

1 **Genetic loci of the *R. anatipestifer* serotype discovered by Pan-GWAS**
2 **and its application for the development of a multiplex PCR**
3 **serotyping method**

4 Zhishuang Yang^{1,3}, Xueqin Yang^{1,3}, Mingshu Wang^{1,2,3}, Renyong Jia^{1,2,3}, Shun
5 Chen^{1,2,3}, Mafeng Liu^{1,2,3}, Xinxin Zhao^{1,2,3}, Qiao Yang^{1,2,3}, Ying Wu^{1,2,3}, Shaqiu
6 Zhang^{1,2,3}, Juan Huang^{1,2,3}, Xumin Ou^{1,2,3}, Sai Mao^{1,2,3}, Qun Gao^{1,2,3}, Di Sun^{1,2,3}, Bin
7 Tian^{1,2,3}, Dekang Zhu^{1,3*}, Anchun Cheng^{1,2,3*}

8 ¹Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan
9 Agricultural University, Chengdu, Sichuan, China.

10 ²Institute of Preventive Veterinary Medicine, Sichuan Agricultural University,
11 Chengdu, Sichuan, China.

12 ³Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu,
13 Sichuan, China.

14 * Corresponding author:

15 Dekang Zhu, Email: zdk24@sicau.edu.cn; Anchun Cheng, Email:
16 chenganchun@vip.163.com

17 **Email address:**

18 Zhishuang Yang, yangzs_chi@yeah.net; Xueqin Yang, yangxueqin@live.cn; Mingshu
19 Wang, mshwang@163.com; Renyong Jia, jiary@sicau.edu.cn; Shun Chen,
20 shunchen@sicau.edu.cn; Mafeng Liu, liumafengra@163.com; Xinxin Zhao,
21 xxinzhaos@sicau.edu.cn; Qiao Yang, yangqiao721521@sina.com; Ying Wu,
22 yingzi_no1@126.com; Shaqiu Zhang, shaqiu86@hotmail.com; Xumin Ou,
23 x.ou@sicau.edu.cn; Sai Mao, sarrawin@163.com; Qun Gao, 592681288@qq.com; Di
24 Sun, sundi0921@163.com; Dekang Zhu, zdk24@sicau.edu.cn; Anchun Cheng,

25 chenganchun@vip.163.com

26

27 **Highlights**

28 1. *R. anatipestifer* serotype-specific locus was identified by Pan-GWAS for the
29 first time.

30 2. Molecular serotyping multiplex PCR was developed based on O-antigen
31 biosynthesis gene clusters

32 **Abstract**

33 The disease caused by *Riemerella anatipestifer* (*R. anatipestifer*) causes large
34 economic losses to the global duck industry every year. Serotype-related genomic
35 variation (such as in O-antigen and capsular polysaccharide gene clusters) has been
36 widely used for the serotyping in many gram-negative bacteria. To date, there have
37 been few studies focused on genetic basis of serotypes in *R. anatipestifer*. Here, we
38 used pan-genome-wide association studies (Pan-GWAS) to identify the
39 serotype-specific genetic loci of 38 *R. anatipestifer* strains. Analyses of the loci of 11
40 serotypes showed that the loci could be well mapped with the serotypes of the
41 corresponding strains. We constructed the knockout strain for the *wzy* gene at the
42 locus, and the results showed that the mutant lost the agglutination characteristics to
43 positive antisera. Based on the Pan-GWAS results, we developed a multiple PCR
44 method to identify serotypes 1, 2, and 11 of *R. anatipestifer*. Our study provides a
45 precedent for systematically analysing the genetic basis of the *R. anatipestifer*
46 serotypes and establishing a complete serotyping system in the future.

47 **Key words:** *Riemerella anatipestifer*; Pan-genome-wide association studies;
48 O-antigen gene cluster; Serotyping; multiplex PCR.

49 **Introduction**

50 *R. anatipestifer* attacks domestic ducks, geese, and turkeys and causes an acute
51 or chronic septicaemia characterized by fibrinous pericarditis, perihepatitis,
52 airsacculitis, caseous salpingitis, and meningitis(Boulianne et al.). Since 1982, when
53 Bisgaard(Bisgaard, 1982) established the *R. anatipestifer* serotyping scheme (labelled
54 with Arabic numerals), at least 21 serotypes have been reported around the
55 world(Pathanasophon et al., 2002). There is no effective cross-protection among
56 different serotypes(Liao et al., 2015). Unfortunately, no molecular serotyping method
57 for *R. anatipestifer* has been proposed.

58 In most gram-negative bacteria, the surface O-antigen structures exhibit
59 intraspecies diversity, which is usually associated with serotypes(Bian et al., 2020;
60 Carter, 1955; Kenyon et al., 2017; Liu et al., 2014; Townsend et al., 2001). The
61 diversity of O-antigens is attributed to genetic variation in O-antigen gene clusters
62 (O-AGCs), which provides a target for molecular serotyping(Fang et al., 2016;
63 Franklin et al., 2011; Liu et al., 2020). Notably, due to the high correlation between
64 the genetic signature of O-AGCs and the serotype phenotype, O-antigen
65 synthesis-related genes (e.g. *wzy*, *wzx* etc.) have been widely used as targets for
66 molecular serotyping of many gram-negative bacteria(Fang et al., 2016; Iguchi et al.,
67 2020; Townsend et al., 2001; Wang et al., 2017a; Xi et al., 2019; Zeng et al., 2019).

68 Genome-wide association studies (GWAS) have become a powerful tool in
69 bacteria to uncover the genetic basis of some important phenotypes, such as virulence
70 and antibiotic resistance(Farhat et al., 2019; Ma et al., 2020; Young et al., 2019; Yuan
71 et al., 2019; Zankari et al., 2013). In the current study, we used GWAS to identify the
72 genetic loci associated with serotypes and demonstrated that these loci are located
73 within the same genomic region of *R. anatipestifer*. Furthermore, we analysed the
74 genetic diversity of the genetic locus in *R. anatipestifer* (11 serotypes). Based on the
75 genetic variation, we present a multiplex PCR (mPCR) method for the identification
76 of the major serotypes of *R. anatipestifer*, which provides a potential method for
77 epidemiological surveillance of this pathogen.

78 **Materials and methods**

79 **Bacterial strain**

80 The *R. anatipestifer* strains and the published genome data employed in this
81 study are listed in Supplementary Table 1.

82 **Agglutination test using the antisera**

83 The serotypes of *R. anatipestifer* involved in this study were determined by slide
84 agglutination according to Brogden et al.(Bisgaard, 1982). Standard typing antisera
85 were purchased from RIPAC-LABOR GmbH (Potsdam, Germany). The *R.*
86 *anatipestifer* strains were grown on tryptic soy agar (TSA), enriched with 5% sheep
87 blood, at 37°C for 24 h under microaerophilic conditions.

88 **Genome wide association study of serotypes**

89 To explore the association between *R. anatipestifer* serotypes and genetic
90 characteristics, a pan-genome-wide association study (Pan-GWAS) was performed.
91 Specifically, the *R. anatipestifer* genome was annotated using Prokka v1.12 (Seemann,
92 2014), and the pan-genome containing 38 strains of *R. anatipestifer* was reconstructed
93 with Roary (Version 3.12.0, with identity threshold of protein = 90)(Page et al., 2015).
94 Furthermore, Scoary(v1.6.16)(Brynildsrud et al., 2016) was used to perform the
95 Pan-GWAS with the *gene_presence_absence* file generated by Roary (only serotypes
96 containing more than 4 strains were considered). Scoary's P-value and Q-value
97 (P-adjust, adjust algorithm: Benjamini-Hochberg method) cut-offs were set to < 0.05,
98 the sensitivity cut-off was set to 70% and specificity to 85%. Next, we mapped the
99 genes that were significantly associated with the serotype to the corresponding
100 genome to obtain the distribution characteristics. Contig comparisons were generated
101 with Easyfig (v2.2)(Sullivan et al., 2011).

102 **Functional speculation of the gene cluster**

103 To explore the function of serotype-related genetic loci, genome-wide
104 biosynthetic gene clusters (BGCs) of *R. anatipestifer* was predicted with antiSMASH
105 (version 4.2.0, parameter setting: --clusterblast --subclusterblast --knownclusterblast
106 --smcogs --inclusive --borderpredict) (Blin et al., 2017). AntiSMASH also searches
107 for the most similar gene clusters against the Minimum Information about a
108 Biosynthetic Gene Cluster (MIBiG) database(Medema et al., 2015).

109 BGCs analysis was performed again by DeepBGC (Hannigan et al., 2019),
110 which uses deep learning strategies to mine biosynthetic gene clusters in the microbial
111 genome. The results of the above two methods will be considered comprehensive.

112 **Gene boundary determination of *R. anatipestifer* O-AGCs**

113 Based on the results of biosynthetic gene cluster mining, we further determined
114 the boundaries of the *R. anatipestifer* O-antigen gene cluster.

115 More specifically, we retrieved 509 known O-antigen gene clusters from the
116 NCBI Nucleotide database (<https://www.ncbi.nlm.nih.gov/nuccore>), which included
117 *Enterobacter*, *Salmonella*, *Yersinia*, etc. (Supplementary Table 2). We downloaded the
118 protein sequence of these gene clusters, used CD-HIT (version 4.8.1, parameter
119 setting: -c 1 -aS 0.95)(Li and Godzik, 2006) to remove redundancies and constructed
120 the O-antigen synthesis gene database. Tblastn was used to map these proteins to the
121 *R. anatipestifer* genome, and the resulting filtering thresholds were as follows:
122 coverage \geq 50% (-qcov_hsp_perc 50), e-value \leq 1e-5 (-evalue 1e-5). Subsequently, the
123 densely mapped regions in the genome are considered as candidates for the O-antigen
124 gene cluster. Finally, combined with the prediction results of BGCs, the boundary of
125 the O-antigen gene cluster was determined by manual inspection.

126 **Annotation of the O-AGCs**

127 Protein-encoding genes were predicted using Prokka v1.12 (Seemann, 2014) with
128 default parameters. To assign functions to the predicted genes, the Conserved
129 Domains Database (CDD)(Marchler-Bauer et al., 2014) was used to search for

130 conserved domains with an E-value threshold of 0.01. Meanwhile characteristic gene
131 annotation of genes was performed using Blastp (v2.6+) against Non-Redundant (NR,
132 <https://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz>). The E-value and query coverage
133 were set at 1e-5 and 50% respectively.

134 To identify the O-antigen translocase (Wzx) and O-antigen polymerase (Wzy),
135 TMHMM2.0(Krogh et al., 2001) was used to predict the transmembrane regions of
136 proteins.

137 **Inter- and intra-serotypes comparison of LPS GCs**

138 *wzx*, *wzy* and O-antigen gene cluster nucleotide sequence alignment was
139 performed using MAFFT (Katoh et al., 2002) in automatic mode, and then Mega
140 7(Kumar et al., 2016) with default parameters and 1000 bootstrap replicates were used
141 to reconstruct the NJ (neighbor joining)(Saitou and Nei, 1987) phylogenetic tree.

142 Blast (v2.6+) and Easyfig (v2.2)(Sullivan et al., 2011) were used for inter- and
143 intra-serotype O-antigen gene cluster comparisons. DNAMAN (version 9, Lynn
144 Corp., Quebec, Canada) was used to calculate the percentage homology of protein and
145 DNA sequences.

146 **Conservation analysis of genetic locus in *Flavobacteriaceae***

147 To show the conservation of our gene cluster in *Flavobacteriaceae*, the
148 multi-gene search method was implemented. Specifically, Multigeneblast(Medema et
149 al., 2013) was used to find homologues of *R. anatipestifer* O-AGCs from the
150 representative genomes of all species of *Flavobacteriaceae* species. In addition, we

151 used Easyfig (v2.2) to analyse the conservation of the best homologues at the
152 corresponding genus level.

153 **Development of a multiplex serotyping PCR**

154 Based on the sequence variation in the serotype-specific genes of the O-antigen
155 gene cluster, we designed a primer set with Primer-blast
156 (<https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi>) and MFEprimer3(Qu and
157 Zhang, 2015) , that contains 4 primer pairs to specifically detect each of the 3 *R.*
158 *anatipestifer* serotypes (Table 2). Three primer pairs Primer_1, Primer_2, and
159 Primer_11 were designed to detect serotypes 1, 2, and 11 respectively. The
160 Primer_RA primer pair serves as an internal control, it can detect all *R. anatipestifer*.

161 Each reaction mixture (25 µl) contained 1 µl template DNA, 12.5 µl Premix Taq
162 (TaKaRa TaqTM Version 2.0 plus dye), Primer_1 (2×0.1 µl), Primer_2 (2×0.2 µl),
163 Primer_11 (2×1 µl) and Primer_RA (2×0.5 µl).

164 PCR was conducted with initial denaturation for 5 min at 95°C, followed by 35
165 cycles of 30 s at 95°C, 30 s at 57.9°C and 1 min at 72°C. PCR products were analysed
166 by agarose gel electrophoresis using 1.5% agarose

167 To evaluate the performance of mPCR, we tested 181 serotype known isolates
168 (n=45, serotype 1; n=79, serotype 2; n=49, serotype 11; n=8, other serotypes) by
169 single-blind method. Cohen's kappa statistics were performed by R software (version
170 4.0.3, <https://www.r-project.org/>) with the package fmsb (version 0.7.0,
171 <http://minato.sip21c.org/msb/>).

172 **Construction of *R. anatipestifer* *wzy* mutant strain CH-2Δ*wzy***

173 The *wzy* gene (G148_RS04365) was deleted by allelic exchange using the
174 recombinant suicide vector pYA4278 (Kong et al.(Leclercq and Courvalin, 1991);
175 donated by Professor Kong). Briefly, upstream (L) and downstream (R) fragments of
176 the *R. anatipestifer* CH-2 *wzy* gene were amplified by PCR from the genome using
177 *wzy*-Left F and *wzy*-Left R, and *wzy*-Right F and *wzy*-Right R primers, respectively. A
178 1145-bp Spec^R cassette was PCR-amplified from the pYES1 new plasmid using the
179 Spc F and Spc R primers. The three fragments were then spliced together in vitro by
180 overlap extension using the *wzy*-Left F and *wzy*-Right R primers, producing the LSR
181 fragment. Adenosine nucleotides were added to both ends of the PCR product, which
182 was then ligated to the AhdI-digested T-cloning suicide vector pYA4278 to generate
183 pYA4278-LSR, which carries a deletion of the entire *wzy* gene. Subsequently,
184 pYA4278-LSR was successively transformed into *E. coli* X7232 and *E. coli*
185 X7213λpir(Edwards et al., 1998). *E. coli* X7213λpir (Donor) and *R. anatipestifer*
186 CH-2 (Recipient) were mixed in a 10-mM MgSO₄ solution and incubated on TSB
187 agar with diaminopimelic acid at 37°C for 24 h. Spec^R transconjugants were further
188 selected in media containing spectinomycin (40 μg/ml). The detailed steps of this
189 study refer to the methods of Luo et al.(Luo et al., 2015). To confirm the *R.*
190 *anatipestifer* mutant CH-2Δ*wzy*, we performed PCR targeting the transconjugants (see
191 Figure 12 for details). The primers are listed in Table 2.

192 **Results**

193 **The serotypes of *R. anatipestifer***

194 In this study, *R. anatipestifer* involved a total of 11 serotypes, including Serotype
195 1 (n=7), Serotype 2 (n=12), Serotype 3 (n=1), Serotype 4 (n=1), Serotype 5 (n=1),
196 Serotype 6 (n=3), Serotype 7 (n=3), Serotype 8 (n=1), Serotype 10 (n=5), Serotype 11
197 (n=4), and Serotype 12 (n=1), which were determined by slide agglutination or from
198 references. All strains and their serotypes are shown in Supplementary Table 1.

199 **Serotype phenotype of *R. anatipestifer* associated with the gene cluster**

200 To screen for loci associated with serotypes, a GWAS was performed with
201 Scoary on the serotypes containing more than 4 strains (serotypes 1, 2, 10, 11). Under
202 the filtering conditions mentioned in the methods, we obtained a total of 31 target
203 genes. The numbers of genes associated with serotype 1, serotype 2, serotype 10 and
204 serotype 11 were 8, 9, 5 and 8, respectively. The minimum specificity and minimum
205 sensitivity of genes significantly related to the serotype were 85.19% (Serotype 2) and
206 71.43% (Serotype 1), respectively (Supplementary Table 3). Next, we mapped these
207 genes to the corresponding genome and found that these genes were close to each
208 other and formed a gene cluster. Interestingly, according to the BGCs results predicted
209 by antiSMASH, the gene clusters mentioned above were labelled as
210 lipopolysaccharide biosynthetic gene clusters (Table 1). Thirteen percent of the genes
211 in the gene clusters show similarity with the *Legionella pneumophila* serogroup 1
212 lipopolysaccharide biosynthesis gene cluster (MIBiG accession:

213 BGC0000775)(Lüneberg et al., 2000; Medema et al., 2015). Ten percent of the genes
214 of the gene clusters show similarity with the *Burkholderia pseudomallei* type II
215 O-antigen biosynthesis gene cluster (MIBiG accession: BGC0000782)(DeShazer et
216 al., 1998). Based on these results, we speculate that the serovar-specific gene cluster
217 was O-antigen biosynthesis gene cluster of *R. anatipesfier*.

218 We further compared the distribution of the gene cluster between different
219 serotypes, and the results showed that the position of the gene cluster was relatively
220 conserved in the genome of *R. anatipesfier* (Figure 1). In short, the gene region has
221 conserved fragments of 4 and 5 genes (excluding the border) at the beginning and end,
222 respectively (Figure 2).

223 **Analysis of O-antigen gene cluster**

224 To determine the boundaries of the O-antigen gene cluster, we focused on the
225 locations where those O-antigen synthesis genes were densely located. Meanwhile,
226 we reviewed the aforementioned lipopolysaccharide biosynthetic gene clusters, which
227 were conserved in *R. anatipesfier*. Both antiSMASH and DeepBGC characterize a
228 BGC at positions 908750–941443 (RA-CH-2, CP004020.1). According to the
229 antiSMASH results, 10% of the genes in this BGC and the O-antigen gene cluster
230 (GenBank accession: AF064070.1) show similarity. Interestingly, there is a dividing
231 line around the distribution of genes involved in O-antigen synthesis near this area
232 (Figure 3). Several other serotypes had the same situation (Supplementary Figure 1).

233 Therefore, we speculated that the O-antigen gene cluster of RA-CH-2 was

234 located between *recX* (recombinase, Accession No. G148_RS04315) and *rimO*
235 (ribosomal protein S12 methylthiotransferase, Accession No. G148_RS04430), both of
236 which were highly conserved in *R. anatipestifer*.

237 The O-antigen gene cluster of RA-CH-2 was 25.6 kb, and the G + C content was
238 34.00%. It included 22 open reading frames (ORFs) with the same transcriptional
239 direction (Figure 5). To assign annotations the genes, BLAST searches against the NR
240 database and CDD were performed (Table 3).

