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ABSTRACT 20 

BACKGROUND: Hypertrophy cardiomyopathy (HCM) is the most common cardiac genetic disorder with the 21 

histopathological features of cardiomyocyte hypertrophy and cardiac fibrosis. The pathological remodeling that 22 

occurs in the myocardium of HCM patients may ultimately progress to heart failure and death. A thorough 23 

understanding of the cell type-specific changes in the pathological cardiac remodeling of HCM is crucial for 24 

developing successful medical therapies to prevent or mitigate the progression of this disease. 25 

METHODS: We performed single-nucleus RNA-seq of the cardiac tissues from 10 HCM patients and 2 healthy 26 

donors, and conducted spatial transcriptomic assays of 4 cardiac tissue sections from 3 HCM patients. 27 

Comparative analyses were performed to explore the lineage-specific changes in expression profile, 28 

subpopulation composition and intercellular communication in the cardiac tissues of HCM patients. Based on 29 

the results of independent analyses including pseudotime ordering, differential expression analysis, and 30 

differential regulatory network analysis, we prioritized candidate therapeutic targets for mitigating the 31 

progression to heart failure or attenuating the cardiac fibrosis in HCM. Using the spatial transcriptomic data, we 32 

examined the spatial activity patterns of the key candidate genes, pathways and subpopulations. 33 

RESULTS: Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages and 34 

28 clusters. Significant expansion of vascular-related lineages and contraction of cardiomyocytes, fibroblasts 35 

and myeloid cells in HCM were observed. The transcriptomic dynamics during the transition towards the failing 36 

state of cardiomyocytes in HCM were uncovered. Candidate target genes for mitigating the progression to heart 37 

failure in HCM were obtained such as FGF12, IL31RA, BDNF, S100A1, CRYAB and PROS1. The transcriptomic 38 

dynamics underlying the fibroblast activation were also uncovered, and candidate targets for attenuating the 39 

cardiac fibrosis in HCM were obtained such as RUNX1, MEOX1, AEBP1, LEF1 and NRXN3. 40 

CONCLUSIONS: We provided a comprehensive analysis of the lineage-specific regulatory changes in HCM. 41 

Our analysis identified a vast array of candidate therapeutic target genes and pathways to prevent or attenuate 42 

the pathological remodeling of HCM. Our datasets constitute a valuable resource to examine the lineage-43 

specific expression changes of HCM at single-nucleus and spatial resolution. We developed a web-based 44 

interface (http://snsthcm.fwgenetics.org/) for further exploration. 45 
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INTRODUCTION 47 

Hypertrophy cardiomyopathy (HCM) is the most common cardiac genetic disorder with an estimated minimal 48 

prevalence of 1 in 200.1 HCM is also the leading cause of sudden cardiac deaths (SCDs) in young people, 49 

accounting for 36% of SCDs in young athletes.2 HCM is characterized by an increase in left ventricular wall 50 

thickness in the absence of another cardiac or systemic disease.3 The key histopathological hallmarks of HCM 51 

include cardiomyocyte hypertrophy and disarray as well as cardiac fibrosis.4 Pathological cardiac remodeling 52 

occurs in the myocardium of HCM patients,5 manifesting as cardiomyocyte dysfunction, increased fibroblast 53 

activation (fibrosis), chronic inflammation and cell death. If left untreated, the pathological remodeling may 54 

ultimately lead to adverse events including heart failure, arrhythmias and death. In recent years, significant 55 

efforts have been made to design therapeutic agents for HCM, for example, MYK-461 for inhibition of cardiac 56 

myosin ATPase.6 A thorough understanding of the cellular and molecular changes in the pathological cardiac 57 

remodeling of HCM is crucial for developing successful medical therapies to prevent or mitigate the progression 58 

of this disease. 59 

The transcriptomic alterations in the cardiac tissue of HCM have previously been examined at the tissue level 60 

via bulk RNA-seq.7,8 However, cell type-specific changes could not be obtained from bulk data. Single-cell or 61 

single-nucleus RNA-seq (snRNA-seq) could overcome this limitation and allows unbiased dissection of the 62 

cellular changes at an unprecedented resolution. Given the large size of adult human cardiomyocytes, snRNA-63 

seq has been successfully applied to dissect the heterogeneity of the adult human heart under healthy9 and 64 

diseased conditions, for example, myocardial infarction.10 However, there is still a lack of research exploring 65 

