

1 **Lineage-specific regulatory changes in the pathological cardiac remodeling**
2 **of hypertrophy cardiomyopathy unraveled by single-nucleus RNA-seq and**
3 **spatial transcriptomics**

4 **Xuanyu Liu, PhD^{*1,2} Kunlun Yin, PhD^{*1,2} Liang Chen, PhD^{*1} Wen Chen, PhD^{1,2} Wenke Li, MS^{1,2} Taojun**

5 **Zhang, PhD^{1,2} Yang Sun, MD² Meng Yuan, BS^{1,2} Hongyue Wang, MD² Shuiyun Wang, MD^{3†} Shengshou**

6 **Hu, MD^{1†} Zhou Zhou, PhD^{1,2†}**

7 1 State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai
8 Hospital, the Chinese Academy of Medical Sciences, Beijing 100037, China;

9 2 Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases,
10 Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing 100037, China;

11 3 Department of Cardiovascular Surgery, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing
12 100037, China

13 * Dr. Liu, Dr. Yin and Dr. Chen contributed equally to this manuscript

14 † Correspondence author: Dr. Zhou Zhou, Email: zhouzhou@fuwaihospital.org; Dr. Shuiyun Wang
15 wsymd@sina.com; Dr. Shengshou Hu; Email: fwhushengshou@163.com

16

17 **Key Words:** hypertrophy cardiomyopathy, pathological remodeling, cardiac fibrosis, single-nucleus RNA-seq,
18 spatial transcriptomics

19

20 **ABSTRACT**

21 **BACKGROUND:** Hypertrophy cardiomyopathy (HCM) is the most common cardiac genetic disorder with the
22 histopathological features of cardiomyocyte hypertrophy and cardiac fibrosis. The pathological remodeling that
23 occurs in the myocardium of HCM patients may ultimately progress to heart failure and death. A thorough
24 understanding of the cell type-specific changes in the pathological cardiac remodeling of HCM is crucial for
25 developing successful medical therapies to prevent or mitigate the progression of this disease.

26 **METHODS:** We performed single-nucleus RNA-seq of the cardiac tissues from 10 HCM patients and 2 healthy
27 donors, and conducted spatial transcriptomic assays of 4 cardiac tissue sections from 3 HCM patients.
28 Comparative analyses were performed to explore the lineage-specific changes in expression profile,
29 subpopulation composition and intercellular communication in the cardiac tissues of HCM patients. Based on
30 the results of independent analyses including pseudotime ordering, differential expression analysis, and
31 differential regulatory network analysis, we prioritized candidate therapeutic targets for mitigating the
32 progression to heart failure or attenuating the cardiac fibrosis in HCM. Using the spatial transcriptomic data, we
33 examined the spatial activity patterns of the key candidate genes, pathways and subpopulations.

34 **RESULTS:** Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages and
35 28 clusters. Significant expansion of vascular-related lineages and contraction of cardiomyocytes, fibroblasts
36 and myeloid cells in HCM were observed. The transcriptomic dynamics during the transition towards the failing
37 state of cardiomyocytes in HCM were uncovered. Candidate target genes for mitigating the progression to heart
38 failure in HCM were obtained such as *FGF12*, *IL31RA*, *BDNF*, *S100A1*, *CRYAB* and *PROS1*. The transcriptomic
39 dynamics underlying the fibroblast activation were also uncovered, and candidate targets for attenuating the
40 cardiac fibrosis in HCM were obtained such as *RUNX1*, *MEOX1*, *AEBP1*, *LEF1* and *NRXN3*.

41 **CONCLUSIONS:** We provided a comprehensive analysis of the lineage-specific regulatory changes in HCM.
42 Our analysis identified a vast array of candidate therapeutic target genes and pathways to prevent or attenuate
43 the pathological remodeling of HCM. Our datasets constitute a valuable resource to examine the lineage-
44 specific expression changes of HCM at single-nucleus and spatial resolution. We developed a web-based
45 interface (<http://snsthcm.fwgenetics.org/>) for further exploration.

46

47 INTRODUCTION

48 Hypertrophy cardiomyopathy (HCM) is the most common cardiac genetic disorder with an estimated minimal
49 prevalence of 1 in 200.¹ HCM is also the leading cause of sudden cardiac deaths (SCDs) in young people,
50 accounting for 36% of SCDs in young athletes.² HCM is characterized by an increase in left ventricular wall
51 thickness in the absence of another cardiac or systemic disease.³ The key histopathological hallmarks of HCM
52 include cardiomyocyte hypertrophy and disarray as well as cardiac fibrosis.⁴ Pathological cardiac remodeling
53 occurs in the myocardium of HCM patients,⁵ manifesting as cardiomyocyte dysfunction, increased fibroblast
54 activation (fibrosis), chronic inflammation and cell death. If left untreated, the pathological remodeling may
55 ultimately lead to adverse events including heart failure, arrhythmias and death. In recent years, significant
56 efforts have been made to design therapeutic agents for HCM, for example, MYK-461 for inhibition of cardiac
57 myosin ATPase.⁶ A thorough understanding of the cellular and molecular changes in the pathological cardiac
58 remodeling of HCM is crucial for developing successful medical therapies to prevent or mitigate the progression
59 of this disease.

60 The transcriptomic alterations in the cardiac tissue of HCM have previously been examined at the tissue level
61 via bulk RNA-seq.^{7,8} However, cell type-specific changes could not be obtained from bulk data. Single-cell or
62 single-nucleus RNA-seq (snRNA-seq) could overcome this limitation and allows unbiased dissection of the
63 cellular changes at an unprecedented resolution. Given the large size of adult human cardiomyocytes, snRNA-
64 seq has been successfully applied to dissect the heterogeneity of the adult human heart under healthy⁹ and
65 diseased conditions, for example, myocardial infarction.¹⁰ However, there is still a lack of research exploring
66 the transcriptomic changes of the HCM in a single-nucleus resolution. The recent advent of spatially resolved
67 transcriptomics has greatly expanded our scope and power to understand the cellular mechanism of diseases
68 by providing spatial information of expression that is lost in single-cell/nucleus data.¹¹ Integrated analysis of
69 snRNA-seq and spatial transcriptomic data would profoundly improve our knowledge regarding the
70 pathogenesis of diseases.

71 In this study, we performed snRNA-seq of the cardiac tissues from HCM patients and healthy donors. We also
72 conducted spatial transcriptomic assays of cardiac tissue sections from HCM patients. Comparative analyses
73 were performed to explore the lineage-specific changes in expression profile, subpopulation composition and
74 intercellular communication in the cardiac tissues of HCM patients. We identified the transcriptomic dynamics
75 during the transition towards the failing state of cardiomyocytes in HCM, and prioritized the candidate
76 therapeutic target genes for mitigating the progression to heart failure in HCM, such as *FGF12*, *IL31RA*, *BDNF*,

77 *S100A1*, *CRYAB* and *PROS1*. We also reconstructed the trajectory of fibroblast activation and prioritized the
78 candidate targets for attenuating the cardiac fibrosis in HCM, such as *RUNX1*, *MEOX1*, *AEBP1*, *LEF1* and
79 *NRXN3*. We provided a vast array of candidate target genes and pathways for designing therapeutic agents to
80 prevent or attenuate the pathological remodeling of HCM. Our datasets constitute a valuable resource and we
81 developed a web-based interface (<http://snsthcm.fwgenetics.org/>) for further exploration.

82 METHODS

83 The data, analytic methods and materials will be made available on request only for the purposes of reproducing
84 the results.

85 Ethics statement

86 The recruitment of all subjects complied with the ethical regulations approved by the ethics committee of Fuwai
87 Hospital, the Chinese Academy of Sciences (No. 2020-1315). Written informed consent was received from each
88 patient.

89 Study subject enrollment and cardiac tissue collection

90 The HCM patients (n=13) enrolled in this study underwent surgical myectomy in Fuwai Hospital from 2015 to
91 2021. All the patients met the diagnostic criteria¹² for HCM with a maximal left ventricular wall thickness \geq 15
92 mm or \geq 13 mm in patients with a family history. All the patients belonged to the basal septum subtype, the
93 most common and severe morphological subtype,⁴ in which cardiac hypertrophy mainly confines to the basal
94 interventricular septum (IVS) adjacent to the aortic valve. All the patients exhibited left ventricular outflow tract
95 (LVOT) obstruction (LVOT gradient \geq 30 mm Hg at rest or on provocation). Patients were excluded if they had
96 cardiac hypertrophy caused by secondary factors, including systemic hypertension, myocardial infarction,
97 valvular disease or hemodynamic obstruction caused by left-sided obstructive lesions (e.g., valvular stenosis).
98 In addition, patients were excluded if they had myocarditis and systemic disorders such as RASopathies,
99 mitochondrial myopathies and storage diseases. For snRNA-seq, cardiac IVS tissues obtained from HCM
100 patients (n=10) during surgical resection at the obstruction site were immediately frozen and stored in liquid
101 nitrogen until use for nuclei isolation. For spatial transcriptomic assays, fresh cardiac IVS tissues from HCM
102 patients (n=3) were concurrently frozen in isopentane precooled by liquid nitrogen and embedded in optical
103 cutting tissue (OCT) compound. As a control for snRNA-seq, cardiac IVS tissues were obtained from healthy
104 donors of heart transplants (n=2). Detailed methods are provided in the Extended Methods of the Data
105 Supplement.

106 **RESULTS**

107 **Single-nucleus and spatial transcriptomic sequencing of the cardiac IVS tissues from HCM patients and**
108 **healthy donors**

109 As illustrated in Figure 1A, the cardiac IVS tissues of HCM patients who underwent surgical myectomy were
110 collected for snRNA-seq (n=10; 10 samples) and spatial transcriptomic assays (n=3; 4 tissue sections, of which
111 HCM1220B and HCM1220C were from the same patient). As a control group (referred to as HEALTHY), cardiac
112 IVS tissues from healthy donors of heart transplants (n=2; 3 samples, of which HEALTHY1A and HEALTHY1B
113 were from the same donor) were also subjected to snRNA-seq. The control group was ethnicity-and sex-
114 matched with the HCM group (Chinese, male). The detailed demographic and clinical information of the enrolled
115 subjects were in Table I in the Data Supplement. After quality control, a total of 55,122 nuclei (HCM: 39,183;
116 HEALTHY: 15,939) were obtained (Table II in the Data Supplement). For the spatial transcriptomic data, 3,339
117 to 4,849 spots were detected to be over tissue on the four sections (Table III in the Data Supplement). We
118 developed a web-based interface (<http://snsthcm.fwgenetics.org/>) for all the datasets, which permit interactive
119 examination of the expression of any gene or the activity of any pathway for both the snRNA-seq and spatial
120 transcriptomic data.

