H(i —1)(j — 1) value (i.e., gj—1(¢ — 1)). The values of Sc_; (i), MazValue(—1),
AddrRAM;n;(—1) and index(—1) are initialized with 0. At the same time, the
Sc;_1(¢), which is the score value of the previous block, it is received and operated with
the value of Gap. In addition, the value of the scoring operation of this block in the
previous time, Sc;(i — 1), is also operated with the Gap. Thus completing the
computation of g;(¢) that can be seen in the Equations 5 and 9.

Figure 5 shows the submodule that constitutes each MSM module. The three blocks
in pink are used to perform the addition and subtraction operations, representing the
SW’s relations to generate the M elements. Thereby, the process of choosing the
maximum value among the calculated scores is carried out based on equation 5 as
follows

0
gi—1(i—1)+a g =s(i)
gj(i) =maxqg;1(i—1)+8 ¢ #s(i) (9)
gj-1(i) =
gj(i—1)—v

where v is an arbitrary value that represents the chosen linear gap value. This
expression is equivalent to Equation 3.

The output of the pink blocks, called opr, are propagated to the next submodule for
choosing the maximum score and distance path, as shown in Figure 5. This submodule
is built with a set of multiplexers and relational circuits that can find the maximum
score value with the coded distance of the path by comparing the opr signals, as seen in
Figure 6.

Selecting path distances is based on a simple encoding of three levels representing
the alignment action to be adopted: 2, 1, and 3. Therefore, the levels 2, 1, and 3
represent a match, a gap in the target sequence q and s, respectively, as described in
Section 2. The encoding process of directions is performed in the Forward step, as
illustrated in Figure 6. During this process, the same signals used to calculate the H
score matrix are needed, i.e., the opr;_i(i — 1), 0prj_1(i) and opr;(i — 1), as seen in
Figure 5. These values are compared in relational circuits and subsequently chosen
according to the criteria of the SW, as seen in the Figure 6.

June 27, 2021

10/27

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Matrix Score Module (Forwad Step)
en(k) enable

SWITCH

= Direction @

select

Selection Maximum
Value and Direction

Mismatch false

Seia(k) [Dmi—u—n *

reg reg

Fig 5. Submodules that constitute a Matrix Score Module. The representation of the
circuit and signals is only related to the forward stage.

Selection Maximum Direction

opr(j —1)(5)

Relational
opr(j—1)(i-1) &

Concat

— 1 Relational B
a>b sl
0
opr(3)(i — 1) - 1
Relational
sel

Fig 6. Circuits that constitute the submodule for finding the maximum score and

distance path within an MSM. The relational circuits are represented in purple and the
multiplexers in yellow.

O

v

Then, for demonstrating the realization of the path coding process is done, the
information in Figure 1 is used. When looking at the Figure 1, four variables are
distributed in an H score matrix. The variables x = H(i — 1,5 — 1), y = H(i — 1,)
and v = H(i,j — 1) are known values, while w is a score to be computed. Starting from
w = H(i,j) as the observed cell for determining a generic path and x, y and v as the
neighborhood. An integer value is associated with the d; corresponding to the address
of w, according to the maximum value determined in the neighborhood, these values are
assigned according to the expression

L | y=y>z+(aVh),y>v
d;j(i)=42 | z+(avp)>y—vz+(aVh) >v—v |, (10)
3 | v—y>z+(aVh),v>y

where 1, 2 and 3 is the vertical, diagonal, and horizontal paths, respectively. The
Equation 10 is equivalent to the circuit implementation illustrated in the Figure 6,
where (z + (aV B)) = oprj—1(i — 1), (y —7) = opr;(i — 1) and (v —) = opr;—1(i).
Besides, (o V) = a for a match and (a Vv 8) = § for a mismatch.

June 27, 2021

11/27

326

327

328

329

330

331

332

333

334

335

336

337

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Algorithm 1: SW Foward Stage pseudo-code based in structure this proposal

Input : query sequence ¢
Input : dataset sequence s
Output: distance path matrix D
Output: row position of maximum score posMi
Output: column position of maximum score posM j
//length query sequence N, length dataset sequence M, match value «,
mismatch value 8 and linear gap value 7;
for for k=0 to M x N step 1 do do
‘ Initialize the DP matrix H and D with zeros;
end
//Forward Stage;
for for j =0 to N —1do
for fori=0to M —1 do
if ¢(j) = s(¢) then
‘ sel +— «;
else
‘ sel + [;
end
//H(i+ 1,7+ 1) computation;
x=H(i,j)+sel;y=H@,j+1)+v;v=H@E+1,7)+;
score < 0, direction < 0;
if £ >y Az >wvthen
‘ score < x; direction < 2;
else
if y > v then
‘ score < y; direction < 1;
else
‘ score <— v; direction < 3;
end
end
// Stores the score in matrix H and the direction in matrix D calculated;
H(i+ 1,5+ 1) =score; D(i+ 1,5+ 1) = direction;
// checking which is the highest calculated score;
if mazVal < score then
‘ mazxVal < score; posMi < i+ 1; posMj < 5+ 1;
end

end
end
return D, posMi, posMj;

June 27, 2021 12/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

After the process of selection the score and direction, it has the choice of the
maximum score based on a logic of multiplexers and relational blocks. There is a
counter, called cntR, to determines the number of times that the selection of the score
and direction is carried out, i.e., the H matrix row that the process is on. This is
necessary to determine the Addr RAM; address. At the beginning of MSM processing,
index(j — 1) is added to 1, just once for each MSM, becoming index(j) and
determining the address of this MSM. For the determination of Mazval, it is seen
whether the previous value is less than the current computed score value, then the
calculated current score value becomes the Mazval, AddrRAM; = index(j) and
respective row process value is AddrRAM,;. It is noted the AddrRAM;.; signal are
corresponding to the location of the maximum score value.

