

1 Transcriptome wide association study of coronary artery 2 disease identifies novel susceptibility genes

3 Ling Li^{1,2,3†}; Zhifen Chen^{1,3†}; Moritz von Scheidt^{1,3}; Andrea Steiner^{1,3}; Ulrich Gündener^{1,3};
4 Simon Koplev⁴; Angela Ma⁴; Ke Hao⁴; Calvin Pan⁵; Aldons J. Lusis^{5,6,7}; Shichao Pang^{1,3};
5 Thorsten Kessler^{1,7}; Raili Ermel⁸; Katyayani Sukhavasi⁸; Arno Ruusalepp^{8,9}; Julien Gagneur²;
6 Jeanette Erdmann^{10,11}; Jason C. Kovacic^{12,13}; Johan L.M. Björkegren^{4,9,14}; Heribert
7 Schunkert^{1,3}

8 ¹ Department of Cardiology, Deutsches Herzzentrum München, Technische Universität Münc
9 hen, Germany

10 ² Center for Doctoral Studies in Informatics and its Applications, Department of Informatics,
11 Technische Universität München, Germany

12 ³ Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance,
13 Munich, Germany

14 ⁴ Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology,
15 Icahn School of Medicine at Mount Sinai, New York, NY, 10029-6574, USA

16 ⁵ Department of Human Genetics, David Geffen School of Medicine, University of California,
17 Los Angeles, California, USA

18 ⁶ Departments of Medicine, David Geffen School of Medicine, University of California, Los
19 Angeles, California, USA

20 ⁷ Departments of Microbiology, Immunology and Molecular Genetics, David Geffen School
21 of Medicine, University of California, Los Angeles, California, USA

22 ⁸ Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital, Tartu,
23 Estonia

24 ⁹ Clinical Gene Networks AB, Stockholm, Sweden

25 ¹⁰ DZHK (German Research Centre for Cardiovascular Research), Partner Site
26 Hamburg/Lübeck/Kiel, Lübeck, Germany.

27 ¹¹ Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.

28 ¹² Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and St Vincent's Clinical
29 School, University of New South Wales, Australia

30 ¹³ Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY,
31 10029-6574, USA

32 ¹⁴ Department of Medicine, Huddinge, Karolinska Institutet, Karolinska Universitetssjukhuset,
33 Stockholm, Sweden

34 [†] These two authors contributed equally to this work.

35 **Address for correspondence:**

36 Heribert Schunkert, MD

37 German Heart Center Munich, Technical University Munich

38 Lazarettstraße 36, 80636 Munich, Germany

39 Tel.: +49 89 1218 4073 schunkert@dhm.mhn.de

40

41 **Abstract**

42 **Transcriptome-wide association studies (TWAS) explore genetic variants affecting gene
43 expression for association with a trait. Here we studied coronary artery disease (CAD)
44 using this approach by first determining genotype-regulated expression levels in nine
45 CAD relevant tissues by EpiXcan in two genetics-of-gene-expression panels, the
46 Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and
47 the Genotype-Tissue Expression (GTEx). Based on these data we next imputed gene
48 expression in respective nine tissues from individual level genotype data on 37,997 CAD
49 cases and 42,854 controls for a subsequent gene-trait association analysis.**

50 **Transcriptome-wide significant association ($P < 3.85\text{e-}6$) was observed for 114 genes,
51 which by genetic means were differentially expressed predominately in arterial, liver,
52 and fat tissues. Of these, 96 resided within previously identified GWAS risk loci and 18
53 were novel (*CAND1, EGFLAM, EZR, FAM114A1, FOCAD, GAS8, HOMER3, KPTN,*
54 *MGP, NLRC4, RGS19, SDCCAG3, STX4, TSPAN11, TXNRD3, UFL1, WASF1, and*
55 *WWP2*). Gene set analyses showed that TWAS genes were strongly enriched in CAD-
56 related pathways and risk traits. Associations with CAD or related traits were also
57 observed for damaging mutations in 67 of these TWAS genes (11 novel) in whole-exome
58 sequencing data of UK Biobank. Association studies in human genotype data of UK
59 Biobank and expression-trait association statistics of atherosclerosis mouse models
60 suggested that newly identified genes predominantly affect lipid metabolism, a classic
61 risk factor for CAD. Finally, CRISPR/Cas9-based gene knockdown of *RGS19* and
62 *KPTN* in a human hepatocyte cell line resulted in reduced secretion of *APOB100* and
63 lipids in the cell culture medium. Taken together, our TWAS approach was able to i)
64 prioritize genes at known GWAS risk loci and ii) identify novel genes which are
65 associated with CAD.**

66 **Introduction**

67 Coronary artery disease (CAD), a leading cause of premature death worldwide, is influenced
68 by interactions of lifestyle, environmental, and genetic risk factors¹. Genome-wide
69 association studies (GWAS) have identified over 200 risk loci for CAD^{2,3}. Most of them are
70 located in non-coding regions which hampers their functional interpretation. Expression
71 quantitative traits loci (eQTLs) to some extent explain the genomic effects of GWAS
72 signals⁴⁻⁶. By leveraging effects of multiple *cis*-eQTL variants on gene expression,
73 transcriptome-wide association studies (TWAS) search primarily for gene-trait associations.
74 The approach builds on predictive models of gene expression derived from reference panels
75 that correlate genotype patterns with transcript levels in tissues which are relevant for the
76 phenotype. Predictive models are then used to associate tissue-specific gene expression based
77 on genotypes with a given trait in individuals of GWAS cohorts⁷. Since TWAS signals reflect
78 gene expression levels, the approach can be used to prioritize candidate genes across disease-
79 relevant tissues. Thereby, TWAS may point to causal genes at risk loci identified by GWAS
80 and thus provide further insights on biological mechanisms^{8,9}. Moreover, TWAS increase the
81 sensitivity to identify susceptibility genes missed by traditional GWAS analyses. Here we
82 performed a TWAS to identify novel susceptibility genes for CAD comprising more than
83 80,000 individuals with genotype data along with validation and exploratory analyses for the
84 associated genes.

85 **Results**

86 **Evaluation of the predictive models from STARNET and GTEx panels**

87 The study design is shown in Fig. 1. We applied predictive models of nine tissues trained by
88 the EpiXcan pipeline⁹ from two genetics-of-gene-expression panels: Stockholm-Tartu
89 Atherosclerosis Reverse Network Engineering Task (STARNET) and Genotype-Tissue

90 Expression (GTEx)^{10,11}. STARNET is a genetics-of-gene-expression study on approximately
91 600 CAD patients undergoing open-heart surgery, during which seven tissues were collected:
92 atherosclerotic aortic wall (AOR), atherosclerotic-lesion-free internal mammary artery
93 (MAM), liver (LIV), blood (BLD), subcutaneous fat (SF), visceral abdominal fat (VAF), and
94 skeletal muscle (SKLM)¹⁰. GTEx is a comprehensive resource for genetics-of-gene-
95 expression across 54 non-diseased tissue sites obtained post-mortem from nearly 1000
96 individuals¹¹. In GTEx we studied six of the above tissues as well as the wall of coronary
97 (COR) and tibial (TIB) arteries, whereas MAM was not available (Methods and
98 Supplementary Tables 1-2). Together, we obtained predictive models from nine CAD-
99 relevant tissues. Genes with cross-validated prediction $R^2 > 0.01$ were kept. STARNET-
100 based models allowed to impute 12,995 unique gene expression signatures in seven tissues,
101 and GTEx 12,964 unique gene expression signatures in eight tissues (Supplementary Table
102 1).

103 We first tested the reproducibility of the STARNET- and GTEx-based predictive
104 models by performing TWAS analyses in ten GWAS studies of CAD covering 17,687 CAD
105 patients and 17,854 controls¹²⁻²¹, which provided individual level data and partially overlap
106 with the CARDIoGRAMplusC4D meta-analysis, followed by replication analyses on
107 genotyping data of UK Biobank (UKB)²², from which we extracted 20,310 CAD patients
108 and 25,000 controls (Supplementary Table 3). As can be seen in Supplementary Results,
109 there were prominent overlaps of transcriptome-wide significant genes having consistent
110 association directions between test and validating sets within STARNET- (binomial test $P =$
111 0.00075) and GTEx-based models (binomial test $P = 0.00079$; Supplementary Fig. 1)
112 respectively. Between the two independent reference panels, TWAS results of six
113 overlapping tissues indicated consistent association directions (average Pearson's coefficient
114 $\rho = 0.72$; $P < 1e-10$; Supplementary Fig. 2), and prominent overlaps of significant gene-tissue

115 pairs (Supplementary Results ; Supplementary Fig. 3). Overall, these results suggest the
116 reproducible of TWAS results of predictive models within and between two independent
117 reference panels.

118 **Genes associated with CAD by TWAS**

119 By combining TWAS results based on two genetics-of-gene-expression reference
120 panels, we identified 114 genes representing 193 gene-tissue pairs with differential
121 expression in CAD cases and controls (Fig. 2; Supplementary Fig. 4; Supplementary Table
122 4). Moreover, 95 of overall 114 gene-tissue association pairs were confirmed using another
123 commonly used fine-mapping tool (COLOC)²³ that calculates the posterior probabilities of
124 shared causal variant in each locus between eQTL and GWAS statistics (Methods;
125 Supplementary Table 5; Supplementary Fig. 5).

126 Forty-six genes displayed genetically-mediated differential expression in AOR, 28 in
127 MAM, 25 in LIV, 23 in VAF, 22 in SKLM, 18 in SF, 16 in BLD, 10 in TIB, and 5 in COR
128 (Fig. 3A), reflecting the importance of respective tissues in CAD pathophysiology. Most
129 genes revealed significant associations in only a single tissue; 38 were significant in more
130 than one, almost all having consistent directions of association between predicted expression
131 levels and CAD across tissues (Fig. 3B).

132 Among the 114 genes, 102 were protein-coding and 12 were long non-coding RNAs
133 (lncRNA) (Supplementary Table 4). STARNET data showed that most lncRNAs were
134 positively co-expressed with a surrounding gene in affected tissues (Supplementary Fig. 8).
135 *LINC00310* was the only exception, which displayed complex co-expression patterns with
136 other genes (Supplementary Fig. 8).

137 Respective genes were found in 63 genomic regions, thus several regions represented
138 multiple genes with significant associations. Six regions had multiple TWAS genes with

139 shared GWAS and eQTL signals in respective tissues, like 1p13.3 and 2p33.2
140 (Supplementary Fig. 6-7; Supplementary Table 5). On the other hand, in 39 regions
141 expression of only a single gene was found to be significantly associated, which makes these
142 genes likely candidates for mediating causal effects, particularly, if these genes reside within
143 GWAS risk loci for CAD (these genes are indicated in Supplementary Table 6).

144 Most TWAS genes (n=96) could be positionally annotated to the 1Mb region around
145 one of the over 200 GWAS loci that are currently known to be genome-wide significantly
146 associated with CAD^{2,3}. Therefore we marked these as known genes (Supplementary Table
147 6). On the other hand, 18 genes resided outside of these regions and were labeled as novel
148 genes (Table 1). Most novel genes were tissue-specific, except *RGS19*, *FAM114A1* and
149 *UFL1* which displayed evidence for differential expression in multiple tissues.

150 **Pathways and diseases enriched by TWAS genes**

151 We carried out two types of gene set enrichment tests to further study the biological
152 relevance of genes giving signals in this TWAS. First, we studied disease-gene sets from the
153 DisGeNET platform which is one of the largest publicly available collections of genes and
154 variants associated with human diseases²⁴. The results showed that genes discovered by
155 TWAS were primarily enriched for CAD, coronary atherosclerosis, and hypercholesterolemia
156 (Supplementary Table 7), adding to the plausibility of our TWAS findings.

157 In line with these results, gene set enrichment analyses using GO²⁵, KEGG²⁶,
158 Reactome²⁷, and WikiPathways²⁸ databases showed that the TWAS genes were highly
159 enriched for pathways involved in cholesterol metabolism and regulation of lipoprotein
160 levels. To a lesser extent, risk genes were enriched in regulation of blood pressure as well as
161 development and morphogenesis of the heart and the aortic valve (Supplementary Table 8).

162 **Damaging mutations in TWAS genes**

163 We next searched in whole-exome sequencing data of 200,643 participants from UKB for
164 rare damaging variants in TWAS genes (minor allele frequency < 0.01, either loss of function
165 mutations or mutations predicted to be adverse by one of five in-silico methods
166 (Supplementary Files). We performed gene-based burden test on major CAD-related
167 cardiometabolic risk traits. We found evidence for nominally significant association with
168 either CAD or its risk traits for 67 TWAS genes (Fig. 4; Supplementary Tables 9-10).
169 Mutations in five genes were directly associated with increased CAD risk: *LPL* (odds ratio
170 [OR] = 1.168; 95% confidence interval [CI] 1.034-1.036; P = 0.016), *NOS3* (OR = 1.143;
171 95% CI 1.109-1.279; P = 0.02), *ADAMTS7* (OR = 1.062; 95% CI 1.011-1.115; P = 0.016),
172 *MTAP* (or=1.507; 95%CI 1.061-2.086; P = 0.017), and *HLA-C* (OR = 1.112; 95%CI 1.002-
173 1.239; P = 0.044); and two were associated reduced CAD risk: *TWIST1* (OR = 0.726; 95% CI
174 0.523-0.985; P = 0.038), *SARS* (OR = 0.831; 95% CI 0.706-0.974; P = 0.022). Damaging
175 *LPL* mutations were evidently associated with lipid traits, including levels of LDL (low
176 density lipoproteins) (beta = 0.043; P = 9.6e-4), HDL (high density lipoproteins) (beta = -
177 0.106; P = 4.54e-68), *APOA* (Apolipoprotein A) (beta = -0.062; P = 6.25e-47), *APOB*
178 (Apolipoprotein B) (beta = 0.025; P = 1.38e-12), and *TG* (Triglycerides) (beta = 0.241; P =
179 1.47e-68).

