

1

2 Regulation of neuronal progenitor delamination by dynein-driven 3 post-Golgi apical transport

4

5 J.B. Brault¹, S. Bardin¹, M. Lampic¹, J.A. Carpentieri¹, L. Coquand^{1,3}, M. Penisson²⁻⁴, Hugo
6 Lachuer¹, G.S. Victoria¹, S. Baloul¹, G. Boncompain¹, S. Miserey-Lenkei¹, V. Fraisier⁵, F.
7 Francis²⁻⁴, F. Perez¹, B. Goud^{1,6}, A. D. Baffet^{1,6}

8

9 1- Institut Curie, PSL Research University, CNRS UMR144, Paris, France

10 2- INSERM UMR-S 1270, 17 Rue du Fer à Moulin, 75005 Paris, France,

11 3- Sorbonne University, 4 Place Jussieu, 75005 Paris, France.

12 4- Institut du Fer à Moulin, 17 Rue du Fer à Moulin, 75005 Paris, France.

13 5- UMR 144-Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS-Institut Curie, Paris,
14 France.

15 6- Institut national de la santé et de la recherche médicale (INSERM)

16 # Corresponding authors: bruno.goud@curie.fr; alexandre.baffet@curie.fr

17

18

19 Abstract

20 Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG
21 (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human
22 brain expansion. Here, we report that this delamination is regulated by the post-Golgi secretory
23 pathway. Using *in situ* subcellular live imaging, we show that post-Golgi transport of RAB6+
24 vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate
25 that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout
26 of RAB6A/A' and RAB6B impairs apical localization of CRB3, and induces a retraction of
27 aRG cell apical process, leading to delamination and ectopic division. These defects are
28 phenocopied by knock-out of the dynein activator LIS1. Overall, our results identify a RAB6-
29 dynein-LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role
30 of this pathway in the maintenance of neuroepithelial integrity.

31

32

33

34 **Introduction**

35 In the developing neocortex, all neurons derive from neural stem cells called radial glial
36 (RG) progenitor cells^{1,2}. These highly elongated cells also serve as tracks for the migration of
37 newborn neurons into the cortical plate. Two types of RG cells have been identified: apical RG
38 (aRG) cells (also known as vRG cells), located in the ventricular zone (VZ), and basal RG cells
39 (bRG cells, also known as oRG cells) located in the subventricular zone (SVZ)³⁻⁵ (Fig. 1a). aRG
40 cells are common to all mammalian species while bRG cells, which originate from aRG cells,
41 are rare in lissencephalic species such as mice but abundant in gyrencephalic species, including
42 humans⁶⁻⁸. aRG cells are tightly connected to each other by adherens junctions and form a
43 pseudostratified epithelium lining the ventricle⁹. They are highly polarized and display an apical
44 process extending to the ventricular surface, and a long basal process, connecting to the pial
45 surface (Fig. 1a). Several studies have illustrated that apicobasal polarity is critical for the
46 maintenance of aRG cells, and that its alteration can lead to aRG cell delamination from the
47 neuroepithelium and to the generation of bRG-like cells¹⁰⁻¹⁴. In ferrets, the cell adhesion
48 molecule cadherin 1 is downregulated at the critical period of bRG cell generation and its
49 knockdown is sufficient to induce bRG cell generation¹⁵.

50 Epithelial polarity is controlled by the PAR, Crumbs and Scribble complexes which
51 mutually interact to generate and maintain apical and basolateral domains. The Crumbs
52 complex is composed of CRB, PALS1, PATJ and is a major apical domain determinant¹⁶. In
53 the mouse developing neocortex, knock-out of CRB1 and CRB2 leads to an alteration of aRG
54 cells apical junctions, while knockout of PALS1 causes severe polarity defects, apoptotic cell
55 death and microcephaly^{17,18}. The establishment and maintenance of epithelial polarity also rely
56 on polarized trafficking along the biosynthetic/secretory pathway. Newly synthesized
57 transmembrane proteins are sorted in the Golgi apparatus/TGN (*Trans*-Golgi Network) and are
58 routed towards the apical or basolateral domains of epithelial cells, possibly transiting through
59 endosomal compartments¹⁹. In particular, the secretory pathway is essential for the apical
60 targeting of newly-synthesized CRB, the only transmembrane protein of the apical polarity
61 complex²⁰.

62 RAB6 is a Golgi/TGN-associated small GTPase which controls both anterograde and
63 retrograde transport, from and towards the Golgi apparatus²¹. Three RAB6 paralogs have been
64 identified: ubiquitous RAB6A (and its splicing variant RAB6A'), RAB6B, predominantly
65 expressed in the brain, and RAB6C, encoded by a primate-specific retrogene and involved in
66 cell cycle progression^{21,22}. In non-polarized cells, RAB6A is associated with most - if not all -
67 post-Golgi vesicles, irrespective of the transported cargo, suggesting that RAB6A is a general

68 regulator of post-Golgi trafficking²³. The exact role of RAB6B is poorly known but evidence
69 exist that it acts redundantly with RAB6A in the secretory pathway²⁴. RAB6-positive (RAB6+)
70 secretory vesicles are transported to the cell surface by two plus end-directed kinesins, KIF5B
71 and KIF13B²⁵. Retrograde transport towards the Golgi apparatus or the endoplasmic reticulum
72 (ER) is driven by dynein^{26,27}. RAB6 recruits dynein and its partner dynactin through Bicaudal-
73 D (BicD) adaptor proteins, leading to dynein activation and processive movement along
74 microtubules²⁸⁻³². Dynein activity is further regulated by LIS1³³⁻³⁵, the dysfunction of which
75 being the most common cause of human lissencephaly^{35,36}. LIS1 activates dynein, but can
76 subsequently be released from an idling complex by RAB6 for processive movement³⁷.

77 In polarized epithelial cells, the machinery controlling trafficking from the Golgi
78 apparatus towards the apical surface is unclear. Conflicting reports have involved both plus-
79 end directed and minus-end directed microtubule motors³⁸⁻⁴². This is largely due to the limited
80 ability to resolve vesicular transport and post-Golgi trafficking events in polarized epithelial
81 cells, because of the small size of these cells and to the thickness of epithelial tissues. Here,
82 using a method for subcellular live imaging within embryonic brain slices, we show that apical
83 transport of post-Golgi RAB6+ vesicles is driven by dynein. *RAB6A/B* double KO leads to aRG
84 cell delamination during interphase and to the formation of proliferating bRG-like cells. *LIS1*
85 loss of function largely phenocopies *RAB6A/B* dKO, indicating that the RAB6-dynein-LIS1
86 apical trafficking pathway is required for preventing aRG cell delamination. Finally, we provide
87 evidence that this pathway is critical for the apical transport of the major polarity determinant
88 CRB3 in aRG cells.

89

90 **Results**

91 *Post-Golgi apical trafficking occurs towards the minus ends of microtubules*

92 aRG cells are highly elongated cells and undergo interkinetic nuclear migration (INM),
93 a process by which their nuclei translocate basally, before migrating back to the apical surface
94 for mitosis^{38,39}. As a consequence, the average distance between the Golgi apparatus, which
95 follows the nucleus, and the apical surface, where the centrosome is located, is 17.84 μ m,
96 ranging from 0 to 46.81 μ m, depending on the stage of INM (**Fig. 1b,c**)⁴⁰. To investigate post-
97 Golgi transport in these cells, we developed an approach for subcellular live imaging within
98 thick organotypic brain slices⁴¹ (**Fig. 1d**). aRG cells are electroporated with fluorescent
99 reporters *in utero* and, following 24 hours of expression, brains are sliced and mounted for
100 imaging on a CSU-W1 spinning disk microscope equipped with a high working distance 100X
101 objective (see methods). This approach allowed the visualization of growing microtubule plus

102 ends in cells expressing the plus end tracking protein EB3. We confirmed our previous results,
103 i.e. the unipolar organization of the microtubule network with over 99% of plus ends growing
104 in the basal direction, from the pericentrosomal apical surface⁴¹ (**Extended Data Fig. 1a**,
105 **Supplemental Video 1**). Notably, virtually no microtubules emanating from the Golgi area
106 were observed to grow apically.

107 To visualize post-Golgi transport vesicles, we electroporated aRG cells *in utero* with a
108 GFP-RAB6A expressing plasmid. The construct was expressed at low levels to avoid cytosolic
109 accumulation, and 3-5 planes were imaged to capture the entire apical process, leading to a
110 temporal resolution of 600-1000 ms. GFP-RAB6A marked the Golgi apparatus, which
111 sometimes appears fragmented as previously reported in these cells⁴⁰, as well as small and
112 dynamic vesicular structures that could often be observed budding from the Golgi (**Extended**
113 **data Fig. 1b, Supplemental Video 2**). Live imaging within the apical process (between the
114 Golgi and the apical surface) revealed that RAB6A+ vesicles were bidirectional (**Fig. 1e**,
115 **Supplemental Video 3**). Highly dynamic RAB6A+ vesicles could also be observed within the
116 basal process (above the nucleus), where they also appeared highly dynamic (**Extended data**
117 **Fig. 1c, Supplemental Video 4**). In the apical process, manual tracking of individual RAB6A+
118 vesicles revealed that, throughout one-minute movies, 39% displayed basal movement (towards
119 the Golgi apparatus), 25% apical movement (towards the apical surface), 21% bidirectional
120 movement and 15% were static (**Fig. 1f**). These vesicles spent 24% of their time moving in the
121 basal direction, 18% moving in the apical direction, and 58% not moving (**Fig. 1g**). Apically-
122 moving RAB6A+ vesicles moved faster than basally-moving ones, in agreement with faster
123 minus-end transport reported in non-polarized cells^{25,42} (**Fig. 1h**). Including pauses, RAB6A+
124 vesicles traveled on average 32.3 μ m per minute. They were often observed to disappear at the
125 apical surface, suggesting apical fusion events, either with the plasma membrane or with
126 another compartment (**Extended data Fig. 1d, Supplemental Video 5**). Together, these results
127 reveal that RAB6A+ vesicles traffic in a highly bidirectional manner between the perinuclear
128 Golgi apparatus and the apical surface, which they reach following transport directed towards
129 microtubule minus ends.

130

131 *Apical transport of post-Golgi RAB6A+ vesicles is driven by dynein*

132 We next asked whether post-Golgi apical transport of RAB6A+ vesicles was dependent
133 on the minus end microtubule motor dynein. To test this, we treated brain slices with the dynein
134 inhibitor dynarrestin, prior to live imaging⁴³. Because of its short stability, a new batch of
135 dynarrestin was dissolved prior to each experiment, and validated in parallel for Golgi dispersal

136 in RPE-1 cells (**Extended data, Fig. 1e**). Dynarrestin treatment in aRG cells led to a drastic
137 inhibition of the trafficking of RAB6A+ vesicles into the apical process, as compared to
138 DMSO-treated cells (**Fig. 1i, Supplemental Videos 6, 7**). The total number of RAB6A+
139 vesicles observed within the apical process was severely reduced (**Fig. 1j**). This result suggests
140 that, in the absence of dynein activity, the balance between opposing motors was shifted
141 towards kinesin-dependent transport in the basal direction, leading to an emptying of the apical
142 process. The vesicles that did manage to enter the apical process performed substantially less
143 apically-directed movements (**Fig. 1k**). On the contrary, RAB6A+ vesicles in the cell soma and
144 in the basal process remained highly mobile.

145 To confirm these results, we next overexpressed a truncated form of p150^{Glued} (CC1-
146 p150), which acts as a dominant-negative for the dyactin complex⁴⁴. Expression of CC1-p150
147 for 24 hours in aRG cells led to a very similar outcome, impairing the localization of RAB6A+
148 vesicles into the apical process (**Fig. 1i, I Supplemental Video 8**). As for dynarrestin treatment,
149 apical movement of RAB6A+ vesicles located within the apical process was markedly reduced
150 (**Fig. 1m**). Mobile RAB6A+ vesicles were still abundant in the soma and basal process. In both
151 cells treated with dynarrestin or overexpressing CC1-p150, the speed of RAB6A+ vesicles that
152 were still moving was unaltered within the apical process (**Extended data, Fig. 1f, g**). Together,
153 these results indicate that post-Golgi RAB6A+ vesicles travel towards the apical surface of aRG
154 cells along a uniformly polarized microtubule network *via* dynein-based transport.