In parallel with the process of determining the maximum score value, there is the
process of storing the directions. Thus, the output Direction of the submodule is
prepared in set with the value wAddrDir, which comes from the H matrix row
calculated at that moment, allowing to write in order in RAM memory according to the
respective positions of H matrix (i.e., same position of D matrix).

Finally, according to the systolic structure, after the MSM processing is over, the
signals are parallelly sent to the next MSM. Thereupon, ¢(k), s(k), and en(k) are
shifted in time, that is, g(k — 1), s(k — 1), and en(k — 1), to match the calculation
structure of the H matrix, as seen in the Figure 4. Besides, the calculated signals Sc(i),
MaxVal, AddrRAM;,; and index are also propagated to the next MSM to preserve
the scores calculating structure. This process repeats until the last element of s is
calculated with the last element of q; a counter in is used to determine that moment
since the values of the sequences are previously informed to all PEs. The Forward stage
finishes with the calculation of the last element of the matrix, i.e., H(M — 1)(N — 1).
Consequently, the signal Traceback is enabled, indicating the end of the process in all
MSM, and the addresses Addr RAM;,; corresponding to the maximum score value is
sent to the next step (i.e., Backtracking process).

Algorithm 1 presents the SW pseudo-code for Forward stage and storage process
structures. The Algorithm 1, is prepared to perform the calculation of scores and
storage of matrices H and D. The input is the signals q and s, which is Equation 1 and
2, respectively. The first loop, in the Algorithm 1, represents each N element used, as
seen in Figure 2. The second Loop is the interactions made by the signal En to allow
the calculation of each element of s in each PE. The first conditional structure is the
multiplexer for making choices in the MSM, as seen in Figure 5. Submodule Selection
Maximum Value and Direction, Figure 6, is represented by the second conditional
structure, which compares variables x, y and v. The outputs are D matrix stored in
MM and the position of the maximum values defined in MSM.

3.2 Memory Module (MM)

The MM communicates with both the MSM and the BS, as shown in 7. During the
Forward Stage, the data regarding the distance values are written to the MM.
Meanwhile, during the BS, the memory addresses to align the sequences are fetched
from the MM. The size of each memory is defined by the size of the s sequence; also,
there is a flag to indicate that the memory is in write mode while computing the H
matrix and, subsequently, in fetch mode, in the backtracking process.

The MM consists of Random Access Memories (RAMs) used to store the path

directions, Direction, obtained in the MSM that is thereafter needed in the BS module.

Hence, the RAMs are in write mode throughout the Forward Stage and reading mode
during Backtracking. The RAM input ports are the address and data busses and write
enable mode. Besides, the memory size of each memory is defined based on the size of

June 27, 2021

13/27

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Processing Element

en(k — j) Matrix Score

Module j
lDirection l'wAderir

Memory Module

Ibtcont'rol IrAderir

Backtracking
dj (z) Module j

Fig 7. Representation of the simplified Memory Module structure. This model is
practically as is the complete processing PE of each column of the H matrix.

the sequence s, which in turn, the amount of RAM memories is equal to the number of
PEs in the systolic array.

The enable signal, en, is used as write enable for each RAM in the MM. Therefore,
en = 1 defines the write mode, while en = 0 the read mode. In addition, the btcontrol
signal selects which module controls the RAM address bus. Hence, for btcontrol = 0 the
memory addresses are defined by the MSM module through wAddr Dir signal, while
btcontrol = 1 selects the BS module to define the addresses via r Addr Dir signal.

Thus, in write mode (en = 1 and btcontrol = 0) the wAddrDir signal defines the
address of the RAMs where the Direction value is stored by the MSM. Subsequently,
after the H matrix is fully calculated, the Traceback is enabled to indicate the end of
the Forward Stage, and the MM goes into reading mode (en = 0 and btcontrol = 1).
Accordingly, the r Addr Dir signal defines the address space the BS fetches the data
corresponding to the value reported by the trace-back.

3.3 Backtracking Approach

The backtracking process starts when the Traceback signal is enabled in the MSM by
counters that determine the last PE and the last processed element of s, as described in
Forward Stage. As previously mentioned in subsection 3.1, the MSM propagates to the
MM the maximum score address that is used as the starting point for alignment, as
shown in Figure 8. Meantime, the Figure 9 details the submodules used to create each
BS module. The submodules in green are circuits for controlling and synchronizing all
signals during the module operation, while the blue submodule performs the alignment
path described in this section.

