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Abstract 41 

Transcriptome-wide association studies (TWAS) explore genetic variants affecting gene 42 

expression for association with a trait. Here we studied coronary artery disease (CAD) 43 

using this approach by first determining genotype-regulated expression levels in nine 44 

CAD relevant tissues by EpiXcan in two genetics-of-gene-expression panels, the 45 

Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and 46 

the Genotype-Tissue Expression (GTEx). Based on these data we next imputed gene 47 

expression in respective nine tissues from individual level genotype data on 37,997 CAD 48 

cases and 42,854 controls for a subsequent gene-trait association analysis. 49 

Transcriptome-wide significant association (P < 3.85e-6) was observed for 114 genes, 50 

which by genetic means were differentially expressed predominately in arterial, liver, 51 

and fat tissues. Of these, 96 resided within previously identified GWAS risk loci and 18 52 

were novel (CAND1, EGFLAM, EZR, FAM114A1, FOCAD, GAS8, HOMER3, KPTN, 53 

MGP, NLRC4, RGS19, SDCCAG3, STX4, TSPAN11, TXNRD3, UFL1, WASF1, and 54 

WWP2). Gene set analyses showed that TWAS genes were strongly enriched in CAD-55 

related pathways and risk traits. Associations with CAD or related traits were also 56 

observed for damaging mutations in 67 of these TWAS genes (11 novel) in whole-exome 57 

sequencing data of UK Biobank. Association studies in human genotype data of UK 58 

Biobank and expression-trait association statistics of atherosclerosis mouse models 59 

suggested that newly identified genes predominantly affect lipid metabolism, a classic 60 

risk factor for CAD. Finally, CRISPR/Cas9-based gene knockdown of RGS19 and 61 

KPTN in a human hepatocyte cell line resulted in reduced secretion of APOB100 and 62 

lipids in the cell culture medium. Taken together, our TWAS approach was able to i) 63 

prioritize genes at known GWAS risk loci and ii) identify novel genes which are 64 

associated with CAD. 65 
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Introduction 66 

Coronary artery disease (CAD), a leading cause of premature death worldwide, is influenced 67 

by interactions of lifestyle, environmental, and genetic risk factors1. Genome-wide 68 

association studies (GWAS) have identified over 200 risk loci for CAD2,3
. Most of them are 69 

located in non-coding regions which hampers their functional interpretation. Expression 70 

quantitative traits loci (eQTLs) to some extent explain the genomic effects of GWAS 71 

signals4–6. By leveraging effects of multiple cis-eQTL variants on gene expression, 72 

transcriptome-wide association studies (TWAS) search primarily for gene-trait associations. 73 

The approach builds on predictive models of gene expression derived from reference panels 74 

that correlate genotype patterns with transcript levels in tissues which are relevant for the 75 

phenotype. Predictive models are then used to associate tissue-specific gene expression based 76 

on genotypes with a given trait in individuals of GWAS cohorts7. Since TWAS signals reflect 77 

gene expression levels, the approach can be used to prioritize candidate genes across disease-78 

relevant tissues. Thereby, TWAS may point to causal genes at risk loci identified by GWAS 79 

and thus provide further insights on biological mechanisms8,9. Moreover, TWAS increase the 80 

sensitivity to identify susceptibility genes missed by traditional GWAS analyses.  Here we 81 

performed a TWAS to identify novel susceptibility genes for CAD comprising more than 82 

80,000 individuals with genotype data along with validation and exploratory analyses for the 83 

associated genes. 84 

Results 85 

Evaluation of the predictive models from STARNET and GTEx panels 86 

The study design is shown in Fig. 1. We applied predictive models of nine tissues trained by 87 

the EpiXcan pipeline9 from two genetics-of-gene-expression panels: Stockholm-Tartu 88 

Atherosclerosis Reverse Network Engineering Task (STARNET) and Genotype-Tissue 89 
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Expression (GTEx)10,11. STARNET is a genetics-of-gene-expression study on approximately 90 

600 CAD patients undergoing open-heart surgery, during which seven tissues were collected: 91 

atherosclerotic aortic wall (AOR), atherosclerotic-lesion-free internal mammary artery 92 

(MAM), liver (LIV), blood (BLD), subcutaneous fat (SF), visceral abdominal fat (VAF), and 93 

skeletal muscle (SKLM)10. GTEx is a comprehensive resource for genetics-of-gene-94 

expression across 54 non-diseased tissue sites obtained post-mortem from nearly 1000 95 

individuals11. In GTEx we studied six of the above tissues as well as the wall of coronary 96 

(COR) and tibial (TIB) arteries, whereas MAM was not available (Methods and 97 

Supplementary Tables 1-2). Together, we obtained predictive models from nine CAD-98 

relevant tissues.  Genes with cross-validated prediction R2 > 0.01 were kept. STARNET-99 

based models allowed to impute 12,995 unique gene expression signatures in seven tissues, 100 

and GTEx 12,964 unique gene expression signatures in eight tissues (Supplementary Table 101 

1). 102 

 We first tested the reproducibility of the STARNET- and GTEx-based predictive 103 

models by performing TWAS analyses in ten GWAS studies of CAD covering 17,687 CAD 104 

patients and 17,854 controls12–21, which provided individual level data and partially overlap 105 

with the CARDIoGRAMplusC4D meta-analysis, followed by replication analyses on 106 

genotyping data of  UK Biobank (UKB)22, from which we extracted 20,310 CAD patients 107 

and 25,000 controls (Supplementary Table 3). As can be seen in Supplementary Results, 108 

there were prominent overlaps of transcriptome-wide significant genes having consistent 109 

association directions between test and validating sets within STARNET- (binomial test P = 110 

0.00075) and GTEx-based models (binomial test P = 0.00079; Supplementary Fig. 1) 111 

respectively. Between the two independent reference panels, TWAS results of six 112 

overlapping tissues indicated consistent association directions (average Pearson´s coefficient 113 

ρ = 0.72; P < 1e-10; Supplementary Fig. 2), and prominent overlaps of significant gene-tissue 114 
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pairs (Supplementary Results; Supplementary Fig. 3). Overall, these results suggest the 115 

reproducible of TWAS results of predictive models within and between two independent 116 

reference panels.  117 

Genes associated with CAD by TWAS 118 

By combining TWAS results based on two genetics-of-gene-expression reference 119 

panels, we identified 114 genes representing 193 gene-tissue pairs with differential 120 

expression in CAD cases and controls (Fig. 2; Supplementary Fig. 4; Supplementary Table 121 