155

156 *RAB6A/B double knockout causes microcephaly*

157 We next investigated the consequences of RAB6 loss of function on neocortical
158 development, neuroepithelial integrity, and apical cargo delivery. We confirmed RAB6A/A'
159 and B expression in the developing brain, and observed that RAB6B expression strongly rises
160 from E11.5, while RAB6A/A' levels remain constant (**Extended data, Fig. 2a**). Because
161 constitutive knock-out of *RAB6A* (coding for the two isoforms RAB6A and RAB6A') leads to
162 early developmental lethality⁴⁵, we previously generated a Cre-inducible KO mouse model⁴⁶.
163 Dorsal cortex-specific depletion of *RAB6A*, using the *Emx1-Cre* driver, did not lead to any
164 observable phenotype on neocortex development. To test for redundancy, we therefore
165 generated a constitutive KO mouse for *RAB6B*, using Crispr-Cas9. We obtained two lines, a
166 279 bp inversion affecting in exons 3 and 4, and a 1 bp deletion in exon 2, both leading to a
167 premature stop codon. Both lines were viable and, as for conditional *RAB6A* KO, did not display
168 any observable alterations of neocortex development or aRG cell polarity. We therefore
169 generated *RAB6A/B* double KO (*RAB6A/B* dKO) animals. Efficient protein depletion for

170 RAB6A/A' and RAB6B in the embryonic cortex was verified by western blot (**Fig. 2a**), residual
171 RAB6A/A' signal in *RAB6A/B* dKO mice being likely due to the presence of non-Cre
172 expressing cells in the protein extract. Strikingly, *RAB6A/B* dKO mice were severely
173 microcephalic. At P0, the cortical area as well as the cortical thickness of double mutant animals
174 were reduced by half, while single KOs were unaffected (**Fig. 2b, c, d, e**). Reduced brain size
175 was likely the consequence of increased levels of apoptotic cell death observed in *RAB6A/B*
176 dKO (**Fig. 2f**). Neuronal positioning was also strongly affected, with layer II-III neurons
177 (CDP+) dispersed throughout the neocortex, suggesting impaired neuronal migration (**Fig. 2d**).
178 Therefore, loss of RAB6A/A' and RAB6B leads to microcephaly and altered neuronal
179 positioning.

180

181 *RAB6A/B dKO leads to aRG cell delamination during interphase*

182 We next analyzed *RAB6A/B* dKO embryos to test for neuroepithelial organization
183 defects. To monitor aRG cell positioning defects, we first analyzed the localization of PAX6+
184 aRG cells. In E15.5 control as well as in single *RAB6A* and *RAB6B* KO brains, aRG cells were
185 concentrated within the VZ. In *RAB6A/B* dKO however, numerous RG cells could be observed
186 above the VZ, suggesting delamination from the neuroepithelium (**Fig. 3a, b**). Moreover, the
187 size of the PAX6+ VZ was reduced, even when normalized to total cortical thickness, further
188 indicating a loss of ventricular aRG cells (**Extended data, Fig. 2b**). The presence of ectopic
189 RG cells was confirmed by the strong increase in the fraction of mitotic RG cells located above
190 the ventricular surface, positive for phospho-Vimentin (p-VIM), which specifically marks
191 mitotic RG cells (**Fig. 3c, d**). This staining further revealed that basally located RG cells had
192 lost their apical process and had therefore detached from the neuroepithelium. They also
193 appeared to have retracted their basal process, but continued to divide. Quantification of the
194 mitotic index of PAX6+ RG cells indeed indicated that ectopic *RAB6A/B* dKO RG cells
195 proliferated at a normal rate (**Fig. 3e**).

196 To investigate further whether these ectopic aRG cells had indeed delaminated from the
197 neuroepithelium, we used *in utero* electroporation, which specifically targets the aRG cells and
198 therefore allows to assess the position of these cells and their progeny over time. We
199 electroporated a plasmid coding for the Cre recombinase, as well as GFP, into E14.5
200 *RAB6A*^{loxP/loxP}; *RAB6B*^{-/-} brains, in order to deplete both RAB6A/A' and B specifically in the
201 GFP-expressing electroporated aRG cells. After 4 days in control GFP-electroporated brains,
202 numerous aRG cells could be observed connected to the ventricular surface by their apical
203 processes. In Cre-expressing brains however, these cells were largely lost, suggesting that they

204 had detached from the neuroepithelium (**Fig. 3f**). To confirm that the presence of basally-
205 localized RG cells was indeed a consequence of apical process detachment during interphase,
206 we live imaged aRG cells 3 days after Cre expression-induced *RAB6A/B* dKO. While the
207 majority of control cells maintained an apical attachment throughout 20 hour-long movies, a
208 high proportion of Cre-expressing *RAB6A/B* dKO RG cells were observed to detach from the
209 neuroepithelium and retract their apical process towards the cell soma (**Fig. 3g, h**,
210 **Supplemental Videos 9, 10**). Together, these results indicate that double depletion of
211 *RAB6A/A'* and *B* leads to the delamination of RG cells during interphase. These cells however
212 maintain an RG fate and continue to proliferate above the VZ.

213

214 *LIS1 knock-out leads to ectopically dividing progenitors*

215 We next asked whether the delamination observed in *RAB6A/B* dKO was a consequence
216 of altered trafficking towards the apical surface, and therefore if altered dynein activity would
217 lead to a similar outcome. To test this, we inactivated *LIS1* in the mouse neocortex, using an
218 inducible KO mouse model⁴⁷. *Emx1-Cre; LIS1^{loxP/loxP}* (*LIS1* KO) were severely microcephalic,
219 as previously described⁴⁷. PAX6+ cells in E12.5 *LIS1* KO were found dispersed throughout the
220 entire tissue (**Fig. 4a**). The majority of mitotic RG cells (PAX6+ p-H3+) were localized basally,
221 away from the apical surface where they are normally found, suggesting that they had
222 delaminated (**Fig. 4a, c**). This result was confirmed following p-VIM staining (**Fig. 4b, d**).
223 Therefore, inhibition of dynein through *LIS1* loss of function largely phenocopies *RAB6A/B*
224 dKO, suggesting that the RAB6-dynein-LIS1 apical trafficking pathway is required to prevent
225 aRG cell delamination.

226

227 *Post-Golgi apical transport of Crumbs is driven by dynein*

228 Interphasic delamination is a consequence of destabilization of the adherens junctions,
229 which are themselves dependent on properly established epithelial polarity. The transmembrane
230 protein CRB is a major determinant of epithelial apical domain polarity and the only one to be
231 transported along the secretory pathway. Accordingly, CRB3, the major Crumbs isoform
232 expressed in mammalian epithelial cells⁴⁸, and its partner PALS1 localize to the apical surface
233 of aRG cells (**Fig. 5a**). We therefore asked whether the RAB6-dynein-LIS1 pathway controls
234 the apical transport of CRB3 in these cells. To distinguish between different trafficking pools
235 –secretory and endolysosomal– we analyzed CRB3 trafficking using the RUSH system⁴⁹ (**Fig.**
236 **5b**). This assay allows for the retention of a cargo of interest in the ER and, upon addition of
237 biotin, its release for trafficking along its secretory route. Following *in utero* electroporation,

238 SBP-CRB3-GFP was efficiently retained *in vivo* within the ER and absent from the apical
239 surface of aRG cells, indicating that endogenous biotin levels in mouse were not sufficient to
240 induce its release (**Fig. 5c, d**). To monitor SBP-CRB3-GFP trafficking, brain slices were
241 incubated in the presence of biotin and fixed at different time points. At 20 minutes, CRB3 had
242 arrived at the Golgi apparatus in most aRG cells (95.7±5.2%), and by 60 minutes it strongly
243 accumulated at the apical surface of over 90% of the cells (**Fig. 5c, d**). In one third of the cells,
244 CRB3 was only detected at the apical surface, indicating that most of the protein pool had
245 reached its final location (**Fig. 5c, e**).

246 To test whether post-Golgi transport of CRB3 towards the apical surface relies on
247 dynein, we monitored SBP-CRB3-GFP trafficking in aRG cells expressing the CC1-p150
248 dominant negative construct. As in control, 20 minutes after biotin treatment, CRB3 reached
249 the Golgi apparatus (in 94.1±3.6% of the cells), but at 60 minutes its trafficking towards the
250 apical surface was severely affected (**Fig. 5c, d**). By 120 minutes, it started to reach the apical
251 surface, although exhibiting a 2-fold decrease compared to control cells. Moreover, almost no
252 CC1-expressing cell showed a localization of the total CRB3 pool at the apical surface, even
253 after 120 minutes, as compared to a third of control cells (**Fig. 5c, e**). Therefore, post-Golgi
254 transport of Crumbs towards the apical surface of aRG cells is driven by the dynein-dynactin
255 complex.

256 We and others have previously shown that post-Golgi RAB6A+ vesicles contain a wide
257 variety of cargoes^{23,50,51}. We confirmed here that RAB6A+ vesicles also transport CRB3. HeLa
258 cells expressing CRB3 in the RUSH system were imaged 30 minutes after biotin addition, when
259 CRB3 has reached the Golgi apparatus and begun to exit it. At this timepoint, almost 80% of
260 vesicles containing SBP-CRB3-GFP were positive for mcherry-RAB6A, indicating that CRB3
261 largely exits the Golgi apparatus within RAB6A+ vesicles (**Extended data, Fig. 3a, b**).

262

263 *Apical localization of Crumbs in aRG cells depends of RAB6A/B and LIS1*

264 Finally, we tested the consequence of *LIS1* and *RAB6A/B* KO on the steady-state levels
265 of the Crumbs complex at the apical surface of aRG cells. *LIS1* KO brains revealed altered
266 apical localization of CRB3 and its partner PALS1 (**Fig. 6a**). The CRB3 apical signal intensity
267 was reduced, which we quantified using line scan fluorescent intensity measurements (**Fig. 6b**).
268 Moreover, we observed the frequent appearance of patches that were completely devoid of
269 CRB3 and PALS1. We quantified the number of empty patches along the ventricular surface,
270 which were completely absent in control embryos but occurred at a frequency of 8.2 per mm in
271 *LIS1* KO embryos (**Fig. 6c**).

272 *RAB6A/B* dKO embryonic cortices also displayed an altered apical localization of CRB3
273 (**Fig. 6a**). As observed in *LIS1* KO brains, empty patches devoid of CRB3 and PALS1 occurred
274 at a frequency of 4.3 per mm in *RAB6A/B* dKO (**Fig. 6c**). On the other hand, single gene
275 depletion of *RAB6A* or *RAB6B* had no effect (data not shown). Altogether, the above results
276 indicate that the RAB6-dynein-LIS1 apical trafficking pathway is required for proper transport
277 of CRB3 and correct apical localization of the Crumbs complex.

278

279 **Discussion**

280 The main finding of this study is that, in aRG cells, post-Golgi apical trafficking occurs
281 in the microtubule minus end direction, via the RAB6-dynein-LIS1 complex, and is required
282 for the apical localization of the Crumbs complex. As a consequence, genetic inactivation of
283 *RAB6A/B* or *LIS1* leads to CRB3 loss at the ventricular surface and a delamination of aRG cells,
284 which adopt features of bRG-like cells, including the ability to proliferate. We also establish
285 aRG cells as a powerful epithelial model, enabling to resolve transport events in real time *in*
286 *situ*.

287 **Post-Golgi transport is highly bidirectional in aRG cells**

288 Dynein is largely viewed as a retrograde motor, driving trafficking towards the centre
289 of the cell. We show here that in epithelial cells, where microtubule minus ends concentrate
290 apically, dynein controls exit from the Golgi apparatus and transport to the apical surface. We
291 observed that apical transport is however highly bidirectional, with RAB6+ vesicles constantly
292 alternating in the apical and basal directions. Therefore, rather than being transported in a
293 strictly polarized manner, RAB6+ vesicles actively oscillate, increasing the chances of reaching
294 and docking to the apical surface. In non-polarized epithelial cells, although bi-directional
295 movement can be observed, the trafficking of post-Golgi RAB6+ vesicles is largely
296 unidirectional, moving towards the cell periphery in a kinesin-dependent manner^{25,50,52}. The
297 higher rate of minus end runs in aRG cells may point to a specific regulation of motors on
298 RAB6+ vesicles upon epithelial polarization. Bicaudal family members, which recruit and
299 activate dynein onto RAB6+ vesicles, are promising candidates for such regulation. Knock-out
300 of *BICD2* in the mouse neocortex leads to ectopically dividing progenitors, phenocopying *LIS1*
301 and *RAB6A/B* dKO, and suggesting apical polarity defects and delamination⁵³. Transport in the
302 minus end direction may be further biased by BICDR1, which is able to recruit 2 dynein
303 molecules for faster movement, and induces strong accumulation of RAB6+ vesicles at the
304 microtubule minus ends^{31,42,54}.

305

306 **The RAB6-dynein-LIS1 complex controls post-Golgi apical transport of CRB3**

307 Newly synthetized cargoes can traffic directly from the Golgi to the plasma membrane,
308 though passage through intermediate recycling compartments was also proposed. We recently
309 demonstrated that RAB6 acts as a general regulator of protein secretion and confirm here that
310 CRB3 traffics within RAB6+ vesicles²³. Because RAB6+ vesicles directly fuse with the plasma
311 membrane, via its docking factor ELKS⁵⁰, we favor a model whereby CRB3 is directly
312 transported from the Golgi to the apical surface. CRB is known to be further maintained apically
313 through a RAB11-dependent recycling route⁵⁵. Retromer-dependent transport back to the TGN
314 was also described, indicating that the RAB6-dynein-LIS1 pathway we describe here may also
315 play a role in CRB recycling⁵⁶. Of note, RAB6+ vesicles were also abundant in the basal process
316 of aRG cells, but the mechanism(s) for sorting of apical and basal post-Golgi cargoes will
317 require further investigation.

318 **RAB6A and RAB6B redundantly control polarized trafficking**

319 We observed that, unlike double KO, single deletion of *RAB6A* or *RAB6B* did not affect
320 brain development, indicating that they were largely acting redundantly. Such redundancy was
321 previously observed in cultured neurons following shRNA-mediated knockdown, as well as in
322 MDCK cells where the very low levels of RAB6B are sufficient to compensate for *RAB6A*
323 KO^{24,42,54}. We also show that RAB6A/A' and RAB6B act redundantly to control proper
324 neuronal positioning, which may be caused by altered trafficking of adhesion molecules,
325 including integrins⁴⁵.