Firstly, after T'raceback is enabled, the BT Start signal is enabled, and the addresses
of the maximum score element, Addrgani(N — 1) and Addrran;(N — 1), are sent to
the respective BS. Also, the values of Addrgani(N — 1) and Addrran;i(N — 1) are
assigned to mRAMi(N — 1) and mRAM j(N — 1), respectively, by the BT Enable
submodule. It is important to emphasize that if the mRAMj(N — 1) value (i.e.,
Addrran;j(N — 1)) is not already in the BS PE, it will trace-back by checking the
Memory Index submodule. This process happens until it reaches the PE corresponding
to the maximum score location. Afterward, the Memory Index submodule assigns

June 27, 2021

14/27

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

412

413

414

415

416

417

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Backtracking Step
Traceback Traceback Traceback
Addrgap, (0) Addrgan (7) Addrpan; (N — 1)
{-eorra) |~carran U) | TR
. |Addrar; (0) Vatix Addrgan, () Matix | Addrrarg (N — 1)
Score | index(0) Score | indez(j) Score | indea(N — 1)
Module 0 [~ Modulej > M‘:\?_‘:‘E ——
ent®) Direction enlh—3) Direction en(k—N+1) Direction
wAddrDir wAddrDir T wAddrDir
MEMORY MODULE
btcontroly rA,ierirnl do(i) . bt(xmtrol]l rAddrDir;| d;(i) btcontroly_ | rAddrDiry_y dy,(i).
Traceback Traceback Traceback
L inacenachil o —raceach ki
Add) j Add N-1
mRAM;(0) Addrpa, (0 mRAM;(j) A, (5 mRAM;(N - 1) rran, ()
Addrpan; (0) Addrgan, (7) Addrgay; (N —1)
mRAM;(0) indea(0) mRAM;(j) indea(j) mRAM;(N — 1) indea(N — 1)
mRAM;(1) mRAM;(j +1) _— mRAM;(N)
BTstart (0 BT start (4) BTstart (N — 1
) Backtracking mRAM;(1) = Ul Reciaciie mRAM;(j +1) o packiasking mRAM;(N)
BTstart (7 + 1 . BTstart (V)
valDir(0) BlsanV) valDir(j) BlounlU+1) | ypiny — 1) (BTsinN)
valDir(1) valDir(j +1) valDir(N)
BTyex(0) BTyex (1) Blven(3) Blyen(i+1) | BlvenV—1) BTyex(N)
path(0) path(1) path(j) path(j + 1) path(N — 1) path(N)

Fig 8. Backtracking Module structure in the FPGA. The operation of this block starts
after the Forward Step.

Backtracking Module

BtNext(j)

)

dBT Start Traceback
btcontrol; o
dTrace Enable |, BT Start
AddrRAM; (5)
@ AddrRAM,(5)
Memory mRAM;(j +1)
rAddrDir; lrpttee mRAM;(j+ 1)
sel index(]. 4
] ath(j+1 ﬁ)
BtNext(j+ 1)
9 Direction 9 Start
path(j) selection Process ath(j + 1)
Ali it g —
StopFlag| ' Block d;(3)
Finish
Processing
Continue
Processing

Fig 9. Submodules that constitute the Backtracking Stage Module. The green
submodules represent the control submodules, while the blue submodule represents the
circuit that performs the alignment.

June 27, 2021

15/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

mRAM,; value to rAddrDir to read the memories in the MM, which in turn, returns
the d(i) value to the Direction Process submodule, as can be seen in Figure 9.
Secondly, the alignment process starts. The circuits used to build the alignment
submodule are shown in Figure 10. As can be observed, the input d;(4) is used as the
multiplexer selector to perform the Equation 10. Therefore, for d;(i) = 3, BS remains in

the same memory position and moves back one BS module, i.e., horizontal displacement.

While for d;(i) = 1, only the memory position decreases by 1, and BS is verified by the
Direction Process and Continue Processing submodules (i.e., vertical displacement).
Meanwhile, for d;(i) = 2, the memory position also decreases by 1, and it moves to the
previous module with the displacement in the memory position. The circuit after the
first multiplexer prevents negative addresses in the memory.

Alignment Block

a
sel
b

d1 b—a
dZ*‘J b

) path(+1
. path(j + 1)

sel«—a<b

do

topFlag)

&

Fig 10. Logical circuits used to build the Alignment Block submodule.

Given that the path to align the first element is found, the Alignment Block
submodule receives the rAddrDir; and d;(i) signals to define the path to be followed
by the next BS, as seen in Figure 9. Initially, a logical circuit enables the BT Start and
Direction Process submodules to propagate those signals to the Alignment Block. The
Direction Process and Continue Processing submodules carry out checks to define which
BS module is active, that is, for d;(7) = 1, the data processing is held in the current BS
module, and for d;(¢) # 1, the signal BT neq: is enabled, indicating the end of data
processing in the current PE to start in the next one.

After finding the module for the maximum score, the mRAM; and mRAM; signs
finish their function. Thus, from the determination of the BS with the maximum score,
the path(j) sign is used as a guide for locating the alignment of each module. Then, the
data in MM is requested and the d; value is returned for verification and establishment
of alignment. The verification and establishment of the alignment path is done by the
Memory Index, Direction Process, and Continue Processing submodules. Decisions
related to d; value are made in Alignment Block submodule, as illustrated in Figure 10.

Finally, the Finish Processing and Continue Processing submodules finish the data
processing in the module. Thereby, the valDir output of each submodule is used to
construct the alignment path, along with the maximum score position values. The
trace-back continues until it reaches PEy or finds a path direction with a value of 0.

