

1 Global protein responses of multi-drug resistant plasmid containing *Escherichia coli* to
2 ampicillin, cefotaxime, imipenem and ciprofloxacin.

3 Anatte Margalit¹, James C. Carolan¹, Fiona Walsh^{1*}.

4

5 ¹ Department of Biology, Maynooth University, Co. Kildare, Ireland.

6 *Corresponding author : Dr Fiona Walsh

7

8

9 **Abstract**

10 Antimicrobial resistance (AMR) and multi-drug resistance (MDR) in pathogenic bacteria are
11 frequently mediated by plasmids. However, plasmids do not exist in isolation but rather require
12 the bacterial host interaction in order to produce the AMR phenotype. This study aimed to
13 utilise mass spectrometry-based proteomics to reveal the plasmid and chromosomally derived
14 protein profile of *Escherichia coli* under antimicrobial stress. This was achieved by comparing
15 the proteomes of *E. coli* containing the MDR pEK499 plasmid, under ampicillin, cefotaxime,
16 imipenem or ciprofloxacin stress with the proteomes of these bacteria grown in the absence of
17 antimicrobial. Our analysis identified statistically significant differentially abundant proteins
18 common to groups exposed to the β -lactam antimicrobials but not ciprofloxacin, indicating a
19 β -lactam stress response to exposure from this class of drugs, irrespective of β -lactam
20 resistance or susceptibility. These include ecotin and free methionine-R-sulfoxide reductase.
21 These data also identified distinct differences in the cellular response to each β -lactam. Data
22 arising from comparisons of the proteomes of ciprofloxacin-treated *E. coli* and controls
23 detected an increase in the relative abundance of proteins associated with ribosomes,
24 translation, the TCA-cycle and several proteins associated with detoxification and a decrease
25 in the relative abundances of proteins associated with stress response, including oxidative
26 stress. We identified changes in proteins associated with persister formation in the presence of
27 ciprofloxacin but not the β -lactams. The plasmid proteome differed across each treatment and
28 did not follow the pattern of antimicrobial – AMR protein associations. For example, a relative
29 increase in the amount of blaCTX-M-15 in the presence of cefotaxime and ciprofloxacin but
30 not the other β -lactams, suggesting regulation of the blaCTX-M-15 protein production. The
31 proteomic data from the this study provided novel insights into the proteins produced from the
32 chromosome and plasmid under different antimicrobial stresses. These data also identified
33 novel proteins not previously associated with AMR or antimicrobials responses in pathogens,
34 which may well represent potential targets of AMR inhibition.

35

36 **Introduction**

37 Multi-drug resistance (MDR) plasmids are reducing the effectiveness of our antimicrobial
38 arsenal in a wide range of pathogens globally. The World Health Organisation (WHO)
39 recognised that extended spectrum beta-lactamase (ESBL) *Escherichia coli* are on the critical
40 list of priority pathogens in relation to human health (1). The extended spectrum β -lactamases
41 (ESBLs) are most frequently disseminated within and across pathogen species via horizontal
42 transfer of plasmids. The response of pathogens such as *E. coli* to antimicrobials is most
43 commonly measured via antimicrobial susceptibility testing for phenotypic detection of
44 resistant bacteria followed by genotypic or genomic identification of the resistance
45 mechanisms. The focus of such analysis is to identify the treatment options available and
46 understand the mechanisms of resistance. The pathogen response to the antimicrobial is
47 measured in relation to its classification as resistant or susceptible and the specific resistance
48 gene present e.g. an ESBL is identified via testing the bacterial response to β -lactams and
49 their inhibitors and followed by screens for a variety of ESBL genes. Clinical laboratories
50 and pathogen studies are starting to use whole genome sequencing as a high-throughput
51 method for antimicrobial resistance (AMR) detection. However, as with all organisms, the
52 bacterial genotype does not necessarily directly dictate the phenotype as numerous regulatory
53 mechanisms are also involved.

54

55 Antimicrobial resistance mechanisms are frequently plasmid mediated and many of the
56 plasmids confer resistance to several antimicrobials concurrently. One such pathogen -
57 plasmid combination is the internationally prevalent *E. coli* O25:H4-ST131 containing the
58 plasmid pEK499 (117,536 bp in size). The pEK499 plasmid harbours the 10 antimicrobial
59 resistance genes: *blaCTX-M-15*, *blaOXA-1*, *blaTEM-1*, *aac6'-Ib-cr*, *mph(A)*, *catB4*, *tet(A)*, integron-
60 borne *dfrA7*, *aadA5*, *sull* genes and several hypothetical and conjugation associated genes
61 (2). This plasmid confers resistance to beta-lactams, macrolides, chloramphenicol,
62 tetracycline, trimethoprim, streptomycin, spectinomycin and sulphonamide and reduced
63 susceptibility to ciprofloxacin. In addition, the clonal expansion of *E. coli* with the sequence
64 type 131 has significantly increased the global dissemination of *blaCTX-M-15*.

65

66 We know relatively little about the entire bacterial-plasmid system response of pathogens to
67 antimicrobial stress. Plasmids must interact with the bacterial cell in order to transcribe and
68 translate their DNA into proteins and these proteins must interact with bacterial proteins in
69 order to be exported or illicit change resulting in resistance. Although interactions between

70 the plasmid and the bacterial host clearly exist, the study of plasmid mediated AMR focus
71 mainly on the plasmid mediated genes or phenotypic response of the host pathogen itself.
72 Therefore the identification and characterisation of the pathways or proteins required for the
73 bacteria to produce proteins associated with AMR could provide novel targets to restrict
74 AMR.

75
76 A recent study provided an insight into how proteomics may be used in an unbiased fashion
77 for the detection of AMR in pathogenic bacteria cultured in the absence of antimicrobial (3).
78 The authors followed a workflow that resulted in 98% sensitivity and 100% specificity across
79 seven pathogens and 11 AMR determinants, thus demonstrating the applicability of such
80 proteomic workflows in clinical microbiology. If such a system is implemented then the
81 additional data could prove valuable in understanding the complex plasmid – bacterial host
82 interactions required for the production of the AMR proteins. Few studies currently exist on
83 the proteomic response of pathogens containing AMR plasmids to antimicrobials. These
84 include adaptation of *blaCTX-M-1* containing *E. coli* to cefotaxime (4) and the global response of
85 tetracycline resistant *E. coli* to oxytetracycline (5). We have not identified any publication
86 analysing the proteomic changes of MDR plasmid mediated resistance under different
87 antimicrobial stresses, such as the study presented here.

88
89 Our study aimed to analyse the responses of the clonal *E. coli* ST131 strain, containing
90 pEK499 plasmid under different antimicrobial stresses and compare them with the proteome
91 in the absence of antimicrobial stresses in order to identify common and antimicrobial
92 specific global response of the *E. coli* and plasmid proteomes to antimicrobial stress. The aim
93 was to specifically understand how the plasmid and bacterial host proteins were influenced
94 by the different antimicrobial stresses. By analysing these factors systematically we aimed to
95 identify the pathways and antimicrobial specific responses of the bacteria. Using proteomics
96 we provide an unbiased protein map of a pathogen with a MDR plasmid under antimicrobial
97 stresses.