180 Damaging mutations in 11 novel TWAS genes were associated with CAD risk factors
181 (Table 2). Some of these gene-trait associations have been reported before. Damaging
182 mutations in *MGP*, which regulates vascular calcification, adipogenesis and is serum marker
183 of visceral adiposity²⁹⁻³¹, were associated with increased levels of LDL, TC (total
184 cholesterol) and *APOB*. *NLR4* was reportedly associated with atherosclerosis by regulating
185 inflammation reaction^{32,33}, and its damaging mutations were associated with levels of CRP
186 (C-reactive protein – a marker of inflammation).

187 **Novel genes associate with risk factors in human and mouse data**

188 We next associated common variants in the regions of $\pm 1\text{Mb}$ around the 18 novel TWAS
189 genes to study their associations with a series of lipid traits including LDL, HDL, APOA,
190 APOB, LPA, TC, and TG in UKB (Supplementary Files). Bonferroni-corrected significance
191 $P < 4.0\text{e-}4$ ($0.05/18$ novel genes * 7 lipid traits) was observed for numerous respective lead
192 variants, of which *RGS19*, *SDCCAG3*, *HOMER3*, and *WWP2* reached genome-wide
193 significant association ($P < 5\text{e-}8$) with multiple lipid traits (Fig. 5A; Supplementary Table 11).

194 Next, we extracted expression-trait association statistics of TWAS genes from the
195 Hybrid Mouse Diversity Panel (HMDP)³⁴. Based on the expression data from mouse aorta
196 and liver tissues, 48 TWAS genes were significantly associated with aortic lesion area and 14
197 further cardiovascular traits (nominal significance $P < 0.05$; Supplementary Table 12).
198 Expression levels of seven novel genes, i.e. *Rgs19*, *Kptn*, *Ezr*, *Stx4a*, *Cand1*, *Focad* and
199 *Wasf1*, were associated with aortic lesion area (Fig. 5B), a commonly used measure for
200 atherosclerotic plaque formation in mice. Additionally, we found the novel genes were
201 associated with at least one lipid trait in the mouse model (Fig. 5B).

202 **Knockdown of *RGS19* and *KPTN* reduced lipid secretion by human liver cells**

203 Both human genotype-trait association statistics in UKB and mouse expression-trait
204 association statistics in the HMDP indicated that several novel genes identified by TWAS
205 influence lipid metabolism. To validate these findings, we chose two of the novel genes, i.e.
206 *KPTN* and *RGS19*, which have not been studied in much detail so far and have particularly
207 not at all been investigated in the context of atherosclerosis or CAD. Hepatocytes are
208 critically involved in lipid metabolism. In line, in a screening of different atherosclerosis-
209 relevant cell lines (e.g., hepatocytes, smooth muscle, endothelium, fibroblast, and
210 adipocytes), *KPTN* had the highest expression level in the huh7 hepatocyte cell line

211 (Supplementary Fig. 9A, B). To study the influence of *KPTN* and *RGS19* on lipid
212 metabolism, we next generated gene knockout (KO) huh7 cell lines for by a dual CRISPR
213 strategy (Methods; Supplementary Table 13), which substantially reduced expression of the
214 respective genes (Supplementary Fig. 9C, D). We measured secretion levels of TG,
215 cholesterol and APOB in gene-targeted versus control cells. Notably, under normal
216 circumstances, human hepatocytes synthesize cholesterol, assemble TG and APOB100, and
217 secrete these particles in form of very low-density lipoprotein (VLDL)³⁵. Compared to
218 control huh7 cells, we found reduced APOB and cholesterol levels in culture medium of
219 *KPTN*-KO cells (Fig. 6C, D). In culture medium of *RGS19*-KO cells we also detected
220 reduced levels of APOB100, cholesterol, and TG (Fig. 6B, C, D, E), in line with strong
221 associations of this gene with an array of lipid traits in both human genotyping and mouse
222 expression data sets (Figure 5).

223 **Discussion**

224 In a stepwise approach, we first generated and filtered models predicting genetically
225 modulated gene expression in nine tissues that contribute to CAD risk. Next, we applied
226 these models to individual-level genotype data on more than 80,000 CAD cases and controls.
227 We identified 114 genes with differential expression by genetic means in CAD patients.
228 Many signals were highly plausible as they resided within loci displaying genome-wide
229 significant association with CAD by traditional GWAS. Moreover, the genes identified by
230 this TWAS were markedly enriched in established pathways for the disease, and 67 revealed
231 in whole-exome sequence data of UKB that damaging mutations have significant impact on
232 CAD risk or its underlying traits. Importantly, we also identified 18 genes without prior
233 evidence for their involvement in CAD by GWAS, many of which were found to be
234 associated with lipid metabolism in human and mouse data.

235 Only a minority of genes residing within published CAD GWAS loci have been
236 validated experimentally for their underlying causal role in atherosclerosis. Our data
237 corroborate a recent exploration of known GWAS loci for genotype-related expression levels
238 (Hao et al., personal communication, manuscript attached) and provide a substantial step
239 towards prioritization of genes at respective GWAS loci^{2,3}. In this respect, 46 genes identified
240 by this TWAS are known for effects in pathophysiological pathways related to CAD,
241 including lipid metabolism, inflammation, angiogenesis, transcriptional regulation, cell
242 proliferation, NO signaling, and high blood pressure, to name a few (Supplementary Table 6),
243 giving credibility to the association findings. On the other hand, a limitation of the TWAS
244 approach is that at 20 loci two or more genes show signals such that other methods will be
245 needed to pinpoint the precise genetic mechanisms leading to CAD. Indeed, in another study
246 we recently applied summary-based Mendelian Randomization, MetaXcan, to integrate tissue
247 and cell-specific data from STARNET and GTEx with CAD GWAS datasets, and obtained at
248 14 of these 20 loci indicative data allowing prioritization of a gene (Hao et al., personal
249 communication, manuscript attached).

250 Most novel TWAS genes revealed association with lipid traits in both genotype data
251 of human and expression-trait statistics of our atherosclerosis mouse model. For example,
252 expression profiles of *KPTN* and *RGS19*, both novel genes displaying significant TWAS
253 results for CAD in human liver tissue, also showed significant association with various lipid
254 traits as well as aortic lesion area in our atherosclerosis mouse model. Moreover, both gene
255 loci harbor SNPs which are genome-wide significantly associated with LDL-C, HDL-C, TC,
256 and TG in human genotype data. Finally, the Common Metabolic Disease Knowledge Portal
257 revealed that damaging rare variants of *KPTN* are associated with reduced levels of LDL
258 (beta = -11.9; P = 0.00042) and TC (beta = -11.9; P = 0.0014)³⁶, which is directionally
259 plausible given the TWAS results. Based on these observations, we functionally validated the

260 roles of these two novel genes by studying lipid levels in human liver cells, i.e. the tissue that
261 displayed evidence for differential expression by TWAS. Indeed, we observed that knockout
262 of these genes lowered secretion of APOB and cholesterol into culture medium. *KPTN*,
263 kaptin (actin binding protein), a member of the *KPTN*, *ITFG2*, *C12orf66* and *SZT2*
264 (KICSTOR) protein complex, is a lysosome-associated negative regulator of the mechanistic
265 target of rapamycin complex 1 (mTORC1) signaling³⁷. It is required in amino acid or glucose
266 deprivation to inhibit cell growth by suppressing mTORC1 signaling in liver, muscle, and
267 neurons. mTORC1 has multifaceted roles in regulating lipid metabolism, including the
268 promotion of lipid synthesis, and storage and inhibition of lipid release and consumption,
269 suggesting that the validated role of *KPTN* in hepatic lipid secretion might be partially
270 mediated by the mTORC1 pathway. *RGS19* belongs to the *RGS* (regulators of G-protein
271 signaling) family, who are regulators for G protein-coupled receptors (GPCRs)³⁸. *RGS19*
272 inhibits GPCR signal transduction by increasing the GTPase activity of G protein alpha
273 subunits, thereby transforming them into an inactive GDP-bound form^{39,40}. The targeting
274 GPCR of *RGS19* has not been observed before, and how *RGS19* regulates lipid metabolism
275 remains unclear.

276 Interestingly, our TWAS uncovered eight novel gene-CAD associations in fat tissue,
277 including *MGP* and *WASF1* in SF, and *CAND1*, *FAM114A1*, *FOCAD*, *RGS19*, *TSPAN11* and
278 *TXNRD3* in VAF, representing half of the novel genes. Damaging mutations in five genes
279 were associated with many cardiometabolic risk factors for CAD, including those in *WASF1*
280 with BMI, *MGP* with LDL,TC and APOB, *TXNRD3* with LPA, *FAM114A1* with diabetes,
281 *FOCAD* with hypertension, i.e. conditions shown by Mendelian randomization to be causal
282 for CAD⁴¹. Given the many CAD patients that are overweight or obese, it will be of great
283 interest to identify how these genes modify cardiometabolic traits leading to cardiovascular
284 disorders. In this respect our TWAS could provide a list of candidate genes and related

285 targetable cardiometabolic traits. In addition, it is of surprise to unveil 22 genes linking
286 SKLM to CAD risk, and eight were unique to this tissue, including *HOMER3*, *SDCCAG3*,
287 *MTAP*, *NME9*, *PSMA4*, *SLC2A12*, *UNC119B* and *VAMP5*, , the first two being novel.
288 *SDCCAG3* or *ENTR1* encodes endosome associated trafficking regulator 1 and involves in
289 recycling of *GLUT1* (glucose transporter type 1), supplying the major energy source for
290 muscle contraction. SKLM-based metabolism may have a protective role in CAD as
291 suggested by the many cardioprotective effects of sports^{42,43}. Gene targets enhancing SKLM
292 function in this respect might be effective in CAD prevention, a field relatively unexplored
293 thus far. Here, for the first time, quantitative traits regulated genes in SKLM were associated
294 with CAD by TWAS, providing novel evidence for genes that could modulate CAD risk by
295 their functions in SKLM.

296 There are certain limitations in our study. Since TWAS are strongly dependent on the
297 reference panel linking genetic signatures with gene expression, it had to be expected that
298 STARNET- and GTEx-based predictive models display differences in gene-CAD
299 associations. STARNET-based TWAS identified 86 genes, whereas GTEx-based TWAS
300 identified 68 genes. Yet, 34 genes were shared between the two analyses, and effect sizes for
301 the shared genes were highly concordant ($\rho = 0.97$). An average of 62% overlapping genes
302 was observed in the matched tissues of two reference-based models, and the resulting size of
303 expression-CAD associations was linearly consistent with an average $\rho = 0.72$. The relatively
304 small differences may be due to different sample sizes used for training predictive models⁹,
305 different disease states (subjects with and without CAD), intravital or *post mortem* sample
306 collection, leading to differences in gene expression in our reference panels^{10,11}. Given a fair
307 consistency between the two data sources, we combined results derived from both panels to
308 increase the power for capturing risk genes. Second, although TWAS facilitates candidate
309 risk gene prioritization, co-regulation or co-expression *in cis* at a given locus limits the

310 precise determination of the culprit gene⁸. Indeed, at 12 loci we observed signals for three or
311 more TWAS genes. For instance, in LIV tissue TWAS identified five genes at 1p13.3,
312 *ATXN7L2*, *CELSR2*, *PSMA5*, *PSRC1*, *SARS* and *SORT1* which were co-regulated by same
313 risk variant set, confusing the causal gene prioritization. While *CELSR2*, *PSRC1* and *SORT1*
314 were previously shown to act on lipid metabolism⁴⁴, we found that damaging mutations in
315 *ATXN7L2* and *SARS* were also associated with CAD or its risk traits, the former with serum
316 levels of HDL and APOA, and the later with CAD and diabetes. In addition, all lncRNA
317 genes identified by our study displayed co-expression with their neighboring coding genes,
318 which makes it difficult to determine their causal effects. Nevertheless, in combining TWAS
319 data with other genetic analyses, e.g., looking at effects of damaging mutations, genetic
320 association with other phenotypes and expression-trait association statistics, we aimed to
321 improve risk gene prioritization, and to provide deeper insights of possible disease-causing
322 mechanisms. For instance, *LPL* is well-known for its protective role against CAD by
323 lowering lipids^{45,46}, and our analyses showed that damaging *LPL* mutations were associated
324 with increased risk of CAD and higher lipid levels. Finally, as with all statistical methods,
325 there are certain limitations and assumptions associated with TWAS. Further evolution and
326 improvement of these methods, as well as functional validation experiments, will assuredly
327 improve the accuracy of these studies.

