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Abstract

Genotype by environment interactions are a significant challenge for crop breeding as well as being important
for understanding the genetic basis of environmental adaptation. In this study, we analyzed genotype by
environment interaction in a maize multi-parent advanced generation intercross population grown across five
environments. We found that genotype by environment interactions contributed as much as genotypic effects
to the variation in some agronomically important traits. In order to understand how genetic correlations
between traits change across environments, we estimated the genetic variance-covariance matrix in each
environment. Changes in genetic covariances between traits across environments were common, even among
traits that show low genotype by environment variance. We also performed a genome-wide association study
to identify markers associated with genotype by environment interactions but found only a small number
of significantly associated markers, possibly due to the highly polygenic nature of genotype by environment
interactions in this population.

Introduction

Both the effect of a given genotype on a trait, and the impact of that effect on fitness, often vary across
environments. Such genotype by environment interactions (GxE) are widespread, and have been commonly
observed in plants (Des Marais et al. 2013). GxE interaction is of interest for multiple reasons: it provides
insight into the physiological processes and genetic architecture underlying individual traits, is likely crucial
for local adaptation of populations to different environments, but may also limit the response to selection
(Allard and Bradshaw 1964; Kawecki and Ebert 2004).

While alleles affecting a trait will demonstrate GxE for fitness across environments when there is selection
for different trait optima, it is also often observed that the effect of individual alleles on traits will vary
as well. This indicates that these alleles affect plasticity and they may be present in a population due to
selection for or against plasticity (Josephs 2018). Alternatively, they may be deleterious but rarely exposed
to environments in which they are selected against, or unassociated with fitness and selectively neutral
(Des Marais et al. 2013; Paaby and Rockman 2014).

One avenue to study GxE is to search for individual loci with changing effects on traits or fitness across
environments. Multiple studies have identified loci that contribute to GXE (several of which are reviewed in
Josephs (2018)). Loci which contribute to GXE include the Eda locus in threespine stickleback fish, which
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is associated with adaptation to the freshwater environment, and SublA in rice, which is associated with
tolerance to submergence (Barrett et al. 2008; Xu et al. 2006). Genome-wide association studies (GWAS)
have also been used to identify alleles significantly associated with GxE, including shade response and drought
response in Arabidopsis thaliana (Filiault and Maloof 2012; El-Soda et al. 2015).

Individual traits do not exist in a vacuum, however, and alleles that affect one trait often have pleiotropic
effects on others. Indeed, the outcome of selection on a trait depends crucially on the genetic variance-
covariance matrix (G-matrix), which describes how the genetic value at one trait covaries with genetic values
at other traits (Lande 1979). Genetic covariation between traits can have profound impacts on the genetic
response to selection, either hindering or facilitating trait response. For example, genetic covariance between
traits that are both associated with fitness can lead to trade-offs between those traits if the covariances with
fitness are mismatched.

But the G-matrix itself is not constant, as GxE at underlying loci may impact trait variation and covari-
ation among traits (Wood and Brodie 2015). If in a different environment the covariance of a trait with
fitness or other traits is weakened or changes sign, it may indicate that the selection or trade-off does not
exist in the new environment (Sgro and Hoffmann 2004). As GxE contributes to the G-matrix within each
environment, understanding the G-matrix in multiple environments may illuminate the causes of GxE. If the
genetic covariance between two traits changes between environments and GxE is observed, then a change in
the pleiotropy of the underlying loci may be responsible for both the changes in the genetic covariance and
GxE.

Maize is a crop species adapted to a wide diversity of environments, from temperate to tropical and from
low to high altitude (Hake and Ross-Ibarra 2015). GxE has been shown to be an important contributor
to many traits in maize, including grain yield (Gage et al. 2017; Gates et al. 2019; Rogers et al. 2021).
Nonetheless, identification of GxE in maize, as in many species, is complicated by issues of population
structure and the low minor allele frequency of most polymorphisms (Korte and Farlow 2013). To circumvent
these issues, we investigated the genetic basis of GxE in maize in a multiparent advanced generation intercross
(MAGIC) population of 16 diverse temperate maize lines (Odell et al. 2021). We grew the MAGIC hybrids
across five contrasting temperate environments with diverse management practices in order to capture a
broad range of GXE relevant to the conditions the parental lines would be grown in.