the transcriptomic changes of the HCM in a single-nucleus resolution. The recent advent of spatially resolved 66 

transcriptomics has greatly expanded our scope and power to understand the cellular mechanism of diseases 67 

by providing spatial information of expression that is lost in single-cell/nucleus data.11 Integrated analysis of 68 

snRNA-seq and spatial transcriptomic data would profoundly improve our knowledge regarding the 69 

pathogenesis of diseases. 70 

In this study, we performed snRNA-seq of the cardiac tissues from HCM patients and healthy donors. We also 71 

conducted spatial transcriptomic assays of cardiac tissue sections from HCM patients. Comparative analyses 72 

were performed to explore the lineage-specific changes in expression profile, subpopulation composition and 73 

intercellular communication in the cardiac tissues of HCM patients. We identified the transcriptomic dynamics 74 

during the transition towards the failing state of cardiomyocytes in HCM, and prioritized the candidate 75 

therapeutic target genes for mitigating the progression to heart failure in HCM, such as FGF12, IL31RA, BDNF, 76 
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S100A1, CRYAB and PROS1. We also reconstructed the trajectory of fibroblast activation and prioritized the 77 

candidate targets for attenuating the cardiac fibrosis in HCM, such as RUNX1, MEOX1, AEBP1, LEF1 and 78 

NRXN3. We provided a vast array of candidate target genes and pathways for designing therapeutic agents to 79 

prevent or attenuate the pathological remodeling of HCM. Our datasets constitute a valuable resource and we 80 

developed a web-based interface (http://snsthcm.fwgenetics.org/) for further exploration. 81 

METHODS 82 

The data, analytic methods and materials will be made available on request only for the purposes of reproducing 83 

the results. 84 

Ethics statement 85 

The recruitment of all subjects complied with the ethical regulations approved by the ethics committee of Fuwai 86 

Hospital, the Chinese Academy of Sciences (No. 2020-1315). Written informed consent was received from each 87 

patient. 88 

Study subject enrollment and cardiac tissue collection 89 

The HCM patients (n=13) enrolled in this study underwent surgical myectomy in Fuwai Hospital from 2015 to 90 

2021. All the patients met the diagnostic criteria12 for HCM with a maximal left ventricular wall thickness ≥ 15 91 

mm or ≥ 13 mm in patients with a family history. All the patients belonged to the basal septum subtype, the 92 

most common and severe morphological subtype,4 in which cardiac hypertrophy mainly confines to the basal 93 

interventricular septum (IVS) adjacent to the aortic valve. All the patients exhibited left ventricular outflow tract 94 

(LVOT) obstruction (LVOT gradient ≥30 mm Hg at rest or on provocation). Patients were excluded if they had 95 

cardiac hypertrophy caused by secondary factors, including systemic hypertension, myocardial infarction, 96 

valvular disease or hemodynamic obstruction caused by left-sided obstructive lesions (e.g., valvular stenosis). 97 

In addition, patients were excluded if they had myocarditis and systemic disorders such as RASopathies, 98 

mitochondrial myopathies and storage diseases. For snRNA-seq, cardiac IVS tissues obtained from HCM 99 

patients (n=10) during surgical resection at the obstruction site were immediately frozen and stored in liquid 100 

nitrogen until use for nuclei isolation. For spatial transcriptomic assays, fresh cardiac IVS tissues from HCM 101 

patients (n=3) were concurrently frozen in isopentane precooled by liquid nitrogen and embedded in optical 102 

cutting tissue (OCT) compound. As a control for snRNA-seq, cardiac IVS tissues were obtained from healthy 103 

donors of heart transplants (n=2). Detailed methods are provided in the Extended Methods of the Data 104 

Supplement. 105 
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RESULTS 106 

Single-nucleus and spatial transcriptomic sequencing of the cardiac IVS tissues from HCM patients and 107 

healthy donors 108 

As illustrated in Figure 1A, the cardiac IVS tissues of HCM patients who underwent surgical myectomy were 109 

collected for snRNA-seq (n=10; 10 samples) and spatial transcriptomic assays (n=3; 4 tissue sections, of which 110 

HCM1220B and HCM1220C were from the same patient). As a control group (referred to as HEALTHY), cardiac 111 

IVS tissues from healthy donors of heart transplants (n=2; 3 samples, of which HEALTHY1A and HEALTHY1B 112 

were from the same donor) were also subjected to snRNA-seq. The control group was ethnicity-and sex-113 

matched with the HCM group (Chinese, male). The detailed demographic and clinical information of the enrolled 114 

subjects were in Table I in the Data Supplement. After quality control, a total of 55,122 nuclei (HCM: 39,183; 115 