121 **Significant expansion of vascular-related lineages and contraction of cardiomyocytes, fibroblasts and**
122 **myeloid cells in HCM**

123 Based on the expression of established markers for each lineage,^{9,13} as shown in Figure 1B and 1C, a total of
124 9 cell types were identified by joint clustering of the snRNA-seq data from both conditions: vascular endothelial
125 cells (vECs, marked by *VWF*), fibroblasts (FBs, marked by *PDGFRA*), cardiomyocytes (CMs, marked by
126 *TNNT2*), pericytes (marked by *KCNJ8*), myeloid cells (marked by *C1QA*), smooth muscle cells (SMCs, marked
127 by *MYH11*), lymphoid cells (marked by *IL7R*), neuronal cells (marked by *NRXN1*) and lymphatic endothelial
128 cells (IECs, marked by *MMRN1*). By comparing the nucleus densities in the UMAP space between the two
129 conditions, remarkable changes in the relative proportion of cell types in HCM could be found, particularly for
130 vECs, pericytes and cardiomyocytes (Figure 1D, Figure I in the Data Supplement). Next, we quantified the changes
131 in cellular composition between the two conditions (Figure 1E). To determine whether the changes
132 were expected by chance, we performed a permutation-based statistical test (differential proportion analysis;
133 DPA) as described previously.¹⁴ Vascular-related lineages including vECs, pericytes and SMCs were
134 significantly expanded (P-value < 0.05, the DPA test), which was consistent with the knowledge of increased
135 angiogenesis in HCM.¹⁵ Cardiomyocytes, fibroblasts and myeloid cells were significantly contracted (P-value <

136 0.05, the DPA test), which may reflect the increased cell death in HCM. Figure 1F shows the distinct molecular
137 signatures of each lineage. To facilitate further data usage, the mean expression of all genes in each lineage
138 under both conditions was provided in Table IV in the Data Supplement.

139 **Cardiomyocyte-specific regulatory changes in the pathological cardiac remodeling of HCM**

140 Unbiased clustering grouped the cardiomyocytes into two subpopulations: CM1 and CM2 (Figure 2A; Table V
141 in the Data Supplement). CM2 expressed high levels of maladaptive markers indicating the reactivation of the
142 fetal gene program such as *NPPB* (encoding natriuretic peptide B, a clinically used biomarker for heart failure)
143 and *ACTA1* (encoding skeletal α -actin),¹⁶ thus representing a failing state of cardiomyocytes (Figure 2B). CM1
144 expressed high levels of *FGF12* and *CORIN*, which may represent cardiomyocytes in a relatively homeostatic
145 or compensatory hypertrophy state. Consistent with this, CM2 was significantly expanded in HCM, while CM1
146 was significantly contracted (Figure 2C; P-value < 0.01, the DPA test). Next, using DEsingle,¹⁷ we detected the
147 differentially expressed genes in HCM versus HEALTHY in each lineage (Table VI in the Data Supplement). For
148 cardiomyocytes, 2,021 genes were significantly upregulated, and 486 genes were significantly downregulated
149 (the absolute of log2 fold change >1, adjusted P-value < 0.05). In agreement with the pathological hypertrophy
150 phenotype of HCM, the upregulated genes were enriched for terms associated with cell growth and protein
151 synthesis (e.g., “Ribosome assembly” and “Translation”), energy metabolism (e.g., “Oxidative phosphorylation”),
152 stress response (e.g., “Cellular responses to stress”), immune response (e.g., “Antigen processing and
153 presentation”), cell death (e.g., “Regulation of programmed cell death”), metabolic reprogramming (e.g.,
154 “Organonitrogen compound metabolic process”), as well as contraction (e.g., “Cardiac muscle contraction”;
155 Figure 2D and Table VII in the Data Supplement). We further explored the dysregulated pathways in each
156 lineage through gene set enrichment analysis (GSEA),¹⁸ which facilitates biological interpretation by robustly
157 detecting concordant differences at the pathway level (Table VIII in the Data Supplement). As shown in Figure
158 2E, besides the pathways identified above by functional enrichment analysis, GASE analysis revealed more
159 pathways that were upregulated in cardiomyocytes of HCM, for example, “NOTCH2 ACTIVATION AND
160 TRANSMISSION OF SIGNAL TO THE NUCLEUS”, which supports the potential role of NOTCH signaling in
161 cardiac hypertrophy.¹⁹ In addition, using the method implemented in bigScale2,²⁰ gene regulatory networks
162 (GRNs) for each lineage were built separately for each condition. Comparative analysis of the GRNs between
163 HCM and HEALTHY (differential regulatory networks analysis; DRN analysis) was performed for each lineage,
164 and genes were ranked based on the changes in centrality, i.e., biological importance in the GRN (Table IX in
165 the Data Supplement). Figure II in the Data Supplement shows the GRNs of cardiomyocytes in both conditions,
166 and representative genes with great changes in centrality were identified and labeled such as *CRYAB* (Crystallin

167 Alpha B), *EIF1* (Eukaryotic Translation Initiation Factor 1), *S100A1* (S100 Calcium Binding Protein A1), *PROS1*
168 (*Protein S*), *TGFB2* (Transforming Growth Factor Beta 2) and *CREB5* (CAMP Responsive Element Binding
169 Protein 5).

170 **Transcriptomic dynamics during the transition towards the failing state of cardiomyocytes in HCM**

171 To decipher the transcriptomic dynamics during the transition towards the failing state of cardiomyocytes and
172 identify potential targets for mitigating the progression of heart failure in HCM, we reconstructed the trajectory
173 through the pseudo-temporal ordering of the nuclei of cardiomyocytes using Slingshot²¹ (Figure 2F). The failing
174 cardiomyocytes of CM2 were ordered at relatively later pseudotime (Figure 2G). Significant differences existed
175 between the pseudotime distributions of the two conditions (Figure 2H; P-value < 2.2e-16, the Kolmogorov-
176 Smirnov test). Then, using tradeSeq,²² the genes with significantly different expression patterns along the
177 trajectory between the two conditions were identified and clustered into 7 gene clusters (Figure 2I; Table X in
178 the Data Supplement; adjusted P-value adjusted < 0.05). Notably, the maladaptive markers *NPPB* and *NPPA*
179 were within the last gene cluster (VII). Next, we prioritized the candidate target genes for medical therapies
180 based on the results of three independent analyses including the difference in expression patterns along the
181 trajectory (adjusted P-value < 0.05), the fold change of expression levels between conditions (the absolute of
182 log2 fold change > 1), and the centrality change in GRNs (DRN rank < 1000). Only genes encoding transcription
183 factors (TFs), ligands and receptors were considered. Figure 2J showed 14 candidate genes we prioritized. For
184 most of the genes, the roles in the transition of cardiomyocytes towards failing states in HCM have not been
185 recognized previously such as *FGF12* (fibroblast growth factor 12), *CREB5*, *BDNF* (brain-derived neurotrophic
186 factor), *IL31RA* (interleukin 31 receptor A), *NRXN3* (neurexin 3), *TGFB2* and *PROS1* (Figure 2K). Notably,
187 some of them, e.g., *FGF12*, *IL31RA* and *PROS1* were significantly upregulated in the cardiac tissues of HCM
188 (q-value < 0.05) according to the results of bulk RNA-seq⁷ previously performed by our lab (Figure III in the
189 Data Supplement), further reflecting their roles in the pathogenesis of HCM.

190 **Fibroblast-specific regulatory changes in the pathological cardiac remodeling of HCM**

191 Four fibroblast subpopulations were identified through unbiased clustering: *KCNMB2* ^{high} FB1, *NRXN3* ^{high} FB2,
192 *CNTNAP2* ^{high} FB3 and *CD55* ^{high} FB4 (Figure 3A and 3B; Table V in the Data Supplement). Notably, FB2
193 expressed the highest levels of markers for activated fibroblasts (previously known as myofibroblasts²³) such
194 as *CCN2*, *FN1*, *COL1A1*, *COL3A1* and *MYH10*,²⁴ thus representing an activated state of fibroblasts.
195 Hierarchical clustering revealed a close relationship between FB1 and FB2 (Figure 3D), and thus FB1 may
196 represent a state of quiescent fibroblasts. Consistent with this, FB2 was significantly expanded while FB1 was

197 significantly contracted in HCM versus HEALTHY (Figure 3E; P-value < 0.01, the DPA test). Next, differentially
198 expressed genes in fibroblasts between the two conditions were detected (Table VI in the Data Supplement).
199 In line with the fibrosis that occurred in HCM, fibrosis-associated terms such as “Extracellular matrix
200 organization” and “Cellular response to transforming growth factor beta stimulus” were enriched in the
201 upregulated genes (Figure 3F and Table VII in the Data Supplement). In addition, the upregulated genes were
202 also enriched for terms related to protein translation and processing, energy metabolism, stress response, as
203 well as immune response. Notably, Hedgehog signaling and G protein-coupled receptor (GPCR) signaling were
204 also enriched (Figure 3F), consistent with their roles in fibrogenesis known in other tissues and disease
205 conditions.^{25,26} Moreover, GSEA revealed a more comprehensive list of signaling pathways that were
206 upregulated in fibroblasts of HCM (Figure 3G and Table VIII in the Data Supplement), including classic
207 profibrotic signaling pathways²⁷ (e.g., “TGF BETA SIGNALING PATHWAY” and “WNT SIGNALING PATHWAY”)
208 and cell surface ECM receptor pathways (e.g., “SYNDECAN 1 PATHWAY” and “INTEGRIN A4B1 PATHWAY”).
209 In addition, the top five genes with great changes in centrality that were detected through DRN analysis included
210 *ADAM19* (ADAM metallopeptidase domain 19), *RUNX1* (RUNX family transcription factor 1), *CTIF* (cap-binding
211 complex dependent translation initiation factor), *MEOX1* (mesenchyme homeobox 1) and *FGF7* (fibroblast
212 growth factor 7; Figure IV and Table IX in the Data Supplement).

213 **Transcriptomic dynamics during the activation of fibroblasts in HCM**

214 To decipher the transcriptomic dynamics during the activation of fibroblasts and identify candidate therapeutic
215 targets to alleviate the cardiac fibrosis in HCM, we reconstructed the trajectory of fibroblast activation through
216 the pseudo-temporal ordering of the nuclei of FB1 and FB2 (Figure 3H and 3I). The activated fibroblasts FB2
217 were ordered at the end of the trajectory (Figure 3J). The pseudotime distribution of the fibroblasts of HCM was
218 significantly different from those of HEALTHY (Figure 3K; P-value < 2.2e-16, Kolmogorov-Smirnov test). Next,
219 the genes exhibiting significantly different expression patterns along the trajectory between the two conditions
220 were identified and clustered into 7 gene clusters (Figure 3L; Table X in the Data Supplement; P-value adjusted
221 for multiple testing < 0.05). Then, we prioritized the candidate target genes according to the criteria described
222 above. Figure 3M showed 28 candidate genes that we prioritized. Notably, the top candidates included TF
223 genes such as *RUNX1*, *MEOX1*, *LEF1* (lymphoid enhancer-binding factor 1) and *AEBP1* (AE Binding Protein
224 1), which were significantly more upregulated along the trajectory of fibroblast activation in HCM versus
225 HEALTHY (Figure 3N). In addition, results from the bulk RNA-seq⁷ showed that some of the genes, such as
226 *AEBP1*, *LEF1*, *NRXN3* and *GLIS1*, were significantly upregulated in the cardiac tissues of HCM, further
227 reflecting their roles in the pathogenesis of HCM (Figure III in the Data Supplement).