241 Generally, the coding sequence within O-antigen gene clusters primarily consists
242 of the following three categories: nucleotide sugar biosynthesis, glycosyl transferase,
243 and O-antigen processing(Kalynych et al., 2014). Among gram-negative bacteria,
244 O-antigen processing enzymes include a flippase (Wzx) and O-antigen polymerase
245 (Wzy), which are involved in the transmembrane transport of O-units and the
246 synthesis of O-antigens, respectively(Kalynych et al., 2014). It is worth noting that
247 *wzx* and *wzy* are usually used as serotype molecular detection targets due to their
248 serotype specificity.

249 To analyse the oligosaccharide unit processing genes, we used TMHMM2.0 to
250 predict the transmembrane domains in the proteins. The results showed that
251 *G148_RS04350* and *G148_RS04365* contain multiple transmembrane regions (Figure
252 4). A 50 amino acid stem-loop structure is located between the second and third
253 transmembrane regions (Figure 4 b).The large stem-loop structure distributed in the
254 periplasmic region is a typical feature of the O-antigen polymerase (Wzy)(Daniels et

255 al., 1998). Furthermore, the protein of *G148_RS04365* shared 23.41% identity, 45.55%
256 similarity and 86.40% coverage with Wzy (ACD37078.1) from *Shigella boydii* (Table
257 3).

258 The protein encoded by *G148_RS04350* contains 14 uniformly distributed
259 transmembrane regions (Figure 4 a). *G148_RS04350* shows 33.01% identity, 53.11%
260 similarity and 85.95% coverage to the O-unit flippase (ABG81799.1, AJR19423.1) in
261 *E. coli* and 32.67% identity, 52.32% similarity and 92.35% coverage to the O-unit
262 flippase in *Providencia alcalifaciens*. The set of *wzx* and *wzy* genes suggests the
263 presence of Wzx/Wzy pathway related O-antigen processing.

264 **Inter- and intra-serotypes comparison of O-AGCs**

265 Based on the positional conservation of the O-antigen gene cluster, we extracted
266 the O-antigen gene cluster sequences from other strains (34 strains, Supplementary
267 Table 4). The length of the gene clusters from 20.22 kb (RCAD0135) to 28.38 kb
268 (RCAD0179), GC content between 32.26% (CCUG25011) and 34.00% (RCAD0123),
269 which was significantly lower than the GC content of the genome (upper quartile:
270 35.05%, lower quartile: 34.97%, mean: 35.00%; Wilcoxon test: p-value = 5.476e-16).
271 These gene clusters contain an average of 25 CDSs (ranging from 20 to 30). We
272 annotated the O-antigen gene clusters of the serotype representative strains marked in
273 Supplementary Table 1, the results are shown in Supplementary Table 5 and Figure 5.
274 It is worth noting that all serotype O-antigen gene clusters contain *wza*, *wzc* and
275 *rmlABC* homologous genes. *rmlABCD* in the serotype 12 gene cluster implies the

276 possible presence of rhamnose in O-units. The set of *wzx* and *wzy* genes indicates the
277 presence of Wzx/Wzy-related O-antigen processing pathways in the corresponding
278 serotypes.

279 Next, we extracted the *wzx* and *wzy* gene sequences of all the strains and
280 constructed the NJ phylogenetic tree (Figure 6). The homology matrix of the protein
281 or DNA sequences of the *wxy*, *wzx*, and O-antigen gene clusters was calculated, and
282 the results are shown in Figure 7. Overall, *wzx* and *wzy* are serotype-specific, and
283 much greater differences exist among the different serotypes. Interestingly, RA-YM
284 and RA-GD are reported to be serotype 1(Yuan et al., 2011; Zhou et al., 2011), but
285 their *wzx* and *wzy* are highly identical to our reported serotype 2. CCUG25011 is
286 serotype 4, and *wzx* shares more than 97% similarity with serotype 7. Similarly,
287 CCUG25004 is serotype 5, but *wzy* shares high homology with serotype 2(similarity >
288 99 %).

289 In addition, an NJ phylogenetic tree based on the complete sequence of the
290 O-antigen gene cluster and a synteny analysis of the O-antigen gene cluster (DNA
291 sequence identity cut-off: 69%) are shown in Figure 8. As expected, strains of the
292 same serotype clustered into the same clade and had the same gene cluster structure.
293 Consistent with the single gene identification results, the O-antigen gene clusters of
294 RA-YM and RA-GD are highly homologous to the serotype 2 strain. The *wzy* gene of
295 RA-GD is divided into *wzy1* (RIA_1497) and *wzy2* (RIA_1498) according to
296 GenBank. However, the remaining serotype 1 strains were clustered in other clades

297 and had a consistent genetic structure with each other. Except for a gene insertion
298 event in CCUG25001, the genetic structure of the O-antigen gene cluster of all
299 serotype 2 strains was highly similar (Figure 8). The inserted gene predictive function
300 is O-acetylase involved in peptidoglycan or LPS synthesis (Reference: RBP22008.1;
301 Identity/coverage: 40.95%/99%; E-value: 3e-59). Additionally, CCUG25004
302 (serotype 5) and the strains of serotype 2 differed by only two genes (Wzx and a
303 glycosyltransferase, Figure 8 and Supplementary Table 5). As expected, serotype 1
304 strains had identical gene clusters. In contrast to serotype 1, the gene clusters among
305 the serotype 10 strains are more diverse, and even so, their *wzx* and *wxy* are uniform.
306 RCAD0127 and HXb2 have almost the same sequence. Gene clusters in serotype 4
307 and serotype 7 have high identity, *wzx* is a homologue, but *wxy* is specific
308 (Supplementary Figure 2). Overall, serotype 11 shows reasonable sequence
309 homology.

310 **Conserved loci in other *Flavobacteriaceae* species**

311 The synteny analysis of homologous gene clusters in *Flavobacteriaceae*
312 indicated that the locus of the O-AGC locus was conserved among closely related
313 species (Figure 9a, Supplementary Figure 3). Specifically, the upstream gene
314 arrangement (*recx-gdr-wza-wzc*) of *R. anatipestifer* O-AGCs was highly conserved.
315 *Chryseobacterium* and *R. anatipestifer* were the same (*recx* and *rimO*) at the
316 beginning and end of the region.

317 As expected, this locus is also conserved in *Elizabethkingia* sp. and

318 *Chryseobacterium* sp. (Figure 9b and Figure 9c). Furthermore, many
319 glycosyltransferases related to polysaccharide synthesis are distributed in this region
320 in both genera. It is worth mentioning that *rmlABC* (*Elizabethkingia* sp.),
321 lipopolysaccharide export system ATP-binding protein gene (*lptB*, *Elizabethkingia*
322 sp.), O-antigen ligase gene (*Chryseobacterium* sp.), and oligosaccharide flippase gene
323 (*Chryseobacterium* sp.) were also present in the conserved region, and they are
324 usually involved in the synthesis of O-antigen or lipopolysaccharide.

325 Regarding the other two species of *Riemerella*: *Riemerella columbina* and
326 *Riemerella columbipharyngis*, a similar gene cluster was found in *Riemerella*
327 *columbina* DSM 16469 (Supplementary Figure 4). Furthermore, the genes encoding
328 oligosaccharide repeat unit polymerase (Wzy) and oligosaccharide flippase (Wzx)
329 were annotated in the cluster. However, compared with *Riemerella anatipestifer*
330 RA-CH-2 O-AGCs, the cluster region is significantly rearranged in *Riemerella*
331 *columbina*. Unfortunately, due to a lack of data, we could not detect similar genetic
332 regions in *Riemerella columbipharyngis*.

333 **Multiplex serotyping PCR of *R. anatipestifer* serotype 1, 2 and 11**

334 Based on comparative analysis of the inter- and intra-serotypes, we identified
335 specific sites for the three major serotypes. A multiplex PCR method was developed
336 for molecular serotyping (Table 2 and Figure 10). For *R. anatipestifer* serotypes 1,2
337 and 11, serotyping PCR can produce bands of the correct size for serotyping and
338 species identification (Figure 10a). For the other serotypes (3, 4, 5, 6, 7, 8, 10 and 12),

339 PCR only amplified the species's identification band (Figure 10c). Moreover, our
340 method has high specificity for common avian pathogens. Even *Riemerella columbina*,
341 belongs to the same genus as *R. anatipestifer* (Figure 10b).

342 To evaluate the performance of mPCR, we tested 181 serotype known isolates
343 (n=45, serotype 1; n=79, serotype 2; n=49, serotype 11; n=8, other serotypes).
344 Compared to the agglutination typing method, the coincidence rates of mPCR for
345 serotypes 1, 2 and 11 were 93.33% (42/45), 97.47% (77/79) and 100% (49/49),
346 respectively. An excellent agreement was found between the mPCR and the
347 agglutination method, with kappa index 0.96±0.03 at the 95% confidence level
348 (p -value < 2.2e-16).

349 **Identification and agglutination characterization of *R. anatipestifer* CH-2Δwzy**

350 The *wzy* of *R. anatipestifer* CH-2 was knocked out by allelic exchange, and the
351 mutant CH-2Δ*wzy* was identified by PCR(Figure 1). CH-2Δ*wzy* amplified the 16S
352 rRNA fragment, Spec^R cassette fragment, and LSR fragment, but did not amplify the
353 *wzy* fragment. All amplicons were confirmed by Sanger sequencing. After continuous
354 culture for 30 generations, the genetic stability of the CH-2Δ*wzy* mutant was
355 confirmed by the same PCR test. A standard antisera slide agglutination test showed
356 that CH-2Δ*wzy* could not agglutinate with the antisera of serotype 2 (Figure 13).

357 **Discussion**

358 In the present study, we used Pan-GWAS and identified the genetic loci
359 significantly associated with *R. anatipestifer* serotype 1, serotype 2, serotype 10 and

360 serotype 11. Further functional analysis of the loci suggested that these genes are
361 responsible for the synthesis of O-antigen-related polysaccharides. This is consistent
362 with previous studies showing that each serotype of gram-negative bacterial species
363 corresponds to a specific cluster of O-antigen synthesis genes(Aydanian et al., 2011;
364 Kenyon et al., 2017; Liu et al., 2014; Liu et al., 2008; Seif et al., 2019; Wang et al.,
365 2017b). Wang et al. mutated the *AS87_04050* gene (strain Yb2, serotype 2) located in
366 the abovementioned O-antigen gene cluster. The results showed that compared with
367 the wild-type strain, the mutant LPS was defective and lost it's agglutination ability to
368 serotype 2-positive antisera(Wang et al., 2014). Similarly, Zou et al. mutated the
369 *M949_1603* gene in the above gene cluster in *R. anatipestifer* CH-3 and found that the
370 LPS of the mutant strain lacks the O-antigen chain(Zou et al., 2015). Two other
371 studies reported similar results, that is, the expression of *M949_RS07580* was
372 significantly downregulated in the CH-3 mutant strain, which lacks O-antigen repeat
373 units(Dou et al., 2017; Dou et al., 2018). *M949_RS07580* is also located in the
374 O-antigen gene cluster.

375 Based on the results of the correlation study between serotype and genome, we
376 predicted and analysed the O-antigen gene cluster of *R. anatipestifer*. The existence of
377 *wzx* and *wzy* means that the O-antigen polysaccharide units are assembled via the
378 Wzx/Wzy-dependent pathway. Functional annotation predicted that the
379 *G148_RS04365* gene of *R. anatipestifer* CH-2 was *wzy* (coding O-antigen polymerase,
380 Wzy; Table 3). *G148_RS04365* protein contains contain 10 transmembrane regions,

381 which is the basic characteristic of Wzy. Furthermore, the *wzy* gene (G148_RS04365)
382 was deleted from *R. anatipestifer* CH-2, and the mutant CH-2Δ*wzy* could not
383 agglutinate with antisera of serotype 2, which indicates that the mutant strain antigen
384 was defective. The same phenomenon occurred in Yb2 when the AS87_04050 gene
385 (predicted nucleoside-diphosphate-sugar epimerase) was knocked out(Wang et al.,
386 2014).The above results also indicate that the O-antigen gene cluster our proposed is
387 closely related to the serotype of *R. anatipestifer*.

388 In this study, we performed a conservative analysis of the O-AGCs of *R.*
389 *anatipestifer* in *Flavobacterium* species. It is noteworthy that a similar genetic locus is
390 harboured in some species of *Chryseobacterium* and *Elizabethkingia* (Figure 9).
391 However, there have been no reports about the O-antigen gene cluster of
392 *Chryseobacterium* and *Elizabethkingia*. Despite this limitation, we found several
393 genes related to O-antigen synthesis in these regions, such as *wbpA*, *wbpD*, *wbpE*,
394 *lptB* and the ABC transporter ATP-binding protein gene(Luo et al., 2017; Shoji et al.,
395 2014). Therefore, for some species of *Chryseobacterium* and *Elizabethkingia*, the
396 abovementioned genomic region may also be the locus of the O-antigen gene cluster.

397 The comparison of the O-AGCs of a total of 11 serotypes indicates that the
398 O-AGC of *R. anatipestifer* is conserved at both ends and variable in the middle region
399 (Figure 8). Similar phenomena also appeared in *Plesiomonas shigelloides*(Xi et al.,
400 2019), *Escherichia albertii*(Wang et al., 2017b), and *Yersinia*
401 *pseudotuberculosis*(Kenyon et al., 2017). Variations in the O-AGCs often mean

402 differences in the O-antigen oligosaccharide unit and affect the serological phenotype.

403 Our analysis of the phylogenetic relationship of the O-AGCs from *R. anatipesfifer*'s

404 11 serotypes (38 strains) reveals correspondence between the O-AGCs and their

405 serotypes. In the present study, mPCR based on specific sequence for each serotype to

406 detect three main serotypes was developed. To evaluate the performance of the mPCR

407 method, we compared it with standard slide agglutination serotyping, and the results

408 show that agreement between our method and conventional agglutination methods

409 was very high ($\kappa = 0.96 \pm 0.03$), which indicates that the mPCR method could be

410 an alternative to the traditional method. Since first using slide agglutination test to

411 determine serotypes of *R. anatipesfifer* (Bisgaard, 1982), no new molecular serotyping

412 scheme has been proposed to conveniently detect the serotype. Therefore, our

413 findings and proposed method were significant for the establishment of system

414 serotyping schemes for *R. anatipesfifer*.

415 **Conclusion**

416 In this work, we revealed that the serotype of *R. anatipesfifer* is related to the

417 putative O-antigen gene cluster through a genome-wide association studies and

418 construction of a gene knockout strain. We characterized the O-antigen gene clusters

419 of 11 of *R. anatipesfifer* serotypes and demonstrated their genetic diversity. The

420 serotyping mPCR approach defined here will facilitate work on the epidemiological

421 surveillance of *R. anatipesfifer*.

422 **Funding**

423 This work was supported by Sichuan Science and Technology Program
424 (2020YJ0330); Sichuan Veterinary Medicine and Drug Innovation Group of China
425 Agricultural Research System (SCCXTD-2021-18); China Agriculture Research
426 System of MOF and MARA.

427 **References**

428 Aydanian, A., Tang, L., Morris, J.G., Johnson, J.A., Stine, O.C., 2011. Genetic
429 diversity of O-antigen biosynthesis regions in *Vibrio cholerae*. Applied and
430 environmental microbiology 77, 2247-2253.

431 Bian, S., Zeng, W., Li, Q., Li, Y., Wong, N.K., Jiang, M., Zuo, L., Hu, Q., Li, L., 2020.
432 Genetic Structure, Function, and Evolution of Capsule Biosynthesis Loci in
433 *Vibrio parahaemolyticus*. Frontiers in microbiology 11, 546150.

434 Bisgaard, M., 1982. Antigenic studies on *Pasteurella anatipestifer*, species incertae
435 sedis, using slide and tube agglutination. Avian Pathology 11, 341-350.

436 Blin, K., Wolf, T., Chevrette, M.G., Lu, X., Schwalen, C.J., Kautsar, S.A., Suarez
437 Duran, H.G., de Los Santos, E.L.C., Kim, H.U., Nave, M., Dickschat, J.S.,
438 Mitchell, D.A., Shelest, E., Breitling, R., Takano, E., Lee, S.Y., Weber, T.,
439 Medema, M.H., 2017. antiSMASH 4.0-improvements in chemistry prediction
440 and gene cluster boundary identification. Nucleic acids research 45, W36-W41.

441 Boulianne, M., Blackall, P.J., Hofacre, C.L., Ruiz, J.A., Sandhu, T.S., Hafez, H.M.,
442 Chin, R.P., Register, K.B., Jackwood, M.W. *Riemerella anatipestifer* Infection, In:
443 Diseases of Poultry. 846-853.

444 Brynildsrud, O., Bohlin, J., Scheffer, L., Eldholm, V., 2016. Rapid scoring of genes in
445 microbial pan-genome-wide association studies with Scoary. Genome biology 17,
446 238.

447 Carter, G.R., 1955. Studies on *Pasteurella multocida*. I. A hemagglutination test for
448 the identification of serological types. Journal of Veterinary Research 16,
449 481-484.

450 Daniels, C., Vindurampulle, C., Morona, R., 1998. Overexpression and topology of
451 the *Shigella flexneri* O-antigen polymerase (Rfc/Wzy). *Molecular microbiology*
452 28, 1211-1222.

453 DeShazer, D., Brett, P.J., Woods, D.E., 1998. The type II O-antigenic polysaccharide
454 moiety of *Burkholderia pseudomallei* lipopolysaccharide is required for serum
455 resistance and virulence. *Molecular microbiology* 30, 1081-1100.

456 Dou, Y., Wang, X., Yu, G., Wang, S., Tian, M., Qi, J., Li, T., Ding, C., Yu, S., 2017.
457 Disruption of the M949_RS01915 gene changed the bacterial lipopolysaccharide
458 pattern, pathogenicity and gene expression of *Riemerella anatipestifer*. *Veterinary*
459 *research* 48, 6.

460 Dou, Y., Yu, G., Wang, X., Wang, S., Li, T., Tian, M., Qi, J., Ding, C., Yu, S., 2018.
461 The *Riemerella anatipestifer* M949_RS01035 gene is involved in bacterial
462 lipopolysaccharide biosynthesis. *Veterinary research* 49, 93.

463 Edwards, R.A., Keller, L.H., Schifferli, D.M., 1998. Improved allelic exchange
464 vectors and their use to analyze 987P fimbria gene expression. *Gene* 207,
465 149-157.

466 Fang, C.T., Shih, Y.J., Cheong, C.M., Yi, W.C., 2016. Rapid and Accurate
467 Determination of Lipopolysaccharide O-Antigen Types in *Klebsiella pneumoniae*
468 with a Novel PCR-Based O-Genotyping Method. *Journal of Clinical*
469 *Microbiology* 54, 666-675.

470 Farhat, M.R., Freschi, L., Calderon, R., Ioerger, T., Snyder, M., Meehan, C.J., de Jong,
471 B., Rigouts, L., Sloutsky, A., Kaur, D., 2019. GWAS for quantitative resistance
472 phenotypes in *Mycobacterium tuberculosis* reveals resistance genes and
473 regulatory regions. *Nature communications* 10, 1-11.

474 Franklin, K., Lingohr, E.J., Yoshida, C., Anjum, M., Bodrossy, L., Clark, C.G.,
475 Kropinski, A.M., Karmali, M.A., 2011. Rapid Genoserotyping Tool for
476 Classification of *Salmonella* Serovars. *Journal of Clinical Microbiology* 49,
477 2954-2965.

