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Abstract (300 words)

The development of high-throughput genomic technologies associated with recent genetic perturbation
techniques such as short hairpin RNA (shRNA), gene trapping, or gene editing (CRISPR/Cas9) has made it
possible to obtain large perturbation data sets. These data sets are invaluable sources of information
regarding the function of genes, and they offer unique opportunities to reverse engineer gene
regulatory networks in specific cell types. Modular response analysis (MRA) is a well-accepted
mathematical modeling method that is precisely aimed at such network inference tasks, but its use has
been limited to rather small biological systems so far. In this study, we show that MRA can be employed
on large systems with almost 1,000 network components. In particular, we show that MRA performance
surpasses general-purpose mutual information-based algorithms. Part of these competitive results was
obtained by the application of a novel heuristic that pruned MRA-inferred interactions a posteriori. We

also exploited a block structure in MRA linear algebra to parallelize large system resolutions.

Author Summary (150-200 words)

The knowledge of gene and protein regulatory networks in specific cell types, including pathologic cells,
is an important endeavor in the post-genomic era. A particular type of data obtained through the
systematic perturbation of the actors of such networks enables the reconstruction of the latter and is
becoming available at a large scale (networks comprised of almost 1,000 genes). In this work, we
benchmark the performance of a classical methodology for such data called modular response analysis,
which has been so far applied to networks of modest sizes. We also propose improvements to increase

performance and to accelerate computations on large problems.
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Introduction

The expression and activity of genes and proteins in cells are controlled by highly complex regulatory
networks involving genes and proteins themselves, but also non-coding RNAs, metabolites, etc. Despite
tremendous efforts in research, including all the developments of high-throughput genomic
technologies, a significant portion of this machinery remains uncharted. Moreover, dysregulations in
such networks are related to many diseases, and healthy cells of a same organism feature adjusted
regulatory networks depending on their cell types and states. Techniques, both experimental and
computational methodologies, that enable the inference of regulatory networks for different cells are

obviously of great interest.

Reference databases such as Reactome[1], KEGG[2], IntAct[3], or STRING[4] that compile our knowledge
of biological pathways or protein interactions have been established that provide valuable reference
maps. Due to their universal nature, these maps do not reflect natural and pathologic variations of
regulatory networks though some chosen disease pathways might be included. In principle, researchers
should generate data specific to the biological system of interest to assess the actual wiring of its
regulatory network. Specific data can be combined with reference databases in some algorithms, while
others only rely on de novo inferences. The field of systems biology has proposed many algorithms for
such a purpose involving different modeling approaches[5—7]. Obviously, algorithms must match the
type of data available to perform the inference such as a transcriptomes or proteomes obtained under

multiple conditions, time series, or perturbation data.

In this work, we are interested in the inference of regulatory networks based on systematic perturbation
data. That is, given a biological system of interest, which could be the whole cell, but also a small set of
related genes or proteins such as a pathway or part of a pathway, we have access to information
reporting the activity level of every component (gene/protein). Typical examples are transcript, protein,
or phosphorylated protein abundances. This information is available in basal condition as well as under
the systematic perturbation of each single component. When this type of data are obtained from a
biological system in a steady state, modular response analysis[8] (MRA) has been widely and successfully
applied[9]. The elegance of MRA is that it provides an efficient mathematical framework to estimate a
directed and weighted network representing the system regulatory network. Most applications of MRA
are limited to networks comprised of a modest number of modules (<10). In this study, we want to

explore the application of MRA to medium- (>50) and large-size (>500) systems. It entails a particular
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implementation of the linear algebra at the heart of MRA to parallelize computations as well as the

introduction of a heuristic to prune the inferred networks a posteriori to improve accuracy.

