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Abstract

Transcriptome-wide association studies (TWAS) explore genetic variants affecting gene
expression for association with a trait. Here we studied coronary artery disease (CAD)
using this approach by first determining genotype-regulated expression levels in nine
CAD relevant tissues by EpiXcan in two genetics-of-gene-expression panels, the
Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and
the Genotype-Tissue Expression (GTEX). Based on these data we next imputed gene
expression in respective nine tissues from individual level genotype data on 37,997 CAD
cases and 42,854 controls for a subsequent gene-trait association analysis.
Transcriptome-wide significant association (P < 3.85e-6) was observed for 114 genes,
which by genetic means were differentially expressed predominately in arterial, liver,
and fat tissues. Of these, 96 resided within previously identified GWAS risk loci and 18
were novel (CAND1, EGFLAM, EZR, FAM114A1, FOCAD, GAS8, HOMER3, KPTN,
MGP, NLRC4, RGS19, SDCCAG3, STX4, TSPAN11, TXNRD3, UFL1, WASF1, and
WWP2). Gene set analyses showed that TWAS genes were strongly enriched in CAD-
related pathways and risk traits. Associations with CAD or related traits were also
observed for damaging mutations in 67 of these TWAS genes (11 novel) in whole-exome
sequencing data of UK Biobank. Association studies in human genotype data of UK
Biobank and expression-trait association statistics of atherosclerosis mouse models
suggested that newly identified genes predominantly affect lipid metabolism, a classic
risk factor for CAD. Finally, CRISPR/Cas9-based gene knockdown of RGS19 and
KPTN in a human hepatocyte cell line resulted in reduced secretion of APOB100 and
lipids in the cell culture medium. Taken together, our TWAS approach was able to i)
prioritize genes at known GWAS risk loci and ii) identify novel genes which are

associated with CAD.
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Introduction

Coronary artery disease (CAD), a leading cause of premature death worldwide, is influenced
by interactions of lifestyle, environmental, and genetic risk factorst. Genome-wide
association studies (GWAS) have identified over 200 risk loci for CAD?*2 Most of them are
located in non-coding regions which hampers their functional interpretation. Expression
quantitative traits loci (eQTLs) to some extent explain the genomic effects of GWAS
signals*®. By leveraging effects of multiple cis-eQTL variants on gene expression,
transcriptome-wide association studies (TWAS) search primarily for gene-trait associations.
The approach builds on predictive models of gene expression derived from reference panels
that correlate genotype patterns with transcript levels in tissues which are relevant for the
phenotype. Predictive models are then used to associate tissue-specific gene expression based
on genotypes with a given trait in individuals of GWAS cohorts’. Since TWAS signals reflect
gene expression levels, the approach can be used to prioritize candidate genes across disease-
relevant tissues. Thereby, TWAS may point to causal genes at risk loci identified by GWAS
and thus provide further insights on biological mechanisms®°. Moreover, TWAS increase the
sensitivity to identify susceptibility genes missed by traditional GWAS analyses. Here we
performed a TWAS to identify novel susceptibility genes for CAD comprising more than
80,000 individuals with genotype data along with validation and exploratory analyses for the

associated genes.

Results

Evaluation of the predictive models from STARNET and GTEXx panels

The study design is shown in Fig. 1. We applied predictive models of nine tissues trained by
the EpiXcan pipeline® from two genetics-of-gene-expression panels: Stockholm-Tartu

Atherosclerosis Reverse Network Engineering Task (STARNET) and Genotype-Tissue
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90 Expression (GTEx)'%, STARNET is a genetics-of-gene-expression study on approximately

91 600 CAD patients undergoing open-heart surgery, during which seven tissues were collected:

92  atherosclerotic aortic wall (AOR), atherosclerotic-lesion-free internal mammary artery

93 (MAM), liver (LIV), blood (BLD), subcutaneous fat (SF), visceral abdominal fat (VAF), and

94  skeletal muscle (SKLM)'°. GTEXx is a comprehensive resource for genetics-of-gene-

95  expression across 54 non-diseased tissue sites obtained post-mortem from nearly 1000

96 individuals®. In GTEx we studied six of the above tissues as well as the wall of coronary

97  (COR) and tibial (TIB) arteries, whereas MAM was not available (Methods and

98  Supplementary Tables 1-2). Together, we obtained predictive models from nine CAD-

99 relevant tissues. Genes with cross-validated prediction R2 > 0.01 were kept. STARNET-
100  based models allowed to impute 12,995 unique gene expression signatures in seven tissues,
101 and GTEx 12,964 unique gene expression signatures in eight tissues (Supplementary Table

102 1)

103 We first tested the reproducibility of the STARNET- and GTEXx-based predictive
104  models by performing TWAS analyses in ten GWAS studies of CAD covering 17,687 CAD
105  patients and 17,854 controls'?-2!, which provided individual level data and partially overlap
106  with the CARDIOGRAMplusC4D meta-analysis, followed by replication analyses on

107  genotyping data of UK Biobank (UKB)?, from which we extracted 20,310 CAD patients

108  and 25,000 controls (Supplementary Table 3). As can be seen in Supplementary Results,

109  there were prominent overlaps of transcriptome-wide significant genes having consistent
110  association directions between test and validating sets within STARNET- (binomial test P =
111 0.00075) and GTEx-based models (binomial test P = 0.00079; Supplementary Fig. 1)

112 respectively. Between the two independent reference panels, TWAS results of six

113  overlapping tissues indicated consistent association directions (average Pearson’s coefficient

114  p=0.72; P < 1le-10; Supplementary Fig. 2), and prominent overlaps of significant gene-tissue
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115  pairs (Supplementary Results; Supplementary Fig. 3). Overall, these results suggest the

116  reproducible of TWAS results of predictive models within and between two independent

117  reference panels.

118  Genes associated with CAD by TWAS

119 By combining TWAS results based on two genetics-of-gene-expression reference
120  panels, we identified 114 genes representing 193 gene-tissue pairs with differential

121  expression in CAD cases and controls (Fig. 2; Supplementary Fig. 4; Supplementary Table
122 4). Moreover, 95 of overall 114 gene-tissue association pairs were confirmed using another
123 commonly used fine-mapping tool (COLOC)? that calculates the posterior probabilities of
124  shared casual variant in each locus between eQTL and GWAS statistics (Methods;

125  Supplementary Table 5; Supplementary Fig. 5).

126 Forty-six genes displayed genetically-mediated differential expression in AOR, 28 in
127  MAM, 25in LIV, 23 in VAF, 22 in SKLM, 18 in SF, 16 in BLD, 10 in TIB, and 5 in COR
128  (Fig. 3A), reflecting the importance of respective tissues in CAD pathophysiology. Most
129  genes revealed significant associations in only a single tissue; 38 were significant in more
130 than one, almost all having consistent directions of association between predicted expression
131  levels and CAD across tissues (Fig. 3B).