478 Hannigan, G.D., Prihoda, D., Palicka, A., Soukup, J., Klempir, O., Rampula, L.,
479 Durcak, J., Wurst, M., Kotowski, J., Chang, D., Wang, R., Piizzi, G., Temesi, G.,
480 Hazuda, D.J., Woelk, C.H., Bitton, D.A., 2019. A deep learning genome-mining
481 strategy for biosynthetic gene cluster prediction. *Nucleic acids research* 47, e110.

482 Iguchi, A., Nishii, H., Seto, K., Mitobe, J., Lee, K., Konishi, N., Obata, H., Kikuchi,
483 T., Iyoda, S., 2020. Additional Og-typing PCR techniques targeting *E. coli*-novel
484 and *Shigella*-unique O-antigen biosynthesis gene clusters. *Journal of Clinical
485 Microbiology* 58, e01493-01420.

486 Kalynych, S., Morona, R., Cygler, M., 2014. Progress in understanding the assembly
487 process of bacterial O-antigen. *FEMS microbiology reviews* 38, 1048-1065.

488 Katoh, K., Misawa, K., Kuma, K.i., Miyata, T., 2002. MAFFT: a novel method for
489 rapid multiple sequence alignment based on fast Fourier transform. *Nucleic acids
490 research* 30, 3059-3066.

491 Kenyon, J.J., Cunneen, M.M., Reeves, P.R., 2017. Genetics and evolution of *Yersinia*
492 pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen
493 diversity. *FEMS microbiology reviews* 41, 200-217.

494 Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L., 2001. Predicting
495 transmembrane protein topology with a hidden Markov model: application to
496 complete genomes. *Journal of molecular biology* 305, 567-580.

497 Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics
498 analysis version 7.0 for bigger datasets. *Molecular biology and evolution* 33,
499 1870-1874.

500 Leclercq, R., Courvalin, P., 1991. Bacterial resistance to macrolide, lincosamide, and
501 streptogramin antibiotics by target modification. *Antimicrob Agents Chemother*
502 35, 1267-1272.

503 Li, W., Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large
504 sets of protein or nucleotide sequences. *Bioinformatics* 22, 1658-1659.

505 Liao, H.B., Cheng, X.J., Zhu, D.K., Wang, M.S., Jia, R.Y., Chen, S., Chen, X.Y.,

506 Biville, F., Liu, M.F., Cheng, A.C., 2015. TonB Energy Transduction Systems of
507 *Riemerella anatipestifer* Are Required for Iron and Hemin Utilization. *Plos One*
508 10, e0127506.

509 Liu, B., Furevi, A., Perepelov, A.V., Guo, X., Cao, H., Wang, Q., Reeves, P.R., Knirel,
510 Y.A., Wang, L., Widmalm, G., 2020. Structure and genetics of *Escherichia coli* O
511 antigens. *FEMS microbiology reviews* 44, 655-683.

512 Liu, B., Knirel, Y.A., Feng, L., Perepelov, A.V., Senchenkova, S.N., Reeves, P.R.,
513 Wang, L., 2014. Structural diversity in *Salmonella* O antigens and its genetic
514 basis. *FEMS microbiology reviews* 38, 56-89.

515 Liu, B., Knirel, Y.A., Feng, L., Perepelov, A.V., Senchenkova, S.N., Wang, Q., Reeves,
516 P.R., Wang, L., 2008. Structure and genetics of *Shigella* O antigens. *FEMS*
517 *microbiology reviews* 32, 627-653.

518 Lüneberg, E., Zetzmann, N., Alber, D., Knirel, Y.A., Kooistra, O., Zähringer, U.,
519 Frosch, M., 2000. Cloning and functional characterization of a 30 kb gene locus
520 required for lipopolysaccharide biosynthesis in *Legionella pneumophila*.
521 *International journal of medical microbiology* 290, 37-49.

522 Luo, H., Liu, M., Wang, L., Zhou, W., Wang, M., Cheng, A., Jia, R., Chen, S., Sun, K.,
523 Yang, Q., Chen, X., Zhu, D., 2015. Identification of ribosomal RNA
524 methyltransferase gene ermF in *Riemerella anatipestifer*. *Avian Pathology* 44,
525 162-168.

526 Luo, Q., Yang, X., Yu, S., Shi, H., Wang, K., Xiao, L., Zhu, G., Sun, C., Li, T., Li, D.,
527 Zhang, X., Zhou, M., Huang, Y., 2017. Structural basis for lipopolysaccharide
528 extraction by ABC transporter LptB2FG. *Nature Structural & Molecular Biology*
529 24, 469-474.

530 Ma, K.C., Mortimer, T.D., Duckett, M.A., Hicks, A.L., Wheeler, N.E., Sánchez-Busó,
531 L., Grad, Y.H., 2020. Increased power from conditional bacterial genome-wide
532 association identifies macrolide resistance mutations in *Neisseria gonorrhoeae*.
533 *Nature communications* 11, 1-8.

534 Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y.,
535 Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., 2014. CDD: NCBI's conserved
536 domain database. *Nucleic acids research* 43, D222-D226.

537 Medema, M.H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J.B., Blin, K., De
538 Bruijn, I., Chooi, Y.H., Claesen, J., Coates, R.C., 2015. Minimum information
539 about a biosynthetic gene cluster. *Nature chemical biology* 11, 625.

540 Medema, M.H., Takano, E., Breitling, R., 2013. Detecting sequence homology at the
541 gene cluster level with MultiGeneBlast. *Molecular biology and evolution* 30,
542 1218-1223.

543 Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T., Fookes,
544 M., Falush, D., Keane, J.A., Parkhill, J., 2015. Roary: rapid large-scale
545 prokaryote pan genome analysis. *Bioinformatics* 31, 3691-3693.

546 Pathanasophon, P., Phuektes, P., Tanticharoenyos, T., Narongsak, W., Sawada, T.,
547 2002. A potential new serotype of *Riemerella anatipestifer* isolated from ducks in
548 Thailand. *Avian Pathology* 31, 267-270.

549 Qu, W., Zhang, C. 2015. Selecting specific PCR primers with MFEprimer, In: PCR
550 Primer Design. Springer, 201-213.

551 Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for
552 reconstructing phylogenetic trees. *Molecular biology and evolution* 4, 406-425.

553 Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30,
554 2068-2069.

555 Seif, Y., Monk, J.M., Machado, H., Kavvas, E., Palsson, B.O., 2019. Systems Biology
556 and Pangenome of *Salmonella* O-Antigens. *mBio* 10, e01247-01219.

557 Shoji, M., Sato, K., Yukitake, H., Naito, M., Nakayama, K., 2014. Involvement of the
558 Wbp pathway in the biosynthesis of *Porphyromonas gingivalis*
559 lipopolysaccharide with anionic polysaccharide. *Scientific reports* 4, 5056.

560 Sullivan, M.J., Petty, N.K., Beatson, S.A., 2011. Easyfig: a genome comparison
561 visualizer. *Bioinformatics* 27, 1009-1010.

562 Townsend, K.M., Boyce, J.D., Chung, J.Y., Frost, A.J., Adler, B., 2001. Genetic
563 organization of *Pasteurella multocida* cap Loci and development of a multiplex
564 capsular PCR typing system. *Journal of Clinical Microbiology* 39, 924-929.

565 Wang, H., Zheng, H., Li, Q., Xu, Y., Wang, J., Du, P., Li, X., Liu, X., Zhang, L., Zou,
566 N., 2017a. Defining the genetic features of O-antigen biosynthesis gene cluster
567 and performance of an O-antigen serotyping scheme for *Escherichia albertii*.
568 *Frontiers in microbiology* 8, 1857.

569 Wang, H., Zheng, H., Li, Q., Xu, Y., Wang, J., Du, P., Li, X., Liu, X., Zhang, L., Zou,
570 N., Yan, G., Zhang, Z., Jing, H., Xu, J., Xiong, Y., 2017b. Defining the Genetic
571 Features of O-Antigen Biosynthesis Gene Cluster and Performance of an
572 O-Antigen Serotyping Scheme for *Escherichia albertii*. *Frontiers in microbiology*
573 8, 1857.

574 Wang, X., Ding, C., Wang, S., Han, X., Hou, W., Yue, J., Zou, J., Yu, S., 2014. The
575 AS87_04050 gene is involved in bacterial lipopolysaccharide biosynthesis and
576 pathogenicity of *Riemerella anatipestifer*. *PloS one* 9, e109962.

577 Xi, D., Wang, X., Ning, K., Liu, Q., Jing, F., Guo, X., Cao, B., 2019. O-antigen gene
578 clusters of *Plesiomonas shigelloides* serogroups and its application in
579 development of a molecular serotyping scheme. *Frontiers in microbiology* 10,
580 741.

581 Young, B.C., Earle, S.G., Soeng, S., Sar, P., Kumar, V., Hor, S., Sar, V., Bousfield, R.,
582 Sanderson, N.D., Barker, L., 2019. Panton–Valentine leucocidin is the key
583 determinant of *Staphylococcus aureus* pyomyositis in a bacterial GWAS. *Elife* 8,
584 e42486.

585 Yuan, J., Li, Y.-Y., Xu, Y., Sun, B.-J., Shao, J., Zhang, D., Li, K., Fan, D.-D., Xue,
586 Z.-B., Chen, W.-H., 2019. Molecular Signatures Related to the Virulence of
587 *Bacillus cereus* Sensu Lato, a Leading Cause of Devastating Endophthalmitis.
588 *mSystems* 4, e00745-00719.

589 Yuan, J., Liu, W., Sun, M., Song, S., Cai, J., Hu, S., 2011. Complete genome sequence

590 of the pathogenic bacterium *Riemerella anatipestifer* strain RA-GD. *Journal of*
591 *bacteriology* 193, 2896-2897.

592 Zankari, E., Hasman, H., Kaas, R.S., Seyfarth, A.M., Agersø, Y., Lund, O., Larsen,
593 M.V., Aarestrup, F.M., 2013. Genotyping using whole-genome sequencing is a
594 realistic alternative to surveillance based on phenotypic antimicrobial
595 susceptibility testing. *Journal of antimicrobial chemotherapy* 68, 771-777.

596 Zeng, X., Chi, X., Ho, B.T., Moon, D., Lambert, C., Hall, R.J., Baybayan, P., Wang, S.,
597 Wilson, B.A., Ho, M., 2019. Comparative Genome Analysis of an Extensively
598 Drug-Resistant Isolate of Avian Sequence Type 167 *Escherichia coli* Strain Sanji
599 with Novel In Silico Serotype O89b:H9. *mSystems* 4, e00242-00218.

600 Zhou, Z., Peng, X., Xiao, Y., Wang, X., Guo, Z., Zhu, L., Liu, M., Jin, H., Bi, D., Li,
601 Z., Sun, M., 2011. Genome sequence of poultry pathogen *Riemerella*
602 *anatipestifer* strain RA-YM. *Journal of bacteriology* 193, 1284-1285.

603 Zou, J., Wang, X., Ding, C., Tian, M., Han, X., Wang, S., Yu, S., 2015.
604 Characterization and cross-protection evaluation of M949_1603 gene deletion
605 *Riemerella anatipestifer* mutant RA-M1. *Applied microbiology and*
606 *biotechnology* 99, 10107-10116.

607

608 **Figure legends**

609 **Figure 1.** Location of genes significantly associated with serotypes. And the
610 specificity and the sensitivity of genes significantly associated with Serotype 1, 2, 10
611 and 11. The size of the shape indicates sensitivity; colour indicates negative value of
612 *P*-value (adjusted).

613 **Figure 2.** Comparison of serotype-associated regions.

614 **Figure 3.** CH-2 O-antigen gene cluster location and boundary determination.

615 The dot plot represents the hits of genes related to O-antigen synthesis on the genome,

616 and the size of the dot indicates the coverage length. Interval markers on gene clusters
617 indicate the BGC regions predicted by DeepBGC and antiSMASH.

618 **Figure 4.** The prediction of transmembrane helices in amino acid sequences
619 encoded by *wzx* and *wzy*. a) The prediction of transmembrane helices in the amino
620 acid sequence encoded by *G148_RS04350*. b) The prediction of transmembrane
621 helices in the amino acid sequence encoded by *G148_RS04365*.

622 **Figure 5.** The O-antigen gene cluster in *R. anatipestifer* serotypes 1, 3, 4, 5, 6, 7,
623 9, 10, 11 and 12

624 **Figure 6.** Phylogenetic tree constructed by the neighbor joining method based on
625 the *wzx* (a) and *wzy* (b) genes. Numbers in the outer circle indicate serotypes.

626 **Figure 7.** *wzx* and *wzy* homology matrix calculated by DNAMAN. The value in
627 front of the strain ID indicates the serotype. a) Protein homology matrix encoded by
628 the *wzx* gene. b) Homology matrix of the *wzx* gene. c) Protein homology matrix
629 encoded by the *wzy* gene. d) Homology matrix of the *wzy* gene.

630 **Figure 8.** Neighbor-joining phylogenetic tree and structure of the O-antigen gene
631 cluster. Numbers in boxes indicate serotypes

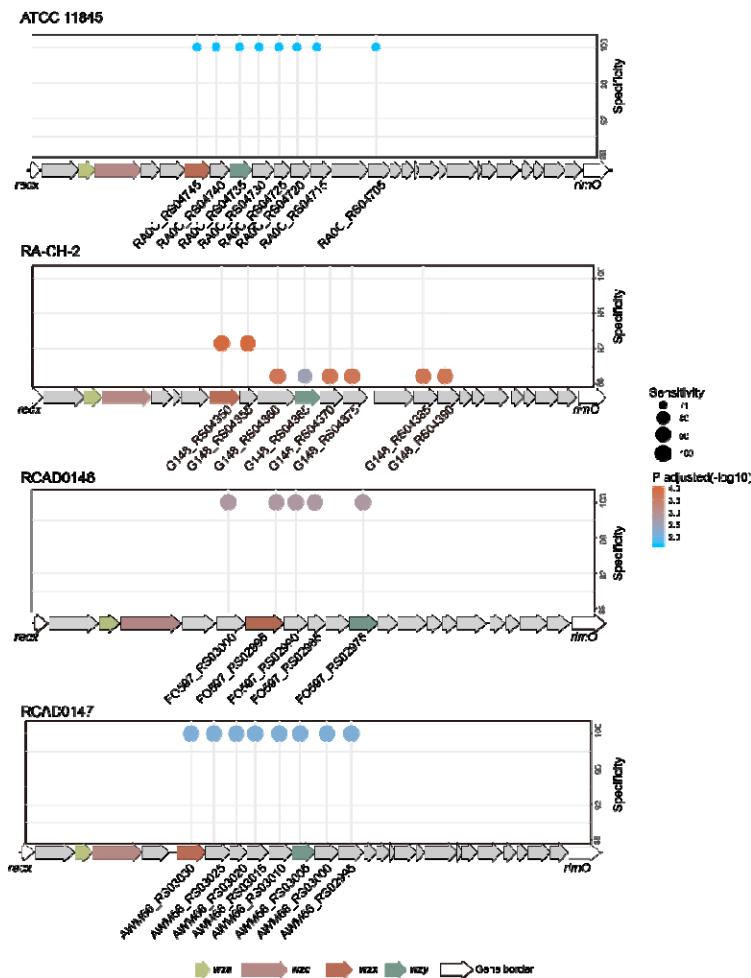
632 **Figure 9.** Conserved loci in other *Flavobacteriaceae* species. a) The genetic
633 locus of the O-antigen gene cluster in *R. anatipestifer* is conserved among the closest
634 species. b) Conserved structure in multiple *Elizabethkingia* species. c) Conserved
635 structure in multiple *Chryseobacterium* species.

636 **Figure 10.** Multiplex PCR method for the identification of *R. anatipestifer*

637 serotypes 1,2 and 11. Lane M, 2000 bp DNA ladder; a) Multiplex PCR method for the
638 identification of *R. anatipestifer* serotypes 1,2 and 11: Lane 1: serotype 1 (ATCC
639 11845); lane 2: serotype 2 (RA-CH-2); lane 3: serotype 11 (RCAD0147); lane 4:
640 mixed serotypes (1,2,11); and lane 5: Negative control.

641 b) Detection of species specificity for the multiplex PCR method. Lanes 1 to 4:
642 serotype 1 (ATCC 11845), serotype 2 (RA-CH-2), serotype 11 (RCAD0147), and
643 mixed serotypes (1,2,11); lanes 5 to 8: *Pasteurella multocida*, *Salmonella enterica*,
644 *Riemerella columbina*, *Escherichia coli*; and lane 9: negative control.

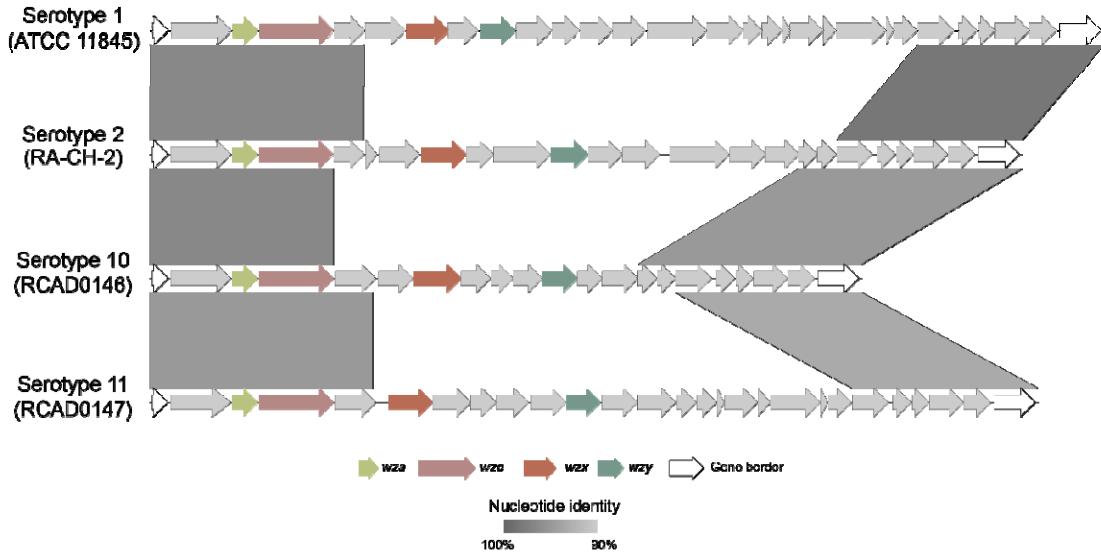
645 c) Detection of serotype specificity for the multiplex PCR method. Lanes 1 to 3:
646 serotype 1 (ATCC 11845), serotype 2 (RA-CH-2) and serotype 11 (RCAD0147);
647 lanes 4 to 11: serotype 3 (CCUG25002), serotype 4 (CCUG25011), serotype 5
648 (CCUG25004), serotype 6 (CCUG25005), serotype 7 (CCUG25010), serotype 8
649 (CCUG25054), serotype 10 (RCAD0146) and serotype 12 (CCUG25055); and lane
650 12: negative control.


