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Abstract  

CoverageMaster (CoM) is a Copy Number Variation (CNV) calling algorithm based on 

depth-of-coverage maps designed to detect CNVs of any size in exome (WES) and genome 

(WGS) data. The core of the algorithm is the compression of sequencing coverage data in a 

multiscale Wavelet space and the analysis through an iterative Hidden Markov Model 

(HMM). CoM processes WES and WGS data at nucleotide scale resolution and accurately 

detect and visualize full size range CNVs, including single or partial exon deletions and 

duplications. The results obtained with this approach support the possibility for coverage-

based CNV callers to replace probe-based methods such array CGH and MLPA in the near 

future.  

 

Introduction 

Copy number variation (CNV) is the most frequent structural alteration in the human genome. 

Aberrant numbers of copies of specific genes, exons or, in general, genomic regions are 

known to be implicated in pathogenic conditions such as Mendelian diseases and cancer 1-4. 

Hence, identification of these deletion and amplification events is a primary purpose in 

medical genetics research. In clinical diagnostics, the identification of rare, potentially 

causative CNVs in a patient with a suspected genetic disorder is a long-sought objective. 

However, the discovery of such mutations that can vary in size and copy number is a 

challenging task. Currently the most commonly used methodologies to detect clinically 
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relevant CNVs rely on microarray based technologies. Array comparative genomic 

hybridization (array CGH) offers an efficient method to detect CNVs and micro-CNVs (5kb < 

size < 10Mb) in the whole genome, but its resolution is not covering the lower size spectrum. 

Multiplex ligation-dependent probe amplification (MLPA) is the current golden standard to 

detect exon-sized CNVs but this technology can cover few exons per assay (low throughput) 

and its application is limited to a small number of genes 5.  

In recent years, the development of next generation sequencing (NGS) technologies of short 

reads has provided a standardized way for accurate coding variant analyses through whole 

genome sequencing (WGS) and whole exome sequencing (WES). Remarkably, this 

technology provides the coverage per nucleotide of clinically relevant regions of the genome. 

Whereas WGS allows for a more comprehensive overview of the entire genome with uniform 

coverage6, the related sequencing costs and the computational infrastructures needed to 

process the raw data are still limiting its broad application in clinical practice7. On the other 

hand, WES is computationally less demanding and has reached such a high sensitivity and 

specificity in variant calling to eventually become a clinical standard. Currently, WES is 

widely used for diagnostic purposes in many medical genetics laboratories throughout the 

world.  

A wide range of detection algorithms have been developed to call CNVs from WGS and WES 

data. Read-depth based methods 8-10 are considered the most effective for accurate copy 

number prediction and exploit the fact that NGS generates raw data in the format of short 

reads11. These reads are mapped to a reference sequence and the coverage in a genomic region 

is calculated by counting the number of reads that align to this region. Depth-of-coverage 

(DoC) is then assumed to be proportional to the copy number of that region. In principle, DoC 

is sufficient for the detection of all clinically relevant CNVs, irrespectively of size and copy 

number, promoting WGS and WES as a robust and more inclusive alternative to 

complementary laboratory approaches such as array CGH or MLPA. 

Nevertheless, WES has technical issues that result in the generation of noisy data. First, the 

lack of continuity of the target regions and, second, the biases due to hybridization and 

sequencing processes complicate the procedure to standardize CNV detection11. As a result, 

current WES based detection methods suffer from limited resolution, high false positives and 

false negatives calls. 
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Here, we introduce CoverageMaster (CoM), a CNV calling algorithm based on depth-of-

coverage maps from aligned short sequence reads from WES or WGS. CNVs are inferred 

with Hidden Markov Models at multiscale nucleotide-like levels in the Wavelet reduced 

space, in comparison to existing methods that utilize fixed length windows or exon averages. 

This approach is designed to optimize the search for CNVs of different sizes. Working at 

nucleotide resolution, CoM provides the graphical representation of the predicted CNV in all 

genes of interest, and, optionally, a wig formatted file compatible with UCSC Genome 

Browser for detailed visualization of the normalized coverage on the target genes or regions 

in the genomic space. We propose CoverageMaster as a potential first-line diagnostic tool in 

research and clinical applications. 