HEALTHY: 15,939) were obtained (Table II in the Data Supplement). For the spatial transcriptomic data, 3,339 116 

to 4,849 spots were detected to be over tissue on the four sections (Table III in the Data Supplement). We 117 

developed a web-based interface (http://snsthcm.fwgenetics.org/) for all the datasets, which permit interactive 118 

examination of the expression of any gene or the activity of any pathway for both the snRNA-seq and spatial 119 

transcriptomic data. 120 

Significant expansion of vascular-related lineages and contraction of cardiomyocytes, fibroblasts and 121 

myeloid cells in HCM 122 

Based on the expression of established markers for each lineage,9,13 as shown in Figure 1B and 1C, a total of 123 

9 cell types were identified by joint clustering of the snRNA-seq data from both conditions: vascular endothelial 124 

cells (vECs, marked by VWF), fibroblasts (FBs, marked by PDGFRA), cardiomyocytes (CMs, marked by 125 

TNNT2), pericytes (marked by KCNJ8), myeloid cells (marked by C1QA), smooth muscle cells (SMCs, marked 126 

by MYH11), lymphoid cells (marked by IL7R), neuronal cells (marked by NRXN1) and lymphatic endothelial 127 

cells (lECs, marked by MMRN1). By comparing the nucleus densities in the UMAP space between the two 128 

conditions, remarkable changes in the relative proportion of cell types in HCM could be found, particularly for 129 

vECs, pericytes and cardiomyocytes (Figure 1D, Figure I in the Data Supplement). Next, we quantified the 130 

changes in cellular composition between the two conditions (Figure 1E). To determine whether the changes 131 

were expected by chance, we performed a permutation-based statistical test (differential proportion analysis; 132 

DPA) as described previously.14 Vascular-related lineages including vECs, pericytes and SMCs were 133 

significantly expanded (P-value < 0.05, the DPA test), which was consistent with the knowledge of increased 134 

angiogenesis in HCM.15 Cardiomyocytes, fibroblasts and myeloid cells were significantly contracted (P-value < 135 
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0.05, the DPA test), which may reflect the increased cell death in HCM. Figure 1F shows the distinct molecular 136 

signatures of each lineage. To facilitate further data usage, the mean expression of all genes in each lineage 137 

under both conditions was provided in Table IV in the Data Supplement. 138 

Cardiomyocyte-specific regulatory changes in the pathological cardiac remodeling of HCM 139 

Unbiased clustering grouped the cardiomyocytes into two subpopulations: CM1 and CM2 (Figure 2A; Table V 140 

in the Data Supplement). CM2 expressed high levels of maladaptive markers indicating the reactivation of the 141 

fetal gene program such as NPPB (encoding natriuretic peptide B, a clinically used biomarker for heart failure) 142 

and ACTA1 (encoding skeletal α-actin),16 thus representing a failing state of cardiomyocytes (Figure 2B). CM1 143 

expressed high levels of FGF12 and CORIN, which may represent cardiomyocytes in a relatively homeostatic 144 

or compensatory hypertrophy state. Consistent with this, CM2 was significantly expanded in HCM, while CM1 145 

was significantly contracted (Figure 2C; P-value < 0.01, the DPA test). Next, using DEsingle,17 we detected the 146 

differentially expressed genes in HCM versus HEALTHY in each lineage (Table VI in the Data Supplement). For 147 

cardiomyocytes, 2,021 genes were significantly upregulated, and 486 genes were significantly downregulated 148 

(the absolute of log2 fold change >1, adjusted P-value < 0.05). In agreement with the pathological hypertrophy 149 

phenotype of HCM, the upregulated genes were enriched for terms associated with cell growth and protein 150 

synthesis (e.g., “Ribosome assembly” and “Translation”), energy metabolism (e.g., “Oxidative phosphorylation”), 151 

stress response (e.g., “Cellular responses to stress”), immune response (e.g., “Antigen processing and 152 

presentation”), cell death (e.g., “Regulation of programmed cell death”), metabolic reprogramming (e.g., 153 

“Organonitrogen compound metabolic process”), as well as contraction (e.g., “Cardiac muscle contraction”; 154 