326 **Impaired apical post-Golgi trafficking leads to bRG-like cell production**

327 bRG cells are generated from aRG cells and their amplification is a hallmark of
328 gyrencephaly. The expression of several factors is known to affect their production but the
329 underlying mechanisms remain largely unclear⁵⁷⁻⁵⁹. aRG cells were proposed to detach due to
330 mitotic spindle rotation, or downregulation of the adherens junctions^{15,60,61}. Recent evidence
331 has demonstrated that delamination can be associated with Golgi structure abnormalities, and
332 that detached aRG cells can re-integrate into the epithelium at early developmental stages but
333 not at later neurogenic states^{62,63}. Here, using live imaging, we demonstrate that altered post-
334 Golgi transport leads to a detachment of the apical process of aRG cells during interphase, and
335 to the production of ectopically localized cells that maintain RG identity and proliferative
336 capacity. These cells however appear to retract their basal process, likely due to impaired
337 integrin-based contact at the basal end-foot. We did not observe the appearance of folding
338 patterns in KO brains, due to the presence of an apoptosis-dependent microcephaly phenotype.

339 In conclusion, our results indicate that the maintenance of epithelial integrity during
340 neocortex development relies on post-Golgi transport to the apical surface of aRG cells. This
341 pathway can control the balance between aRG cell maintenance and bRG cell production,
342 highlighting a potential site of action for factors that stimulate bRG cell production.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

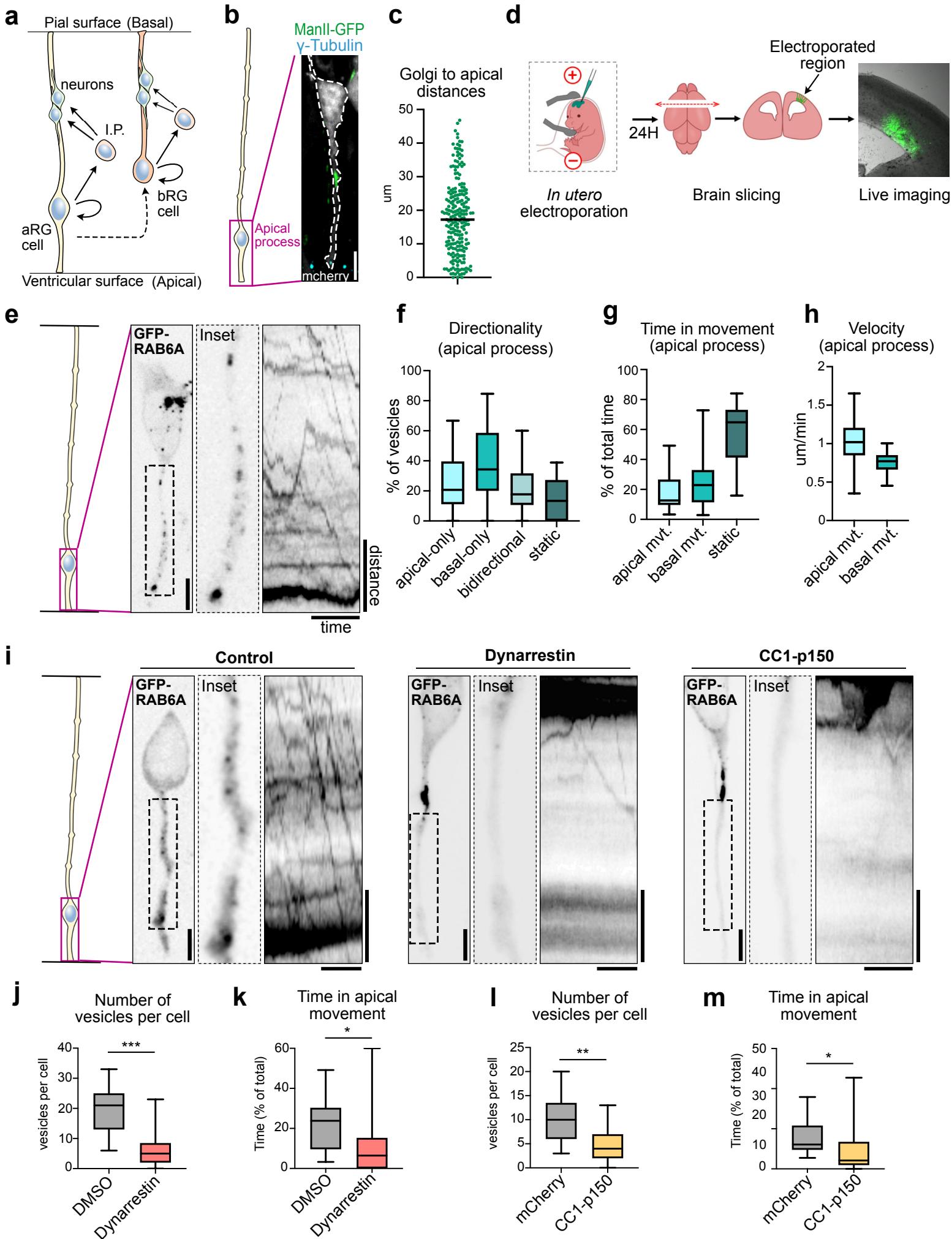
363

364

365

366

367


368

369

370

371

372

Figure 1

373 **Figure Legends**

374

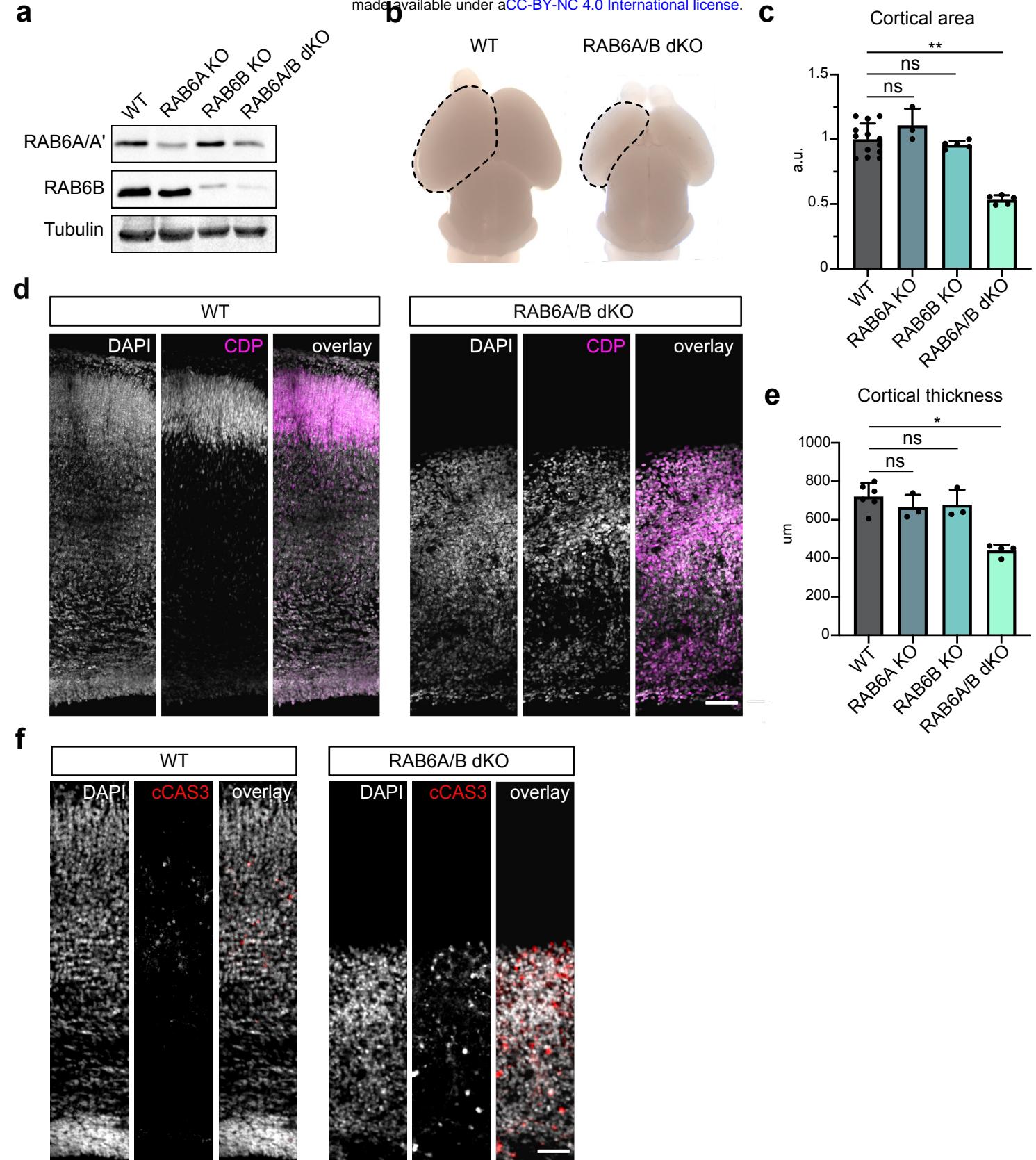
375 **Figure 1. Apical transport of RAB6A+ post-Golgi vesicles is driven by dynein**

376 **a.** Schematic representation of cortical neurogenesis. Apical radial glial (aRG) cells are
377 epithelial cells and the main neuronal progenitors in mouse. Basal radial glial (bRG) cells are
378 rare in mouse but are the most abundant progenitor population in human. They have
379 delaminated from the neuroepithelium. I.P.: Intermediate Progenitor. **b.** Localization of the
380 Golgi apparatus (ManII-GFP) and the centrosome (γ -tubulin) in E15.5 mCherry-electroporated
381 radial glial cell. The Golgi apparatus is localized basally, away from the centrosome. Scale bar
382 = 5 μ m. **c.** Average distance between the apical-most part of the Golgi apparatus and the apical
383 surface in aRG cells. N=224 cells from 3 independent brains. **d.** Schematic representation of *in*
384 *utero* electroporation and live imaging procedure in the mouse developing cortex. **e.** Live
385 imaging of GFP-RAB6A in aRG cells at E15.5 allows tracking of individual RAB6A+ vesicles
386 *in situ*, from the basal Golgi apparatus towards the apical surface. Scale bar = 5 μ m. Distance =
387 5 μ m, time = 30 seconds. **f.** RAB6A+ vesicle directionality in apical processes of aRG cells over
388 one-minute movies. **g.** Relative time spent by RAB6A+ vesicles in apical, basal or static
389 phases. **h.** Velocity of apically and basally moving RAB6A+ vesicles. (**f, g, h**) N= 388 vesicles
390 from 30 cells. **i.** Live imaging of GFP-RAB6A in control, dynarrestin-treated and CC1-p150-
391 expressing aRG cells at E15.5. Scale bars = 5 μ m. Distance = 5 μ m, time = 30 seconds. **j.** Number
392 of RAB6A+ vesicles in the apical process of DMSO and dynarrestin-treated mouse aRG cells.
393 **k.** Relative time spent by RAB6A+ vesicles in apical movement phase, in DMSO and
394 dynarrestin-treated mouse aRG cells. **l.** Number of RAB6A+ vesicles in the apical process of
395 mCherry and CC1-p150-expressing aRG cells. **m.** Relative time spent by RAB6A+ vesicles in
396 apical movement phase, in mCherry and CC1-p150-expressing aRG cells. (**j, k, l, m**) 216
397 vesicles from N=11 cells for DMSO, 145 vesicles from N=25 cells for dynarrestin, 173 vesicles
398 from N=17 cells for mCherry control, 71 vesicles from N=15 cells for CC1-p150. Mann-
399 Whitney *U* test *p \leq 0.05, **p \leq 0.01, *** p \leq 0.001.

400

401

402


403

404

405

406

Figure 2 bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.23.453475>; this version posted July 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

407 **Figure 2. *RAB6A/B* double knockout causes microcephaly**

408 **a.** Western blot analysis of RAB6A/A' and RAB6B protein levels in *WT*, *Emx1-Cre*;
409 *RAB6*^{loxP/loxP} (*RAB6A* KO), *RAB6B*^{-/-} (*RAB6B* KO) and *Emx1-Cre; RAB6A*^{loxP/loxP}; *RAB6B*^{-/-}
410 (*RAB6A/B* dKO) E15.5 cortical extracts. **b.** P0 *WT* and *RAB6A/B* dKO brains. A cortical
411 hemisphere is circled (dotted lines). **c.** Cortical area in *WT* (N=13), *RAB6A* KO (N=2), *RAB6B*
412 KO (N=5) and *RAB6A/B* dKO (N=5) at P0. **d.** *WT* and *RAB6A/B* dKO brains stained for layer
413 II/III marker CDP at P0. Scale bar = 100 μ m. **e.** Cortical thickness (μ m) in *WT* (N=6), *RAB6A*
414 KO (N=3), *RAB6B* KO (N=3) and *RAB6A/B* dKO (N=4) at P0. **f.** Immunostaining for cleaved
415 Caspase 3 (cCAS3) in *WT* and *RAB6A/B* dKO brains at P0. Scale bar = 50 μ m. **(c, e)** Kruskal-
416 Wallis test with a Dunn *post-hoc* test and Benjamini-Hochberg procedure.