132 Among the 114 genes, 102 were protein-coding and 12 were long non-coding RNAs
133 (IncRNA) (Supplementary Table 4). STARNET data showed that most INCRNASs were

134  positively co-expressed with a surrounding gene in affected tissues (Supplementary Fig. 8).
135  LINCO00310 was the only exception, which displayed complex co-expression patterns with
136  other genes (Supplementary Fig. 8).

137 Respective genes were found in 63 genomic regions, thus several regions represented

138  multiple genes with significant associations. Six regions had multiple TWAS genes with
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139  shared GWAS and eQTL signals in respective tissues, like 1p13.3 and 2p33.2

140  (Supplementary Fig. 6-7; Supplementary Table 5). On the other hand, in 39 regions

141 expression of only a single gene was found to be significantly associated, which makes these
142  genes likely candidates for mediating causal effects, particularly, if these genes reside within
143 GWAS risk loci for CAD (these genes are indicated in Supplementary Table 6).

144 Most TWAS genes (n=96) could be positionally annotated to the 1Mb region around
145  one of the over 200 GWAS loci that are currently known to be genome-wide significantly
146  associated with CAD?2. Therefore we marked these as known genes (Supplementary Table
147  6). On the other hand, 18 genes resided outside of these regions and were labeled as novel
148  genes (Table 1). Most novel genes were tissue-specific, except RGS19, FAM114A1 and

149  UFL1 which displayed evidence for differential expression in multiple tissues.

150 Pathways and diseases enriched by TWAS genes

151  We carried out two types of gene set enrichment tests to further study the biological

152  relevance of genes giving signals in this TWAS. First, we studied disease-gene sets from the
153  DisGeNET platform which is one of the largest publicly available collections of genes and
154  variants associated with human diseases?*. The results showed that genes discovered by

155  TWAS were primarily enriched for CAD, coronary atherosclerosis, and hypercholesterolemia
156  (Supplementary Table 7), adding to the plausibility of our TWAS findings.

157 In line with these results, gene set enrichment analyses using GO?°, KEGG?,

158  Reactome?’, and WikiPathways?® databases showed that the TWAS genes were highly

159  enriched for pathways involved in cholesterol metabolism and regulation of lipoprotein

160 levels. To a lesser extent, risk genes were enriched in regulation of blood pressure as well as

161  development and morphogenesis of the heart and the aortic valve (Supplementary Table 8).
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162  Damaging mutations in TWAS genes

163  We next searched in whole-exome sequencing data of 200,643 participants from UKB for
164  rare damaging variants in TWAS genes (minor allele frequency < 0.01, either loss of function
165  mutations or mutations predicted to be adverse by one of five in-silico methods

166  (Supplementary Files). We performed gene-based burden test on major CAD-related

167  cardiometabolic risk traits. We found evidence for nominally significant association with

168  either CAD or its risk traits for 67 TWAS genes (Fig. 4; Supplementary Tables 9-10).

169  Mutations in five genes were directly associated with increased CAD risk: LPL (odds ratio
170  [OR] =1.168; 95% confidence interval [CI] 1.034-1.036; P = 0.016), NOS3 (OR =1.143;
171 95% CI1 1.109-1.279; P = 0.02), ADAMTS7 (OR = 1.062; 95% CI 1.011-1.115; P = 0.016),
172 MTAP (or=1.507; 95%CI 1.061-2.086; P = 0.017), and HLA-C (OR =1.112; 95%CI 1.002-
173 1.239; P = 0.044); and two were associated reduced CAD risk: TWIST1 (OR = 0.726; 95% CI
174 0.523-0.985; P = 0.038), SARS (OR =0.831; 95% CI 0.706-0.974; P = 0.022). Damaging
175  LPL mutations were evidently associated with lipid traits, including levels of LDL (low

176  density lipoproteins) (beta = 0.043; P = 9.6e-4), HDL (high density lipoproteins) (beta = -
177  0.106; P = 4.54e-68), APOA (Apolipoprotein A) (beta = -0.062; P = 6.25e-47), APOB

178  (Apolipoprotein B) (beta = 0.025; P = 1.38e-12), and TG (Triglycerides) (beta = 0.241; P =
179  1.47e-68).

180 Damaging mutations in 11 novel TWAS genes were associated with CAD risk factors
181  (Table 2). Some of these gene-trait associations have been reported before. Damaging

182  mutations in MGP, which regulates vascular calcification, adipogenesis and is serum marker
183  of visceral adiposity?®3%, were associated with increased levels of LDL, TC (total

184  cholesterol) and APOB. NLRC4 was reportedly associated with atherosclerosis by regulating
185 inflammation reaction®?23, and its damaging mutations were associated with levels of CRP

186  (C-reactive protein —a marker of inflammation).
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187  Novel genes associate with risk factors in human and mouse data

188  We next associated common variants in the regions of +1Mb around the 18 novel TWAS

189  genes to study their associations with a series of lipid traits including LDL, HDL, APOA,
190 APOB, LPA, TC, and TG in UKB (Supplementary Files). Bonferroni-corrected significance

191  P<4.0e-4 (0.05/18 novel genes * 7 lipid traits) was observed for numerous respective lead

192  variants, of which RGS19, SDCCAG3, HOMER3, and WWP2 reached genome-wide

193  significant association (P<5e-8) with multiple lipid traits (Fig. 5A; Supplementary Table 11).
194 Next, we extracted expression-trait association statistics of TWAS genes from the
195  Hybrid Mouse Diversity Panel (HMDP)3*. Based on the expression data from mouse aorta
196  and liver tissues, 48 TWAS genes were significantly associated with aortic lesion area and 14
197  further cardiovascular traits (nominal significance P < 0.05; Supplementary Table 12).

198  Expression levels of seven novel genes, i.e. Rgs19, Kptn, Ezr, Stx4a, Candl, Focad and

199  Wasf1, were associated with aortic lesion area (Fig. 5B), a commonly used measure for

200 atherosclerotic plaque formation in mice. Additionally, we found the novel genes were

201  associated with at least one lipid trait in the mouse model (Fig. 5B).