651 **Figure 11.** Identification of *R. anatipestifer* CH-2Δwzy. M: DL2000 DNA
652 Marker; Lanes 1-3: 16S rRNA F and 16S rRNA R, which amplify a 960 bp fragment
653 from *R. anatipestifer* 16S rRNA. Order: Wild-type(CH-2), mutant(CH-2Δwzy), and
654 negative control (distilled water); Lanes 4-6: Spec F and Spec R, which amplify a
655 1180 bp fragment from the SpecR cassette. Order: Positive control (pYES1 new),
656 mutant(CH-2Δwzy), and negative control (distilled water); Lanes 7-9: wzy F and wzy
657 R, which amplify an 886 bp fragment from the wzy gene. Order: Wild-type(CH-2),

658 mutant(CH-2 Δ wzy), and negative control (distilled water); Lanes 10-11: LSR F and
659 LSR R, which amplify a 1199 bp fragment from the SpecR cassette, indicating that it
660 was inserted in the correct position in the *R. anatipestifer* CH-2 genome. Order:
661 Mutant(CH-2 Δ wzy), Negative control (distilled water).

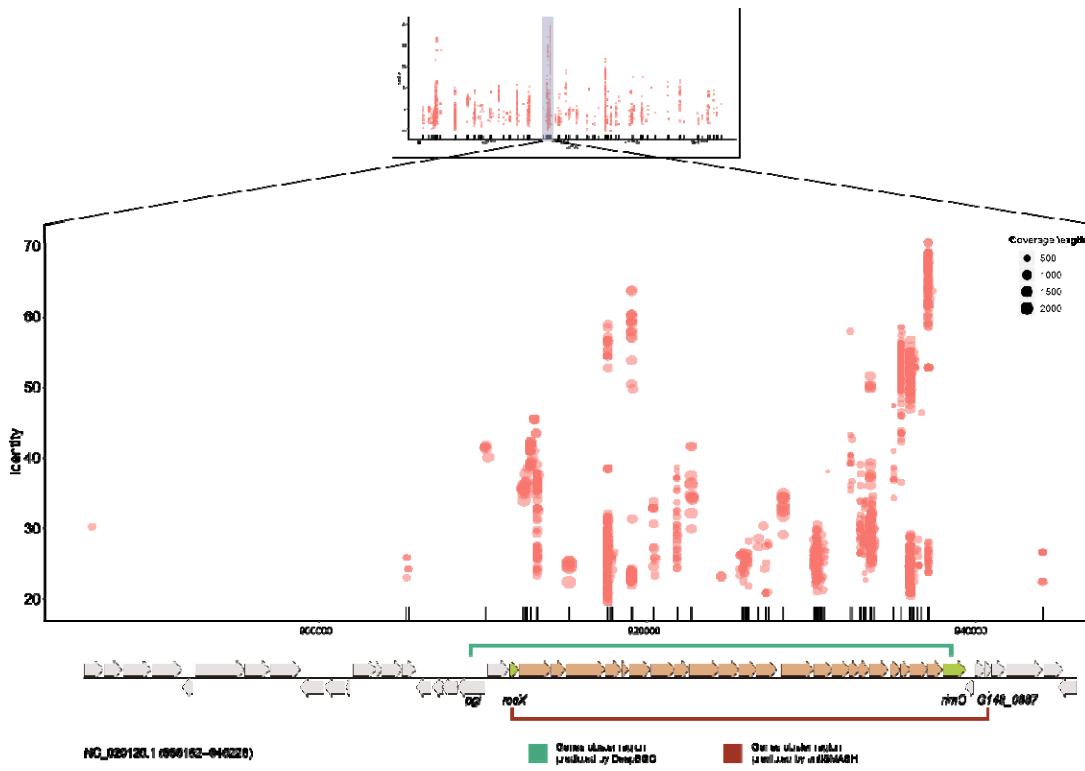
662 **Figure 12.** Agglutination test of *R. anatipestifer* CH-2 Δ wzy. a) Wild-type(CH-2)
663 suspension mixed with antisera of serotype 2 ; b) mutant(CH-2 Δ wzy) suspension
664 mixed with antisera of serotype 2; c) distilled water mixed with antisera of serotype 2;
665 and d) mutant(CH-2 Δ wzy) suspension mixed with distilled water.

666


667 **Figure**

668

669 **Figure 1.** Location of genes significantly associated with serotypes. And the
670 specificity and the sensitivity of genes significantly associated with Serotype 1, 2, 10
671 and 11. The size of the shape indicates sensitivity; colour indicates negative value of
672 P -value (adjusted).


673

674

675

Figure 2. Comparison of serotype-associated regions.

676

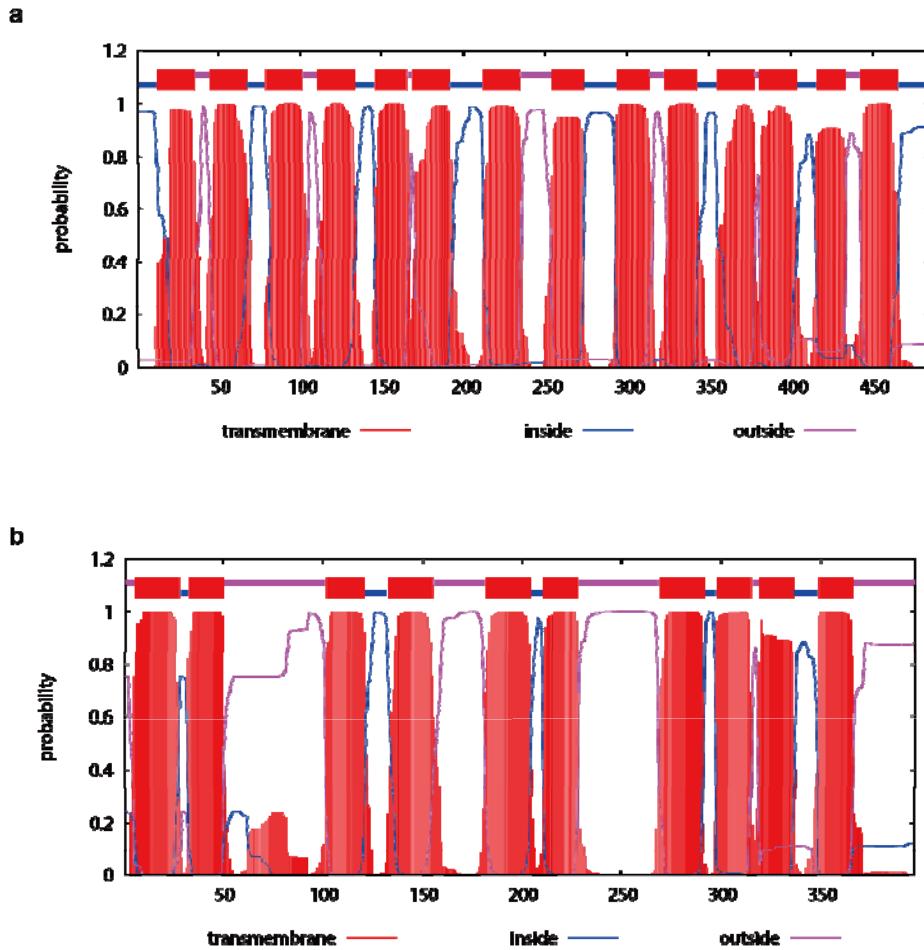
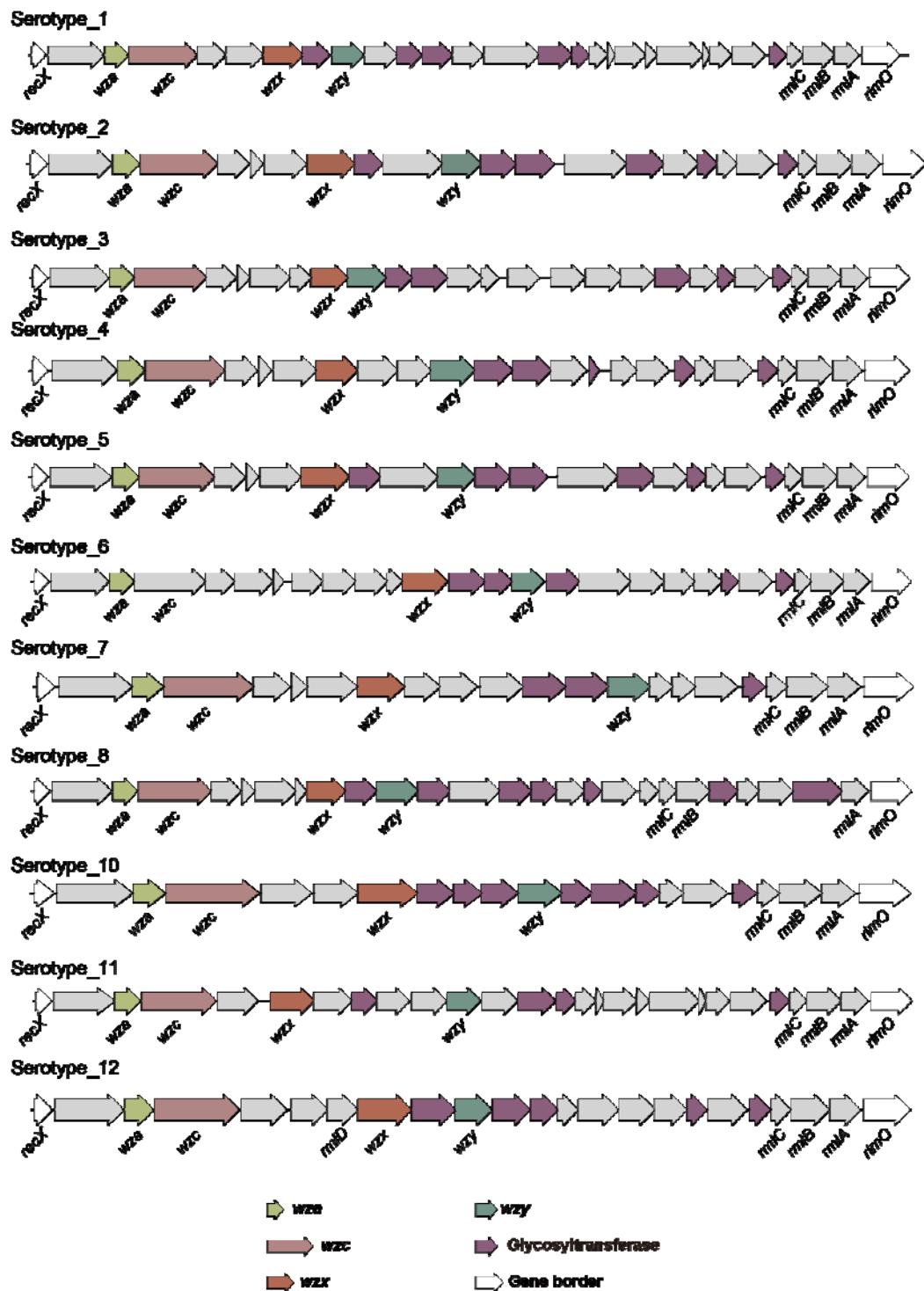

677

Figure 3. CH-2 O-antigen gene cluster location and boundary determination.

678 The dot plot represents the hits of genes related to O-antigen synthesis on the genome,

679 and the size of the dot indicates the coverage length. Interval markers on gene clusters

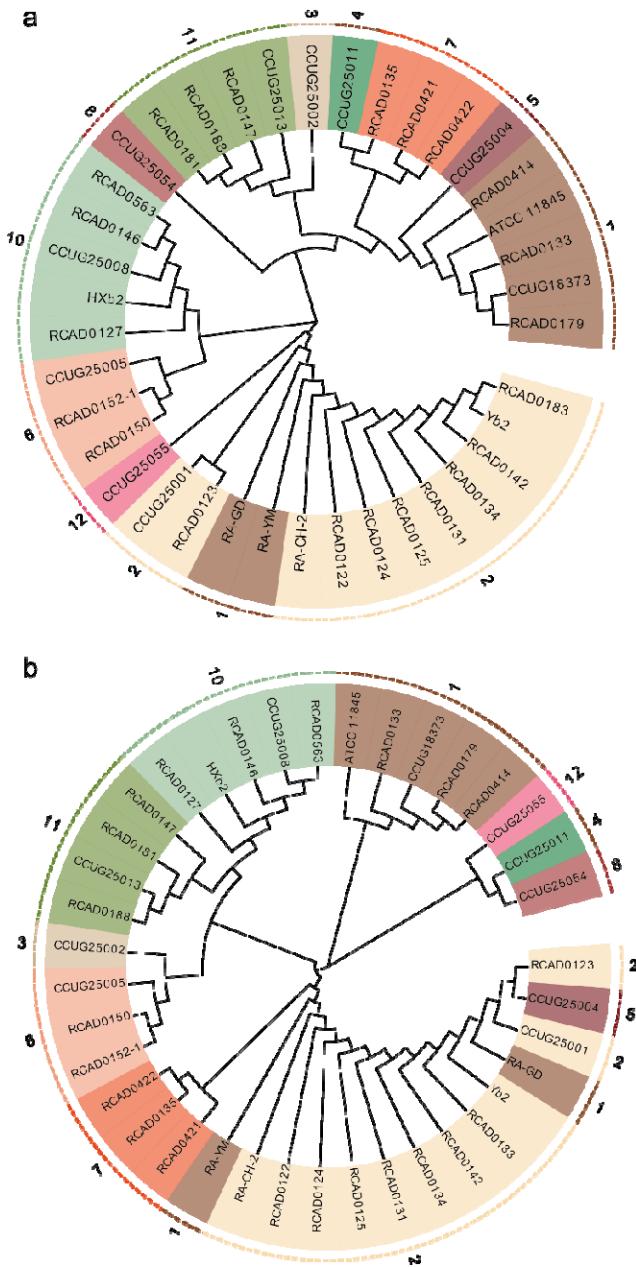
680 indicate the BGC regions predicted by DeepBGC and antiSMASH.

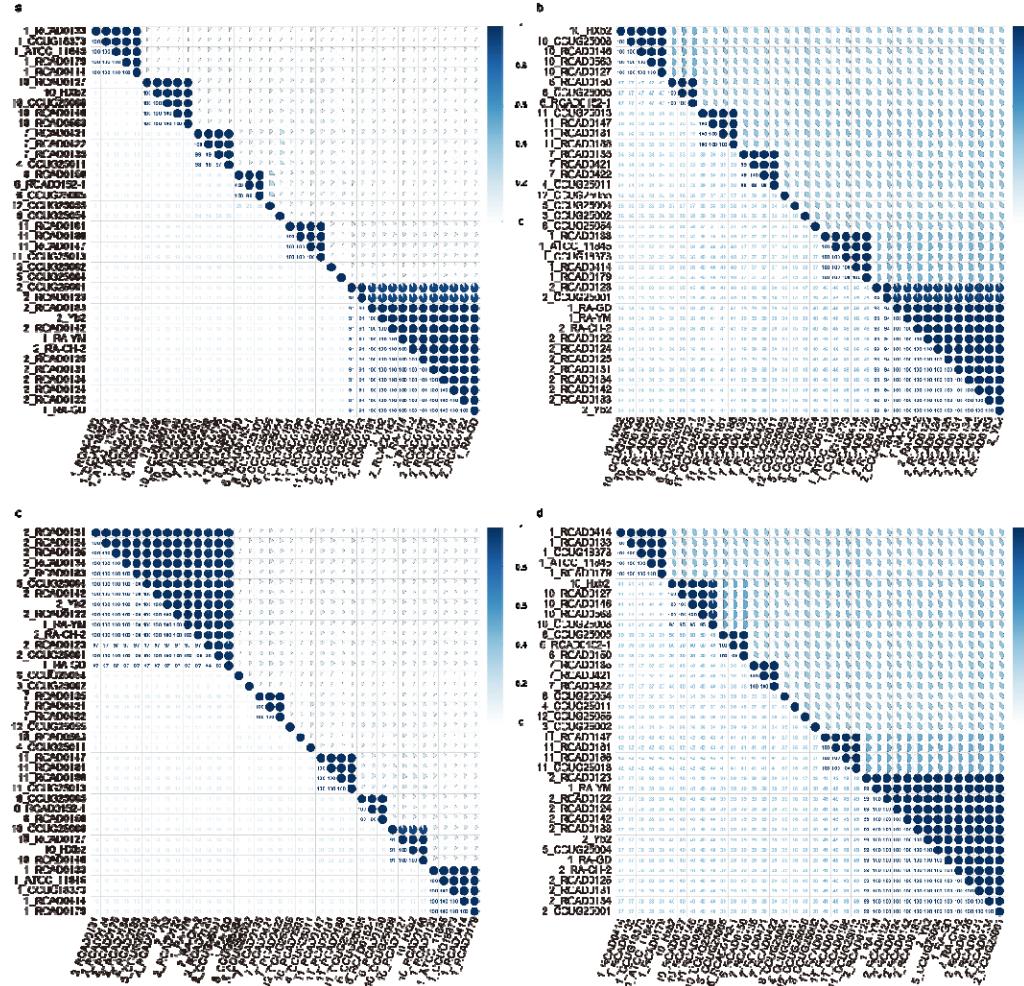

681

682 **Figure 4.** The prediction of transmembrane helices in amino acid sequences

683 encoded by *wzx* and *wzy*. a) The prediction of transmembrane helices in the amino

684 acid sequence encoded by *G148_RS04350*. b) The prediction of transmembrane


685 helices in the amino acid sequence encoded by *G148_RS04365*.