As stated above, rewiring of regulatory networks is natural and necessary to yield a multitude of cell
types in higher organisms, and to adapt to distinct environmental conditions. Rewiring is also associated
with several diseases[10,11], an extreme case being cancer[12—-14]. For instance, kinase signaling
cascades might be redirected in certain tumors to achieve drug resistance or to foster exaggerated cell
growth. MRA has been applied to a number of such cancer-related investigations[15,16] considering
rather small networks. Here, we take advantage of two published data sets that involve cancer cell lines
and provide systematic perturbation data compatible with MRA requirements. The first — medium-size —
data set[17] reports the transcriptional expression of 55 kinases and 6 non kinases under 11
experimental conditions (unstimulated plus 10 distinct stimulations). Under every condition, the
transcript levels of all the 61 genes were obtained by shallow RNA sequencing, including wild type cells
and cells with individual KOs of each gene. These data hence enable us to infer one network per
condition (11 networks) to discover how those 61 genes regulate themselves transcriptionally. The
second — large-size — data set was generated by the next generation of the Connectivity Map (CMap)
using its new L1000 platform[18]. Both shRNA- and CRISPR/Cas9-based systematic perturbations of
roughly 1,000, respectively 350, genes in 9, respectively 5, cell lines were released. These data enable us

to infer 9+5=14 networks.

We compare the performance of MRA, with and without the proposed pruning heuristic, to mutual

information (Ml)-based methods that have found broad acceptance.
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90 Results
91 Network inference algorithms

92  The availability of large functional genomics data collections (transcriptomes and/or proteomes) has led
93  tothe development of a number of algorithms aimed at inferring interaction networks [7]. An essential
94  ingredient of most algorithms is the co-expression of genes (or proteins)[19], which can be captured by
95 simple correlation coefficients[20], mutual information (Ml), or diverse statistical models[21]. There are
96  too many such algorithms to review them all here, but Ml-based approaches seem to have provided off-
97  the-shelf, robust solutions that are widely used. We hence compare MRA to representatives of this

98  category such as CLR[22], MRNET[23], and ARACNE[24].

99 Ml is often preferred over correlation for its ability to detect nonlinear relationships. With a network
100 involving n genes whose expression levels are measured in m transcriptomes, we write X; the discrete

101 distribution representing gene i expression. The M| between genes i and j is given by
102 Ml ; = HX) + H(X;) — HX:, X)),

103 where H(X) = — Yrex p(x)In (p(xy;)) is the entropy of a discrete random variable X. There exist
104  different estimators for H(X) that use the m available transcriptomes[25]. Networks of interactions
105 identified though MI, imposing a minimal threshold on Ml values, are commonly called relevance
106 networks[26,27]. The CLR algorithm improves over relevance networks by introducing a row- and
107 column-wise z-score-like transformation of MI; ; to normalize the M| matrix into a Z = (z; ;) matrix

108 before thresholding. Namely, for each gene i CLR computes

{ Ml ; — mean(MIi.)}
z; = max40; - .

sd(M1; )

109 and then

110 Zi,j = Z12'|'Z2

111

112 MRNET applies a greedy maximum relevance strategy to link each gene i to the gene j that has

113 maximum Ml with it (j = arg max M1; ;). Additional links are added recursively maximizing M| with both
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the gene i and the already linked genes until a stop criterion based on redundancy is met. A further
approach by pruning was proposed by ARACNE authors, where as in relevance networks a common
threshold is applied to all the M; ; followed by the application of a pruning rule. This rule states that, if
gene i interacts with gene j through gene k, then M;; < min{Mi’k; Mk’j}. Consequently, among each

triplet of nonzero Ml after initial thresholding, the weakest interaction is removed.