Algorithm 2 presents the SW pseudo-code for Backtracking stage this proposal. The
Backtracking stage, Algorithm 2, is ready to perform the alignment in a list using the
path informed in D, starting from the positions of the maximum score, as seen in this
Section. Inputs for this step are provided by Algorithm 1. The loop for this step
represents all Backtracking stage modules from N — 1 to 0. The conditional structure of
Algorithm 2 is the representation of submodule Alignment Block, Figure 10, which
allows it to trace-back. And the return of the alignment path is storing the data,
valDir, in RAM memory.

June 27, 2021

16/27

418

419

420

421

422

423

424

425

426

427

428

429

430

432

433

434

435

437

438

439

440

442

443

444

445

247

448

449

450

452

453

454

455

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Algorithm 2: SW Backracking Stage pseudo-code based in structure this

proposal
Input : query sequence ¢
Input : dataset sequence s
Input : distance path matrix D
Input : row position of maximum score posMi
Input : column position of maximum score posM j

Output: alignment sequences list A
Output: alignment path sequences list path
//Backtracking Stage;

auxi = posMi; auxj = posMj,; aux < D(auxi, auxj);A < [[;

path < concat(path, auzx);
while auz > 0 do
A + concat(A, [g(auzj — 1); s(auzi — 1)]);
if aux = 2 then
‘ auzt = auzt — 1, auzj = auxj — 1;
else
if aux = 3 then
‘ aurj = auxj — 1;
else
if aux =1 then
‘ auxt = auxi — 1;
else
‘ break;
end
end
end
aux < D(auzi, auzrj);
path < concat(path, aux);

end
return A, path;

June 27, 2021

17/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

4 Results and Discussion

This section presents the synthesis results for the architecture described in the previous
section and analyses it regarding the following key points: critical path, operation
frequency, number of PEs, and performance. The performance measures the time to
calculate an element of the scoring matrix.

The development of the algorithm was carried out using the development platform
provided by the FPGA manufacturer, in this case, Xilinx [48]. This platform allows the
user to develop circuits using the block diagram strategy instead of VHDL or Verilog.
The architecture was deployed on the FPGA Virtex-6 XC6VLX240T and compared to
state-of-the-art works. Usually, hardware implementations of the SW algorithm in the
literature were implemented only the Forward Stage or both the Forward and
Backtracking Stages. In our proposal, both stages were implemented.

The performance for hardware implementations of the SW algorithm is usually
measured in Giga Cell Update Per Second (GCPUS), which in turn is defined as

GCUPS — numbe-r of c.ells 7 (1)
total processing time x 10°

in which a cell can be one vector or matrix element to be computed. This metric can
also be described based on the clock frequency, that is,

GCUPS = number of cells x clock frequency x 10°. (12)

The latter equation is often used to compare the systolic array efficiency. Since the
number of cells is equivalent to the number of PEs, and the clock frequency defines the
operating frequency, it is unnecessary to measure the total runtime of the algorithm.

4.1 Hardware Architecture Validation

To validate the architecture proposed in this work, the sequences q and s were randomly
generated and varying the match, mismatch, and linear gap values. The analysis was
carried out for 8 PEs, and q and s size varied from 8 to 32.

Firstly, the correctness of the matrices H and D was verified by monitoring the
MSM outputs, such as Sc and Direction, as described in Section 2. Secondly, it was
verified if the D matrix elements were stored in the correct memory positions in the
MM. Lastly, the operation of the BS modules was also verified by monitoring the
path(j + 1) bus and the Memory Index submodule.

Following, the Alignment Block and Direction Process are observed to check if the
memory accesses are in accordance with the path(j + 1) value, that is, according to
Equation 10. Also, the Finish Processing and Continue Processing submodules are
monitored to verify the values propagated for a match (2), horizontal gap (3), and
vertical gap (1).

The data bit-width was defined by the maximum size of the input sequences, limited
by FPGA memory capacity. Hence, the input sequence bit-width was set to 3 while
constants were defined according to its value. Besides, the bit-width for the MSM buses
that perform mathematical operations was defined as log,,,,;_ prs X@. Meanwhile, the
sequence counters for s is log, ;.-

Figure 11 shows the architecture deployed and running on the Virtex-6 FPGA. The
host computer (i7-3632QM CPU and 8GB of RAM) was used to plot the results and
compare them to a software implementation presented in [49], as shown in Figure 12. In
the Figure 12, it can be seen that the y axis refers to the s sequence, while the x axis
refers to the q sequence. To increase the resolution of the image, only the parts of the
sequences that are aligned are used, where the position at which the alignment starts

June 27, 2021

18/27

456

457

458

459

460

462

463

464

465

467

468

469

470

471

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

496

497

498

499

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

and the maximum score value are shown in the title of the illustration. The value of
Row refers to the position in the s, whereas Column is related to the element of the q.

The amount of sequence alignment performed is represented by Number of Alignments.

The architecture parameters for the demo were set to match = 5, mismatch = —5,
gap = 1, and 128 PEs. Hence, the size of the sequence q is also 128. Meanwhile, the

size of the sequence s was set to 8,192, resulting in a total of 1,048,576 calculated cells.
Sequence q is loaded into memory at each iteration, where it can vary between 4

different 128 nucleotide sequences in the demonstration. The demo is available at [50].

Fig 11. Photo of the hardware architecture deployed on the Virtex-6 FPGA and the

host computer used to plot the results.