686

687

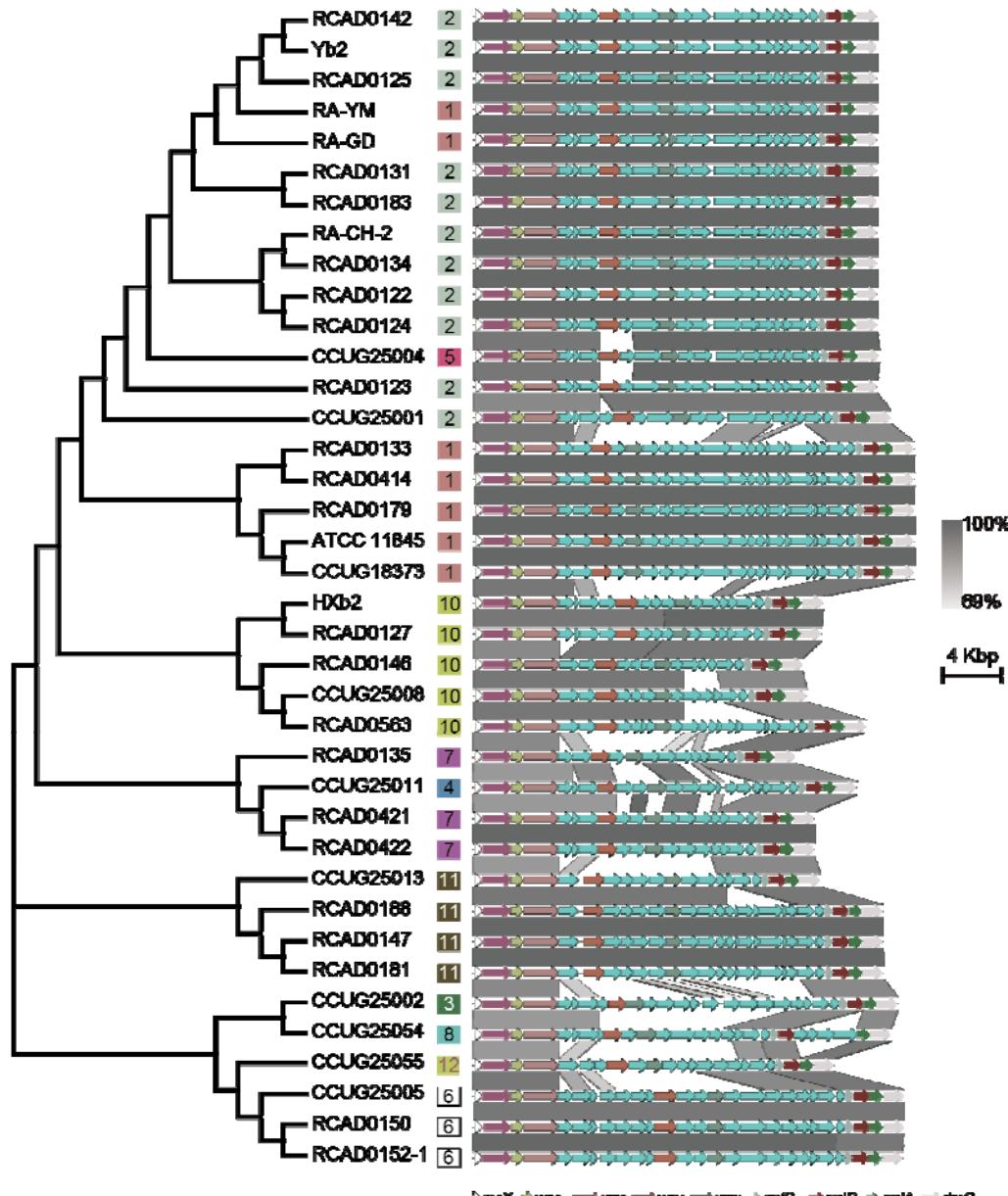
688 9, 10, 11 and 12

692

693

Figure 7. *wzx* and *wzy* homology matrix calculated by DNAMAN. The value in

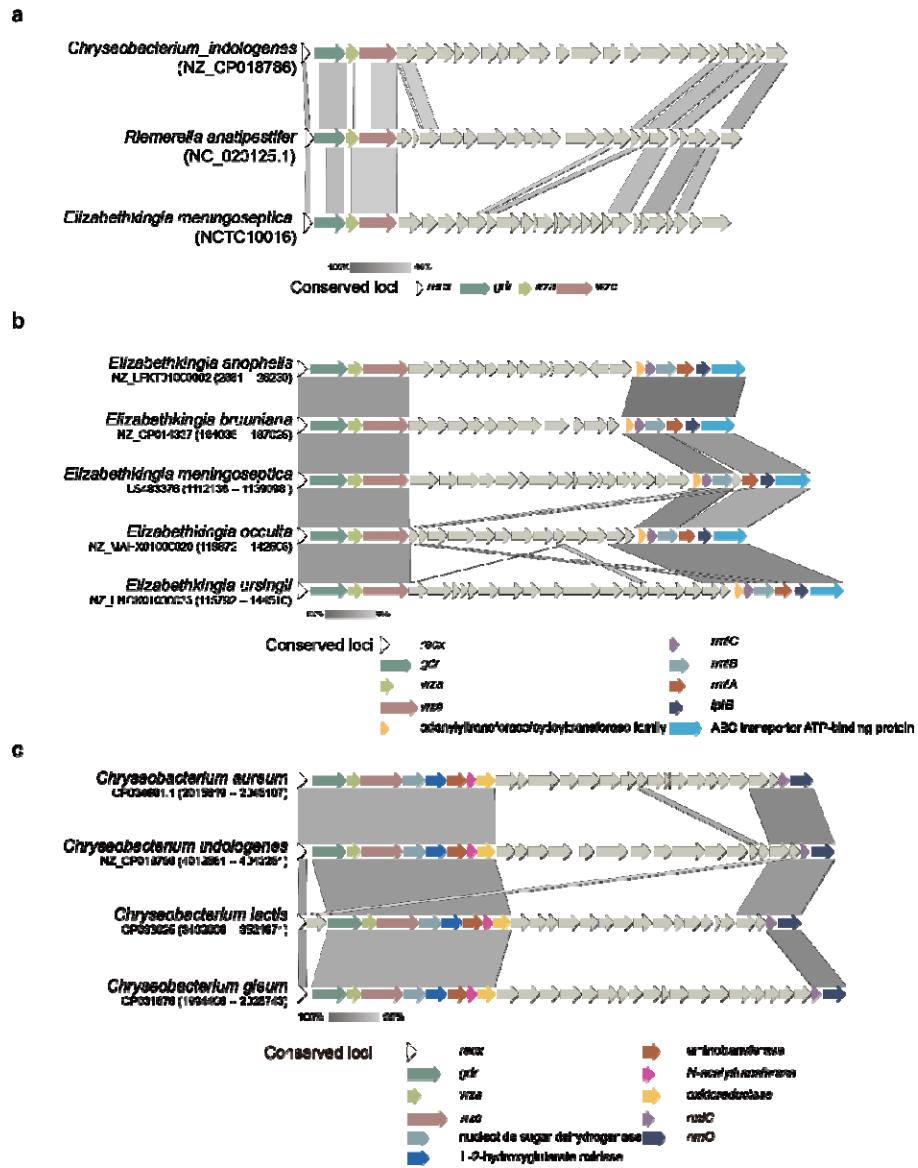
694


front of the strain ID indicates the serotype. a) Protein homology matrix encoded by

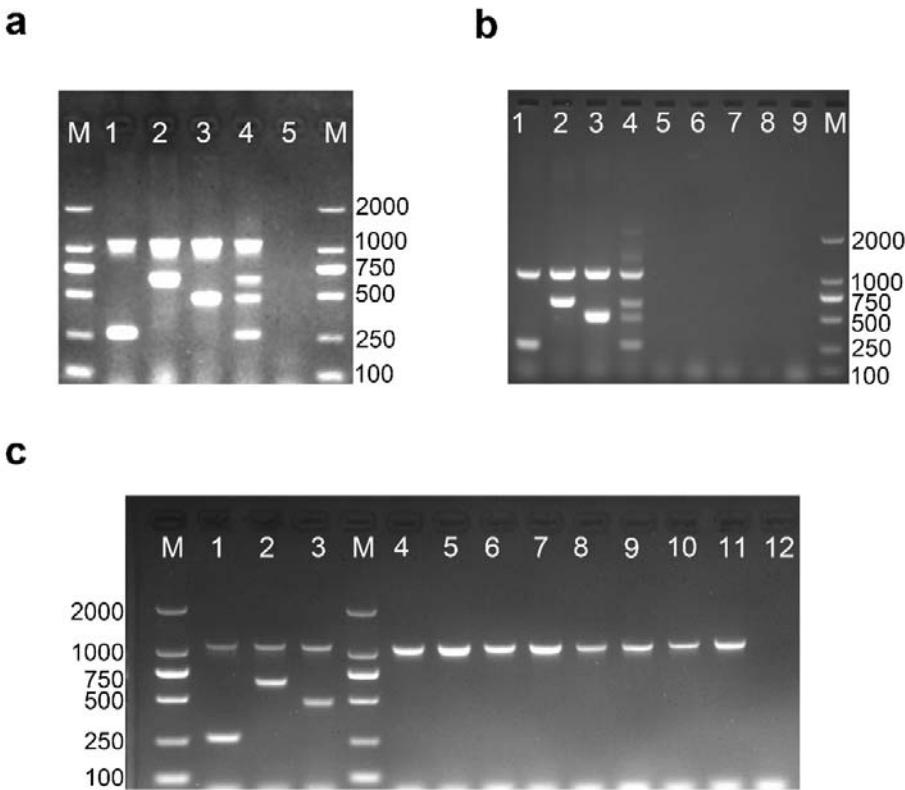
695

the *wzx* gene. b) Homology matrix of the *wzx* gene. c) Protein homology matrix

696


encoded by the *wzy* gene. d) Homology matrix of the *wzy* gene.

697


698 **Figure 8.** Neighbor-joining phylogenetic tree and structure of the O-antigen gene

699 cluster. Numbers in boxes indicate serotypes

700

701 **Figure 9.** Conserved loci in other *Flavobacteriaceae* species. a) The genetic
702 locus of the O-antigen gene cluster in *R. anatipesfifer* is conserved among the closest
703 species. b) Conserved structure in multiple *Elizabethkingia* species. c) Conserved
704 structure in multiple *Chryseobacterium* species.

705

706 **Figure 10.** Multiplex PCR method for the identification of *R. anatipestifer*

707 serotypes 1,2 and 11. Lane M, 2000 bp DNA ladder; a) Multiplex PCR method for the

708 identification of *R. anatipestifer* serotypes 1,2 and 11: Lane 1: serotype 1 (ATCC

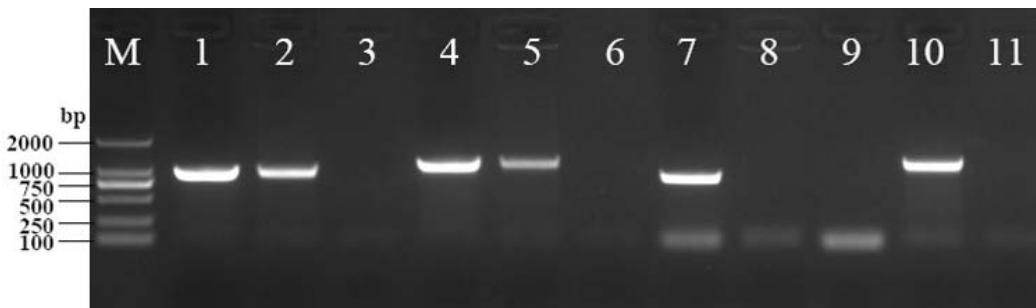
709 11845); lane 2: serotype 2 (RA-CH-2); lane 3: serotype 11 (RCAD0147); lane 4:

710 mixed serotypes (1,2,11); and lane 5: Negative control.

711 b) Detection of species specificity for the multiplex PCR method. Lanes 1 to 4:

712 serotype 1 (ATCC 11845), serotype 2 (RA-CH-2), serotype 11 (RCAD0147), and

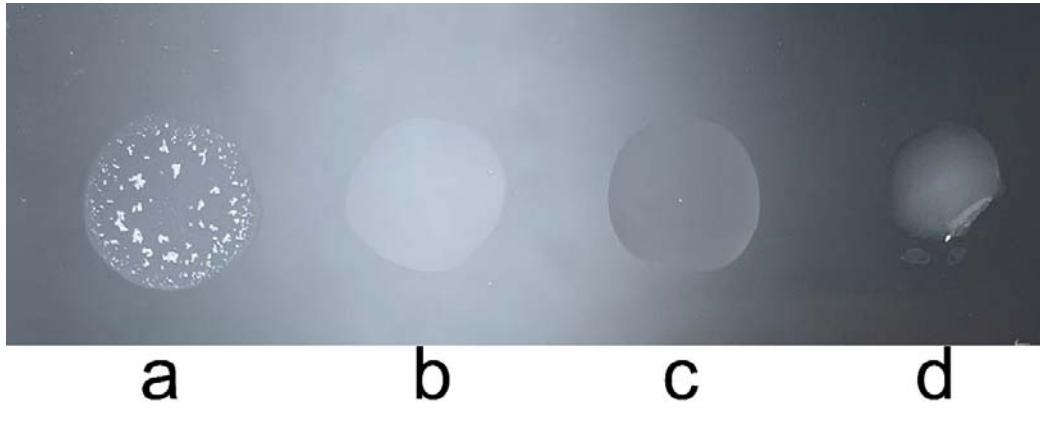
713 mixed serotypes (1,2,11); lanes 5 to 8: *Pasteurella multocida*, *Salmonella enterica*,


714 *Riemerella columbina*, *Escherichia coli*; and lane 9: negative control.

715 c) Detection of serotype specificity for the multiplex PCR method. Lanes 1 to 3:

716 serotype 1 (ATCC 11845), serotype 2 (RA-CH-2) and serotype 11 (RCAD0147);

717 lanes 4 to 11: serotype 3 (CCUG 25002), serotype 4 (CCUG 25011), serotype 5
718 (CCUG 25004), serotype 6 (CCUG 25005), serotype 7 (CCUG 25010), serotype 8
719 (CCUG 25054), serotype 10 (RCAD0146) and serotype 12 (CCUG 25055); and lane
720 12: negative control.


721

722

723 **Figure 11.** Identification of *R. anatipesfifer* CH-2Δwzy. M: DL2000 DNA
724 Marker; Lanes 1-3: 16S rRNA F and 16S rRNA R, which amplify a 960 bp fragment
725 from *R. anatipesfifer* 16S rRNA. Order: Wild-type(CH-2), mutant(CH-2Δwzy), and
726 negative control (distilled water); Lanes 4-6: Spec F and Spec R, which amplify a
727 1180 bp fragment from the SpecR cassette. Order: Positive control (pYES1 new),
728 mutant (CH-2Δwzy), and negative control (distilled water); Lanes 7-9: wzy F and wzy
729 R, which amplify an 886 bp fragment from the wzy gene. Order: Wild-type(CH-2),
730 mutant (CH-2Δwzy), and negative control (distilled water); Lanes 10-11: LSR F and
731 LSR R, which amplify a 1199 bp fragment from the SpecR cassette, indicating that it
732 was inserted in the correct position in the *R. anatipesfifer* CH-2 genome. Order:
733 Mutant (CH-2Δwzy), Negative control (distilled water).

734

735

736 **Figure 12.** Agglutination test of *R. anatipestifer* CH-2 Δ wzy. a) Wild-type(CH-2)
737 suspension mixed with antisera of serotype 2; b) mutant(CH-2 Δ wzy) suspension
738 mixed with antisera of serotype 2; c) distilled water mixed with antisera of serotype 2;
739 and d) mutant(CH-2 Δ wzy) suspension mixed with distilled water.

740 **Table legends**

741 **Table 1.** Information of lipopolysaccharide biosynthetic gene cluster of *R.*
742 *anatipestifer* predicted by antiSMASH.

743 **Table 2.** Oligonucleotide primers used in this study

744 **Table 3.** Functional prediction of the gene in the O-antigen gene cluster of *R.*
745 *anatipestifer* (CH-2, serotype 2)

746

747

748

749

750

751 **Table**

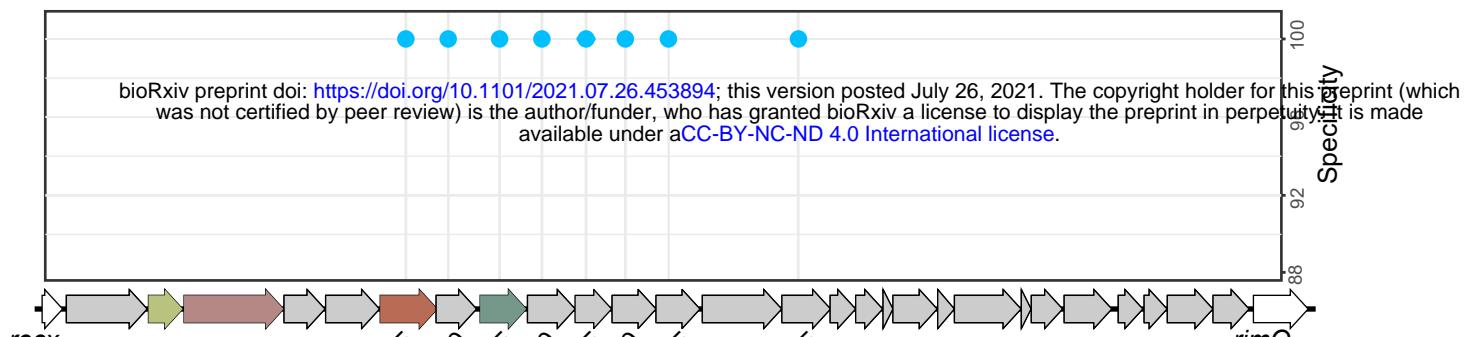
752 **Table 1.** Information of lipopolysaccharide biosynthetic gene cluster of *R. anatipestifer* predicted by antiSMASH.

Serotype	Representative strain	Accession No. of Sequence	Start of Cluster	End of Cluster	Most similar known cluster	MiBiG BGC ID
1	ATCC 11845	CP003388	949593	981535	Lipopolysaccharide biosynthetic gene cluster (13% of genes show similarity); O-antigen biosynthesis gene cluster (10% of genes show similarity)	BGC0000775_c1; BGC0000782_c1
2	RA-CH-2	CP004020	911907	941443	Lipopolysaccharide biosynthetic gene cluster (13% of genes show similarity); O-antigen biosynthesis gene cluster (10% of genes show similarity)	BGC0000775_c1; BGC0000782_c1
10	RCAD0146	VLIM00000004	135675	159655	Lipopolysaccharide biosynthetic gene cluster (13% of genes show similarity); O-antigen biosynthesis gene cluster (10% of genes show similarity)	BGC0000775_c1; BGC0000782_c1
11	RCAD0147	LUDN01000002	137494	166627	Lipopolysaccharide biosynthetic gene cluster (13% of genes show similarity); O-antigen biosynthesis gene cluster (10% of genes show similarity)	BGC0000775_c1; BGC0000782_c1