The MRA and MRA+CLR algorithms

Due to its ability to model biological systems at various resolutions, the MRA terminology for a system
component is a module. We follow this terminology and consider that the n modules composing the
system have their activity levels denoted by x € R". Here, modules are genes and x; stands for gene i
transcript abundance. If we make the rather nonrestrictive assumption that relationships between

modules are modeled by a dynamical system

x = f(x)
(f (.) must exist but it does need to be known), and the system is in a steady state at the time of
experimental measurements (X = 0), MRA theory lets us compute an n X n matrix of local interaction

dx; x_]

strengths r = (7; ;) from a gene jtoa gene i (r; ; = ). The matrix r is obtained from linear

Oxj xi

algebraic computations based on the observed activity of each module in an unperturbed state, and
under the individual, successive perturbations of each module. Details are provided in MRA original
publication[8], reviews of MRA developments[9], or in our recent publication[15]. We use the notations
of this recent paper. In Materials and Methods, we provide a brief overview of MRA along with a
description of the particular way we implemented the linear algebra to take advantage of parallel
computing.

Returning to the regulatory network inference problem, the MRA local interaction matrix r provides us
with a direct estimate of this network. Interactions are signed with positive coefficients representing
activation and negative coefficients representing inhibition. Given the fact that we want to apply MRA to
large systems, where every module does not necessarily have a direct influence on all the others, we
also face the problem of thresholding or pruning. Within the context of this study, we call MRA the
direct use of MRA computations followed by a threshold on the absolute values of r coefficients (values

below a given threshold in absolute values are set to 0). We also adapted CLR heuristic (z-score-like
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computation) to bring r coefficients to a more uniform scale before thresholding. We call this algorithm

MRA+CLR, see Materials and Methods for details.

Application to a medium-size data set

Gapp et al.[17] published a data set, where they studied the transcriptional impact of the full knockouts
(KOs) of 55 tyrosine kinases and 6 non-kinases. We call this data set K61. The systematic perturbations
(KOs) of each gene as well as the unperturbed transcriptomes obviously constitute a bona fide MRA data
set. The transcriptomes were acquired under 11 conditions: no stimulation (None), FGF1, ACTA, BMP2,
IFNb, IFNg, WNT3A, ionomycin (IONM), resveratrol (RESV), rotenone (ROTN), and deferoxamine (DFOM)
stimulation. Stimulations were applied for 6 hours allowing the cells to adapt and reach a steady state or
near steady state. To facilitate the generation of full-KOs, human HAP1 haploid cells[28] were utilized.
The published transcriptomes were not limited to the expression of the 61 perturbed genes, but here,
due to the specifics of MRA, we limited the data to those 61 genes. Replicates were essentially averaged
(see Materials and Methods), resulting in a 61X61 matrix for each of the 11 conditions. Interestingly,
considering the complete transcriptomes, K61 authors showed in their publication that those clustered
primarily after the stimulatory condition. That is transcriptomes of different KOs obtained under the
same stimulation were closer to each other than transcriptomes of the same KO but under different
conditions. When reduced to the 61 genes of the network, this picture was less pronounced. In Fig. 1,
we see that None-, WNT3A-, and to a certain extent IFNg-stimulated transcriptomes clustered
separately thus potentially indicating rather different network wiring. The other conditions were not

really separated suggesting that more similar networks could take place.
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165 Figure 1. t-distributed stochastic neighbor embedding (t-SNE) 2D projection of the 61 11 transcriptomes of the
166 K61 data set.

167

168 We applied MRA, MRA+CLR, CLR, MRNET, and ARACNE to the K61 data set, the later 3 algorithms

169  implementations were provided by the minet BioConductor package[25]. To estimate performance, we
170 compared our results with the STRING database[4] due to its broad content. In fact, working with

171 transcriptomic data, the inferred networks might overlap protein complexes as well as certain parts of
172 known pathways, but they might also unravel different types of relationships such as genetic

173 interactions, strong co-regulation, etc. Physical interaction of well-described pathway databases[1,3]
174 might thus be too restrictive. To apply a uniform selection mechanism to all of the algorithms, we simply
175 took the top 5%, 10%, 20%, 30% and 40% scores of the returned interaction matrices and determined
176  the intersection with STRING. This resulted in confusion matrices reporting true/false positives (TPs/FPs)
177 and true/false negatives (TNs/FNs) along with a P-value for the significance of the STRING intersection
178  (hypergeometric test). A representative example (None condition) is featured in Fig. 2A, while the

