bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

AlphaTims: Indexing trapped ion mobility
spectrometry — time of flight data for fast and
easy accession and visualization

Sander Willems', Eugenia Voytik?, Patricia Skowronek®, Maximilian T. Strauss*?, Matthias Mann®>*

1 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
2 OmicEra Diagnostics GmbH, Planegg, Germany

3NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

*Corresponding author. Tel: +49 89 8578 2557; E-mail: mmann@biochem.mpg.de

Abstract

High resolution mass spectrometry-based proteomics generates large amounts of data, even in the
standard liquid chromatography (LC) — tandem mass spectrometry configuration. Adding an ion
mobility dimension vastly increases the acquired data volume, challenging both analytical processing
pipelines and especially data exploration by scientists. This has necessitated data aggregation,
effectively discarding much of the information present in these rich data sets. Taking trapped ion
mobility spectrometry (TIMS) on a quadrupole time-of-flight platform (Q-TOF) as an example, we
developed an efficient indexing scheme that represents all data points as detector arrival times on
scales of minutes (LC), milliseconds (TIMS) and microseconds (TOF). In our open source AlphaTims
package, data are indexed, accessed and visualized by a combination of tools of the scientific Python
ecosystem. We interpret unprocessed data as a sparse 4D matrix and use just-in-time compilation to
machine code with Numba, accelerating our computational procedures by several orders of magnitude
while keeping to familiar indexing and slicing notations. For samples with more than six billion detector
events, a modern laptop can load and index raw data in about a minute. Loading is even faster when
AlphaTims has already saved indexed data in a HDF5 file, a portable scientific standard used in
extremely large-scale data acquisition. Subsequently, data accession along any dimension and
interactive visualization happen in milliseconds. We have found AlphaTims to be a key enabling tool to
explore high dimensional LC-TIMS-QTOF data and have made it freely available as an open-source
Python package with a stand-alone graphical user interface at
https://github.com/MannlLabs/alphatims or as part of the AlphaPept ‘ecosystem’.

https://github.com/MannLabs/alphatims
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Introduction

The increasing amounts and complexity of data present a fundamental challenge of data accession in
different scientific fields. Mass spectrometry (MS), as a leading analytical method in clinical and
(bio)chemical research, is no exception. This issue is compounded when coupling MS with other
techniques such as liquid chromatography (LC) and ion mobility spectrometry (IMS)?, which allow to
efficiently separate analytes in scientific domains such as proteomics, lipidomics and metabolomics?™. In
our laboratory this is exemplified by time-of-flight (TOF) mass analyzers and trapped ion mobility
spectrometry (TIMS)>~. Typically, analytes are first separated throughout LC gradients of several minutes
or hours. After ionization, they enter a TIMS tunnel where they are trapped and separated in
approximately 100 milliseconds. This step discretizes continuous LC separation into ion packets with
undistinguishable chromatographic retention time values and this smallest unit of LC separation is defined
as a frame. After TIMS separation, a quadrupole (Q) usually provides selection for tandem MS (MS/MS)
before ions reach the TOF accelerator. lon packets are then sent orthogonally into the TOF analyzer at
regular intervals of about 100 microseconds by an electrodynamic pusher. As before, such a pusher event
discretizes continuous TIMS separation into ion packets with undistinguishable ion mobility (1/K,) and
this smallest unit of TIMS separation is defined as a scan. Lastly, a detector at the end of the TOF
accelerator discretizes continuous ion arrival times into TOF peaks of a few hundred picoseconds wide.
This combination of analytical techniques, in brief LC-TIMS-QTOF, has received much attention since the
introduction of the timsTOF Pro instrument (Bruker Daltonics, Germany).

The Parallel Accumulation—Serial Fragmentation (PASEF) method synchronizes ion mobility separation
with quadrupole selection, combining high-throughput with high sensitivity in both data-dependent
acquisition (DDA) and data-independent acquisition (DIA)>2. Despite its very high data acquisition rate,
the full mass resolution is maintained in MS or MS/MS mode by coupling the high-resolution TOF mass
analyzer to a GHz detector. This rapid detection rate in combination with the high sensitivity often leads
to billions of detector events per sample. While the actual measurements are intensity values of ion
species, the exact time of a detector event can be directly converted to the TOF mass to charge (m/z),
quadrupole m/z, ion mobility and chromatographic retention time values.

As a consequence of the resulting large data size, the accession and further visualization of LC-TIMS-QTOF
data have proven to be challenging and slow in practice. During the last years, the single solution in the
field was provided by the manufacturer’s closed-source library, integrated into Bruker’'s proprietary
software Compass DataAnalysis. To achieve reasonable data size and access times, this involved
preprocessing steps, including data binning. However, this requires choosing parameters such as bin sizes
somewhat arbitrarily and in general conceals the actual measurements. Consequently, results depend on
this preprocessing and validation at the level of raw data is impractical.

Very recently, this led to parallel developments tackling some of these issues. Notable examples are
OpenTIMS?®, an open-source C++ library with bindings for the Python and R languages to read Bruker data,
and MSFragger in combination with lonQuant, which allow to identify and quantify proteins rapidly
without the need to preprocess raw datal. However, these tools were developed with specific
applications in mind. We reasoned that fast and generic accession in arbitrary dimensions of the data
would need to be optimized for speed, usability and extensibility. This combination would enable
community-driven developments to tackle current bottlenecks such as novel implementations of feature

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

finding algorithms, retrieval of extracted ion chromatograms (XICs) for DIA analysis or fast interactive data
visualization of raw MS data.

