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Abstract

CoverageMaster (CoM) is a Copy Number Variation (CNV) calling agorithm based on
depth-of-coverage maps designed to detect CNV's of any size in exome (WES) and genome
(WGS) data. The core of the algorithm is the compression of sequencing coverage datain a
multiscale Wavelet space and the analysis through an iterative Hidden Markov Model
(HMM). CoM processes WES and WGS data at nucleotide scale resolution and accurately
detect and visualize full size range CNVs, including single or partial exon deletions and
duplications. The results obtained with this approach support the possibility for coverage-
based CNV callers to replace probe-based methods such array CGH and MLPA in the near
future.

Introduction

Copy number variation (CNV) is the most frequent structural alteration in the human genome.
Aberrant numbers of copies of specific genes, exons or, in genera, genomic regions are
known to be implicated in pathogenic conditions such as Mendelian diseases and cancer ™.
Hence, identification of these deletion and amplification events is a primary purpose in
medical genetics research. In clinica diagnogtics, the identification of rare, potentially
causative CNVs in a patient with a suspected genetic disorder is a long-sought objective.
However, the discovery of such mutations that can vary in size and copy number is a
challenging task. Currently the most commonly used methodologies to detect clinically
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relevant CNVs rely on microarray based technologies. Array comparative genomic
hybridization (array CGH) offers an efficient method to detect CNV's and micro-CNV's (5kb <
size < 10Mb) in the whole genome, but its resolution is not covering the lower size spectrum.
Multiplex ligation-dependent probe amplification (MLPA) is the current golden standard to
detect exon-sized CNVs but this technology can cover few exons per assay (low throughput)

and its application islimited to a small number of genes °.

In recent years, the development of next generation sequencing (NGS) technologies of short
reads has provided a standardized way for accurate coding variant analyses through whole
genome sequencing (WGS) and whole exome sequencing (WES). Remarkably, this
technology provides the coverage per nucleotide of clinically relevant regions of the genome.
Whereas WGS allows for a more comprehensive overview of the entire genome with uniform
coverage®, the related sequencing costs and the computational infrastructures needed to
process the raw data are still limiting its broad application in clinical practice’. On the other
hand, WES is computationally less demanding and has reached such a high sensitivity and
specificity in variant calling to eventually become a clinical standard. Currently, WES is
widely used for diagnostic purposes in many medical genetics laboratories throughout the

world.

A wide range of detection algorithms have been developed to call CNV's from WGS and WES
data. Read-depth based methods ®*° are considered the most effective for accurate copy
number prediction and exploit the fact that NGS generates raw data in the format of short
reads™. These reads are mapped to a reference sequence and the coverage in a genomic region
is calculated by counting the number of reads that align to this region. Depth-of-coverage
(DoC) isthen assumed to be proportional to the copy number of that region. In principle, DoC
is sufficient for the detection of all clinically relevant CNVs, irrespectively of size and copy
number, promoting WGS and WES as a robust and more inclusive alternative to

complementary laboratory approaches such as array CGH or MLPA.

Nevertheless, WES has technical issues that result in the generation of noisy data. First, the
lack of continuity of the target regions and, second, the biases due to hybridization and
sequencing processes complicate the procedure to standardize CNV detection™. As a result,
current WES based detection methods suffer from limited resolution, high false positives and
false negatives calls.
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Here, we introduce CoverageMaster (CoM), a CNV caling algorithm based on depth-of-
coverage maps from aligned short sequence reads from WES or WGS. CNVs are inferred
with Hidden Markov Models at multiscale nucleotide-like levels in the Wavelet reduced
space, in comparison to existing methods that utilize fixed length windows or exon averages.
This approach is designed to optimize the search for CNVs of different sizes. Working at
nucleotide resolution, CoM provides the graphical representation of the predicted CNV in al
genes of interest, and, optionaly, a wig formatted file compatible with UCSC Genome
Browser for detailed visualization of the normalized coverage on the target genes or regions
in the genomic space. We propose CoverageMaster as a potential first-line diagnostic tool in

research and clinical applications.