4.2 Synthesis Analysis

Analysis of the synthesis results for the SW hardware implementation were carried out
for two FPGAs: Virtex-6 XC6VLX240T and Virtex-7 XC7VX485T. Table 2 presents

the hardware area occupation and frequency for a different number of PEs. The size of

the input sequences were defined according to the number of PEs.

FPGA Array Slice LUTS Memory Frequency
Model Size (PE) /(%) /(%) (MHz)
Virtex-7 512 103,778 (34%) 8,192(6%) 155
Virtex-6 512 103,807 (68%) 8,192(14%) 120
Virtex-6 256 47,725 (31%) 2,048 (3.5%) 112
Virtex-6 128 24,386 (16%) 512 (1%) 117
Virtex-6 64 10,803 (7%) 128 (0.2%) 157

Table 2. Area occupation results based on the FPGA synthesis of our SW

implementation, with forward and backtracking stages.

The critical path of the design was ~ 8.34ns and ~ 6.44ns for the Virtex-6 and
Virtex-7, respectively. Therefore, the maximum clock frequency was 120MHz for the

Virtex-6 and 155MHz for the Virtex-7. Regarding the FPGA area occupation,

increasing the number of PEs also increases the hardware resources used. For 512 PEs

June 27, 2021

19/27

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

SW algorithm
Maximum Value = 452; Row = 5883; Colunm = 127; Number of Alignments= 1
TTT I T T T I T T T TroTTTT

°

°

G

o

N e

LLLLLLLLLL LLLLL L L L
GTCCTTATGACCCCATTTTTATTAAT CCAGCCATTCCTATGCCGAGGATA

L L L L L L L L L
CTCAGTATCGTCGCATTGATAGCTACCATTACGCTAGACTACTCGGGGCGTGACCTTGT GATTCACGGCTT

cTTG
sequnece g

Fig 12. Illustration of the results obtained from our proposal in co-simulation. The
image is the most detailed representation of the monitor in Figure 11. It can see that
the y-axis refers to the s, while the x-axis refers to the q. The position at which the
alignment starts is indicated by Row and Column. The maximum score value found is
presented by Maximum Value. The amount of sequence alignment performed is
represented by Number of Alignments.

in the Virtex-6, a total of 68% of the Slice Look-Up Tables (LUTSs) were used in
contrast to only 7% for 64 PEs. Concerning the frequency, a slight decrease is observed
as the number of PE increases due to an increase in the critical path. Concerning the

Virtex-7, there are unused FPGA resources as less than 35% of Slices LUTs were used.

Therefore, it can be used to increase the number of PEs and, thus, the performance.

4.3 Comparison with other works

Comparisons with state-of-the-art works were also performed. The performance of
systolic array-based implementations increases with the number of PEs. Hence, the
comparisons were carried out for the maximum number of PE in each proposal.

The works presented in Table 3 are available in [34]. The second column indicates
whether the backtracking stage was also developed on FPGA or only the forward.
Meantime, the third to fifth columns present the number of PEs, operating frequency,

and performance, respectively. The performance was obtained according to Equation 12.

As can be seen, our approach and the one proposed by [34] were the only ones to
implement a high number of PEs. However, in [34] only the backtracking path was
deployed on the FPGA, and a submatrix structure is used to load the path chosen for
alignment. Meanwhile, our architecture relies on a memory storage structure and the
definition of the maximum score to align the sequences.

Furthermore, a comparison with [34] was also carried out regarding the FPGA area
occupation, and it is presented in Table 4. The second and third columns present the
FPGA and the number of PEs used, respectively. Meanwhile, the third and fourth
columns present the slices and memory blocks occupied, and the fifth column the
operating frequency.

June 27, 2021

20,/27

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Related Backtracking PE number Frequency Performance

Works (Yes or No) in array (MHz) (GCUPS)
2005 [51] No 252 50 13.9
2006 [41] Yes 303 77.5 23.5
2007 [52] No 384 66.7 25.6
2007 [53] No 128 125 16.0
2008 [42] Yes 256 100 25.6
2009 [46] Yes 168 62.5 10.5
2011 [54] No 100 111 11.1 x 12
2012 [55] No - 250 -
2012 [56] No <100 125 16 x 8
2012 [57] No 100 175 17.5
2012 [47] No 128 60 7.62
2014 [58] No 200 200 40
2017 [34] Yes 512 150 76.8
2017* [34] Yes 512 200 105.9
This work Yes 512 155 79.5

Table 3. Table adapted from paper [34]. it compares the proposed SW using
reconfigurable hardware based on the operating frequency, number of PEs and
performance in GCUPS. It also shows if the works use backtracking or not in the
implementation. * indicates the approach uses external memory to accelerate the
alignment process.

Related FPGA Array Slices Memory Frequency

Works Model Size (PE) /(%) /(%) (MHz)
This work XC7VXA85T 512 35,286/(46%) 0 BRAM/(0%) 155
2017 [34] XC7VX485T 512 57,870/(76%) 896 BRAM/(87%) 200

Table 4. Table with the summaries of the results of the FPGA synthesis works of SW
implementation (hardware SW with backtracking step). The Slice column is related to
the logical distribution and refers to the occupied slices in the synthesis.