Here we present AlphaTims, a user-friendly software tool that drastically accelerates accession and
visualization of raw LC-TIMS-QTOF data compared to the vendor’s software. It provides an indexing
procedure in such a way that the unprocessed data are interpreted as a sparse four-dimensional matrix.
This matrix is specifically designed for LC-TIMS-QTOF data, allowing fast retrieval of arbitrary data slices
along all of the available dimensions in milliseconds. It is implemented in pure Python with only a few
dependencies to make it readable, flexible and lightweight. This makes it easily adoptable and adaptable
by the community. At the same time, it matches the performance of programs written in the C
programming language, by using the popular packages NumPy for array manipulation and Numba for just-
in-time (JIT) compilation to machine code!%!?, AlphaTims can save an indexed dataset as a single portable
high-performance hierarchical data format (HDF5) file'3, which has proven its efficiency and extensibility
in various scientific fields and has also been used in MS-based proteomics before!46. This further
accelerates data access and allows us to store arbitrary metadata and downstream processing results. We
then use Datashader, an optimized rendering Python package to plot millions of data points on standard
hardware?’, in combination with Panel and Bokeh (Python packages to build user-friendly dashboards to
access and visualize data) to extend the usability of AlphaTims to a broader audience regardless of
computational expertise. AlphaTims is a modular tool that is also a part of the AlphaPept!®
(https://github.com/MannLabs/alphapept) ‘ecosystem’ developed in our department, which provides
tools for the different facets of MS-based computational proteomics. It can be used as a fully stand-alone
graphical user interface (GUI), command-line interface (CLI) or Python module for Windows, macOS and
Linux and is freely available under an Apache license at https://github.com/MannLabs/alphatims.

https://github.com/MannLabs/alphapept
https://github.com/MannLabs/alphatims
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Experimental Procedures

Sample preparation

Human cervical cancer cells (Hela, S3, ATCC) were cultured in Dulbecco's modified Eagle's medium with
10% fetal bovine serum, 20mM glutamine and 1% penicillin-streptomycin (all Life Technologies Ltd., UK).
Cells were collected by centrifugation, washed with phosphate-buffered saline (PBS), flash-frozen in liquid
nitrogen, and stored at -80 °C.

Following the in-StageTip protocol®®, cell lysis, reduction, and alkylation with chloroacetamide were
carried out simultaneously in a lysis buffer (PreOmics, Germany). The resultant dried peptides were
reconstituted in double-distilled water comprising 2 vol% acetonitrile and 0.1 vol% trifluoroacetic acid to
a concentration of 200 ng/uL and further diluted with double-distilled water containing 0.1 vol% formic
acid. The manufacturer's instructions were followed to load approximately 50 ng or 200 ng peptides onto
Evotips (Evosep, Denmark).

Liquid chromatography

Purified tryptic digests were separated with either a predefined ‘200 samples per day’ (SPD) method (6
minute gradient time, 50 ng peptides) or a predefined 60 SPD method (21 minute gradient time, 200 ng
peptides) on an Evosep One LC system (Evosep, Denmark)?°. A fused silica 10 um ID emitter (Bruker
Daltonics, Germany) was placed inside a nano-electrospray source (CaptiveSpray source, Bruker Daltonics,
Germany). For the 200 SPD method, the emitter was connected to a4 cm x 150 um reverse phase column,
packed with 3 um Cis-beads, and for the 60 SPD method to an 8 cm x 150 um reverse phase column,
packed with 1.5 um Cis-beads (PepSep, Denmark). Mobile phases were water and acetonitrile, buffered
with 0.1% formic acid.

Additionally, 400 ng peptides were separated over a 120 minutes gradient on a 50 cm in-house reverse-
phase column with an inner diameter of 75 um, packed with 1.9 um Cis-beads (Dr. Maisch Reprosil-Pur
AQ, Germany) and a laser-pulled electrospray emitter. The column was heated to 60 °C in an oven
compartment. The binary LC system consisted of water as buffer A and acetonitrile/water (80%/20%, v/v)
as buffer B, both buffers containing 0.1% formic acid (Easy nanoLC 1200, Thermo Scientific, Germany).
The gradients started with a buffer B concentration of 3%. In 95 minutes, the buffer B concentration was
increased to 30%, in 5 minutes to 60%, and 5 minutes to 95%. A buffer B concentration of 95% was held
for 5 min before decreasing to 5% in 5 minutes and re-equilibrating for further 5 minutes. All steps of the
gradients were performed at a flow rate of 300 nL min™.

Mass spectrometry

Liquid chromatography was coupled online to a TIMS quadrupole time-of-flight instrument (timsTOF Pro,
Bruker Daltonics, Germany) with ddaPASEF and diaPASEF”# via a CaptiveSpray nano-electrospray ion
source. For both acquisition modes, the ion mobility dimension was calibrated with three Agilent ESI-L
Tuning Mix ions (m/z, 1/K,: 622.0289 Th, 0.9848 VS cm%; 922.0097 Th, 1.1895 VS cm2; 1221.9906 Th,
1.3820 Vs cm2). Furthermore, the collision energy was decreased linearly from 59 eV at 1/K, = 1.6 Vs cm’
2to20eVat1/K,=0.6 Vscm2

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

For the ddaPASEF method, each topN acquisition cycle consisted of 4 PASEF MS/MS frames for the 200
SPD and 60 SPD methods and 10 PASEF MS/MS frames for the 120-minute gradient. The accumulation
and ramp times were set to 100 milliseconds. Singly-charged precursors were excluded from
fragmentation using a polygon filter in the (m/z, 1/K,) plane. Furthermore, all precursors that reached
the target value of 20,000 were excluded for 0.4 min. Precursors were isolated with a quadrupole window
of 2 Th for m/z < 700 and 3 Th for m/z > 700. For diaPASEF we used the ‘high-speed’ method (m/z
range: 400 to 1000 Th, 1/K, range: 0.6 — 1.6 Vs cm™2, diaPASEF windows: 8 x 25 Th), as described in
Meier et al.8.

A seventh sample was acquired with identical settings as the 60 SPD ddaPASEF method. To intentionally
introduce anomalies, the TOF was calibrated with an offset of 1 Da and the air supply through the
CaptiveSpray nano-electrospray source filter was blocked between minute 12 and 13.

AlphaTims development

The AlphaTims source code is freely available on GitHub (https://github.com/MannLabs/alphatims) under
an Apache license. The Python code (alphatims folder) is divided into two core modules: bruker.py
provides the TimsTOF class and all functions to create, index and access objects from this class, whereas
the utils.py module provides generic utilities for logging, compilation, parallelization and 1/0. Three
additional modules implement all functionality for plotting, GUI and the CLI.