179  complete results are in Suppl. Table 1. Given the limited overlap between STRING and our data, and the
180 rather large numbers involved in the confusion matrices, we found the P-values rather unstable (small
181  differences in confusion matrices might cause important changes in terms of P-values). They should

182 hence be regarded as indicative only. Because we used a constant reference (STRING), and all the

183  algorithm scores were selected in identical numbers, reporting the number of TPs gives a clear

184  indication of the relative algorithm performances. In Fig. 2B-E we provide these numbers at the top 10%
185  and the top 20% selection levels. ARACNE implementation in minet did not perform well, typically

186 reaching half of CLR or MRNET TPs. Accordingly, ARACNE performance is not reported in Fig. 2, but in
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Suppl. Table 1 only. The CLR heuristic applied on top of MRA did not provide much performance

increase, but it resulted in more stable performances thus making it nonetheless an attractive option.

A MRA MRA+CLR
P FP FN TN  P-value ™ FP FN TN  P-value
Top 5% 16 76 272 1466 03717 20 72 268 1470  0.0741
Top 10% 43 140 245 1402 0.0025 36 147 252 1395 0.0784
Top 20% 73 293 215 124% 0.0095 73 293 215 1249 0.0095
Top 30% 104 445 184 1097  0.0089 104 a45 184 1097  0.0089
Top 40% 133 599 155 943  0.0120 141 591 147 951  0.0005
CLR MRNET
TP FP FN TN  P-value TP FP FN TN  P-value
Top 5% 15 77 274 1485  0.4854 13 79 275 1483  0.7124
Top 10% a0 153 258 1389 0.4330 34 149 254 1393 0.1572
Ton 20% 60 306 228 1236 0.3765 60 306 228 1236 0.3765
Top 30% 90 459 198 1083 0.3302 90 459 198 1083 0.3302
Top 40% 110 622 178 920 0.7720 118 614 170 928 0.3805
B . C ¥
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Figure 2. Performance on K61 data. A. Representative confusion matrices for the None condition. B. TP numbers at
the top 10% selection level. C. Comparison between the algorithm TP numbers (Wilcoxon test, 2-sided, *P < 0.05).
D. TP numbers at the top 20% selection level. E. Comparison between the algorithm TP numbers (Wilcoxon test, 2-

sided, *P < 0.05, ***P<0.005).

In their article, K61 authors discussed interesting differences in JAK1 versus JAK2 and TYK2 signaling,
three members of the JAK family. In particular, they found that JAK1 KO cells were insensitive to IFNb

and IFNg stimulation, while JAK2 and TYR2 KO cells responded normally although, in general, all these
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198 proteins are known to contribute to transcriptional response upon type | and Il interferon stimuli[29]. To
199  illustrate how network inference might provide some clue on such differences, we report in Fig. 3A the
200 MRA+CLR-inferred transcriptional interaction strengths between those three genes and their targets
201 under the unstimulated (None), IFNb, and IFNg conditions. In the absence of stimulation, we clearly

202 notice opposed influences of JAK1 on its targets compared to JAK2 and TYR2 (first three columns), which
203  already indicate different signal transduction capabilities. Upon IFNb stimulation, the interactions are
204  closer with opposed action on ROR1 and PDFGRA. JAK2 and TYR2 remained highly similar in this

205  condition. IFNg stimulation induced three different patterns with ROR1 transcriptional inhibition

206 remaining a specific mark of JAK1. Gapp et al. also found differences in FGF receptors. FGF-induced

207 response was attenuated in FGFR1 and FGFR3 KO cells, but preserved in FGFR2 and FGFR4 KO cells. In
208 Figure 3B, we notice an almost perfect inversion of the activation/inhibition pattern between FGFR1
209 versus FGFR2 and FGFR3. FGFR4 adopted a very different configuration with limited interactions. This
210 observation already indicates a distinct role for FGFR1. Upon FGF stimulation, the interactions are more
211 patchy, but certain oppositions can be found such as a strong inhibitory action of FGFR1 and FGFR3 on