June 27, 2021 21/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

As shown in Table 4, for the same number of PEs, our architecture occupied 35, 286
slices and 0 BRAMs in contrast to 57,870 slices and 896 block RAMs (28 Mbits
memory) in [34]. Also, the total area occupation was higher than 60%, compared to
46% on ours, due to the substitution matrix. Therefore, our proposal has high
scalability due to the low resource usage (can reach up to 1,024 PEs for the
XC7VX485T). Besides, our implementation proposal can be implemented in smaller
FPGAs, such as the Virtex-6 XC6VLX240T, with a reasonable nucleotide sequence.

Regarding the operation frequency, our proposal can reach up to 155 MHz. So, it is
observed that the proposals with the best performances have a similar structure, even
with different approaches to the solution. Our proposal and [34] achieving the same
performance for the frequency of 150 MHz.

Therefore, our work uses fewer hardware resources to perform the alignment process
due to the chosen backtracking approach. As the backtracking stage results in high
computational complexity, we simplified the process using the path mapping through
the maximum value in D and H, resulting in linear computational complexity. On the
other hand, the architecture proposed by [34] uses considerably more memory resources
due to data partitioning and prefetching for the backtracking step. Despite both works
achieving similar performance due to the systolic array, there are significant differences
in the alignment approach chosen for the FPGA implementation.

The hardware implementation of the alignment process through our approach,
developed based on a chain of directions and the maximum score address, is a key
contribution for the low use of memories and, thus, achieve high hardware scalability.
Hence, the proposed method can compress the data, using only 3 bits in a fixed-point
implementation.

5 Conclusion

This paper presented a parallel FPGA platform design to accelerate both the Forward
and Backtracking stages of the SW algorithm. The main contributions were the
high-speed data processing implementation and low memory usage that allowed high
scalability. In order to satisfy the high-throughput, ultra-low-latency and low-power
requirements and to alleviate the raw data processing problem in bioinformatics. From
the strategy of storing alignment path distances and maximum score position during
Forward Stage processing. It was possible to reduce the complexity of Backtracking
Stage processing which allowed to follow the path directly. The proposal architecture
achieved a satisfactory critical path, reduced memory usage and high scalability for
two-step SW algorithm. Synthesis results showed that the proposed method could
support up to 1,024 PEs in only one FPGA, using the Xilinx Virtex-7 XC7VX485T.
The main advantage is the low hardware resource usage and high performance of 79.5
GCUPS, with an operating frequency of up to 155MHz, without using external
resources.

Acknowledgments

The authors wish to acknowledge the financial support of the Coordenacao de
Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for their financial support.

June 27, 2021

22/27

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

1.

10.

11.

12.

13.

Masseroli M, Canakoglu A, Pinoli P, Kaitoua A, Gulino A, Horlova O, et al.
Processing of big heterogeneous genomic datasets for tertiary analysis of Next
Generation Sequencing data. Bioinformatics. 2018;35(5):729-736.

doi:10.1093 /bioinformatics/bty688.

. Pereira R, Oliveira J, Sousa M. Bioinformatics and Computational Tools for

Next-Generation Sequencing Analysis in Clinical Genetics. Journal of Clinical
Medicine. 2020;9(1). doi:10.3390/jcm9010132.

. Schuster S. Next-generation sequencing transforms today’s biology. Nature

methods. 2008;5:16-8. doi:10.1038 /nmeth1156.

. Kumar G, Kocour M. Applications of next-generation sequencing in fisheries

research: A review. Fisheries Research. 2017;186:11-22.
doi:https://doi.org/10.1016/j.fishres.2016.07.021.

Tanjo T, Kawai Y, Tokunaga K, Ogasawara O, Nagasaki M. Practical guide for
managing large-scale human genome data in research. Journal of Human
Genetics. 2020;66. doi:10.1038/s10038-020-00862-1.

Lyng GD, Sheils NE, Kennedy CJ, Griffin DO, Berke EM. Identifying optimal
COVID-19 testing strategies for schools and businesses: Balancing testing
frequency, individual test technology, and cost. PLOS ONE. 2021;16(3):1-13.
doi:10.1371 /journal.pone.0248783.

Mazzarelli A, Giancola ML, Farina A, Marchioni L, Rueca M, Gruber CEM, et al.
16S rRNA gene sequencing of rectal swab in patients affected by COVID-19.
PLOS ONE. 2021;16(2):1-15. doi:10.1371/journal.pone.0247041.

Miller D, Martin MA, Harel N, Kustin T, Tirosh O, Meir M, et al. Full genome
viral sequences inform patterns of SARS-CoV-2 spread into and within Israel.
Nature Communications. 2020;11:5518. doi:10.1038/s41467-020-19248-0.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. Journal of Molecular Biology. 1990;215(3):403 — 410.
doi:https://doi.org/10.1016 /S0022-2836(05)80360-2.

Needleman SB, Wunsch CD. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology. 1970;48(3):443 — 453. doi:https://doi.org/10.1016/0022-2836(70)90057-4.

Smith TF, Waterman MS. Identification of common molecular subsequences.
Journal of Molecular Biology. 1981;147(1):195 — 197.
doi:https://doi.org/10.1016 /0022-2836(81)90087-5.

Afifi S, Gholamhosseini H, Sinha R. Hardware Implementations of SVM on
FPGA: AState-of-the-Art Review of Current Practice. International Journal of
Innovative Science, Engineering & Technology (IJISET). 2015;2:733-752.