Results 

CoverageMaster utilizes the representation of coverage signal ratio (case over control) in the 

reduced Wavelet approximation space to perform a multiscale analysis of aberrant coverage 

profiles, potentially underlying causative CNVs, at nucleotide resolution (Figure 1, see 

Methods). This approach is meant to explore a broad spectrum of CNV sizes and in particular 

deletions or duplications of < 5kb. At this scale, the experimental noise is caused on one hand 

by the particular technology used for sequencing and, for WES, DNA selection by 

hybridization. On the other hand, batch specific coverage distortions may occurs. Intuitively, 

the smaller the CNV the higher the chance that the call is a false positive. To overcome this 

problem, CoverageMaster exploits the fact that, as all other genomic variations, clinically 

relevant CNVs are rare (MAF<0.01%). Thus, it is reasonable to assume that such CNVs 

cannot be present in two or more independent unrelated individuals of the same batch. 

Following this basic principle, CoM utilizes a reference with the average coverage and 

standard deviation of 15-20 samples processed with the same technology (hybridization kit, 

reagents, sequencer). The reference provides the standard deviation per nucleotide from the 

expected coverage where coverage spikes are produced by reproducible experimental noise 

and/or recurrent CNVs. Eventually, matching CNVs in the test sample are then considered as 

frequent or false positives and finally discarded. Moreover, CoM pairwise compares the 

sample case with independent samples, used as controls, from the same batch. Spikes present 

in the test signal coverage and in one control sample are averaged out in the coverage ratio 

and consequently discarded.  
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In order to prove its efficiency, we tested CoverageMaster in various contexts of WES. All 

samples processed here were hybridized with Twist Core Exome + RefSeq Spike and 

sequenced with Illumina HSeq4000 or Novaseq. 

To demonstrate the performance of CoM in standard clinical analyses, we analyzed 12 

clinical samples and compared CoM CNVs calls to standard array CGH calls (see Methods). 

In order to provide a point of reference, we also included ExomeDepth (ED), a performant 

DoC-based CNV caller 10. In Figure 2a, the cumulative true positive values for CNVs 

detected by CoM and ED are reported. CoM calls coincide with almost all of the array CGH 

calls for each sample with the exception of some frequent benign variants discarded by CoM 

because they were present in most controls. In fact, when searching for CNVs with MAF<1%, 

CoM identifies all CNVs detected by array CGH, in contrast to ED that detect 80% of them 

(Figure 2b). This result demonstrates that CoM may replace array CGH in clinical diagnostic 

settings. 

To investigate the performance of CoM on small CNVs, given the lack of a standard test set 

for CNV detection of this size, we created a dataset of simulated WES data from 10 

individuals. Around 700 heterozygous duplications and deletions of 200, 500, 1000 and 5000 

base pairs were randomly introduced in the exonic regions of each sample (see Methods) and 

analyzed by CoM and ED. The results show that CoM achieves a total sensitivity of 90% as 

compared to 77% obtained by ED (Figure 2c) and an average precision of 41% for CoM 

versus 37% obtained by ED (an average of ~270 calls out of 18000 genes for both programs, 

precision is calculated considering half of the calls as false positives given there is no 

validation available). Most importantly, CoM can accurately detect deletions and duplications 

of (< 200bp) with sensitivity above 80%, when the corresponding percentage for ED is 40%. 

Notably, the multiscaling approach allows CoM to keep a similar performance along all size 

classes while ED rapidly decreases its performance with size reduction (Figure 2d).  

CoM has been mainly conceived as a diagnostic support tool for clinical genetics analysis. To 

provide a perspective of the broad capabilities of the algorithm, we report three examples of 

solved clinical cases. 

Patient 1 is a 20 years old male presenting with a congenital obesity of class III. WES analysis 

did not provide any suitable SNV or INDEL candidate variant on a panel of 48 genes for 

monogenic obesity (https://www.medigenome.ch/en/gene-panels/). On the same panel, CoM 

identified a heterozygous deletion of ~200kb in SH2B1 (Figure 3a). This deletion is known as 
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the chromosome 16p11.2 deletion syndrome [OMIM 613444] and is a common cause of 

congenital obesity. The CNV was subsequently confirmed by array CGH. 

Patient 2 is an 8 years old female child, diagnosed with drug-resistant epilepsy with febrile 

seizures. WES analysis did not provide any candidate variant on a panel of 478 genes related 

to epilepsy (Epilepsy MDG-1204.01, https://www.medigenome.ch/en/gene-panels/). CoM 

reported a heterozygous deletion of ~120kpb partially overlapping the last 10 exons of 

SCN1A (Figure 3b). The sodium channel 1A is associated with generalized epilepsy with 

febrile seizures, Type 2 [OMIM 604403]. Deletions in this gene are known to cause seizure 

disorders, ranging from early-onset isolated febrile seizures to generalized epilepsy12. 