98

99 **Materials and Methods**

100 **Preparation of *Escherichia coli* proteins for mass spectrometry**

101 The bacterial strain *Escherichia coli* NCTC 13400, containing the MDR conjugative plasmid
102 pEK499, was used in all experiments. The pEK499 plasmid was 117,536 bp in length and
103 belongs to incompatibility group F as represented a fusion of two replicons of types FII and

104 FIA (2). *Escherichia coli* (NCTC 13400) containing the MDR plasmid pEK499 was exposed
105 to antimicrobials for which the bacteria displayed a resistance phenotype (ampicillin 64mg/L,
106 cefotaxime 256 mg/L) and those, which there was no resistance phenotype (imipenem 0.06
107 mg/L, ciprofloxacin 0.06 mg/L) (2). The control comprised the *E. coli* with pEK499 grown
108 without antimicrobial. All strains were grown separately in Luria-Bertani (LB) at 37 °C with
109 shaking at 200 rpm. All experiments were performed in biological triplicates. Cells were
110 harvested by centrifugation at 3000 rpm for 15 minutes. The cell pellet was resuspended in
111 ammonium bicarbonate (1 ml, 50 Mm, pH 7.8) and sonicated on ice in 10 second bursts five
112 times. The lysate was subjected to centrifugation at 13,000 rpm to collect the cellular debris.
113 The supernatant was quantified using the Qubit™ quantification system (Invitrogen), following
114 the manufacturer's instructions. The protein sample was reduced by adding 5 µl 0.2 M
115 dithiothreitol (DTT) and incubated at 95°C for 10 minutes, followed by alkylation with 0.55 M
116 iodoacetamide (4 µl) at room temperature, in the dark for 45 minutes. Alkylation was stopped
117 by adding DTT (20 µl, 0.2 M) and incubation for 45 minutes at 25 °C. Sequence Grade Trypsin
118 (Promega) (0.5 µg/µl) was added to the proteins and incubated at 37°C for 18 hours. The
119 digested protein sample was brought to dryness using a Speedyvac concentrator (Thermo
120 Scientific Savant DNA120). Samples were purified for mass spectrometry using C18 Spin
121 Columns (Pierce), following the manufacturer's instructions. The eluted peptides were dried in
122 a SpeedyVac concentrator (Thermo Scientific Savant DNA120) and resuspended in 2% v/v
123 acetonitrile and 0.05% v/v Trifluoroacetic acid (TFA) to give a final peptide concentration of
124 1 µg/µl. The samples were sonicated for five minutes to aid peptide resuspension, followed by
125 centrifugation for five minutes at 13,000 rpm. The supernatant was removed and used for mass
126 spectrometry. Three independent biological replicates for each group were analysed.
127

128 **Mass Spectrometry: LC/MS Xcalibur Instrument parameters for proteomic data
129 acquisition**

130 Digested proteins (1 µg) isolated from the replicates for each *E. coli* sample were loaded onto
131 a QExactive (ThermoFisher Scientific) high-resolution accurate mass spectrometer connected
132 to a Dionex Ultimate 3000 (RSCLnano) chromatography system. Peptides were separated by
133 an increasing acetonitrile gradient on a 50 cm EASY-Spray PepMap C18 column with 75 µm
134 diameter (2 µm particle size), using a 180 minute reverse phase gradient at a flow rate of 300
135 nL/mi⁻¹. All data were acquired over 141 minutes, with the mass spectrometer operating in
136 an automatic dependent switching mode. A full MS scan at 140,000 resolution and a range of

137 300 – 1700 m/z , was followed by an MS/MS scan at 17,500 resolution, with a range of 200-
138 2000 m/z to select the 15 most intense ions prior to MS/MS.

139

140 Quantitative analysis (protein quantification and LFQ normalization of the MS/MS data) of
141 the *E. coli* proteome arising from exposure to the different antimicrobials, was performed
142 using MaxQuant version 1.6.3.3 (<http://www.maxquant.org>) following the general procedures
143 and settings outlined in Hubner et al., 2010 (6). The Andromeda search algorithm
144 incorporated in the MaxQuant software was used to correlate MS/MS data against the
145 Uniprot-SWISS-PROT database for *E. coli* K12 (4319 entries) and the *E. coli* strain plasmid
146 pEK499 (141 entries). The following search parameters were used: first search peptide
147 tolerance of 20 ppm, second search peptide tolerance 4.5 ppm with cysteine
148 carbamidomethylation as a fixed modification and N-acetylation of protein and oxidation of
149 methionine as variable modifications and a maximum of two missed cleavage sites allowed.
150 False discovery rate (FDR) was set to 1 % for both peptides and proteins, and the FDR was
151 estimated following searches against a target-decoy database. Peptides with a minimum
152 length of seven amino acid length were considered for identification and proteins were only
153 considered identified when observed in three replicates of one sample group.

154

155 **Data Analysis of the proteome**

156 Perseus v.1.5.5.3 (www.maxquant.org/) was used for data analysis, processing and
157 visualisation. Normalised LFQ intensity values were used as the quantitative measurement of
158 protein abundance for subsequent analysis. The data matrix was first filtered for the removal
159 of contaminants and peptides identified by site. LFQ intensity values were \log_2 transformed
160 and each sample was assigned to its corresponding group. Proteins not found in all three
161 replicates in at least one group were omitted from the analysis. A data-imputation step was
162 conducted to replace missing values with values that simulate signals of low abundant proteins
163 chosen randomly from a distribution specified by a downshift of 1.8 times the mean standard
164 deviation (SD) of all measured values and a width of 0.3 times this SD.

165

166 Normalised intensity values were used for a principal component analysis (PCA). Exclusively
167 expressed proteins (those that were uniquely expressed or completely absent in one group)
168 were identified from the pre-imputation dataset (Supplemental dataset 1) and included in
169 subsequent post-imputation analyses (Supplemental dataset 2). To visualise differences
170 between two samples, pairwise Student's t-tests were performed for all using a cut-off of

171 p<0.05 on the post-imputed dataset. Volcano plots were generated in Perseus by plotting
172 negative log p-values on the y-axis and \log_2 fold-change values on the x-axis for each pairwise
173 comparison. The ‘categories’ function in Perseus was utilized to highlight and visualise the
174 distribution of various pathways and processes on selected volcano plots. Statistically
175 significant (ANOVA, p<0.05) proteins were chosen for further analysis. Gene ontology (GO)
176 mapping was also performed in Perseus using the UniProt gene ID for all identified proteins to
177 query the Perseus annotation file (downloaded September 2018) and extract terms for gene
178 ontology biological process (GOBP), gene ontology cellular component (GOCC), gene
179 ontology molecular function (GOMF) and Kyoto Encyclopedia of Genes and Genomes
180 (KEGG) name. Enrichment analysis was performed in Search Tool for the Retrieval of
181 Interacting Genes/Proteins (STRING), using a high confidence setting (0.700), and hiding
182 disconnected nodes in the network. Statistically significant protein names arising from pairwise
183 t-tests were inputted into the STRING database to identify interactions occurring between
184 proteins that were increased or decreased in relative abundance between a treatment and the
185 control. The MS proteomics data and MaxQuant search output files have been deposited to the
186 ProteomeXchange Consortium (7) via the PRIDE partner repository with the dataset identifier
187 PXD027164.

188

189 **Results**

190 Label free quantitative (LFQ) proteomics was employed to investigate the proteomic response
191 of *E. coli* pEK499 when exposed to different antimicrobials. The pEK499 plasmid confers
192 resistance to ampicillin and cefotaxime, both of which were added to the bacterial culture above
193 the break-point (the concentration of antimicrobial used to define whether an infection by the
194 pathogenic species is likely to be treatable in a patient). This strain is susceptible to imipenem
195 and ciprofloxacin and was exposed to these antibiotics at sub-minimum inhibitory
196 concentration (MIC) levels (2). In total, 1586 proteins were initially identified, of which 945
197 (16 of which were of plasmid origin; Supplemental dataset 7) remained after filtering and
198 processing (Supplemental dataset 2). The PCA performed on all filtered proteins, resolved only
199 the ciprofloxacin treated *E. coli* and separated those samples from all other samples along
200 component 1 (Fig. 1). Principle components 1 and 2 accounted for 40.6 % of the total variance
201 within the data. The samples obtained from bacteria exposed to cell wall biosynthesis inhibitors
202 ampicillin, cefotaxime and imipenem grouped close to the control, thereby indicating fewer
203 changes to the proteome in bacteria exposed to this group of antimicrobials compared to the
204 control relative to the replicates exposed to ciprofloxacin. The ciprofloxacin exposed samples

205 were furthest from the control, indicating a significant change to the protein profile in this
206 group compared to the control.