Ajjaz A, Dohler M, Aghvami AH, Friderikos V, Frodigh M. Realizing the Tactile
Internet: Haptic Communications over Next Generation 5G Cellular Networks.
IEEE Wireless Communications. 2017;24(2):82-89.
doi:10.1109/MWC.2016.1500157RP.

June 27, 2021

23/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Houtgast EJ, Sima VM, Bertels K, Al-Ars Z. Hardware acceleration of
BWA-MEM genomic short read mapping for longer read lengths. Computational
Biology and Chemistry. 2018;75:54-64.
doi:https://doi.org/10.1016/j.compbiolchem.2018.03.024.

Courneya JP, Mayo A. High-performance computing service for bioinformatics
and data science. Journal of the Medical Library Association : JMLA.
2018;106:494-495. doi:10.5195/jmla.2018.512.

Arenas M, Mora A, Romero G, Castillo P. GPU Computation in Bioinformatics.
A review. Advances in Intelligent Modelling and Simulation. 2012; p. 433-440.

Khan D, Shedole S. Accelerated Deep Learning in Proteomics—A Review.
Innovation in Electrical Power Engineering, Communication, and Computing
Technology. 2020; p. 291-300.

Gonzalez-Dominguez J, Ramos S, Tourifio J, Schmidt B. Parallel pairwise
epistasis detection on heterogeneous computing architectures. IEEE Transactions
on Parallel and Distributed Systems. 2015;27(8):2329-2340.

Letras M, Bustio-Martinez L, Cumplido R, Hernandez-Ledén R, Feregrino-Uribe C.
On the design of hardware architectures for parallel frequent itemsets mining.
Expert Systems with Applications. 2020;157:113440.

Juvonen MPT, Coutinho JGF, Wang JL, Lo BL, Luk W, Mencer O, et al.
Custom hardware architectures for posture analysis. In: Proceedings. 2005 IEEE
International Conference on Field-Programmable Technology, 2005.; 2005. p.
T77-84.

Franke K, Crowgey E. Accelerating next generation sequencing data analysis: an
evaluation of optimized best practices for Genome Analysis Toolkit algorithms.
Genomics & Informatics. 2020;18:€10. doi:10.5808/GI.2020.18.1.€10.

Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing units in
bioinformatics, computational biology and systems biology. Briefings in
Bioinformatics. 2016;18(5):870-885. doi:10.1093/bib/bbw058.

Manconi A, Moscatelli M, Gnocchi M, Armano G, Milanesi L. A GPU-based high
performance computing infrastructure for specialized NGS analyses. In: PeerJ
Preprints; 2016. p. 3.

Kung. Why systolic architectures? Computer. 1982;15(1):37-46.
doi:10.1109/MC.1982.1653825.

Kung HT, McDanel B, Zhang SQ. Packing Sparse Convolutional Neural Networks
for Efficient Systolic Array Implementations: Column Combining Under Joint
Optimization. In: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems.
ASPLOS '19. New York, NY, USA: Association for Computing Machinery; 2019.
p. 821-834. Available from: https://doi.org/10.1145/3297858.3304028.

Sze V. Designing Hardware for Machine Learning: The Important Role Played by
Circuit Designers. IEEE Solid-State Circuits Magazine. 2017;9(4):46-54.
doi:10.1109/MSSC.2017.2745798.

Dias LA, Ferreira JC, Fernandes MAC. Parallel Implementation of K-Means
Algorithm on FPGA. IEEE Access. 2020;8:41071-41084.
doi:10.1109/ACCESS.2020.2976900.

June 27, 2021

24/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Dias LA, Damasceno AM, Gaura E, Fernandes MA. A full-parallel
implementation of Self-Organizing Maps on hardware. Neural Networks. 2021;.

Barros WK, Dias LA, Fernandes MA. Fully Parallel Implementation of Otsu
Automatic Image Thresholding Algorithm on FPGA. Sensors. 2021;21(12):4151.

Hughey R, Lopresti DP. Architecture of a programmable systolic array. In:
[1988] Proceedings. International Conference on Systolic Arrays; 1988. p. 41-49.

He D, He J, Liu J, Yang J, Yan Q, Yang Y. An FPGA-Based LSTM Acceleration
Engine for Deep Learning Frameworks. Electronics. 2021;10(6).
d0i:10.3390/electronics10060681.

Zhang H, Fu Y, Feng L, Zhang Y, Hua R. Implementation of Hybrid Alignment
Algorithm for Protein Database Search on the SW26010 Many-Core Processor.
IEEE Access. 2019;7:128054-128063.

Banerjee SS, El-Hadedy M, Lim JB, Kalbarczyk ZT, Chen D, Lumetta SS, et al.
ASAP: Accelerated Short-Read Alignment on Programmable Hardware. IEEE
Transactions on Computers. 2019;68(3):331-346.

Fei X, Dan Z, Lina L, Xin M, Chunlei Z. FPGASW: Accelerating Large-Scale
Smith—Waterman Sequence Alignment Application with Backtracking on FPGA
Linear Systolic Array. Interdisciplinary Sciences: Computational Life Sciences.
2017;10. doi:10.1007/s12539-017-0225-8.

Liu Y, Maskell D, Schmidt B. CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
research notes. 2009;2:73. doi:10.1186/1756-0500-2-73.