4). Moreover, 95 of overall 114 gene-tissue association pairs were confirmed using another 122 

commonly used fine-mapping tool (COLOC)23 that calculates the posterior probabilities of 123 

shared casual variant in each locus between eQTL and GWAS statistics (Methods; 124 

Supplementary Table 5; Supplementary Fig. 5). 125 

Forty-six genes displayed genetically-mediated differential expression in AOR, 28 in 126 

MAM, 25 in LIV, 23 in VAF, 22 in SKLM, 18 in SF, 16 in BLD, 10 in TIB, and 5 in COR 127 

(Fig. 3A), reflecting the importance of respective tissues in CAD pathophysiology.  Most 128 

genes revealed significant associations in only a single tissue; 38 were significant in more 129 

than one, almost all having consistent directions of association between predicted expression 130 

levels and CAD across tissues (Fig. 3B).  131 

Among the 114 genes, 102 were protein-coding and 12 were long non-coding RNAs 132 

(lncRNA) (Supplementary Table 4). STARNET data showed that most lncRNAs were 133 

positively co-expressed with a surrounding gene in affected tissues (Supplementary Fig. 8). 134 

LINC00310 was the only exception, which displayed complex co-expression patterns with 135 

other genes (Supplementary Fig. 8).  136 

Respective genes were found in 63 genomic regions, thus several regions represented 137 

multiple genes with significant associations. Six regions had multiple TWAS genes with 138 
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shared GWAS and eQTL signals in respective tissues, like 1p13.3 and 2p33.2 139 

(Supplementary Fig. 6-7; Supplementary Table 5). On the other hand, in 39 regions 140 

expression of only a single gene was found to be significantly associated, which makes these 141 

genes likely candidates for mediating causal effects, particularly, if these genes reside within 142 

GWAS risk loci for CAD (these genes are indicated in Supplementary Table 6).  143 

Most TWAS genes (n=96) could be positionally annotated to the 1Mb region around 144 

one of the over 200 GWAS loci that are currently known to be genome-wide significantly 145 

associated with CAD2,3. Therefore we marked these as known genes (Supplementary Table 146 

6). On the other hand, 18 genes resided outside of these regions and were labeled as novel 147 

genes (Table 1).  Most novel genes were tissue-specific, except RGS19, FAM114A1 and 148 

UFL1 which displayed evidence for differential expression in multiple tissues. 149 

Pathways and diseases enriched by TWAS genes 150 

We carried out two types of gene set enrichment tests to further study the biological 151 

relevance of genes giving signals in this TWAS. First, we studied disease-gene sets from the 152 

DisGeNET platform which is one of the largest publicly available collections of genes and 153 

variants associated with human diseases24. The results showed that genes discovered by 154 

TWAS were primarily enriched for CAD, coronary atherosclerosis, and hypercholesterolemia 155 

(Supplementary Table 7), adding to the plausibility of our TWAS findings. 156 

In line with these results, gene set enrichment analyses using GO25, KEGG26, 157 

Reactome27, and WikiPathways28 databases showed that the TWAS genes were highly 158 

enriched for pathways involved in cholesterol metabolism and regulation of lipoprotein 159 

levels. To a lesser extent, risk genes were enriched in regulation of blood pressure as well as 160 

development and morphogenesis of the heart and the aortic valve (Supplementary Table 8).  161 
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Damaging mutations in TWAS genes  162 

We next searched in whole-exome sequencing data of 200,643 participants from UKB for 163 

rare damaging variants in TWAS genes (minor allele frequency < 0.01, either loss of function 164 

mutations or mutations predicted to be adverse by one of five in-silico methods 165 

(Supplementary Files). We performed gene-based burden test on major CAD-related 166 

cardiometabolic risk traits. We found evidence for nominally significant association with 167 

either CAD or its risk traits for 67 TWAS genes (Fig. 4; Supplementary Tables 9-10). 168 

Mutations in five genes were directly associated with increased CAD risk: LPL (odds ratio 169 

[OR] = 1.168; 95% confidence interval [CI] 1.034-1.036; P = 0.016), NOS3 (OR = 1.143; 170 

95% CI 1.109-1.279; P = 0.02), ADAMTS7 (OR = 1.062; 95% CI 1.011-1.115; P = 0.016), 171 

MTAP (or=1.507; 95%CI  1.061-2.086; P = 0.017), and HLA-C (OR = 1.112; 95%CI 1.002-172 

1.239; P = 0.044); and two were associated reduced CAD risk: TWIST1 (OR = 0.726; 95% CI 173 

0.523-0.985; P = 0.038), SARS (OR = 0.831; 95% CI 0.706-0.974; P = 0.022). Damaging 174 

LPL mutations were evidently associated with lipid traits, including levels of LDL (low 175 

density lipoproteins) (beta = 0.043; P = 9.6e-4), HDL (high density lipoproteins) (beta = -176 

0.106; P = 4.54e-68), APOA (Apolipoprotein A) (beta = -0.062; P = 6.25e-47), APOB 177 

(Apolipoprotein B) (beta = 0.025; P = 1.38e-12), and TG (Triglycerides) (beta = 0.241; P = 178 

1.47e-68).  179 

Damaging mutations in 11 novel TWAS genes were associated with CAD risk factors 180 

(Table 2). Some of these gene-trait associations have been reported before. Damaging 181 

mutations in MGP, which regulates vascular calcification, adipogenesis and is serum marker 182 

of visceral adiposity29–31, were associated with increased levels of LDL, TC (total 183 

cholesterol) and APOB. NLRC4 was reportedly associated with atherosclerosis by regulating 184 

inflammation reaction32,33, and its damaging mutations were associated with levels of CRP 185 

(C-reactive protein – a marker of inflammation).  186 
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Novel genes associate with risk factors in human and mouse data  187 

We next associated common variants in the regions of ±1Mb around the 18 novel TWAS 188 

genes to study their associations with a series of lipid traits including LDL, HDL, APOA, 189 

APOB, LPA, TC, and TG in UKB (Supplementary Files). Bonferroni-corrected significance 190 

P<4.0e-4 (0.05/18 novel genes * 7 lipid traits) was observed for numerous respective lead 191 

variants, of which RGS19, SDCCAG3, HOMER3, and WWP2 reached genome-wide 192 

significant association (P<5e-8) with multiple lipid traits (Fig. 5A; Supplementary Table 11).  193 

 Next, we extracted expression-trait association statistics of TWAS genes from the 194 

Hybrid Mouse Diversity Panel (HMDP)34. Based on the expression data from mouse aorta 195 

and liver tissues, 48 TWAS genes were significantly associated with aortic lesion area and 14 196 

further cardiovascular traits (nominal significance P < 0.05; Supplementary Table 12). 197 