207
208 Volcano plots were produced by pairwise Student's t-tests ($p < 0.05$) on the post-imputed
209 dataset to determine differences in protein abundance between two groups (Fig. 2A-D).
210 Statistically significant differentially abundant (SSDA) proteins arising from pairwise t-tests
211 were determined between the groups and included 95 for ampicillin vs control, 145 for
212 cefotaxime vs control, 89 for imipenem vs control and 208 ciprofloxacin vs control
213 (Supplemental dataset 3-6). The 20 most differentially abundant proteins between each group
214 are highlighted and labelled on the volcano plots (Fig. 2A-D).

215
216 The proteomic data arising from pairwise t-tests revealed an increase in the relative abundance
217 of several proteins common to groups exposed to ampicillin, cefotaxime and imipenem
218 compared with the control (Supplemental datasets 3 – 6). Among these were stress-related
219 proteins including ecotin (Eco), and methionine-R-sulfoxide reductase (MsrC). Compared to
220 the controls, a statistical difference in the relative abundances of two beta-lactamases blaCTX-
221 M-15 and blaTEM-1 was detected in the cefotaxime and imipenem-exposed groups,
222 respectively, but not ampicillin-exposed bacteria. Additionally, the relative abundance of
223 proteins involved with detoxification were increased in bacteria treated with these cell-wall
224 inhibitors, including superoxide dismutase SodA (ampicillin- and cefotaxime-treated),
225 peroxiredoxin OsmC, glutaredoxin 3 (GrxC) and 4 (GrxD) (cefotaxime-treated), hydrogen
226 peroxide-inducible genes activator (OxyR) (imipenem treated) and thiosulfate sulfurtransferase
227 PspE (cefotaxime- and imipenem-treated) (8 - 11). Cold shock proteins (CspE and CspA in
228 cefotaxime treated and CspE in imipenem-treated groups) were detected at higher levels in
229 these groups compared to the controls and ampicillin-treated bacteria.

230
231 Differential changes in the abundance of cell wall biosynthesis proteins were detected in each
232 group exposed to cell-wall inhibitors including β -hexosaminidase NagZ (ampicillin- and
233 cefotaxime-treated), cell division coordinator CpoB (cefotaxime and imipenem-treated), UDP-
234 N-acetylmuramoylalanine--D-glutamate ligase MurD (imipenem-treated) and peptidoglycan-
235 associated lipoprotein Pal (ampicillin-treated). Alanine racemase (DadX) was detected at lower
236 levels in cefotaxime-treated cells compared to the other groups and the control. There were
237 changes in the relative abundance of proteins involved in cell division processes amongst all
238 groups treated with cell wall inhibitors compared to the control. These included increases in

239 the cell division protein FtsZ observed in the cefotaxime- and imipenem-treated groups (1.50-
240 fold increase and 1.16-fold increase, respectively). However, the negative modulator of
241 initiation of replication SeqA was increased in the ampicillin-treated samples (1.61-fold).

242

243 The categories of proteins with decreased relative abundances, were quite dissimilar between
244 the groups treated with cell wall inhibitors. For example, in the ampicillin-treated groups,
245 proteins with the greatest decrease in relative abundance were associated with the uptake of
246 foreign DNA and DNA processing (Relaxosome protein TraM; 8.61-fold decrease, YidB; 3.73-
247 fold decrease, Mrr restriction system protein; 2.88-fold decrease) and in addition, macrolide
248 resistance MphA (2.38-fold decrease). In the cefotaxime-treated groups, proteins with the
249 greatest decrease in relative abundance were associated with amino acid metabolism. These
250 included succinylornithine transaminase AstC (10-fold decrease) and polyamine
251 aminopropyltransferase SpeE (4.74-fold decrease). In the imipenem-treated group, flagellin
252 FliC protein was the most decreased in abundance (21.92-fold decrease), although proteins
253 involved in amino acid metabolism were also decreased in abundance (succinylornithine
254 transaminase AstC; 9.43-fold decrease, bifunctional protein PaaZ; 5.84-fold decrease). The
255 outer membrane protein Slp was also reduced in the imipenem treated samples relative to the
256 control.

257

258 Enrichment analysis of statistically significant proteins using STRING, identified differences
259 in the protein pathways between antibiotic-treated groups and the controls, and provided
260 insights into the protein-protein interactions that may be occurring within the groups. Analysis
261 of the ampicillin-treated group and the control using STRING revealed a decrease in the
262 relative abundance of several proteins associated with the ribosome and translation
263 (Supplemental fig. 1B). In contrast, there was an increase in the relative abundance of proteins
264 associated with these pathways in the cefotaxime-treated group (Supplemental fig. 2A), and
265 interestingly, a decrease in the relative abundance of proteins involved in amino acid
266 metabolism (Supplemental fig. 2B). Compared to the control, the relative abundance of
267 proteins involved with carbohydrate metabolism was decreased in the cefotaxime-and
268 imipenem-treated groups (Supplemental fig. 2B and 3B). Specifically, the levels of proteins
269 involved in the glycolytic pathway were reduced in the imipenem-treated groups
270 (Supplemental fig. 3B).

271

272

273
274 Pairwise t-tests of the proteomic data arising from ciprofloxacin-treated *E. coli* and controls
275 detected an increase in the relative abundance of proteins associated with ribosomes,
276 translation, the TCA-cycle and several proteins associated with detoxification. A decrease in
277 the relative abundance of proteins involved with glutathione metabolism and detoxification
278 was also identified in the data set (Supplemental dataset 6), including acid stress chaperone
279 HdeB (-6.04), periplasmic AppA protein (-5.63), peroxiredoxin OsmC (-5.20) and superoxide
280 dismutase (-1.40). HdeB and OsmC are involved in the acid stress response in *E. coli*.
281 Compared to the control, there was an increase in the relative abundance of several cold shock
282 proteins (CspA, CspC, CspD and CspE). There was a general increase in the relative abundance
283 of proteins associated with amino acid metabolism. Similar to the ampicillin-treated cells, the
284 relative abundance of the relaxosome protein TraM, was decreased (6.62-fold decrease). The
285 top three most differentially abundant proteins in this group were the plasmid mediated β -
286 lactamase (blaCTX-M-15, 11.63-fold increase), ATP-dependent RNA helicase DeaD (11-fold
287 increase) and YjiM, an uncharacterised protein (6.87-fold increase). The top three proteins with
288 the greatest decrease in relative abundance included superoxide dismutase SodC (64.79-fold
289 decrease), molybdate-binding periplasmic protein ModA (64.08-fold decrease) and
290 lysine/arginine/ornithine-binding periplasmic protein ArgT (10.49-fold decrease). STRING
291 analysis of the statistically significant protein set arising from comparisons between the
292 ciprofloxacin-treated cells and the controls, highlighted the reduced levels of proteins
293 associated with a stress response (Supplemental fig. 4B), and a distinct increase in the relative
294 abundance of proteins associated with the translation and the ribosome, the Tricarboxylic acid
295 (TCA) cycle and glycine, serine and threonine metabolism in the ciprofloxacin-treated group
296 compared to the control (Supplemental fig. 4A).
297

298 Variations across the pEK499 plasmid proteomes

299 The proteomes of the plasmids under antibiotic stress were analysed in a similar manner to the
300 entire proteome, by comparison with the control proteome. The initial analysis was to identify
301 the proteins detected with genetic origins to the plasmid. Post-imputation analysis revealed
302 several changes in the relative abundance of proteins originating from the plasmid (Table 2).
303 Only the addition of cefotaxime was associated with an increase in the protein of the
304 corresponding resistance mechanism (blaCTX-M-15). Ampicillin and ciprofloxacin did not
305 result in the increased protein abundances of any β -lactamases or the Aac(6')Ib-cr protein
306 associated with reduced susceptibility to fluoroquinolones. However, these proteins were

307 present in the control and thus it appears that this demonstrates that there is no additional
308 regulation of their protein production in the presence of these antimicrobials. There were no
309 carbapenemases present on the plasmid.