228 The subpopulations of the immune and vascular lineages and their proportional changes in HCM

229 Unbiased clustering revealed 8 immune subpopulations (Figure 4A). The subpopulations immune_c0, c1, c4,
230 c5 and c6 expressed high levels of *CD68* (Figure 4B), thus representing five subpopulations of macrophages
231 (which were referred to as MAC1-5 hereafter). As shown in Figure 4C, *FGF13*^{high} MAC1 and *IGSF21*^{high} MAC2
232 expressed high levels of *LYVE1*, which marked for vessel-associated resident macrophages with M2-like
233 phenotypes.²⁸ MAC5 expressed high levels of *FCN1*, which marks proinflammatory macrophages.²⁹ Differential
234 proportional analysis revealed a significant expansion of MAC2 and contraction of MAC1 (Figure 4D; P-value
235 < 0.05, the DPA test), and thus MAC2 represented a more activated state compared to MAC1. Both functional
236 enrichment analysis and GSEA supported the immune activation of macrophages in HCM (Figure VA in the
237 Data Supplement). Besides a small cluster of the nuclei of B cells (marked by *CD79A*), another two closely
238 related subpopulations of the lymphoid lineages were identified: immune_c2 and immune_c3. Immune_c2
239 expressed high levels of the T cell marker *CD3D* (Figure 4B) and exhibited high naiveness scores (Figure 4E),
240 thus representing nuclei of naïve T cells. Immune_c3 expressed high levels of the T cell marker *CD3D* and the
241 Natural Killer (NK) cell marker *NCR1*, and exhibited high cytotoxicity scores (Figure 4E), thus representing a
242 mixture of the nuclei of effector T/NK cells. Expectedly, we observed a significant expansion of the effector T/NK
243 nuclei and a significant contraction of the naïve T nuclei (Figure 4F; P-value < 0.05, the DPA test).

244 For the vEC lineage, we identified 7 subpopulations that were aligned consecutively in the UMAP space (Figure
245 4G). From the left to the right of UMAP1, based on the established markers,⁹ the subclusters were assigned to
246 arterial ECs (marked by *SEMA3G* and *DLL4*; arterial EC2 and arterial EC1), capillary ECs (marked by *RGCC*
247 and *CA4*; capEC3, capEC1, immune EC and capEC2) and venous ECs (marked by *ACKR1* and *NR2F2*;
248 venousEC; Figure 4H). A significant expansion of most subpopulations except for capEC1 and venousEC was
249 observed (P-value < 0.05, the DPA test; Figure 4I). For SMCs, two subpopulations were identified with distinct
250 expression profiles: SMC1 and SMC2 (Figure 4J and 4K). Compared with SMC1, SMC2 expressed lower levels
251 of contractile markers such as *CNN1* and *TAGLN* (Figure 4L) and were aligned closely to pericytes in the UMAP
252 space (Figure VI in the Data Supplement). These results suggest that SMC2 may represent the vascular SMCs
253 of the small vasculature that was greatly expanded in HCM. Consistent with this, a significant expansion of
254 SMC2 was observed (P-value < 0.05, the DPA test; Figure 4M). For pericytes, three subpopulations were
255 identified: pericyte1, pericyte2 and pericyte3 (Figure 4N and 4O), and an expansion of pericyte2 was observed
256 (P-value < 0.05, the DPA test; Figure 4P). The subpopulation pericyte2 was closely related to SMCs based on
257 the alignment in the UMAP space (Figure VI in the Data Supplement), which may represent pericytes
258 surrounding the capillaries with relatively large caliber. The representative pathways upregulated in each of the

259 three types of vascular lineage were shown in Figure V in the Data Supplement. Notably, like those observed
260 in cardiomyocytes and fibroblasts, energy metabolism and immune response-related pathways were
261 upregulated in all three cell types.

262 **Intercellular communication changes in the cardiac tissue of HCM inferred from the snRNA-seq data**

263 To date, Intercellular interactions in HCM have mostly been characterized *in vitro* through coculture experiments.
264 Based on the snRNA-seq data, CellChat³⁰ was used to infer ligand-receptor interactions among subpopulations
265 *in vivo* separately for each condition (Table XI in the Data Supplement). Through pattern recognition approaches,
266 the dominant incoming and outgoing signal patterns for each subpopulation were detected for each condition
267 (Figure VII in the Data Supplement), and subpopulations belonging to the same lineage had more similar
268 patterns. The inferred total number (Figure 5A) and strength of interactions (Figure 5B) were significantly
269 increased in HCM, reflecting an enhanced intercellular communication in diseased conditions as reported in
270 other diseases.³¹ Fibroblast subpopulations had a great increase in the number (Figure 5C) and strength (Figure
271 5D) of interactions for both outgoing and incoming signals, reflecting their central roles in the pathological
272 remodeling of HCM. Notably, neuronal cells exhibited significantly enhanced incoming signals from other
273 lineages, e.g., fibroblasts. Remarkably, cardiomyocytes, especially the failing subpopulation CM2, exhibited
274 reduced communication with themselves (autocrine) and some other lineages (paracrine), e.g., macrophages.
275 The remarkable change of cardiomyocytes in communication could also be observed by comparing the relative
276 positions of cardiomyocytes in the 2D signal space between HEALTHY (Figure 5E) and HCM (Figure 5F).

277 Next, we compared the relative information flow for each signaling pathway between two conditions (Figure 5G;
278 Figure VIII in the Data Supplement), and identified pathways that were greatly enhanced in HCM (e.g., PTN,
279 ITGB2, CSF, PROS, ICAM, CD46, TGFb, MHC-1, ESAM and WNT) or specific to the HCM condition (e.g.,
280 PARs, ANGPTL and SPP1). Through joint manifold learning of the inferred communication networks, the
281 signaling pathways were grouped based on functional similarity (i.e., similarity in senders and receivers, Figure
282 5H). The Euclidean distance of each pathway in the learn joint manifold reflected the changes in functional
283 similarly between the two conditions. As shown in Figure 5I, the pathway with the largest distance was the TGFb
284 pathway. In line with this, network centrality analysis confirmed that the TGFb pathway greatly changed in
285 senders and receivers in HCM (Figure 5J): the top sender changed from MAC2 in HEALTHY to effector T/NK
286 cells in HCM, and the top receiver changed from CM1 to MAC3. Then, we found that TGFB1-
287 (TGFBR1+TGFBR2) was the ligand-receptor pair that contributed most to the network of TGFb signaling in the
288 cardiac tissues of HCM (Figure 5K). As shown in Figure 5L and 5M, TGFB1-(TGFBR1+TGFBR2) signaling was

289 enhanced in HCM, and the paracrine signal of TGFB1 received by fibroblasts, cardiomyocytes and vECs were
290 predominately secreted by effector T/NK cells, naïve T cells and proinflammatory macrophages MAC5. The
291 communication strength among subpopulations for any pathway or ligand-receptor pair is accessible through
292 our web-based interface (<http://snsthcm.fwgenetics.org/>).

293 **Spatially resolved examination of the expression of candidate genes, the activity of HCM-associated
294 pathways and subpopulations by spatial transcriptomics.**

295 As shown in Figure IX in the Data Supplement, the four tissue sections selected for spatial transcriptomic assays
296 contained regions with replacement fibrosis and/or diffuse (interstitial or perivascular) fibrosis that commonly
297 occur in HCM. The section HCM1225D was characterized by large replacement fibrotic scars and interstitial
298 fibrosis (also see Figure 6A and 6B). For the section HCM1221A, interstitial fibrosis was restricted to a relatively
299 narrow region close to the endocardium, while most regions represented non-fibrotic cardiac tissues. The
300 sections HCM1220B and HCM1220C were featured by extensive diffuse fibrosis. Through unbiased clustering
301 of the spots, spots in fibrotic regions could be separated from those in non-fibrotic regions. For example, spot
302 clusters SC0 and SC1 generally represented spots in fibrotic and non-fibrotic regions on the section HCM1225D,
303 respectively (Figure 6C and 6D; Figure X in the Data Supplement). Likewise, the fibrotic and non-fibrotic spot
304 clusters were identified for other sections (Figure XI-XIII in the Data Supplement). Following the label transfer
305 workflow of Seurat, we integrated the snRNA-seq data and the spatial transcriptomic data. CM1, the
306 cardiomyocyte subpopulation in a homeostatic or compensatory hypertrophy state (marked by *FGF12*), was
307 predicted to be localized in non-fibrotic regions, while CM2, the cardiomyocyte subpopulation in a failing state
308 (marked by *NPPB*), was localized close to the fibrotic regions (Figure 6E and 6F). FB1, the quiescent fibroblast
309 subpopulation, was mainly in non-fibrotic regions, while FB2, the activated fibroblast subpopulation, was in
310 fibrotic regions (Figure 6E). The candidate target genes *AEBP1*, *RUNX1*, *MEOX1* and *MGP* were highly
311 expressed in fibrotic regions (Figure 6F). Therefore, the spatial transcriptomic data confirmed the results of our
312 snRNA-seq analysis above. Next, the dysregulated genes and pathways in fibrotic versus non-fibrotic regions
313 were identified separately for each section (Table XII-XIII in the Data Supplement). As shown in Figure 6G, the
314 upregulated pathways were mainly involved in ECM remodeling (e.g.,
315 “REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION” and “REACTOME_TRANSLATION”), fibrosis-
316 related signaling (e.g., “KEGG_TGF_BETA_SIGNALING_PATHWAY” and
317 “WP_PI3KAKT_SIGNALING_PATHWAY”) and immune response (e.g.,
318 “REACTOME_INTERFERON_SIGNALING” and “WP_IL18_SIGNALING_PATHWAY”), while the
319 downregulated pathways were mainly involved in contraction (e.g.,

320 "KEGG_CARDIAC_MUSCLE_CONTRACTION"), energy metabolism (e.g., "KEGG_OXIDATIVE
321 PHOSPHORYLATION") and TP53-mediated stress response (e.g.,
322 "REACTOME_TRANSCRIPTIONAL_REGULATION_BY_TP53"). Figure 6H showed that the representative
323 upregulated pathways exhibited high expression activity in the fibrotic regions.

324 DISCUSSION

325 Understanding the regulatory changes under diseased conditions is of fundamental importance for successful
326 drug development. By using snRNA-seq and spatial transcriptomic assays, the present study provided the first
327 comprehensive analysis of the lineage-specific changes in expression profile, subpopulation composition and
328 intercellular communication in the cardiac tissues of human HCM patients. The candidate genes we prioritized
329 based on multiple independent analyses may serve as therapeutic targets to prevent or attenuate the
330 pathological remodeling of HCM.