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

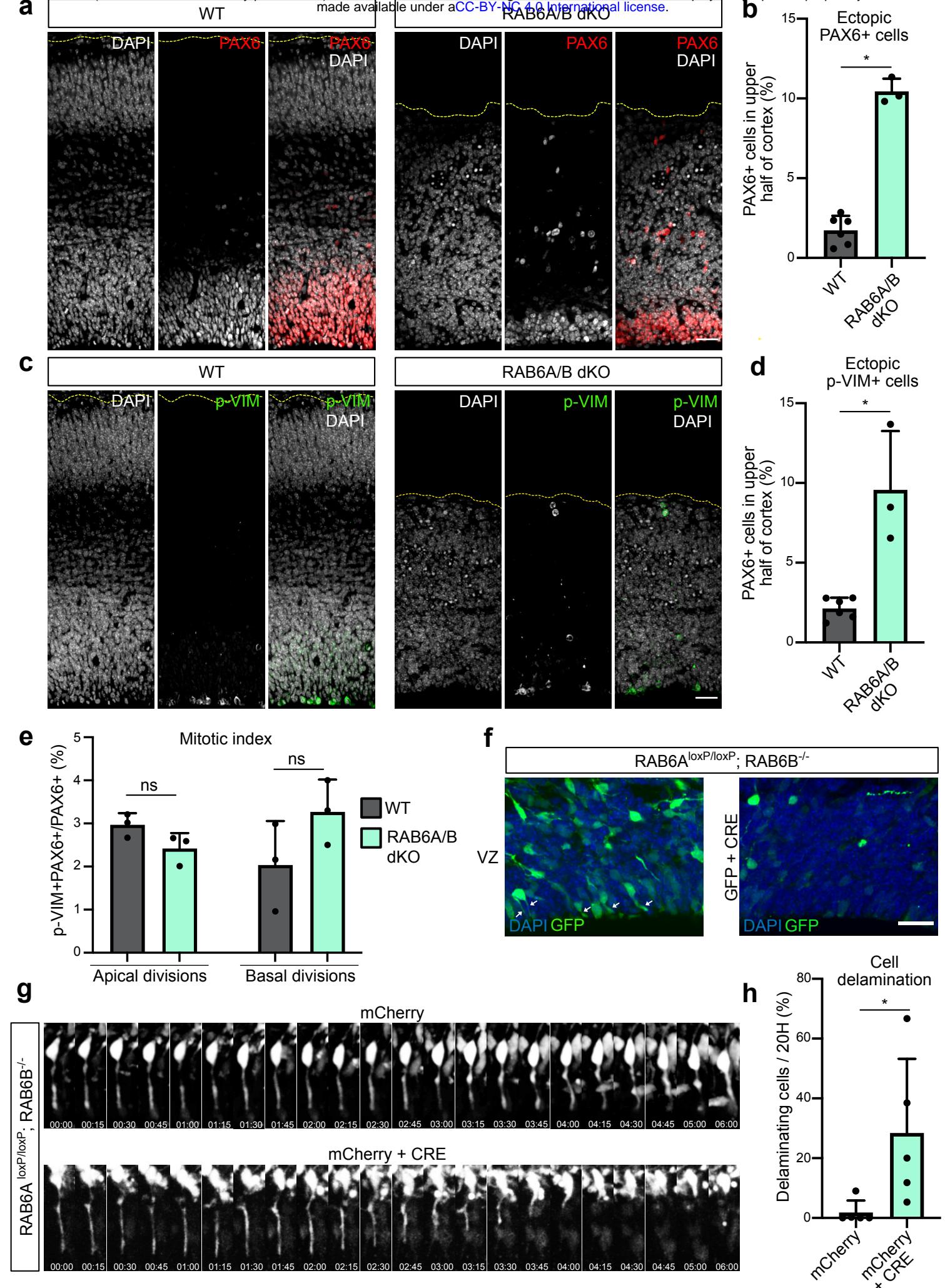
432

433

434

435

436


437

438

439

440

Figure 3 bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.23.453475>; this version posted July 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

441 **Figure 3. *RAB6A/B* dKO leads to aRG cell delamination during interphase**

442 **a.** PAX6 staining in WT and *RAB6A/B* dKO E15.5 brains. Scale bar = 50 μ m. **b.** Percentage of
443 PAX6+ cells located in the upper half of the cortex of WT and *RAB6A/B* dKO E15.5 brains.
444 WT: 4282 cells from N=6 brains. *RAB6A/B* dKO: 1241 cells from N=3 brains. Mann–Whitney
445 *U* test. **c.** Phospho-Vimentin (p-Vim) staining in WT and *RAB6A/B* dKO E15.5 brains. Scale
446 bar = 50 μ m. **d.** Percentage p-VIM+ cells dividing ectopically, in the upper half of the cortex of
447 WT and *RAB6A/B* dKO E15.5 brains. WT: 1713 cells from N=6 brains. *RAB6A/B* dKO: 506
448 cells from N=3 brains. Mann–Whitney *U* test. **e.** Mitotic index (p-VIM+ PAX6+ / PAX6+ cells)
449 of RG cells dividing apically (at the ventricular surface) or basally (upper half) in WT and
450 *RAB6A/B* dKO E15.5 brains. 3 to 6 brains were analyzed per condition. Apical divisions: N=
451 1886 cells for WT and 1511 cells for *RAB6A/B* dKO. Basal divisions: N=643 cells for WT and
452 809 cells for *RAB6A/B* dKO. Mann–Whitney *U* test. **f.** Electroporation of *RAB6A*^{loxP/loxP};
453 *RAB6B*^{-/-} E14.5 embryos with GFP (control) or GFP + CRE (*RAB6A/B* dKO) and fixation at
454 E18.5. Localization of GFP+ cells in the ventricular zone. White arrows indicate apical
455 processes. Scale bar = 25 μ m. **g.** Electroporation of *RAB6A*^{loxP/loxP}; *RAB6B*^{-/-} E14.5 embryos
456 with mCherry (control) or mCherry + CRE (*RAB6A/B* dKO) and live imaging of delamination
457 events at E17.5. **h.** Apical endfoot detachment and retraction events during 20 hours movies in
458 mCherry or mCherry + CRE electroporated cells at E17.5. mCherry: N=46 cells from 5 movies.
459 mCherry + CRE: N=72 cells from 5 movies. Fisher's exact test, *p \leq 0.05.

460

461

462

463

464

465

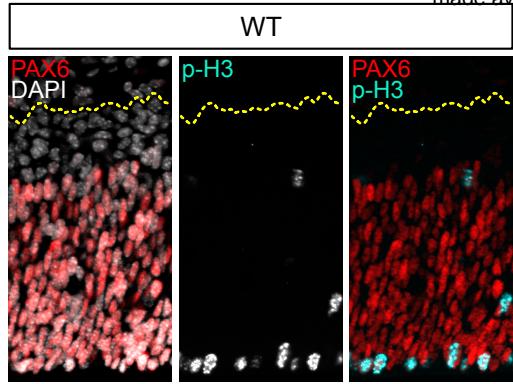
466

467

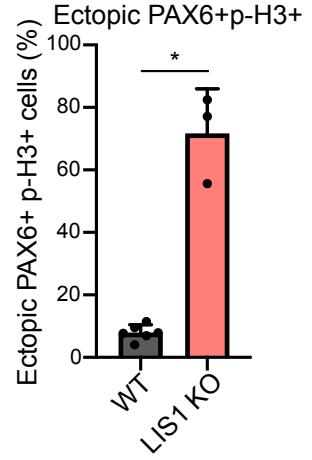
468

469

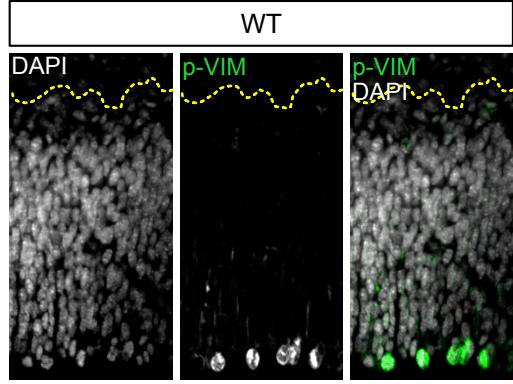
470

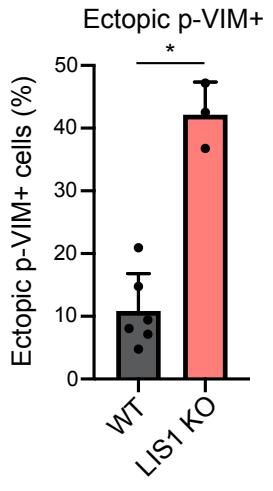

471

472


473

474


a


c

b

d

475 **Figure 4. *LIS1* knock-out leads to ectopically dividing progenitors**

476 **a.** PAX6 and phospho-Histone 3 (p-H3) staining in WT and *LIS1* KO E12.5 brains. Cortices
477 were subdivided into 5 bins of equal size along the radial axis. Scale bar = 25 μ m. **b.** Phospho-
478 Vimentin (p-VIM) staining in WT and *LIS1* KO E12.5 brains. Scale bar = 25 μ m. **c.** Percentage
479 of PH3+/PAX6+ cells located above the ventricular surface of WT and *LIS1* KO E12.5 brains.
480 WT: 1192 cells from N=6 brains. *LIS1* KO: 589 cells from N=3 brains. **d.** Percentage p-VIM+
481 cells dividing ectopically, away from the ventricular surface of WT and *LIS1* KO E12.5 brains.
482 WT: 1056 cells from N=6 brains. *LIS1* KO: 879 cells from N=3 brains. **(c, d)** Mann–Whitney
483 *U* test.

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

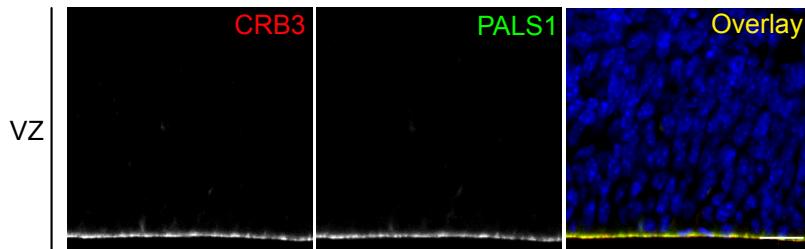
501

502

503

504

505


506

507

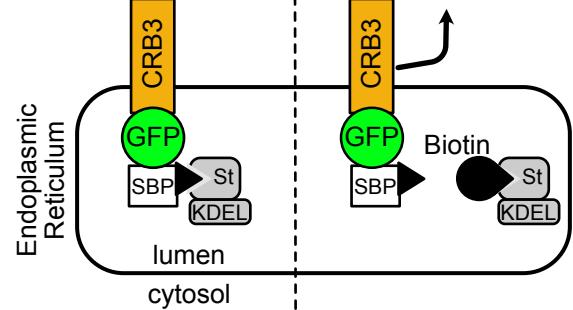
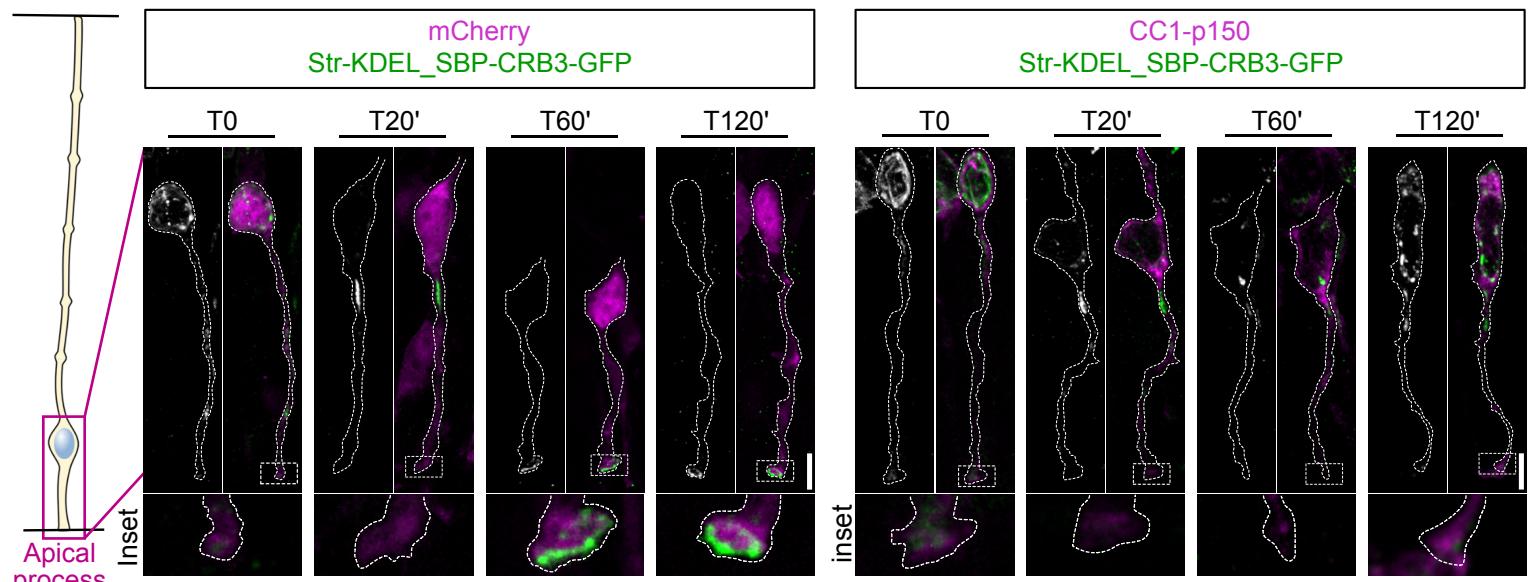