310

311 In the presence of ampicillin or ciprofloxacin there was an absence of the protein TraM. TraM
312 is a mating signal, which is used in combination with the integration host factor to bind the
313 *oriT* and prepare the plasmid for transfer. TraM is controlled by an independent promoter to
314 the remainder of the conjugation machinery. Some of the repression systems of TraM include
315 the H-NS repression or the Hfq binding of mRNA transcripts of *trAM* or by GroEL chaperone
316 proteins that directly activate proteolysis. The relative abundances of these proteins were not
317 increased in the ampicillin or ciprofloxacin treated *E. coli*. Thus, the lack of TraM was not as
318 a direct result of known repression proteins. The proteins with increased abundance under
319 ampicillin or ciprofloxacin stress relative to the control but absent or with reduced abundance
320 under cefotaxime and imipenem stress comprised 13 proteins (RimO, RfbB, MetK, GalM,
321 RplD, NagZ, RplC, GreA, Apt, SeqA, FumA, SucB and TufB).

322

323 The relative increase in the amount of blaCTX-M-15 in the presence of cefotaxime and
324 ciprofloxacin suggest that the production of this protein is regulated, but not only by the direct
325 presence of the cephalosporin alone as ciprofloxacin is a fluoroquinolone. On analysis of the
326 common proteins with increased or decreased abundance across both datasets, no specific
327 protein or pathways were identifiable as potential control systems. The proteins produced in
328 the increased abundances in cefotaxime and ciprofloxacin treated samples within the common
329 proteins across these samples were YjiM (uncharacterised protein), CspA and CspE (cold
330 shock proteins), DeaD (ATP-dependent RNA helicase) and LsrF (terminal protein in the
331 quorum sensing signal autoinducer-2 processing pathway). YjiM and CspE were also identified
332 in increased abundance in the imipenem treated samples. How the other proteins interact with
333 the plasmid and specifically the blaCTX-M-15 protein production remains to be determined
334 and requires further investigation. The CspA and DeaD proteins are both stress response
335 proteins, but the link to LsrF is unknown. LsrF is produced in the response to the quorum
336 sensing autoinducer AI-2 signal and is thought to promote AI-2 degradation or feedback control
337 to the Lsr operon but has not been associated with antimicrobial resistance (12). The proteins
338 with reduced abundances relative to the control include SpeE (Polyamine
339 aminopropyltransferase), AraA (L-arabinose isomerase), DkgA (2,5-diketo-D-gluconic acid

340 reductase A) and MtlD (Mannitol-1-phosphate 5-dehydrogenase). There was no commonality
341 was identified between these proteins.

342
343 blaTEM-1 protein was increased relative to the control in the presence of imipenem or
344 ciprofloxacin but not ampicillin or cefotaxime. This was unexpected as it is a beta-lactamase
345 enzyme and as such if it's production is controlled we would expect that all β -lactams induce
346 the β -lactamase. It also indicates a regulation of β -lactamase protein production under different
347 antimicrobial stress. The proteins increased in abundance that were unique to the imipenem
348 and ciprofloxacin treated samples were RcsB, ClpX, and GcvP. Of these, RcsB is associated
349 with response to acid stress and ClpX is involved in response to stress. The only common
350 proteins decreased in the largest abundances across ciprofloxacin and imipenem treated
351 samples was YciF, a protein of unknown function.

352
353 **Discussion**
354 In this study, quantitative and qualitative proteomics was employed to provide novel insights
355 into the response of plasmid mediated multidrug resistance in *E. coli* to different antimicrobials.
356 While antimicrobials have specific targets on which they exert their mechanism of action, the
357 response of bacteria to these drugs is not limited to the target sites alone (13, 14). Proteomic
358 analysis revealed similarities in the proteome of bacteria in response to antimicrobial-induced
359 stress despite differences in the types of antimicrobials to which they were exposed. Moreover
360 the data presented here highlights the significance of the chromosome-mediated response to
361 antibiotic-induced stress coupled with the resistance mechanism response of the bacteria.

362
363 There is limited data on the proteomes of plasmids and their associated bacterial hosts and none
364 that investigate multiple antimicrobial responses in the same pathogen. One study investigated
365 the impact of blaCTX-M-1 *E. coli* to cefotaxime at low and high concentrations and identified
366 that Tra-proteins (including TraM) were significantly upregulated in the presence of high levels
367 (126 mg/L) of cefotaxime but there was no differences at low levels of cefotaxime (0.016 mg/L)
368 (4). Our results do not concur with these findings as we did not identify any significant
369 difference between the cefotaxime treated and the control protein abundances for TraM or the
370 other conjugal plasmid transfer proteins. This study also identified an increase in blaCTX-M-
371 1, PilS and a HEAT domain protein when exposed to 128 mg/L cefotaxime. Our results concur
372 with the increase in blaCTX-M but not the other proteins. However, our results were using an
373 even higher cefotaxime concentration (256 mg/L) and contained blaCTX-M-15 rather than

374 blaCTX-M-1 and a MDR plasmid rather than a single AMR containing plasmid, so this may
375 have influenced for the variation in proteomes. In addition Møller et al., (2017) suggest that
376 the upregulation of the *tra* genes in the presence of cefotaxime was dependent on the presence
377 of blaCTX-M-1 (4). Thus, the difference between blaCTX-M-1 and blaCTX-M-15 may be the
378 reason for the variation. Our study also identified other proteins of potential interest in response
379 to antimicrobial treatment that may aid in the understanding of the control or production of the
380 AMR proteins from the plasmid. A study of carbapenemase producing *E. coli* under
381 carbapenem stress identified increased abundance in GroES in *E. coli* containing blaIMP or
382 blaKPC or blaNDM (in increasing order of abundance) (14). Our study also identified
383 increased GroES in the presence of imipenem, but not the other β -lactams. However, pEK499
384 does not contain any carbapenemase and is imipenem susceptible. Thus, we suggest that this
385 is a carbapenem induced response rather than a resistance response, which may be increased
386 by carbapenemase degraded carbapenem as well as whole carbapenem.

387

388 Our analysis identified several statistically significant differentially abundant (SSDA) proteins
389 common to groups exposed to the β -lactam antimicrobials but not ciprofloxacin, indicating a
390 β -lactam stress response to exposure from this class of drugs, irrespective of resistance or
391 susceptibility. These include ecotin and free methionine-R-sulfoxide reductase. Ecotin is a
392 serine protease located in the bacterial periplasm and provides the cell with a defence
393 mechanism against host proteases such as neutrophil elastase (15, 16). Free methionine-R-
394 sulfoxide reductase is associated with maintaining redox homeostasis (17, 18). Interestingly,
395 compared to the control, β -lactamase was increased in all antimicrobial-exposed groups except
396 in ampicillin-treated cells where it was not detected at statistically significant levels. In the
397 ampicillin treated samples proteins associated with the outer membrane and cell wall
398 biosynthesis, peptidoglycan-associated lipoprotein (Pal) and beta-hexosaminidase (NagZ),
399 were increased by 4.07-fold and 2.02-fold respectively, indicating an apparent attempt to
400 maintain cell wall integrity during antimicrobial challenge. It has been reported that ampicillin
401 enhances the release of outer membrane vesicles (OMVs) in which Pal is contained, thereby
402 increasing Pal levels (19). This may be of clinical importance because OMVs containing Pal
403 also contain lipopolysaccharides and other inflammatory molecules and the ampicillin-
404 mediated release of OMV from the bacterial cell may contribute to inflammation in the host
405 (19). In this data set, Pal was not detected at statistically significant levels in any other samples.
406 There was a statistically significant decrease in the relative abundance of the plasmid mediated
407 macrolide phosphotransferase (MphA) in ampicillin-treated samples only. A decrease in the

408 levels of MphA indicate that ampicillin may affect the production of this protein, perhaps by
409 activating a repressor, thereby reducing the ability of the bacterial cell to generate resistance.
410 This finding warrants further investigation as it may provide useful information when
411 designing therapeutic regimen involving combination treatments (20). The reduction in the
412 relative abundance of the macrolide 2-phosphotransferase (MphA) occurred in the presence of
413 ampicillin only. There has not previously been any associations between MphA and ampicillin.
414 We did not identify any patterns that could account for repression of MphA production in the
415 presence of ampicillin.