Expression levels of seven novel genes, i.e. Rgs19, Kptn, Ezr, Stx4a, Cand1, Focad and 198 

Wasf1, were associated with aortic lesion area (Fig. 5B), a commonly used measure for 199 

atherosclerotic plaque formation in mice. Additionally, we found the novel genes were 200 

associated with at least one lipid trait in the mouse model (Fig. 5B).  201 

Knockdown of RGS19 and KPTN reduced lipid secretion by human liver cells   202 

Both human genotype-trait association statistics in UKB and mouse expression-trait 203 

association statistics in the HMDP indicated that several novel genes identified by TWAS 204 

influence lipid metabolism. To validate these findings, we chose two of the novel genes, i.e. 205 

KPTN and RGS19, which have not been studied in much detail so far and have particularly 206 

not at all been investigated in the context of atherosclerosis or CAD. Hepatocytes are 207 

critically involved in lipid metabolism. In line, in a screening of different atherosclerosis-208 

relevant cell lines (e.g., hepatocytes, smooth muscle, endothelium, fibroblast, and 209 

adipocytes), KPTN had the highest expression level in the huh7 hepatocyte cell line 210 
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(Supplementary Fig. 9A, B). To study the influence of KPTN and RGS19 on lipid 211 

metabolism, we next generated gene knockout (KO) huh7 cell lines for by a dual CRISPR 212 

strategy (Methods; Supplementary Table 13), which substantially reduced expression of the 213 

respective genes (Supplementary Fig. 9C, D). We measured secretion levels of TG, 214 

cholesterol and APOB in gene-targeted versus control cells. Notably, under normal 215 

circumstances, human hepatocytes synthesize cholesterol, assemble TG and APOB100, and 216 

secrete these particles in form of very low-density lipoprotein (VLDL)35. Compared to 217 

control huh7 cells, we found reduced APOB and cholesterol levels in culture medium of 218 

KPTN-KO cells (Fig. 6C, D). In culture medium of RGS19-KO cells we also detected 219 

reduced levels of APOB100, cholesterol, and TG (Fig. 6B, C, D, E), in line with strong 220 

associations of this gene with an array of lipid traits in both human genotyping and mouse 221 

expression data sets (Figure 5). 222 

Discussion 223 

In a stepwise approach, we first generated and filtered models predicting genetically 224 

modulated gene expression in nine tissues that contribute to CAD risk. Next, we applied 225 

these models to individual-level genotype data on more than 80,000 CAD cases and controls. 226 

We identified 114 genes with differential expression by genetic means in CAD patients. 227 

Many signals were highly plausible as they resided within loci displaying genome-wide 228 

significant association with CAD by traditional GWAS. Moreover, the genes identified by 229 

this TWAS were markedly enriched in established pathways for the disease, and 67 revealed 230 

in whole-exome sequence data of UKB that damaging mutations have significant impact on 231 

CAD risk or its underlying traits. Importantly, we also identified 18 genes without prior 232 

evidence for their involvement in CAD by GWAS, many of which were found to be 233 

associated with lipid metabolism in human and mouse data.  234 
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Only a minority of genes residing within published CAD GWAS loci have been 235 

validated experimentally for their underlying causal role in atherosclerosis. Our data 236 

corroborate a recent exploration of known GWAS loci for genotype-related expression levels 237 

(Hao et al., personal communication, manuscript attached) and provide a substantial step 238 

towards prioritization of genes at respective GWAS loci2,3. In this respect, 46 genes identified 239 

by this TWAS are known for effects in pathophysiological pathways related to CAD, 240 

including lipid metabolism, inflammation, angiogenesis, transcriptional regulation, cell 241 

proliferation, NO signaling, and high blood pressure, to name a few (Supplementary Table 6), 242 

giving credibility to the association findings. On the other hand, a limitation of the TWAS 243 

approach is that at 20 loci two or more genes show signals such that other methods will be 244 

needed to pinpoint the precise genetic mechanisms leading to CAD. Indeed, in another study 245 

we recently applied summary-based Mendelian Randomization, MetaXcan, to integrate tissue 246 

and cell-specific data from STARNET and GTEx with CAD GWAS datasets, and obtained at 247 

14 of these 20 loci indicative data allowing prioritization of a gene (Hao et al., personal 248 

communication, manuscript attached).  249 

Most novel TWAS genes revealed association with lipid traits in both genotype data 250 

of human and expression-trait statistics of our atherosclerosis mouse model. For example, 251 

expression profiles of KPTN and RGS19, both novel genes displaying significant TWAS 252 

results for CAD in human liver tissue, also showed significant association with various lipid 253 

traits as well as aortic lesion area in our atherosclerosis mouse model. Moreover, both gene 254 

loci harbor SNPs which are genome-wide significantly associated with LDL-C, HDL-C, TC, 255 

and TG in human genotype data. Finally, the Common Metabolic Disease Knowledge Portal 256 

revealed that damaging rare variants of KPTN are associated with reduced levels of LDL 257 

(beta = -11.9; P = 0.00042) and TC (beta = -11.9; P = 0.0014) 36, which is directionally 258 

plausible given the TWAS results. Based on these observations, we functionally validated the 259 
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roles of these two novel genes by studying lipid levels in human liver cells, i.e. the tissue that 260 

displayed evidence for differential expression by TWAS. Indeed, we observed that knockout 261 

of these genes lowered secretion of APOB and cholesterol into culture medium. KPTN, 262 

kaptin (actin binding protein), a member of the KPTN, ITFG2, C12orf66 and SZT2 263 

(KICSTOR) protein complex, is a lysosome-associated negative regulator of the mechanistic 264 

target of rapamycin complex 1 (mTORC1) signaling37. It is required in amino acid or glucose 265 

deprivation to inhibit cell growth by suppressing mTORC1 signaling in liver, muscle, and 266 

neurons. mTORC1 has multifaceted roles in regulating lipid metabolism, including the 267 

promotion of lipid synthesis, and storage and inhibition of lipid release and consumption, 268 

suggesting that the validated role of KPTN in hepatic lipid secretion might be partially 269 

mediated by the mTORC1 pathway.RGS19 belongs to the RGS (regulators of G-protein 270 

signaling) family, who are regulators for G protein-coupled receptors (GPCRs)38. RGS19 271 

inhibits GPCR signal transduction by increasing the GTPase activity of G protein alpha 272 

subunits, thereby transforming them into an inactive GDP-bound form39,40. The targeting 273 