212 RYK transcription.
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Figure 3. MRA+CLR-inferred interactions (top 20% selected). A. Interaction strengths (in log, with sign preserved)
between JAK1, JAK2, and TYR2 and their targets. Stimulatory conditions are in brackets (None, IFNb, IFNg) B.
Interaction strengths between FGFR1, FGFR2, FGFR3, and FGFR4 and their targets.

Application to a large-size data set

CMap next generation platform L1000[18] has recently released (December 2020) a new batch of data.
These data are in majority comprised of transcriptomes obtained in reference cancer cell lines under a
large number of perturbations with chemical agents, but most importantly shRNA-induced knockdowns
and CRISPR/Cas9 KOs. L1000 cost effective design entailed the identification of roughly 1,000 halimark
genes from which a large proportion of the whole transcriptome can be inferred. The L1000 platform
only measures the expression of the hallmark genes experimentally. Two subsets of these data interest

us.

A first data set is composed of the almost systematic ShRNA perturbation of all the hallmark genes, thus
providing an expression matrix close to 1,000% 1,000 in size for 9 human cell lines: A375 (metastatic
melanoma), A549 (lung adenocarcinoma), HCC515 (non-small cell lung cancer, adenocarcinoma), HT29
(colorectal adenocarcinoma), HEPG2 (hepatocellular carcinoma), MCF7 (breast adenocarcinoma), PC3
(metastatic prostate adenocarcinoma), VCAP (metastatic prostate cancer), and HA1E (normal kidney
cells). To alleviate shRNA off-target effects, L1000 employed multiple hairpins, which were integrated
into a consensus gene signature (CSG) that the authors showed to be essentially devoid of off-target
consequences[18]. Cells were harvested 96 hours after shRNA perturbation leaving time to reach a
steady state that is compatible to shRNA common use. Due to variation in data production, the actual
matrix sizes ranged from 815x815 (MCF7) to 938x938 (A375). Interestingly, the t-SNE 2D projection of
all the L1000 shRNA transcriptomes used here clearly indicate cell line specific subnetworks as well as

shared, core parts (Fig. 4).

11
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239 Figure 4. t-SNE projection of L1000 shRNA data. We note well-separated clusters that are specific to certain cell
240 lines, e.g., HA1E, VCAP, HCC515, HEPG2, A549, A375, as well as shared undistinguishable profile. This indicates

241 potential common and specific subnetworks across the cell lines.

242  We followed the same performance evaluation procedure as above for K61. A representative (A375
243  cells) confusion matrix is reported in Fig. 5A (full results in Suppl. Table 2), followed by TP numbers at
244 the top 10% and top 20% selection levels in Fig. 5B-E. With these larger matrices, but also knockdown
245 perturbations instead of KOs, MRA and MRA+CLR advantage was much augmented. Moreover, the CLR
246 heuristic not only attenuated performance variability, but it almost systematically outperformed MRA

247 alone.

248 To illustrate the interest of network inference at this scale, we intersected MRA+CLR inferences in

249 normal kidney HA1E and melanoma A375 cells with a Gene Ontology term, i.e., GO:0006974 cellular
250 response to DNA damage stimulus. In Fig. 6, we can notice the difference in connectivity between

251 normal cells and cells where this process is obviously exacerbated, in particular the regulation of ATMIN
252 a key molecule in DNA repair. This result is in agreement with the known rewiring of genetic networks in

253 response to DNA damage[30].