Rognes T. Faster Smith-Waterman database searches by inter-sequence SIMD
parallelisation. BMC bioinformatics. 2011;12:221. doi:10.1186/1471-2105-12-221.

Kaplan R, Yavits L, Ginosar R, Weiser U. A Resistive CAM
Processing-in-Storage Architecture for DNA Sequence Alignment. IEEE Micro.
2017;37(4):20-28.

LiY, Lu Y. BLASTP-ACC: Parallel Architecture and Hardware Accelerator
Design for BLAST-Based Protein Sequence Alignment. IEEE Transactions on
Biomedical Circuits and Systems. 2019;13(6):1771-1782.

Cadenelli N, Jaksic Z, Polo J, Carrera D. Considerations in using OpenCL on
GPUs and FPGAs for throughput-oriented genomics workloads. Future
Generation Computer Systems. 2019;94:148 — 159.
doi:https://doi.org/10.1016/j.future.2018.11.028.

Saavedra A, Lehnert H, Herndandez C, Carvajal G, Figueroa M. Mining
Discriminative K-Mers in DNA Sequences Using Sketches and Hardware
Acceleration. IEEE Access. 2020;8:114715-114732.

Court T, Herbordt M. Families of FPGA-Based Accelerators for Approximate
String Matching. Microprocessors and microsystems. 2007;31:135-145.
doi:10.1016/j.micpro.2006.04.001.

Lloyd S, Snell QO. Sequence Alignment with Traceback on Reconfigurable
Hardware. In: 2008 International Conference on Reconfigurable Computing and
FPGAs; 2008. p. 259-264.

June 27, 2021

25/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

52.

53.

o4.

95.

96.

Rucci E, Garcia C, Botella G, Giusti AED, Naiouf M, Prieto-Matias M.
OSWALD: OpenCL Smith—Waterman on Altera’s FPGA for Large Protein
Databases. The International Journal of High Performance Computing
Applications. 2018;32(3):337-350. doi:10.1177/1094342016654215.

Siddiqui F, Amiri S, Minhas UI, Deng T, Woods R, Rafferty K, et al.
FPGA-Based Processor Acceleration for Image Processing Applications. Journal
of Imaging. 2019;5(1). doi:10.3390/jimaging5010016.

Pilz S, Porrmann F, Kaiser M, Hagemeyer J, Hogan JM, Riickert U. Accelerating
Binary String Comparisons with a Scalable, Streaming-Based System
Architecture Based on FPGAs. Algorithms. 2020;13(2). doi:10.3390/a13020047.

Benkrid K, Liu Y, Benkrid A. A Highly Parameterized and Efficient
FPGA-Based Skeleton for Pairwise Biological Sequence Alignment. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.
2009;17(4):561-570. doi:10.1109/TVLSI.2008.2005314.

Sebastiao N, Roma N, Flores P. Integrated Hardware Architecture for Efficient
Computation of the n-Best Bio-Sequence Local Alignments in Embedded
Platforms. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
2012;20(7):1262-1275. doi:10.1109/TVLSI.2011.2157541.

Xilinx. System Generator for DSP; 2008, Accessed on Jan 30, 2020. Available
from: https://www.xilinx.com/.

Vasco P. Smith-Waterman-Algorithm; 2019, Accessed on June 04, 2021. Available
from: https://github.com/pedrovasco96/Smith-Waterman-Algorithm/.

Oliveira F, Fernandes M. Smith-Waterman-Algorithm Demo; 2021, Accessed on
June 22, 2021. Available from: https://drive.google.com/drive/folders/
1Mr78U1MNAGHVKV1£WA248Zp05LCGdINO?usp=sharing.

Oliver T, Schmidt B, Maskell D. Hyper customized processors for bio-sequence
database scanning on FPGAs; 2005. p. 229-237.

Zhang P, Tan G, Gao G. Implementation of the Smith-Waterman algorithm on a
reconfigurable supercomputing platform; 2007. p. 39-48.

Storaasli O, Yu W, Strenski D, Maltby J. Performance Evaluation of
FPGA-Based Biological Applications. Seattle; 2007.

Alachiotis N, Berger SA, Stamatakis A. Accelerating Phylogeny-Aware Short
DNA Read Alignment with FPGAs. In: 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines; 2011. p.
226-233.

Olson CB, Kim M, Clauson C, Kogon B, Ebeling C, Hauck S, et al. Hardware
Acceleration of Short Read Mapping. In: 2012 IEEE 20th International
Symposium on Field-Programmable Custom Computing Machines; 2012. p.
161-168.

Preuber TB, Knodel O, Spallek RG. Short-Read Mapping by a Systolic Custom
FPGA Computation. In: 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines; 2012. p. 169-176.

June 27, 2021

26,27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.4540086; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

57. Tang W, Wang W, Duan B, Zhang C, Tan G, Zhang P, et al. Accelerating
Millions of Short Reads Mapping on a Heterogeneous Architecture with FPGA
Accelerator. In: 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines; 2012. p. 184-187.

58. Chen P, Wang C, Li X, Zhou X. Accelerating the Next Generation Long Read
Mapping with the FPGA-Based System. IEEE/ACM Transactions on
Computational Biology and Bioinformatics. 2014;11(5):840-852.
doi:10.1109/TCBB.2014.2326876.

June 27, 2021 27/27

https://doi.org/10.1101/2021.07.27.454006
http://creativecommons.org/licenses/by/4.0/