In addition to the core Python code, the GitHub repository includes much introductory and background
information. This includes (1) an extensive README for navigation, installation and usage instructions, (2)
a Jupyter notebook folder (nbs) with a Python tutorial and a performance notebook to reproduce all
timings as presented in this manuscript, (3) a documentation folder (docs) to create all documentation for
the Bruker, utils and plotting modules hosted on https://alphatims.readthedocs.io, (4) a miscellaneous
folder (misc) facilitating manual creation of new GUI releases and Python Package Index (PyPi) releases
on https://pypi.org/project/alphatims, (5) a .github folder to perform continuous integration including
testing and automatic releasing of new versions, and (6) a requirements folder to handle all dependencies.

AlphaTims is developed in pure Python and only has seven core dependencies: (1) h5py to handle HDF5
files, (2) Numba for JIT compilation, (3) pandas for tabular results, (4) pyzstd for generic decompression
of Bruker binary data and (5-7) tqdm, psutil and click for CLI support. All plotting capabilities and the GUI
are enabled by four additional packages: (1) Bokeh for visualizations and the dashboard, (2) hvplot to
connect pandas data frames with Bokeh, (3) Datashader for fast rendering of visualizations, and (4)
selenium for browser support. As an alternative to m/z and 1/K, estimation, we also provide the option
to retrieve calibrated values with Bruker libraries on Windows and Linux machines. Additional
requirements files exists purely for legacy code and to facilitate development with dependencies such as
e.g. pyinstaller to create the stand-alone GUI or twine to release new versions on PyPi.

Computational system

All development and testing of AlphaTims was done on a MacBook Pro (13-inch, 2020) with a 2.3 GHz
Quad-Core Intel Core i7 processor, 32 GB 3733 MHz LPDDR4X memory, and 2TB Flash storage running
macOS Catalina version 10.15.7. Functionality on Linux and Windows was tested through continuous
integration on default GitHub virtual machines running Ubuntu 20.04 and Windows Server 2019
(https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners).

5

https://github.com/MannLabs/alphatims
https://alphatims.readthedocs.io/
https://pypi.org/project/alphatims
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Results

To better explain the indexing procedure at the heart of AlphaTims, we shortly summarize the data
structures used in the vendor’s software in their TIMS data format (tdf). A “.d folder’ contains two primary
files to store raw LC-TIMS-QTOF data acquired with the timsTOF Pro (Bruker Daltonics, Germany) (Figure
1A). The first of these is the analysis.tdf file, an ordinary SQLite database that contains all metadata from
the acquisition. It furthermore stores summarized information for each individual frame (ion packet with
the same retention time values) and, if applicable, at which scans (ion packet with the same ion mobility
values) the quadrupole isolation window was changed. The second file, analysis.tdf_bin, contains all raw
detector events and their intensity values as compressed binary data.

Indexing procedure and performance

AlphaTims represents relevant data from a “.d folder’ in multiple NumPy arrays. First, it decompresses the
binary analysis.tdf_bin file to read all detector events and corresponding intensity values. While Bruker
stores detector events and intensity values in a single homogeneous array, AlphaTims separates them into
three distinct arrays. In the first, the (non-zero) intensity values of all detector events are stored in order
of their acquisition time. A second array of equal length then stores their TOF indices as offsets for each
individual pusher event. To indicate when pusher events happened, AlphaTims defines a third dense array
which stores the number of detector events that are registered per pusher event. By taking the cumulative
sum of this latter array, pointers are created to indicate the start and end indices of individual pusher
events in the two former arrays. Together these three arrays unambiguously define a compressed sparse
row matrix?!* with indices of pusher events as rows, TOF indices as columns and intensity values as values
(Figure 1B).

Next, AlphaTims retrieves the unique number of frame, scan and TOF indices from the analysis.tdf SQL
database and estimates their respective retention time, ion mobility and TOF m/z values based on the
start values, end values and array length. On Windows and Linux, this estimation of ion mobility and m/z
values can also be replaced by using calibrated arrays from Bruker libraries that are integrated into
AlphaTims. As there are typically 600 frames per minute, 1000 scans per frame and 400,000 detector
events per pusher event, the size of these three arrays are neglectable in size compared to the total
number of detector events which frequently surpasses a billion.

Lastly, another sparse array is created to indicate at which push indices the quadrupole settings change.
In ddaPASEF this happens on average ten times per frame to select different precursors. In diaPASEF this
depends on the acquisition scheme and desired cycle time. Typically, each frame of a recurring diaPASEF
acquisition cycle is split up into eight window groups that all have different quadrupole settings. This array
of quadrupole change indices is accompanied by two other arrays of equal length. The first of these is
two-dimensional and defines the lower and upper quadrupole m/z values selected by the quadrupole.
The second defines the precursor index. For DIA, the precursor indices are equal to the diaPASEF window
group.

AlphaTims collects all these arrays, together with global and frame-specific metadata from the analysis.tdf

file, and stores this as an alphatims.bruker.TimsTOF object into working memory. Since a single detector

event takes up 6 bytes (an uint32 for the TOF index and an uint16 for the intensity) and their respective

arrays generally dwarf all others, the required working memory (in gigabytes) is roughly equal to six times

the number of detector events (in billions). The alphatims.bruker.TimsTOF object acts as a fully indexed
6

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

sparse four-dimensional matrix with associated metadata. To facilitate fast reuse of this object and avoid
recreation of the indices, it can be stored on disk as a portable HDFS file with Python’s h5py package. By
default, the HDF5 file size is equal to the required working memory, but compression can be used to
decrease this roughly two-fold. While compression slows down loading and saving of HDF5 files
approximately two to ten times, an AlphaTims object in working memory is always decompressed and
interactive accession is thus unaffected. Also note that a compressed HDF5 file can always be
(de)compressed and resaved, making it ideal for file transfer or archiving.