12
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A MRA MRACLR
™ FP FN TN P-value ™ FP FN ™ P-valua
Top 5% 432 21541 7950 409530 2.64E-01 482 21491 7900 409580 9.82E-04
Top 10% 911 43035 7471 388036 4.27E-03 972 42974 7410 388097 8.00E-07
Top 20% 1842 86049 6540 345022 3.37E-06 1891 86000 6491 345071  2.98E-09
Top 30% 2680 129156 5702 301915  3.96E-05 2744 129092 5638 301979  2.30E-08
Top 40% 3496 172285 4886 258786 6.73E-04 3537 172244 4845 258827 1.86E-05
CLR MRNET
TP FP FN TN  P-value ™ FP FN TN P-value
Tup 5% 393 21580 7989 409491 9.12E-01 374 21599 8008 409472 9.90E-01
Tup 10% 633 43313 7749 387758 1.00E+00 629 43317 7753 387754 1.00E+00
Tup 20% 1080 86811 7302 344260 1.00E+00 1133 86758 7249 344313 1.00E+00
Tup 30% 1546 130290 6836 300781 1.00E+00 1628 130208 6754 300863 1.00E+00
Tup 40% 1977 173804 6405 257267 1.00E+00 2018 173763 6364 257308 1.00E+00
B o L 151 1
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Figure 5. Performance on L1000 shRNA data. A. Representative confusion matrices for A375 cells. B. TP numbers at
the top 10% selection level. C. Comparison between the algorithm TP numbers (Wilcoxon test, 2-sided, #P <
0.001). D. TP numbers at the top 20% selection level. E. Comparison between the algorithm TP numbers (Wilcoxon

test, 2-sided, #P < 0.001, ##P < 0.00005).
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261 Figure 6. Networks inferred with MRA+CLR (top 10% selection) in normal kidney cells {A) and melanoma cells (B)

262 for genes involved in cellular response to DNA damage stimulus (GO:0006974).

14


https://doi.org/10.1101/2021.07.27.453942
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453942; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

263

264  The second L1000 data set of interest is the CRISPR/Cas9 collection of KOs. These data were only

265 available for five cell lines: A375, A549, HT29, MCF7, and PC3. The matrix sixes ranged from 343 343
266  (MCF7)to 359 359 (A375). Performance results are featured in Fig. 7 and Suppl. Table 3. Although MRA
267  and MRA+CLR again dominated the other algorithms, their advantage was less pronounced on these

268 large, full KO data.

269
A MRA MRA+CLR
TP FP FN TN P-value TP FP FN TN P-value
Top 5% 76 3138 2463 58584 1.00F+00 114 3100 2425 58622 B.96F-01
Top 10% 171 6256 2368 55466  1.00E+00 246 6181 2293 55541 7.14E-01
Top 20% 394 12459 2145 49263 1.00E+00 482 12371 2057 49351 9.09E-01
Top 30% 632 18647 1907 43075 1.00E+00 705 18574 1834 43148 9.95F-01
Top 40% 868 24837 1671 36885 1.00E+00 943 24762 1596 36950 9.99E-01
CLR MRNET
™ FP FN TN P-value TP FP FN TN P-value
Top 5% 131 3083 2408 58639 3.68E-01 151 3063 2388 58659  1.62E-02
Top 10% 231 6193 2305 55529 9,17E-01 255 6172 2284 55550  4,82E-01
Top 20% 401 12449 2135 49273  1.00E+00 431 12122 2108 19300 1.00E+00
Top 30% 571 18705 1965 43017 1.00E+00 581 18698 1958 43021 1.00E+00
Top 10% 727 24978 1812 36711  1.00E+00 723 24582 1816 36740 1.00E+00
B c
TPs, selecton at the top 10%
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250
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271 Figure 7. Performance on L1000 CRISPR/Cas9 data. A. Representative confusion matrices for A375 cells. B. TP
272 numbers at the top 10% selection level. C. Comparison between the algorithm TP numbers. D. TP numbers at the

273 top 20% selection level. E. Comparison between the algorithm TP numbers {Wilcoxon test, 2-sided, *P < 0.05).
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Discussion