We find that GxE contributes as much as genotypic main effects to variance for some traits. While
GxE interactions are significant, genome-wide association only finds a small number of markers significantly
associated with GxFE interactions, perhaps reflecting the highly polygenic nature of most traits. Nonetheless,
estimation of the G-matrix in each environment reveals that changes in genetic covariance are common and
may be contributing to observed GxE. For example, we find that while only a small proportion of variance
in flowering time depends on GxE, the genetic covariance between flowering time and grain yield is strongly
affected by the environment.

Materials and Methods

Plant materials

We developed a maize multi parent advanced generation intercross (MAGIC) population by repeatedly
crossing the offspring of sixteen maize inbred lines to generate recombinant individuals (Odell et al. 2021).
After eight generations of intercrossing, we generated a population of 344 doubled haploids (DH) lines. DH
lines were crossed to an inbred tester to make F1 plants.

Phenotype Data

The MAGIC F1 plants were phenotyped in four different field locations in four different years, resulting
in five distinct environment-years (Figure S1, Table S1). The environment-years included Blois, France in
2014 and 2017, Nerac, France in 2016, St. Paul, France in 2017, and Graneros, Chile in 2015. In each
environment-year, two plots of around 80 plants were grown for each genotype. The fields in environment-
years Blois 2014, Blois 2017, and Graneros 2015 all received consistent irrigation. The field in Nerac 2016
was not actively irrigated from vegetative phase through flowering, causing drought stress through most of
the life cycle. The field in St. Paul 2017 was not irrigated during vegetative phase but was irrigated during
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flowering to allow plants to recover from the earlier drought stress. We measured the following traits: male
flowering date, female flowering date, anthesis-silking interval (ASI), plant height, percent harvest grain
moisture (HGM), grain yield, and thousand kernel weight (TKW) (adjusted to 15% humidity), where values
were averaged over plots. Both flowering time phenotypes were measured as the sum of degree days since
sowing with a base temperature of 6°C (48°F). Male flowering date was considered as the growing degree
days until 50% of plants in a plot were shedding pollen on approximately one quarter of the central tassel
spike. Data was also collected from an additional environment, Szeged, Hungary in 2017. We did not use
this data in the analyses presented here as flowering date was not collected on the same schedule as in the
other environments and this caused issues with the GxE analyses. Data from Szeged is available in the data
repository associated with this paper. Between 292 and 309 of the MAGIC F1 lines were grown in each
environment. There were a total of 325 lines that had both genotype data and phenotype data from at
least one environment. For each of these lines we calculated best linear unbiased predictor (BLUP) scores
for all seven phenotypes, combining measurements from all environments to get estimates of the genetic
contribution to the phenotype for each MAGIC line (Aulchenko et al. 2007).

Genotyping

We genotyped each of the DH lines using the Affymetrix® Axiom® Maize Genotyping Array, which success-
fully genotyped 551,460 SNPs. The probability of each founder contributing to each segment in the genome
was imputed from the genotyped SNPs (Odell et al. 2021).

Statistical analysis

All statistical analyses were performed with R (R Core Team 2020). Plots were made with ggplot2 (Wickham
2016).

Estimating kinship

Kinship matrices for the DH lines were estimated from the genotyped SNPs using the VanRaden method as
implemented in the R package sommer (Covarrubias-Pazaran 2016; VanRaden 2008). SNPs were first filtered
for linkage disequilibrium using Plink (Purcell et al. 2007). In order to perform genome-wide association
analyses, we used the leave one chromosome out method (Lippert et al. 2011).

Genotype x environment interactions

Variance components for each trait were estimated using the R package sommer. We used the formula:
y = Zgug + Zgug + Zg.gue.c + fe(x,y) +e

Where y is a vector of n observations from individual plots of a single trait including both plots of all lines in
all environments, Zg is a n X r design matrix for the genotypic main effects of the r lines, Zg is a n x 5 design
matrix for the environmental main effect, Zg.q is a n x 5r design matrix for genotype specific effects in each
environment, ug is a length r vector of random genotypic effects, ug is a length 5 vector of environmental
random effects, ug.q is a length 57 vector of random GxE effects with same variance and covariance among
environments, fg(x,y) is a two dimensional spline for the effect of the x/y position in the field nested within
environment, and e is the error.