328 In summary, our TWAS study based on two genotype-expression reference panels
329 identified 114 gene-CAD associations, of which 18 were novel. The extended analyses with
330 multiple datasets supported the reliability of the CAD TWAS signals in prioritizing candidate
331 risk genes and identifying novel associations in a tissue-specific manner. Functional
332 validation of two novel genes, *RGS19* and *KPTN*, lend support to our TWAS findings. Our
333 study created a set of gene-centered and tissue-annotated associations for CAD, providing
334 insightful guidance for further biological investigation and therapeutic development.

336 **Main References**

337 1. Malakar, A. K. *et al.* A review on coronary artery disease, its risk factors, and
338 therapeutics. *J. Cell. Physiol.* **234**, 16812–16823 (2019).

339 2. Erdmann, J., Kessler, T., Munoz Venegas, L. & Schunkert, H. A decade of genome-
340 wide association studies for coronary artery disease: The challenges ahead.
341 *Cardiovascular Research* vol. 114 1241–1257 (2018).

342 3. Koyama, S. *et al.* Population-specific and trans-ancestry genome-wide analyses
343 identify distinct and shared genetic risk loci for coronary artery disease. *Nat. Genet.*
344 **52**, 1169–1177 (2020).

345 4. Foroughi Asl, H. *et al.* Expression Quantitative Trait Loci Acting Across Multiple
346 Tissues Are Enriched in Inherited Risk for Coronary Artery Disease. *Circ. Cardiovasc.*
347 *Genet.* **8**, 305–315 (2015).

348 5. Wild, P. S. *et al.* A Genome-Wide Association Study Identifies *LIPA* as a
349 Susceptibility Gene for Coronary Artery Disease. *Circ. Cardiovasc. Genet.* **4**, 403–412
350 (2011).

351 6. Vilne, B. & Schunkert, H. Integrating Genes Affecting Coronary Artery Disease in
352 Functional Networks by Multi-OMICs Approach. *Frontiers in Cardiovascular*
353 *Medicine* vol. 5 89 (2018).

354 7. Gamazon, E. R. *et al.* A gene-based association method for mapping traits using
355 reference transcriptome data. *Nat. Genet.* **47**, 1091–1098 (2015).

356 8. Wainberg, M. *et al.* Opportunities and challenges for transcriptome-wide association
357 studies. *Nat. Genet.* **51**, 592–599 (2019).

358 9. Zhang, W. *et al.* Integrative transcriptome imputation reveals tissue-specific and
359 shared biological mechanisms mediating susceptibility to complex traits. *Nat.*
360 *Commun.* **10**, 1–13 (2019).

361 10. Franzén, O. *et al.* Cardiometabolic risk loci share downstream cis- and trans-gene
362 regulation across tissues and diseases. *Science* (80-.). **353**, 827–830 (2016).

363 11. Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nature Genetics*
364 vol. 45 580–585 (2013).

365 12. Samani, N. J. *et al.* Genomewide Association Analysis of Coronary Artery Disease. *N.
366 Engl. J. Med.* **357**, 443–453 (2007).

367 13. Erdmann, J. *et al.* New susceptibility locus for coronary artery disease on chromosome
368 3q22.3. *Nat. Genet.* **41**, 280–282 (2009).

369 14. Erdmann, J. *et al.* Genome-wide association study identifies a new locus for coronary
370 artery disease on chromosome 10p11.23. *Eur. Heart J.* **32**, 158–168 (2011).

371 15. Nikpay, M. *et al.* A comprehensive 1000 Genomes-based genome-wide association
372 meta-analysis of coronary artery disease. *Nat. Genet.* **47**, 1121–1130 (2015).

373 16. Stitziel, N. O. *et al.* Inactivating mutations in NPC1L1 and protection from coronary
374 heart disease. *N. Engl. J. Med.* **371**, 2072–2082 (2014).

375 17. Nelson, C. P. *et al.* Association analyses based on false discovery rate implicate new
376 loci for coronary artery disease. *Nat. Genet.* **49**, 1385–1391 (2017).

377 18. Li, L., Pang, S., Zeng, L., Güldener, U. & Schunkert, H. Genetically determined
378 intelligence and coronary artery disease risk. *Clin. Res. Cardiol.* (2020)
379 doi:10.1007/s00392-020-01721-x.

380 19. Burton, P. R. *et al.* Genome-wide association study of 14,000 cases of seven common
381 diseases and 3,000 shared controls. *Nature* **447**, 661–678 (2007).

382 20. Winkelmann, B. R. *et al.* Rationale and design of the LURIC study - A resource for
383 functional genomics, pharmacogenomics and long-term prognosis of cardiovascular
384 disease. *Pharmacogenomics* **2**, (2001).

385 21. Anderson, C. D. *et al.* Genome-wide association of early-onset myocardial infarction

386 with single nucleotide polymorphisms and copy number variants. *Nat. Genet.* **47**,
387 103–109 (2015).

388 22. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data.
389 *Nature* **562**, 203–209 (2018).

390 23. Giambartolomei, C. *et al.* Bayesian Test for Colocalisation between Pairs of Genetic
391 Association Studies Using Summary Statistics. *PLoS Genet.* **10**, (2014).

392 24. Piñero, J. *et al.* The DisGeNET knowledge platform for disease genomics: 2019
393 update. *Nucleic Acids Res.* **48**, D845–D855 (2020).

394 25. Harris, M. A. *et al.* The Gene Oncology (GO) database and informatics resource.
395 *Nucleic Acids Res.* **32**, D258–D261 (2004).

396 26. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic
397 Acids Research* vol. 28 27–30 (2000).

398 27. Croft, D. *et al.* Reactome: A database of reactions, pathways and biological processes.
399 *Nucleic Acids Res.* **39**, D691–D697 (2011).

400 28. Slenter, D. N. *et al.* WikiPathways: A multifaceted pathway database bridging
401 metabolomics to other omics research. *Nucleic Acids Res.* **46**, D661–D667 (2018).

402 29. Bjørklund, G. *et al.* The Role of Matrix Gla Protein (MGP) in Vascular Calcification.
403 *Curr. Med. Chem.* **27**, 1647–1660 (2019).

404 30. Okla, M. *et al.* Ellagic acid modulates lipid accumulation in primary human adipocytes
405 and human hepatoma Huh7 cells via discrete mechanisms. *J. Nutr. Biochem.* **26**, 82–90
406 (2015).

407 31. Li, C. *et al.* Matrix Gla protein regulates adipogenesis and is serum marker of visceral
408 adiposity. *Adipocyte* **9**, 68–76 (2020).

409 32. Borborema, M. E. de A., Crovella, S., Oliveira, D. & de Azevêdo Silva, J.
410 Inflammasome activation by NLRP1 and NLRC4 in patients with coronary stenosis.

411 *Immunobiology* **225**, 151940 (2020).

412 33. Alehashemi, S. & Goldbach-Mansky, R. Human Autoinflammatory Diseases Mediated
413 by NLRP3-, Pyrin-, NLRP1-, and NLRC4-Inflammasome Dysregulation Updates on
414 Diagnosis, Treatment, and the Respective Roles of IL-1 and IL-18. *Frontiers in*
415 *Immunology* vol. 11 1840 (2020).

416 34. Lusis, A. J. *et al.* The hybrid mouse diversity panel: A resource for systems genetics
417 analyses of metabolic and cardiovascular traits. *Journal of Lipid Research* vol. 57
418 925–942 (2016).

419 35. Tiwari, S. & Siddiqi, S. A. Intracellular trafficking and secretion of VLDL.
420 *Arteriosclerosis, Thrombosis, and Vascular Biology* vol. 32 1079–1086 (2012).

421 36. Flannick, J. *et al.* Exome sequencing of 20,791 cases of type 2 diabetes and
422 24,440 controls. *Nature* **570**, 71–76 (2019).

423 37. Wolfson, R. L. *et al.* KICSTOR recruits GATOR1 to the lysosome and is necessary for
424 nutrients to regulate mTORC1. *Nature* **543**, 438–442 (2017).

425 38. Oishi, Y. *et al.* SREBP1 Contributes to Resolution of Pro-inflammatory TLR4
426 Signaling by Reprogramming Fatty Acid Metabolism. *Cell Metab.* **25**, 412–427
427 (2017).

428 39. Tso, P. H., Yung, L. Y., Wang, Y. & Wong, Y. H. RGS19 stimulates cell proliferation
429 by deregulating cell cycle control and enhancing Akt signaling. *Cancer Lett.* **309**, 199–
430 208 (2011).

431 40. Sangphech, N., Osborne, B. A. & Palaga, T. Notch signaling regulates the
432 phosphorylation of Akt and survival of lipopolysaccharide-activated macrophages via
433 regulator of G protein signaling 19 (RGS19). *Immunobiology* **219**, 653–660 (2014).

434 41. Jansen, H., Samani, N. J. & Schunkert, H. Mendelian randomization studies in
435 coronary artery disease. *European Heart Journal* vol. 35 1917–1924 (2014).

436 42. McGough, I. J. *et al.* Identification of molecular heterogeneity in SNX27-
437 retromermediated endosome-to-plasma-membrane recycling. *J. Cell Sci.* **127**, 4940–
438 4953 (2014).

439 43. Sixt, S. *et al.* Long- but not short-term multifactorial intervention with focus on
440 exercise training improves coronary endothelial dysfunction in diabetes mellitus type 2
441 and coronary artery disease. *Eur. Heart J.* **31**, 112–119 (2010).

442 44. Arvind, P., Nair, J., Jambunathan, S., Kakkar, V. V. & Shanker, J. CELSR2-PSRC1-
443 SORT1 gene expression and association with coronary artery disease and plasma lipid
444 levels in an Asian Indian cohort. *J. Cardiol.* **64**, 339–346 (2014).

445 45. Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease .
446 *N. Engl. J. Med.* **374**, 1134–1144 (2016).

447 46. Tsutsumi, K. Lipoprotein Lipase and Atherosclerosis. *Curr. Vasc. Pharmacol.* **1**, 11–
448 17 (2003).

449

450

451 **Tables**

452 **Table 1 18 TWAS genes residing outside of published GWAS loci.**

Gene	Tissue	Gene type	Cytoband	Z score	SE	P value	From ^a
NLRC4	LIV	protein_coding	2p22.3	-3.383	0.044	3.04E-06	STARNET
TXNRD3	VAF	protein_coding	3q21.3	2.566	0.059	1.36E-06	STARNET
FAM114A1	VAF	protein_coding	4p14	4.026	0.050	3.44E-09	GTEx
FAM114A1	BLD	protein_coding	4p14	4.845	0.037	1.80E-06	GTEx
EGFLAM	COR	protein_coding	5p13.2	5.596	0.047	7.70E-10	GTEx
UFL1	MAM	protein_coding	6q16.1	-5.246	0.038	1.62E-06	STARNET
UFL1	BLD	protein_coding	6q16.1	-4.687	0.038	8.70E-05	STARNET
UFL1	BLD	protein_coding	6q16.1	-4.955	0.042	3.96E-07	GTEx
WASF1	SF	protein_coding	6q21	4.320	0.059	1.91E-06	STARNET
EZR	LIV	protein_coding	6q25.3	-3.187	0.025	3.53E-06	STARNET
FOCAD	VAF	protein_coding	9p21.3	8.348	0.068	1.44E-12	GTEx
SDCCAG3	SKLM	protein_coding	9q34.3	-3.015	0.061	1.74E-06	STARNET
TSPAN11	VAF	protein_coding	12p11.21	2.285	0.065	1.79E-07	STARNET
MGP	SF	protein_coding	12p12.3	-3.412	0.040	5.67E-07	GTEx
CAND1	VAF	protein_coding	12q14.3	-2.355	0.030	1.19E-07	GTEx
STX4	COR	protein_coding	16p11.2	3.347	0.056	2.59E-06	GTEx
WWP2	AOR	protein_coding	16q22.1	4.491	0.029	5.67E-06	STARNET
WWP2	AOR	protein_coding	16q22.1	6.570	0.031	1.19E-07	GTEx
GAS8	LIV	protein_coding	16q24.3	0.189	0.041	8.32E-07	GTEx
HOMER3	SKLM	protein_coding	19p13.11	4.647	0.030	3.52E-08	GTEx
KPTN	LIV	protein_coding	19q13.32	-3.076	0.076	2.17E-06	STARNET
RGS19	LIV	protein_coding	20q13.33	-4.913	0.028	1.52E-06	GTEx
RGS19	VAF	protein_coding	20q13.33	-4.868	0.059	4.51E-06	STARNET
RGS19	VAF	protein_coding	20q13.33	-4.545	0.030	4.63E-07	GTEx
RGS19	SKLM	protein_coding	20q13.33	-5.026	0.024	1.42E-06	STARNET
RGS19	SKLM	protein_coding	20q13.33	-5.298	0.018	9.29E-07	GTEx

453 ^a Association statistics from either STARNET- or GTEx-based models.