1
A | C

I

I

LC TIMS Quadrupole TOF Detector |

RT (frame) mobility (scan) m/z m/z Intensity | ‘ Detector
_________________ 1 __dft?[____'___’___'____’i_:]____ TOF m/z values
B RT values TOF m/z values I | Push selection Push | D:ED:EEEED
OO Push [|nd|c:gs_ ! TOF indices
9, Frameindices ndices TOF indices | E RT values i
=[a8 [] :!4 T ;! 11711 |
> 4T - — a Frame indices !
> []<] 0 P
£ u 1 '2083 [
20 : 2 R :
g o : ' izR et B e
= 0 ! (e ULl IIIT] -~
Quad m/z values — - !
I
— | ! Quad m/z values |
— 1
Quad change indices U [111 P HEEEE '
s ! Intensity matrix
1

O Intensity matrix

Figure 1 — Schematic of AlphaTims’ indexing and data accession. (A) Data dimensions: The timsTOF instrument acquires detector
events after separation and selection in four different dimensions. After passing through the LC, TIMS and quadrupole, an ion
beam enters the TOF accelerator where a pusher event (synchronized with the LC, TIMS and quadrupole) sends ions in an
orthogonal direction towards the detector. Liquid chromatography (LC), trapped ion mobility spectrometry (TIMS) and time-of-
flight (TOF) coordinates can be represented as discrete indices (frame, scan and TOF indices) or as continuous values (RT, ion
mobility and TOF m/z values). (B) Indexing procedure: AlphaTims uses several arrays to store LC-TIMS-QTOF data. First, the
intensity values are stored in a compressed sparse row matrix (intensity matrix) with TOF indices as columns and indices of pusher
events as rows (push indices). Each unique pusher event corresponds to a unique combination of a frame and scan index, according
to the formula push; = scan,, + frame,, - #scans. Note that the scan-frame matrix presented here is purely a visual aid and is
not stored explicitly, as the unique relationship between frame, scan and push indices makes this redundant. An additional sparse
array stores the push indices where the quadrupole settings are changed (quad change indices). For instance, in the first frame
(blue) the quadrupole is not changed, whereas it is changed once the second frame (green) starts and another time within this
frame (e.g. diaPASEF with two windows per frame). An array of equal length denotes which m/z values (lower and upper bounds)
are selected with the quadrupole at each of these indices. (C) Accession procedure: Data accession with AlphaTims can be
performed in any dimension. This can be done by providing ranges of interest either as indices or as values. In case of the latter,
LC, TIMS and TOF values are always converted to the closest index by fast binary searches in their corresponding arrays. All of the
selected LC and TIMS indices are then converted to push indices by the formula push; = scan,, + frame,, - #scans. Since the
quadrupole m/z array is not ordered, a linear pass over all quadrupole m/z values is required to determine which quadrupole index
pointers are valid and only those that overlap with the previously selected push indices are retained. For each individually selected
push index, a binary search retrieves all TOF indices that satisfy the requested TOF range. Finally, all selected detector events are
filtered with a single pass over their corresponding intensity values to obtain the final set of detector events that satisfies the
multidimensional range of interest.

To assess the performance of AlphaTims’ indexing procedure, we acquired Hela samples with gradients
of 6, 21 and 120 minutes in both ddaPASEF and diaPASEF modes (Experimental Procedures). At the
shortest time dimension, a single pusher event could record almost 400,000 TOF detection events in an

7

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

m/z range of 100 — 1700 Th. Separation in the TIMS tunnel lasted 100 milliseconds and is composed of
1000 of these pusher events, covering a 1/K,, range of 0.6 — 1.6 Vs cm™. Up to 240 billion events could
thus have been recorded per minute, however, in practice no run acquired more than 0.03% of these
potential detector events and the data can be considered sparse (Figure 2).

On a laptop (Experimental Procedures), reading all detector events into working memory and indexing
them took AlphaTims less than a second for the smallest run and less than ninety seconds even for the
largest run with 6.4 billion detector events. In contrast, opening any of these runs with Bruker’s Compass
DataAnalysis software (v5.3) required at least double the time on a Windows desktop with overall better
specifications. To speed up data import even further and allow modification or addition of downstream
results, AlphaTims also allows to export the indexed data as a portable HDF5 file, which only takes
seconds. When these HDF5 files are imported, no decompression and indexing is required, making them
roughly three times faster to load than raw Bruker ‘.d folders’. For each of these loading and saving steps,
the required time is approximately linear in function of the number of detector events and independent
of LC gradient or acquisition scheme.

)] © DDA 6 min
10 # DIA 6 min
= L] @ DDA 21 min
E 10 E - _ #: DIA 21 min
ol 5 {3 @ & O DDA 120 min
g 100 o) * o9 " -
° E ¥ 8 { : DIA120 min
= 1 @) 2 %
8 10—1 E O o& Load .d
o o Load .hdf
£ 1072] P o Save .hdf
w 3 ot .
2 E o* Slice LC
= 10-3] : Slice TIMS
) ¢} Slice quadrupole
104] O) Slice TOF
104 10° 106 10’ 108 10° 1010

#Detector events (logscale)

Figure 2 — Time performance of AlphaTims. Different HeLa samples were acquired in both ddaPASEF (full outline) and diaPASEF
(dotted outline) with gradient lengths of 6, 21 and 120 minutes (Experimental Procedures). When a raw Bruker “.d folder’ is read,
AlphaTims needs to decompress, import and index all detector events (blue). Once this is done, the indexed dataset can be saved
as an HDF5 file (green). When an HDF5 file is read instead of a raw Bruker “.d folder’, no decompression or indexing is required
(orange). Multiple detector events of each run were retrieving by slicing each dimension individually. The retrieved detector events
correspond to an LC slice with 100 < retention time (s) < 100.5 (red), a TIMS slice with scan index = 450 (purple), a
quadrupole slice with 700.0 < quad m/z value < 710.0 (brown), and a TOF slice with 621.9 < TOF m/z value < 622.1
(pink). All timings were obtained with Python timeit function for robust and reproducible results that were averaged over at least
seven repeats. See https://qithub.com/MannLabs/alphatims/blob/master/nbs/performance.ipynb for exact numbers.