GWAS

Genome-wide association analyses for loci contributing to GxE interactions were performed with the R
package GridLMM (Runcie and Crawford 2019). Imputed founder probabilities at each locus were used as
markers, meaning that at each marker we asked if the identity of the founder which contributed that genomic
region at a given locus was a significant predictor of differences in plasticity among the hybrids.

We modeled GxE in three ways:

i) Main effect across environments and deviation effect within environments
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We tested whether a locus had a different effect on a trait in two environments: Blois 2017 and Nerac
2016. We chose these two environments because they were respectively the highest and lowest yielding
environments. The model for this GWA was:

y=p+wa+X,08,+XemBg.m +Lciugt + Zg.g1ug.g1 + Zg2ug: + e

Where y is a vector of n observations from individual plots of a single trait including both plots of all lines
in all environments, p is a constant length n vector of the average trait value across the two environments, w
is a length n design matrix of environmental effects taking values of -1 and 41 according to the environment (1
for Blois 2017 and -1 for Nerac 2016), « is a scalar representing % the deviation of trait means between the two
environments. X,, is a n X 16 matrix, where the kth column is the probability that each of the n individuals
inherited from the kth founder at marker m, Xg.;m is an n x 16 matrix formed by multiplying w with each
column of X,,, B,, is a vector of main effects of the founder alleles averaged over the two environments,
Bg.m is a vector of differences between the founder allele effects between the two environments, Zg; is a
n X r design matrix of additive genotypic effects, Zg.g1 is a n X r design matrix of genotype deviations
formed by multiplying each column of Zg, by w, Zgs is a n X r design matrix of non-additive genotypic
effects, ugy is a vector of additive genotypic effects averaged over the two environments, ug.¢1 is a vector
of additive genotypic deviations between the two environments, ugs is a vector of non-additive genotypic
effects averaged across the two environments, and e is a vector of error terms. ug; and ug.g; both have
covariance proportional to K, where K is the additive genetic relatedness matrix, and ugs and e both have
covariance proportional to the identity matrix. The statistical test to identify markers influencing GxE was
against HO: 8., = 0.

ii) Plasticity

We tested whether a locus had an effect on the slope of the observations of a genotype across the mean
phenotypic value of all genotypes in an environment. The model is the same as in i) except for the following:
we now include all 5 environments, w is a length n vector with each element taking the mean value of the
phenotype within the environment of the observation, and p is a length n vector of the mean value of the
phenotype within the environment of the observation.

iii) Finlay-Wilkinson GWAS

Finally, we tested whether a locus had an effect on the slope of the observations of a genotype across the
mean grain yield of all genotypes in an environment. Mean grain yield here serves as a proxy for stress or
environment quality and as such this GWA is testing whether a locus affects the response to stress. This
is known as a Finlay-Wilkinson analysis (Finlay and Wilkinson 1963). For this analysis, a quantile plot of
p-values indicated that the test was poorly calibrated. Instead of asking whether allowing a marker to have
a slope across environments improved prediction of a trait in each environment as in (ii), we thus asked
whether the marker significantly predicted the slope of each genotype.

s=Xn08,+Zgius + e

Where s is a length r vector of slopes for each genotype of trait values on mean grain yield in each envi-
ronment, B, is a vector of marker effects, and u; is a vector of genotypic effects with covariance proportional
to K. Other model terms are as in (i).

To determine significance thresholds for the first two models, we permuted phenotypic values among lines
within each environment and ran the GWA 100 times. For the third model, we permuted the slopes among
the genotypes and ran the GWA 100 times.

The G-matrix across environments

We estimated the G-matrix in each environment using the R package brms (Biirkner 2017). brms implements
Bayesian multilevel models using Markov chain Monte Carlo (MCMC) algorithms. This is important as the
samples from the MCMC chains allow us to estimate uncertainty and significance in our downstream analyses.
We used the model:

Y =7ZU + f(x,y) + E

Where Y = [y1...ys5] and y; is a vector of n observations for the ith trait, Z is a n x r design matrix of
genotypes, U and E are random effects drawn from matrix normal distributions: U ~ MN, 5(0; 1L, G),
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E ~ MN,5(0;I,,R) and I, is the r x r identity matrix where r is the number of lines grown in an
environment, I, is the n x n identity matrix where n is the number of observations, and G and R are 5 x 5
genetic variance-covariance and residual variance-covariance matrices estimated from the data. G and R
are parameterized as the products of standard deviations and correlation matrices with a half Student-T
distribution and LKJ-correlation prior. f(x,y) is a two dimensional spline for the effect of the x/y position
in the field. The standard deviations of the two splines have half Student-T distributions as priors.