331 While cardiac remodeling is orchestrated by multiple lineages, the cardiomyocytes function as the most
332 important determinants of cardiac conditions.³² Thus, medical therapies directly targeting the cardiomyocytes
333 may represent the most promising strategy to alleviate pathological hypertrophy or mitigate the progression to
334 heart failure in HCM. The single-nuclei resolution data allowed us to examine the cardiomyocyte-specific
335 regulatory changes of HCM *in vivo* (Table VI in the Data Supplement). The results of the functional enrichment
336 analysis and GSEA (Figure 2D and 2E) well recapitulated the features known for pathological cardiac
337 hypertrophy,¹⁶ including increased protein translation, energy metabolism, stress response, immune response,
338 cell death and contraction. Among the genes that were greatly changed in centrality through the DRN analysis
339 (Figure II and Table IX in the Data Supplement), some have been implicated in cardiac hypertrophy or heart
340 failure; For example, *CRYAB* (Crystallin Alpha B) has been demonstrated to suppress pressure overload-
341 induced cardiac hypertrophy in mice.³³ *S100A1* (S100 Calcium Binding Protein A1) has been suggested to be
342 a target for the treatment of heart failure.³⁴ However, the precise roles of most genes have not been elucidated
343 in the pathogenesis of HCM such as *PROS1* (Protein S) and *CREB5* (CAMP Responsive Element Binding
344 Protein 5). Cardiomyocytes were clustered into two subpopulations: CM1 and CM2 (Figure 2A), which
345 represented a homeostatic or compensatory hypertrophy state and a failing state, respectively. The failing
346 cardiomyocyte subpopulation CM2 was found to be close to the fibrotic regions by spatial transcriptomics
347 (Figure 6E), which reflected the detrimental effects of cardiac fibrosis on cardiomyocytes in HCM. Intercellular
348 communication analysis revealed that cardiomyocytes, especially the failing subpopulation CM2, exhibited
349 reduced communication with themselves (autocrine) and some other lineages (paracrine) in HCM (Figure 5C

350 and 5D), reflecting communication dysfunction of cardiomyocytes in HCM.

351 Pathological cardiac hypertrophy is a common predecessor to heart failure.³⁵ A recent study reported the
352 transcriptomic differences of cardiomyocytes between early (hypertrophic cardiomyocytes) and maladaptive
353 phage (failing cardiomyocytes) of cardiac remodeling in pressure overload-induced mouse models.³⁶ Through
354 pseudo-temporal ordering, we identified the transcriptomic dynamics during the transition towards the failing
355 state of cardiomyocytes in HCM of human patients (Figure 2I). Based on multiple lines of evidence from
356 independent analyses, we obtained a list of genes that could serve as potential medical targets for mitigating
357 the progression of heart failure in HCM (Figure 2J), and most have not been implicated in heart failure or cardiac
358 hypertrophy such as *FGF12*, *IL31RA*, *BDNF* and *PROS1*. Notably, the expression of *FGF12* (fibroblast growth
359 factor 12) decreased along the trajectory towards the failing state in HCM (Figure 2K). *FGF12* has recently
360 been reported to inhibit the pathological remodeling of SMCs in pulmonary arterial hypertension³⁷. Likewise,
361 we speculated that it may play a protective role in the pathological remodeling of cardiomyocytes in HCM.

362 Cardiac fibrosis is a scarring process in the cardiac tissue characterized by excessive deposition of ECM in
363 response to pathophysiological stimuli.³⁸ A high burden of cardiac fibrosis exists in HCM patients,³⁹ which leads
364 to diastolic dysfunction. Cardiac fibrosis has been proved to be an independent predictor of adverse outcomes
365 including SCD and heart failure in HCM.⁴⁰ Cardiac fibrosis is mediated by the activation of fibroblasts, and
366 understanding the regulatory mechanism underlying the fibroblast activation in HCM is critical for developing
367 effective medical therapies to alleviate the cardiac fibrosis and thereby prevent adverse outcomes for HCM
368 patients. We identified the activated fibroblast subpopulation FB2, which was significantly expanded (Figure 3E)
369 and localized in fibrotic regions (Figure 6E) as expected. Furthermore, based on multiple lines of evidence from
370 independent analyses, we obtained 28 candidate target genes for anti-fibrosis medical development (Figure
371 3M). Among them, some top-ranked TF genes may represent key regulators driving the fibroblast activation in
372 HCM or other fibrosis-associated conditions. For example, *RUNX1* has recently been suggested to be a key
373 regulator of cardiac fibrosis following myocardial infarction.¹⁰ A recent study demonstrated that *MEOX1*
374 regulated the pro-fibrotic function and was implicated in the fibrosis of multiple human organs including the
375 heart, liver, lung and kidney.⁴¹ *AEBP1* (also named *ACLP*) has been implicated in the fibroblast activation of
376 lung fibrosis.⁴² However, our study also identified an array of novel genes and pathways that have not been
377 explicitly implicated in fibrosis. For example, *LEF1* (encoding a transcription factor involved in the Wnt signaling
378 pathway; Figure 3M) and IL18 signaling pathway (Figure 6H). Intriguingly, *NRXN3*, encoding a transmembrane
379 receptor protein of the neurexin family that is predominantly expressed in neurons and is mostly discussed in
380 mental diseases,⁴³ was found to be highly expressed in activated fibroblasts (Figure 3B), and its precise role in

381 cardiac fibrosis merit further exploration.

382 Increasing evidence has shown that immune cells coordinate the responses of cardiomyocytes (e.g.,
383 hypertrophy) and other noncardiomyocytes (e.g., fibroblast activation) during pathological cardiac remodeling.⁴⁴
384 Therefore, identifying the disease-associated immune cell subpopulations and developing therapies regulating
385 the phenotype of cardiac immune cells represent another important strategy for treatment, for example,
386 targeting cardiac fibrosis with engineered T cells.⁴⁵ We explored the alterations of the immune
387 microenvironment in the cardiac tissue of HCM and observed the activation of both innate (e.g., tissue-resident
388 macrophages) and adaptive (e.g., T/NK cells) immunity (Figure 4). Meanwhile, immune response-related
389 pathways, for example, antigen processing and presentation, were found to be upregulated in all the
390 nonimmune cell types, reflecting an enhanced immune response in HCM. The TGF- β signaling has many
391 pleiotropic effects not only in disease, for example, promoting cardiac hypertrophy and fibrosis in the
392 pathological cardiac remodeling, but also in tissue homeostasis.⁴⁶ While TGF- β blockade may be a promising
393 therapeutic strategy, direct and excessive TGF- β inhibition may result in matrix degradation, cardiac dilation
394 and dysfunction.⁴⁷ Though intercellular communication analysis, we found that the top sender of TGF- β
395 changed from MAC2 in HEALTHY to effector T/NK cells in HCM (Figure 5J), which suggest that inhibiting the
396 activation of T/NK cells may attenuate the TGF- β signaling and thereby alleviate the pathological remodeling in
397 HCM while avoiding the deleterious effects of direct TGF- β blockade.

398 The number of subjects in the healthy group (n=2) was smaller than the HCM group (n=10) in the current study.
399 This may limit the statistical power of comparative analyses. Additional control samples would be included to
400 address this limitation in subsequent studies. In addition, only the TFs, ligands and receptors were considered
401 in the prioritization of candidate targets for subsequent functional studies of our lab; however, other types of
402 molecules, e.g., kinases, may also serve as ideal targets for drug development. We provided the analysis results
403 for all the genes in supplemental tables for further prioritization by the community.

404 In conclusion, we provided a comprehensive analysis of the lineage-specific regulatory changes in HCM. Our
405 analysis identified a vast array of candidate therapeutic target genes and pathways to prevent or attenuate the
406 pathological remodeling of HCM. Our datasets constitute a valuable resource to examine the cell type-specific
407 expression changes of HCM at single-nucleus and spatial resolution.

408 Acknowledgments

409 We thank Qingzhi Wang, Yang Lu and Yiwei You at the Center of Laboratory Medicine, Fuwai Hospital for

410 technical support in cryosectioning and Masson's trichrome staining.

411 **Sources of Funding**

412 This work was supported by grants from the Chinese Academy of Medical Sciences Initiative for Innovative
413 Medicine (2020-I2M-1-002) and the Natural Science Foundation of China (81900282, 81870229).

414 **Disclosures**

415 None.

416 **Supplemental Materials**

417 Extended Methods

418 Data Supplement Figures I-XIII

419 Data Supplement Tables I-XIII

420 **REFERENCES**

- 421 1. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic
422 cardiomyopathy. *J Am Coll Cardiol.* 2015;**65**:1249–1254.
- 423 2. Wasfy MM, Hutter AM, Weiner RB. Sudden Cardiac Death in Athletes. *Methodist Debakey Cardiovasc J.*
424 2016;**12**:76–80.
- 425 3. Wolf CM. Hypertrophic cardiomyopathy: genetics and clinical perspectives. *Cardiovasc Diagn Ther.*
426 2019;**9**:S388–S415.
- 427 4. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations,
428 diagnosis, and therapy. *Circ Res.* 2017;**121**:749–770.
- 429 5. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. *Circulation.*
430 2013;**128**:388–400.
- 431 6. Santini L, Palandri C, Nediani C, Cerbai E, Coppini R. Modelling genetic diseases for drug development:
432 Hypertrophic cardiomyopathy. *Pharmacol Res.* 2020;**160**:105176.
- 433 7. Liu X, Ma Y, Yin K, Li W, Chen W, Zhang Y, Zhu C, Li T, Han B, Liu X, Wang S, Zhou Z. Long non-coding
434 and coding RNA profiling using strand-specific RNA-seq in human hypertrophic cardiomyopathy. *Sci Data.*
435 2019;**6**:90.
- 436 8. Ren CW, Liu JJ, Li JH, Li JW, Dai J, Lai YQ. RNA-seq profiling of mRNA associated with hypertrophic
437 cardiomyopathy. *Mol Med Rep.* 2016;**14**:5573–5586.
- 438 9. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K,
439 Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B,
440 Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang

441 H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA.
442 Cells of the adult human heart. *Nature*. 2020;588:466–472.

443 10. Kuppe C, Ramirez Flores RO, Li Z, Hannani M, Tanevski J, Halder M, Cheng M, Ziegler S, Zhang X,
444 Preisker F, Kaesler N, Xu Y, Hoogenboezem RM, Bindels EMJ, Schneider RK, Milting H, Costa IG, Saez-
445 Rodriguez J, Kramann R. Spatial multi-omic map of human myocardial infarction. *bioRxiv*.
446 2020;10.1101/2020.12.08.411686.

447 11. Marx V. Method of the Year: spatially resolved transcriptomics. *Nat Methods*. 2021;18:9–14.