GPCR of RGS19 has not been observed before, and how RGS19 regulates lipid metabolism 274 

remains unclear.  275 

Interestingly, our TWAS uncovered eight novel gene-CAD associations in fat tissue, 276 

including MGP and WASF1 in SF, and CAND1, FAM114A1, FOCAD,RGS19,TSPAN11 and 277 

TXNRD3 in VAF, representing half of the novel genes. Damaging mutations in five genes 278 

were associated with many cardiometabolic risk factors for CAD, including those in WASF1 279 

with BMI, MGP with LDL,TC and APOB, TXNRD3 with LPA, FAM114A1 with diabetes, 280 

FOCAD with hypertension, i.e. conditions shown by Mendelian randomization to be causal 281 

for CAD41. Given the many CAD patients that are overweight or obese, it will be of great 282 

interest to identify how these genes modify cardiometabolic traits leading to cardiovascular 283 

disorders. In this respect our TWAS could provide a list of candidate genes and related 284 
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targetable cardiometabolic traits. In addition, it is of surprise to unveil 22 genes linking 285 

SKLM to CAD risk, and eight were unique to this tissue, including HOMER3, SDCCAG3, 286 

MTAP, NME9, PSMA4, SLC2A12, UNC119B and VAMP5, , the first two being novel. 287 

SDCCAG3 or ENTR1 encodes endosome associated trafficking regulator 1 and involves in 288 

recycling of GLUT1 (glucose transporter type 1), supplying the major energy source for 289 

muscle contraction. SKLM-based metabolism may have a protective role in CAD as 290 

suggested by the many cardioprotective effects of sports42,43. Gene targets enhancing SKLM 291 

function in this respect might be effective in CAD prevention, a field relatively unexplored 292 

thus far. Here, for the first time, quantitative traits regulated genes in SKLM were associated 293 

with CAD by TWAS, providing novel evidence for genes that could modulate CAD risk by 294 

their functions in SKLM.  295 

There are certain limitations in our study. Since TWAS are strongly dependent on the 296 

reference panel linking genetic signatures with gene expression, it had to be expected that 297 

STARNET- and GTEx-based predictive models display differences in gene-CAD 298 

associations. STARNET-based TWAS identified 86 genes, whereas GTEx-based TWAS 299 

identified 68 genes. Yet, 34 genes were shared between the two analyses, and effect sizes for 300 

the shared genes were highly concordant (ρ = 0.97). An average of 62% overlapping genes 301 

was observed in the matched tissues of two reference-based models, and the resulting size of 302 

expression-CAD associations was linearly consistent with an average ρ = 0.72. The relatively 303 

small differences may be due to different sample sizes used for training predictive models9, 304 

different disease states (subjects with and without CAD), intravital or post mortem sample 305 

collection, leading to differences in gene expression in our reference panels10,11. Given a fair 306 

consistency between the two data sources, we combined results derived from both panels to 307 

increase the power for capturing risk genes. Second, although TWAS facilitates candidate 308 

risk gene prioritization, co-regulation or co-expression in cis at a given locus limits the 309 
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precise determination of the culprit gene8. Indeed, at 12 loci we observed signals for three or 310 

more TWAS genes. For instance, in LIV tissue TWAS identified five genes at 1p13.3, 311 

ATXN7L2, CELSR2, PSMA5, PSRC1, SARS and SORT1 which were co-regulated by same 312 

risk variant set, confusing the causal gene prioritization. While CELSR2, PSRC1 and SORT1 313 

were previously shown to act on lipid metabolism44, we found that damaging mutations in 314 

ATXN7L2 and SARS were also associated with CAD or its risk traits, the former with serum 315 

levels of HDL and APOA, and the later with CAD and diabetes. In addition, all lncRNA 316 

genes identified by our study displayed co-expression with their neighboring coding genes, 317 

which makes it difficult to determine their casual effects. Nevertheless, in combining TWAS 318 

data with other genetic analyses, e.g., looking at effects of damaging mutations, genetic 319 

association with other phenotypes and expression-traits association statistics, we aimed to 320 

improve risk gene prioritization, and to provide deeper insights of possible disease-causing 321 

mechanisms. For instance, LPL is well-known for its protective role against CAD by 322 

lowering lipids45,46, and our analyses showed that damaging LPL mutations were associated 323 

with increased risk of CAD and higher lipid levels. Finally, as with all statistical methods, 324 

there are certain limitations and assumptions associated with TWAS. Further evolution and 325 

improvement of these methods, as well as functional validation experiments, will assuredly 326 

improve the accuracy of these studies. 327 

In summary, our TWAS study based on two genotype-expression reference panels 328 

identified 114 gene-CAD associations, of which 18 were novel. The extended analyses with 329 

multiple datasets supported the reliability of the CAD TWAS signals in prioritizing candidate 330 

risk genes and identifying novel associations in a tissue-specific manner. Functional 331 

validation of two novel genes, RGS19 and KPTN, lend support to our TWAS findings. Our 332 

study created a set of gene-centered and tissue-annotated associations for CAD, providing 333 

insightful guidance for further biological investigation and therapeutic development.  334 
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Tables 451 