508

Figure 5 bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.23.453475>; this version posted July 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

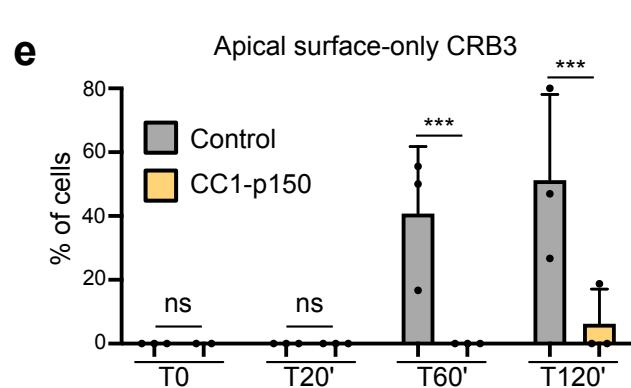
a



b RETENTION



c RELEASE (+Biotin)


c

d

e

509 **Figure 5. Post-Golgi apical transport of Crumbs is driven by dynein**

510 **a.** Immuno-staining for Crumbs3 (CRB3) and PALS1 in E15.5 embryonic cortex. Scale bar =
511 25 μ m. **b.** Schematic representation of the RUSH system. CRB3 is retained in the endoplasmic
512 reticulum until the addition of biotin, which releases it for trafficking. SBP: Streptavidin-
513 binding protein. St: Streptavidin. **c.** RUSH assay for CRB3-GFP in control (mcherry) and
514 dynactin-inhibited radial glial cells (CC1-p150-dsRed), electroporated at E.15.5 and imaged at
515 E16.5. Scale bar = 5 μ m. **d.** CRB3 localization at the apical surface upon release. **e.** Percentage
516 of cells with 100% of CRB3 signal at the apical surface upon release. **(d, e)** mCherry (control):
517 N= 361 cells. CC1-p150: N=268 cells. Fisher's exact test and Benjamini-Hochberg procedure,
518 *** p \leq 0.001.

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

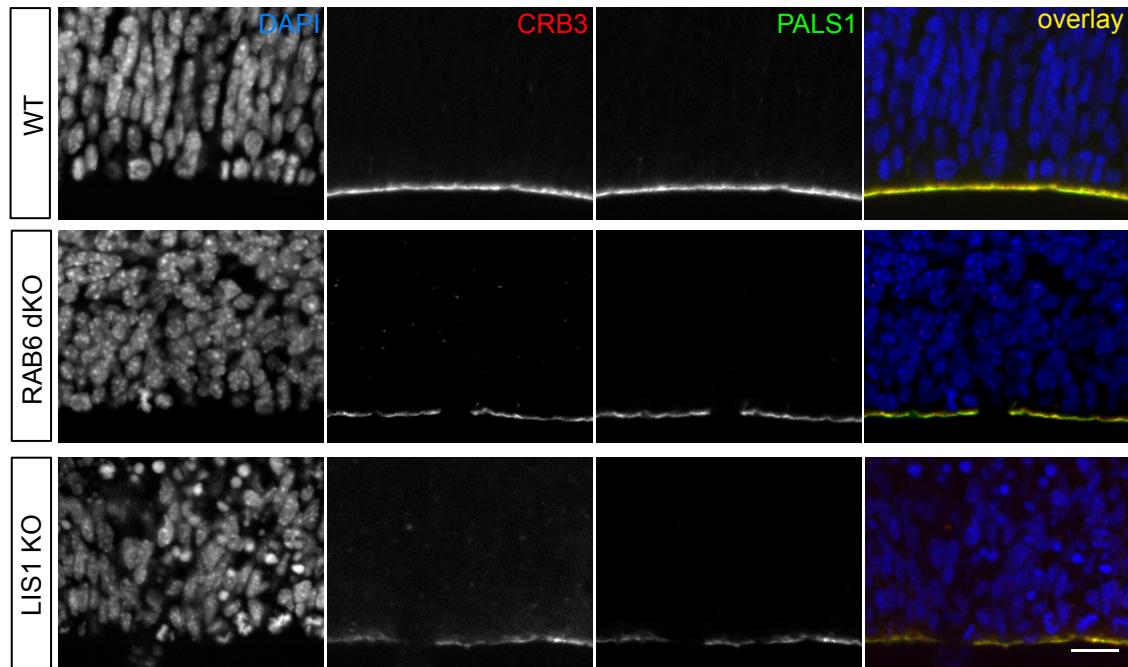
534

535

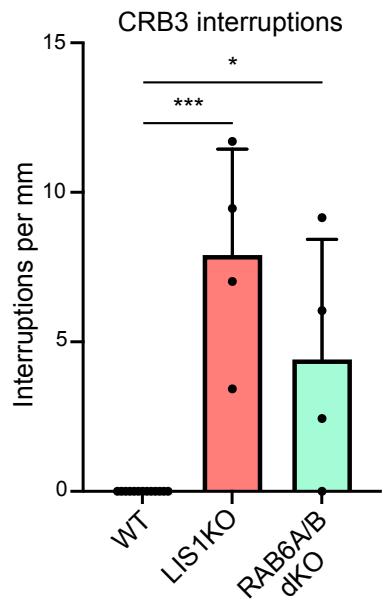
536

537

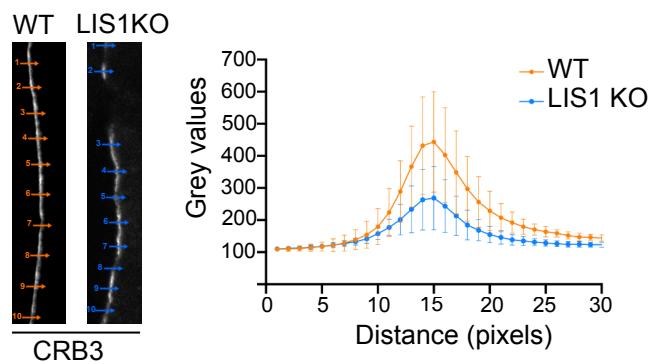
538

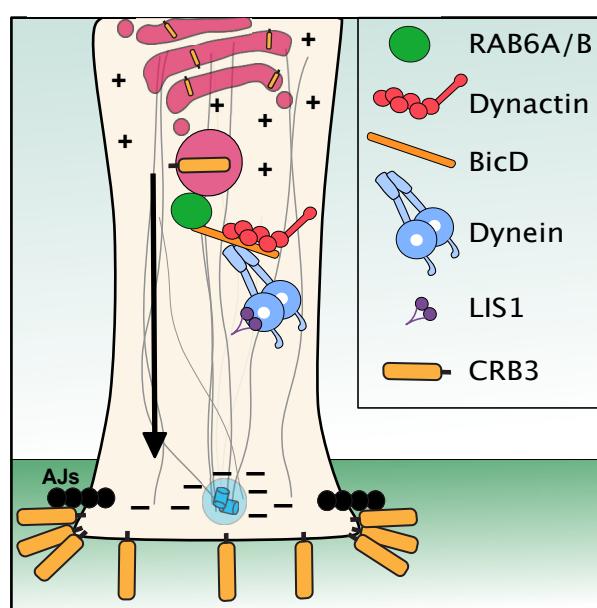

539

540


541

542


a


c

b

d

543 **Figure 6. Apical localization of Crumbs in aRG cells depends on RAB6A/B and LIS1**

544 **a.** CRB3 and PALS1 staining in WT, *RAB6A/B* dKO (E15.5) and *LIS1* KO (E12.5) brains. Scale
545 bar = 25 μ m. **b.** CRB3 average apical signal intensity +/- SEM in WT and *LIS1* KO E12.5 brains.
546 N= 3 brains. **c.** Quantification of CRB3 staining interruptions along the ventricular boundary
547 of WT (E12.5 and E15.5; N=13 brains), *LIS1* KO (E12.5, N=4 brains)) and *RAB6A/B* dKO
548 (E15.5, N=4 brains). Kruskal-Wallis test with a Dunn *post-hoc* test and Benjamini-Hochberg
549 procedure, *** p \leq 0.001. **d.** Model for post-Golgi apical transport of CRB3 to the apical surface
550 of aRG cells.

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

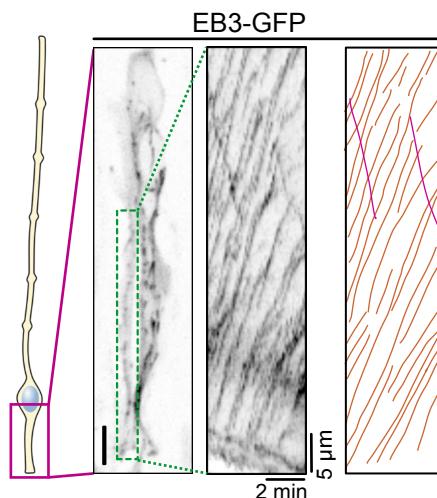
568

569

570

571

572


573

574

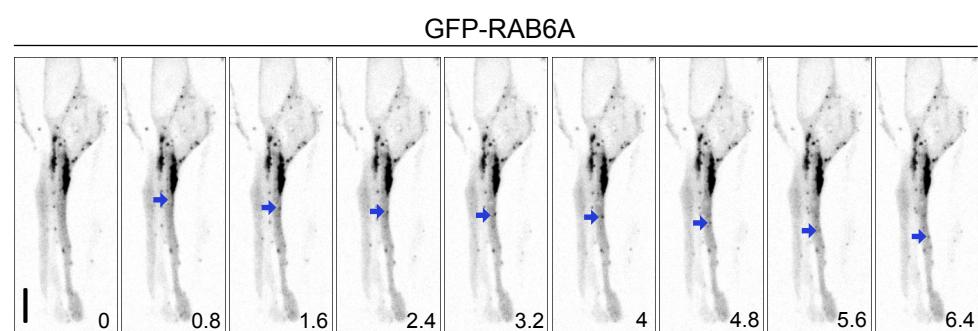
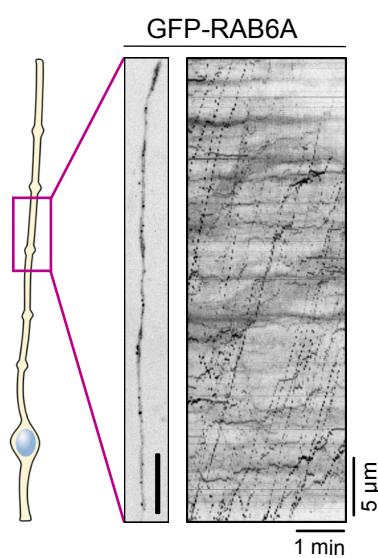
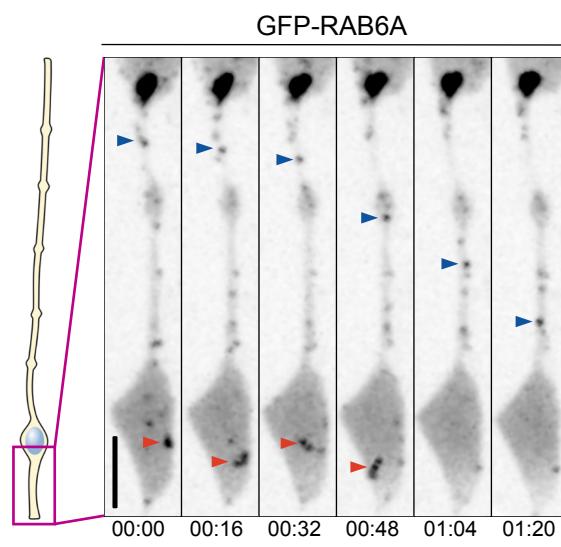
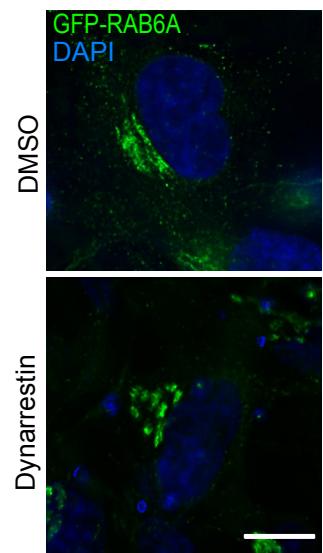
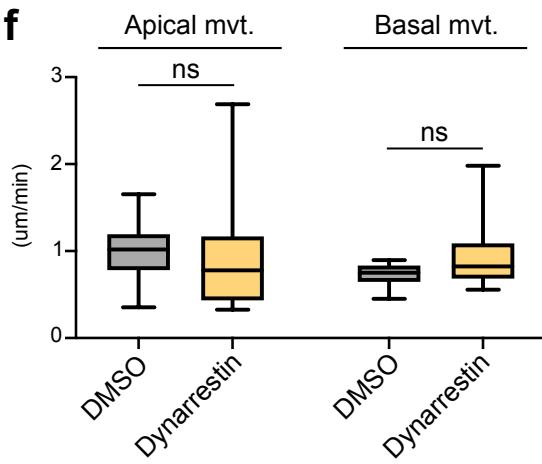