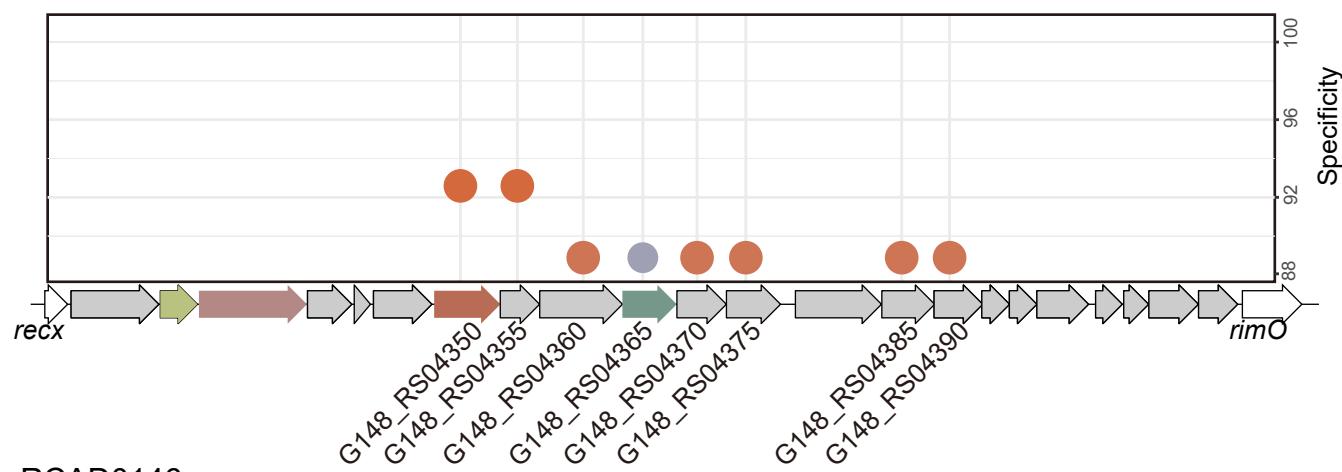
753

Table 2. Oligonucleotide primers used in this study

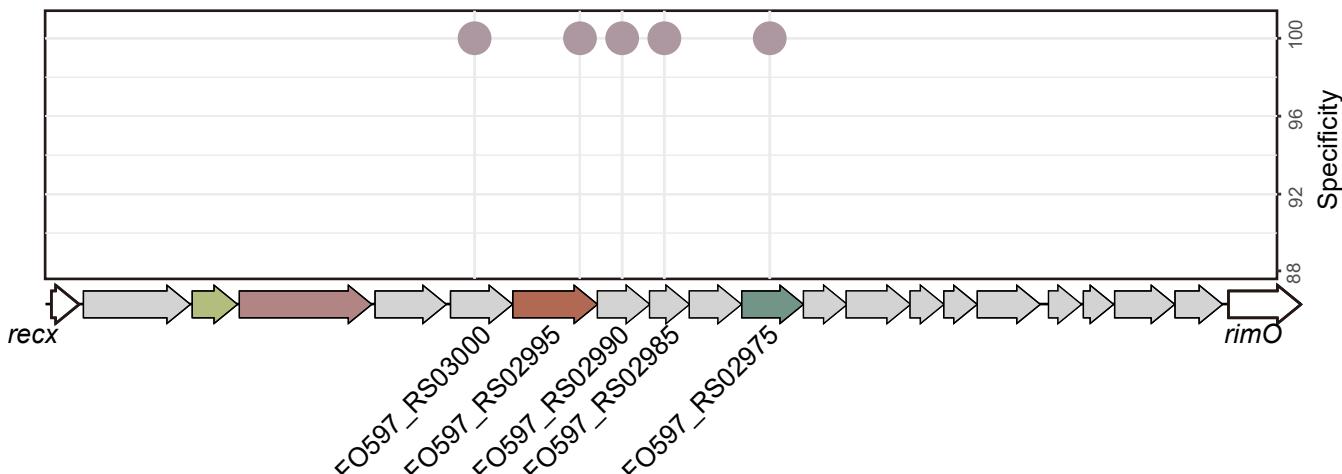
Name of primer	Targeted gene; Description	Product (bp)	Length	Sequence
Primer_1	ATCC 11845 (RA0C_RS04720); Identification of serotype 1	269	F R	CTTGGAGTGCAGAGTCCGAA AACTCCCATTTCCTCAGCGA
Primer_2	RA-CH-2 (G148_RS04350); Identification of serotype 2	671	F R	GCACCTCTTGTGCCGATT ACTGCCTCCTGCCACTTATC
Primer_11	RCAD0147 (AWM66_RS03025); Identification of serotype 11	510	F R	GGGATGCGATTAGTGGGGAG CACATGCGTAGACCACCCCTT
Primer_RA	ATCC (RA0C_RS01755); Identification of <i>R. anatipestifer</i>	1112	F R	GCAGAGGGACAAGCTCCTTT TGTGCCAACCAATATTGAGCC
wzy-Left	RA-CH-2 (G148_RS04360); Amplification of the wzy upstream fragment	609	F R	AAGAACATTACCCATATCCTATCGTTGACGGTA TTCTGTCCTGGCTGGTTTACGAATATTGTAAGATA
wzy-Right	RA-CH-2 (G148_RS04370); Amplification of the wzy downstream fragment	602	F R	CCAAGGTAGTCGGCAAATAATTATGAAAAAAAGTAC TACATGAGAAACCACAAAAGCCTCTTGGGAATA
wzy	RA-CH-2 (G148_RS04365); Amplification of the wzy	886	F R	TCCAATGGGTTACTTCTGTAACTTGTCT CGTAATGGTTGGTTGAGATTCACTGGAG
LSR	G148_RS04360+spec; Identification of transconjugants	1199	F R	AGGTAGATAGGGCAAGTATGGCTTTTCG ACCGTAACCAGCAAATCAATACTGTCG
16S rRNA	16S rRNA; Identification of species	960	F R	CTTCGGATACTTGAGAGCG GCAGCACCTTGAAAATTGT
Spec	spec; Amplification of the spec	1145	F R	TCTTACAAATATTCGTAACCAAGGCCAGGACAGAAAT ACTTTTTCATAAAATTATTGCCGACTACCTGGTG

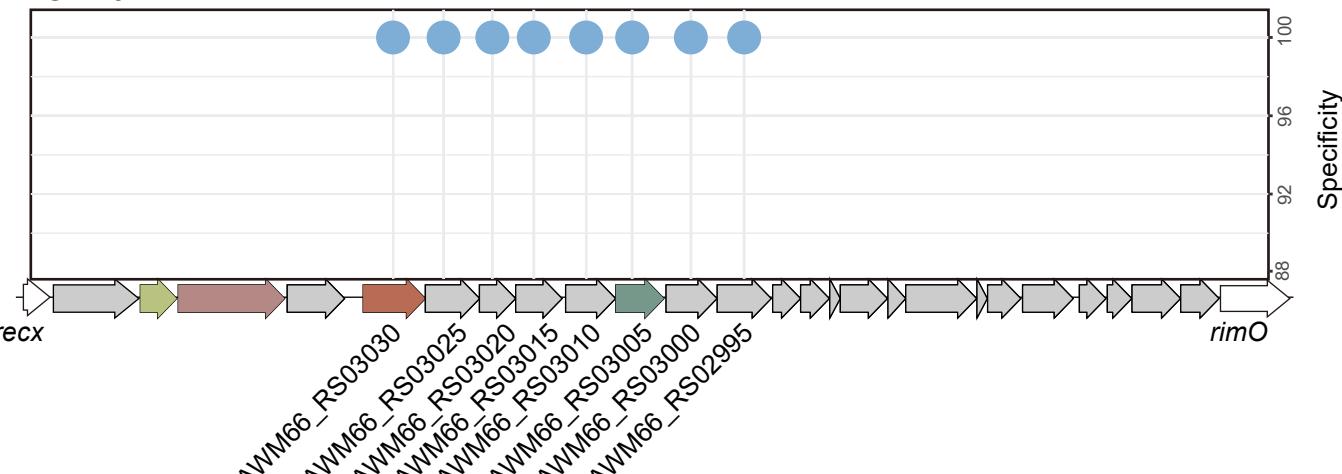

Table 3 Functional prediction of the gene in the O-antigen gene cluster of *R. anatipestifer* (CH-2, serotype 2)

Accession No. of gene	Gene name	Conserved Domains (CDD) Annotation; (E-value)	Similar protein; (GenBank accession No.)	Identities / Positives / Coverage (%)
G148_RS04320	-	COG1086; (0.0)	Capsular polysaccharide biosynthesis protein CapD; (AAS60264.1)	38.37/57.84/75.82
G148_RS04325	wza	COG1596; (2.08e-20)	Capsular polysaccharide export protein; (AFH02820.1)	28.38/48.65/49.08
G148_RS04330	wzc	TIGR01005; (4.07e-47)	Tyrosine protein kinase; (AIG56889.1)	22.73/43.18/85.57
G148_RS04335	-	cd05256; (3.55e-158)	GlcNAc-4-epimerase; (AAZ85711.1)	56.57/71.87/99.38
G148_RS04340	-	cd16377; (6.83e-45)	Four helix bundle protein; (WP_004918279.1)	100.00/100.00/100
G148_RS04345	-	PRK15182; (0.0)	UDP-GalNAc dehydrogenase; (AAS60268.1)	50.82/68.62/96.24
G148_RS04350	wzx	cd13127; (2.33e-90)	O unit flippase Wzx; (ABG81799.1)	33.01/53.11/85.95
G148_RS04355		pfam00535; (1.04e-29)	Glycosyltransferase family 2 protein; (WP_002998031.1)	52.63/72.63/99.30
G148_RS04360	-	TIGR03108; (2.18e-145)	Asparagine synthetase ; (WP_002998029.1)	68.77/85.22/99.50
G148_RS04365	wzy	pfam14897; (0.002)	O-antigen polymerase Wzy; (ACD37078.1)	23.41/45.55/86.40
G148_RS04370		cd03807; (1.50e-46)	Glycosyltransferase; (OJX49487.1)	52.22/71.39/99.72
G148_RS04375		cd03798; (1.06e-32)	Glycosyltransferase; (AGC40177.1)	100.00/100.00/100
G148_RS04380	-	TIGR03108; (5.20e-154)	Putative asparagine synthase; (AAO39701.1)	34.37/54.80/96.50
G148_RS04385		cd03808; (2.57e-119)	Glycosyl transferase family 1; (AAS60267.1)	100.00/100.00/100
G148_RS04390	-	pfam14897; (0.001)	Hypothetical protein; (WP_004918298.1)	100.00/100.00/100
G148_RS04395		pfam02397; (3.63e-91)	UDP-galactose phosphate transferase; (ABK81659.1)	58.00/75.50/99.01
G148_RS04400	-	TIGR03570; (4.94e-72)	Acetyltransferase; (ABK81660.1)	33.84/55.56/92.50
G148_RS04405	-	TIGR04181; (6.11e-163)	Aminotransferase; (ABK81658.1)	51.60/71.12/96.29
G148_RS04410		pfam02397; (1.10e-44)	Sugar transferase; (WP_004918306.1)	100.00/100.00/100



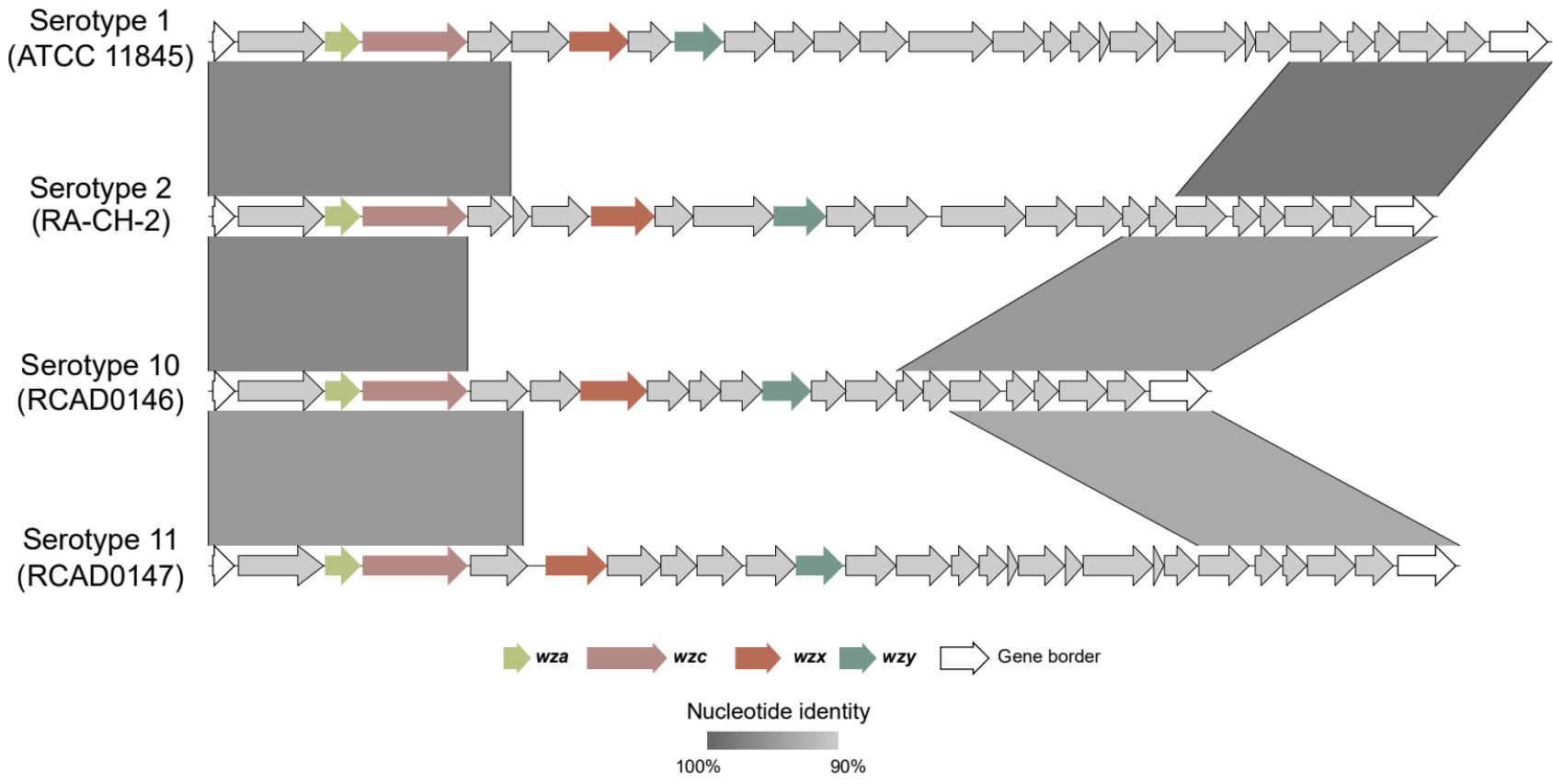
G148_RS04415	<i>rmlC</i>	pfam00908; (9.91e-105)	dTDP-6-deoxy-D-glucose-3,5 epimerase ; (ACA24909.1)	56.57/70.29/96.13
G148_RS04420	<i>rmlB</i>	COG1088; (0.0)	dTDP-Glc 4,6-dehydratase; (AGO01092.1)	56.74/72.47/94.74
G148_RS04425	<i>rmlA</i>	TIGR01207; (0.0)	glucose-1-phosphate thymidyltransferase 1; (AIG62809.1)	69.82/82.46/99.65

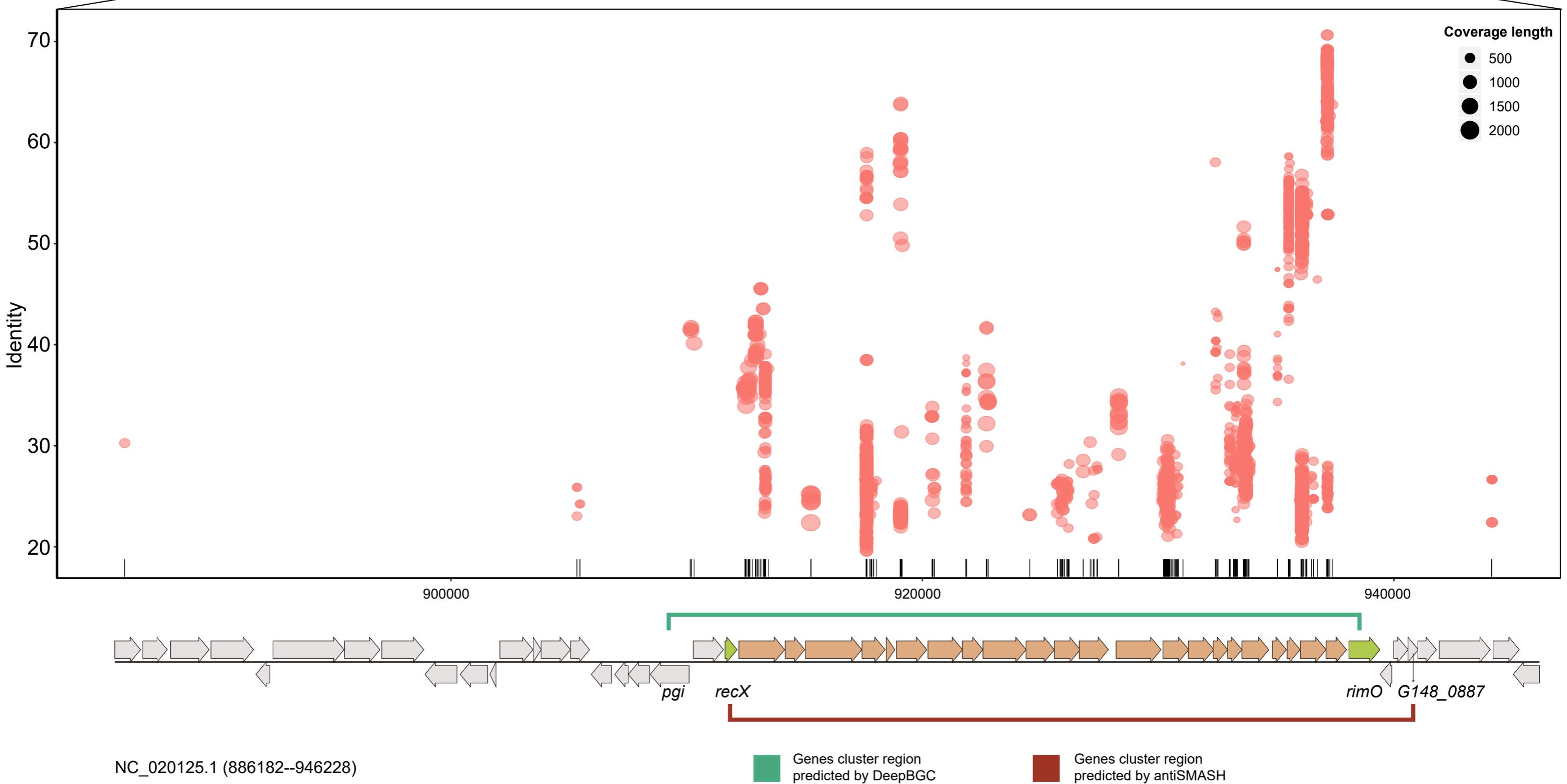
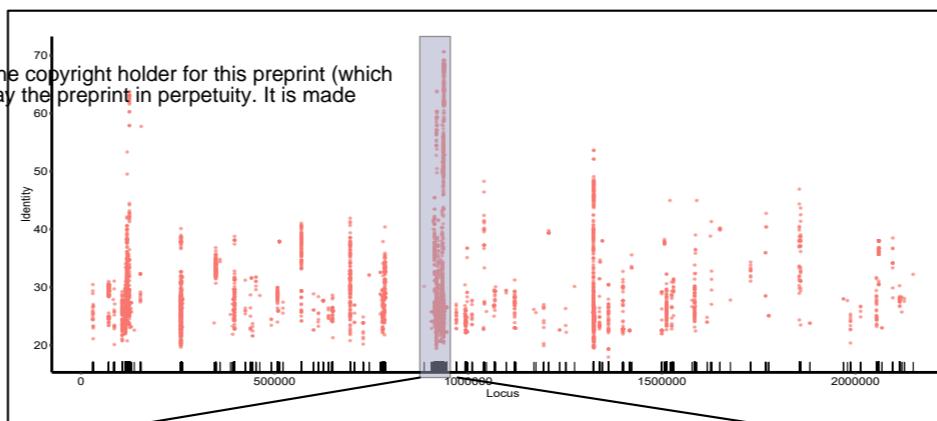