416

417 Analysis of the ampicillin treated post-imputation proteomic dataset revealed a significant
418 decrease in the relative abundance of the relaxosome protein TraM, which is responsible for
419 DNA transfer by conjugation between cells (21). Compared to the control, TraM was decreased
420 by 8.61 fold in the ampicillin-treated cells. Mrr restriction system protein, mrr, is involved in
421 the acceptance of foreign DNA from a donor cell (22), and it too was decreased in this group
422 (-2.88 fold decrease). These results suggests fewer plasmid transfer events compared to the
423 control which is in contrast to the finding by Liu et al., (2019) who demonstrated that sub MIC
424 levels of cefotaxime, ampicillin and ciprofloxacin in fact increase the levels of plasmid transfer
425 (23). Differences in plasmids and plasmid-mediated resistance to ampicillin may account for
426 the different findings here. However, the pEK499 plasmid does not confer resistance to
427 ciprofloxacin, but reduced susceptibility, and in this study, the relative abundance of TraM was
428 also decreased in this group indicating lower levels of DNA transfer. Although the levels of
429 TraM are decreased during stationary phase (24), this does not explain the lower levels of TraM
430 in the ciprofloxacin and ampicillin-treated groups compared to the control observed in this
431 dataset. Overproduction of reactive oxygen species (ROS) is known to trigger conjugative
432 transfer (25). In this study the levels of proteins associated with a response to ROS in groups
433 treated with ampicillin or ciprofloxacin were relatively low compared to the control, thus,
434 reduced levels of oxidative stress in these groups may be responsible for a decrease in the
435 relative abundance of proteins associated with gene transfer. Of the β -lactam-exposed groups,
436 the levels of proteins associated with an increase in oxidative stress were greater in groups
437 treated with cefotaxime. For example there was a significant increase in the relative abundance
438 of glutaredoxin 3 GrxC (2.42-fold), glutaredoxin 4 GrxD (1.70-fold), peroxiredoxin OmsC
439 (2.36-fold), thiol peroxidase Tpx (1.80-fold) and peroxide stress resistance protein YaaA (4.06-
440 fold). In contrast, enrichment analysis performed in STRING on SSDA proteins revealed a
441 general decrease in the pathways associated with glycolysis and glyoxylate metabolism. This

442 indicates that the energy used to combat oxidative stress is at the expense of carbohydrate
443 metabolism (26). STRING analysis also revealed an increase in protein levels associated with
444 the ribosome. Because oxidative stress presents bacterial cells with unfavourable
445 environmental conditions, the ability to alter RNA turnover is essential for survival via
446 adaptation to harsh environments. Oxidative stress alters ribosomal activity in bacteria
447 allowing cells to adapt to unfavourable environmental conditions (27). DEAD-box helicases
448 are a group of proteins associated with ensuring continuation of optimal ribosomal activity
449 (28). In addition to the range of proteins associated with translation, the proteomic dataset here
450 identified the protein product of DeaD which increased by 3.02-fold in cefotaxime-treated cells
451 compared to the control. Taken together, comparative proteomic analysis of cefotaxime-
452 exposed cells and untreated cells indicate that cefotaxime induces an oxidative stress response
453 in *E. coli* which is met by an increase in ribosomal activity and a decrease in carbohydrate
454 metabolism.

455

456 Imipenem also induced stress in bacterial cells as demonstrated by the number of proteins
457 associated with oxidative stress and their increase in relative abundance compared to the
458 control (e.g. OxyR, Eco, and HdeB). Levels of flagellin protein, FliC, was reduced by almost
459 22-fold (21.92-fold decrease) in cells exposed to imipenem. This suggests that imipenem
460 induces morphological changes to the bacterial cell which may ultimately affect the motility
461 and adherence properties of the cells. Sub-inhibitory concentrations of antimicrobials are
462 known to induce morphological changes in bacterial cells (29, 30). Understanding these
463 changes and how they may affect bacterial interactions with the host cell are important for
464 developing therapeutic strategies (30). The relative abundance of several proteins involved in
465 carbohydrate metabolism, specifically glucose metabolism, was decreased in this group but the
466 levels of proteins associated with monosaccharide transport into the cell had increased. High
467 affinity transport systems are known to increase under conditions of nutrient limitations (31).
468 It is possible that a decrease in glucose availability induced an increase in the uptake of
469 alternative carbon sources, causing an increase the levels of transporters such as xylose and
470 arabinose. One of the transporters identified in the dataset arising from imipenem-treated
471 bacteria was D-xylose-binding periplasmic protein, encoded by the *xylF* gene. This gene is
472 upregulated in response to cold shock (32). Cold shock inducible genes, while providing
473 protection against temperature decline, also play a role in the bacterial response to
474 antimicrobial stress (32 - 24). In total, there are nine cold shock proteins (Csp) in *E. coli* (CspA-
475 CspI). In this study, the relative abundance of one of these Csp, CspE, was increased in

476 imipenem-, cefotaxime- and ciprofloxacin-treated groups. CspE is constitutively expressed and
477 is responsible for the stability of RNA transcripts arising from genes associated with a general
478 stress response, specifically the master regulator, RpoS (35). The relative abundance of four
479 Csp were increased in bacteria exposed to ciprofloxacin (CspA, CspC, CspD and CspE),
480 suggesting a major role for these proteins in response to ciprofloxacin-induced stress.
481 Compared to the control, there was a 5.58-fold increase in the level of CspD. CspD is generally
482 associated with a carbon-starvation induced stress response during stationary phase growth
483 (36). This protein binds to single stranded DNA and inhibits its replication (37). The significant
484 increase in its abundance compared to the control in this study, indicates that CspD may have
485 a role to play in protection against ciprofloxacin, perhaps by inhibiting DNA replication
486 thereby reducing the effect of ciprofloxacin on this process. Furthermore, there was a 1.41-fold
487 decrease in dihydrofolate reductase, a crucial enzyme for the biosynthesis of DNA precursors.
488 This indicates a reduction in the biosynthesis of DNA in bacterial cells exposed to
489 ciprofloxacin. CpsD is involved in the MqsR/MqsA-mediated toxin/antitoxin (TA) system
490 which regulates the formation of persister cells by inducing biofilm formation (38, 39). Other
491 proteins associated with toxin-anti-toxin system-dependent persister cell formation are Lon,
492 ClpX and Fis, all of which were increased in relative abundance in ciprofloxacin-treated
493 bacteria (38, 39). In addition to CspE, CspA and CspC are single stranded DNA and RNA
494 binding proteins involved in the stabilization of DNA and RNA transcripts under cellular stress
495 and as an adaptation response to low temperatures (40, 41). These proteins increase the half-
496 life of RNA transcripts arising from the expression of stress-induced genes and interfere with
497 the formation of secondary structures in RNA that can result in transcriptional termination (40,
498 42). It was interesting therefore, to observe an increase in the relative abundance of a substantial
499 number of proteins associated with translation in ciprofloxacin-exposed bacteria compared to
500 the control. The levels of these proteins indicate increased translational activity in this group.
501 In contrast, there was a decrease in the relative abundance of several proteins associated with
502 oxidative stress including superoxide dismutase (SodC), which was reduced by almost 65-fold
503 compared to the control. Taken together the data in this study suggest that exposure to sub
504 inhibitory levels of ciprofloxacin induces a Csp-response which may be, in part, responsible
505 for the increased levels of ribosomal proteins and decrease in proteins associated with oxidative
506 stress. Although ciprofloxacin inhibits DNA replication by targeting DNA topoisomerase and
507 DNA-gyrase, the dataset in this study revealed a significant increase in the relative abundance
508 of plasmid-associated β -lactamase (11.63-fold increase) and of other components involved in
509 cell wall assembly including alanine racemase (Alr) and β -hexosaminidase (NagZ). Compared

510 to the control, the ciprofloxacin-exposed bacteria were the only bacteria with increased
511 abundance of both blaCTX-M-15 and blaTEM-1 β -lactamase, despite cell wall biosynthesis
512 not being the target for the mechanism of action of ciprofloxacin. An increase in the levels of
513 β -lactamase suggests a secondary effect of ciprofloxacin, one which impacts the bacterial cell
514 wall. This observation supports the theory that antimicrobials may serve as an environmental
515 signal for bacteria which induces physiological alterations that provide cells with a competitive
516 advantage (43).