454

455

456 **Table 2 Associations of damaging mutations in novel genes with risk traits of CAD.**

Binary trait	Gene	Case		Control		OR[95%CI]	P value
		Non-carrier	Carrier	Non-carrier	Carrier		
Diabetes	FAM114A1	10668	116	187555	1457	1.4[1.15-1.69]	9.19E-04
Diabetes	UFL1	10634	150	187023	1989	1.33[1.11-1.57]	1.47E-03
Hypertension	FOCAD	73542	4605	102379	6129	1.05[1.01-1.09]	2.60E-02
Hypertension	EGFLAM	73754	4393	102147	6361	0.96[0.92-1]	2.82E-02
Hypertension	EZR	77495	652	107491	1017	0.89[0.8-0.98]	2.05E-02
Quantitative trait	Gene	Carrier		Non-carrier		Beta[95%CI]	P value
		No. carrier	Median(range)	No. non-carrier	Median (range)		
APOB (g/L)	HOMER3	2633	1(0.41-1.91)	187891	1.02(0.4-2)	-0.02[-0.03--0.01]	4.02E-03
APOB (g/L)	MGP	158	1.05(0.51-1.96)	190366	1.02(0.4-2)	0.08[0.04-0.13]	2.60E-04
TC (mmol/L)	HOMER3	2651	5.57(2.33-10.06)	188814	5.66(1.64-15.46)	-0.08[-0.14--0.03]	2.95E-03
TC (mmol/L)	MGP	158	5.76(3.19-10.29)	191307	5.66(1.64-15.46)	0.34[0.13-0.56]	1.66E-03
LDL (mmol/L)	HOMER3	2649	3.45(1.05-6.97)	188511	3.52(0.28-9.8)	-0.06[-0.11--0.02]	2.34E-03
LDL (mmol/L)	MGP	158	3.59(1.81-7.05)	191002	3.52(0.28-9.8)	0.29[0.13-0.45]	4.82E-04
LPA (nmol/L)	TXNRD3	3162	21.94(3.8-188.89)	150645	20.98(3.8-189)	2.5[0.29-4.71]	2.63E-02
BMI (kg/m ²)	KPTN	2084	26.87(14.94-56.05)	197753	26.7(12.12-68.95)	-0.3[-0.57--0.04]	2.65E-02
BMI (kg/m ²)	WASF1	806	26.92(17.71-53.02)	199031	26.7(12.12-68.95)	0.47[0.04-0.91]	3.38E-02
CRP (mg/L)	NLRC4	2470	1.25(0.11-52.86)	188577	1.31(0.08-79.49)	-0.22[-0.44--0.01]	4.30E-02
CRP (mg/L)	UFL1	2057	1.3(0.1-43.74)	188990	1.31(0.08-79.49)	-0.37[-0.6--0.13]	2.36E-03
Neutrophil (10 ⁹ cells/L)	MGP	164	3.51(0.61-8.21)	194782	4.07(0-25.95)	-0.33[-0.59--0.07]	1.40E-02

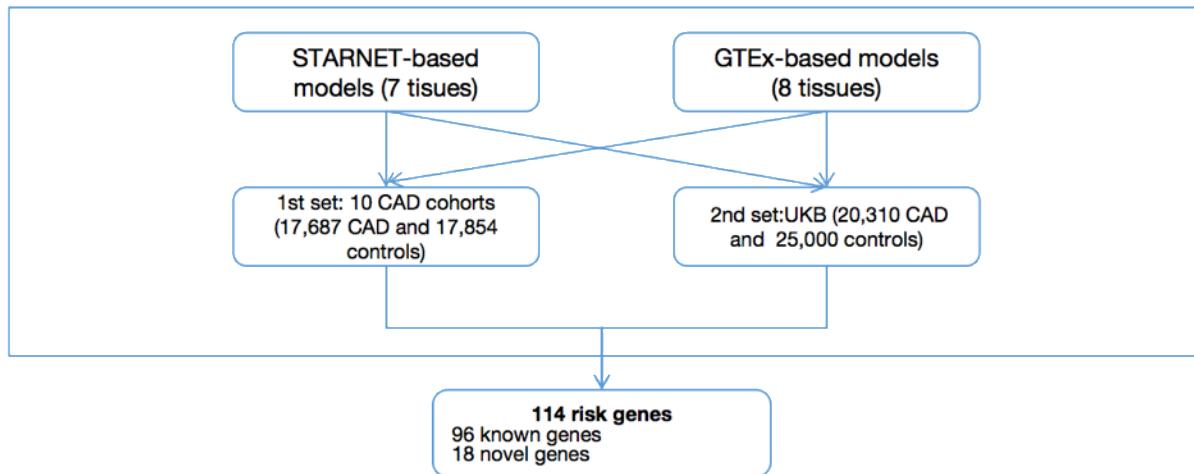
457

458

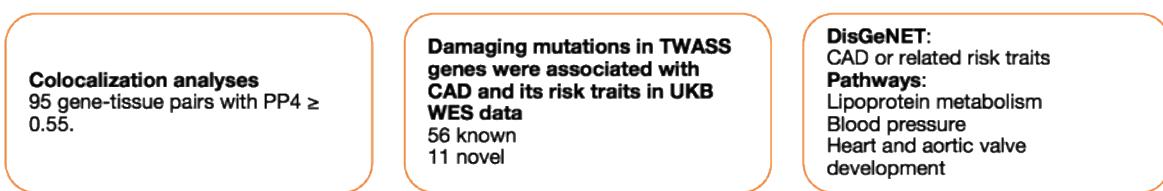
459

460 **Figures**

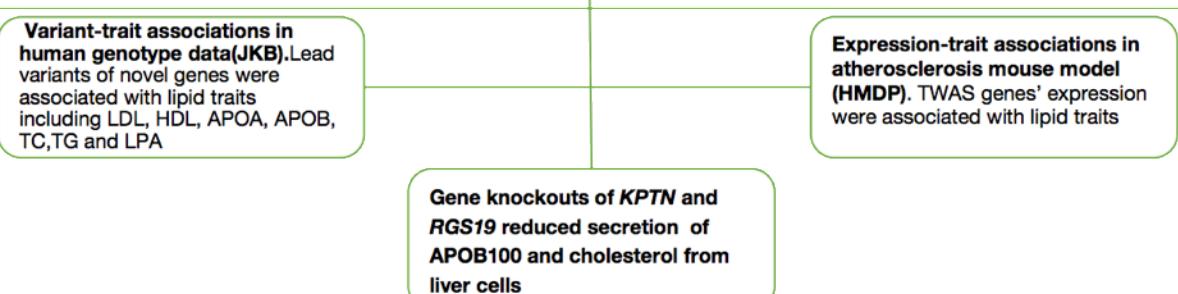
Step1 result reproducibility inside and between two reference-based models



Step2 plausibility, biological function and pathogenicity of TWAS genes (mainly known genes)

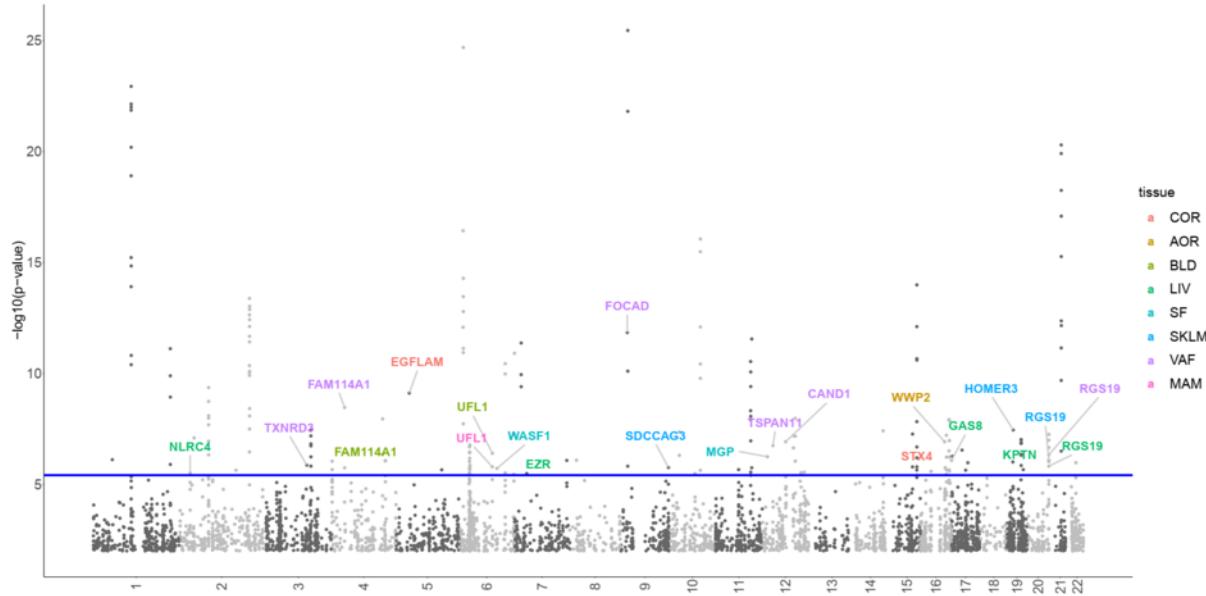


Step3 susceptibility of novel genes



461

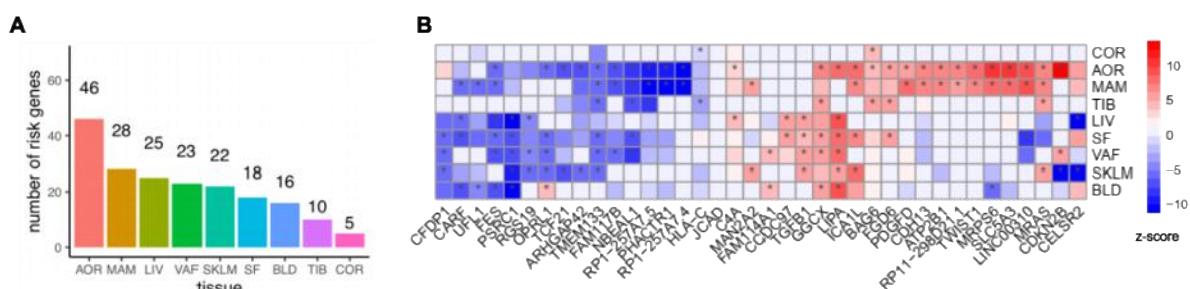
462 **Fig. 1 The study design.**



463

464 **Fig. 2 Manhattan plot of the transcriptome wide association study (TWAS).** The results
465 from STARNET- and GTEx-based TWASs were integrated by lowest P values. The blue line
466 marks $P = 3.85 \times 10^{-6}$. Each point corresponds to an association test between gene-tissue pair. 18
467 novel TWAS genes were highlighted. Supplementary Fig. 4 identifies all genes identified by
468 their genetically-modulated association signals.

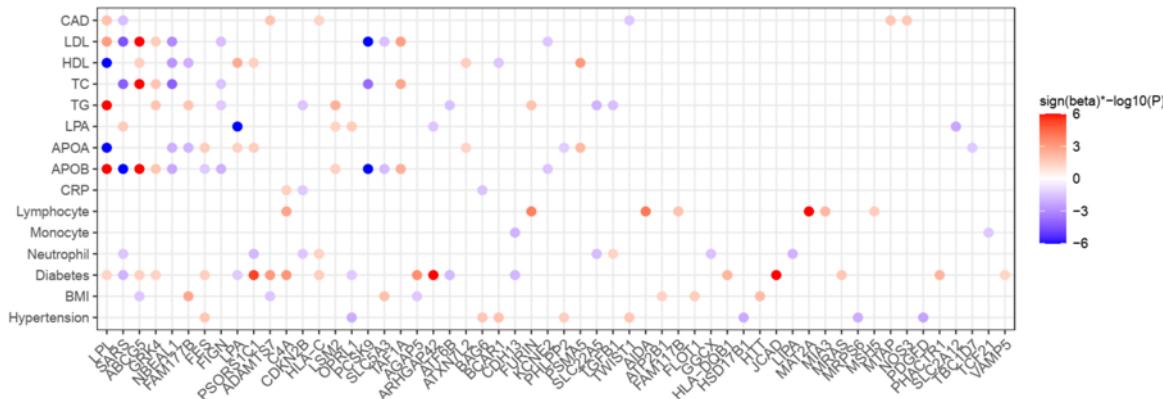
469



470

471 **Fig. 3 Tissue distribution of 114 CAD TWAS genes.** (A) Number of significant genes
472 across tissues. (B) Heatmap plot of 38 TWAS genes identified in more than one tissues. The
473 color codes indicate direction of effects. Cells marked with * represent significant gene-tissue
474 pairs ($P < 3.85 \times 10^{-6}$).