ATCC 11845


RA-CH-2

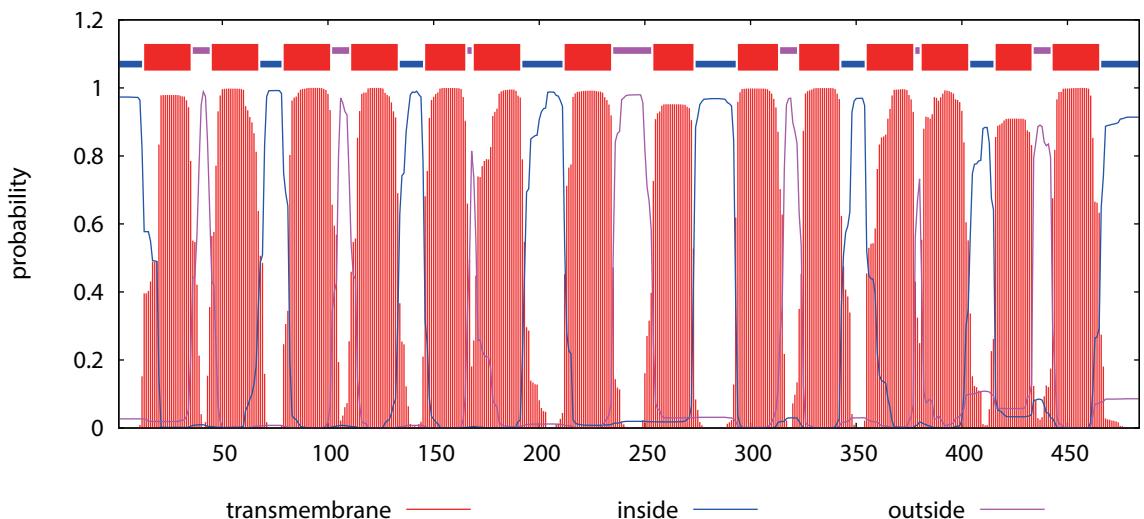
RCAD0146

RCAD0147

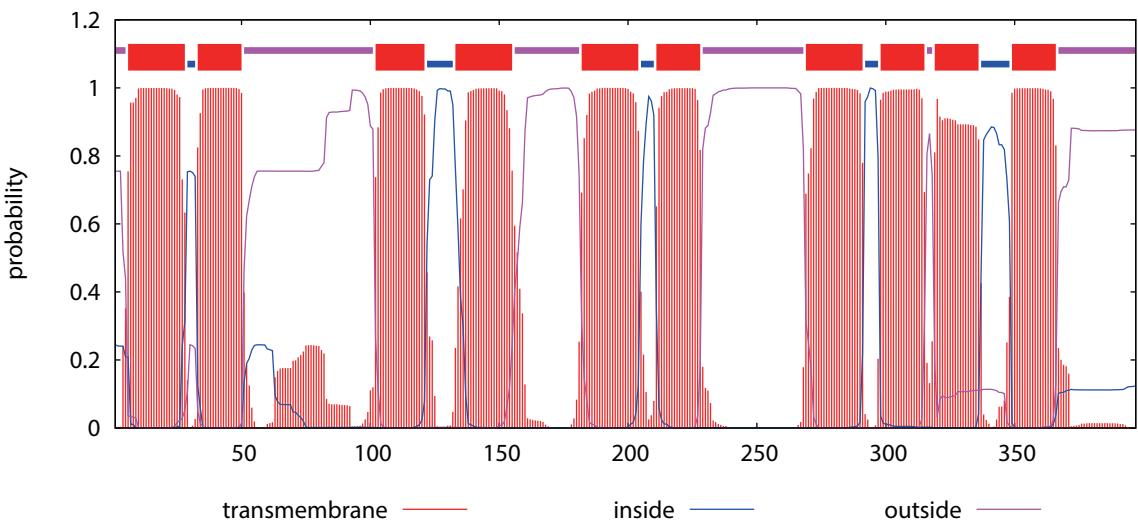

Gene border



wza

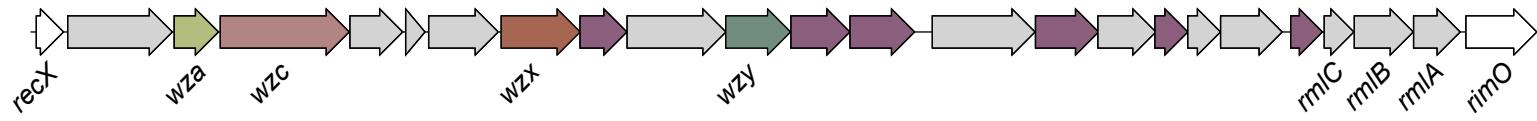
wzc

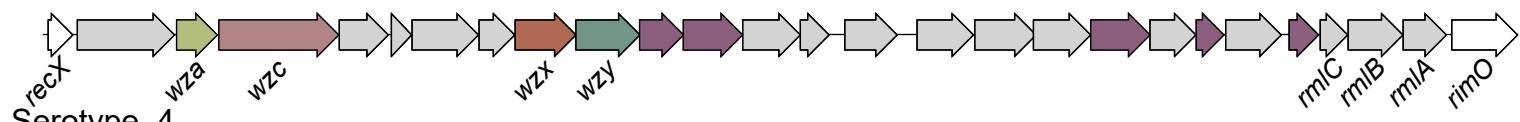

wzx

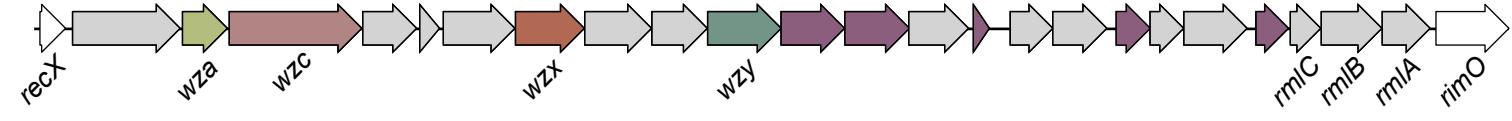
wzy

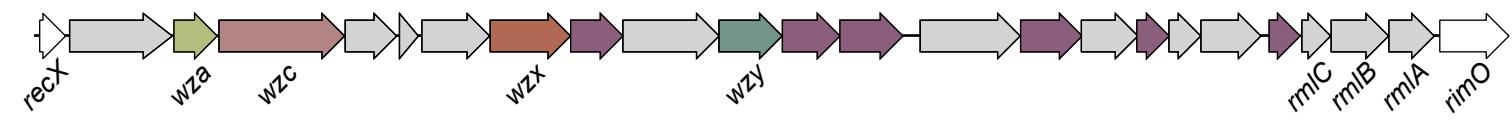


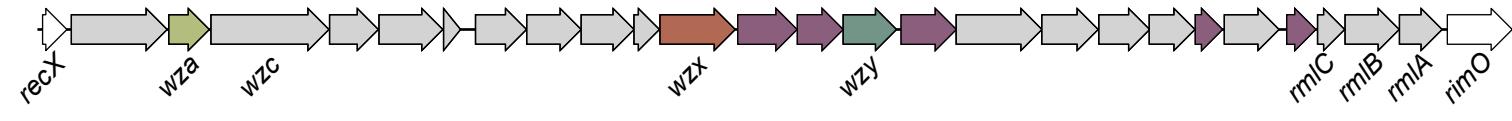
a

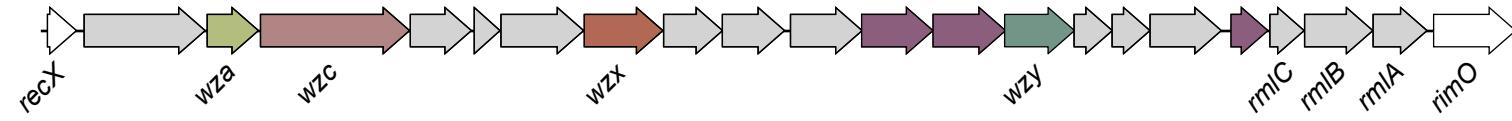

b

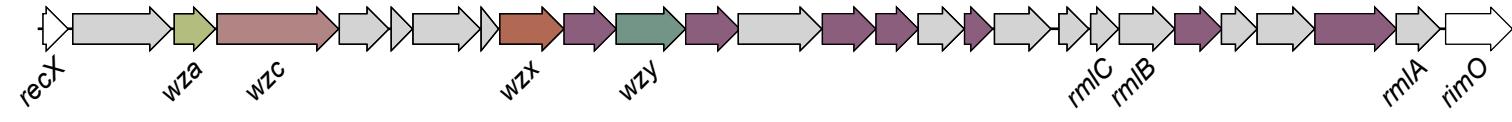

Serotype_1

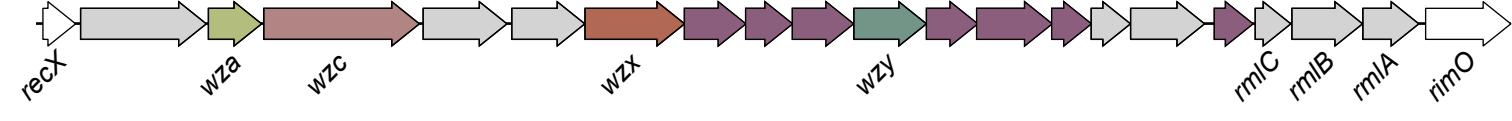

Serotype_2

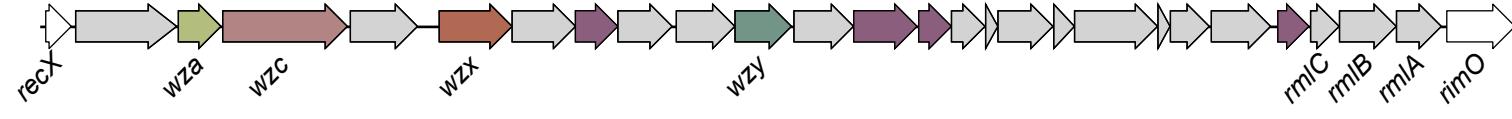

Serotype_3

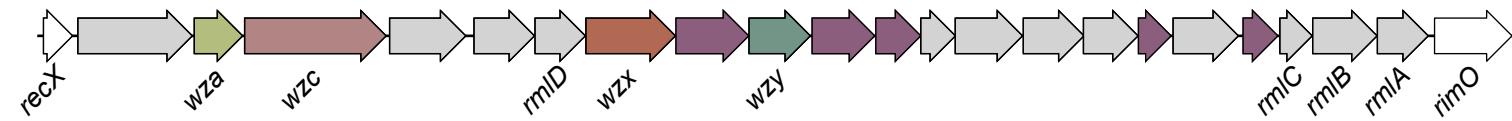

Serotype_4


Serotype_5


Serotype_6


Serotype_7

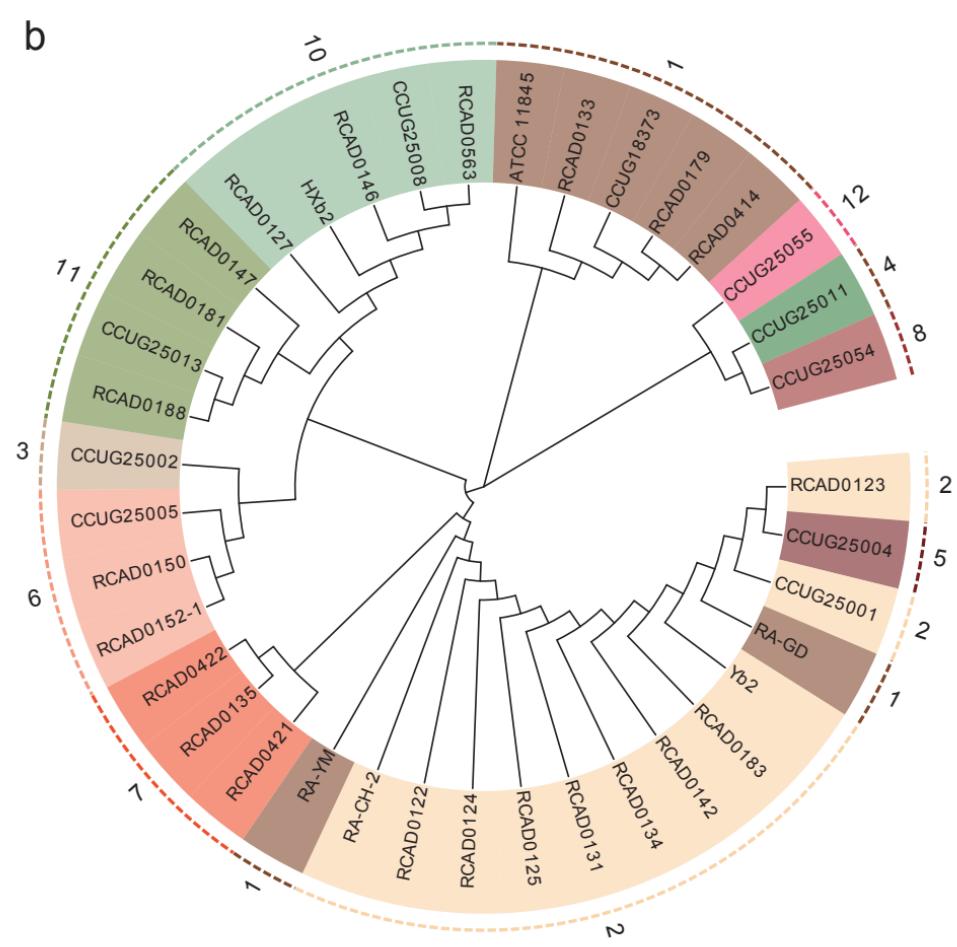
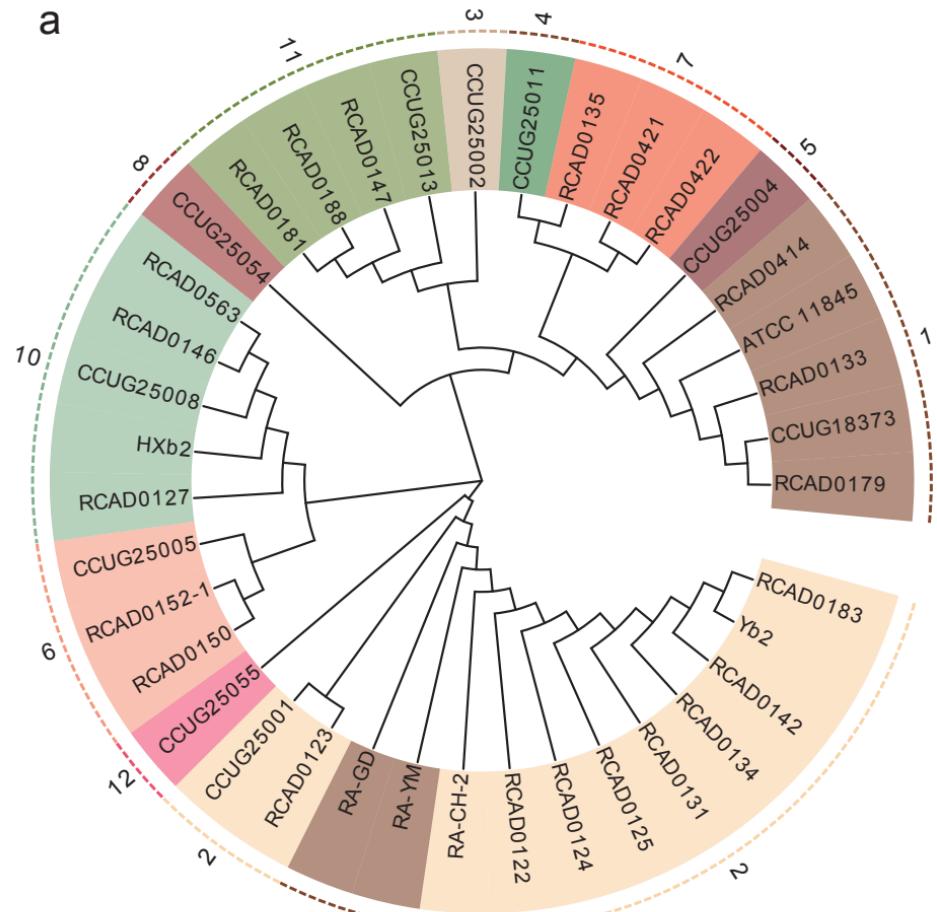