202  Knockdown of RGS19 and KPTN reduced lipid secretion by human liver cells

203  Both human genotype-trait association statistics in UKB and mouse expression-trait

204  association statistics in the HMDP indicated that several novel genes identified by TWAS
205 influence lipid metabolism. To validate these findings, we chose two of the novel genes, i.e.
206  KPTN and RGS19, which have not been studied in much detail so far and have particularly
207  not at all been investigated in the context of atherosclerosis or CAD. Hepatocytes are

208  critically involved in lipid metabolism. In line, in a screening of different atherosclerosis-
209  relevant cell lines (e.g., hepatocytes, smooth muscle, endothelium, fibroblast, and

210 adipocytes), KPTN had the highest expression level in the huh7 hepatocyte cell line
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211  (Supplementary Fig. 9A, B). To study the influence of KPTN and RGS19 on lipid

212  metabolism, we next generated gene knockout (KO) huh7 cell lines for by a dual CRISPR
213  strategy (Methods; Supplementary Table 13), which substantially reduced expression of the
214 respective genes (Supplementary Fig. 9C, D). We measured secretion levels of TG,

215  cholesterol and APOB in gene-targeted versus control cells. Notably, under normal

216  circumstances, human hepatocytes synthesize cholesterol, assemble TG and APOB100, and
217  secrete these particles in form of very low-density lipoprotein (VLDL)%. Compared to

218  control huh7 cells, we found reduced APOB and cholesterol levels in culture medium of
219  KPTN-KO cells (Fig. 6C, D). In culture medium of RGS19-KO cells we also detected

220  reduced levels of APOB100, cholesterol, and TG (Fig. 6B, C, D, E), in line with strong
221  associations of this gene with an array of lipid traits in both human genotyping and mouse

222  expression data sets (Figure 5).

223  Discussion

224 In a stepwise approach, we first generated and filtered models predicting genetically

225  modulated gene expression in nine tissues that contribute to CAD risk. Next, we applied

226  these models to individual-level genotype data on more than 80,000 CAD cases and controls.
227  We identified 114 genes with differential expression by genetic means in CAD patients.

228  Many signals were highly plausible as they resided within loci displaying genome-wide

229  significant association with CAD by traditional GWAS. Moreover, the genes identified by
230  this TWAS were markedly enriched in established pathways for the disease, and 67 revealed
231  in whole-exome sequence data of UKB that damaging mutations have significant impact on
232 CAD risk or its underlying traits. Importantly, we also identified 18 genes without prior

233  evidence for their involvement in CAD by GWAS, many of which were found to be

234 associated with lipid metabolism in human and mouse data.

10
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235 Only a minority of genes residing within published CAD GWAS loci have been

236  validated experimentally for their underlying causal role in atherosclerosis. Our data

237  corroborate a recent exploration of known GWAS loci for genotype-related expression levels
238  (Hao et al., personal communication, manuscript attached) and provide a substantial step

239  towards prioritization of genes at respective GWAS loci?3. In this respect, 46 genes identified
240 by this TWAS are known for effects in pathophysiological pathways related to CAD,

241 including lipid metabolism, inflammation, angiogenesis, transcriptional regulation, cell

242  proliferation, NO signaling, and high blood pressure, to name a few (Supplementary Table 6),
243  giving credibility to the association findings. On the other hand, a limitation of the TWAS
244 approach is that at 20 loci two or more genes show signals such that other methods will be
245  needed to pinpoint the precise genetic mechanisms leading to CAD. Indeed, in another study
246  we recently applied summary-based Mendelian Randomization, MetaXcan, to integrate tissue
247  and cell-specific data from STARNET and GTEx with CAD GWAS datasets, and obtained at
248 14 of these 20 loci indicative data allowing prioritization of a gene (Hao et al., personal

249  communication, manuscript attached).

250 Most novel TWAS genes revealed association with lipid traits in both genotype data
251  of human and expression-trait statistics of our atherosclerosis mouse model. For example,
252  expression profiles of KPTN and RGS19, both novel genes displaying significant TWAS

253  results for CAD in human liver tissue, also showed significant association with various lipid
254 traits as well as aortic lesion area in our atherosclerosis mouse model. Moreover, both gene
255  loci harbor SNPs which are genome-wide significantly associated with LDL-C, HDL-C, TC,
256 and TG in human genotype data. Finally, the Common Metabolic Disease Knowledge Portal
257  revealed that damaging rare variants of KPTN are associated with reduced levels of LDL

258  (beta=-11.9; P =0.00042) and TC (beta = -11.9; P = 0.0014) ¢, which is directionally

259  plausible given the TWAS results. Based on these observations, we functionally validated the

11
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260  roles of these two novel genes by studying lipid levels in human liver cells, i.e. the tissue that
261  displayed evidence for differential expression by TWAS. Indeed, we observed that knockout
262  of these genes lowered secretion of APOB and cholesterol into culture medium. KPTN,

263  kaptin (actin binding protein), a member of the KPTN, ITFG2, C120rf66 and SZT2

264  (KICSTOR) protein complex, is a lysosome-associated negative regulator of the mechanistic
265  target of rapamycin complex 1 (mTORC1) signaling®’. It is required in amino acid or glucose
266  deprivation to inhibit cell growth by suppressing mTORCL1 signaling in liver, muscle, and
267  neurons. mTORCL1 has multifaceted roles in regulating lipid metabolism, including the

268  promotion of lipid synthesis, and storage and inhibition of lipid release and consumption,
269  suggesting that the validated role of KPTN in hepatic lipid secretion might be partially

270  mediated by the mTORC1 pathway. RGS19 belongs to the RGS (regulators of G-protein

271  signaling) family, who are regulators for G protein-coupled receptors (GPCRs)®*. RGS19
272  inhibits GPCR signal transduction by increasing the GTPase activity of G protein alpha

273 subunits, thereby transforming them into an inactive GDP-bound form3%4°, The targeting
274  GPCR of RGS19 has not been observed before, and how RGS19 regulates lipid metabolism
275  remains unclear.