Results

CoverageMaster utilizes the representation of coverage signal ratio (case over control) in the
reduced Wavelet approximation space to perform a multiscale analysis of aberrant coverage
profiles, potentially underlying causative CNVs, at nucleotide resolution (Figure 1, see
Methods). This approach is meant to explore a broad spectrum of CNV sizes and in particular
deletions or duplications of < 5kb. At this scale, the experimental noise is caused on one hand
by the particular technology used for sequencing and, for WES, DNA selection by
hybridization. On the other hand, batch specific coverage distortions may occurs. Intuitively,
the smaller the CNV the higher the chance that the call is a false positive. To overcome this
problem, CoverageMaster exploits the fact that, as all other genomic variations, clinically
relevant CNVs are rare (MAF<0.01%). Thus, it is reasonable to assume that such CNVs
cannot be present in two or more independent unrelated individuals of the same batch.
Following this basic principle, CoM utilizes a reference with the average coverage and
standard deviation of 15-20 samples processed with the same technology (hybridization kit,
reagents, sequencer). The reference provides the standard deviation per nucleotide from the
expected coverage where coverage spikes are produced by reproducible experimental noise
and/or recurrent CNVs. Eventually, matching CNVs in the test sample are then considered as
frequent or false positives and finally discarded. Moreover, CoM pairwise compares the
sample case with independent samples, used as controls, from the same batch. Spikes present
in the test signal coverage and in one control sample are averaged out in the coverage ratio

and consequently discarded.
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In order to prove its efficiency, we tested CoverageMaster in various contexts of WES. All
samples processed here were hybridized with Twist Core Exome + RefSeq Spike and
sequenced with Illumina HSeg4000 or Novaseq.

To demonstrate the performance of CoM in standard clinical analyses, we analyzed 12
clinical samples and compared CoM CNVs calls to standard array CGH calls (see Methods).
In order to provide a point of reference, we also included ExomeDepth (ED), a performant
DoC-based CNV caller *°. InFigure 2a the cumulative true positive values for CNVs
detected by CoM and ED are reported. CoM calls coincide with aimost all of the array CGH
calls for each sample with the exception of some frequent benign variants discarded by CoM
because they were present in most controls. In fact, when searching for CNV's with MAF<1%,
CoM identifies all CNVs detected by array CGH, in contrast to ED that detect 80% of them
(Figure 2b). This result demonstrates that CoM may replace array CGH in clinical diagnostic
settings.

To investigate the performance of CoM on small CNV's, given the lack of a standard test set
for CNV detection of this size, we created a dataset of simulated WES data from 10
individuals. Around 700 heterozygous duplications and deletions of 200, 500, 1000 and 5000
base pairs were randomly introduced in the exonic regions of each sample (see Methods) and
analyzed by CoM and ED. The results show that CoM achieves a total sensitivity of 90% as
compared to 77% obtained by ED (Figure 2c) and an average precision of 41% for CoM
versus 37% obtained by ED (an average of ~270 calls out of 18000 genes for both programs,
precision is calculated considering half of the calls as false positives given there is no
validation available). Most importantly, CoM can accurately detect deletions and duplications
of (< 200bp) with sensitivity above 80%, when the corresponding percentage for ED is 40%.
Notably, the multiscaling approach alows CoM to keep a similar performance along all size

classes while ED rapidly decreases its performance with size reduction (Figure 2d).

CoM has been mainly conceived as a diagnostic support tool for clinical genetics analysis. To
provide a perspective of the broad capabilities of the algorithm, we report three examples of

solved clinical cases.

Patient 1 is a 20 years old male presenting with a congenital obesity of class I1l. WES analysis
did not provide any suitable SNV or INDEL candidate variant on a panel of 48 genes for
monogenic obesity (https.//www.medigenome.ch/en/gene-panels/). On the same panel, CoM
identified a heterozygous deletion of ~200kb in SH2B1 (Figure 3a). This deletion is known as
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the chromosome 16p11.2 deletion syndrome [OMIM 613444] and is a common cause of

congenital obesity. The CNV was subsequently confirmed by array CGH.

Patient 2 is an 8 years old female child, diagnosed with drug-resistant epilepsy with febrile
seizures. WES analysis did not provide any candidate variant on a panel of 478 genes related
to epilepsy (Epilepsy MDG-1204.01, https://www.medigenome.ch/en/gene-panels/). CoM
reported a heterozygous deletion of ~120kpb partialy overlapping the last 10 exons of
SCN1A (Figure 3b). The sodium channel 1A is associated with generalized epilepsy with
febrile seizures, Type 2 [OMIM 604403]. Deletions in this gene are known to cause seizure

disorders, ranging from early-onset isolated febrile seizures to generalized epilepsy™.