All traits were scaled by the mean and centered before analysis in order to make them unitless and improve
model convergence, with the exception of ASI which was scaled by the mean of female flowering as those were
on the same measurement scale. The G-matrices we estimated were broad sense G-matrices as they included
both additive and non-additive sources of genetic variance. We assessed convergence by checking that all
statistics output by brms — such as R and the number of divergent transitions — were within recommended
ranges and by visually inspecting the trace and autocorrelation of model parameters. Covariances were
considered significant if the interval spanned by the 2.5% and 97.5% quantiles of the posterior samples
did not contain zero. To determine whether the covariance between two traits differed significantly between
environments, we found the difference between the MCMC samples for the two environments and determined
whether the interval spanned by the 2.5% and 97.5% quantiles of the differences overlapped zero.

To quantitatively assess differences among the G-matrices estimated in the five environments, we per-
formed eigenanalysis of a covariance tensor as described in Aguirre et al. (Aguirre et al. 2014). The tensor
approach is a geometric approach founded on the diagonalization of symmetric matrices, and is mainly used
to calculate a set of orthogonal axes known as eigentensors that describe coordinated changes in the elements
of the original matrices being compared. Eigentensors describe which elements of a set of matrices most
contribute to variation among those matrices. Eigentensor analysis was performed on the posterior median
G-matrices. Uncertainty in the eigentensors was estimated by performing eigentensor analysis on the MCMC
samples of the G-matrices. Finally, to determine whether an eigentensor explained more of the variation
among G-matrices than would be expected by chance, we shuffled the real phenotypic data among environ-
ments, estimated G-matrices, and asked whether the eigentensors of the randomized G-matrices explained
as much of the variation as the MCMC samples from the real data.

Data availability

Phenotypic and environmental data are located on Figshare at (available on publication). Genotypic data will
be made available through a data repository associated with companion paper (Odell et al. 2021) (available
on publication).

Results

We evaluated 7 phenotypes for each of 344 doubled haploid (DH) lines in replicated trials across 5 envi-
ronments that varied in temperature, daylength, and watering or drought conditions. Each DH line was
genotyped for 551,460 SNPs, allowing us to identify ancestry segments along the genome.

Genotype x environment interactions

Genotypic main effects and GxE interactions contributed a significant amount of the variance of all measured
traits (Figure 1). Across environments, it was common for the rank of DH lines for grain yield to change,
indicating that individual lines were generally not high yielding in all conditions (Figure 1A). Anthesis-
silking interval (ASI) showed a qualitatively similar pattern of rank-changing, while some traits such as
thousand kernel weight (TKW) showed less dramatic GXE (Figure S2). The proportion of variance due to
main genotypic effects ranged from 0.34 for grain yield to 0.72 for male flowering date (Figure 1B). For grain
yield and HGM, GxE interactions contributed an amount of variance similar to the amount contributed
by genotypic effects. For flowering time, TKW, and plant height, GXE interactions contributed less of the
variance than main genotypic effects.
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Figure 1 A) Mean yield of all genotypes in each environment. On the X axis environments are plotted by the
mean yield across all genotypes in that environment. Points are mean yields of individual genotypes. Lines are
the slope of a genotype's mean yield in each environment on the mean yield of all genotypes in that environ-
ment. The color of the line corresponds to the slope; a slope greater (or less) than one indicates a genotype
more (or less) responsive to the environment than average. B) Restricted maximum likelihood estimates of vari-
ance components for each trait across all environments.
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GWAS