Figure 2D and Table VII in the Data Supplement). We further explored the dysregulated pathways in each 155 

lineage through gene set enrichment analysis (GSEA),18 which facilitates biological interpretation by robustly 156 

detecting concordant differences at the pathway level (Table VIII in the Data Supplement). As shown in Figure 157 

2E, besides the pathways identified above by functional enrichment analysis, GASE analysis revealed more 158 

pathways that were upregulated in cardiomyocytes of HCM, for example, “NOTCH2 ACTIVATION AND 159 

TRANSMISSION OF SIGNAL TO THE NUCLEUS”, which supports the potential role of NOTCH signaling in 160 

cardiac hypertrophy.19 In addition, using the method implemented in bigScale2,20 gene regulatory networks 161 

(GRNs) for each lineage were built separately for each condition. Comparative analysis of the GRNs between 162 

HCM and HEALTHY (differential regulatory networks analysis; DRN analysis) was performed for each lineage, 163 

and genes were ranked based on the changes in centrality, i.e., biological importance in the GRN (Table IX in 164 

the Data Supplement). Figure II in the Data Supplement shows the GRNs of cardiomyocytes in both conditions, 165 

and representative genes with great changes in centrality were identified and labeled such as CRYAB (Crystallin 166 
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Alpha B), EIF1 (Eukaryotic Translation Initiation Factor 1), S100A1 (S100 Calcium Binding Protein A1), PROS1 167 

(Protein S), TGFB2 (Transforming Growth Factor Beta 2) and CREB5 (CAMP Responsive Element Binding 168 

Protein 5). 169 

Transcriptomic dynamics during the transition towards the failing state of cardiomyocytes in HCM 170 

To decipher the transcriptomic dynamics during the transition towards the failing state of cardiomyocytes and 171 

identify potential targets for mitigating the progression of heart failure in HCM, we reconstructed the trajectory 172 

through the pseudo-temporal ordering of the nuclei of cardiomyocytes using Slingshot21 (Figure 2F). The failing 173 

cardiomyocytes of CM2 were ordered at relatively later pseudotime (Figure 2G). Significant differences existed 174 

between the pseudotime distributions of the two conditions (Figure 2H; P-value < 2.2e-16, the Kolmogorov-175 

Smirnov test). Then, using tradeSeq,22 the genes with significantly different expression patterns along the 176 

trajectory between the two conditions were identified and clustered into 7 gene clusters (Figure 2I; Table X in 177 

the Data Supplement; adjusted P-value adjusted < 0.05). Notably, the maladaptive markers NPPB and NPPA 178 

were within the last gene cluster (VII). Next, we prioritized the candidate target genes for medical therapies 179 

based on the results of three independent analyses including the difference in expression patterns along the 180 

trajectory (adjusted P-value < 0.05), the fold change of expression levels between conditions (the absolute of 181 

log2 fold change > 1), and the centrality change in GRNs (DRN rank < 1000). Only genes encoding transcription 182 

factors (TFs), ligands and receptors were considered. Figure 2J showed 14 candidate genes we prioritized. For 183 

most of the genes, the roles in the transition of cardiomyocytes towards failing states in HCM have not been 184 

recognized previously such as FGF12 (fibroblast growth factor 12), CREB5, BDNF (brain-derived neurotrophic 185 

factor), IL31RA (interleukin 31 receptor A), NRXN3 (neurexin 3), TGFB2 and PROS1 (Figure 2K). Notably, 186 

some of them, e.g., FGF12, IL31RA and PROS1 were significantly upregulated in the cardiac tissues of HCM 187 

(q-value < 0.05) according to the results of bulk RNA-seq7 previously performed by our lab (Figure III in the 188 

Data Supplement), further reflecting their roles in the pathogenesis of HCM. 189 

Fibroblast-specific regulatory changes in the pathological cardiac remodeling of HCM 190 

Four fibroblast subpopulations were identified through unbiased clustering: KCNMB2 high FB1, NRXN3 high FB2, 191 

CNTNAP2 high FB3 and CD55 high FB4 (Figure 3A and 3B; Table V in the Data Supplement). Notably, FB2 192 

expressed the highest levels of markers for activated fibroblasts (previously known as myofibroblasts23) such 193 

as CCN2, FN1, COL1A1, COL3A1 and MYH10,24 thus representing an activated state of fibroblasts. 194 