Table 1 18 TWAS genes residing outside of published GWAS loci. 452 

Gene Tissue Gene type Cytoband Z score SE P value Froma 

NLRC4 LIV protein_coding 2p22.3 -3.383  0.044  3.04E-06 STARNET 

TXNRD3 VAF protein_coding 3q21.3 2.566  0.059  1.36E-06 STARNET 

FAM114A1 VAF protein_coding 4p14 4.026  0.050  3.44E-09 GTEx 

FAM114A1 BLD protein_coding 4p14 4.845  0.037  1.80E-06 GTEx 

EGFLAM COR protein_coding 5p13.2 5.596  0.047  7.70E-10 GTEx 

UFL1 MAM protein_coding 6q16.1 -5.246  0.038  1.62E-06 STARNET 

UFL1 BLD protein_coding 6q16.1 -4.687  0.038  8.70E-05 STARNET 

UFL1 BLD protein_coding 6q16.1 -4.955  0.042  3.96E-07 GTEx 

WASF1 SF protein_coding 6q21 4.320  0.059  1.91E-06 STARNET 

EZR LIV protein_coding 6q25.3 -3.187  0.025  3.53E-06 STARNET 

FOCAD VAF protein_coding 9p21.3 8.348  0.068  1.44E-12 GTEx 

SDCCAG3 SKLM protein_coding 9q34.3 -3.015  0.061  1.74E-06 STARNET 

TSPAN11 VAF protein_coding 12p11.21 2.285  0.065  1.79E-07 STARNET 

MGP SF protein_coding 12p12.3 -3.412  0.040  5.67E-07 GTEx 

CAND1 VAF protein_coding 12q14.3 -2.355  0.030  1.19E-07 GTEx 

STX4 COR protein_coding 16p11.2 3.347  0.056  2.59E-06 GTEx 

WWP2 AOR protein_coding 16q22.1 4.491  0.029  5.67E-06 STARNET 

WWP2 AOR protein_coding 16q22.1 6.570  0.031  1.19E-07 GTEx 

GAS8 LIV protein_coding 16q24.3 0.189  0.041  8.32E-07 GTEx 

HOMER3 SKLM protein_coding 19p13.11 4.647  0.030  3.52E-08 GTEx 

KPTN LIV protein_coding 19q13.32 -3.076  0.076  2.17E-06 STARNET 

RGS19 LIV protein_coding 20q13.33 -4.913  0.028  1.52E-06 GTEx 

RGS19 VAF protein_coding 20q13.33 -4.868  0.059  4.51E-06 STARNET 

RGS19 VAF protein_coding 20q13.33 -4.545  0.030  4.63E-07 GTEx 

RGS19 SKLM protein_coding 20q13.33 -5.026  0.024  1.42E-06 STARNET 

RGS19 SKLM protein_coding 20q13.33 -5.298  0.018  9.29E-07 GTEx 

  a Association statistics from either STARNET- or GTEx-based models.  453 

 454 
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Table 2 Associations of damaging mutations in novel genes with risk traits of CAD. 456 

Binary trait Gene 

Case Control 

OR[95%CI] P value 
Non-carrier Carrier 

Non-

carrier 
Carrier 

Diabetes FAM114A1 10668 116 187555 1457 1.4[1.15-1.69] 9.19E-04 

Diabetes UFL1 10634 150 187023 1989 1.33[1.11-1.57] 1.47E-03 

Hypertension FOCAD 73542 4605 102379 6129 1.05[1.01-1.09] 2.60E-02 

Hypertension EGFLAM 73754 4393 102147 6361 0.96[0.92-1] 2.82E-02 

Hypertension EZR 77495 652 107491 1017 0.89[0.8-0.98] 2.05E-02 

Quantitive trait Gene 

Carrier Non-carrier 

Beta[95%CI] P value 
No. carrier Median(range) 

No. non-

carrier 
Median (range) 

APOB (g/L) HOMER3 2633 1(0.41-1.91) 187891 1.02(0.4-2) -0.02[-0.03--0.01] 4.02E-03 

APOB (g/L) MGP 158 1.05(0.51-1.96) 190366 1.02(0.4-2) 0.08[0.04-0.13] 2.60E-04 

TC (mmol/L) HOMER3 2651 5.57(2.33-10.06) 188814 5.66(1.64-15.46) -0.08[-0.14--0.03] 2.95E-03 

TC (mmol/L) MGP 158 5.76(3.19-10.29) 191307 5.66(1.64-15.46) 0.34[0.13-0.56] 1.66E-03 

LDL (mmol/L) HOMER3 2649 3.45(1.05-6.97) 188511 3.52(0.28-9.8) -0.06[-0.11--0.02] 2.34E-03 

LDL (mmol/L) MGP 158 3.59(1.81-7.05) 191002 3.52(0.28-9.8) 0.29[0.13-0.45] 4.82E-04 

LPA (nmol/L TXNRD3 3162 21.94(3.8-188.89) 150645 20.98(3.8-189) 2.5[0.29-4.71] 2.63E-02 

BMI (kg/m2) KPTN 2084 26.87(14.94-56.05) 197753 26.7(12.12-68.95) -0.3[-0.57--0.04] 2.65E-02 

BMI (kg/m2) WASF1 806 26.92(17.71-53.02) 199031 26.7(12.12-68.95) 0.47[0.04-0.91] 3.38E-02 

CRP (mg/L) NLRC4 2470 1.25(0.11-52.86) 188577 1.31(0.08-79.49) -0.22[-0.44--0.01] 4.30E-02 

CRP (mg/L) UFL1 2057 1.3(0.1-43.74) 188990 1.31(0.08-79.49) -0.37[-0.6--0.13] 2.36E-03 

Neutrophil (10^9 

cells/L) MGP 164 3.51(0.61-8.21) 194782 4.07(0-25.95) -0.33[-0.59--0.07] 1.40E-02 

 457 

 458 
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Figures 460 

 461 

Fig. 1 The study design. 462 
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 463 

Fig. 2 Manhattan plot of the transcriptome wide association study (TWAS). The results 464 

from STARNET- and GTEx-based TWASs were integrated by lowest P values. The blue line 465 

marks P =3.85-6. Each point corresponds to an association test between gene-tissue pair. 18 466 

novel TWAS genes were highlighted. Supplementary Fig. 4 identifies all genes identified by 467 

their genetically-modulated association signals. 468 

 469 

 470 

Fig. 3 Tissue distribution of 114 CAD TWAS genes. (A) Number of significant genes 471 

across tissues. (B) Heatmap plot of 38 TWAS genes identified in more than one tissues. The 472 

color codes indicate direction of effects. Cells marked with * represent significant gene-tissue 473 

pairs (P < 3.85e-6). 474 

  475 
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 476 

Fig. 4 Effects of damaging mutations of TWAS genes on CAD and its risk traits.  477 

Sign(beta)*-log10(p) displayed for associations that reached a P <0.05. When the 478 

Sign(beta)*-log10(P) > 6, they were trimmed to 6 479 

 480 

 481 

Fig. 5 Novel risk genes were associated with lipid traits. (A) Data from UKB indicate that 482 

lead variants inside the boundary of risk genes were associated with lipid traits with 483 

Bonferroni-corrected significance levels (*, P < 4.0e-4), or by genome-wide significance (**, 484 

P < 5e-8). (B) Expression levels of novel genes were likewise associated with lipid traits and 485 

aortic lesion area in an atherosclerosis mouse model from the Hybrid Mouse Diversity Panel 486 

(HMDP). *, P <0.05; **, P<0.01; ***, P < 0.001. 487 

 488 
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 489 

Fig. 6 Targeting of KPTN and RGS19 reduced Lipids and APOB secretion of human 490 

liver cells. (A) Two sgRNAs were used to target the exon4 of KPTN (shared exon among 491 

isoforms) in a Cas9-expressing huh7 liver cell line. The dual CRISPR strategy created a 40bp 492 

frame shift deletion in the gene and pround reduction of KPTN at both mRNA and protein 493 

levels (Supplementary Figure 9C, 9D). The primers (P-Fw and P-Rv) used for analyzing the 494 

CRISPR editing as indicated. (B) The same strategy was used for RGS19 targeting, which 495 

resulted in a 130bp frame shift deletion in the gene, and reduction of mRNA and protein 496 

(Supplementary Figure 9C, 9D). (C) Reduced triglyceride and cholesterol levels in knockout 497 