517

518 SeqA was one of the 13 proteins with increased abundance under ampicillin or ciprofloxacin
519 stress relative to the control but absent or with reduced abundance under cefotaxime and
520 imipenem stress. SeqA has been identified as a negative modulator of initiation of replication
521 and of plasmid replication (44). We propose that under ampicillin and ciprofloxacin stress
522 SeqA performs this function thus reducing the relative abundance of TraM. However, this does
523 not occur in the presence of cefotaxime or imipenem and is therefore not a general response to
524 antibiotics. As the blaTEM-1 protein and the acid stress response were increased relative to the
525 control in the presence of imipenem or ciprofloxacin but not ampicillin or cefotaxime, we
526 question whether the blaTEM-1 protein production was increased in response to these stress
527 proteins being elevated or to the antimicrobials directly or if the acid stress response is activated
528 in response to the increased blaTEM production. The FruB and YciF proteins present in
529 reduced abundance unique to imipenem and ciprofloxacin have been reported to be upregulated
530 in response to acid stress. Thus, while components of the response to acid stress were increased
531 only some of the proteins required for response and resistance to acid stress were associated
532 with these bacteria.

533

534 The response of HdeB and OsmY were opposite in imipenem to ciprofloxacin, i.e. increased
535 in imipenem treated but decreased in ciprofloxacin treated samples. There were no significant
536 changes in the presence of ampicillin or cefotaxime. In the presence of ciprofloxacin but not
537 the other antimicrobials the level of GadB was reduced 7.95-fold relative to the control and in
538 the imipenem treated samples the GadC protein was reduced in abundance 1.84fold. This is
539 interesting to note, as GadBC are usually increased in response to acid stress like the other
540 proteins described. A GadB knockout mutant demonstrated increased persister formation under
541 ampicillin stress (45). In addition, HdeAB, OsmY and OsmE were repressed in persister
542 forming cells (45). The relative protein abundances of HdeB, GadB and OsmY were reduced
543 in the ciprofloxacin treated bacteria, suggesting that these bacteria were persisters. The

544 opposite occurred in the imipenem treated bacteria, as both HdeB and OsmY were increased
545 relative to the control. Hong et al., described both bacterial resistance and persistence in
546 response to stress, such as acid or antimicrobials (45). This proteomics study suggests the
547 specific antimicrobial responses of *E. coli* to these stresses as resistance in relation to
548 ampicillin, cefotaxime and imipenem and persistence in relation to ciprofloxacin. Persistence
549 was demonstrated to occur due to the downregulation of the acid (*gadB*, *gadX*), osmotic
550 (*osmY*), and multidrug (*mdtF*) resistance systems due to the degradation of MqsA by proteases
551 (ClpXP and Lon) (45). Using the proteomics data we identified that only in the presence of
552 ciprofloxacin were the Lon and ClpX proteins increased in abundance together with decreases
553 in abundance of the GadB, HdeB and OsmY proteins. This pattern is described in the persister
554 formation rather than the resistance formation induced pathways. In addition, CpsD is involved
555 in the MqsR/MqsA-mediated toxin/antitoxin (TA) system which regulates the formation of
556 persister cells by inducing biofilm formation (38, 39). While we detected increased CspD only
557 in ciprofloxacin-treated bacteria, we did not detect MqsR or MsqA proteins in any sample.

558

559 **Conclusions**

560 The data presented in this study has provided novel insights into the changes that occur in the
561 proteome of multidrug resistant *E. coli* when challenged with different antimicrobials, and
562 highlight a significant role for chromosomally-encoded genes in the response of bacteria to
563 these antimicrobials. The data arising from proteomic analysis of *E. coli* challenged with three
564 different β -lactam antibiotics identified distinct differences in the cellular response to each
565 drug. These data also identified novel proteins not previously associated with AMR or
566 antimicrobials responses in pathogens.

567

568 **Acknowledgements**

569 The mass spectrometry facilities were funded by a Science Foundation Ireland infrastructure
570 award to SD ([SFI 12/RI/2346\(3\)](#)).

571

572

573

574

575 Table 1: pEK499 plasmid-derived proteins detected by mass spectrometry. Proteins encoded
576 by genes present on the pEK499 plasmid were detected in all groups, or exclusive to specific
577 groups of *Escherichia coli*.

Protein ID	Protein name	Sample presence	Sample absence
ACQ41977.1	Orf1176 protein (SopA)		None
ACQ42024.1	Beta-lactamase (blaTEM)		
ACQ42045.1	AAC(6')-Ib-cr		
ACQ42046.1	Beta-lactamase (blaOXA)		
ACQ42051.1	Beta-lactamase (blaCTXM15)	All bacterial samples	
ACQ42056.1	Dihydrofolate reductase		
ACQ42065.1	Macrolide 2 phosphotransferase (Mph (A))		
ACQ42094.1	Putative HTH-type transcriptional regulator (YfaX)		
ACQ42102.1	hypothetical protein XCV		
ACQ42108.1	hypothetical protein		
ACQ41973.1	Antitoxin CcdA	cefotaxime-, imipenem- ciprofloxacin-treated bacteria	Control, Ampicillin treated bacteria
ACQ41974.1	Toxin CcdB	Control, ampicillin-, cefotaxime-, ciprofloxacin-treated bacteria	Imipenem
ACQ42006.1	Relaxosome protein TraM	Control, cefotaxime and imipenem treated bacteria	Ampicillin and ciprofloxacin treated bacteria
ACQ42109.1	Uncharacterized protein	Control and imipenem-treated bacteria	Ampicillin, cefotaxime and ciprofloxacin treated bacteria
ACQ42036.1	mRNA interferase (PemK)	Control, ampicillin-, cefotaxime-,	Ciprofloxacin treated bacteria

ACQ42069.1	34 kDa membrane antigen (Tpd)	imipenem-treated bacteria	
------------	-------------------------------	------------------------------	--

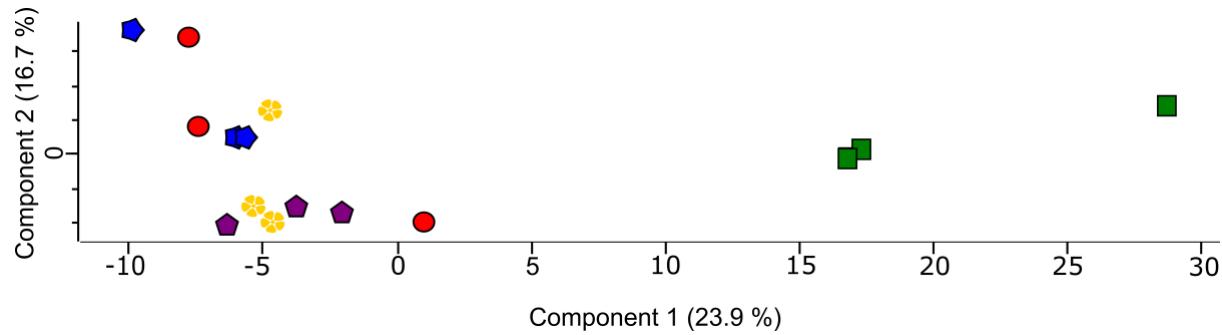
578 The data presented here is from the pre-imputed dataset (Suppl 1) and identifies the protein
579 present in each sample.

580

581

582 Table 2. Variations in protein abundance in comparison with control in proteins produced from
583 plasmid genes (post-imputation).