Hierarchical clustering revealed a close relationship between FB1 and FB2 (Figure 3D), and thus FB1 may 195 

represent a state of quiescent fibroblasts. Consistent with this, FB2 was significantly expanded while FB1 was 196 
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significantly contracted in HCM versus HEALTHY (Figure 3E; P-value < 0.01, the DPA test). Next, differentially 197 

expressed genes in fibroblasts between the two conditions were detected (Table VI in the Data Supplement). 198 

In line with the fibrosis that occurred in HCM, fibrosis-associated terms such as “Extracellular matrix 199 

organization” and “Cellular response to transforming growth factor beta stimulus” were enriched in the 200 

upregulated genes (Figure 3F and Table VII in the Data Supplement). In addition, the upregulated genes were 201 

also enriched for terms related to protein translation and processing, energy metabolism, stress response, as 202 

well as immune response. Notably, Hedgehog signaling and G protein-coupled receptor (GPCR) signaling were 203 

also enriched (Figure 3F), consistent with their roles in fibrogenesis known in other tissues and disease 204 

conditions.25,26 Moreover, GSEA revealed a more comprehensive list of signaling pathways that were 205 

upregulated in fibroblasts of HCM (Figure 3G and Table VIII in the Data Supplement), including classic 206 

profibrotic signaling pathways27 (e.g., “TGF BETA SIGNALING PATHWAY” and “WNT SIGNALING PATHWAY”) 207 

and cell surface ECM receptor pathways (e.g., “SYNDECAN 1 PATHWAY” and “INTEGRIN A4B1 PATHWAY”). 208 

In addition, the top five genes with great changes in centrality that were detected through DRN analysis included 209 

ADAM19 (ADAM metallopeptidase domain 19), RUNX1 (RUNX family transcription factor 1), CTIF (cap-binding 210 

complex dependent translation initiation factor), MEOX1 (mesenchyme homeobox 1) and FGF7 (fibroblast 211 

growth factor 7; Figure IV and Table IX in the Data Supplement). 212 

Transcriptomic dynamics during the activation of fibroblasts in HCM 213 

To decipher the transcriptomic dynamics during the activation of fibroblasts and identify candidate therapeutic 214 

targets to alleviate the cardiac fibrosis in HCM, we reconstructed the trajectory of fibroblast activation through 215 

the pseudo-temporal ordering of the nuclei of FB1 and FB2 (Figure 3H and 3I). The activated fibroblasts FB2 216 

were ordered at the end of the trajectory (Figure 3J). The pseudotime distribution of the fibroblasts of HCM was 217 

significantly different from those of HEALTHY (Figure 3K; P-value < 2.2e-16, Kolmogorov-Smirnov test). Next, 218 

the genes exhibiting significantly different expression patterns along the trajectory between the two conditions 219 

were identified and clustered into 7 gene clusters (Figure 3L; Table X in the Data Supplement; P-value adjusted 220 

for multiple testing < 0.05). Then, we prioritized the candidate target genes according to the criteria described 221 

above. Figure 3M showed 28 candidate genes that we prioritized. Notably, the top candidates included TF 222 

genes such as RUNX1, MEOX1, LEF1 (lymphoid enhancer-binding factor 1) and AEBP1 (AE Binding Protein 223 

1), which were significantly more upregulated along the trajectory of fibroblast activation in HCM versus 224 

HEALTHY (Figure 3N). In addition, results from the bulk RNA-seq7 showed that some of the genes, such as 225 

AEBP1, LEF1, NRXN3 and GLIS1, were significantly upregulated in the cardiac tissues of HCM, further 226 

reflecting their roles in the pathogenesis of HCM (Figure III in the Data Supplement). 227 
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The subpopulations of the immune and vascular lineages and their proportional changes in HCM 228 

Unbiased clustering revealed 8 immune subpopulations (Figure 4A). The subpopulations immune_c0, c1, c4, 229 

c5 and c6 expressed high levels of CD68 (Figure 4B), thus representing five subpopulations of macrophages 230 

(which were referred to as MAC1-5 hereafter). As shown in Figure 4C, FGF13 high MAC1 and IGSF21 high MAC2 231 

expressed high levels of LYVE1, which marked for vessel-associated resident macrophages with M2-like 232 

phenotypes.28 MAC5 expressed high levels of FCN1, which marks proinflammatory macrophages.29 Differential 233 

proportional analysis revealed a significant expansion of MAC2 and contraction of MAC1 (Figure 4D; P-value 234 