Our test of the deviation effect of a marker within environments did not recover any markers significant at the
5% permutation threshold for any trait. In contrast, our plasticity GWAS identified two peaks which were
significant at the 5% significance level, which were for ASI and female flowering (Figures 2A, S3). Neither
of these peaks overlapped with QTL peaks for main effects in this population (Odell et al. 2021). The peak
for ASI on chromosome 1 appears to be driven by the effect of the FV2 founder, which has a small effect in
environments where ASI is close to zero but strongly increases the magnitude of ASI in environments where
average ASI is greater (Figure 2B). Patterns of identity by descent at the genomic region surrounding the
peak identified unique haplotypes for 15 of the founders (Odell et al. 2021), but a PCA of the SNPs in the
region did not indicate that the FV2 haplotype was strongly diverged from other founders (Figure S4). The
peak for female flowering on chromosome 4 appears to be driven by founder A654, but the marker effects for
this founder appeared unrealistically strong and likely reflect an artifact of the extremely low sampling of
this founder among the DH lines. In addition to these two associations at the 5% level, we detected one peak
which was significant at the 10% level for grain yield (Figure S5). Our Finlay-Wilkinson GWAS uncovered
one peak significant at the 5% level for ASI (Figure S6). However, the founder whose effect appears to be
driving this peak also appears to be underrepresented at this locus and only one line has a greater than 0.8
probability of carrying this founder allele. As a result, this peak is likely to be a statistical artifact.
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Figure 2 A) Manhattan plot for plasticity (model ii) GWAS on ASI. The blue and green lines represent the 5%
and 10% significance levels based on permutation tests, respectively. B) Estimated effect of founder ancestry
on plasticity for the most significant marker. The slope of a line indicates the plasticity of that haplotype and
the difference in slopes is GXE. The color of the line corresponds to the slope; a slope greater (or less) than one
indicates a genotype more (or Iess) responsive to the environment than average.

The G-matrix across environments

To understand how the environment affected pleiotropy, we estimated the genetic variance/covariance matrix
(G-matrix) of five traits in each environment (Figures 3A, B, S7). We dropped male flowering date and HGM
from this analysis because models including those traits failed to converge; in analyses run on subsets of these
traits we found that male flowering date was highly correlated with female flowering date and HGM had very
low covariance with the other traits. Comparisons of the 95% credible intervals of the difference between
individual genetic correlations revealed numerous differences among environments (Figure S8). Both the
genetic variances of individual traits and the covariances between traits differed across environments (Figure
3A, B). As the traits were mean scaled, the variances presented in Figure 3A are not heritabilites, which is
the genetic variance scaled by the phenotypic variance. Importantly, mean-scaled genetic variances are not
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affected by the amount of residual variance, which means that a trait with high genetic variance relative
to the mean along with high environmental variance can have low heritability but high mean-scaled genetic
variance. (Houle 1992). We found that grain yield generally had high mean-scaled genetic variance in each
environment, and the single highest mean-scaled genetic variance of any trait in any environment was grain
yield in Blois 2017. In one case, the sign of a genetic covariance changed: the genetic covariance between
grain yield and female flowering date was positive across all environments except in Nerac 2016. The median
posterior values of some other genetic covariances also switched signs between environments, but based on
credible intervals we cannot state that they switched with confidence.

To quantitatively assess how individual elements of the G-matrix contributed to variation among environ-
ments, we performed an eigentensor analysis. The eigentensors of a set of G-matrices describe independent
dimensions of variation among the G-matrices and can be used to identify which elements are contributing
the most variation among the set. All of the four nonzero eigentensors explained significantly more variance
than expected from permutations (Figure S9). The element of the G-matrix that most contributed to the
first eigentensor was genetic variance for grain yield (Figure 3C). When plotting each environment on this
eigentensor, Blois 2017 is strongly differentiated from the other environments, which is probably due to the
genetic variance for grain yield being the highest in this environment (Figure S10). The genetic variance for
grain yield also contributed strongly to the second eigentensor, while the genetic covariance between plant
height and grain yield and the genetic variance of plant height contributed in the opposite direction. The
third eigentensor described a contrast between genetic variance for plant height on the one hand and the
genetic covariances between both female flowering date and TKW with grain yield on the other. Nerac is
strongly differentiated on this eigentensor. While the covariance between female flowering and grain yield is
not the only element of the G-matrix contributing to the third eigentensor, it is worth noting that Nerac is
the only environment in which this covariance is negative.

Discussion

Genotype x environment interactions

Genotype x environment interactions are known to be important for many agronomically important traits
in maize, and our results on the relative importance of GXE across traits confirm these earlier findings. For
example, male and female flowering date have been shown to be influenced predominantly by additive genetic
effects and are not strongly influenced by GxE interactions (Buckler et al. 2009; Rogers et al. 2021), while
grain yield and HGM have large GxE variance components relative to main genotype effects (Gage et al.
2017; Rogers et al. 2021). We find similar results in our analysis, indicating that this may be a consistent
pattern for diverse maize germplasm in temperate environments.