(KO) cell lines were detected by colorimetric method and APOB100 secretion was measured 498 

by human APOB100 Elisa (n=6). Triglyceride, cholesterol and APOB100 levels were 499 

normalized to total protein and compared between the KO and control (CTR) cell lines. 500 

501 
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Methods 502 

Predictive models of nine tissues based on two reference panels 503 

We adopted the existing predictive models trained using EpiXcan pipeline by Zhang et al.1, 504 

including models of atherosclerotic aortic wall (AOR), atherosclerotic-lesion-free internal 505 

mammary artery (MAM), liver (LIV), blood (BLD), subcutaneous fat (SF), visceral abdominal 506 

fat (VAF) and skeletal muscle (SKLM) based on the genetics-of-gene-expression panel 507 

STARNET (The Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task)2, and 508 

of AOR, LIV, BLD, SF, VAF and SKLM based on GTEx (Genotype-Tissue Expression)3. 509 

 Arterial wall coronary (COR) and tibial artery (TIB), datasets were only available in 510 

the GTEx panel. So, we established predictive models for these two tissues using EpiXcan 511 

pipeline as has been done for other models before1. In brief, we firstly filtered the genotype 512 

and expression data of COR and TIB from GTEx v7. Variants with call rate < 0.95, minor 513 

allele frequency (MAF) < 0.01, and Hardy Weinberg equilibrium (HWE) < 1e-6 were removed. 514 

For expression, we used quality-controlled data and performed sample-level quantile 515 

normalization, and gene-level inverse quantile normalization using preprocess codes of 516 

PredicDB pipeline. Samples were restrained to the European ethnicity. We then calculated SNP 517 

priors by using hierarchical Bayesian model (qtlBHM)4 that jointly analyzed epigenome 518 

annotations of aorta derived from Roadmap Epigenomics Mapping Consortium (REMC)5, and 519 

eQTL statistics. The SNP priors (Supplementary Table 2), genotype data and expression data 520 

were jointly applied to 10-fold cross-validated weighted elastic-net to train predicting models 521 

by deploying EpiXcan pipeline1.  522 

 Both STARNET- and GTEx-based models were filtered by cross-validated prediction 523 

R2 > 0.01. The summary statistics of sample sizes used for training models and the transcript 524 

numbers of genes covered by each predicting models are shown in Supplementary Table 1.  525 
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Genotype cohorts 526 

For the discovery cohort, individual level genotyping data were collected from ten genome-527 

wide associations studies (GWAS) of coronary artery disease (CAD), a subset of 528 

CARDIoGRAMplusC4D, including the German Myocardial Infarction Family Studies 529 

(GerMIFS) I-VII6–12, Wellcome Trust Case Control Consortium (WTCCC)13, LURIC study14 530 

and Myocardial Infarction Genetics Consortium (MIGen)15. We used a part of individual-level 531 

data from UK Biobank (UKB) as the replication cohort16, by extracting 20,310 CAD cases 532 

according to hospital episodes or death registries as reported, and randomly selected 25,000 533 

non-CAD UKB participants as controls. The detailed information about selection criteria of 534 

case and control were described at elsewhere12. In total, genotyping data of 37,997 cases and 535 

42,854 controls were included in our transcriptome-wide association studies (TWAS) of CAD 536 

(Supplementary Table 3). The preprocessing steps of genotyping data are as previously12.  537 

Transcriptome wide association analysis 538 

We applied predictive models to the eleven genotype cohorts to impute individual-level 539 

expression profiles of nine tissues, and performed transcriptome-wide association analysis 540 

between imputed expression and CAD. To test the reproducibility of TWAS results, we 541 

performed two types of validating tests: within and between two reference-based models. 542 

Firstly, we used ten GWAS cohorts as testing set and UKB as the validating set to test 543 

reproducibility within STARNET- and GTEx-based models respectively. Secondly, we 544 

compared the consistency of results between STARNET- and GTEx-based models of the six 545 

overlapping tissues using all genotype data.  546 
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Co-expression network for lncRNA 547 

We used RNA-seq data of STARNET2 to calculate expression correlations between long non-548 

coding RNA (lncRNA) genes and protein coding genes in seven tissues. Co-expression pairs 549 

with absolute Pearson correlation coefficient larger than 0.4 were considered to be significant. 550 

The co-expression network was displayed by cytoscape17.  551 

Colocalization of the eQTL and GWAS signals 552 

Colocalization analysis was performed using COLOC, a Bayesian statistical methodology that 553 

takes GWAS and eQTL data as inputs, and tests the posterior probabilities (PP4) of shared 554 

casual variant for each locus18. The summary statistics of GWAS meta-analysis were obtained 555 

from CARDIoGRAMplusC4D Consortium11, and the eQTL data of nine tissues from 556 

STARNET2 and GTEx3 respectively.  557 

Annotation of novel risk genes  558 

Over 200 CAD loci were identified by GWAS19,20. We used MAGMA21 to annotate the 114 559 

TWAS genes and observed that 96 genes resided within ±1Mb around known CAD loci 560 

whereas 18 genes (novel loci) where located outside known GWAS risk loci, i.e. they were 561 

novel genes (Supplementary Table 6).  562 

Gene set enrichment analyses  563 

Pathway enrichment analysis was carried out using ClueGO (v2.5.2)22, a plugin of cytoscape17, 564 

based on collated gene sets from public databases including GO23, KEGG24, Reactome25, and 565 

WikiPathways26. Gene sets with false discovery rate (FDR) by right-sided hypergeometric test 566 

less than 0.05 were considered to be significant. 567 
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  Furthermore, we also studied the diseases or traits associated with risk genes by 568 

performing disease enrichment analysis based on DisGeNET27, the largest publicly available 569 

datasets of genes and variants association of human diseases. FDR < 0.05 was used for 570 

thresholding. 571 

Rare damaging variants association analysis  572 

To investigate association of damaging variants in TWAS genes with CAD, we used whole 573 

exome sequencing (WES) data of 200,632 participants from UKB28. The WES data was 574 

processed following the Functional Equivalence (FE) protocol. We performed quality control 575 

on the WES data by filtering variants with calling rate < 0.9, variants with HWE < 1e-6. For 576 

the relevant traits, besides CAD, we considered several risk factors of the disease, including 577 

body mass index (BMI), diabetes, hypertension, levels of low density lipoproteins (LDL), high 578 

density lipoproteins (HDL), apolipoprotein A (APOA), apolipoprotein B (APOB), 579 

Lipoprotein(a) (LPA), total cholesterol (TC) and triglycerides (TG)), as well as inflammation 580 

related factors (C-reactive protein (CRP), lymphocyte count (Lymphocyte), monocyte count 581 