575

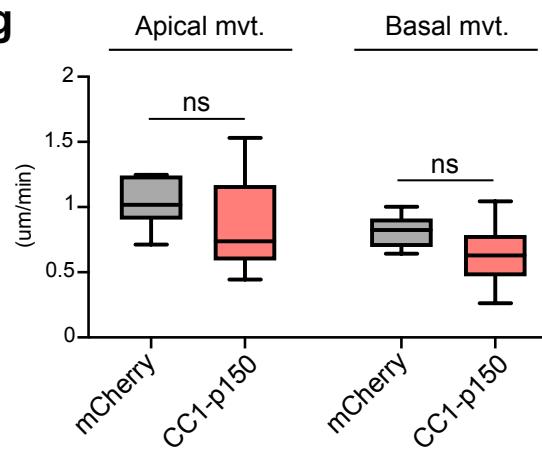
Figure S1


a


b


c


d


e

f

g

576 **Extended data Figure 1 (related to Figure 1). Microtubule polarity, RAB6A dynamics and**
577 **dynarrestin validation.**

578 **a.** Live imaging of EB3-GFP in the apical process of an aRG cell at E15.5. Center: kymograph.
579 Left: manual tracking of EB3 comets. Orange: basally-growing. Pink: Apically-growing. Scale
580 bar = 5 μ m. **b.** Live imaging of GFP-RAB6A in the apical process of an aRG cell at E15.5. At
581 0.8 seconds a tubule is budding from the Golgi, leading to the formation of an apically-moving
582 vesicle. Blue arrowhead indicates RAB6A+ vesicle. Scale bar = 5 μ m. **c.** Live imaging of GFP-
583 RAB6A in the basal process of an aRG cell at E15.5. Right: kymograph. Scale bar = 5 μ m. **d.**
584 Live imaging of GFP-RAB6A in the apical process of an aRG cell at E15.5. Red arrowhead: a
585 RAB6A+ vesicle can be seen disappearing in the endfoot, suggesting fusion with the apical
586 membrane. Blue arrowhead: a RAB6A+ vesicle moving apically within the apical process.
587 Scale bar = 10 μ m. **e.** RPE-1 cells transfected with GFP-RAB6A to visualize the Golgi apparatus
588 architecture, and treated for 4 hours with 100 μ M dynarrestin or DMSO. Scale bar = 10 μ m. **f.**
589 Velocity of apically and basally-moving RAB6A vesicles within the apical process of DMSO
590 and dynarrestin-treated aRG cells. 142 vesicles from N=7 cells for DMSO, 74 vesicles from
591 N=18 cells for dynarrestin. **g.** Velocity of apically and basally-moving RAB6A vesicles within
592 the apical process of mcherry control and CC1-p150-expressing aRG cells. 120 vesicles from
593 N=17 cells for mCherry control, 39 vesicles from N=11 cells for CC1-p150.

594

595

596

597

598

599

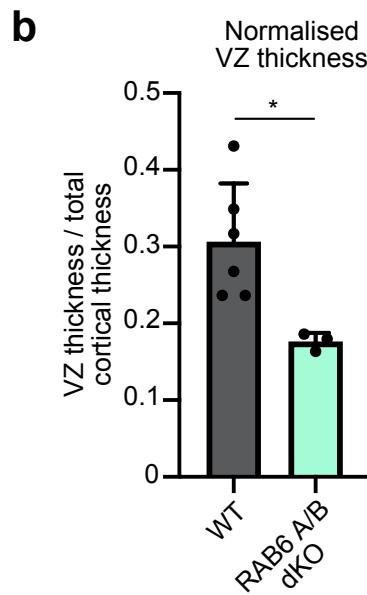
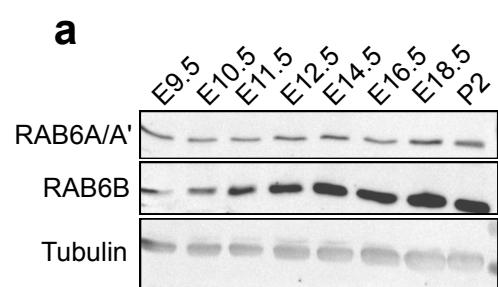
600

601

602

603

604



605

606

607

608

Figure S2

609 **Extended data Figure 2 (related to Figures 2 and 3). RAB6 expression in the brain and**
610 ***RAB6A/B* dKO effect on VZ.**

611 **a.** RAB6A/A' and RAB6B expression in the developing brain and at P2. **b.** Ventricular zone
612 (VZ) thickness normalized to total cortical thickness in N=6 WT brains and N=3 *RAB6A/B*
613 dKO. Mann–Whitney *U* test, * p≤0.05.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

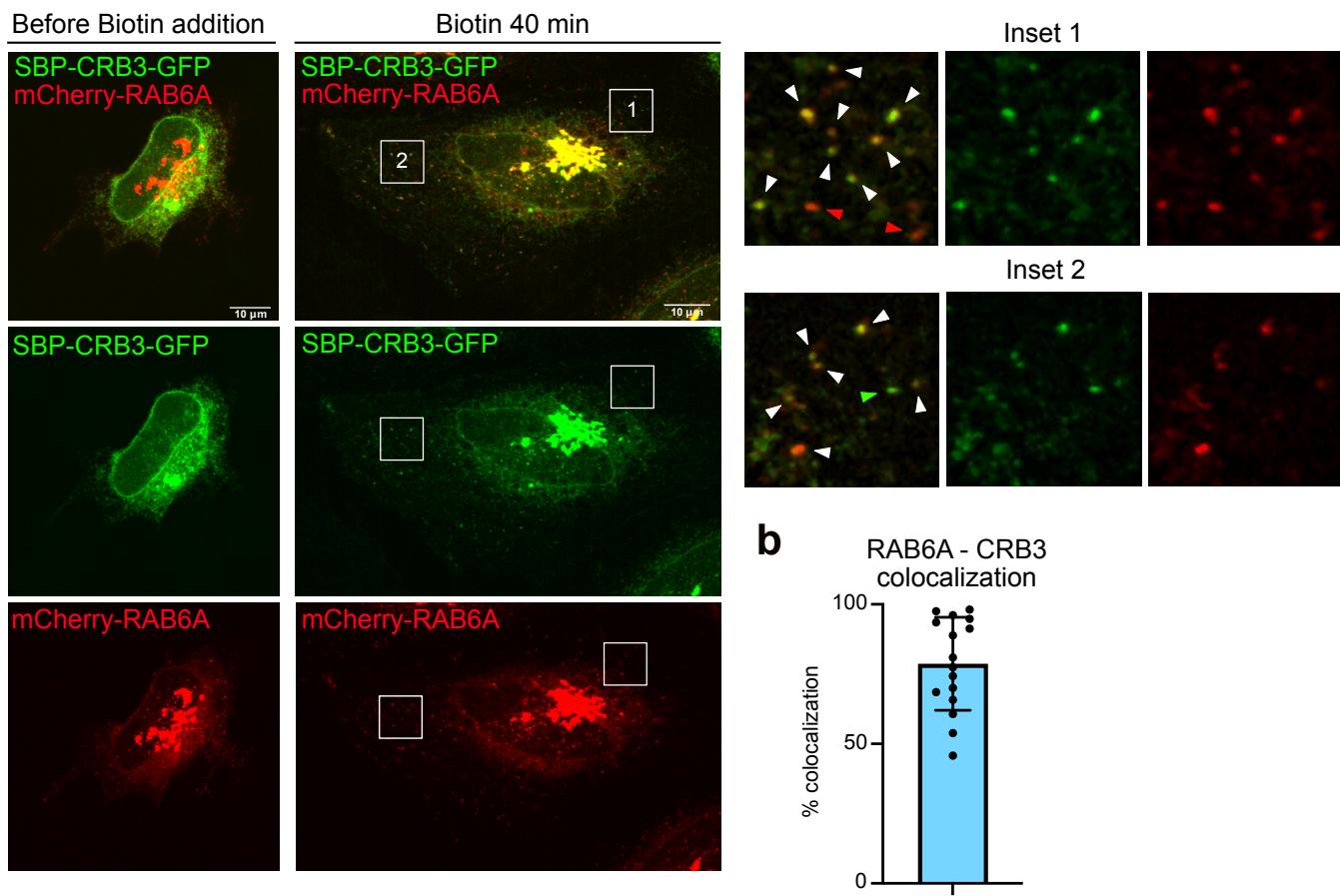
634

635

636

637

638


639

640

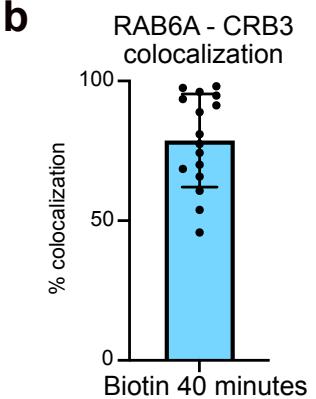

641

Figure S3

a

b

642 **Extended data Figure 3 (related to Figure 6). CRB3 exits the Golgi within RAB6+ vesicles.**
643 **a.** SBP-CRB3-GFP and mCherry-RAB6A localization in HeLa cells before and 40 minutes
644 after addition of biotin. Right: Inset. White arrowheads: colocalizing foci. **b.** Quantification of
645 SBP-CRB3-GFP and mCherry-RAB6A colocalization away from the Golgi apparatus 40
646 minutes after biotin addition.

647

648 **Supplemental Video 1 (related to Figure S1a). Live imaging of EB3-GFP in the apical**
649 **process of an E15.5 aRG cell.** The vast majority of microtubules grows in the basal direction.

650

651 **Supplemental Video 2 (related to Figure S1b). Live imaging of GFP-RAB6A in the apical**
652 **process of an E15.5 aRG cell.** A RAB6A+ vesicle can be seen budding from the Golgi and
653 migrating apically (blue arrow).

654

655 **Supplemental Video 3 (related to Figure 1e). Live imaging of GFP-RAB6A in the apical**
656 **process of an E15.5 aRG cell.** RAB6A+ vesicles can be seen moving bidirectionally.

657

658 **Supplemental Video 4 (related to Figure S1c). Live imaging of GFP-RAB6A in the basal**
659 **process of an E15.5 aRG cell.** RAB6A+ vesicles largely move basally.

660

661 **Supplemental Video 5 (related to Figure S1d). Live imaging of GFP-RAB6A in the apical**
662 **process of an E15.5 aRG cell.** A RAB6A+ vesicle disappears within the apical endfoot (red
663 arrowhead). A RAB6A+ vesicle moves apically (blue arrowhead).

664

665 **Supplemental Video 6 (related to Figure 1i). Live imaging of GFP-RAB6A in the apical**
666 **process of an E15.5 aRG cell.** RAB6A+ vesicles can be seen moving bidirectionally.

667

668 **Supplemental Video 7 (related to Figure 1i). Live imaging of GFP-RAB6A in the apical**
669 **process of an E15.5 aRG cell treated with Dynarrestin.** The amount of RAB6A+ vesicles
670 within the apical process is greatly reduced.

671

672 **Supplemental Video 8 (related to Figure 1i). Live imaging of GFP-RAB6A in the apical**
673 **process of an E15.5 aRG cell expressing CC1-p150.** The amount of RAB6A+ vesicles within
674 the apical process is greatly reduced.

675

676 **Supplemental Video 9 (related to Figure 3g). Live imaging of an mCherry-expressing**
677 **E17.5 aRG cell from a *RAB6A*^{loxP/loxP}; *RAB6B*^{-/-} genetic background (control).** The apical
678 process remains attached during the course of the movie.

679
680 **Supplemental Video 10 (related to Figure 3g). Live imaging of an mCherry + CRE-**
681 **expressing E17.5 aRG cell from a *RAB6A*^{loxP/loxP}; *RAB6B*^{-/-} genetic background (dKO).**
682 The apical process detaches during the course of the movie.

683
684
685 **Methods**

686
687 **Animal breeding and care**

688 All experiments involving mice were carried out according to the recommendations of the
689 European Community (2010/63/UE). The animals were bred and cared for in the Specific
690 Pathogen Free (SPF) animal facility of Institut Curie (agreement C75-05-18). All animal
691 procedures were approved by the ethics committee of the Institut Curie (CEEA-IC #118) and
692 by the French Ministry of Research (APAFiS# 26880-20200813165686-v1) in compliance with
693 the international guidelines.