Protein Gene position on the plasmid	Ampicillin Fold change (+/-)	Cefotaxime Fold change (+/-)	Imipenem Fold change (+/-)	Ciprofloxacin Fold change (+/-)
TraM Nucleotides 26494-26877	- 3.11	-	-	- 2.73
MphA Nucleotides 74827-75732	- 1.25	-	-	
blaCTX-M-15 Nucleotides 62953-63828	-	+ 7.43	-	+ 3.54
blaTEM-1 Nucleotides 39864-40676	-	-	+ 3.64	+ 1.68
DhfrVII Nucleotides 66537-67211	-	-	-	- 0.5
Hypothetical protein Nucleotides 111726-112226	-	-	-	- 0.91

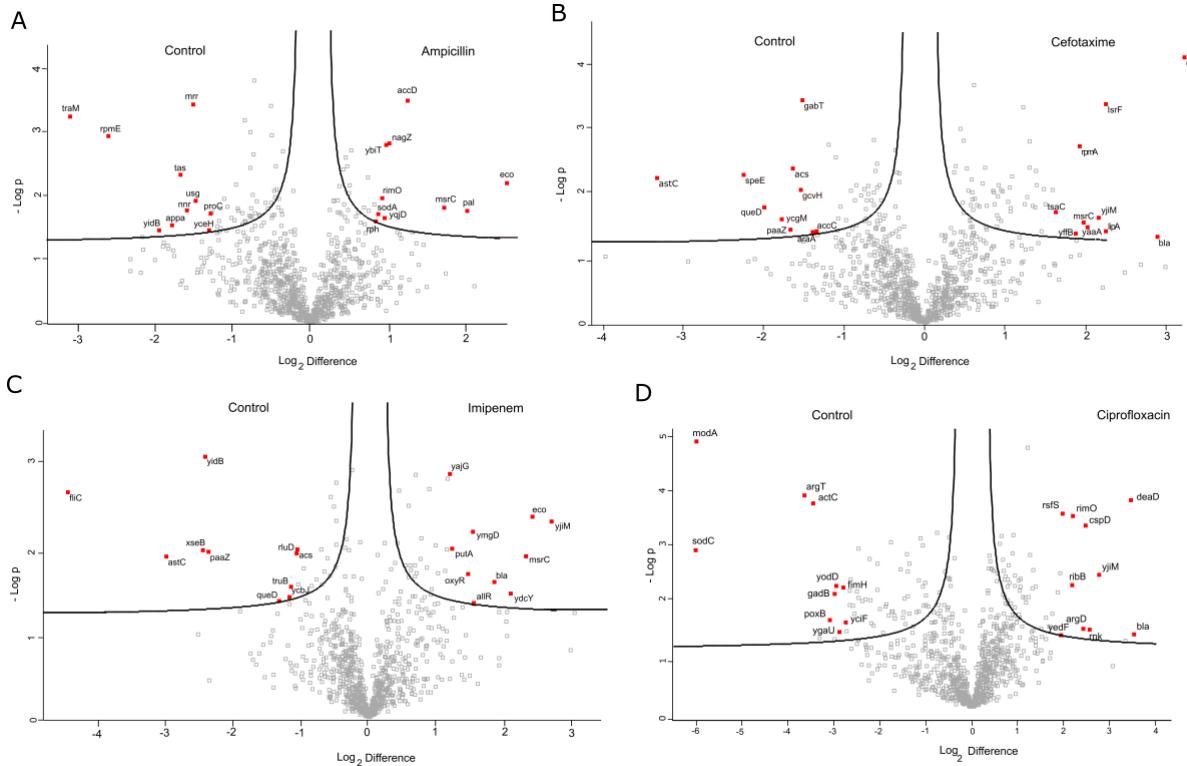

584

585

586 Figure 1. Principal component analysis of the proteomes of pEK499 containing *E. coli* treated
587 with ampicillin (red), cefotaxime (blue), imipenem (yellow) or ciprofloxacin (green) and the
588 control untreated bacteria (purple).

589

590


591

592

593

594

595 Fig. 2A-D Volcano plots derived from pairwise comparisons between A) *E. coli* pEK499 treated with
596 ampicillin and control, B) cefotaxime and control, C) imipenem and control and D) ciprofloxacin and
597 control. The distribution of quantified proteins according to p value ($-\log_{10}$ p-value) and fold change
598 (log₂ mean LFQ intensity difference) are shown. Proteins above the line are considered statistically
599 significant (p-value <0.05). The top 20 most differentially abundant proteins are shown for each group.
600

601

602 References

- 603 1. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-
604 ET_NM_WHO.pdf (accessed 14/07/2021)
- 605 2. Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ, Livermore DM.
606 Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding
607 CTX-M enzymes in three major *Escherichia coli* lineages from the United Kingdom,
608 all belonging to the international O25:H4-ST131 clone. *Antimicrob Agents Chemother.*
609 2009 Oct;53(10):4472-82.
- 610 3. Blumenscheit C, Pfeifer Y, Werner G, John C, Schneider A, Lasch P, Doellinger J.
611 Unbiased antimicrobial resistance detection from clinical bacterial isolates using
612 proteomics. *bioRxiv* 2020.11.17.386540;
- 613 4. Møller TSB, Liu G, Boysen A, Thomsen LE, Lüthje FL, Mortensen S, Møller-Jensen
614 J, Olsen JE. Treatment with Cefotaxime Affects Expression of Conjugation
615 Associated Proteins and Conjugation Transfer Frequency of an IncI1 Plasmid in
616 *Escherichia coli*. *Front Microbiol.* 2017 Nov 29;8:2365.
- 617 5. Møller TSB, Liu G, Hartman HB, Rau MH, Mortensen S, Thamsborg K, Johansen
618 AE, Sommer MOA, Guardabassi L, Poolman MG, Olsen JE. Global responses to
619 oxytetracycline treatment in tetracycline-resistant *Escherichia coli*. *Sci Rep.* 2020
620 May 21;10(1):8438.
- 621 6. Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann
622 M. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo
623 protein interactions. *J Cell Biol.* 2010 May 17;189(4):739-54.
- 624 7. Côté RG, Griss J, Dianes JA, Wang R, Wright JC, van den Toorn HW, van Breukelen
625 B, Heck AJ, Hulstaert N, Martens L, Reisinger F, Csordas A, Ovelleiro D, Perez-
626 Rivevol Y, Barsnes H, Hermjakob H, Vizcaíno JA. The PRoteomics IDEntification
627 (PRIDE) Converter 2 framework: an improved suite of tools to facilitate data
628 submission to the PRIDE database and the ProteomeXchange consortium. *Mol Cell*
629 *Proteomics.* 2012 Dec;11(12):1682-9.
- 630 8. Lesniak J, Barton WA, Nikolov DB. Structural and functional features of the
631 *Escherichia coli* hydroperoxide resistance protein OsmC. *Protein Sci.* 2003
632 Dec;12(12):2838-43.
- 633 9. Molina-Heredia FP, Houée-Levin C, Berthomieu C, Touati D, Tremey E, Favaudon
634 V, Adam V, Nivière V. Detoxification of superoxide without production of H₂O₂:
635 antioxidant activity of superoxide reductase complexed with ferrocyanide. *Proc Natl*

636 Acad Sci U S A. 2006 Oct 3;103(40):14750-5.

637 10. Prieto-Alamo MJ, Jurado J, Gallardo-Madueno R, Monje-Casas F, Holmgren A,
638 Pueyo C. Transcriptional regulation of glutaredoxin and thioredoxin pathways and
639 related enzymes in response to oxidative stress. J Biol Chem. 2000 May
640 5;275(18):13398-405.

641 11. Smirnova G, Muzyka N, Lepekhina E, Oktyabrsky O. Roles of the glutathione- and
642 thioredoxin-dependent systems in the *Escherichia coli* responses to ciprofloxacin and
643 ampicillin. Arch Microbiol. 2016 Nov;198(9):913-21.