Accession procedure and performance

Once dataisimported and indexed, an alphatims.bruker.TimsTOF object can be accessed in all dimensions
with traditional Python slices or ‘fancy index slicing’ from NumPy®? (Figure 1C). The order of the
dimensions in such an object is equal to the order of their respective components in the timsTOF Pro: LC,

8

https://github.com/MannLabs/alphatims/blob/master/nbs/performance.ipynb
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

TIMS, quadrupole, TOF and detector. Typically, the user defines a range of interest, which is translated
into a slice with a single index or by a (start, stop) tuple. When decimal values are provided for the LC,
TIMS or TOF dimension instead of indices, AlphaTims always assumes them to represent retention time,
ion mobility or TOF m/z values. By default, these are converted to the closest integers representing frame,
scan, or TOF indices by looking them up in their appropriate arrays with a fast binary search. In the case
of quadrupole m/z values, precursor indices or intensities, no translation is necessary.

Once a multi-dimensional slice of interest is defined, AlphaTims first selects all the possible push indices
that satisfy the LC and TIMS dimension and converts these to push indices with the formula push; =
scan, + frame,, - #scans. As these push indices are ordered, they are located in the quadrupole change
index array in a single iteration. Only those push indices with a valid quadrupole m/z value are selected
and for each of them appropriate TOF indices are retrieved from the sparse intensity matrix. As the TOF
indices are ordered per individual pusher event, a binary search quickly retrieves all TOF indices that
satisfy the requested TOF slice. Lastly, it is checked which of all the selected detector events have an
intensity value that satisfies the detector slice. The results are then returned as a pandas?? data frame
whose columns describe all indices and values, or -if desired- as a NumPy array with indices of detector
events.

For each of the six HeLa samples (Experimental Procedures), we tested four different slices: an LC slice
with retention time values between 100 and 100.5 s, a TIMS slice with a scan index of 450 providing all
mass spectra at the corresponding ion mobility, a quadrupole slice with only fragments from a precursor
range between 700 and 710 Th, and finally a TOF slice with m/z values between 621.9 and 622.1 (Figure
2). As expected, samples with longer gradients, and thus more detector events, also yield more detector
events when sliced in the TIMS and TOF dimensions. While this is also true for the quadrupole dimension,
the effect of being a ddaPASEF or diaPASEF method is stronger than the gradient length in these examples.
This is not surprising, since the quadrupole selected just 2 or 3 Th in ddaPASEF, whereas the selected
windows in diaPASEF were always 25 Th.

Next, we evaluated the time that was needed to access all of the previous data slices with AlphaTims. Due
to the indexing structure, the index of any pusher event can be converted to a frame and scan index with
a simple linear formula and vice versa (Figure 1C). As such, it can be expected that accession in these
dimensions should be very fast as no actual searching is involved. Indeed, even retrieving five million
detector events with slicing in the LC or TIMS dimension is done in just 0.2 seconds (Figure 2). Moreover,
the time required to slice in these dimensions only depends on the number of detector events that are
retrieved and only indirectly on the gradient length or acquisition scheme. Slicing in the quadrupole
dimension is very similar. While slightly slower than the LC or TIMS dimension, there is a comparable linear
dependency for the required slicing time that is purely a function of the number of detector events that
are retrieved. This slowdown is due to additional filtering of quadrupole change indices from the sparse
array. As this quadrupole index pointer array itself is very sparse (on average 1% non-zero elements when
compared to the number of pusher events), the impact of this additional filtering is small. However, slicing
in the TOF dimension is roughly an order of magnitude slower than slicing in any other dimension,
primarily caused by the fact that every pusher event needs to be filtered individually, as the TOF dimension
is indexed per pusher event. When TOF slicing is combined with other dimensions, fewer selected pusher
events are selected which makes even this slowest step instantaneous to the user. As the time required
for TOF slicing is still linearly dependent only on the number of retrieved detector events, AlphaTims is
very scalable even to long gradients, very complex samples and data acquisition schemes.

9

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Using AlphaTims

AlphaTims is freely available as an open-source Python package with an Apache license on Windows,
macOS and Linux. To enable usage for a wide audience regardless of computational background, it can be
operated in any of three following modes: a stand-alone GUI, a stand-alone CLI or directly as a Python
module.

GUI mode

A simple installer for the AlphaTims GUI can be downloaded from our GitHub page, requiring just a few
mouse clicks. Both the installation and usage of AlphaTims have been made as intuitive as possible, but a
comprehensive GUI manual is also available with in-depth step-by-step explanations and screenshots.

The GUI allows interactive exploration of unprocessed LC-TIMS-QTOF data conveniently in the browser. It
was programmed in pure Python and uses only a few libraries of Python’s Holoviz visualization ecosystem.
These include Holoviews itself and Bokeh to visualize different plots such as the total ion current (TIC),
Datashader for fast rendering of these plots and Panel to combine the plots with control widgets into an
interactive dashboard (Experimental Procedures). With the control widgets the user can slice the data
simultaneously in multiple dimensions as described before (Accession procedure and performance). The
selected coordinates can then be projected on either a single axis to show mass spectra, ion mobilograms
or XICs or on multiple axes to create heatmaps in the LC, TIMS and TOF dimension.

Having reduced the visualization of LC-TIMS-QTOF to a fast and straightforward task, it can be
incorporated in a wide variety of practical applications. In the following, we demonstrate this on the
example of visual quality control. For this purpose, we intentionally acquired a sample with a few
anomalies (including a large offset of the mass scale and temporary pressure change in the CaptiveSpray
source) to see if we could indeed quickly detect any issues. There were 0.7 billion detector events in this
21-minute ddaPASEF run. The data could be imported with a single mouse click and the TIC was visible
within ten seconds of opening the AlphaTims GUI. This immediately revealed an anomaly, namely the
drop in ion current between minute 12 and 13 that we had engineered beforehand (Figure 3). Without
having done any processing at all, the user is forewarned about unreliable intensity values in that region.
As an important quality metric, the user can then assess the stability of added calibrant ions (1222.0 Th,
1.38 Vs cm), which is expected to be continuously present throughout the whole run. By modifying just
two values of the TOF widget, we selected all ions in the m/z region between 1221.0 and 1225.0 Th. By
adjusting the heatmap axes to show chromatographic retention time values on the x-axis and m/z values
on the y-axis, we expect to see a continuous signal throughout the whole gradient for the calibrant spray
with an m/z value of 1222.0 Th. However, there is a continuous and steady signal for an m/z value of
1223.5 Th instead, accompanied by a less intense isotope at 1224.5 Th. Based on these observations, we
deduce that the TOF m/z values are greatly miss-calibrated (as intended for this sample) and that the
reported m/z values are too unreliable for further analysis. Next, we changed the y-axis of the heatmap
to show ion mobility values and inspect the detected ion at 1223.5 +0.1 Th during the complete LC
gradient. This clearly revealed another issue between minute 12 and 13. Normally the ion mobility value
of the calibrant spray should remain constant at a value of 1.38 Vs cm?, but in this case the apparent value
drops to 1.1 Vs cm? for a full minute (as a result of the purposely altered gas flow). This coincides with
the previously detected drop in the TIC, meaning that not only the intensity but also the other coordinates
are unreliable in this timeframe. Thus, a brief assessment of the data in less than thirty seconds with just
a few user inputs already detected and pinpointed the main issues with data quality. Other quality