694
695 **Mice**

696 *Generation of RAB6B knockout mice*

697 The constitutive *RAB6B* knock-out mice have been engineered using CRISPR/Cas9 technology to
698 create a frame shift in the coding sequence. Two gRNA couples respectively targeting exons 2 and
699 3, and 2 and 4 were selected using the <http://crispr.mit.edu/>. gRNAs and Cas9m RNA were
700 prepared according to the online protocol from Feng Zhang,
701 <https://www.addgene.org/crispr/zhang/>. Briefly, the forward and the reverse oligonucleotides
702 specific for the selected gRNA sequences were annealed and cloned into px330 plasmid. To get
703 Cas9 mRNA and gRNAs, an *in vitro* transcription was performed on Cas9 pCR2.1-XL plasmid
704 and gRNA plasmid using a T7 promoter, and the mMessage mMachine T7 ULTRA kit and
705 MEGAshortscript T7 kit (Life Technologies), respectively. Cas9 mRNA and sgRNAs were then
706 purified using the MEGAclear Kit (Thermo Fisher Scientific) and eluted in RNase-free water.
707 The gRNAs and Cas9mRNA quality were evaluated on agarose gel.

708 Eight-week-old superovulated B6D2F1/J (C57BL/6J × DBA/2J) females from Charles
709 River France were superovulated by intraperitoneal (i.p.) administration of 5 IU of Pregnant Mare

710 Serum Gonadotropin followed by an additional i.p. injection of 5 IU Human Chorion
711 Gonadotropin 48 hours later. Superovulated females were mated to stud males of the same
712 background. Zygotes were collected from the oviduct and were cultured in Cleave medium (Cook,
713 K-RVCL-50) at 37°C under 5% CO₂ until microinjection. An injection solution was prepared as
714 following: Cas9 mRNA at 100 ng/μl and 50ng/μl for each gRNA in Brinster buffer (10 mM Tris-
715 HCl pH 7.5; 0.25 mM EDTA) and passed through 0.22 μm pore size filter. Cytoplasmic
716 microinjection was performed into mouse fertilized oocytes. Microinjected embryos were
717 transferred into 0.5 dpc NMRI pseudo-pregnant females with 12 zygotes per oviduct. Selected
718 founders F0 carrying a 1 bp deletion in exon 2 and a 279 bp inversion, both leading to a premature
719 STOP codon, were then backcrossed to C57BL6/N to segregate out undesired genetic events.

720

721 ***RAB6A/B dKO and LIS1 KO***

722 *RAB6A*^{loxP/loxP} mutant mice were previously generated and characterized⁴⁶. *RAB6A*^{loxP/loxP} mice
723 were first crossed with *RAB6B*^{-/-} mice to generate *RAB6A*^{loxP/loxP}; *RAB6B*^{-/-} animals, which were
724 viable and fertile. These animals were then crossed with *Emx1-Cre* (JAX 005628) animals to
725 generate *Emx1; RAB6A*^{loxP/loxP}; *RAB6B*^{-/-} (*RAB6A/B* double knockout) animals. *LIS1* conditional
726 knockout mice (*LIS1*^{-/-}, also known as Pafah1b1-*loxP*⁶⁴) were crossed with *Emx1-Cre* mice.

727

728 ***In utero* electroporation of mouse embryonic cortex**

729 Pregnant mice were anesthetized with isoflurane gas, and injected subcutaneously first with
730 buprenorphine (0.075 mg/kg) and a local analgesic, bupivacaine (2 mg/kg), at the site of the
731 incision. Lacrinorm gel was applied to the eyes to prevent dryness/irritation during surgery.
732 The abdomen was shaved and disinfected with ethanol and antibiotic swabs, then opened, and
733 the uterine horns exposed. Plasmid DNA mixtures were used at a final concentration of 1 μg/μl
734 per plasmid (except for GFP-RAB6 overexpression experiments: mCherry empty vector/ CC1-
735 p150 1.5 μg/μl versus GFP-RAB6A 250 ng/μl), dyed with Fast Green and injected into the left
736 lateral ventricle of several embryos. The embryos were then electroporated through the uterine
737 walls with a NEPA21 Electroporator (Nepagene) and a platinum plated electrode (5 pulses of
738 50 V for 50 ms at 1 second intervals). The uterus was replaced and the abdomen sutured. The
739 mother was allowed to recover from surgery and supplied with painkillers in drinking water
740 post-surgery.

741

742 **Immunostaining of brain slices**

743 Mouse embryonic brains were dissected out of the skull, fixed in 4% PFA for 1 hour, and 80
744 μ m-thick slices were prepared with a Leica VT1200S vibratome in PBS. Slices were boiled in
745 citrate sodium buffer (10mM, pH6) for 20 minutes and cooled down at room temperature
746 (antigen retrieval). Slices were then blocked in PBS-Triton X100 0.3%-donkey serum 2% at
747 room temperature for 1 hour, incubated with primary antibody overnight at 4°C in blocking
748 solution, washed in PBS-Tween 0.05%, and incubated with secondary antibody for 2 hours at
749 4°C in blocking solution before final wash and mounting in aquapolymount. Imaging was
750 performed on a spinning disk wide microscope equipped with a Yokogawa CSU-W1 scanner
751 unit equipped with a with a 40X Apo-Plan objective. Whole brains were imaged using a Leica
752 MZ8 Stereozoom Microscope.

753

754 **Western blots**

755 Tissue extracts were performed from whole embryos (E9.5), heads (E10.5; E11.5; E12.5),
756 brains (E14.5); or cortices (E15.5; E16.5; E18.5; P2) in 150mM NaCl, 50mM Tris pH8, 0,1%
757 v/v SDS, 0,5% v/v Nonidet P40, 1X complete protease inhibitors, briefly sonicated, and
758 centrifuged. Protein concentrations were measured using a BCA protein assay kit. 25mg were
759 analysed in 10% acrylamide-containing gels.

760

761 **Expression constructs and antibodies**

762 The following plasmids were used in this study: ManII-GFP, CC1-p150, Streptavidin-KDEL
763 SBP-CRB3A-GFP (Franck Perez); GFP-RAB6A⁵²; EB3-GFP (gift from Matthieu Piel);
764 mCherry2-C1 vector (gift from Michael Davidson, Addgene plasmid #54563); Cre (gift from
765 David Liu, Addgene plasmid #123133); pCAG-Cre-IRES2-GFP vector (gift from Anjen
766 Chenn, Addgene plasmid #26646); pCAG-GFP vector (gift from Richard Vallee, Columbia
767 University).

768 Antibodies used in this study were mouse anti- γ Tubulin (Sigma-Aldrich, T5326), rat
769 anti-Crumb3 (gift from André Le Bivic, Marseille), rabbit anti-MPP5/PALS1 (Proteintech,
770 17710-1-AP), human anti-GFP (recombinant antibody platform (Tab-IP) - Institut Curie, A-R-
771 H#11), rabbit anti-Pax6 (Biolegend, B214847), goat anti-phospho-Histone 3 (Santa Cruz, SC-
772 12927), mouse anti-phospho-Vimentin (Abcam, 22651), CUX-1 (Santa-Cruz, discontinued),
773 rabbit anti-cleaved-Caspase 3 (Cell Signaling, 9661S), rabbit anti-RAB6A/A' (home-made⁶⁵),
774 rabbit anti-RAB6B (Proteintech, 10340-1-AP), human anti- α Tubulin (recombinant antibody
775 platform (Tab-IP) - Institut Curie, A-R-H#02). Secondary antibodies: donkey Alexa Fluor 488
776 anti-mouse, anti-rabbit, anti-goat (Jackson laboratories 715-545-150, 711-165-152, 715-605-

777 152), donkey Alexa Fluor 555 anti-mouse, anti-rabbit, anti-goat (Jackson laboratories 715-545-
778 150, 711-165-152, 715-605-152), donkey Alexa Fluor 647 anti-mouse, anti-rabbit, anti-goat
779 (Jackson laboratories 715-545-150, 711-165-152, 715-605-152).

780

781 **Subcellular live imaging in mouse embryonic brain cortex slices**

782 To record GFP-RAB6A dynamics in radial glia *in situ*, we used the following approach. 24
783 hours after the electroporation of E15.5 to E16.5 embryos, the pregnant mouse was sacrificed
784 and the electroporated embryos recovered. Brains were dissected in artificial cerebrospinal fluid
785 (ACSF) and 250 μ m-thick coronal slices were prepared with a Leica VT1200S vibratome in
786 ice-cold ACSF. The slices were cultured on membrane filters over enriched medium (DMEM-
787 F12 containing B27, N2, 10 ng/ml FGF, 10 ng/ml EGF, 5% fetal bovine serum and 5% horse
788 serum). After recovery in an incubator at 37°C, 5% CO₂ for 2 hours (or 48 hours for human
789 tissue to allow for construct expression), the filters were cut and carefully turned over on a 35
790 mm FluoroDish (WPI), in order to position the sample in direct contact with the glass,
791 underneath the filter (to maintain the sample flat).

792 Live imaging was performed on a fully motorized spinning disk wide microscope driven
793 by Metamorph software (Molecular Devices) and equipped with a Yokogawa CSU-W1 scanner
794 unit to increase the field of view and improve the resolution deep in the sample. The inverted
795 microscope (Nikon Eclipse Ti2) was equipped with a high working distance (WD 0.3 mm)
796 100X SR HP Plan Apo 1.35 NA Silicon immersion (Nikon) and a Prime95B sCMOS camera
797 (Photometrics). To maintain stable cell culture conditions (37°C, humidity, 5% CO₂), time-
798 lapse imaging was performed on a STX stage top incubator (Tokai Hit). Z-stacks of 3-5 μ m
799 range were taken on a Mad City Lab piezo stage (Nano Z500) with an interval of 1 μ m.
800 Maximum projections were generated from which kymographs were generated. Tracking and
801 quantifications of GFP-RAB6A+ vesicle dynamics were directly performed on the movies and
802 the kymographs were used for validation and display purposes. Videos were mounted in
803 Metamorph. Kymograph generation (KymographBuilder), Tracking of GFP-RAB6A+ vesicles
804 (manual tracking) as well as image modifications (brightness and contrast, background,
805 gamma) were carried out on Fiji. Figures were assembled in Affinity Designer.

806

807 **RUSH assay *in situ***

808 E15.5 to E16.5 embryos were electroporated with a Streptavidin-KDEL SBP-CRB3-GFP
809 construct with or without CC1-p150 for 24 hours. Slicing and culture were performed as for
810 subcellular live imaging experiments. Biotin was added to the enriched medium (40 μ M final)

811 for the indicated period of time (37°C, 5% CO₂) prior to PFA fixation. Immunostaining against
812 GFP was performed to amplify fluorescence (see immunostaining section) prior to mounting.

813

814 **Statistical analysis**

815 All the statistical analysis has been made using R 4.0.5. R Core Team (2021), R Foundation for
816 Statistical Computing, Vienna, Austria (<https://www.R-project.org/>). Due to the low sample
817 sizes inherent to *in vivo* work, we conducted non-parametric analyses. Median comparisons
818 between 2 conditions have been made with a Mann–Whitney *U* test (Fig. 1j-m, 3b, 3d, 4c, 4d
819 and S2b). When more than 2 conditions were compared, we used Kruskal-Wallis test with a
820 Dunn *post-hoc* test and Benjamini-Hochberg procedure to control the false discovery rate using
821 the dunn.test package (Fig. 2c, 2e, 3e and 6c). These analyses have been made considering the
822 animal as the statistical unit except for the figures 1j-1m. Embryos for a given condition come
823 from different litters. For categorical data (Fig. 3h, 5d-e) and data from figures 1j-1m, S1f-g,
824 we considered each cell as a statistical unit. Since the cells are electroporated *in-situ*, we made
825 the reasonable approximation that cells received their constructs independently and their
826 properties are measured individually at the cell scale. We validated this hypothesis by repeating
827 experiments in different independent animals to conclude that the effect was not due to cells
828 coming from biased individuals due to an abnormal electroporation or an abnormal embryo.
829 For categorial data, analysis has been made using a Fisher’s exact test (Fig. 3h) accompanied
830 with a Benjamini-Hochberg procedure to control the false discovery rate when more than 2
831 conditions were compared (Fig. 5d-e). These categorical data are depicted as percentages for
832 clarity. *p*-values superior to 0.05 are considered as not significant.

833

834 **Acknowledgements**

835 The authors greatly acknowledge the Cell and Tissue Imaging (PICT-IBiSA), Institut Curie,
836 member of the French National Research Infrastructure France-BioImaging (ANR10-INBS-04)
837 and the Nikon BioImaging Center (Institut Curie, France). We greatly acknowledge the
838 Recombinant Antibody Platform of the Institut Curie for the production of antibodies. We thank
839 D. Massey-Harroche and A. Le Bivic for the anti-Crumbs3 antibody. A.D.B is an INSERM
840 researcher. This work was supported by the ANR (ANR-19-CE13-0002-02), CNRS, Institut
841 Curie, the Ville de Paris “Emergences” program, Labex CelTisPhyBio (11-LBX-0038), and
842 PSL.

843

844

845 **Author contributions**

846 J.B.B, B.G and A.D.B conceived the project. J.B.B and A.D.B analyzed the data. J.B.B, B.G
847 and A.D.B wrote the manuscript. F.E.M generated the *RAB6B* KO mouse lines. J.A.C and L.C
848 sequenced the *RAB6B* KO mouse lines and assisted with surgery and *in utero* electroporation.
849 S. Baloul performed RUSH assays *in situ*. S. Bardin supervised the RAB6 mouse mutant
850 colonies, performed all the crossings to generate *RAB6A/B* dKO animals and performed the
851 western-blots. M.P generated the *LIS1* KO embryos. M.L and S.M.L performed and quantified
852 the RUSH assay in HeLa cells. G.B and F.P designed and supervised the RUSH assays. V.S
853 assisted with high resolution *in situ* imaging. H.L performed all statistical analyses.