276 Interestingly, our TWAS uncovered eight novel gene-CAD associations in fat tissue,

277  including MGP and WASF1 in SF, and CAND1, FAM114A1, FOCAD, RGS19, TSPAN11 and

278  TXNRD3 in VAF, representing half of the novel genes. Damaging mutations in five genes
279  were associated with many cardiometabolic risk factors for CAD, including those in WASF1
280  with BMI, MGP with LDL,TC and APOB, TXNRD3 with LPA, FAM114A1 with diabetes,
281  FOCAD with hypertension, i.e. conditions shown by Mendelian randomization to be causal
282  for CAD*. Given the many CAD patients that are overweight or obese, it will be of great
283 interest to identify how these genes modify cardiometabolic traits leading to cardiovascular

284  disorders. In this respect our TWAS could provide a list of candidate genes and related

12
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285  targetable cardiometabolic traits. In addition, it is of surprise to unveil 22 genes linking

286 SKLM to CAD risk, and eight were unique to this tissue, including HOMER3, SDCCAG3,
287  MTAP, NME9, PSMA4, SLC2A12, UNC119B and VAMP5, , the first two being novel.

288 SDCCAG3 or ENTRL1 encodes endosome associated trafficking regulator 1 and involves in
289  recycling of GLUTL1 (glucose transporter type 1), supplying the major energy source for

290  muscle contraction. SKLM-based metabolism may have a protective role in CAD as

291  suggested by the many cardioprotective effects of sports*?43, Gene targets enhancing SKLM
292  function in this respect might be effective in CAD prevention, a field relatively unexplored
293  thus far. Here, for the first time, quantitative traits regulated genes in SKLM were associated
294  with CAD by TWAS, providing novel evidence for genes that could modulate CAD risk by
295  their functions in SKLM.

296 There are certain limitations in our study. Since TWAS are strongly dependent on the
297  reference panel linking genetic signatures with gene expression, it had to be expected that
298 STARNET- and GTEx-based predictive models display differences in gene-CAD

299  associations. STARNET-based TWAS identified 86 genes, whereas GTEx-based TWAS
300 identified 68 genes. Yet, 34 genes were shared between the two analyses, and effect sizes for
301 the shared genes were highly concordant (p = 0.97). An average of 62% overlapping genes
302  was observed in the matched tissues of two reference-based models, and the resulting size of
303  expression-CAD associations was linearly consistent with an average p = 0.72. The relatively
304  small differences may be due to different sample sizes used for training predictive models®,
305 different disease states (subjects with and without CAD), intravital or post mortem sample
306 collection, leading to differences in gene expression in our reference panelst®?, Given a fair
307  consistency between the two data sources, we combined results derived from both panels to
308 increase the power for capturing risk genes. Second, although TWAS facilitates candidate

309  risk gene prioritization, co-regulation or co-expression in cis at a given locus limits the
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310 precise determination of the culprit gene®. Indeed, at 12 loci we observed signals for three or
311  more TWAS genes. For instance, in LIV tissue TWAS identified five genes at 1p13.3,

312  ATXN7L2, CELSR2, PSMA5, PSRC1, SARS and SORT1 which were co-regulated by same
313  risk variant set, confusing the causal gene prioritization. While CELSR2, PSRC1 and SORT1
314  were previously shown to act on lipid metabolism*4, we found that damaging mutations in
315  ATXN7L2 and SARS were also associated with CAD or its risk traits, the former with serum
316  levels of HDL and APOA, and the later with CAD and diabetes. In addition, all IncRNA
317  genes identified by our study displayed co-expression with their neighboring coding genes,
318  which makes it difficult to determine their casual effects. Nevertheless, in combining TWAS
319 data with other genetic analyses, e.g., looking at effects of damaging mutations, genetic

320  association with other phenotypes and expression-traits association statistics, we aimed to
321  improve risk gene prioritization, and to provide deeper insights of possible disease-causing
322  mechanisms. For instance, LPL is well-known for its protective role against CAD by

323  lowering lipids*>#6, and our analyses showed that damaging LPL mutations were associated
324 with increased risk of CAD and higher lipid levels. Finally, as with all statistical methods,
325  there are certain limitations and assumptions associated with TWAS. Further evolution and
326  improvement of these methods, as well as functional validation experiments, will assuredly
327  improve the accuracy of these studies.

328 In summary, our TWAS study based on two genotype-expression reference panels
329 identified 114 gene-CAD associations, of which 18 were novel. The extended analyses with
330  multiple datasets supported the reliability of the CAD TWAS signals in prioritizing candidate
331  risk genes and identifying novel associations in a tissue-specific manner. Functional

332  validation of two novel genes, RGS19 and KPTN, lend support to our TWAS findings. Our
333  study created a set of gene-centered and tissue-annotated associations for CAD, providing

334 insightful guidance for further biological investigation and therapeutic development.
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451  Tables

452  Table 1 18 TWAS genes residing outside of published GWAS loci.

Gene Tissue Gene type Cytoband Z score SE P value From?
NLRC4 LIV protein_coding 2p22.3 -3.383 0.044 3.04E-06 STARNET
TXNRD3 VAF protein_coding 3g21.3 2.566 0.059 1.36E-06 STARNET
FAM114A1 VAF protein_coding 4p14 4.026 0.050 3.44E-09 GTEXx
FAM114A1 BLD protein_coding 4p14 4.845 0.037 1.80E-06 GTEX
EGFLAM COR protein_coding 5p13.2 5.596 0.047 7.70E-10 GTEXx
UFL1 MAM protein_coding 6q16.1 -5.246 0.038 1.62E-06 STARNET
UFL1 BLD protein_coding 6q16.1 -4.687 0.038 8.70E-05 STARNET
UFL1 BLD protein_coding 6q16.1 -4.955 0.042 3.96E-07 GTEXx
WASF1 SF protein_coding 621 4.320 0.059 1.91E-06 STARNET
EZR LIV protein_coding 6¢25.3 -3.187 0.025 3.53E-06 STARNET
FOCAD VAF protein_coding 9p21.3 8.348 0.068 1.44E-12 GTEXx

SDCCAGS3 SKLM protein_coding 9934.3 -3.015 0.061 1.74E-06 STARNET

TSPAN11 VAF protein_coding 12p11.21 2.285 0.065 1.79E-07 STARNET
MGP SF protein_coding 12p12.3  -3.412 0.040 5.67E-07 GTEXx
CAND1 VAF protein_coding 12g14.3  -2.355 0.030 1.19E-07 GTEX
STX4 COR protein_coding 16p11.2  3.347 0.056 2.59E-06 GTEx
WWP2 AOR protein_coding 16g22.1  4.491 0.029 5.67E-06 STARNET
WWP2 AOR protein_coding 16¢g22.1 6.570 0.031 1.19E-07 GTEX
GAS8 LIV protein_coding 16g24.3  0.189 0.041 8.32E-07 GTEXx