10

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

assessments to analyze e.g. fragmentation efficiency of ddaPASEF samples or positioning of quadrupole
selections in diaPASEF samples do not require much more effort and quickly become routine even for
inexperienced users.

A TIC - 20210329_TIMS03_EVO03_PS_SA_Hela 200ng_mz_1Da_off Temp_off IM_off.d: ddaPASEF

4.0047

&
|

intensity

0 5 10 15 20
RT, min

B Heatmap - 20210329 _TIMS03_EVO03_PS_SA HelLa_200ng_mz_1Da_off_Temp_off IM_off.d: ddaPASEF

12245

1224 SAASC

m/z, Th

RT, min

Heatmap - 20210329_TIMS03_EVO003_PS_SA_HelLa_200ng_mz_1Da_off Temp_off IM_off.d: ddaPASEF

c

Inversed IM, V's.om?

°
®

5 10 15 20
RT, min

Figure 3 — Quality control with the AlphaTims graphical user interface. (A) Total ion current: After importing a sample, the total
ion current (TIC) is immmediately available without requiring any additional user input. In this case, a clear drop in intensity between
minute 12 and 13 is visible. (B) Time of flight calibration: By adjusting the time-of-flight (TOF) selection and plot axes widgets,
the expected m/z value of a calibrant spray is visualized throughout the whole gradient. The expected value of 1222.0 Th is not
present, but instead a value of 1223.5 Th is displayed. (C) lon mobility spectrometry stability: When the TOF selection is narrowed
to 1223.5 + 0.1 Th and the y-axis is changed to 1/K, values, a discontinuity in ion mobility is detected between minute 12 and
13.

CLI mode

While very easy to use, AlphaTims’ GUI requires manual input for visualization. For users who wish to
automate repetitive tasks, the AlphaTims CLI provides the same functionality as the GUI. Instead of
manually updating control widgets, all settings and values can be provided to the command-line either
directly or with a simple script. As there is no need to display an interactive dashboard, this mode is even
faster and more versatile than the GUI. More complex data slices can be selected than with the GUI, while
all results can still be exported. This includes visualizations in png, or html format, csv tables with selected
ion coordinates and alternative formats of the whole sample such as portable HDF5 files and mascot
generic format (MGF) files. All of these commands and their options are fully documented in the CLI and
a brief tutorial is available on GitHub.
11

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Python mode

Even though the CLI is more flexible than the GUI, it is impossible for us to implement all imaginable use
cases of AlphaTims. Instead, we also make it available as a Python module and leave it to the end user to
implement any additional functionality or incorporate it into other Python projects. AlphaTims can be
installed from PyPi as a Python module with the standard pip module of Python 3.8. There is both a
lightweight version available with just a few dependencies that purely focuses on data indexing and
accession, as well as an extended version with more dependencies that includes the complete
visualization library as used for the GUI and CLI.

Enabling AlphaTims in other Python scripts or Jupyter notebooks requires a single line of code that imports
the module. Some convenience functions enable logging or set the number of available threads for
multithreading and ensure transparent, reproducible and efficient usage of AlphaTims. All functions of
AlphaTims are implemented in pure Python and fully documented to facilitate flexibility, readability and
usability. However, functions that are computationally intensive have been decorated with Numba to use
just-in-time (JIT) compilation to machine code. This enables performance similar to the fastest low level
languages such as C.

Importing and indexing data is done with a single command that returns an alphatims.bruker.TimsTOF
object, which can be treated as a four-dimensional matrix. Inspired by the slicing approach in NumPy, one
of the fundamental Python libraries for scientific computing, AlphaTims provides slicing in multiple
dimensions simultaneously as described before (Accession procedure and performance). As a result,
AlphaTims data slices can take advantage of the vast amount of Python packages that act on pandas data
frames as well.

To demonstrate basic usage of AlphaTims in Python, we have provided a brief Jupyter notebook tutorial
on GitHub (https://github.com/MannlLabs/alphatims/blob/master/nbs/tutorial.ipynb). This notebook
explains how to: set up AlphaTims and enable logging for transparent and reproducible data analysis,
import samples and export indexed HDF5 files for faster reanalysis, select individual data points and data
slices, and visualize data to create similar plots as with the GUI or CLI. The final part of the tutorial includes
an example to show how AlphaTims can be used to investigate a specific peptide in diaPASEF data based
on a spectral library created with for instance AlphaPept, Skyline or Spectronaut!®232* (Figure 4).

The above example illustrates a use case of AlphaTims in Jupyter notebooks that have become a standard
in modern data science. AlphaTims and Bruker diaPASEF data are first imported, and then all coordinates
of both the precursor and all fragments of a specific peptide are defined. With a simple custom Python
function, all detector events that match these coordinates within a certain tolerance can be retrieved and
visualized in an interactive plot. Traditionally, such an interactive plot represents only the XICs of the
selected precursor and its fragments but this ignores the TIMS dimension. In contrast, with AlphaTims in
this Jupyter notebook, we can easily provide heatmaps in both the LC and TIMS dimension for the
precursor and all fragments, thereby illustrating the benefit of using TIMS data for peak capacity and
interference removal. Using this extra information allows us to manually verify that the peptide of the
spectral library is both quantitatively and qualitatively present in the diaPASEF data as well.