448 12. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P,
449 Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff H V., Semsarian C,
450 Sorajja P. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic
451 Cardiomyopathy. *Circulation*. 2020;142:1–74.

452 13. Feng W, Chen L, Nguyen PK, Wu SM, Li G. Single Cell Analysis of Endothelial Cells Identified Organ-
453 Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular Features. *Front
454 Cardiovasc Med*. 2019;6:1–13.

455 14. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey
456 RP. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in
457 health and injury. *Elife*. 2019;8:e43882.

458 15. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: Maintenance of cardiac
459 function and causative roles in heart failure. *Circ Res*. 2014;114:565–571.

460 16. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. *Nat Rev
461 Cardiol*. 2018;15:387–407.

462 17. Miao Z, Deng K, Wang X, Zhang X. DEsingle for detecting three types of differential expression in single-
463 cell RNA-seq data. *Bioinformatics*. 2018;34:3223–3224.

464 18. Emmert-Streib F, Glazko G V. Pathway Analysis of Expression Data: Deciphering Functional Building
465 Blocks of Complex Diseases. *PLoS Comput Biol*. 2011;7:e1002053.

466 19. Nemir M, Jordan N, Croquelois A, Domenighetti A, Pedrazzini T. Notch signaling: A potential regulator of
467 cardiac response to hypertrophic stimuli. *J Mol Cell Cardiol*. 2007;42:S134–S135.

468 20. Iacono G, Massoni-Badosa R, Heyn H. Single-cell transcriptomics unveils gene regulatory network
469 plasticity. *Genome Biol*. 2019;20:1–20.

470 21. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, Purdom E, Dudoit S. Slingshot: Cell lineage and
471 pseudotime inference for single-cell transcriptomics. *BMC Genomics*. 2018;19:477.

472 22. Van den Berge K, Roux de Bézieux H, Street K, Saelens W, Cannoodt R, Saeys Y, Dudoit S, Clement L.
473 Trajectory-based differential expression analysis for single-cell sequencing data. *Nat Commun*. 2020;11:1–
474 13.

475 23. Ivey MJ, Tallquist MD. Defining the cardiac fibroblast. *Circ J*. 2016;80:2269–2276.

476 24. Hocker JD, Poirion OB, Zhu F, Buchanan J, Zhang K, Chiou J, Wang TM, Zhang Q, Hou X, Li YE, Zhang Y,
477 Farah EN, Wang A, McCulloch AD, Gaulton KJ, Ren B, Chi NC, Preissl S. Cardiac cell type-specific gene
478 regulatory programs and disease risk association. *Sci Adv*. 2021;7:1–24.

479 25. Hu L, Lin X, Lu H, Chen B, Bai Y. An overview of hedgehog signaling in fibrosis. *Mol Pharmacol*.

480 2015;87:174–182.

481 26. Salazar NC, Chen J, Rockman HA. Cardiac GPCRs: GPCR signaling in healthy and failing hearts. *Biochim
482 Biophys Acta - Biomembr.* 2007;1768:1006–1018.

483 27. Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H, Ghasemi Y, Mahjoubin-
484 Tehran M, Nikoozadeh A, Savardashtaki A, Mirzaei H, Hamblin MR. TGF- β and WNT signaling pathways in
485 cardiac fibrosis: Non-coding RNAs come into focus. *Cell Commun Signal.* 2020;18:1–16.

486 28. Lim HY, Lim SY, Tan CK, Thiam CH, Goh CC, Carbajo D, Chew SHS, See P, Chakarov S, Wang XN, Lim
487 LH, Johnson LA, Lum J, Fong CY, Bongso A, Biswas A, Goh C, Evrard M, Yeo KP, Basu R, Wang JK, Tan
488 Y, Jain R, Tikoo S, Choong C, Weninger W, Poidinger M, Stanley RE, Collin M, Tan NS, Ng LG, Jackson
489 DG, Ginhoux F, Angel V. Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone
490 through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. *Immunity.* 2018;49:326-341.e7.

491 29. Liu X, Yuan M, Xiang Q, Chen W, Li Z, Chen J, Huang J. Single-cell RNA-seq of the stromal vascular
492 fraction of adipose tissue reveals lineage-specific changes in cancer-related lymphedema. *bioRxiv.*
493 2020;DOI: 10.1101/2020.09.27.315911.

494 30. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus M V., Nie Q. Inference
495 and analysis of cell-cell communication using CellChat. *Nat Commun.* 2021;12:1088.

496 31. Liu X, Chen W, Yuan M, Li Z, Meng T, Chen J, Yu N, Long X, Zhou Z. Single-cell RNA-seq reveals lineage-
497 specific regulatory changes of fibroblasts and vascular endothelial cells in keloid. *J Invest Dermatol.*
498 2021;DOI: 10.1016/j.jid.2021.06.010.

499 32. Fountoulaki K, Dagres N. Cellular Communications in the Heart. *Card Fail Rev.* 2015;1:64.

500 33. Kumarapeli ARK, Su H, Huang W, Tang M, Zheng H, Horak KM, Li M, Wang X. α B-Crystallin Suppresses
501 Pressure Overload Cardiac Hypertrophy. *Circ Res.* 2008;103:1473–1482.

502 34. Ritterhoff J, Most P. Targeting S100A1 in heart failure. *Gene Ther.* 2012;19:613–621.

503 35. Ren Z, Yu P, Li D, Li Z, Liao Y, Wang Y, Zhou B, Wang L. Single-Cell Reconstruction of Progression
504 Trajectory Reveals Intervention Principles in Pathological Cardiac Hypertrophy. *Circulation.* 2020;1704–
505 1719.

506 36. Vigil-Garcia M, Demkes CJ, Eding JEC, Versteeg D, de Ruiter H, Perini I, Kooijman L, Gladka MM,
507 Asselbergs FW, Vink A, Harakalova M, Bossu A, van Veen TAB, Boogerd CJ, van Rooij E. Gene
508 expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling.
509 *Cardiovasc Res.* 2021;117:1532–1545.

510 37. Yeo Y, Yi ES, Kim JM, Jo EK, Seo S, Kim RI, Kim KL, Sung JH, Park SG, Suh W. FGF12 (Fibroblast
511 Growth Factor 12) Inhibits Vascular Smooth Muscle Cell Remodeling in Pulmonary Arterial Hypertension.
512 *Hypertension.* 2020;12:1778–1786.

513 38. Travers JG, Kamal FA, Robbins J, Yutzy KE, Blaxall BC. Cardiac fibrosis: The fibroblast awakens. *Circ
514 Res.* 2016;118:1021–1040.

515 39. Galati G, Leone O, Pasquale F, Olivotto I, Biagini E, Grigioni F, Pilato E, Lorenzini M, Corti B, Foà A,
516 Agostini V, Cecchi F, Rapezzi C. Histological and histometric characterization of myocardial fibrosis in end-
517 stage hypertrophic cardiomyopathy. *Circ Hear Fail.* 2016;9:e003090.

518 40. O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, Webb J, Kulkarni M, Dawson D,
519 Sulaibekh L, Chandrasekaran B, Buccarelli-Ducci C, Pasquale F, Cowie MR, McKenna WJ, Sheppard

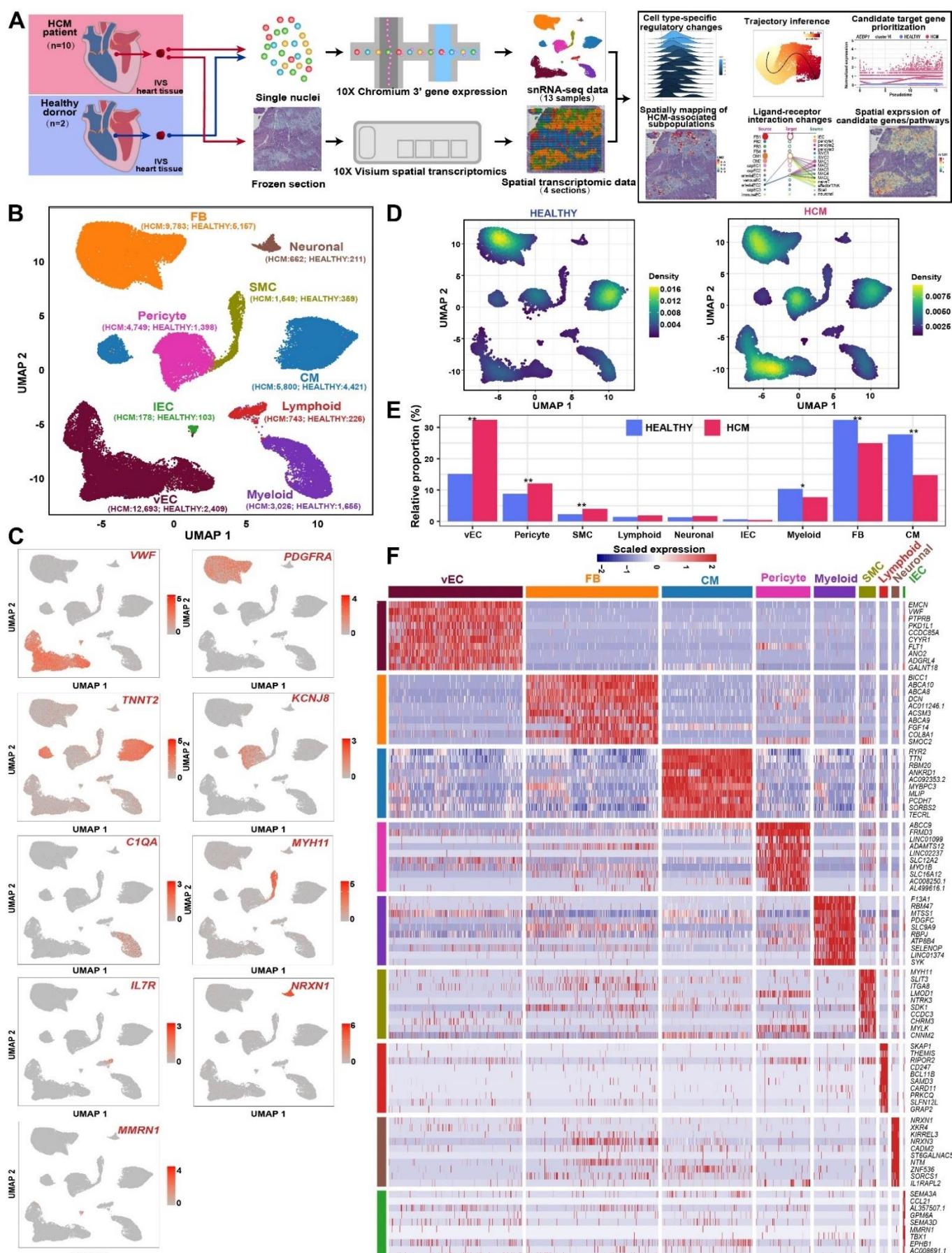
520 MN, Elliott PM, Pennell DJ, Prasad SK. Prognostic significance of myocardial fibrosis in hypertrophic
521 cardiomyopathy. *J Am Coll Cardiol.* 2010;56:867–874.