If genotypes are adapted to different environments, we would expect to see GXE for fitness related traits.
The high variance contributed by GxE to grain yield seen in this study thus indicates that the founder maize
lines, despite all having been bred in temperate environments, still carry many alleles that are differentially
adapted to this set of environments. For traits that are further removed from fitness it is less clear how to
interpret the contribution of GXE. It may be that the GXE we observe for a trait like HGM, which has a high
proportion of GXE variance and a low genetic covariance with grain yield, is an example of neutral plasticity
and is not under strong selection (Des Marais et al. 2013).

GWAS

Despite the presence of substantial GxE variance for several traits, we found relatively few markers which
were significantly associated with GxE. One possible explanation is that the GxE variance we observed is
largely polygenic and caused by many loci of small effect which we did not have power to detect with our
GWAS. Previous studies investigating loci with main effects on traits such as grain yield and flowering time
in maize have found that they are highly polygenic (Buckler et al. 2009; Dell’Acqua et al. 2015). It may
not be surprising then if GxE for these traits also has a similarly polygenic basis. Grain yield is a highly
integrated trait dependent on the interaction of many other traits with the environment; if those traits have a
complex basis and different optima within different environments, then it would not be surprising to observe
large GxE variance at the level of genotype while not observing significant GxE effects for individual loci.
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Figure 3 A) The genetic variances and covariances of the highest yielding environment (Blois 2017) and the
lowest yielding environment (Nerac 2016). Genetic variances are on the upper row while genetic covariances are
on the lower row. Traits are mean scaled. If a covariance is surrounded by a black frame, the value is signifi-
cantly different from zero. Note that the scales on the upper and lower rows are different. B) Contributions of
elements in the genetic variance-covariance matrices to the first four eigentensors of the set of genetic variance-
covariance matrices. Elements on the diagonal are genetic variances of traits and elements on the off-diagonals
are genetic covariances between traits. The color of a square represents the strength of the contribution of that
element to the eigentensor, which is not dependent on the sign.
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The G-matrix across environments

The G-matrix has previously been shown to differ as much between environments as between populations
(evidence reviewed in (Wood and Brodie 2015)). Our work shows that the G-matrix differs across environ-
ments in a multiparent population of temperate maize lines. We find that these differences include both
changes in the magnitude of genetic variances and covariances as well as changes in the sign of genetic
covariances. The highest mean-scaled genetic variance we observed was for grain yield in Blois 2017, and in
general grain yield had high mean-scaled genetic variance compared to other traits within each environment.
This is in contrast to the finding that grain yield had the lowest heritability across all environments. This
finding fits with previous work finding that fitness proximal traits frequently have low heritability but high
mean-scaled genetic variance, possibly because of high residual variance for fitness proximal traits reducing
heritability (Houle 1992).

The magnitude of the genetic covariances between traits can be reduced solely as a function of reduced
genetic variance for one or both of these traits without a change in the relationship between them. However,
by looking at genetic correlations, we show that the correlations between traits varied across environments
beyond effects of the differences in the variances (Figure S8). Additionally, changes in the genetic variance
alone will not cause the covariance between traits to change sign, which we also see for some combinations
of traits. Particularly striking was the change in sign for the genetic covariance between grain yield and
female flowering date observed in the most stressful environment, Nerac 2016. This environment was the only
one in which the genetic covariance between grain yield and female flowering date was negative. Previous
work has shown that flowering time is important for adaptation to drought stress (reviewed in (Kazan and
Lyons 2016)). Nerac 2016 experienced a drought from vegetative growth through maturity. Early flowering
in this environment was genetically correlated with higher yields, suggesting that early flowering may have
been a means to escape drought stress. The change in sign of the covariance is noteworthy given that
we observed low GxE variance and high genotypic variance for female flowering date while simultaneously
observing high levels of GXE variance for grain yield. This indicates that genotypes were relatively consistent
in their flowering time across environments but that late flowering genotypes were higher yielding in most
environments and lower yielding in one environment. In this way, a change in the genetic covariance between
two traits (grain yield and female flowering) across environments may be contributing to GXE in one of those
traits (grain yield), and provides an illustrative example of how traits that themselves show little GXE may
nonetheless contribute to GxE for fitness.