475



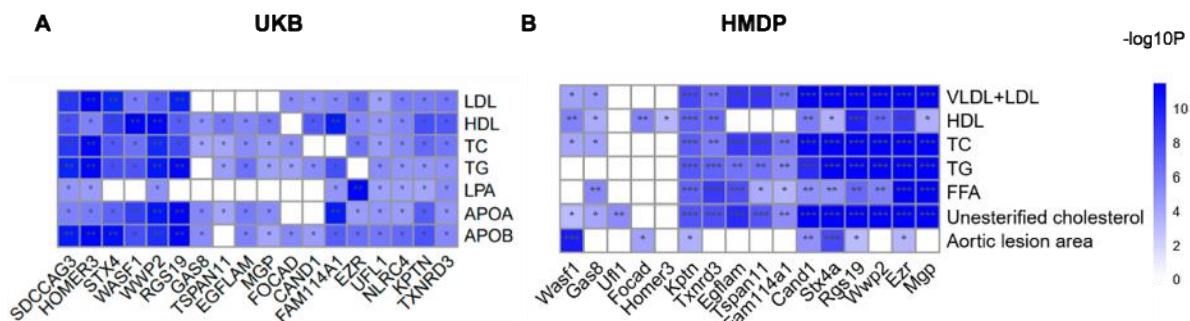
476

477 **Fig. 4 Effects of damaging mutations of TWAS genes on CAD and its risk traits.**

478 Sign(beta)*-log10(p) displayed for associations that reached a $P < 0.05$. When the

479 $\text{Sign}(\beta)*\text{-log10}(P) > 6$, they were trimmed to 6

480



481

482 **Fig. 5 Novel risk genes were associated with lipid traits.** (A) Data from UKB indicate that

483 lead variants inside the boundary of risk genes were associated with lipid traits with

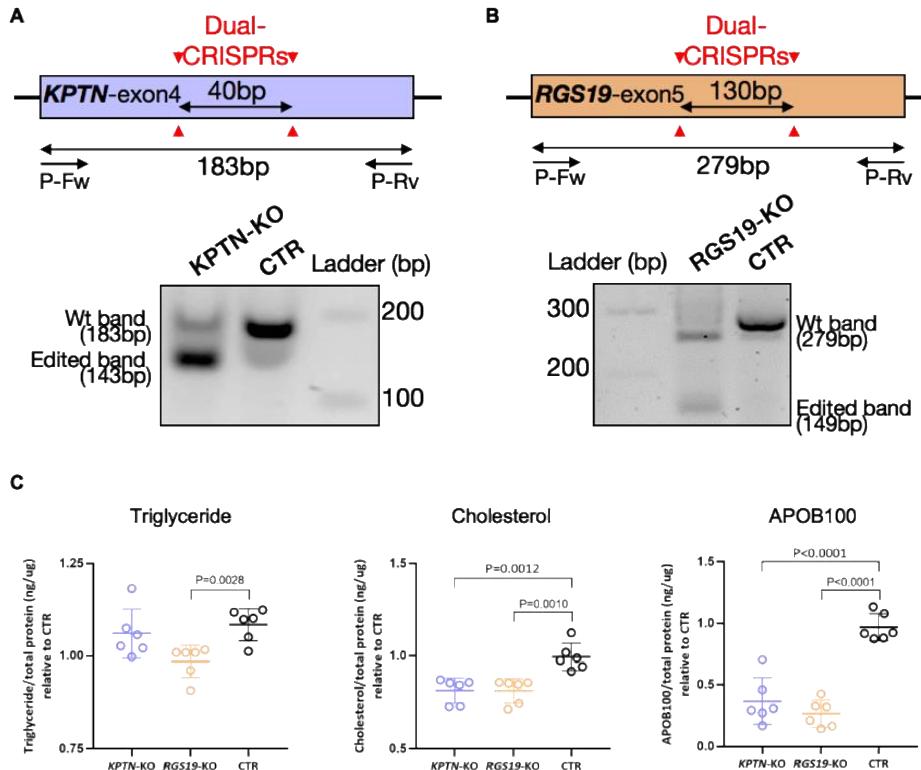
484 Bonferroni-corrected significance levels (*, $P < 4.0\text{e-}4$), or by genome-wide significance (**,

485 $P < 5\text{e-}8$). (B) Expression levels of novel genes were likewise associated with lipid traits and

486 aortic lesion area in an atherosclerosis mouse model from the Hybrid Mouse Diversity Panel

487 (HMDP). *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$.

488



489

490 **Fig. 6 Targeting of *KPTN* and *RGS19* reduced Lipids and APOB secretion of human
491 liver cells.** (A) Two sgRNAs were used to target the exon4 of *KPTN* (shared exon among
492 isoforms) in a Cas9-expressing huh7 liver cell line. The dual CRISPR strategy created a 40bp
493 frame shift deletion in the gene and profound reduction of *KPTN* at both mRNA and protein
494 levels (Supplementary Figure 9C, 9D). The primers (P-Fw and P-Rv) used for analyzing the
495 CRISPR editing as indicated. (B) The same strategy was used for *RGS19* targeting, which
496 resulted in a 130bp frame shift deletion in the gene, and reduction of mRNA and protein
497 (Supplementary Figure 9C, 9D). (C) Reduced triglyceride and cholesterol levels in knockout
498 (KO) cell lines were detected by colorimetric method and APOB100 secretion was measured
499 by human APOB100 Elisa (n=6). Triglyceride, cholesterol and APOB100 levels were
500 normalized to total protein and compared between the KO and control (CTR) cell lines.

501

502 **Methods**

503 **Predictive models of nine tissues based on two reference panels**

504 We adopted the existing predictive models trained using EpiXcan pipeline by Zhang et al.¹,
505 including models of atherosclerotic aortic wall (AOR), atherosclerotic-lesion-free internal
506 mammary artery (MAM), liver (LIV), blood (BLD), subcutaneous fat (SF), visceral abdominal
507 fat (VAF) and skeletal muscle (SKLM) based on the genetics-of-gene-expression panel
508 STARNET (The Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task)², and
509 of AOR, LIV, BLD, SF, VAF and SKLM based on GTEx (Genotype-Tissue Expression)³.

510 Arterial wall coronary (COR) and tibial artery (TIB), datasets were only available in
511 the GTEx panel. So, we established predictive models for these two tissues using EpiXcan
512 pipeline as has been done for other models before¹. In brief, we firstly filtered the genotype
513 and expression data of COR and TIB from GTEx v7. Variants with call rate < 0.95, minor
514 allele frequency (MAF) < 0.01, and Hardy Weinberg equilibrium (HWE) < 1e-6 were removed.
515 For expression, we used quality-controlled data and performed sample-level quantile
516 normalization, and gene-level inverse quantile normalization using preprocess codes of
517 PredicDB pipeline. Samples were restrained to the European ethnicity. We then calculated SNP
518 priors by using hierarchical Bayesian model (qtlBHM)⁴ that jointly analyzed epigenome
519 annotations of aorta derived from Roadmap Epigenomics Mapping Consortium (REMC)⁵, and
520 eQTL statistics. The SNP priors (Supplementary Table 2), genotype data and expression data
521 were jointly applied to 10-fold cross-validated weighted elastic-net to train predicting models
522 by deploying EpiXcan pipeline¹.

523 Both STARNET- and GTEx-based models were filtered by cross-validated prediction
524 $R^2 > 0.01$. The summary statistics of sample sizes used for training models and the transcript
525 numbers of genes covered by each predicting models are shown in Supplementary Table 1.

526 **Genotype cohorts**

527 For the discovery cohort, individual level genotyping data were collected from ten genome-
528 wide associations studies (GWAS) of coronary artery disease (CAD), a subset of
529 CARDIoGRAMplusC4D, including the German Myocardial Infarction Family Studies
530 (GerMIFS) I-VII⁶⁻¹², Wellcome Trust Case Control Consortium (WTCCC)¹³, LURIC study¹⁴
531 and Myocardial Infarction Genetics Consortium (MIGen)¹⁵. We used a part of individual-level
532 data from UK Biobank (UKB) as the replication cohort¹⁶, by extracting 20,310 CAD cases
533 according to hospital episodes or death registries as reported, and randomly selected 25,000
534 non-CAD UKB participants as controls. The detailed information about selection criteria of
535 case and control were described at elsewhere¹². In total, genotyping data of 37,997 cases and
536 42,854 controls were included in our transcriptome-wide association studies (TWAS) of CAD
537 (Supplementary Table 3). The preprocessing steps of genotyping data are as previously¹².

538 **Transcriptome wide association analysis**

539 We applied predictive models to the eleven genotype cohorts to impute individual-level
540 expression profiles of nine tissues, and performed transcriptome-wide association analysis
541 between imputed expression and CAD. To test the reproducibility of TWAS results, we
542 performed two types of validating tests: within and between two reference-based models.
543 Firstly, we used ten GWAS cohorts as testing set and UKB as the validating set to test
544 reproducibility within STARNET- and GTEx-based models respectively. Secondly, we
545 compared the consistency of results between STARNET- and GTEx-based models of the six
546 overlapping tissues using all genotype data.

547 **Co-expression network for lncRNA**

548 We used RNA-seq data of STARNET² to calculate expression correlations between long non-
549 coding RNA (lncRNA) genes and protein coding genes in seven tissues. Co-expression pairs
550 with absolute Pearson correlation coefficient larger than 0.4 were considered to be significant.
551 The co-expression network was displayed by cytoscape¹⁷.

552 **Colocalization of the eQTL and GWAS signals**

553 Colocalization analysis was performed using COLOC, a Bayesian statistical methodology that
554 takes GWAS and eQTL data as inputs, and tests the posterior probabilities (PP4) of shared
555 casual variant for each locus¹⁸. The summary statistics of GWAS meta-analysis were obtained
556 from CARDIoGRAMplusC4D Consortium¹¹, and the eQTL data of nine tissues from
557 STARNET² and GTEx³ respectively.

558 **Annotation of novel risk genes**

559 Over 200 CAD loci were identified by GWAS^{19,20}. We used MAGMA²¹ to annotate the 114
560 TWAS genes and observed that 96 genes resided within $\pm 1\text{Mb}$ around known CAD loci
561 whereas 18 genes (novel loci) were located outside known GWAS risk loci, i.e. they were
562 novel genes (Supplementary Table 6).

563 **Gene set enrichment analyses**

564 Pathway enrichment analysis was carried out using ClueGO (v2.5.2)²², a plugin of cytoscape¹⁷,
565 based on collated gene sets from public databases including GO²³, KEGG²⁴, Reactome²⁵, and
566 WikiPathways²⁶. Gene sets with false discovery rate (FDR) by right-sided hypergeometric test
567 less than 0.05 were considered to be significant.

568 Furthermore, we also studied the diseases or traits associated with risk genes by
569 performing disease enrichment analysis based on DisGeNET²⁷, the largest publicly available
570 datasets of genes and variants association of human diseases. FDR < 0.05 was used for
571 thresholding.

572 **Rare damaging variants association analysis**

573 To investigate association of damaging variants in TWAS genes with CAD, we used whole
574 exome sequencing (WES) data of 200,632 participants from UKB²⁸. The WES data was
575 processed following the Functional Equivalence (FE) protocol. We performed quality control
576 on the WES data by filtering variants with calling rate < 0.9, variants with HWE < 1e-6. For
577 the relevant traits, besides CAD, we considered several risk factors of the disease, including
578 body mass index (BMI), diabetes, hypertension, levels of low density lipoproteins (LDL), high
579 density lipoproteins (HDL), apolipoprotein A (APOA), apolipoprotein B (APOB),
580 Lipoprotein(a) (LPA), total cholesterol (TC) and triglycerides (TG)), as well as inflammation
581 related factors (C-reactive protein (CRP), lymphocyte count (Lymphocyte), monocyte count
582 (Monocyte) and neutrophil count (Neutrophil).

583 We defined damaging mutations as i) rare mutations with MAF < 0.01; ii) annotated
584 into following one of the 3 classes: loss-of-function (LoF) (stop-gained, splice site disrupting,
585 or frameshift variants), variants annotated as the pathogenic in ClinVar²⁹, or missense variants
586 predicted to be damaging by one of five computer prediction algorithms (LRT score,
587 MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2 HumVar, and SIFT). The Ensembl Variant
588 Effect Predictor (VEP)³⁰ and its plugin loftee³¹, and annotation databases dbNSFP 4.1a³² and
589 ClinVar (GRCh38)²⁹ were used for annotating damaging mutations.

590 For each analysis, samples were classified into carriers or noncarriers of the gene's
591 damaging mutations. For binary traits, we used Fisher's exact test to check if there was

592 incidences difference of mutation carrying between case and controls. For the quantitative traits,
593 we used linear regression model with adjustments of sex, first five principal components, and
594 lipid medication status to investigate the associations between mutation carrying status and
595 traits. We used nominal significance threshold ($P < 0.05$), given that coding variants are rather
596 rare, and the case-control sample sizes were not balanced which might increase false negative
597 rate. We used nominal significance threshold $P < 0.05$, because, at one hand, the case-control
598 size was not balanced which might increase false negative rate, at the other hand, it's an
599 exploratory trial to investigate the potential biological relevance of TWAS genes.

600 **Association of variants resided in novel genes with lipid traits**

601 For 18 novel risk genes, we performed association analysis for variants located in novel gene
602 loci (± 1 Mbase) with lipid traits using genotyping data of UKB. The lipid traits include levels
603 of LDL, HDL, APOA, APOB, LPA, TC and TG. The variants were filtered by $MAF > 0.01$,
604 and imputation info score > 0.4 . The association test was performed using PLINK2³³ with
605 adjustment of sex, first five principal components, and lipid medication status. The lead
606 variants residing in gene loci with P value less than $4.0e-4$ ($0.05/18$ risk genes * 7 lipid traits)
607 were considered to be significant (Supplementary Table 11).