522 41. Alexanian M, Przytycki PF, Micheletti R, Padmanabhan A, Ye L, Travers JG, Gonzalez-Teran B, Silva AC,
523 Duan Q, Ranade SS, Felix F, Linares-Saldana R, Li L, Lee CY, Sadagopan N, Pelonero A, Huang Y,
524 Andreoletti G, Jain R, McKinsey TA, Rosenfeld MG, Gifford CA, Pollard KS, Haldar SM, Srivastava D. A
525 transcriptional switch governs fibroblast activation in heart disease. *Nature.* 2021;597:438–443.

526 42. Tumelty KE, Smith BD, Nugent MA, Layne MD. Aortic carboxypeptidase-like protein (ACLP) enhances lung
527 myofibroblast differentiation through transforming growth factor β receptor-dependent and -independent
528 pathways. *J Biol Chem.* 2014;289:2526–2536.

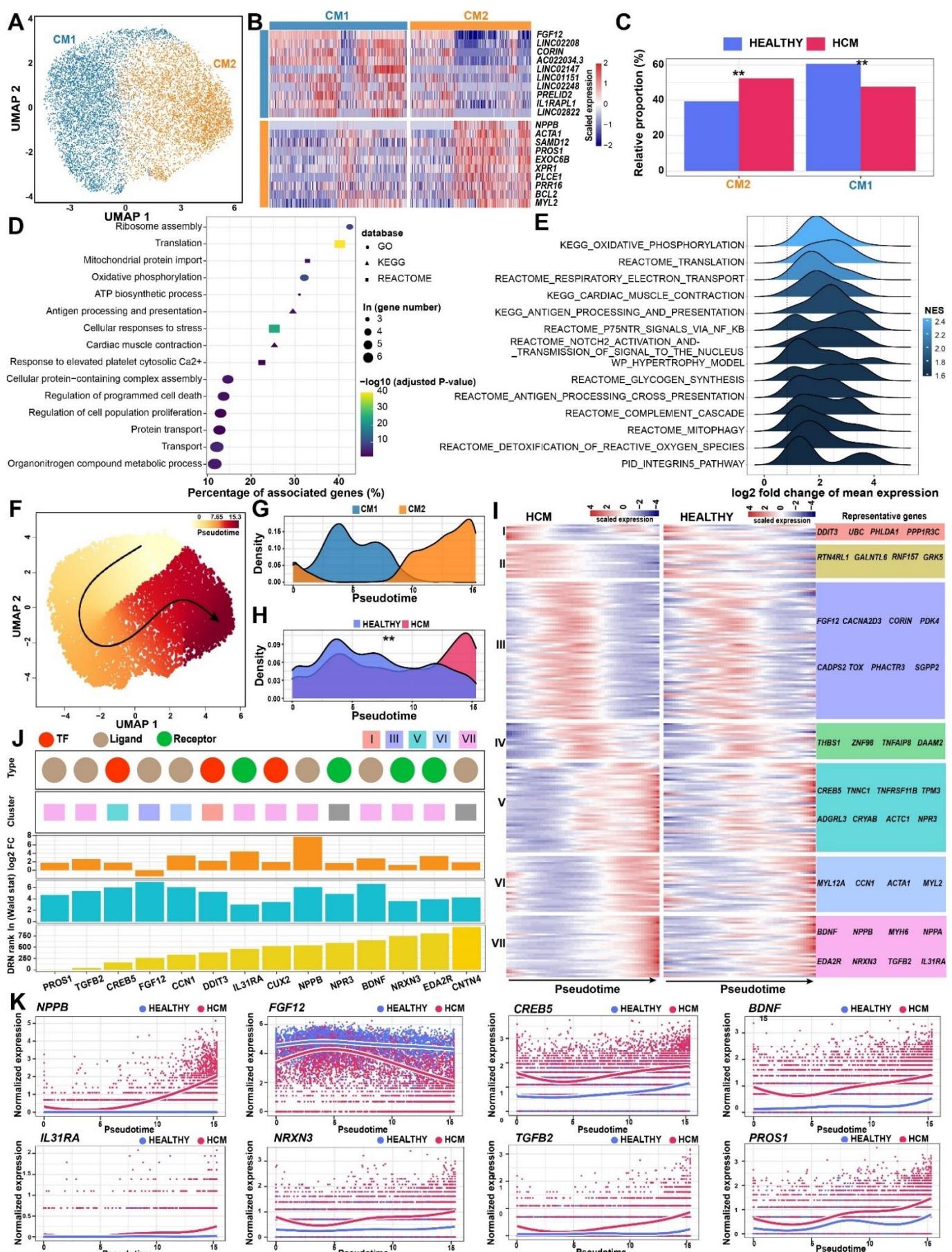
529 43. Tromp A, Mowry B, Giacometto J. Neurexins in autism and schizophrenia—a review of patient mutations,
530 mouse models and potential future directions. *Mol Psychiatry.* 2021;26:747–760.

531 44. Frieler RA, Mortensen RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and
532 remodeling. *Circulation.* 2015;131:1019–1030.


533 45. Aghajanian H, Kimura T, Rurik JG, Hancock AS, Leibowitz MS, Li L, Scholler J, Monslow J, Lo A, Han W,
534 Wang T, Bedi K, Morley MP, Linares Saldana RA, Bolar NA, McDaid K, Assenmacher CA, Smith CL, Wirth
535 D, June CH, Margulies KB, Jain R, Puré E, Albelda SM, Epstein JA. Targeting cardiac fibrosis with
536 engineered T cells. *Nature.* 2019;573:430–433.

537 46. Bujak M, Frangogiannis NG. The role of TGF- β signaling in myocardial infarction and cardiac remodeling.
538 *Cardiovasc Res.* 2007;74:184–195.

539 47. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)- β signaling in cardiac
540 remodeling. *J Mol Cell Cardiol.* 2011;51:600–606.


541 48. Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, Kang B, Liu Z, Jin L, Xing R, Gao R, Zhang L, Dong
542 M, Hu X, Ren X, Kirchhoff D, Roider HG, Yan T, Zhang Z. Global characterization of T cells in non-small-cell
543 lung cancer by single-cell sequencing. *Nat Med.* 2018;24:978–985.

FIGURES WITH LEGENDS

546 **Figure 1. The proportional changes of the major cell types of the human cardiac tissues under HCM**
547 **versus healthy conditions.**

548 **A**, Schematic representation of the overall experimental procedure. The cardiac IVS tissues of HCM patients
549 who underwent surgical myectomy were collected for snRNA-seq (n=10; 10 samples) and spatial transcriptomic
550 assays (n=3; 4 tissue sections). As a control, cardiac IVS tissues from healthy donors of heart transplants (n=2;
551 3 samples) were subjected to snRNA-seq. **B**, Unbiased clustering of 55,122 nuclei from all 13 samples identifies
552 9 major cell types. The number in the parenthesis indicates the nucleus count. **C**, UMAP plots showing the
553 expression of the established marker genes for each cell type. **D**, Comparison of the nucleus densities in the
554 UMAP space between two conditions reveals remarkable changes in the relative proportion of cell types in
555 HCM. Nuclei were randomly sampled for equal numbers in each group (n= 15,939). **E**, The relative proportion
556 of each cell type in each condition. *: P-value < 0.05; **: P-value < 0.01. A permutation-based statistical test
557 (differential proportion analysis; DPA). CM: cardiomyocyte; FB, fibroblast; IEC: lymphatic endothelial cell; SMC:
558 smooth muscle cell; vEC: vascular endothelial cell.

560 **Figure 2. Cardiomyocyte-specific regulatory changes in the pathological remodeling of HCM.**

561 **A**, Subpopulations of cardiomyocytes. **B**, Heatmap showing the molecular signatures of each subpopulation.

562 **C**, The relative proportion of each subpopulation in each condition. **: P-value of the permutation-based DPA

563 test < 0.01 . **D**, Representative terms enriched in the significantly upregulated genes in the cardiomyocytes of

564 HCM. The significance threshold of the hypergeometric test was set to be an adjusted P-value < 0.05 . **E**,

565 Representative pathways that were significantly upregulated in the cardiomyocytes of HCM detected by GSEA.

566 The density curve of the log2 fold change in the expression of the core enrichment genes for each pathway is

567 shown. NES, normalized enrichment score. **F**, Cellular trajectory reconstructed for the transition towards failing

568 cardiomyocytes in HCM using Slingshot. The arrow shows the direction of cellular state changes. **G**, Density

569 curves showing the distributions of the two subpopulations along the trajectory. **H**, Density curves showing the

570 distributions of the cardiomyocytes from different conditions along the trajectory. ** P-value $< 2.2e-16$;

571 Kolmogorov-Smirnov test. **I**, Heatmaps showing the expression dynamics of the 216 genes with significantly

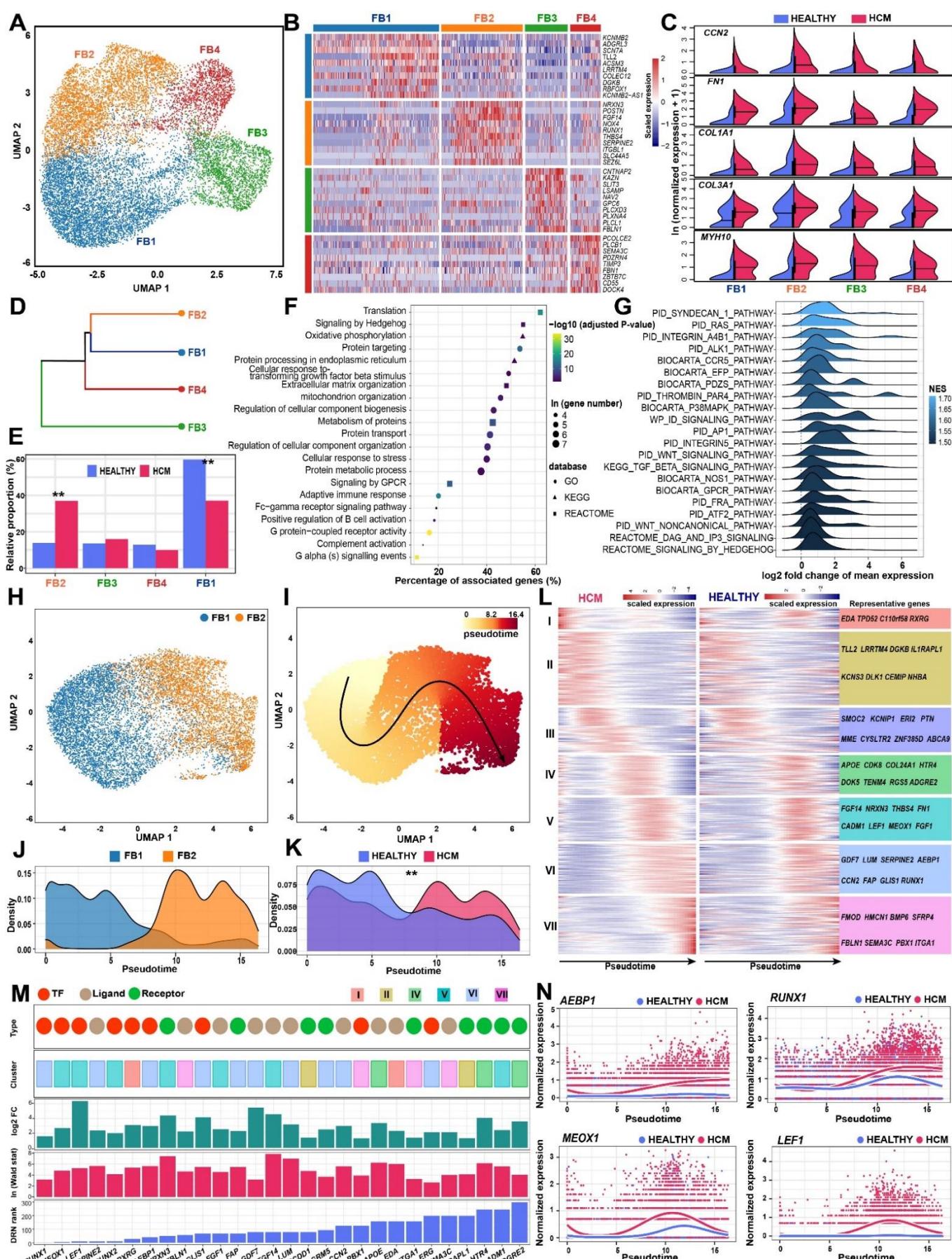
572 different patterns along the trajectory between the two conditions. These genes were detected by differential