Patient 3 is a 3 years old female child with a suspicion of spina muscular atrophy. WES
analysis and array CGH were negative but CoM identified a full exon 7 homozygous deletion
of 112bp (Figure 4c). This deletion, which was confirmed by MLPA and not detected by ED,
is the most frequent CNV related to SMN1 induced muscular atrophy®™® [SMA OMIM
253400]; this deletion was therefore considered as the pathogenic cause of the phenotype of
the patient by the clinicians.

Discussion

CoverageMaster is a NGS coverage based CNV calling agorithm designed to work at
nucleotide resolution with WES or WGS data. The capacity to analyse a given coverage
signal in different scale sizes, combined with the nowadays availability of numerous controls
in standard clinical batches, enables the detection of multi-sized clinically relevant deletions
or duplications and in particular the detection of the so far elusive small CNVs of < 5kb. We
have proven the effectiveness of CoverageMaster in comparison to another excellent and
broadly used in silico CNV caller, ExomeDepth. Performance wise, CoM takes 1h20min to
process a panel of 4758 clinically relevant genes from OMIM and the Clinica Genomic
Database (https://research.nhgri.nih.gov/CGD/) on a 16 cores machine with 32Gbyte of RAM.
CoM demonstrated to be superior to ED in the detection of rare and small CNV'sin simulated
and clinical data and to be a valid and inexpensive alternative to MLPA and array CGH in
clinical settings.
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Materials and Methods

The analyses reported in this study were performed on DNA processed by whole exome
sequencing a the Heath 2030 Genome Center (https://www.health2030genome.ch/) or
Medigenome (www.medigenome.ch) using Twist Human Core Exome Kit (TWIST
Biosciences, San Francisco, CA, USA); sequencing was performed on Illumina Hi Seq4000 or
Novaseq platforms. Array CGH and MLPA were performed in GeneSupport using Agilent
SurePrint G3 Human 4x180K and SALSA MLPA Probemix P021 SMA (MRC Holland),
respectively.

Preprocessing and transformation of exome data

CoverageMaster (CoM) uses DoC maps from aligned short sequence reads to estimate CNV
events. To acquire the sequence reads, the mapping is done with the standard pipeline for
whole exome or whole genome sequencing data based on GATK™, and the coverage at each
nucleotide of the region of interest (ROI) is calculated and stored in tab separated COV files
(format: chr nucleotide position coverage) using samtools (samtools depth)™. Coverage files
of a test/target plus one or more controls plus one reference coverage serve as input for the
algorithm. The assumption is that control coverages are DoC maps of copy number neutral
cases (diploid) or carrier of frequent CNVs in the ROI of interest. The reference set consists
of a batch of coverage files from samples processed with the same technology (i.e.
hybridization kit, reagents for library prep and sequencer) used to generate case and controls.
First, the coverage per nucleotide per sample is normalized by the respective total number of
reads. Then, mean and standard deviation of the normalized coverage values are computed

over all the samples for each nucleotide.
Wavelet transform

In a genomic region of N nucleotides, the coverage of test case and control can be represented
as the discrete signals s(n) and c(n), respectively, where n is the nucleotide number
corresponding to the genomic or exonic position in the exon space (the space where covered

regions (i.e. exons) are “ligated” together). In the ideal case, the coverageratio r = Z isanon-

periodic square waveform with up and down steps in correspondence of increased or

decreased copy number, respectively. In order to diminish the noise induced by fast variations
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of the signal and, at the same time, to reduce the computational burden, the coverage ratio is
compressed in the nuclectide-like space using the Discrete Wavelet Transform (DWT)
equipped with the Haar basis. At scale [, the approximation and detail coefficients are
n,d;,d;_,,...,dy = DWT,(r). The M = N - 2-'gpproximation coefficients r, are normalized to
the median of the original signal and used for CNV analysis.

Multiscale CNV detection

The probability b;(o,,) of each m nucleotide-like positions of the sequence of approximation
coefficients r; = 040,...0,0441...0y to beinanormal (i.e. diploid), duplicated or deleted state
ses= {1%%} is defined at any scale | as a random variable with Gaussian distribution of
mean s and standard deviation o(R;), where R;(m) is the sequence of approximation

coefficients of the reference coverage in the m-coordinates of the [-scaled nucleotide-like

space.

At scale [, the indicator function (“trigger”) T = argmax,(bs(r;)) # 1 identifies the locations
of non diploid nucleotide-like positions and masks the rest of the signal. If no location is

identified, the algorithm discards this region and processes the next one.