(Monocyte) and neutrophil count (Neutrophil).  582 

 We defined damaging mutations as i) rare mutations with MAF < 0.01; ii) annotated 583 

into following one of the 3 classes: loss-of-function (LoF) (stop-gained, splice site disrupting, 584 

or frameshift variants), variants annotated as the pathogenic in ClinVar29, or missense variants 585 

predicted to be damaging by one of five computer prediction algorithms (LRT score, 586 

MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2 HumVar, and SIFT). The  Ensembl Variant 587 

Effect Predictor (VEP)30 and its plugin loftee31, and annotation databases dbNSFP 4.1a32 and 588 

ClinVar (GRCh38)29 were used for annotating damaging mutations.  589 

For each analysis, samples were classified into carriers or noncarriers of the gene’s 590 

damaging mutations. For binary traits, we used Fisher’s exact test to check if there was 591 
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incidences difference of mutation carrying between case and controls. For the quantitative traits, 592 

we used linear regression model with adjustments of sex, first five principal components, and 593 

lipid medication status to investigate the associations between mutation carrying status and 594 

traits. We used nominal significance threshold (P < 0.05), given that coding variants are rather 595 

rare, and the case-control sample sizes were not balanced which might increase false negative 596 

rate. We used nominal significance threshold P < 0.05, because, at one hand, the case-control 597 

size was not balanced which might increase false negative rate, at the other hand, it’s an 598 

exploratory trial to investigate the potential biological relevance of TWAS genes. 599 

Association of variants resided in novel genes with lipid traits 600 

For 18 novel risk genes, we performed association analysis for variants located in novel gene 601 

loci (±1Mbase) with lipid traits using genotyping data of UKB. The lipid traits include levels 602 

of LDL, HDL, APOA, APOB, LPA, TC and TG. The variants were filtered by MAF > 0.01, 603 

and imputation info score > 0.4. The association test was performed using PLINK233 with 604 

adjustment of sex, first five principal components, and lipid medication status. The lead 605 

variants residing in gene loci with P value less than 4.0e-4 (0.05/18 risk genes * 7 lipid traits) 606 

were considered to be significant (Supplementary Table 11).  607 

The Hybrid Mouse Diversity Panel (HMDP)  608 

The Hybrid Mouse Diversity Panel (HMDP) is a set of 105 well-characterized inbred mouse 609 

strains on a 50% C57BL/6J genetic background34. To specifically study atherosclerosis in the 610 

HMDP, transgene implementation of human APOE-Leiden and cholesteryl ester transfer 611 

protein was performed, promoting distinct atherosclerotic lesion formation35. A Western diet 612 

containing 1% cholesterol was fed for 16 weeks. Subsequently, gene expression was quantified 613 

in aorta and liver of these mice and lesion size was assessed in the proximal aorta using oil red 614 
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O staining. Other 14 related traits were measured too, including liver fibrosed area, body 615 

weight, total cholesterol, VLDL (very low-density lipoprotein) + LDL, HDL,TGs, unesterified 616 

cholesterol, free fatty acid, IL-1b, IL-6, TNFa, MCP-1, and M-CSF. From HMDP, we extracted 617 

significant association pairs between TWAS genes and 15 risk traits by applying significance 618 

P < 0.05.  619 

Experimental validation of KPTN and RGS19 in human cells 620 

To knock down KPTN and RGS19, two sgRNAs targeting shared exons of all transcription 621 

isoforms were delivered by lentivirus into a Cas9-expression huh7, a human hepatoma cell line. 622 

Exon 4 of KPTN and exon 5 of RGS19 were targeted by a dual CRISPR strategy to create a 623 

40bp and 130bp frame shift deletion, respectively. SgRNAs were carried by Lenti-Guide-Puro 624 

vector (addgene, #52963) and infected cells were treated with 10ug/ml puromycin treatment 625 

for 3 days to eliminate the negative cell. Positive targeted cells were expanded in culture and 626 

passaged for assays. Cells for measurement of secretive triglycerides, cholesterol and 627 

APOB100 were cultured for 16 hours in serum-free medium. Medium triglycerides and 628 

cholesterol were enriched for five times by vacuum centrifuge and measured with colorimetric 629 

kits, triglyceride (cobas) and CHOL2 (cobas), respectively. The amount of medium APOB100 630 

was measured with an ELISA kit (MABTECH). 631 
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Extended data 751 

Supplementary Results 752 

We tested the reproducibility of the STARNET- and GTEx-based predictive models 753 

by performing TWAS analyses in ten GWAS studies of CAD covering 17,687 CAD patients 754 

and 17,854 controls12–21, which provided individual level data and partially overlap with the 755 

CARDIoGRAMplusC4D meta-analysis, followed by replication analyses on genotyping data 756 

of  UK Biobank (UKB)22, from which we extracted 20,310 CAD patients and 25,000 controls 757 

(Supplementary Table 3). From STARNET-based models, we identified 66 gene-tissue 758 

association pairs reaching Bonferroni-corrected significance (P<3.85e-6) in the ten 759 

CARDIoGRAMplusC4D cohorts. Of these, 19 also reached Bonferroni-corrected 760 

significance in the UKB data, which was significantly more than expected by chance 761 

(binomial test P = 0.00075), and 50 of 66 gene-tissue association pairs had directionally 762 

consistent effects (binomial test P =3.33e-5). We also found strong correlation of the effect 763 

sizes (ρ = 0.74; P = 1.3e-12; Supplementary Fig. 1A) indicating good overall reproducibility 764 

of the STARNET-based models. 765 

From the GTEx-based models, 47 gene-tissue pairs reached Bonferroni-corrected 766 

significance (P<3.85e-6) in the ten CARDIoGRAMplusC4D cohorts, whereof 14 were 767 

significant also in UKB (binominal test P = 0.0079). Like the STARNET-based models, 39 768 

of 44 significant gene-tissue association pairs had consistent direction of effects with a 769 

Pearson´s coefficient of 0.75 (P = 1.2e-9; Supplementary Fig. 1B). The slightly lower 770 

numbers of significant gene-tissue association pairs found in the GTEx models may be 771 

explained in that predicting models were based on: i) smaller numbers of genotype-772 

expression pairs, ii) unlike STARNET, GTEx consist of apparently healthy tissues and iii) 773 

STARNET is a specific collection of CAD patients. 774 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.21.453208doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453208
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

Next, we tested consistency of TWAS results between two reference-based models by 775 

comparing the results of a meta-analysis on all 11 genotyping data sets. We observed an 776 

average of 62% overlapping genes (Supplementary Table 1) and significant correlations of 777 

effect sizes (average Pearson’s coefficient ρ = 0.72; P < 1e-10; Supplementary Fig. 2). In the 778 