Patient 3 is a 3 years old female child with a suspicion of spinal muscular atrophy. WES 

analysis and array CGH were negative but CoM identified a full exon 7 homozygous deletion 

of 112bp (Figure 4c). This deletion, which was confirmed by MLPA  and not detected by ED, 

is the most frequent CNV related to SMN1 induced muscular atrophy13 [SMA OMIM 

253400]; this deletion was therefore considered as the pathogenic cause of the phenotype of 

the patient by the clinicians. 

Discussion 

CoverageMaster is a NGS coverage based CNV calling algorithm designed to work at 

nucleotide resolution with WES or WGS data. The capacity to analyse a given coverage 

signal in different scale sizes, combined with the nowadays availability of numerous controls 

in standard clinical batches, enables the detection of multi-sized clinically relevant deletions 

or duplications and in particular the detection of the so far elusive small CNVs of < 5kb. We 

have proven the effectiveness of CoverageMaster in comparison to another excellent and 

broadly used in silico CNV caller, ExomeDepth. Performance wise, CoM takes 1h20min to 

process a panel of 4758 clinically relevant genes from OMIM and the Clinical Genomic 

Database (https://research.nhgri.nih.gov/CGD/) on a 16 cores machine with 32Gbyte of RAM. 

CoM demonstrated to be superior to ED in the detection of rare and small CNVs in simulated 

and clinical data and to be a valid and inexpensive alternative to MLPA and array CGH in 

clinical settings. 
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Materials and Methods 

The analyses reported in this study were performed on DNA processed by whole exome 

sequencing at the Health 2030 Genome Center (https://www.health2030genome.ch/) or 

Medigenome (www.medigenome.ch) using Twist Human Core Exome Kit (TWIST 

Biosciences, San Francisco, CA, USA); sequencing was performed on Illumina HiSeq4000 or 

Novaseq platforms. Array CGH and MLPA were performed in GeneSupport using Agilent 

SurePrint G3 Human 4x180K and SALSA MLPA Probemix P021 SMA (MRC Holland), 

respectively. 

Preprocessing and transformation of exome data 

CoverageMaster (CoM) uses DoC maps from aligned short sequence reads to estimate CNV 

events. To acquire the sequence reads, the mapping is done with the standard pipeline for 

whole exome or whole genome sequencing data based on GATK14, and the coverage at each 

nucleotide of the region of interest (ROI) is calculated and stored in tab separated COV files 

(format: chr nucleotide_position coverage) using samtools (samtools depth)15. Coverage files 

of a test/target plus one or more controls plus one reference coverage serve as input for the 

algorithm. The assumption is that control coverages are DoC maps of copy number neutral 

cases (diploid) or carrier of frequent CNVs in the ROI of interest. The reference set consists 

of a batch of coverage files from samples processed with the same technology (i.e. 

hybridization kit, reagents for library prep and sequencer) used to generate case and controls. 

First, the coverage per nucleotide per sample is normalized by the respective total number of 

reads. Then, mean and standard deviation of the normalized coverage values are computed 

over all the samples for each nucleotide. 

 Wavelet transform 

In a genomic region of � nucleotides, the coverage of test case and control can be represented 

as the discrete signals ���� and ����, respectively, where � is the nucleotide number 

corresponding to the genomic or exonic position in the exon space (the space where covered 

regions (i.e. exons) are “ligated” together). In the ideal case, the coverage ratio  � � �

�
 is a non-

periodic square waveform with up and down steps in correspondence of increased or 

decreased copy number, respectively. In order to diminish the noise induced by fast variations 
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of the signal and, at the same time, to reduce the computational burden, the coverage ratio is 

compressed in the nucleotide-like space using the Discrete Wavelet Transform (DWT) 

equipped with the Haar basis. At scale 	, the approximation and detail coefficients are 

�� , �� , ����, . . . , �� � 
������. The � � � � 2��approximation coefficients ��  are normalized to 

the median of the original signal and used for CNV analysis.  

Multiscale CNV detection 

The probability ������ of each � nucleotide-like positions of the sequence of approximation 

coefficients �� � ���	. . . �
�
��. . . �� to be in a normal (i.e. diploid), duplicated or deleted state 

� � � � �1, 

	
, �
	
� is defined at any scale 	 as a random variable with Gaussian distribution of 

mean � and standard deviation �����, where ����� is the sequence of approximation 

coefficients of the reference coverage in the �-coordinates of the 	-scaled nucleotide-like 

space. 

At scale 	, the indicator function (“trigger”) � � ����� �!������" # 1 identifies the locations 

of non diploid nucleotide-like positions and masks the rest of the signal. If no location is 

identified, the algorithm discards this region and processes the next one. 