608 **The Hybrid Mouse Diversity Panel (HMDP)**

609 The Hybrid Mouse Diversity Panel (HMDP) is a set of 105 well-characterized inbred mouse
610 strains on a 50% C57BL/6J genetic background³⁴. To specifically study atherosclerosis in the
611 HMDP, transgene implementation of human APOE-Leiden and cholestryl ester transfer
612 protein was performed, promoting distinct atherosclerotic lesion formation³⁵. A Western diet
613 containing 1% cholesterol was fed for 16 weeks. Subsequently, gene expression was quantified
614 in aorta and liver of these mice and lesion size was assessed in the proximal aorta using oil red

615 O staining. Other 14 related traits were measured too, including liver fibrosed area, body
616 weight, total cholesterol, VLDL (very low-density lipoprotein) + LDL, HDL, TGs, unesterified
617 cholesterol, free fatty acid, IL-1b, IL-6, TNFa, MCP-1, and M-CSF. From HMDP, we extracted
618 significant association pairs between TWAS genes and 15 risk traits by applying significance
619 P < 0.05.

620 **Experimental validation of *KPTN* and *RGS19* in human cells**

621 To knock down *KPTN* and *RGS19*, two sgRNAs targeting shared exons of all transcription
622 isoforms were delivered by lentivirus into a Cas9-expression huh7, a human hepatoma cell line.
623 Exon 4 of *KPTN* and exon 5 of *RGS19* were targeted by a dual CRISPR strategy to create a
624 40bp and 130bp frame shift deletion, respectively. SgRNAs were carried by Lenti-Guide-Puro
625 vector (addgene, #52963) and infected cells were treated with 10ug/ml puromycin treatment
626 for 3 days to eliminate the negative cell. Positive targeted cells were expanded in culture and
627 passaged for assays. Cells for measurement of secretive triglycerides, cholesterol and
628 APOB100 were cultured for 16 hours in serum-free medium. Medium triglycerides and
629 cholesterol were enriched for five times by vacuum centrifuge and measured with colorimetric
630 kits, triglyceride (cobas) and CHOL2 (cobas), respectively. The amount of medium APOB100
631 was measured with an ELISA kit (MABTECH).

632 **Methods References**

633 1. Zhang, W. *et al.* Integrative transcriptome imputation reveals tissue-specific and
634 shared biological mechanisms mediating susceptibility to complex traits. *Nat. Commun.* **10**, 1–13 (2019).

635 2. Franzén, O. *et al.* Cardiometabolic risk loci share downstream cis- and trans-gene
636 regulation across tissues and diseases. *Science* (80-.). **353**, 827–830 (2016).

637 3. Aguet, F. *et al.* Genetic effects on gene expression across human tissues. *Nature* **550**,

639 204–213 (2017).

640 4. Li, Y. I. *et al.* RNA splicing is a primary link between genetic variation and disease.

641 *Science* (80-.). **352**, 600–604 (2016).

642 5. Bernstein, B. E. *et al.* The NIH roadmap epigenomics mapping consortium. *Nature Biotechnology* vol. 28 1045–1048 (2010).

643

644 6. Samani, N. J. *et al.* Genomewide association analysis of coronary artery disease. *N. Engl. J. Med.* **357**, 443–453 (2007).

645

646 7. Erdmann, J. *et al.* New susceptibility locus for coronary artery disease on chromosome

647 3q22.3. *Nat. Genet.* **41**, 280–282 (2009).

648 8. Erdmann, J. *et al.* Genome-wide association study identifies a new locus for coronary

649 artery disease on chromosome 10p11.23. *Eur. Heart J.* **32**, 158–168 (2011).

650 9. Nikpay, M. *et al.* A comprehensive 1000 Genomes-based genome-wide association

651 meta-analysis of coronary artery disease. *Nat. Genet.* **47**, 1121–1130 (2015).

652 10. Stitziel, N. O. *et al.* Inactivating mutations in NPC1L1 and protection from coronary

653 heart disease. *N. Engl. J. Med.* **371**, 2072–2082 (2014).

654 11. Nelson, C. P. *et al.* Association analyses based on false discovery rate implicate new

655 loci for coronary artery disease. *Nat. Genet.* **49**, 1385–1391 (2017).

656 12. Li, L., Pang, S., Zeng, L., Güldener, U. & Schunkert, H. Genetically determined

657 intelligence and coronary artery disease risk. *Clin. Res. Cardiol.* 1–9 (2020)

658 doi:10.1007/s00392-020-01721-x.

659 13. Burton, P. R. *et al.* Genome-wide association study of 14,000 cases of seven common

660 diseases and 3,000 shared controls. *Nature* **447**, 661–678 (2007).

661 14. Winkelmann, B. R. *et al.* Rationale and design of the LURIC study - A resource for

662 functional genomics, pharmacogenomics and long-term prognosis of cardiovascular

663 disease. *Pharmacogenomics* **2**, (2001).

664 15. Anderson, C. D. *et al.* Genome-wide association of early-onset myocardial infarction
665 with single nucleotide polymorphisms and copy number variants. *Nat. Genet.* **478**,
666 103–109 (2015).

667 16. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data.
668 *Nature* **562**, 203–209 (2018).

669 17. Kohl, M., Wiese, S. & Warscheid, B. Cytoscape: software for visualization and
670 analysis of biological networks. *Methods Mol. Biol.* **696**, 291–303 (2011).

671 18. Giambartolomei, C. *et al.* Bayesian Test for Colocalisation between Pairs of Genetic
672 Association Studies Using Summary Statistics. *PLoS Genet.* **10**, (2014).

673 19. Erdmann, J., Kessler, T., Munoz Venegas, L. & Schunkert, H. A decade of genome-
674 wide association studies for coronary artery disease: The challenges ahead.
675 *Cardiovascular Research* vol. 114 1241–1257 (2018).

676 20. Koyama, S. *et al.* Population-specific and trans-ancestry genome-wide analyses
677 identify distinct and shared genetic risk loci for coronary artery disease. *Nat. Genet.*
678 **52**, 1169–1177 (2020).

679 21. De Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized
680 Gene-Set Analysis of GWAS Data. *PLoS Comput Biol* **11**, 1004219 (2015).

681 22. Bindea, G. *et al.* ClueGO: A Cytoscape plug-in to decipher functionally grouped gene
682 ontology and pathway annotation networks. *Bioinformatics* **25**, 1091–1093 (2009).

683 23. Harris, M. A. *et al.* The Gene Oncology (GO) database and informatics resource.
684 *Nucleic Acids Res.* **32**, D258–D261 (2004).

685 24. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic
686 Acids Research* vol. 28 27–30 (2000).

687 25. Croft, D. *et al.* Reactome: A database of reactions, pathways and biological processes.
688 *Nucleic Acids Res.* **39**, D691–D697 (2011).

689 26. Slenter, D. N. *et al.* WikiPathways: A multifaceted pathway database bridging
690 metabolomics to other omics research. *Nucleic Acids Res.* **46**, D661–D667 (2018).

691 27. Piñero, J. *et al.* The DisGeNET knowledge platform for disease genomics: 2019
692 update. *Nucleic Acids Res.* **48**, D845–D855 (2020).

693 28. Van Hout, C. V. *et al.* Exome sequencing and characterization of 49,960 individuals in
694 the UK Biobank. *Nature* **586**, 749–756 (2020).

695 29. Landrum, M. J. *et al.* ClinVar: improvements to accessing data. *Nucleic Acids Res.* **48**,
696 835–844 (2019).

697 30. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol.* **17**, (2016).

698 31. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation
699 in 141,456 humans. *Nature* **581**, 434–443 (2020).

700 32. Dong, C. *et al.* Comparison and integration of deleteriousness prediction methods for
701 nonsynonymous SNVs in whole exome sequencing studies. *Hum. Mol. Genet.* **24**,
702 2125–2137 (2015).

703 33. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and
704 richer datasets. *Gigascience* **4**, 7 (2015).

705 34. Lusis, A. J. *et al.* The hybrid mouse diversity panel: A resource for systems genetics
706 analyses of metabolic and cardiovascular traits. *Journal of Lipid Research* vol. 57
707 925–942 (2016).

708 35. Bennett, B. J. *et al.* Genetic Architecture of Atherosclerosis in Mice: A Systems
709 Genetics Analysis of Common Inbred Strains. *PLoS Genet.* **11**, 1005711 (2015).

710

711

712 **Author Contributions**

713 H.S., L.L., Z.C., designed the study and wrote the manuscript. L.L. ran analyses. Z.C. and
714 A.S. performed experiments. M.V.S, U.G., S.C.P., S.K., C.P. A.J.L., T.K., A.R., J.A., J.G.,
715 K.H., J.C.K. and J.M.B. provided research data, technical support and gave conceptual
716 advice.

717 **Competing Interest Declaration**

718 The authors declare that there is no known competing financial interests or personal
719 relationships that could have appeared to influence the work reported in this paper.

720 **Source of Funding**

721 The work was funded by the German Federal Ministry of Education and Research (BMBF)
722 within the framework of ERA-NET on Cardiovascular Disease (Druggable-MI-genes:
723 01KL1802), within the scheme of target validation (BlockCAD: 16GW0198K), and within
724 the framework of the e:Med research and funding concept (AbCD-Net: 01ZX1706C). As a
725 Co-applicant of the British Heart Foundation (BHF)/German Centre of Cardiovascular
726 Research (DZHK)-collaboration (DZHK-BHF: 81X2600522) and the Leducq Foundation for
727 Cardiovascular Research (PlaqOmics: 18CVD02), we gratefully acknowledge their funding.
728 Additional support has been received from the German Research Foundation (DFG) as part
729 of the Sonderforschungsbereich SFB 1123 (B02) and the Sonderforschungsbereich SFB TRR
730 267 (B05). Further, we kindly acknowledge the support of the Bavarian State Ministry of
731 Health and Care who funded this work with DigiMed Bayern (grant No: DMB-1805-0001)
732 within its Masterplan “Bayern Digital II” and of the German Federal Ministry of Economics
733 and Energy in its scheme of ModulMax (grant No: ZF4590201BA8).

734 **Tools and Data**

735 EpiXcan pipeline: <https://bitbucket.org/roussoslab/epixcan/src/master/>, and predictive
736 models based on STARNET and GTEx databases: <http://predictdb.org/>

737 PrediXcan pipeline: <https://github.com/hakyim/PrediXcan>.

738 qtlBHM: <https://github.com/rajanil/qtlBHM>

739 STARNET database: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001203.v1.p1. Project ID: 13585.

740 GTEx database: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2. Project ID: 20848.

741 UK Biobank: <https://www.ukbiobank.ac.uk/>. Project ID: 25214

742 MAGMA: <https://ctg.cnrc.nl/software/magma>

743 R package for colocalization analysis, coloc: <https://cran.r-project.org/web/packages/coloc/vignettes/vignette.html>

744 DisGeNET: <https://www.disgenet.org/>

745 CARDIoGRAMplusC4D Consortium: <http://www.cardiogramplusc4d.org/>

746

747

748

749

750

751 **Extended data**

752 **Supplementary Results**

753 We tested the reproducibility of the STARNET- and GTEx-based predictive models
754 by performing TWAS analyses in ten GWAS studies of CAD covering 17,687 CAD patients
755 and 17,854 controls¹²⁻²¹, which provided individual level data and partially overlap with the
756 CARDIoGRAMplusC4D meta-analysis, followed by replication analyses on genotyping data
757 of UK Biobank (UKB)²², from which we extracted 20,310 CAD patients and 25,000 controls
758 (Supplementary Table 3). From STARNET-based models, we identified 66 gene-tissue
759 association pairs reaching Bonferroni-corrected significance ($P < 3.85e-6$) in the ten
760 CARDIoGRAMplusC4D cohorts. Of these, 19 also reached Bonferroni-corrected
761 significance in the UKB data, which was significantly more than expected by chance
762 (binomial test $P = 0.00075$), and 50 of 66 gene-tissue association pairs had directionally
763 consistent effects (binomial test $P = 3.33e-5$). We also found strong correlation of the effect
764 sizes ($\rho = 0.74$; $P = 1.3e-12$; Supplementary Fig. 1A) indicating good overall reproducibility
765 of the STARNET-based models.

766 From the GTEx-based models, 47 gene-tissue pairs reached Bonferroni-corrected
767 significance ($P < 3.85e-6$) in the ten CARDIoGRAMplusC4D cohorts, whereof 14 were
768 significant also in UKB (binomial test $P = 0.0079$). Like the STARNET-based models, 39
769 of 44 significant gene-tissue association pairs had consistent direction of effects with a
770 Pearson's coefficient of 0.75 ($P = 1.2e-9$; Supplementary Fig. 1B). The slightly lower
771 numbers of significant gene-tissue association pairs found in the GTEx models may be
772 explained in that predicting models were based on: i) smaller numbers of genotype-
773 expression pairs, ii) unlike STARNET, GTEx consist of apparently healthy tissues and iii)
774 STARNET is a specific collection of CAD patients.

775 Next, we tested consistency of TWAS results between two reference-based models by
776 comparing the results of a meta-analysis on all 11 genotyping data sets. We observed an
777 average of 62% overlapping genes (Supplementary Table 1) and significant correlations of
778 effect sizes (average Pearson's coefficient $\rho = 0.72$; $P < 1e-10$; Supplementary Fig. 2). In the
779 STARNET-based models, we identified 82 genes representing 129 gene-tissue pairs across
780 seven tissues ($P < 3.85e-6$). In the GTEx models, we identified 66 genes representing 106
781 gene-tissue pairs across eight tissues ($P < 3.85e-6$). A total of 42 gene-tissue pairs were
782 significant in both the STARNET- and GTEx-based models (Supplementary Fig. 3A). The
783 overlapping genes were linearly consistent in both effect size (Pearson's coefficient $\rho = 0.99$;
784 $P < 2.2e-16$) and $-\log_{10}P$ (Pearson's coefficient $\rho = 0.82$; $P < 4e-11$) (Supplementary Fig. 3B).
785 Overall, these results suggest, on the one hand, reasonable consistency between the two
786 independent panels and, on the other hand, evidence for capturing complementary expression
787 quantitative signals.