12

https://github.com/MannLabs/alphatims/blob/master/nbs/tutorial.ipynb
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

In [20]:

bruker_dia_d_folder_ name = "/Users/swillems/Data/alphatims_testing/20201207_tims
03_Evo03_PS_SA HeLa_200ng_EvoSep prot_high_speed 21min_8cm_S1-C8 1 22474.d4"
dia_data = alphatims.bruker.TimsTOF (bruker_dia_d_folder_name)

In [21]:
In [23]:
peptide = {
dia_xic_overlay = inspect_peptide("sequence": "YNDTFWK",
dia_data, "mz": 487.22439,
peptide, "mobility": 0.81,
ppm=50, "rt": 10.011 * 60, #seconds
rt_tolerance=30, #seconds "charge": 2,
mobility tolerance=0.05, #1/k0 "fragment_mzs": {
) "Y1
hv.save(dia_xic_overlay, "tutorial dia xic_overlay.html") "y6":
dia_xic_overlay "yS"
Oout[23]: ’5;
YNDTFWK_2 "y2"
50004 "yl":
40044 “bl‘
2 30044 "b2" 32
3 "b3":
g "b4"
1.00+4 ”bs'
2 S "b6"
0.0040 e et R "b7": 955.43089,
AT, min }
precursor y6 y5 y4 y3 y2

In [24]:

dia_heatmap_overlay = inspect_peptide(
dia_data,
peptide,
ppm=50,
rt_tolerance=30, #seconds
mobility tolerance=0.05, #1/k0
heatmap=True
)
hv.save(dia_heatmap_overlay, "tutorial_dia_ heatmap_overlay.html")
dia_heatmap_overlay

out[24]:

p - y7: 973.441 Heatmap - y5: 696.335

Heatmap - y6: 810.378

Inversed IM, V-s-cm?
Inversed IM, V-scm*
Inversed IM, V-scm?
Inversed IM, V-scm*

AT, min AT, min AT, min AT, min

Heatmap - y4: 581.308 Heatmap - y2: 333.192 Heatmap - b1: 164.071

Heatmap - y3: 480.261

Vsem?

V-sem?

Inversed IM, V-s-cm*

Inversed IM, V-s-cm?
Inversed IM,
Inversed IM,

96 98 10 1 104 96 98 10 102 104 96 98 10 102 104 06 98 1

AT, min AT, min AT, min AT, min

Figure 4 — A section of a Jupyter notebook using AlphaTims as a Python module. Importing data with AlphaTims’ Python module
is done with just a single command (cell 20). Here, a diaPASEF sample was imported. The same sample was also acquired in
ddaPASEF and a spectral library was generated with AlphaPept. Relevant coordinates of the peptide YNDTFWK were retrieved
from this spectral library and passed to Python (cell 21). A function ‘inspect_peptide’ was defined in Python (cell 22, see AlphaTims’
Python tutorial at https.//qithub.com/MannlLabs/alphatims/blob/master/nbs/tutorial.ipynb), allowing to visualize extracted ion
chromatograms (XICs) for the doubly charged precursor and all fragments of this peptide (cell 23). Based on the these XICs, some
interference seems to be present for the precursor signal of this peptide. However, when the precursor and fragments of this
peptide are visualized as a heatmap in both the LC and TIMS dimension, it becomes clear that this interference is fully resolved in
the TIMS dimension (cell 24).

13

https://github.com/MannLabs/alphatims/blob/master/nbs/tutorial.ipynb
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Conclusion

The composition of a wide variety of (bio)chemical samples can be determined with LC-TIMS-QTOF, which
acquires the intensity values of ions with billions of detector events that are convertible to
chromatographic retention time, ion mobility, quadrupole m/z and TOF m/z values. While there are
several tools that utilize this data for specialized applications, a generic software tool that is optimized for
speed, usability and extensibility — thereby enabling community-driven developments — was lacking.

AlphaTims indexes unprocessed data in mere seconds, thereby making it equivalent to a sparse four-
dimensional matrix. This allows to subsequently access the unprocessed data in milliseconds, regardless
of the original complexity of the dataset. Due to this fast accession, AlphaTims also requires only
milliseconds to provide interactive data visualizations along any dimension, including XICs, ion
mobilograms, mass spectra, TICs or two-dimensional heatmaps. AlphaTims is easy to install and use on all
major operating systems without requiring any computational expertise. It can be used as a stand-alone
GUI, CLI or Python module and includes extensive help in the form of a README file, test data, a Python
tutorial and a GUI manual. It is fully open-source with a minimal number of dependencies and is freely
available under an Apache license at https://github.com/MannLabs/alphatims.

Due to the documented and freely available code base, AlphaTims can easily be modified or integrated in
other projects. We ourselves for instance are already actively working on AlphaViz, a new software tool
in the AlphaPept ‘ecosystem’ that visualizes identified peptides within raw data. Other examples of future
modifications and applications include transferring parts of the indexing scheme to other vendors, a low-
memory mode with optimized usage of HDF5 files, a multi-sample mode to directly compare different
runs, or integration into automated quality control or feature finding pipelines.

14

https://github.com/MannLabs/alphatims
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Acknowledgements

We would like to thank Sven Brehmer and Sascha Winter from Bruker Daltonics to explain the binary
layout of analysis.tdf_bin files. Additional feedback from Nagarjuna Nagaraj and other Bruker Daltonics
colleagues was also much appreciated. Finally, we are grateful for the feedback and support from within
our own department, in particular Marvin Thielert, Andreas Brunner, Florian Meier, Igor Paron, Sophia
Steigerwald and all members of the bioinformatics team and interest group.

Conflict of interest

MM is an indirect investor in Evosep.

Abbreviations

CLI (command-line interface), DDA (data-dependent acquisition), DIA (data-independent acquisition), GUI
(graphical user interface), JIT (just-in-time), LC (liquid chromatography), MGF (Mascot generic file), MS
(mass spectrometry), MS/MS (tandem mass spectrometry), PASEF (Parallel Accumulation—Serial
Fragmentation), Q (quadrupole), PyPi (Python Package Index), SPD (samples per day), TIC (total ion
current), TIMS (trapped ion mobility spectrometry), TIMS data format (tdf), TOF (time-of-flight), XIC
(extracted ion chromatogram)

Keywords

Mass spectrometry, ion mobility spectrometry, time of flight, data indexing, data visualization,
proteomics, AlphaPept.