We presented a particular application of MRA to large biological systems and showed its competitive
performance compared to first-in-class Ml-based inference methods. Obviously, Ml-based methods
have a much broader spectrum of application, as they do not need specific and systematic perturbations
on the components of the biological system whose network is inferred. Nevertheless, when
perturbation data are available, our results suggest that a dedicated method, relying on a modeling
approach might deliver good performance in a robust fashion. The simple heuristic we proposed to
prune MRA inferences, which was adapted from the CLR algorithm, provided more stability in MRA
performance. In many cases, especially with very large systems (n ~ 1,000), this heuristic boosted

performance.

Although the number of data sets was limited, we could notice much superior improvement over MI-
based methods with L1000 shRNA knockdown perturbation data compared to the two full KO data sets.
This might relate to the linearization at the heart of MRA modeling, where the error depends on the
magnitude of perturbations (see our derivation of MRA through Taylor series expansion[15]). Very

strong perturbation such as full KOs might bring the data away from MRA area of safe application.
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Materials and Methods

Modular response analysis

We briefly recall the main MRA equations to facilitate the reading of this text, and to explain the
particular way we implemented the linear algebra. We assume that the biological system is comprised of
n modules whose activity levels are denoted by x € R™. We further admit the existence of n intrinsic
parameters, p € R", one per module, and each of them can be perturbed by an elementary
perturbation. One can imagine x reporting mRNA abundances and perturbations induced by shRNAs for
instance. Lastly, we assume that there exist S ¢ R" X R", an open subset, and f: S — R"of class ct,

i.e., continuously differentiable, such that

x = f(x,p). (1)
We do not need to know f(x,p) = (f1(x, p), -, fn(x, p))¢ explicitly, but we need the existence of a
time T > 0 such that all the solutions, for any p and initial conditions of x, have reached a steady state,
ie.,

x=0vt>T.

The unperturbed, basal state of the modules is denoted x(p°) € R™ and it has corresponding
parameters pO € R™. By the application of the implicit function theorem and Taylor expansion at the
first order [8,15], MRA relates the experimental observations of the global effect of perturbations to

. . . . dx; Xj . .
local interaction strengths, i.e., the matrixr = (1; ;) = (a_;Clx_j) that we mentioned in Results. Such local
J i

interactions are obviously signed and non-symmetric. To compute r, we need to compute the relative
global change induced by each elementary perturbation in each module. These values are compiled in a
n X n matrix denoted R = (R; ;) with

Ax;
Rip = (—l) ,
X g

the relative difference in activity of module i upon Ap; change induced by an elementary perturbation
gy, that touches module k only. The relationship between observational data in R and the local

interactions we want to estimate in r are provided by the following equations

Ax; Ax; .
(x_x) =Xj=iT,j (x—]> Jk# (2)
Fak T 7 qx
A _ g (2% oxi - oy (AP
(5, =T (5 )qi + 2.0y (422), )
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319 By setting r;; = —1, Egs (2) and (3) can be put together in matrix form and we obtain
320 rR =-P, (4)
321  where P is a diagonal n X n matrix with

dx; Api\ .
322 Pi,i = 3_;! (po) (x_IZ)' L E {1' !n}' (5)

323 Eq.(3) can be solved in two steps: ¥ = —PR™* and r;; = —1imply P;;(R™1);; = 1, thus

1

324 ii == (R__l)”
325 Therefore,
326 r = —[diag(R™1)]"1R~1. (6)

327  In practice, relative differences in R are often estimated with the more stable formula

o (xi(p°+Apr)—xi(p°)
328 Rie =2 (xi(p°+Apk)+xi(p°))' 7)

329 where we denote x(p0 + Ap) the steady-state corresponding to the changed parameters po + Ap, ie.,
330  thesolution of X(p° + Ap) = f(x(p° + Ap), p° + Ap).