644 12. Wang L, Hashimoto Y, Tsao CY, Valdes JJ, Bentley WE. Cyclic AMP (cAMP) and
645 cAMP receptor protein influence both synthesis and uptake of extracellular
646 autoinducer 2 in *Escherichia coli*. J Bacteriol. 2005 Mar;187(6):2066-76.

647 13. Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A
648 guide for clinicians. J Anaesthesiol Clin Pharmacol. 2017 Jul-Sep;33(3):300-305.

649 14. Sidjabat HE, Gien J, Kvaskoff D, Ashman K, Vaswani K, Reed S, McGahey RP,
650 Paterson DL, Bordin A, Schenk G. The use of SWATH to analyse the dynamic
651 changes of bacterial proteome of carbapanemase-producing *Escherichia coli* under
652 antibiotic pressure. Sci Rep. 2018 Mar 1;8(1):3871.

653 15. Eggers CT, Wang SX, Fletterick RJ, Craik CS. The role of ecotin dimerization in
654 protease inhibition. J Mol Biol. 2001 May 18;308(5):975-91.

655 16. Eggers CT, Murray IA, Delmar VA, Day AG, Craik CS. The periplasmic serine
656 protease inhibitor ecotin protects bacteria against neutrophil elastase. Biochem J. 2004
657 Apr 1;379(Pt 1):107-18.

658 17. Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT. Free
659 methionine-(R)-sulfoxide reductase from *Escherichia coli* reveals a new GAF domain
660 function. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9597-602.

661 18. Wang Z, Xia X, Zhang M, Fang J, Li Y, Zhang M. Purification and Characterization
662 of Glutathione Binding Protein GsiB from *Escherichia coli*. Biomed Res Int. 2018
663 Nov 1;2018:3429569.

664 19. Michel LV, Gallardo L, Konovalova A, Bauer M, Jackson N, Zavorin M, McNamara
665 C, Pierce J, Cheng S, Snyder E, Hellman J, Pichichero ME. Ampicillin triggers the
666 release of Pal in toxic vesicles from *Escherichia coli*. Int J Antimicrob Agents. 2020
667 Dec;56(6):106163.

668 20. Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of
669 infections with gram-negative bacteria. Clin Microbiol Rev. 2012 Jul;25(3):450-70.

doi: 10.1128/CMR.05041-11.

21. Pölzleitner E, Zechner EL, Renner W, Fratte R, Jauk B, Högenauer G, Koraimann G. TraM of plasmid R1 controls transfer gene expression as an integrated control element in a complex regulatory network. *Mol Microbiol*. 1997 Aug;25(3):495-507.

22. Waite-Rees PA, Keating CJ, Moran LS, Slatko BE, Hornstra LJ, Benner JS. Characterization and expression of the *Escherichia coli* Mrr restriction system. *J Bacteriol*. 1991 Aug;173(16):5207-19.

23. Liu G, Bogaj K, Bortolaia V, Olsen JE, Thomsen LE. Antibiotic-Induced, Increased Conjugative Transfer Is Common to Diverse Naturally Occurring ESBL Plasmids in *Escherichia coli*. *Front Microbiol*. 2019 Sep 10;10:2119.

24. Zatyka M, Thomas CM. Control of genes for conjugative transfer of plasmids and other mobile elements. *FEMS Microbiol Rev*. 1998;21:291-319.

25. Zhang S, Wang Y, Song H, Lu J, Yuan Z, Guo J. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. *Environ Int*. 2019 Aug;129:478-487.

26. Mullarky E, Cantley LC. Diverting Glycolysis to Combat Oxidative Stress. In: Nakao K, Minato N, Uemoto S, editors. *Innovative Medicine: Basic Research and Development [Internet]*. Tokyo: Springer; 2015. pp. 3–23.

27. Leiva LE, Pincheira A, Elgamal S, Kienast SD, Bravo V, Leufken J, Gutiérrez D, Leidel SA, Ibba M, Katz A. Modulation of *Escherichia coli* Translation by the Specific Inactivation of tRNA^{Gly} Under Oxidative Stress. *Front Genet*. 2020 Aug 18;11:856.

28. Redder P, Hausmann S, Khemici V, Yasrebi H, Linder P. Bacterial versatility requires DEAD-box RNA helicases. *FEMS Microbiol Rev*. 2015 May;39(3):392-412.

29. Lorian V. Medical relevance of low concentrations of antibiotics. *J Antimicrob Chemother*. 1993 May;31 Suppl D:137-48. doi: 10.1093/jac/31.suppl_d.137.

30. Fonseca AP, Sousa JC. Effect of antibiotic-induced morphological changes on surface properties, motility and adhesion of nosocomial *Pseudomonas aeruginosa* strains under different physiological states. *J Appl Microbiol*. 2007 Nov;103(5):1828-37.

31. Ferenci T. Adaptation to life at micromolar nutrient levels: the regulation of *Escherichia coli* glucose transport by endoinduction and cAMP. *FEMS Microbiol Rev*. 1996 Jul;18(4):301-17.

32. Phadtare S, Inouye M. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of

704 Escherichia coli. *J Bacteriol.* 2004 Oct;186(20):7007-14.

705 33. Xia B, Ke H, Inouye M. Acquisition of cold sensitivity by quadruple deletion of the
706 cspA family and its suppression by PNPase S1 domain in Escherichia coli. *Mol*
707 *Microbiol.* 2001 Apr;40(1):179-88.

708 34. Cruz-Loya M, Kang TM, Lozano NA, Watanabe R, Tekin E, Damoiseaux R, Savage
709 VM, Yeh PJ. Stressor interaction networks suggest antibiotic resistance co-opted from
710 stress responses to temperature. *ISME J.* 2019 Jan;13(1):12-23.

711 35. Shenhar Y, Biran D, Ron EZ. Resistance to environmental stress requires the RNA
712 chaperones CspC and CspE. *Environ Microbiol Rep.* 2012 Oct;4(5):532-9.

713 36. Yamanaka K, Inouye M. Growth-phase-dependent expression of cspD, encoding a
714 member of the CspA family in Escherichia coli. *J Bacteriol.* 1997 Aug;179(16):5126-
715 30.

716 37. Yamanaka K, Zheng W, Crooke E, Wang YH, Inouye M. CspD, a novel DNA
717 replication inhibitor induced during the stationary phase in Escherichia coli. *Mol*
718 *Microbiol.* 2001 Mar;39(6):1572-84.

719 38. Kim Y, Wood TK. Toxins Hha and CspD and small RNA regulator Hfq are involved
720 in persister cell formation through MqsR in Escherichia coli. *Biochem Biophys Res*
721 *Commun.* 2010 Jan 1;391(1):209-13.

722 39. Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK. Escherichia coli
723 toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. *Environ Microbiol.* 2010
724 May;12(5):1105-21.

725 40. Bae W, Xia B, Inouye M, Severinov K. Escherichia coli CspA-family RNA
726 chaperones are transcription antiterminators. *Proc Natl Acad Sci U S A.* 2000 Jul
727 5;97(14):7784-9.

728 41. Phadtare S, Tadigotla V, Shin WH, Sengupta A, Severinov K. Analysis of Escherichia
729 coli global gene expression profiles in response to overexpression and deletion of
730 CspC and CspE. *J Bacteriol.* 2006 Apr;188(7):2521-7.

731 42. Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of RpoS
732 and UspA, the stress response proteins in Escherichia coli. *J Bacteriol.* 2001
733 Feb;183(4):1205-14.

734 43. Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial
735 signaling agents instead of weapons. *Proc Natl Acad Sci U S A.* 2006 Dec
736 19;103(51):19484-9.

737 44. Douraid D, Ahmed L. SeqA, the Escherichia coli origin sequestration protein, can

738 regulate the replication of the pBR322 plasmid. *Plasmid*. 2011 Jan;65(1):15-9.
739 45. Hong SH, Wang X, O'Connor HF, Benedik MJ, Wood TK. Bacterial persistence
740 increases as environmental fitness decreases. *Microb Biotechnol*. 2012 Jul;5(4):509-
741 22.
742