Highlights

e Easy visualization and fast accession of LC-TIMS-QTOF data
e Freely available graphical user interface, command-line interface and Python module on
Windows, Linux and macOS.

Data availability

AlphaTims is fully open-source and is freely available with an Apache license at
https://github.com/MannLabs/alphatims. The results in this manuscript were obtained with AlphaTims
version 0.2.8. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE? partner repository with the dataset identifier PXD027359.

Author contributions

SW implemented AlphaTims’ backend. EV implemented AlphaTims’ GUI. PS performed all sample
preparation and acquisition. SW, EV, PS, MS and MM contributed ideas, performed testing and wrote the
manuscript.

15

https://github.com/MannLabs/alphatims
https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

References

1. Gabelica, V. et al. Recommendations for reporting ion mobility Mass Spectrometry measurements.
Mass Spectrom. Rev. 38, 291-320 (2019).

2. Ridgeway, M. E., Lubeck, M., Jordens, J.,, Mann, M. & Park, M. A. Trapped ion mobility
spectrometry: A short review. Int. J. Mass Spectrom. 425, 22—35 (2018).

3. Vasilopoulou, C. G. et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics
from minimal sample amounts. Nat. Commun. 11, (2020).

4, Luo, M.-D., Zhou, Z.-W. & Zhu, Z.-). The Application of lon Mobility-Mass Spectrometry in
Untargeted Metabolomics: from Separation to Identification. J. Anal. Test. 2020 43 4, 163—-174
(2020).

5. Beck, S. et al. The impact I, a very high-resolution quadrupole time-of-flight instrument (QTOF) for
deep shotgun proteomics. Mol. Cell. Proteomics 14, 2014-2029 (2015).

6. Fernandez-Lima, F., Kaplan, D. A., Suetering, J. & Park, M. A. Gas-phase separation using a trapped
ion mobility spectrometer. Int. J. lon Mobil. Spectrom. 14, 93—-98 (2011).

7. Meier, F. et al. Online parallel accumulation—serial fragmentation (PASEF) with a novel trapped ion
mobility mass spectrometer. Mol. Cell. Proteomics 17, 2534-2545 (2018).

8. Meier, F. et al. diaPASEF: parallel accumulation—serial fragmentation combined with data-
independent acquisition. Nat. Methods 17, 1229-1236 (2020).

9. tacki, M. K., Startek, M. P., Brehmer, S., Distler, U. & Tenzer, S. OpenTIMS, TimsPy, and TimsR:
Open and Easy Access to timsTOF Raw Data. J. Proteome Res. 20, 2122-2129 (2021).

10. VYu, F. et al. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and lonQuant. Mol.
Cell. Proteomics 19, 1575-1585 (2020).

11. Lam, S. K., Pitrou, A. & Seibert, S. Numba: A LLVM-based Python JIT Compiler. in Proceedings of the
Second Workshop on the LLVM Compiler Infrastructure in HPC - LLVM “15 (ACM Press).

12. Harris, C. R. et al. Array programming with NumPy. Nature vol. 585 357—-362 (2020).

13. Folk, M., Heber, G., Koziol, Q., Pourmal, E. & Robinson, D. An Overview of the HDF5 Technology
Suite and its Applications. in Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases -
AD ’11 (ACM Press, 2011).

14. Wilhelm, M., Kirchner, M., Steen, J. A. J. & Steen, H. mz5: Space- and time-efficient storage of mass
spectrometry data sets. Mol. Cell. Proteomics 11, 0111.011379 (2012).

15. Askenazi, M., Ben Hamidane, H. & Graumann, J. The arc of Mass Spectrometry Exchange Formats
is long, but it bends toward HDF5. Mass Spectrometry Reviews vol. 36 668—673 (2017).

16. Bhamber, R. S., Jankevics, A., Deutsch, E. W., Jones, A. R. & Dowsey, A. W. mzMLb: A Future-Proof
Raw Mass Spectrometry Data Format Based on Standards-Compliant mzML and Optimized for
Speed and Storage Requirements. J. Proteome Res. 20, 172-183 (2020).

17. Cottam, J. A,, Lumsdaine, A. & Wang, P. Abstract rendering: out-of-core rendering for information
visualization. in Visualization and Data Analysis 2014 (eds. Wong, P. C., Kao, D. L., Hao, M. C. &
Chen, C.) vol. 9017 90170K (SPIE, 2013).

18. Strauss, M. T. et al. AlphaPept, a modern and open framework for MS-based proteomics. bioRxiv
2021.07.23.453379(2021) doi:10.1101/2021.07.23.453379.

16

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453933; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

19. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample
processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319-324
(2014).

20. Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust
proteomics. Mol. Cell. Proteomics 17, 2284—-2296 (2018).

21. Eisenstat, S. C., Gursky, M. C., Schultz, M. H. & Sherman, A. H. Yale sparse matrix package I: The
symmetric codes. Int. J. Numer. Methods Eng. 18, 1145-1151 (1982).

22. Mckinney, W. pandas: a Foundational Python Library for Data Analysis and Statistics.
http://pandas.sf.net.

23. Egertson, J. D., MacLean, B., Johnson, R., Xuan, Y. & MacCoss, M. J. Multiplexed peptide analysis
using data-independent acquisition and Skyline. Nat. Protoc. 10, 887-903 (2015).

24. Muntel, J. et al. Surpassing 10 000 identified and quantified proteins in a single run by optimizing
current LC-MS instrumentation and data analysis strategy. Mol. Omi. 15, 348-360 (2019).

25. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving
support for quantification data. Nucleic Acids Res. 47, D442—-D450 (2019).

17

https://doi.org/10.1101/2021.07.27.453933
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Experimental Procedures
	Sample preparation
	Liquid chromatography
	Mass spectrometry
	AlphaTims development
	Computational system

	Results
	Indexing procedure and performance
	Accession procedure and performance
	Using AlphaTims
	GUI mode
	CLI mode
	Python mode

	Conclusion
	Acknowledgements
	Conflict of interest
	Abbreviations
	Keywords
	Highlights
	Data availability
	Author contributions
	References