573 expression pattern analysis using the “conditionTest” function of tradeSeq and were categorized into 7 gene

574 clusters by hierarchical clustering. The significance threshold was set to be an adjusted P-value < 0.05 . **J**, The

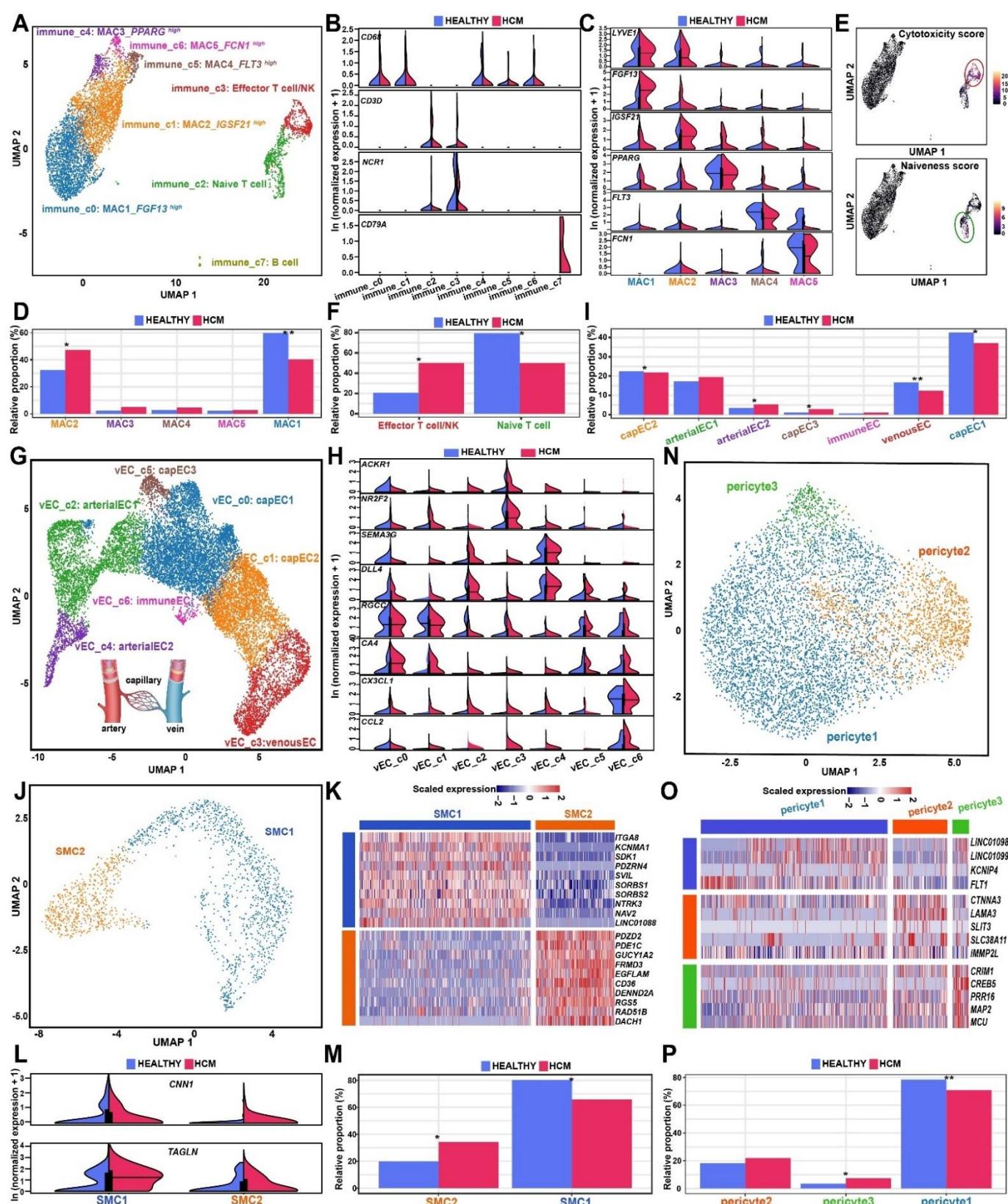
575 candidate target genes that were prioritized based on the results of three independent analyses including the

576 difference in expression patterns, the fold change of expression levels, and the centrality change in GRNs. DRN


577 rank: the gene ranking based on the centrality change in GRNs obtained by differential regulatory network

578 analysis. Log2FC: log2 fold change of the expression levels in cardiomyocytes. Wald stat: the statistics of

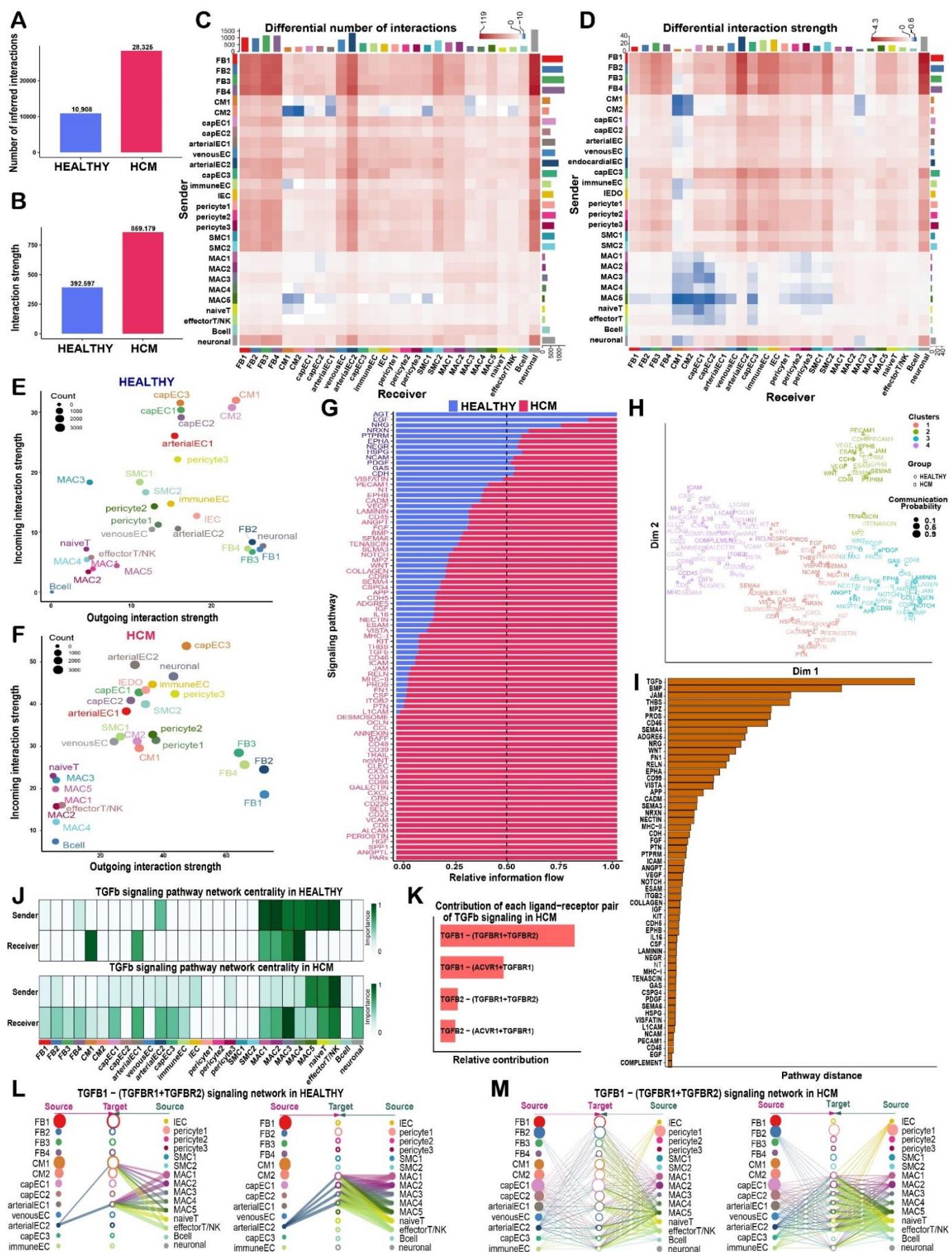
579 differential expression pattern analysis. Only genes encoding transcription factors (TFs), ligands and receptors


580 were considered. **K**, Smoothed expression curves of representative candidate targets along the trajectory in

581 both conditions.