Serotype_8

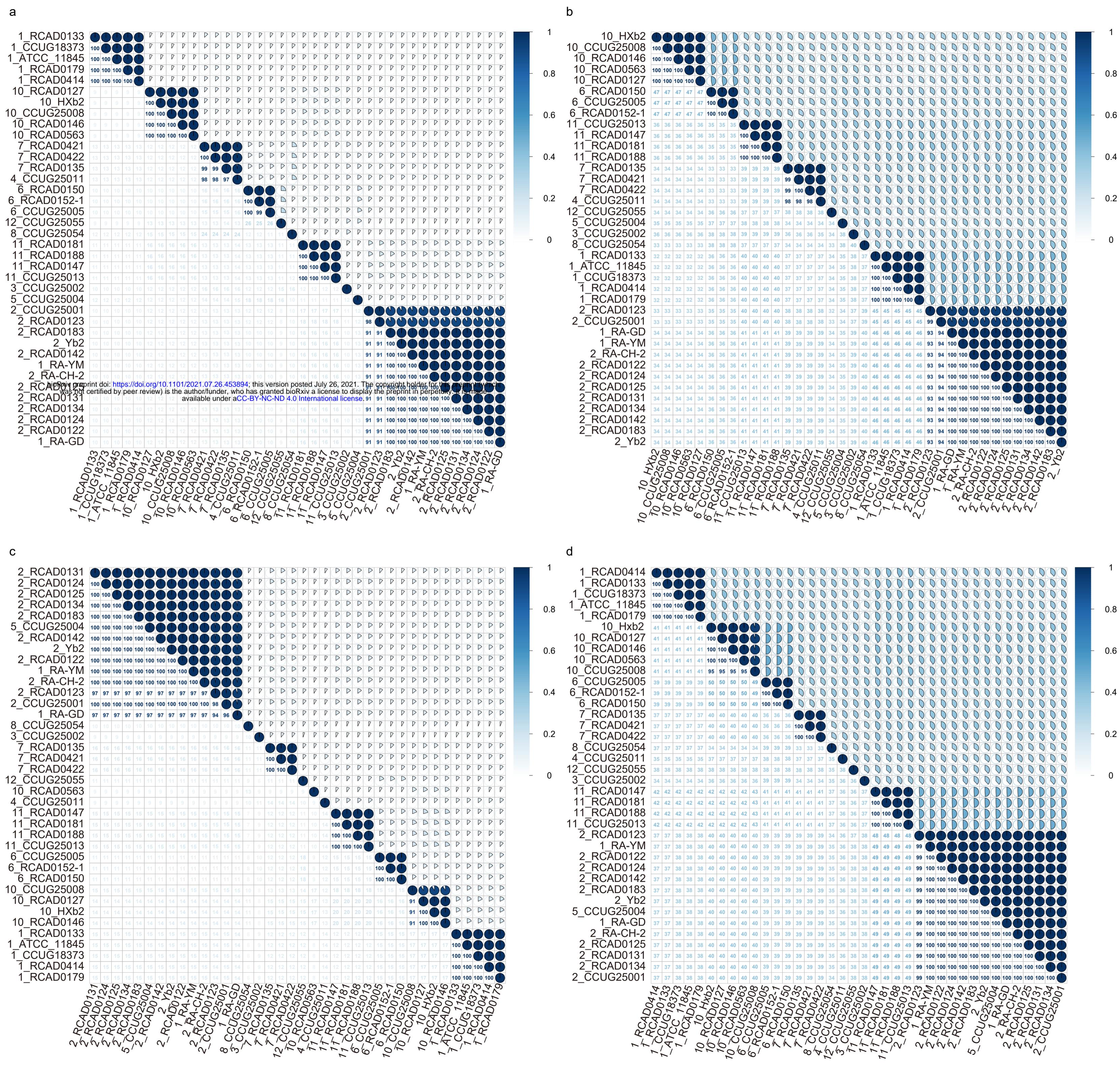

Serotype_10

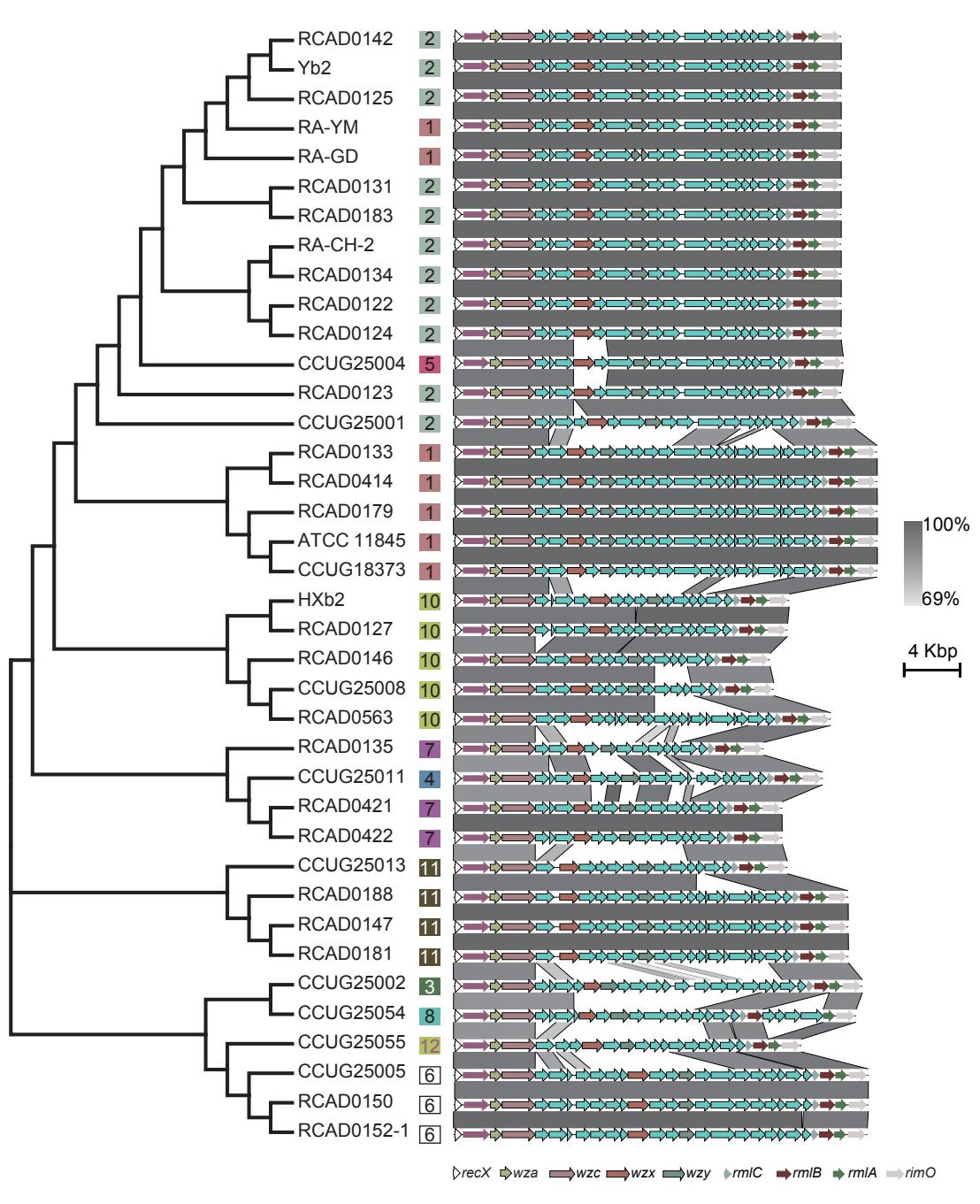
Serotype_11

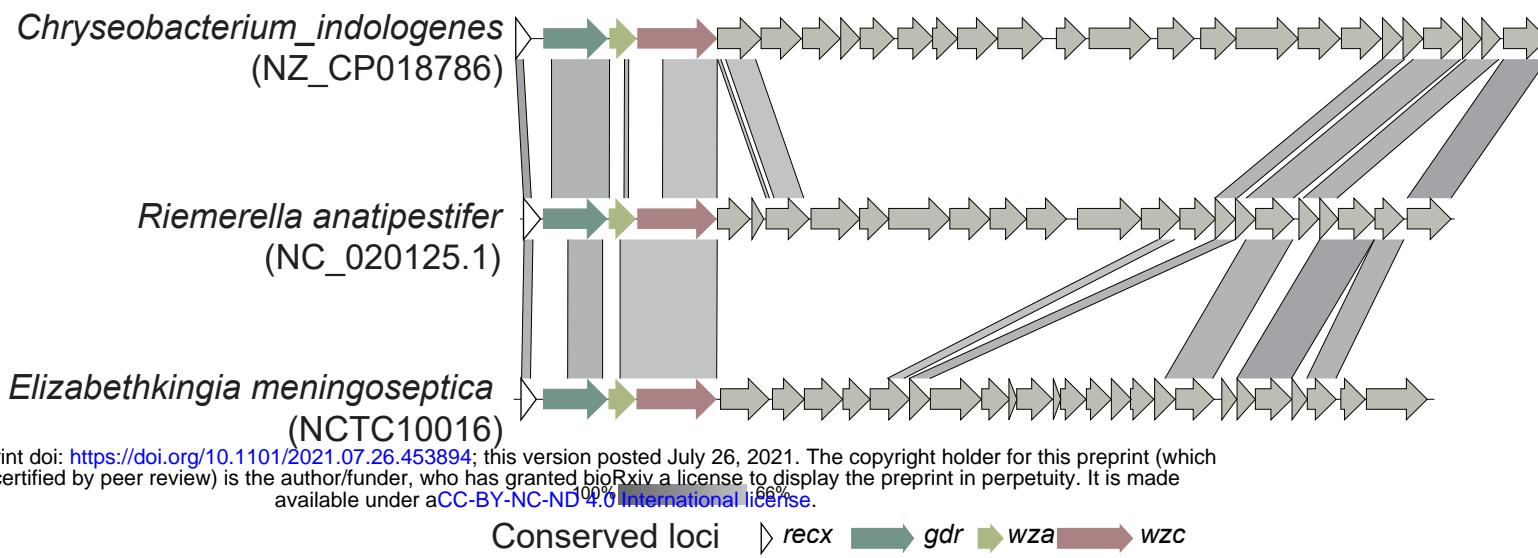
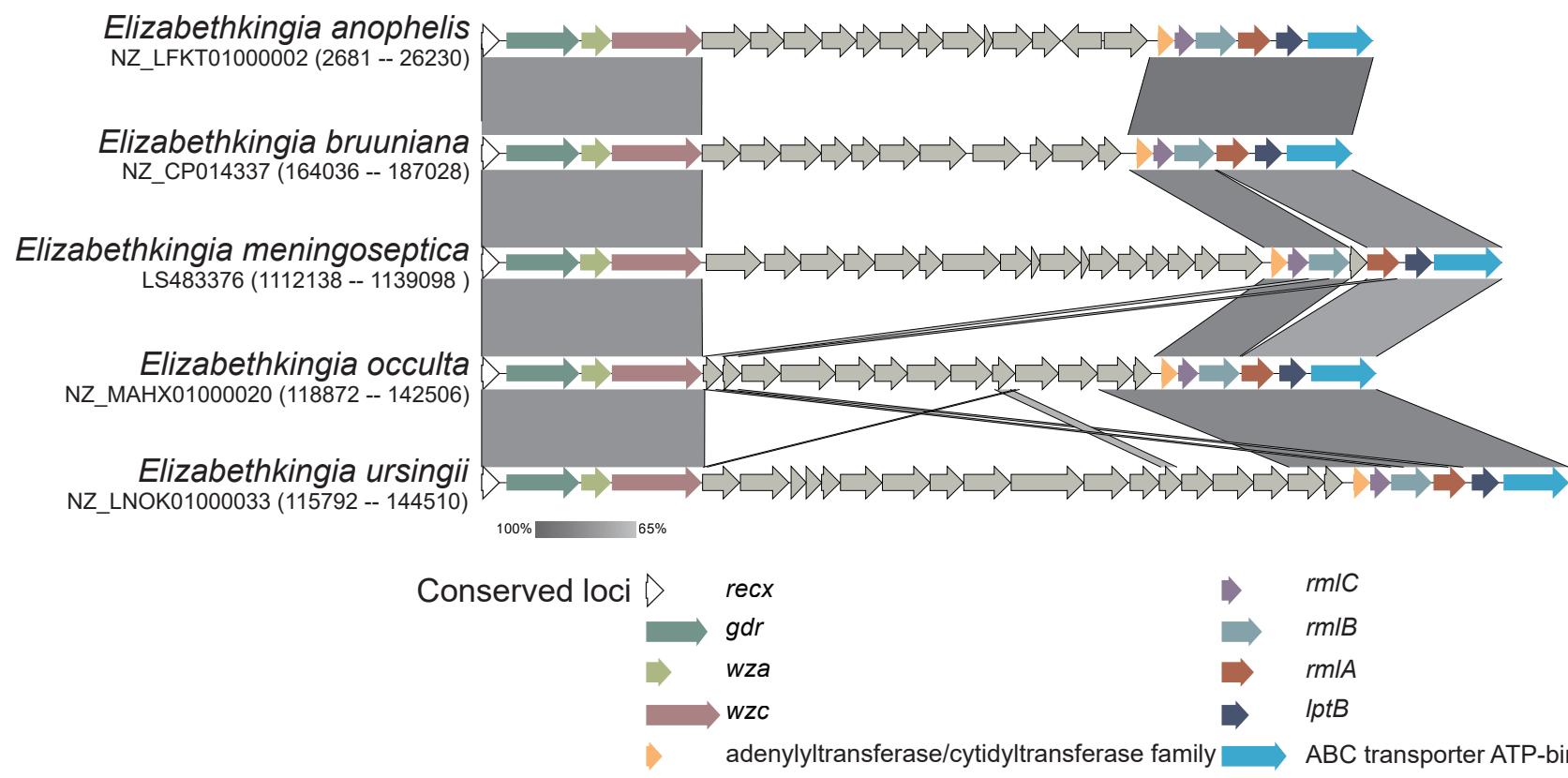
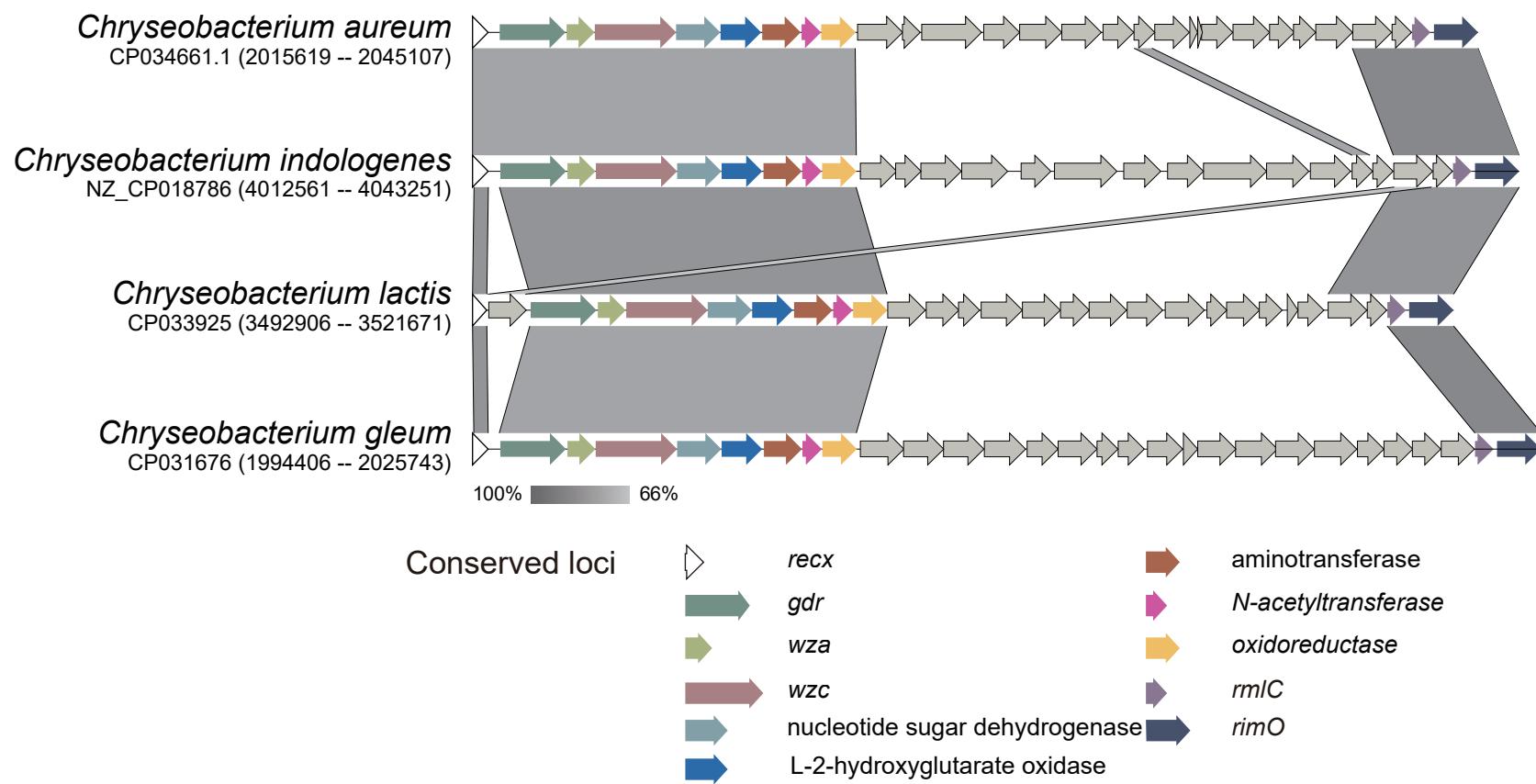
Serotype_12

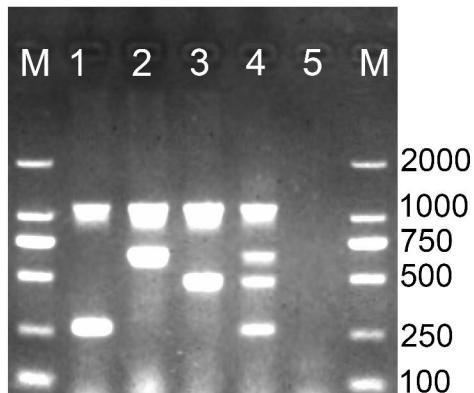
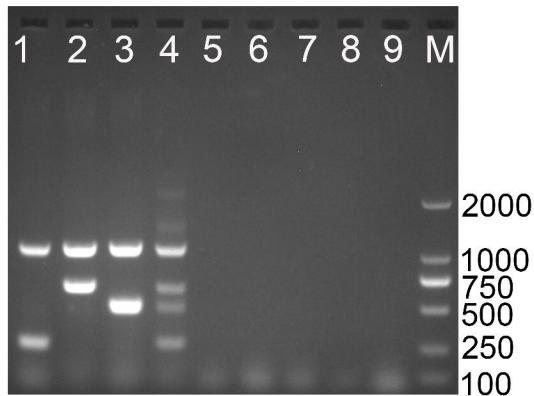
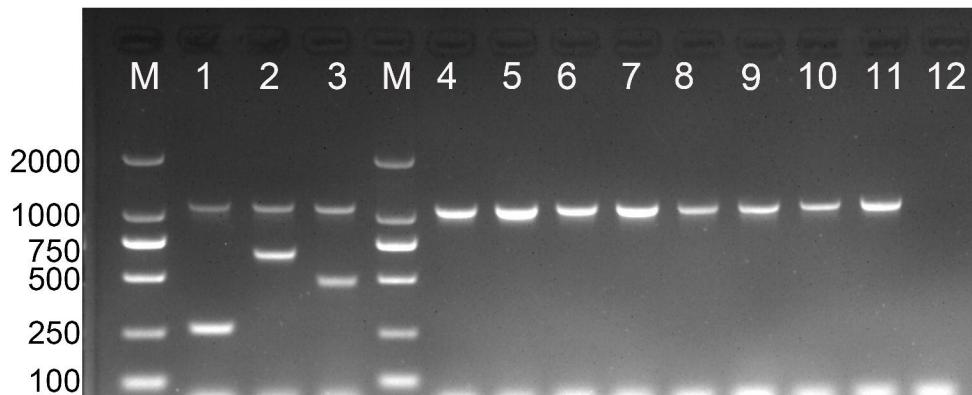
■ **wza**

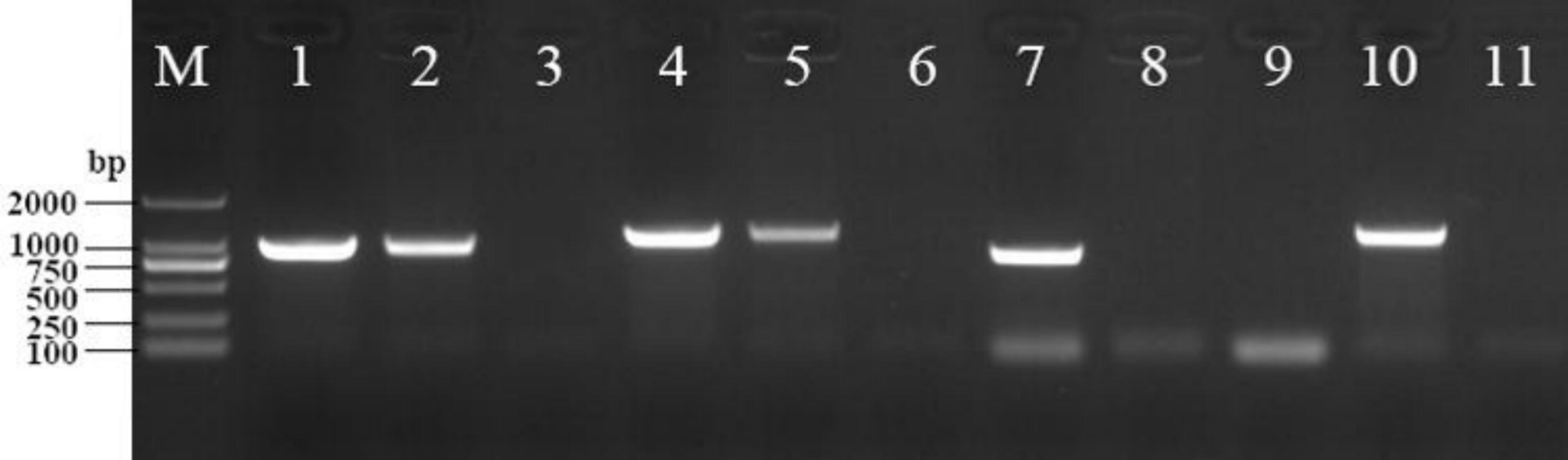


■ **wzy**


■ **wzc**


■ **Glycosyltransferase**




■ **wzx**




■ **Gene border**



a**b****c**

a**b****c**

M

1

2

3

4

5

6

7

8

9

10

11

bp

2000

1000

750

500

250

100

a

b

c

d