331

332  Parallelized and stable linear algebra

333 Eq. (6) requires the computation of the inverse of the matrix R, which is less efficient and less stable
334  than LU decomposition with pivot search[31]. These technical issues are usually irrelevant with small

335  systems, but in applications of MRA to larger biological systems they should be addressed.

336  Asseveral authors noticed, including in MRA original publication[8], the homogeneous Eq. (2) is

337 sufficient to compute r. Moreover, letting i take the values 1, -+, n, we remark that Eq. (2) defines n
338  systems of linear equations of dimension n — 1, which can be solved independently. In particular, those
339 systems can be solved on independent processors by performing the LU decomposition with pivot

340  search. lllustrative speedup curves are featured in Fig. 8. Depending on the size of n, each such

341 subsystem could itself benefit from a parallel solver if enough processors were available.

342 When Eq. (2) is solved for each value of i, it is straightforward to solve Eq. (3) to find P; ; values in case
343 those are required:

Ax; Ax; Axj Ax;
344 (—) = Zj;tiri,j( 1) +Pi=P;= qutiri,j( }> - (—) )

i ai X qi o qi i ai
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345 where Eqg. (4) was used for the definition of

346
A B
o ] e - ]
= | » Real Speedup il © ] » Real Speedup
m |deal Speedup " . g 4" Ideal Speedup
© = % Amdahl's_Law_Spesdup /l ./ ) # Amdahl's_Law_Spesdup
S i
% 7’ oaH g 2
© - L o
| ~ é'* |
ok 8 -
i i o §
™ /i/ » o _ -
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™ if N ______—.__,._a——"‘“" *
- o -
" 1 Lt

o - o _‘f
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347 #cores #corea

348 Figure 8. Speedup curves. A. K61 data{(None condition, 61 61 matrix). B. L1000 shRNA data (A375 cells, 938 938
349 matrix).

350
351 CLR, MRNET, and ARACNE computations

352  We used the implementation of these algorithms provided by the BioConductor R package minet[25].

353  The performance reported here reflects the performance of this specific implementation.
354
355 CLR heuristic adapted to MRA

356  We adapted the CLR normalization scheme by means of z-score computation to MRA matrix content.

357  From we thus derive a defined as follow:

358 _—, with  the standard deviation of ’s -throw,
359 _—, with  the standard deviation of ’s -th column,
360 ,and

361
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Data sets preparation

TK61 data were obtained on multiple 96-well plates. Accordingly, we tried to stick to this format
preparing data for MRA computations. We computed an R matrix for each plate and then simply
averaged the relevant R’s for each experimental condition to obtain the averaged R used in MRA. For

Ml-based inferences, we averaged all the relevant values.

L1000 shRNA data were extracted at level 5 (L1000 terminology) where CGSs (integration of multiple
shRNA hairpins to alleviate off-target effects) were transformed into z-scores for normalization purposes
by the authors of the data. Consequently, values representing the abundance of a gene were no longer
positive numbers but just real numbers. Eq. (7) above was adapted to compute the relative changes in
MRA R matrices according to

Rip =2

’

( CGS;(p° + Apy) — CGS;(p%) )
|CGS; (p° + Apy)| + |CGS; (p©)]

avoiding potential divisions by 0 in case of small values with opposed signs.

L1000 CRISPR/Cas9 data were averaged over replicates (also level 5).

Performance evaluation

STRING as well as MI-based inference are devoid of direction of interaction and a sign. Therefore, the
intersection of inferences with STRING content only used the upper triangular part of matrices
representing the inferences (such matrices are symmetric anyway). To provide a fair comparison with

MRA and MRA+CLR, we filled the upper triangular part of r according to 1; ; = max{|r; ;|; ||}, i <J.
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Supporting information caption

Supplementary Table 1. Confusion matrices on the K61 data set.

Supplementary Table 2. Confusion matrices on the L1000 shRNA data set.

Supplementary Table 3. Confusion matrices on the L1000 CRISPR/Cas9 data set.
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