788

789 **Supplementary Tables**

790 Supplementary Table 1. Statistics of nine tissues' predictive models.

791 Supplementary Table 2. SNP priors of COR and TIB tissues.

792 Supplementary Table 3. 11 Genotype cohorts.

793 Supplementary Table 4. 114 TWAS genes list.

794 Supplementary Table 5. 53 TWAS genes have strong evidence of colocalized signals
795 between GWAS and eQTL (PP4 > 0.55).

796 Supplementary Table 6. 96 known and 18 novel genes annotated by GWAS risk loci of CAD.

797 Supplementary Table 7. TWAS genes are enriched to CAD or related risk traits based on
798 DisGeNET.

799 Supplementary Table 8. Pathways enriched by TWAS genes.

800 Supplementary Table 9. Association of TWAS genes' damaging mutation with CAD and its
801 binary risk traits.

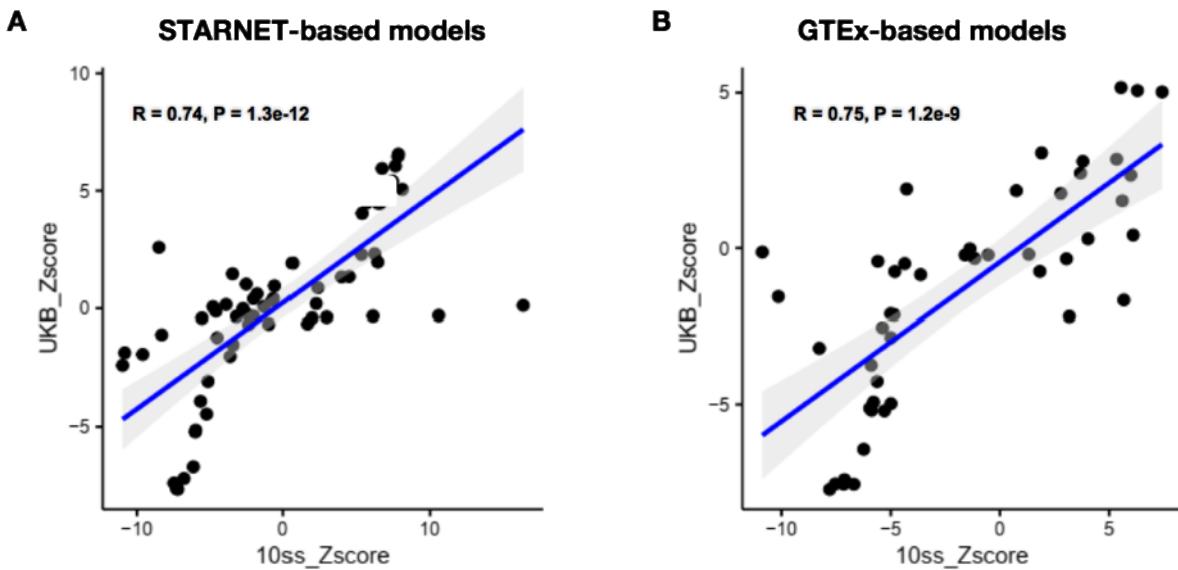
802 Supplementary Table 10. Association of TWAS genes' damaging mutation with quantitative
803 risk traits of CAD.

804 Supplementary Table 11. Lead variants resided in the regions of novel genes were associated
805 with lipid traits in human genotype data.

806 Supplementary Table 12. Expression-trait association statistics in mouse atherosclerosis
807 model from HMDP.

808 Supplementary Table 13. Oligo sequences for gene editing.

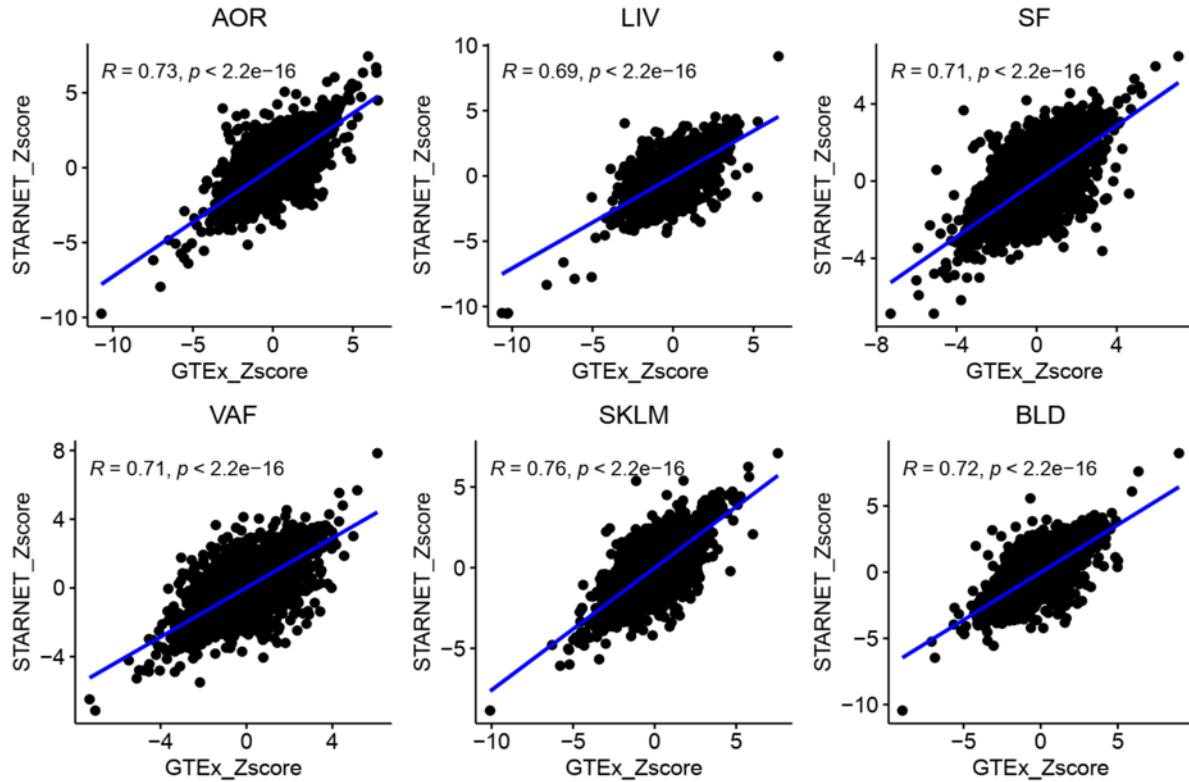
809 **Supplementary Figures**



810

811 **Supplementary Fig. 1 Reproducibility of TWAS results within two reference models.** A)
812 Reproducibility of STARNET-based models. B) Reproducibility of GTEx-based models. Ten
813 CARDIoGRAMplusC4D cohorts (10ss) were used as the testing set, genotypes from UK
814 Biobank (UKB) were the validating set.

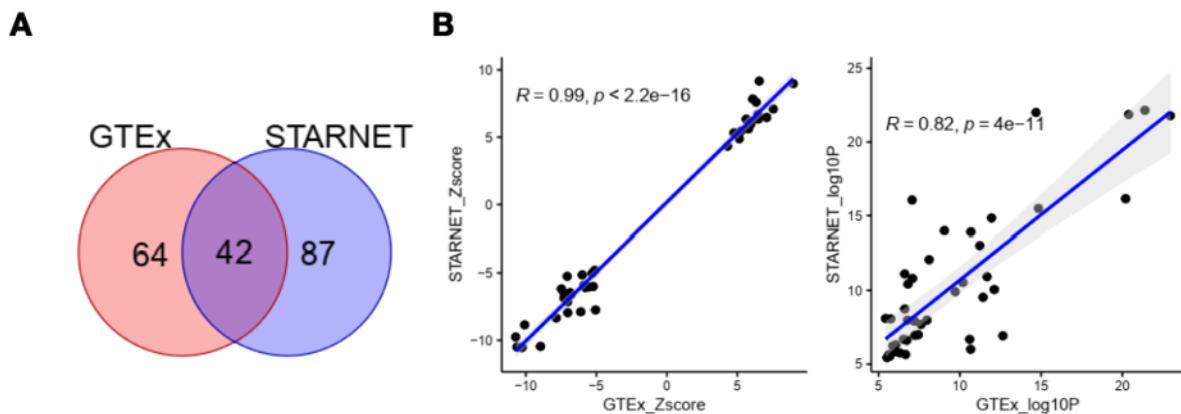
815



816

817 **Supplementary Fig. 2 Associations of predicted expressions with CAD are consistent**
818 **across tissues between STARNET- and GTEX-based models.**

819

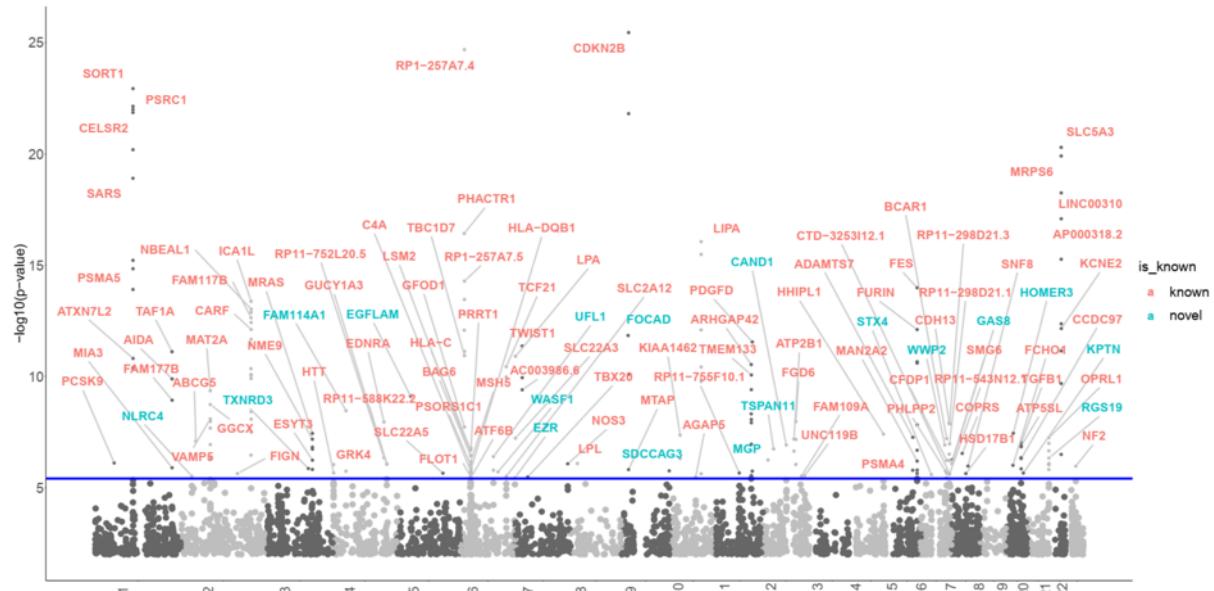


820

821 **Supplementary Fig. 3 Comparation of TWAS results between two reference models. A)**
822 Venn diagram of transcriptome-wide significant gene-tissue pairs based on the two reference
823 models. There are 42 overlapping gene-tissue pairs (34 genes). B) The effect sizes (left) and

824 P values (right) of overlapping genes were consistent between the two reference-based
825 models.

826

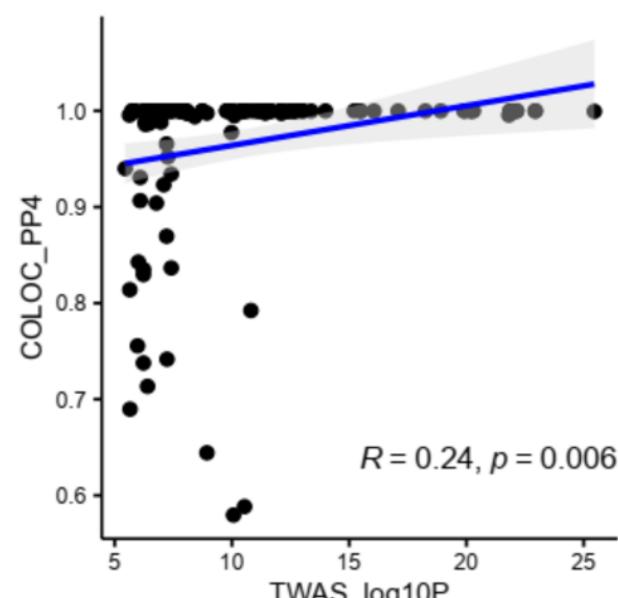


827

828 Supplementary Fig. 4 Manhattan plot of the transcriptome wide association study

829 (TWAS). 114 TWAS genes are highlighted. The blue line marks $P = 3.85 \times 10^{-6}$. Each point
830 corresponds to an association test between a gene-tissue pair. TWAS genes residing in known
831 GWAS loci were defined as known (red dots), otherwise defined as novel (blue dots).