While differences between environments presumably shape these changes in the G-matrix, previous work
has found that neither measures of environmental novelty nor differences in phenotypic means shaped the G-
matrix when looking across all the studies in a meta-analysis (Wood and Brodie 2015). In our analysis we find
a similar result; differences between the G-matrices estimated in each environment are largely idiosyncratic
and do not correspond with levels of stress or water availability. Eigentensor analysis reveals that each of
the main directions of variation across G-matrices correspond mostly to the differentiation of one or at most
two of the environmental G-matrices from the others. Previous work investigating the G-matrix of plant
populations grown in well-watered and drought environments has been inconsistent in terms of whether
drought stress increases or decreases genetic variance and how it affects the genetic correlation between
flowering time and yield (Manzaneda et al. 2015; Sherrard et al. 2009).

Additionally, both the severity and timing of drought seem to be important in determining the effects
of water deficit on covariances between traits. In this study we find that in Nerac, the most drought
stressed environment, the genetic covariance between flowering time and yield is negative and that this
genetic covariance contributes to differentiating it from the other environments. The fact that the genetic
covariance between flowering date and grain yield in the other water deficit environment, St. Paul, was not
significantly negative may be because that population was given water during flowering while in Nerac water
deficit extended through flowering. It appears that how the G-matrix is affected by environmental stress is
highly dependent on the species and population studied and the exact stress applied.

Conclusion

Using a MAGIC population of maize grown in five environment x year combinations we were able to analyze
the genetic basis of GxE in a set of diverse maize lines. We observed GxE variance for all traits and for
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some traits we observed comparable amounts of genotypic and GxE variance. Estimating the G-matrix
within each environment revealed that changes in genetic variances and covariances across environments
were common. Notably, the genetic covariance between yield and female flowering time was positive in most
environments but negative in one of the environments. GWAS identified one locus significantly associated
with GxE for anthesis-silking interval. Given the substantial GxE variance, the low number of significant
loci suggests that GxE for the traits we analyzed may have a polygenic basis.
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Table S1 Features of the five growing environments.

Environment-Year Mean temperature Mean relative hu- Mean precipitation Water treatment?
(°C) midity (%) (mm)

Blois 2014 16.7 75.2 2.19 OPT

Blois 2017 17.0 72.3 1.71 OPT

Graneros 2015 20.1 55.1 0.266 OPT

Nerac 2016 19.1 74.9 1.15 Early term

St. Paul 2017 20.3 65.4 1.12 Recovery

20PT is optimum watering, Early Term is water deficit during vegetative growth through maturity, and Recovery is water deficit
during vegetative growth with recovery at flowering time.

_25
-30- )
Environment
+— = —35- Blois
ks < e Graneros
e Nerac
-40- e St. Paul
-5 S
-80 -75 -70 -65 -60

long

0
long

Figure S1 Locations of the environments the MAGIC population was grown in. In one environment (Blois) the
MAGIC population was grown in two years.
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Figure S2 Mean trait values of all genotypes in each environment. On the X axis environments are plotted
by the mean of each trait across all genotypes in that environment. Circles are the mean trait values of in-
dividual genotypes. Lines are the slope of a genotype’s mean trait value in each environment on the mean
trait value of all genotypes in that environment. The color of the line corresponds to the slope; a slope
greater (or less) than one indicates a genotype more (or less) responsive to the environment than average.
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Figure S3 A) Manhattan plot for plasticity GWAS on female flowering. The blue and green lines repre-
sent the 5% and 10% significance levels based on permutation tests, respectively. B) Estimated effect of
founder ancestry on plasticity for the most significant marker. Lines are the slope of a marker’s effect in
each environment on the mean female flowering date of all genotypes in that environment. The color of
the line corresponds to the slope; a slope of one indicates a marker with the average response to the envi-
ronment, a slope less than one indicates a marker less responsive to the environment than average, and a
slope greater than one indicates a marker more responsive to the environment than average.
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Figure S7 Heat maps of the G-matrices for the remaining environments.
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Figure S8 Genetic correlations of each pair of traits. For each pair of traits genetic correlations are shown
for each environment with 95% credible intervals. Letters indicate significantly different groups as deter-
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the correlation in each environment.
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of the eigentensors estimated from randomized data that indicates the eigentensor explains more of the varia-
tion among G-matrices than would be expected by chance.
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Figure S10 The G-matrix estimated in each environment plotted on each of the four first eigentensors.

Note that the scale on the y axis is different for each plot.
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