Once the putative CNVs are identified, the Viterbi algorithm is then used to identify the most
likely copy number state sequence Q = q1q,...qxqr+1---qu Of the compressed genomic

region, based on the corresponding sequence of observations r; = 0,0,...040441...0y. Masked

observations o, have afixed diploid state g, =1.

More formally, if v, (j) represents the Viterbi probability that the underlying HMM isin copy
number state j after seeing the first m observations and passing through the most probable
state sequence q,q;. . - gm—1, it can be shown that

V() = max;egVm_1 (Dayjb;(0y)

where v,,_; (i)is the previous Viterbi path probability from the previous nucleotide, «;; is the
transition probability (here set to a;; =5-10"° which is the probability of finding a
duplication or a deletion in the human genome, calculated as the mean of the inclusive and
stringent number of CNV's per nucleotide from *°) and b;(0,,) is the observation probability

given the state jas defined above.


https://doi.org/10.1101/2021.07.21.453195
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453195; this version posted July 22, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

If no putative CNV is detected at this stage, the algorithm performs a multiscale analysis by
repeating the HMM phase with the masked signal transformed at scale [ — 1. Again, in
absence of CNVs, the algorithm keeps decrementing | down to, if necessary, [ =0 (no
compression). This is computationally possible because only the relevant unmasked regions
are actually inspected. Otherwise, eventual putative CNVs are saved and the algorithm

proceeds to the next region.
Iteration over controls

In case more control coverages are provided, eventual putative CNVs and relative masks are
stored in a temporary buffer. Following the assumption that a rare causative CNV cannot be
present in any control sample, CNVs are iteratively chalenged with the Multiscale CNV
detection algorithm against each control.

Generation of simulated data

Heterozygous deletions and duplications in randomly picked exonic regions have been
inserted in samples BAM files using the library Pysam from Python. Briefly, a script selects a
random exonic position (inter-exonic or across two or multiple exons) and, around that
location, removes or duplicates half of the overlapping reads in the sample BAM files,
respectively. Then coverage (COV) files are produced with samtools depth following the

same protocol as for the normal samples and processed with CoM with standard parameters.
Data availability

CoverageMaster is available at https://github.com/fredsanto/coverageM aster.
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Figure Legends

Figure 1. CoverageM aster wor kflow

CoM is based on depth-of-coverage maps from aligned short sequence reads from WES or
WGS. The normalized values of the depth-of-coverage for each nucleotide position are
calculated (Step 1). The ratio of the test to control coverage signal is compressed at a
specified initial scale | by default in the nucleotide-like space using the Discrete Wavelet
Transform (DWT) (Step 2). For the compressed signal, an indicator detects the potential non-
diploid nucleotide-like positions (Step 3). HMM is used to segment the compressed signal
into regions of similar copy numbers and assign CNV states (Step 4). If no putative CNVs are
identified, the process is repeated at scale ! — 1 via“zooming” (Step 5).

Figure 2. Array CGH comparison on clinical samples and CNV detection in smulated

data

Cumulative plots of number of calls (y-axis) detected by CoM (blue) and ED (red) and the
number of CNVs found by array CGH (green) in 12 samples. a) all calls are considered; b)
only the rare CNVs (MAF<1%) are included, green and blue dots are overlapping; ¢) number
and fraction of true calls detected by CoM (blue) and ED (red) in 10 samples where CNV's of
various size were randomly introduced in exonic regions; d) number and fraction of true calls
of detected CNV s stratified by size for CoM (blue) and ED (red).

Figure 3. Examples of clinically relevant CNV identified by CoM. a) In green, the
collapsed exon structure of the gene of interest, up or down blocks representing one exon.
Coverage profiles in exon space of test sample, control and reference (color code in the
legend) are represented in the second plot. For patient 1 (see text), the partial heterozygous
deletion of 115kb in SCN1A is clearly visible in the exonic and genomic spaces. b)
Heterozygous deletion encompassing SH2B1 detected in patient 2 (see text). Being in a
region of repeated sequences (lower plot in the genomic space), the size of this deletion is not
clearly ascertainable. ¢) Homozygous deletion of exon 7 in SMNL1 in patient 3 clearly visible

in the exonic and genomic spaces. It is worth noting that, in the genomic space, the coverage
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profile seems to show two other exons with adrop in coverage. The control, dashed linein the
plot above, shows the same profile indicating a fluctuation of the coverage in this region,

likely independent from the number of copies.
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