HOMER3 SKLM protein_coding 19p13.11 4.647 0.030 3.52E-08 GTEXx

KPTN LIV protein_coding 19913.32 -3.076 0.076 2.17E-06 STARNET
RGS19 LIV protein_coding 20913.33 -4.913 0.028 1.52E-06 GTEX
RGS19 VAF protein_coding 209g13.33 -4.868 0.059 451E-06 STARNET
RGS19 VAF protein_coding 20913.33 -4.545 0.030 4.63E-07 GTEx

RGS19 SKLM protein_coding 20913.33 -5.026 0.024 1.42E-06 STARNET

RGS19 SKLM protein_coding 20g13.33 -5.298 0.018 9.29E-07 GTEXx

453 & Association statistics from either STARNET- or GTEx-based models.
454

455
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Table 2 Associations of damaging mutations in novel genes with risk traits of CAD.
Case Control
Binary trait Gene Non- OR[95%CI] P value
Non-carrier Carrier . Carrier
carrier
Diabetes FAM114A1 10668 116 187555 1457 1.4[1.15-1.69] 9.19E-04
Diabetes UFL1 10634 150 187023 1989 1.33[1.11-1.57] 1.47E-03
Hypertension FOCAD 73542 4605 102379 6129 1.05[1.01-1.09] 2.60E-02
Hypertension EGFLAM 73754 4393 102147 6361 0.96[0.92-1] 2.82E-02
Hypertension EZR 77495 652 107491 1017 0.89[0.8-0.98] 2.05E-02
Carrier Non-carrier
Quantitive trait Gene No. non- Beta[95%Cl] P value
No. carrier Median(range) ) Median (range)
carrier

APOB (g/L) HOMER3 2633 1(0.41-1.91) 187891  1.02(0.4-2) -0.02[-0.03--0.01]  4.02E-03
APOB (g/L) MGP 158 1.05(0.51-1.96) 190366  1.02(0.4-2) 0.08[0.04-0.13] 2.60E-04
TC (mmol/L) HOMERS3 2651 5.57(2.33-10.06) 188814  5.66(1.64-15.46) -0.08[-0.14--0.03]  2.95E-03
TC (mmol/L) MGP 158 5.76(3.19-10.29) 191307 5.66(1.64-15.46) 0.34[0.13-0.56] 1.66E-03
LDL (mmol/L) HOMER3 2649 3.45(1.05-6.97) 188511  3.52(0.28-9.8) -0.06[-0.11--0.02] 2.34E-03
LDL (mmol/L) MGP 158 3.59(1.81-7.05) 191002  3.52(0.28-9.8) 0.29[0.13-0.45] 4.82E-04
LPA (nmol/L TXNRD3 3162 21.94(3.8-188.89) 150645 20.98(3.8-189) 2.5[0.29-4.71] 2.63E-02
BMI (kg/m2) KPTN 2084 26.87(14.94-56.05) 197753  26.7(12.12-68.95)  -0.3[-0.57--0.04] 2.65E-02
BMI (kg/m2) WASF1 806 26.92(17.71-53.02) 199031 26.7(12.12-68.95)  0.47[0.04-0.91] 3.38E-02
CRP (mg/L) NLRC4 2470 1.25(0.11-52.86) 188577  1.31(0.08-79.49) -0.22[-0.44--0.01]  4.30E-02
CRP (mg/L) UFL1 2057 1.3(0.1-43.74) 188990  1.31(0.08-79.49) -0.37[-0.6--0.13] 2.36E-03
Neutrophil (109

cells/L) MGP 164 3.51(0.61-8.21) 194782  4.07(0-25.95) -0.33[-0.59--0.07]  1.40E-02
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462  Fig. 1 The study design.
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464  Fig. 2 Manhattan plot of the transcriptome wide association study (TWAS). The results
465  from STARNET- and GTEx-based TWASSs were integrated by lowest P values. The blue line
466  marks P =3.85-6. Each point corresponds to an association test between gene-tissue pair. 18
467  novel TWAS genes were highlighted. Supplementary Fig. 4 identifies all genes identified by

468  their genetically-modulated association signals.
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471  Fig. 3 Tissue distribution of 114 CAD TWAS genes. (A) Number of significant genes

472  across tissues. (B) Heatmap plot of 38 TWAS genes identified in more than one tissues. The
473  color codes indicate direction of effects. Cells marked with * represent significant gene-tissue
474 pairs (P < 3.85e-6).
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Fig. 4 Effects of damaging mutations of TWAS genes on CAD and its risk traits.

Sign(beta)*-log10(p) displayed for associations that reached a P <0.05. When the

Sign(beta)*-log10(P) > 6, they were trimmed to 6
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Fig. 5 Novel risk genes were associated with lipid traits. (A) Data from UKB indicate that
lead variants inside the boundary of risk genes were associated with lipid traits with
Bonferroni-corrected significance levels (*, P < 4.0e-4), or by genome-wide significance (**,
P < 5e-8). (B) Expression levels of novel genes were likewise associated with lipid traits and
aortic lesion area in an atherosclerosis mouse model from the Hybrid Mouse Diversity Panel

(HMDP). *, P <0.05; **, P<0.01; ***, P < 0.001.
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Fig. 6 Targeting of KPTN and RGS19 reduced Lipids and APOB secretion of human
liver cells. (A) Two sgRNAs were used to target the exon4 of KPTN (shared exon among
isoforms) in a Cas9-expressing huh7 liver cell line. The dual CRISPR strategy created a 40bp
frame shift deletion in the gene and pround reduction of KPTN at both mRNA and protein
levels (Supplementary Figure 9C, 9D). The primers (P-Fw and P-Rv) used for analyzing the
CRISPR editing as indicated. (B) The same strategy was used for RGS19 targeting, which
resulted in a 130bp frame shift deletion in the gene, and reduction of mMRNA and protein
(Supplementary Figure 9C, 9D). (C) Reduced triglyceride and cholesterol levels in knockout
(KO) cell lines were detected by colorimetric method and APOB100 secretion was measured
by human APOB100 Elisa (n=6). Triglyceride, cholesterol and APOB100 levels were

normalized to total protein and compared between the KO and control (CTR) cell lines.
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502 Methods