854

855 **References**

- 856 1. Paridaen, J. T. & Huttner, W. B. Neurogenesis during development of the vertebrate
857 central nervous system. *EMBO Rep* **15**, 351–364 (2014).
- 858 2. Uzquiano, A. *et al.* Cortical progenitor biology: key features mediating proliferation
859 versus differentiation. *J Neurochem* **146**, 500–525 (2018).
- 860 3. Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in
861 the outer subventricular zone of human neocortex. *Nature* **464**, 554–561 (2010).
- 862 4. Fietz, S. A. *et al.* OSVZ progenitors of human and ferret neocortex are epithelial-like
863 and expand by integrin signaling. *Nat Neurosci* **13**, 690–699 (2010).
- 864 5. Reillo, I., De Juan Romero, C., García-Cabezas, M. Á. & Borrell, V. A role for
865 intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.
Cerebral Cortex **21**, 1674–1694 (2011).
- 866 6. Fernández, V., Llinares-Benadero, C. & Borrell, V. Cerebral cortex expansion and
867 folding: what have we learned? *EMBO J* (2016). doi:10.1525/embj.201593701
- 868 7. Penisson, M., Ladewig, J., Belvindrah, R. & Francis, F. Genes and Mechanisms Involved
869 in the Generation and Amplification of Basal Radial Glial Cells. *Front Cell Neurosci* **13**,
870 381 (2019).
- 871 8. Florio, M., Borrell, V. & Huttner, W. B. Human-specific genomic signatures of
872 neocortical expansion. *Current Opinion in Neurobiology* **42**, 33–44 (2016).
- 873 9. Lee, H. O. & Norden, C. Mechanisms controlling arrangements and movements of nuclei
874 in pseudostratified epithelia. *Trends Cell Biol* **23**, 141–150 (2013).
- 875 10. Tavano, S. *et al.* *Insm1* Induces Neural Progenitor Delamination in Developing
876 Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein *Plekha7*.
Neuron **97**, 1299–1314.e8 (2018).
- 877 11. Itoh, Y. *et al.* Scratch regulates neuronal migration onset via an epithelial-mesenchymal
878 transition-like mechanism. *Nat Neurosci* **16**, 416–425 (2013).
- 879 12. Narayanan, R. *et al.* Chromatin Remodeling BAF155 Subunit Regulates the Genesis of
880 Basal Progenitors in Developing Cortex. *iScience* **4**, 109–126 (2018).
- 881 13. Cappello, S. *et al.* The Rho-GTPase *cdc42* regulates neural progenitor fate at the apical
882 surface. *Nat Neurosci* **9**, 1099–1107 (2006).
- 883 14. Johnson, M. B. *et al.* *Aspm* knockout ferret reveals an evolutionary mechanism
884 governing cerebral cortical size. *Nature* **556**, 370–375 (2018).
- 885 15. Martínez-Martínez, M. Á. *et al.* A restricted period for formation of outer subventricular
886 zone defined by *Cdh1* and *Trnp1* levels. *Nature Communications* **7**, 11812 (2016).

889 16. Bulgakova, N. A. & Knust, E. The Crumbs complex: from epithelial-cell polarity to
890 retinal degeneration. *J Cell Sci* **122**, 2587–2596 (2009).

891 17. Dudok, J. J., Murtaza, M., Henrique Alves, C., Rashbass, P. & Wijnholds, J. Crumbs 2
892 prevents cortical abnormalities in mouse dorsal telencephalon. *Neurosci. Res.* **108**, 12–
893 23 (2016).

894 18. Kim, S. *et al.* The apical complex couples cell fate and cell survival to cerebral cortical
895 development. *Neuron* **66**, 69–84 (2010).

896 19. Apodaca, G., Gallo, L. I. & Bryant, D. M. Role of membrane traffic in the generation of
897 epithelial cell asymmetry. *Nat Cell Biol* **14**, 1235–1243 (2012).

898 20. Rodriguez-Boulan, E. & Macara, I. G. Organization and execution of the epithelial
899 polarity programme. *Nat Rev Mol Cell Biol* **15**, 225–242 (2014).

900 21. Goud, B., Liu, S. & Storrie, B. Rab proteins as major determinants of the Golgi complex
901 structure. *Small GTPases* **9**, 66–75 (2018).

902 22. Opdam, F. J. *et al.* The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-
903 type specifically expressed and localised to the Golgi apparatus. *J Cell Sci* **113** (Pt 15),
904 2725–2735 (2000).

905 23. Fourriere, L. *et al.* RAB6 and microtubules restrict protein secretion to focal adhesions.
906 *J Cell Biol* **218**, 2215–2231 (2019).

907 24. Homma, Y. *et al.* Comprehensive knockout analysis of the Rab family GTPases in
908 epithelial cells. *J Cell Biol* **218**, 2035–2050 (2019).

909 25. Serra-Marques, A. *et al.* Concerted action of kinesins KIF5B and KIF13B promotes
910 efficient secretory vesicle transport to microtubule plus ends. *Elife* **9**, (2020).

911 26. Young, J. *et al.* Regulation of microtubule-dependent recycling at the trans-Golgi
912 network by Rab6A and Rab6A'. *Mol Biol Cell* **16**, 162–177 (2005).

913 27. Matanis, T. *et al.* Bicaudal-D regulates COPI-independent Golgi–ER transport by
914 recruiting the dynein–dynactin motor complex. *Nat Cell Biol* **4**, 986–992 (2002).

915 28. Splinter, D. *et al.* BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment
916 to cellular structures. *Mol Biol Cell* **23**, 4226–4241 (2012).

917 29. Mckenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation
918 of cytoplasmic dynein motility by dynactin-cargo adapter complexes. *Science* **345**, 337–
919 341 (2014).

920 30. Huynh, W. & Vale, R. D. Disease-associated mutations in human BICD2 hyperactivate
921 motility of dynein-dynactin. *J Cell Biol* **112**, jcb.201703201–10 (2017).

922 31. Urnavicius, L. *et al.* Cryo-EM shows how dynactin recruits two dyneins for faster
923 movement. *Nature* **554**, 202–206 (2018).

924 32. Schlager, M. A., Hoang, H. T., Urnavicius, L., Bullock, S. L. & Carter, A. P. In vitro
925 reconstitution of a highly processive recombinant human dynein complex. *EMBO J* **33**,
926 1855–1868 (2014).

927 33. Htet, Z. M. *et al.* LIS1 promotes the formation of activated cytoplasmic dynein-1
928 complexes. *Nat Cell Biol* **22**, 518–525 (2020).

929 34. Elshenawy, M. M. *et al.* Lis1 activates dynein motility by modulating its pairing with
930 dynactin. *Nat Cell Biol* **22**, 570–578 (2020).

931 35. Marzo, M. G., Griswold, J. M. & Markus, S. M. Pac1/LIS1 stabilizes an uninhibited
932 conformation of dynein to coordinate its localization and activity. *Nat Cell Biol* **22**, 559–
933 569 (2020).

934 36. Reiner, O. *et al.* Isolation of a Miller-Dieker lissencephaly gene containing G protein
935 beta-subunit-like repeats. *Nature* **364**, 717–721 (1993).

936 37. Yamada, M. *et al.* Rab6a releases LIS1 from a dynein idling complex and activates
937 dynein for retrograde movement. *Nature Communications* **4**, 2033 (2013).

938 38. Hu, D. J.-K. *et al.* Dynein recruitment to nuclear pores activates apical nuclear migration
939 and mitotic entry in brain progenitor cells. *Cell* **154**, 1300–1313 (2013).

940 39. Baffet, A. D., Hu, D. J. & Vallee, R. B. Cdk1 Activates Pre-mitotic Nuclear Envelope
941 Dynein Recruitment and Apical Nuclear Migration in Neural Stem Cells. *Dev Cell* **33**,
942 703–716 (2015).

943 40. Taverna, E. *et al.* Non-canonical features of the Golgi apparatus in bipolar epithelial
944 neural stem cells. *Sci Rep* **6**, 21206 (2016).

945 41. Coquand, L. *et al.* CAMSAPs organize an acentrosomal microtubule network from basal
946 varicosities in radial glial cells. *J Cell Biol* **220**, (2021).

947 42. Schlager, M. A. *et al.* Bicaudal D Family Adaptor Proteins Control the Velocity of
948 Dynein-Based Movements. *Cell Reports* **8**, 1248–1256 (2014).

949 43. Höing, S. *et al.* Dynarrestin, a Novel Inhibitor of Cytoplasmic Dynein. *Cell Chem Biol*
950 **25**, 357–369.e6 (2018).

951 44. Tripathy, S. K. *et al.* Autoregulatory mechanism for dynein control of processive and
952 diffusive dynein transport. *Nat Cell Biol* **16**, 1192–1201 (2014).

953 45. Shafaq-Zadah, M. *et al.* Persistent cell migration and adhesion rely on retrograde
954 transport of $\beta(1)$ integrin. *Nat Cell Biol* **18**, 54–64 (2016).

955 46. Bardin, S. *et al.* Phenotypic characterisation of RAB6A knockout mouse embryonic
956 fibroblasts. *Biol Cell* **107**, 427–439 (2015).

957 47. Yingling, J. *et al.* Neuroepithelial stem cell proliferation requires LIS1 for precise
958 spindle orientation and symmetric division. *Cell* **132**, 474–486 (2008).

959 48. Margolis, B. The Crumbs3 Polarity Protein. *Cold Spring Harbor Perspectives in Biology*
960 **10**, a027961 (2018).

961 49. Boncompain, G. *et al.* Synchronization of secretory protein traffic in populations of cells.
962 *Nature methods* **9**, 493–498 (2012).

963 50. Grigoriev, I. *et al.* Rab6 regulates transport and targeting of exocytotic carriers. *Dev Cell*
964 **13**, 305–314 (2007).

965 51. Stehbens, S. J. *et al.* CLASPs link focal-adhesion-associated microtubule capture to
966 localized exocytosis and adhesion site turnover. *Nat Cell Biol* **16**, 561–573 (2014).

967 52. Miserey-Lenkei, S. *et al.* Rab and actomyosin-dependent fission of transport vesicles at
968 the Golgi complex. *Nat Cell Biol* **12**, 645–654 (2010).

969 53. Will, L. *et al.* Dynein activating adaptor BICD2 controls radial migration of upper-layer
970 cortical neurons *in vivo*. *Acta Neuropathol Commun* **7**, 162–23 (2019).

971 54. Schlager, M. A. *et al.* Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-
972 D-related protein 1 (BICDR-1) regulates neuritogenesis. *EMBO J* **29**, 1637–1651 (2010).

973 55. Aguilar-Aragon, M., Fletcher, G. & Thompson, B. J. The cytoskeletal motor proteins
974 Dynein and MyoV direct apical transport of Crumbs. *Dev Biol* **459**, 126–137 (2020).

975 56. Pocha, S. M., Wassmer, T., Niehage, C., Hoflack, B. & Knust, E. Retromer controls
976 epithelial cell polarity by trafficking the apical determinant Crumbs. *Curr Biol* **21**, 1111–
977 1117 (2011).

978 57. Stahl, R. *et al.* Trnp1 regulates expansion and folding of the mammalian cerebral cortex
979 by control of radial glial fate. *Cell* **153**, 535–549 (2013).

980 58. Florio, M. *et al.* Human-specific gene ARHGAP11B promotes basal progenitor
981 amplification and neocortex expansion. *Science* **347**, 1465–1470 (2015).

982 59. Ju, X.-C. *et al.* The hominoid-specific gene TBC1D3 promotes generation of basal neural
983 progenitors and induces cortical folding in mice. *Elife* **5**, (2016).

984 60. Ostrem, B. E. L., Lui, J. H., Gertz, C. C. & Kriegstein, A. R. Control of Outer Radial
985 Glial Stem Cell Mitosis in the Human Brain. *Cell Reports* **8**, 656–664 (2014).

986 61. Konno, D. *et al.* Neuroepithelial progenitors undergo LGN-dependent planar divisions
987 to maintain self-renewability during mammalian neurogenesis. *Nat Cell Biol* **10**, 93–101
988 (2008).

989 62. Fujita, I. *et al.* Endfoot regeneration restricts radial glial state and prevents translocation
990 into the outer subventricular zone in early mammalian brain development. *Nat Cell Biol*
991 **22**, 26–37 (2020).

992 63. Uzquiano, A. *et al.* Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the
993 Formation of Primary Cilia. *Cell Reports* **28**, 1596–1611.e10 (2019).

994 64. Hirotsune, S. *et al.* Graded reduction of Pafah1b1 (Lis1) activity results in neuronal
995 migration defects and early embryonic lethality. *Nat Genet* **19**, 333–339 (1998).

996 65. Goud, B., Zahraoui, A., Tavitian, A. & Saraste, J. Small GTP-binding protein associated
997 with Golgi cisternae. *Nature* **345**, 553–556 (1990).

998