Once the putative CNVs are identified, the Viterbi algorithm is then used to identify the most 

likely copy number state sequence $ � %�%	. . . %
%
��. . . %� of the compressed genomic 

region, based on the corresponding sequence of observations �� � ���	. . . �
�
��. . . ��. Masked 

observations �
  have a fixed diploid state %
=1.    

More formally, if &��'� represents the Viterbi probability that the underlying HMM is in copy 

number state ' after seeing the first � observations and passing through the most probable 

state sequence %�%	. . . %���, it can be shown that  

&��'� � �� ���&����(�)�������� , 

where &����(�is the previous Viterbi path probability from the previous nucleotide, )�� is the 

transition probability (here set to ��� � 5 � 10�� which is the probability of finding a 

duplication or a deletion in the human genome, calculated as the mean of the inclusive and 

stringent number of CNVs per nucleotide from 16)  and ������ is the observation probability 

given the state 'as defined above. 
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If no putative CNV is detected at this stage, the algorithm performs a multiscale analysis by 

repeating the HMM phase with the masked signal transformed at scale 	 , 1. Again, in 

absence of CNVs, the algorithm keeps decrementing 	 down to, if necessary, 	 � 0 (no 

compression). This is computationally possible because only the relevant unmasked regions 

are actually inspected. Otherwise, eventual putative CNVs are saved and the algorithm 

proceeds to the next region. 

Iteration over controls 

In case more control coverages are provided, eventual putative CNVs and relative masks are 

stored in a temporary buffer. Following the assumption that a rare causative CNV cannot be 

present in any control sample, CNVs are iteratively challenged with the Multiscale CNV 

detection algorithm against each control. 

Generation of simulated data 

Heterozygous deletions and duplications in randomly picked exonic regions have been 

inserted in samples BAM files using the library Pysam from Python. Briefly, a script selects a 

random exonic position (inter-exonic or across two or multiple exons) and, around that 

location, removes or duplicates half of the overlapping reads in the sample BAM files, 

respectively. Then coverage (COV) files are produced with samtools depth following the 

same protocol as for the normal samples and processed with CoM with standard parameters. 

Data availability 

CoverageMaster is available at https://github.com/fredsanto/coverageMaster. 
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Figure Legends 

Figure 1. CoverageMaster workflow 

CoM is based on depth-of-coverage maps from aligned short sequence reads from WES or 

WGS. The normalized values of the depth-of-coverage for each nucleotide position are 

calculated (Step 1). The ratio of the test to control coverage signal is compressed at a 

specified initial scale 	 by default in the nucleotide-like space using the Discrete Wavelet 

Transform (DWT) (Step 2). For the compressed signal, an indicator detects the potential non-

diploid nucleotide-like positions (Step 3). HMM is used to segment the compressed signal 

into regions of similar copy numbers and assign CNV states (Step 4). If no putative CNVs are 

identified, the process is repeated at scale 	 , 1 via “zooming” (Step 5).  

 

Figure 2. Array CGH comparison on clinical samples and CNV detection in simulated 

data 

Cumulative plots of number of calls (y-axis) detected by CoM (blue) and ED (red) and the 

number of CNVs found by array CGH (green) in 12 samples:  a) all calls are considered; b) 

only the rare CNVs (MAF<1%) are included, green and blue dots are overlapping; c) number 

and fraction of true calls detected by CoM (blue) and ED (red) in 10 samples where CNVs of 

various size were randomly introduced in exonic regions; d) number and fraction of true calls 

of detected CNVs stratified by size for CoM (blue) and ED (red). 

 

Figure 3. Examples of clinically relevant CNV identified by CoM. a) In green, the 

collapsed exon structure of the gene of interest, up or down blocks representing one exon. 

Coverage profiles in exon space of test sample, control and reference (color code in the 

legend) are represented in the second plot. For patient 1 (see text), the partial heterozygous 

deletion of 115kb in SCN1A is clearly visible in the exonic and genomic spaces. b) 

Heterozygous deletion encompassing SH2B1 detected in patient 2 (see text). Being in a 

region of repeated sequences (lower plot in the genomic space), the size of this deletion is not 

clearly ascertainable. c) Homozygous deletion of exon 7 in SMN1 in patient 3 clearly visible 

in the exonic and genomic spaces. It is worth noting that, in the genomic space, the coverage 
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profile seems to show two other exons with a drop in coverage. The control, dashed line in the 

plot above, shows the same profile indicating a fluctuation of the coverage in this region, 

likely independent from the number of copies. 
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Figure 1  
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Figure 2 
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Figure 3 
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