503  Predictive models of nine tissues based on two reference panels

504 We adopted the existing predictive models trained using EpiXcan pipeline by Zhang et al.%,
505 including models of atherosclerotic aortic wall (AOR), atherosclerotic-lesion-free internal
506 mammary artery (MAM), liver (LIV), blood (BLD), subcutaneous fat (SF), visceral abdominal
507 fat (VAF) and skeletal muscle (SKLM) based on the genetics-of-gene-expression panel
508 STARNET (The Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task)?, and
509 of AOR, LIV, BLD, SF, VAF and SKLM based on GTEx (Genotype-Tissue Expression)3.
510 Arterial wall coronary (COR) and tibial artery (TIB), datasets were only available in
511 the GTEXx panel. So, we established predictive models for these two tissues using EpiXcan
512  pipeline as has been done for other models before!. In brief, we firstly filtered the genotype
513  and expression data of COR and TIB from GTEx v7. Variants with call rate < 0.95, minor
514  allele frequency (MAF) <0.01, and Hardy Weinberg equilibrium (HWE) < 1e-6 were removed.
515 For expression, we used quality-controlled data and performed sample-level quantile
516  normalization, and gene-level inverse quantile normalization using preprocess codes of
517  PredicDB pipeline. Samples were restrained to the European ethnicity. We then calculated SNP
518 priors by using hierarchical Bayesian model (qtiIBHM)* that jointly analyzed epigenome
519  annotations of aorta derived from Roadmap Epigenomics Mapping Consortium (REMC)?®, and
520 eQTL statistics. The SNP priors (Supplementary Table 2), genotype data and expression data
521  were jointly applied to 10-fold cross-validated weighted elastic-net to train predicting models
522 by deploying EpiXcan pipelinel.

523 Both STARNET- and GTEx-based models were filtered by cross-validated prediction
524 R?>0.01. The summary statistics of sample sizes used for training models and the transcript

525  numbers of genes covered by each predicting models are shown in Supplementary Table 1.
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526  Genotype cohorts

527  For the discovery cohort, individual level genotyping data were collected from ten genome-
528 wide associations studies (GWAS) of coronary artery disease (CAD), a subset of
529 CARDIoGRAMplusC4D, including the German Myocardial Infarction Family Studies
530 (GerMIFS) I-V11%12 Wellcome Trust Case Control Consortium (WTCCC)®, LURIC study**
531 and Myocardial Infarction Genetics Consortium (M1Gen)*. We used a part of individual-level
532 data from UK Biobank (UKB) as the replication cohort®®, by extracting 20,310 CAD cases
533  according to hospital episodes or death registries as reported, and randomly selected 25,000
534  non-CAD UKB participants as controls. The detailed information about selection criteria of
535 case and control were described at elsewhere!?. In total, genotyping data of 37,997 cases and
536 42,854 controls were included in our transcriptome-wide association studies (TWAS) of CAD

537  (Supplementary Table 3). The preprocessing steps of genotyping data are as previously*2.

538  Transcriptome wide association analysis

539  We applied predictive models to the eleven genotype cohorts to impute individual-level
540  expression profiles of nine tissues, and performed transcriptome-wide association analysis
541  between imputed expression and CAD. To test the reproducibility of TWAS results, we
542  performed two types of validating tests: within and between two reference-based models.
543  Firstly, we used ten GWAS cohorts as testing set and UKB as the validating set to test
544 reproducibility within STARNET- and GTEx-based models respectively. Secondly, we
545  compared the consistency of results between STARNET- and GTEXx-based models of the six

546  overlapping tissues using all genotype data.
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547  Co-expression network for IncRNA

548  We used RNA-seq data of STARNET? to calculate expression correlations between long non-
549  coding RNA (IncRNA) genes and protein coding genes in seven tissues. Co-expression pairs
550  with absolute Pearson correlation coefficient larger than 0.4 were considered to be significant.

551  The co-expression network was displayed by cytoscapel’.

552  Colocalization of the eQTL and GWAS signals

553  Colocalization analysis was performed using COLOC, a Bayesian statistical methodology that
554  takes GWAS and eQTL data as inputs, and tests the posterior probabilities (PP4) of shared
555  casual variant for each locus®®. The summary statistics of GWAS meta-analysis were obtained
556 from CARDIOGRAMplusC4D Consortium!!, and the eQTL data of nine tissues from

557 STARNET?and GTEX? respectively.

558  Annotation of novel risk genes

559  Over 200 CAD loci were identified by GWAS?®20, We used MAGMA?! to annotate the 114
560 TWAS genes and observed that 96 genes resided within £1Mb around known CAD loci
561  whereas 18 genes (novel loci) where located outside known GWAS risk loci, i.e. they were

562  novel genes (Supplementary Table 6).

563  Gene set enrichment analyses

564  Pathway enrichment analysis was carried out using ClueGO (v2.5.2)%?, a plugin of cytoscape’,
565 based on collated gene sets from public databases including GO?%3, KEGG?*, Reactome?®, and
566  WikiPathways?®. Gene sets with false discovery rate (FDR) by right-sided hypergeometric test

567 less than 0.05 were considered to be significant.
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568 Furthermore, we also studied the diseases or traits associated with risk genes by
569 performing disease enrichment analysis based on DisGeNET?’, the largest publicly available
570 datasets of genes and variants association of human diseases. FDR < 0.05 was used for

571  thresholding.

572  Rare damaging variants association analysis

573  To investigate association of damaging variants in TWAS genes with CAD, we used whole
574  exome sequencing (WES) data of 200,632 participants from UKB?. The WES data was
575  processed following the Functional Equivalence (FE) protocol. We performed quality control
576  on the WES data by filtering variants with calling rate < 0.9, variants with HWE < 1e-6. For
577  the relevant traits, besides CAD, we considered several risk factors of the disease, including
578  body mass index (BMI), diabetes, hypertension, levels of low density lipoproteins (LDL), high
579  density lipoproteins (HDL), apolipoprotein A (APOA), apolipoprotein B (APOB),
580 Lipoprotein(a) (LPA), total cholesterol (TC) and triglycerides (TG)), as well as inflammation

581 related factors (C-reactive protein (CRP), lymphocyte count (Lymphocyte), monocyte count

582  (Monocyte) and neutrophil count (Neutrophil).