832

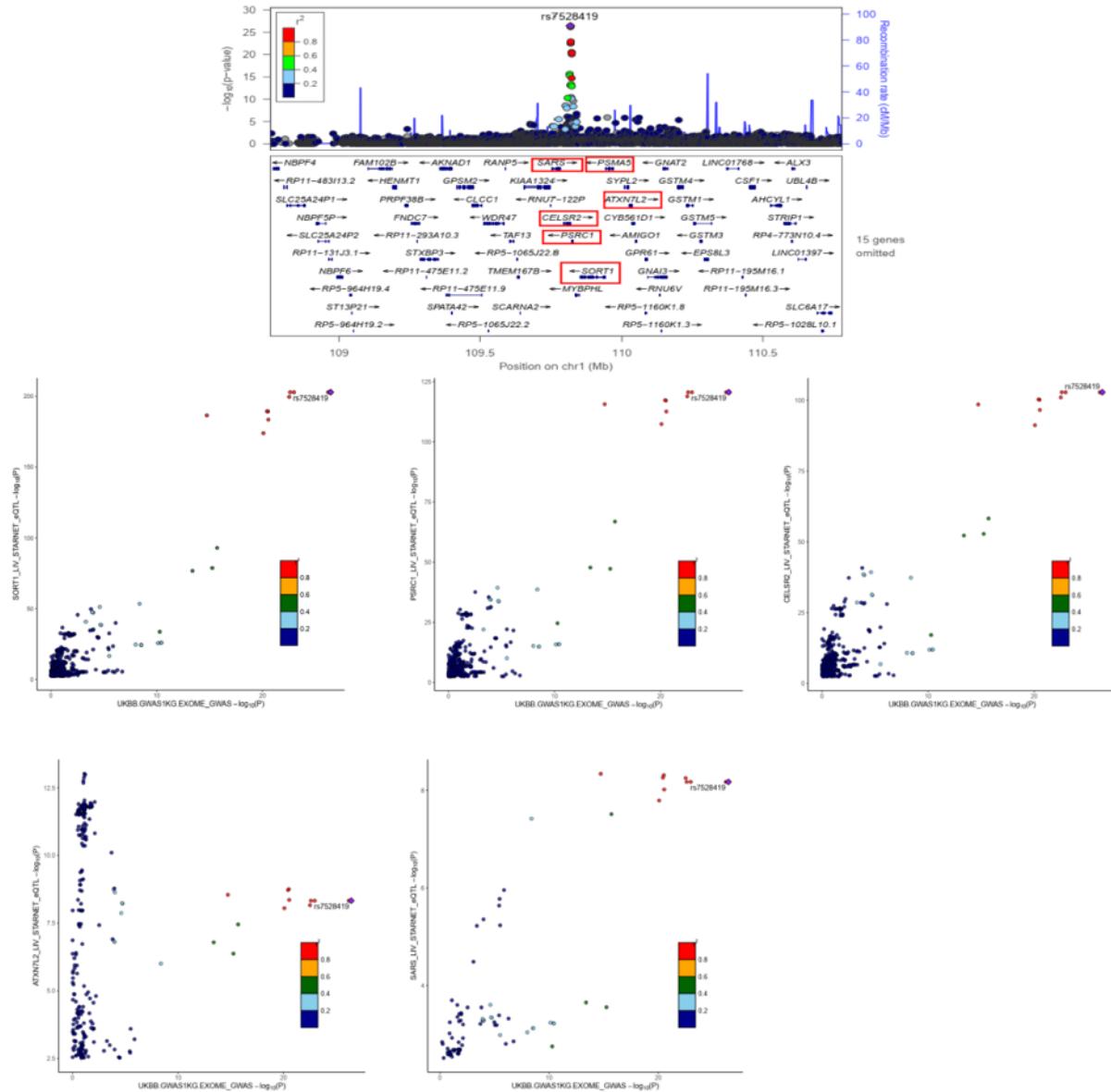


833

834 **Supplementary Fig. 5 Positive correlation between TWAS and colocalization statistics.**

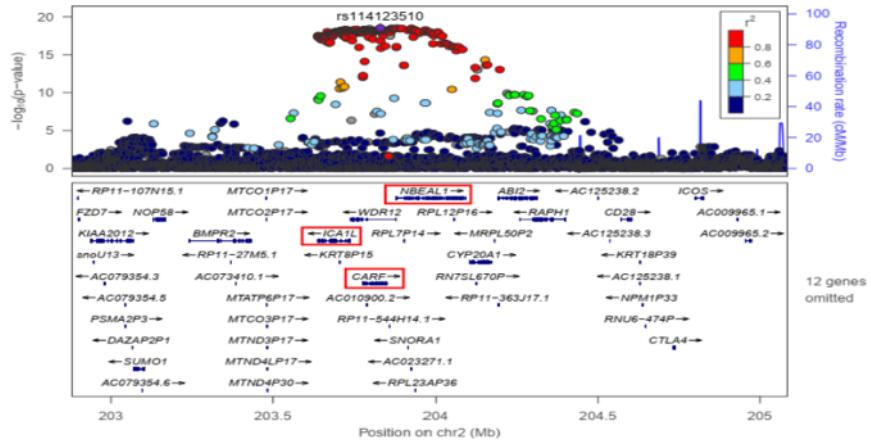
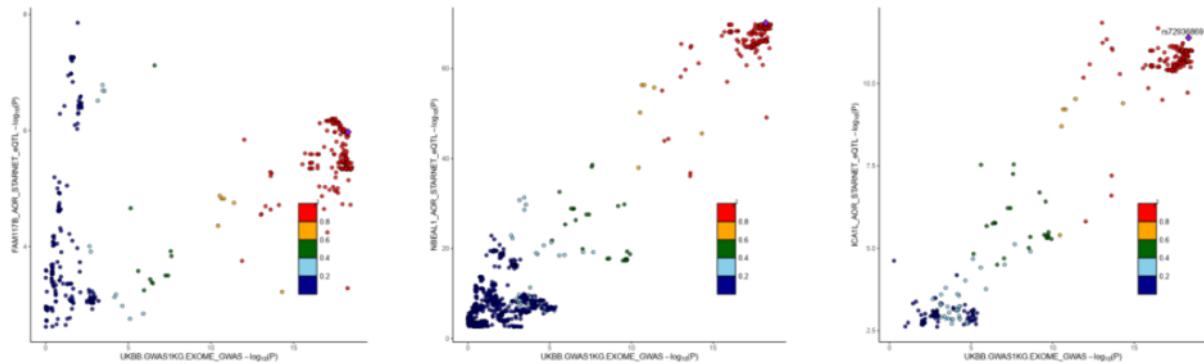
835 The log10P statistics of TWAS genes were positively correlated with PP4 (the posterior
836 probabilities) statistics of colocalization analysis. Most TWAS genes have shared causal
837 variants between GWAS and eQTL signals as their PP4 approaches 1.

838



839

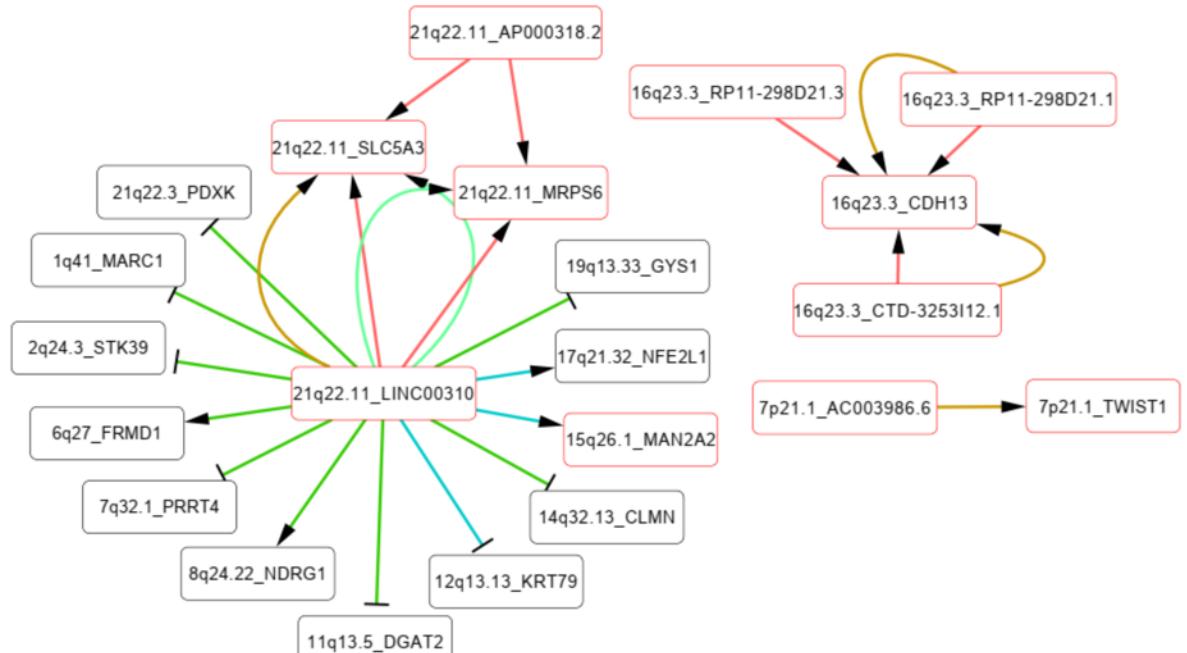
840 **Supplementary Fig. 6 Colocalization signals in liver tissue at 1p13.3.**



841

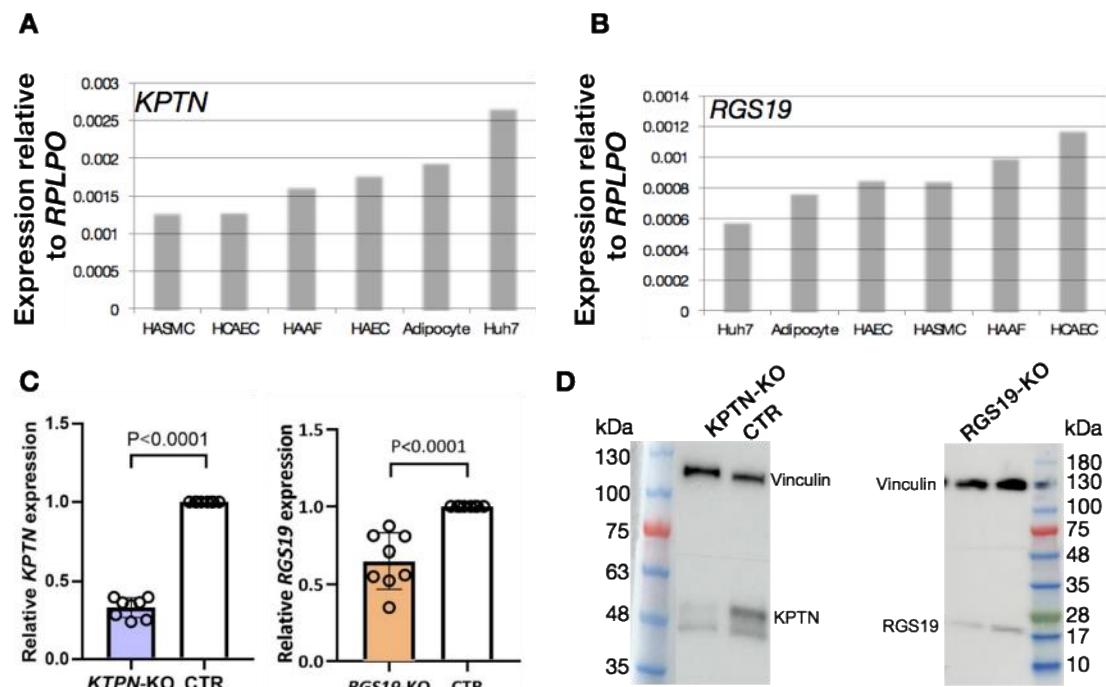
842 Supplementary Fig. 7 Colocalization signals in aorta tissue at 2p33.2.

843



844

845 **Supplementary Fig. 8 Co-expression network related to lncRNA genes.** Coding genes
846 with co-expression relationship with TWAS lncRNA genes are linked by arrow or T-line.
847 Arrow suggests positive co-expression, and T-line suggests negative. TWAS genes are
848 indicated in red frame. Tissues of gene co-expression are showed in difference edge colors as
849 indicated.
850



851
852 **Supplementary Fig. 9** *KPTN* (A) and *RGS19* (B) expressions in multiple primary cells and
853 cell lines. HASMC, human aorta smooth muscle cell; HCAEC, human coronary artery
854 endothelium cell; HAAF, human aorta artery fibroblast; HAEC, human aorta endothelium
855 cell and huh7, a human hepatoma cell line. (C) RNA levels of *KPTN* and *RGS19* were
856 dramatically reduced in corresponding knockout lines (KO) in comparison to the control cell
857 line (CTR), n=7. (D) The Western Blot image displays *KPTN* and *RGS19* reduction at protein
858 level. Vinculin, 116kDa; *KPTN*, 48kDa; *RGS19*, 25kDa.