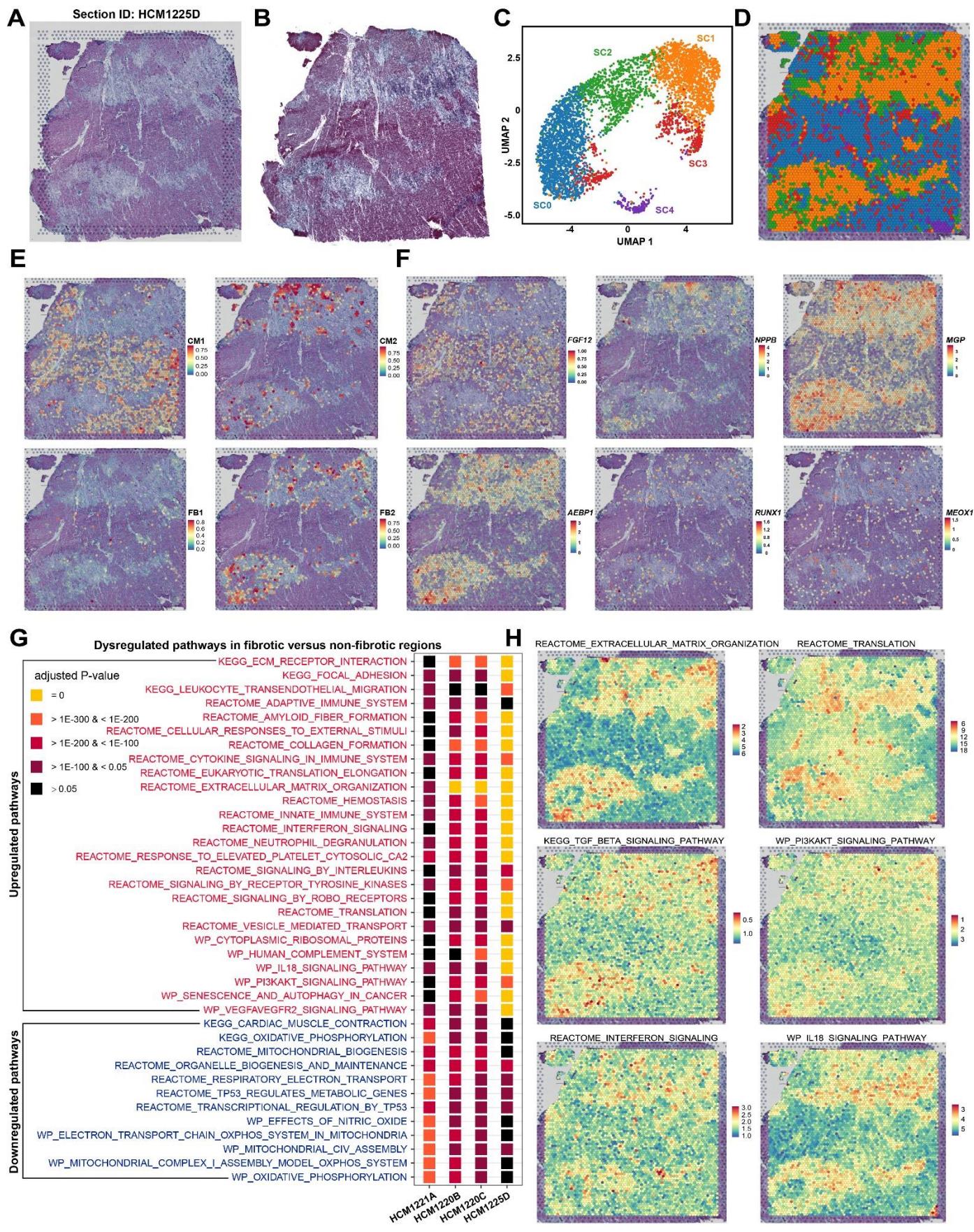
583 **Figure 3. Fibroblast-specific regulatory changes in the pathological remodeling of HCM.**

584 **A**, Subpopulations of fibroblasts. **B**, Heatmap showing the molecular signature of each subpopulation. **C**, Split
585 violin plots showing the expression of the markers for activated fibroblasts. **D**, Hierarchical clustering of the
586 subpopulations. **E**, The relative proportion of each subpopulation in each condition. **: P-value of the
587 permutation-based DPA test < 0.01 . **F**, Representative terms enriched in the significantly upregulated genes in
588 the fibroblasts of HCM. The significance threshold of the hypergeometric test was set to be an adjusted P-value
589 < 0.05 . **G**, Representative pathways that were significantly upregulated in the fibroblasts of HCM detected by
590 GSEA. The density curve of the log2 fold change in the expression of the core enrichment genes for each
591 pathway is shown. NES, normalized enrichment score. **H**, UMAP plot showing the subpopulations FB1 and
592 FB2. **I**, Cellular trajectory reconstructed for the fibroblast activation in HCM using Slingshot. The arrow shows
593 the direction of cellular state changes. **J**, Density curves showing the distributions of the two subpopulations
594 along the trajectory. **K**, Density curves showing the distributions of the fibroblasts from different conditions along
595 the trajectory. ** P-value $< 2.2e-16$; Kolmogorov-Smirnov test. **L**, Heatmaps showing the expression dynamics
596 of the 432 genes with significantly different patterns along the trajectory between the two conditions. These
597 genes were detected by differential expression pattern analysis using the “conditionTest” function of tradeSeq
598 and were categorized into 7 gene clusters by hierarchical clustering. The significance threshold was set to be
599 an adjusted P-value < 0.05 . **M**, The candidate target genes that were prioritized based on the results of three
600 independent analyses including the difference in expression patterns, the fold change of expression levels, and
601 the centrality change in GRNs. **N**, Smoothed expression curves of representative candidate targets along the
602 trajectory in both conditions.



603

604 **Figure 4. The subpopulations of the immune and vascular lineages and their proportional changes in**
 605 **HCM.**


606 **A**, UMAP plots showing the subpopulations of the immune lineage. **B**, Expression of the established markers
 607 for macrophages (*CD68*), T cells (*CD3D*), Natural killer cells (*NCR1*) and B cells (*CD79A*) in each immune

608 subpopulation. **C**, Expression of the marker for each of the five macrophage subpopulations. **D**, Relative
609 proportion of each subpopulation of macrophages in each condition. **E**, UMAP plots showing the cytotoxicity
610 and naiveness scores for each immune nucleus. The cytotoxicity and naiveness scores were calculated by
611 summing the expression of previously reported signatures for T cell cytotoxicity (*PRF1*, *IFNG*, *GNLY*, *NKG7*,
612 *GZMB*, *GZMA*, *GZMH*, *KLRK1*, *KLRB1*, *KLRD1*, *CTSW* and *CST7*) and naiveness (*TCF7*, *SELL*, *LEF1* and
613 *CCR7*).⁴⁸ **F**, Relative proportion of each subpopulation of T/NK cells in each condition. **G**, UMAP plots showing
614 the subpopulations of the vECs. **H**, Expression of the established markers for venous ECs (*ACKR1* and *NR2F2*),
615 arterial ECs (*SEMA3G* and *DLL4*), capillary ECs (*RGCC* and *CA4*) and immune ECs (*CX3CL1* and *CCL2*). **I**,
616 Relative proportion of each subcluster of the vECs in each condition. **J**, UMAP plots showing the subpopulations
617 of the SMCs. **K**, Molecular signature for each SMC subpopulation. **L**, Expression of contractile markers *CNN1*
618 and *TAGLN* in each SMC subpopulation. **M**, Relative proportion of each SMC subpopulation in each condition.
619 **N**, UMAP plots showing the subpopulations of the pericytes. **O**, Molecular signature for each pericyte
620 subpopulation. **P**, Relative proportion of each subpopulation of the pericytes in each condition. In E, F, I, M and
621 P, *: P-value < 0.05, **: P-value < 0.01, the permutation-based DPA test. MAC: macrophage; SMC: smooth
622 muscle cell; vEC: vascular endothelial cell.

624 **Figure 5. Intercellular communication changes in the cardiac tissues of HCM.**

625 **A**, Bar plot showing the total number of ligand-receptor interactions among the subpopulations of the cardiac
626 tissues in both conditions. **B**, Bar plot showing the total interaction strength among the subpopulations of the
627 cardiac tissues in both conditions. The total interaction strength was calculated by summing the communication
628 probability of all inferred interactions. **C**, Heatmap showing the differential number of interactions among
629 subpopulations in HCM versus HEALTHY. In the color bar, red represents an increase in the number of
630 interactions and blue represents a decrease in the number of interactions. The top bar plot shows the sum of
631 the changes in the number of incoming signals for each subpopulation. The right bar plot shows the sum of the
632 changes in the number of outgoing signals for each subpopulation. **D**, Heatmap showing the differential
633 interaction strength among subpopulations in HCM versus HEALTHY. **E**, Bubble plot showing the incoming and
634 outgoing interaction strength for each subpopulation in HCM. The dot size represents the count of interactions.
635 **F**, Bubble plot showing the incoming and outgoing interaction strength for each subpopulation in HEALTHY. **G**,
636 Relative information flow for each signaling pathway in both conditions. The information flow is defined by the
637 sum of the communication probability among all pairs of subpopulations. **H**, Joint manifold learning of the HCM
638 and HEALTHY communication networks and grouping the signaling pathways based on functional similarity. A
639 high degree of functional similarity means that the major senders and receivers are similar. **I**, The Euclidean
640 distance of each pathway in the learn joint manifold. A larger distance means a larger difference in functional
641 similarity (i.e., similarity in senders and receivers) between the two conditions. Only overlapping pathways
642 between the two conditions are shown. **J**, The major senders and receivers of the TGFb signaling pathway
643 inferred through network centrality analysis in HEALTHY (upper panel) and HCM (lower panel). **K**, Relative
644 contribution of each ligand-receptor pair to the overall signal of the TGFb pathway in HCM. **L**, Hierarchical plot
645 showing the inferred communication network for TGFB1-(TGFBR1+TGFBR2) signaling in HEALTHY. **M**,
646 Hierarchical plot showing the inferred communication network for TGFB1-(TGFBR1+TGFBR2) signaling in
647 HCM. In L and M, open and solid circles represent target and source, respectively. Edge width represents the
648 interaction strength and circle size is proportional to the number of nuclei in each subpopulation. Edges are
649 color-coded by the signal source.

650

651

Figure 6. Spatially resolved examination of the expression of candidate genes, the activity of HCM-associated pathways and subpopulations by spatial transcriptomics.

652

A, H&E staining image for the cardiac tissue section HCM1225D. B, Masson's trichrome staining image for a

654 section adjacent to HCM1225D. **C**, UMAP plot showing the spot clusters identified by unbiased clustering of
655 the spots on HCM1225D. **D**, Distribution of the spot clusters on the section HCM1225D. **E**, Spatial location of
656 the subpopulations FB1, FB2, CM1 and CM2 on the section HCM1225D predicted by integrating the snRNA-
657 seq data and the spatial transcriptomic data. **F**, Expression distribution of representative markers and candidate
658 target genes on the section HCM1225D. **G**, Dysregulated pathways in fibrotic versus non-fibrotic regions of the
659 cardiac tissue sections of HCM. The dysregulated pathways were detected based on the pathway activity score
660 of each spot using the Wilcoxon rank-sum test. The significance threshold was set to be a P-value adjusted for
661 multiple testing < 0.05 . The tests were performed separately for each of the four sections. **H**, Activity of
662 representative upregulated pathways in fibrotic regions on the section HCM1225D.