583 We defined damaging mutations as i) rare mutations with MAF < 0.01; ii) annotated
584 into following one of the 3 classes: loss-of-function (LoF) (stop-gained, splice site disrupting,
585 or frameshift variants), variants annotated as the pathogenic in ClinVar?®, or missense variants
586 predicted to be damaging by one of five computer prediction algorithms (LRT score,
587  MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2 HumVar, and SIFT). The Ensembl Variant
588  Effect Predictor (VEP)®® and its plugin loftee®!, and annotation databases dobNSFP 4.1a% and
589  ClinVar (GRCh38)?° were used for annotating damaging mutations.

590 For each analysis, samples were classified into carriers or noncarriers of the gene’s

591 damaging mutations. For binary traits, we used Fisher’s exact test to check if there was
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592 incidences difference of mutation carrying between case and controls. For the quantitative traits,
593  we used linear regression model with adjustments of sex, first five principal components, and
594  lipid medication status to investigate the associations between mutation carrying status and
595 traits. We used nominal significance threshold (P < 0.05), given that coding variants are rather
596 rare, and the case-control sample sizes were not balanced which might increase false negative
597  rate. We used nominal significance threshold P < 0.05, because, at one hand, the case-control
598  size was not balanced which might increase false negative rate, at the other hand, it’s an

599 exploratory trial to investigate the potential biological relevance of TWAS genes.

600  Association of variants resided in novel genes with lipid traits

601  For 18 novel risk genes, we performed association analysis for variants located in novel gene
602 loci (x1Mbase) with lipid traits using genotyping data of UKB. The lipid traits include levels
603 of LDL, HDL, APOA, APOB, LPA, TC and TG. The variants were filtered by MAF > 0.01,
604 and imputation info score > 0.4. The association test was performed using PLINK233 with
605 adjustment of sex, first five principal components, and lipid medication status. The lead
606 variants residing in gene loci with P value less than 4.0e-4 (0.05/18 risk genes * 7 lipid traits)

607  were considered to be significant (Supplementary Table 11).

608  The Hybrid Mouse Diversity Panel (HMDP)

609  The Hybrid Mouse Diversity Panel (HMDP) is a set of 105 well-characterized inbred mouse
610 strains on a 50% C57BL/6J genetic background®*. To specifically study atherosclerosis in the
611 HMDP, transgene implementation of human APOE-Leiden and cholesteryl ester transfer
612  protein was performed, promoting distinct atherosclerotic lesion formation®. A Western diet
613  containing 1% cholesterol was fed for 16 weeks. Subsequently, gene expression was quantified

614 inaortaand liver of these mice and lesion size was assessed in the proximal aorta using oil red
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615 O staining. Other 14 related traits were measured too, including liver fibrosed area, body
616  weight, total cholesterol, VLDL (very low-density lipoprotein) + LDL, HDL,TGs, unesterified
617  cholesterol, free fatty acid, IL-1b, IL-6, TNFa, MCP-1, and M-CSF. From HMDP, we extracted
618  significant association pairs between TWAS genes and 15 risk traits by applying significance

619 P <0.05.

620 Experimental validation of KPTN and RGS19 in human cells

621  To knock down KPTN and RGS19, two sgRNAs targeting shared exons of all transcription
622  isoforms were delivered by lentivirus into a Cas9-expression huh7, a human hepatoma cell line.
623  Exon 4 of KPTN and exon 5 of RGS19 were targeted by a dual CRISPR strategy to create a
624  40bp and 130bp frame shift deletion, respectively. SQRNAs were carried by Lenti-Guide-Puro
625  vector (addgene, #52963) and infected cells were treated with 10ug/ml puromycin treatment
626  for 3 days to eliminate the negative cell. Positive targeted cells were expanded in culture and
627 passaged for assays. Cells for measurement of secretive triglycerides, cholesterol and
628 APOB100 were cultured for 16 hours in serum-free medium. Medium triglycerides and
629  cholesterol were enriched for five times by vacuum centrifuge and measured with colorimetric
630  Kits, triglyceride (cobas) and CHOLZ2 (cobas), respectively. The amount of medium APOB100

631  was measured with an ELISA kit (MABTECH).
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737 PrediXcan pipeline: https://github.com/hakyim/PrediXcan.

738 qtIBHM: https://github.com/rajanil/qtiIBHM

739  STARNET database: https://www.ncbi.nlm.nih.gov/projects/gap/cqi-

740  bin/study.cgi?study id=phs001203.v1.pl. Project ID: 13585.

741 GTEx database: https://www.ncbi.nlm.nih.gov/projects/gap/cqi-

742  bin/study.cgi?study id=phs000424.v8.p2. Project ID: 20848.

743 UK Biobank: https://www.ukbiobank.ac.uk/. Project ID: 25214

744 MAGMA: https://ctg.cncr.nl/software/magma
745 R package for colocalization analysis, coloc: https://cran.r-

746  project.org/web/packages/coloc/vignettes/vignette.html

747  DisGeNET: https://www.disgenet.orq/

748 CARDIoGRAMplusC4D Consortium: http://www.cardiogramplusc4d.org/

749
750
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751 Extended data

752  Supplementary Results

753 We tested the reproducibility of the STARNET- and GTEXx-based predictive models
754 by performing TWAS analyses in ten GWAS studies of CAD covering 17,687 CAD patients
755 and 17,854 controls'>?1, which provided individual level data and partially overlap with the
756 CARDIoGRAMplusC4D meta-analysis, followed by replication analyses on genotyping data
757  of UK Biobank (UKB)??, from which we extracted 20,310 CAD patients and 25,000 controls
758  (Supplementary Table 3). From STARNET-based models, we identified 66 gene-tissue

759  association pairs reaching Bonferroni-corrected significance (P<3.85e-6) in the ten

760 CARDIoGRAMplusC4D cohorts. Of these, 19 also reached Bonferroni-corrected

761  significance in the UKB data, which was significantly more than expected by chance

762  (binomial test P = 0.00075), and 50 of 66 gene-tissue association pairs had directionally

763  consistent effects (binomial test P =3.33e-5). We also found strong correlation of the effect
764  sizes (p =0.74; P = 1.3e-12; Supplementary Fig. 1A) indicating good overall reproducibility

765  of the STARNET-based models.