STARNET-based models, we identified 82 genes representing 129 gene-tissue pairs across 779 

seven tissues (P<3.85e-6). In the GTEx models, we identified 66 genes representing 106 780 

gene-tissue pairs across eight tissues (P<3.85e-6). A total of 42 gene-tissue pairs were 781 

significant in both the STARNET- and GTEx-based models (Supplementary Fig. 3A). The 782 

overlapping genes were linearly consistent in both effect size (Pearson’s coefficient ρ = 0.99; 783 

P<2.2e-16) and -log10P (Pearson´s coefficient ρ = 0.82; P<4e-11) (Supplementary Fig. 3B). 784 

Overall, these results suggest, on the one hand, reasonable consistence between the two 785 

independent panels and, on the other hand, evidence for capturing complementary expression 786 

quantitative signals. 787 

  788 
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Supplementary Tables 789 

Supplementary Table 1. Statistics of nine tissues' predictive models. 790 

Supplementary Table 2. SNP priors of COR and TIB tissues. 791 

Supplementary Table 3. 11 Genotype cohorts. 792 

Supplementary Table 4. 114 TWAS genes list. 793 

Supplementary Table 5. 53 TWAS genes have strong evidence of colocalized signals 794 

between GWAS and eQTL (PP4 > 0.55). 795 

Supplementary Table 6. 96 known and 18 novel genes annotated by GWAS risk loci of CAD. 796 

Supplementary Table 7. TWAS genes are enriched to CAD or related risk traits based on 797 

DisGeNET. 798 

Supplementary Table 8. Pathways enriched by TWAS genes. 799 

Supplementary Table 9. Association of TWAS genes' damaging mutation with CAD and its 800 

binary risk traits. 801 

Supplementary Table 10. Association of TWAS  genes' damaging mutation with quantitative 802 

risk traits of CAD. 803 

Supplementary Table 11. Lead variants resided in the regions of novel genes were associated 804 

with lipid traits in human genotype data.  805 

Supplementary Table 12. Expression-trait association statistics in mouse atherosclerosis 806 

model from HMDP. 807 

Supplementary Table 13. Oligo sequences for gene editing.   808 
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Supplementary Figures 809 

 810 

Supplementary Fig. 1 Reproducibility of TWAS results within two reference models. A) 811 

Reproducibility of STARNET-based models. B) Reproducibility of GTEx-based models. Ten 812 

CARDIoGRAMplusC4D cohorts (10ss) were used as the testing set, genotypes from UK 813 

Biobank (UKB) were the validating set.  814 

 815 
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 816 

Supplementary Fig. 2 Associations of predicted expressions with CAD are consistent 817 

across tissues between STARNET- and GTEx-based models.  818 

 819 

 820 

Supplementary Fig. 3 Comparation of TWAS results between two reference models. A) 821 

Venn diagram of transcriptome-wide significant gene-tissue pairs based on the two reference 822 

models. There are 42 overlapping gene-tissue pairs (34 genes). B) The effect sizes (left) and 823 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.21.453208doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453208
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 

P values (right) of overlapping genes were consistent between the two reference-based 824 

models.  825 

 826 

 827 

Supplementary Fig. 4 Manhattan plot of the transcriptome wide association study 828 

(TWAS). 114 TWAS genes are highlighted. The blue line marks P =3.85x10-6. Each point 829 

corresponds to an association test between a gene-tissue pair. TWAS genes residing in known 830 

GWAS loci were defined as known (red dots), otherwise defined as novel (blue dots). 831 

 832 

 833 
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Supplementary Fig. 5 Positive correlation between TWAS and colocalization statistics. 834 

The log10P statistics of TWAS genes were positively correlated with PP4 (the posterior 835 

probabilities) statistics of colocalization analysis. Most TWAS genes have shared casual 836 

variants between GWAS and eQTL signals as their PP4 approaches 1.  837 

 838 

 839 

Supplementary Fig. 6 Colocalization signals in liver tissue at 1p13.3. 840 
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 841 

Supplementary Fig. 7 Colocalization signals in aorta tissue at 2p33.2. 842 

 843 

 844 
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Supplementary Fig. 8 Co-expression network related to lncRNA genes. Coding genes 845 

with co-expression relationship with TWAS lncRNA genes are linked by arrow or T-line. 846 

Arrow suggests positive co-expression, and T-line suggests negative. TWAS genes are 847 

indicated in red frame. Tissues of gene co-expression are showed in difference edge colors as 848 

indicated.  849 

 850 

 851 

Supplementary Fig. 9 KPTN (A) and RGS19 (B) expressions in multiple primary cells and 852 

cell lines. HASMC, human aorta smooth muscle cell; HCAEC, human coronary artery 853 

endothelium cell; HAAF, human aorta artery fibroblast; HAEC, human aorta endothelium 854 

cell and huh7, a human hepatoma cell line. (C) RNA levels of KPTN and RGS19 were 855 

dramatically reduced in corresponding knockout lines (KO) in comparison to the control cell 856 

line (CTR), n=7. (D) The Western Blot image displays KPTN and RGS19 reduction at protein 857 

level. Vinculin, 116kDa; KPTN, 48kDa; RGS19, 25kDa. 858 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.21.453208doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453208
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Transcriptome-wide association studies (TWAS) explore genetic variants affecting gene expression for association with a trait. Here we studied coronary artery disease (CAD) using this approach by first determining genotype-regulated expression levels ...
	Introduction
	Results
	Evaluation of the predictive models from STARNET and GTEx panels
	Genes associated with CAD by TWAS
	Pathways and diseases enriched by TWAS genes
	Damaging mutations in TWAS genes
	Novel genes associate with risk factors in human and mouse data
	Knockdown of RGS19 and KPTN reduced lipid secretion by human liver cells

	Discussion
	Main References
	Tables
	Figures
	Methods
	Predictive models of nine tissues based on two reference panels
	Genotype cohorts
	Transcriptome wide association analysis
	Co-expression network for lncRNA
	Colocalization of the eQTL and GWAS signals
	Annotation of novel risk genes
	Gene set enrichment analyses
	Rare damaging variants association analysis
	Association of variants resided in novel genes with lipid traits
	The Hybrid Mouse Diversity Panel (HMDP)
	Experimental validation of KPTN and RGS19 in human cells

	Methods References
	Author Contributions
	﻿Competing Interest Declaration
	Source of Funding
	Tools and Data
	Extended data
	Supplementary Results
	Supplementary Tables
	Supplementary Figures