766 From the GTEXx-based models, 47 gene-tissue pairs reached Bonferroni-corrected
767  significance (P<3.85e-6) in the ten CARDIOGRAMplusC4D cohorts, whereof 14 were

768  significant also in UKB (binominal test P = 0.0079). Like the STARNET-based models, 39
769  of 44 significant gene-tissue association pairs had consistent direction of effects with a

770  Pearson’s coefficient of 0.75 (P = 1.2e-9; Supplementary Fig. 1B). The slightly lower

771 numbers of significant gene-tissue association pairs found in the GTEx models may be

772  explained in that predicting models were based on: i) smaller numbers of genotype-

773  expression pairs, ii) unlike STARNET, GTEX consist of apparently healthy tissues and iii)

774  STARNET is a specific collection of CAD patients.
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775 Next, we tested consistency of TWAS results between two reference-based models by
776  comparing the results of a meta-analysis on all 11 genotyping data sets. We observed an

777  average of 62% overlapping genes (Supplementary Table 1) and significant correlations of
778  effect sizes (average Pearson’s coefficient p = 0.72; P < 1e-10; Supplementary Fig. 2). In the
779  STARNET-based models, we identified 82 genes representing 129 gene-tissue pairs across
780  seven tissues (P<3.85e-6). In the GTEx models, we identified 66 genes representing 106

781  gene-tissue pairs across eight tissues (P<3.85e-6). A total of 42 gene-tissue pairs were

782  significant in both the STARNET- and GTEx-based models (Supplementary Fig. 3A). The
783  overlapping genes were linearly consistent in both effect size (Pearson’s coefficient p = 0.99;
784  P<2.2e-16) and -logioP (Pearson’s coefficient p = 0.82; P<4e-11) (Supplementary Fig. 3B).
785  Owverall, these results suggest, on the one hand, reasonable consistence between the two

786  independent panels and, on the other hand, evidence for capturing complementary expression
787  quantitative signals.

788
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789  Supplementary Tables

790  Supplementary Table 1. Statistics of nine tissues' predictive models.

791  Supplementary Table 2. SNP priors of COR and TIB tissues.

792  Supplementary Table 3. 11 Genotype cohorts.

793  Supplementary Table 4. 114 TWAS genes list.

794  Supplementary Table 5. 53 TWAS genes have strong evidence of colocalized signals

795  between GWAS and eQTL (PP4 > 0.55).

796  Supplementary Table 6. 96 known and 18 novel genes annotated by GWAS risk loci of CAD.
797  Supplementary Table 7. TWAS genes are enriched to CAD or related risk traits based on
798  DisGeNET.

799  Supplementary Table 8. Pathways enriched by TWAS genes.

800  Supplementary Table 9. Association of TWAS genes' damaging mutation with CAD and its
801  binary risk traits.

802  Supplementary Table 10. Association of TWAS genes' damaging mutation with quantitative
803  risk traits of CAD.

804  Supplementary Table 11. Lead variants resided in the regions of novel genes were associated
805  with lipid traits in human genotype data.

806  Supplementary Table 12. Expression-trait association statistics in mouse atherosclerosis

807  model from HMDP.

808  Supplementary Table 13. Oligo sequences for gene editing.
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809  Supplementary Figures

A STARNET-based models B GTEx-based models

R=0.74, P =1.3e-12 R=0.75,P=1.2e-9
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810
811  Supplementary Fig. 1 Reproducibility of TWAS results within two reference models. A)

812  Reproducibility of STARNET-based models. B) Reproducibility of GTEx-based models. Ten
813 CARDIoGRAMplusC4D cohorts (10ss) were used as the testing set, genotypes from UK
814  Biobank (UKB) were the validating set.

815
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across tissues between STARNET- and GTEx-based models.
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Supplementary Fig. 2 Associations of predicted expressions with CAD are consistent
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Supplementary Fig. 3 Comparation of TWAS results between two reference models. A)

Venn diagram of transcriptome-wide significant gene-tissue pairs based on the two reference

models. There are 42 overlapping gene-tissue pairs (34 genes). B) The effect sizes (left) and
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824 P values (right) of overlapping genes were consistent between the two reference-based

825  models.
826
25
i
20
515 CAND1 2
s is_known
,‘l:} H R known
= b aredddd e .
7 FAM114A1 || EGFLAM UFL1  FOCAD sTha GASS . a novel
! WWP2 PT
10
TXNRD3 2.8 " WasFi [:_:[‘-'\‘l'l FATN
NLRC4 -
4 EZR \
A : SDCCAGS MGP ‘:
. . . .é
5 o .1.
. ‘o HE .
‘i ﬁ .@ w i,‘é iﬁ ‘i:i ga
827 = e ey

828  Supplementary Fig. 4 Manhattan plot of the transcriptome wide association study
829  (TWAS). 114 TWAS genes are highlighted. The blue line marks P =3.85x10-6. Each point
830  corresponds to an association test between a gene-tissue pair. TWAS genes residing in known

831  GWAS loci were defined as known (red dots), otherwise defined as novel (blue dots).
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Supplementary Fig. 5 Positive correlation between TWAS and colocalization statistics.

The log10P statistics of TWAS genes were positively correlated with PP4 (the posterior

probabilities) statistics of colocalization analysis. Most TWAS genes have shared casual

variants between GWAS and eQTL signals as their PP4 approaches 1.
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Supplementary Fig. 6 Colocalization signals in liver tissue at 1p13.3.
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842  Supplementary Fig. 7 Colocalization signals in aorta tissue at 2p33.2.
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845  Supplementary Fig. 8 Co-expression network related to INcRNA genes. Coding genes
846  with co-expression relationship with TWAS IncRNA genes are linked by arrow or T-line.
847  Arrow suggests positive co-expression, and T-line suggests negative. TWAS genes are

848 indicated in red frame. Tissues of gene co-expression are showed in difference edge colors as

849 indicated.
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852  Supplementary Fig. 9 KPTN (A) and RGS19 (B) expressions in multiple primary cells and
853  cell lines. HASMC, human aorta smooth muscle cell; HCAEC, human coronary artery

854  endothelium cell; HAAF, human aorta artery fibroblast; HAEC, human aorta endothelium
855  cell and huh7, a human hepatoma cell line. (C) RNA levels of KPTN and RGS19 were

856  dramatically reduced in corresponding knockout lines (KO) in comparison to the control cell
857 line (CTR), n=7. (D) The Western Blot image displays KPTN and RGS19 reduction at protein

858 level. Vinculin, 116kDa; KPTN, 48kDa; RGS19, 25kDa.
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