< 0.05, the DPA test), and thus MAC2 represented a more activated state compared to MAC1. Both functional 235 

enrichment analysis and GSEA supported the immune activation of macrophages in HCM (Figure VA in the 236 

Data Supplement). Besides a small cluster of the nuclei of B cells (marked by CD79A), another two closely 237 

related subpopulations of the lymphoid lineages were identified: immune_c2 and immune_c3. Immune_c2 238 

expressed high levels of the T cell marker CD3D (Figure 4B) and exhibited high naiveness scores (Figure 4E), 239 

thus representing nuclei of naïve T cells. Immune_c3 expressed high levels of the T cell marker CD3D and the 240 

Natural Killer (NK) cell marker NCR1, and exhibited high cytotoxicity scores (Figure 4E), thus representing a 241 

mixture of the nuclei of effector T/NK cells. Expectedly, we observed a significant expansion of the effector T/NK 242 

nuclei and a significant contraction of the naïve T nuclei (Figure 4F; P-value < 0.05, the DPA test). 243 

For the vEC lineage, we identified 7 subpopulations that were aligned consecutively in the UMAP space (Figure 244 

4G). From the left to the right of UMAP1, based on the established markers,9 the subclusters were assigned to 245 

arterial ECs (marked by SEMA3G and DLL4; arterial EC2 and arterial EC1), capillary ECs (marked by RGCC 246 

and CA4; capEC3, capEC1, immune EC and capEC2) and venous ECs (marked by ACKR1 and NR2F2; 247 

venousEC; Figure 4H). A significant expansion of most subpopulations except for capEC1 and venousEC was 248 

observed (P-value < 0.05, the DPA test; Figure 4I). For SMCs, two subpopulations were identified with distinct 249 

expression profiles: SMC1 and SMC2 (Figure 4J and 4K). Compared with SMC1, SMC2 expressed lower levels 250 

of contractile markers such as CNN1 and TAGLN (Figure 4L) and were aligned closely to pericytes in the UMAP 251 

space (Figure VI in the Data Supplement). These results suggest that SMC2 may represent the vascular SMCs 252 

of the small vasculature that was greatly expanded in HCM. Consistent with this, a significant expansion of 253 

SMC2 was observed (P-value < 0.05, the DPA test; Figure 4M). For pericytes, three subpopulations were 254 

identified: pericyte1, pericyte2 and pericyte3 (Figure 4N and 4O), and an expansion of pericyte2 was observed 255 

(P-value < 0.05, the DPA test; Figure 4P). The subpopulation pericyte2 was closely related to SMCs based on 256 

the alignment in the UMAP space (Figure VI in the Data Supplement), which may represent pericytes 257 

surrounding the capillaries with relatively large caliber. The representative pathways upregulated in each of the 258 
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three types of vascular lineage were shown in Figure V in the Data Supplement. Notably, like those observed 259 

in cardiomyocytes and fibroblasts, energy metabolism and immune response-related pathways were 260 

upregulated in all three cell types. 261 

Intercellular communication changes in the cardiac tissue of HCM inferred from the snRNA-seq data 262 

To date, Intercellular interactions in HCM have mostly been characterized in vitro through coculture experiments. 263 

Based on the snRNA-seq data, CellChat 30 was used to infer ligand-receptor interactions among subpopulations 264 

in vivo separately for each condition (Table XI in the Data Supplement). Through pattern recognition approaches, 265 

the dominant incoming and outgoing signal patterns for each subpopulation were detected for each condition 266 

(Figure VII in the Data Supplement), and subpopulations belonging to the same lineage had more similar 267 

patterns. The inferred total number (Figure 5A) and strength of interactions (Figure 5B) were significantly 268 

increased in HCM, reflecting an enhanced intercellular communication in diseased conditions as reported in 269 

other diseases.31 Fibroblast subpopulations had a great increase in the number (Figure 5C) and strength (Figure 270 

5D) of interactions for both outgoing and incoming signals, reflecting their central roles in the pathological 271 

remodeling of HCM. Notably, neuronal cells exhibited significantly enhanced incoming signals from other 272 

lineages, e.g., fibroblasts. Remarkably, cardiomyocytes, especially the failing subpopulation CM2, exhibited 273 

reduced communication with themselves (autocrine) and some other lineages (paracrine), e.g., macrophages. 274 

The remarkable change of cardiomyocytes in communication could also be observed by comparing the relative 275 

positions of cardiomyocytes in the 2D signal space between HEALTHY (Figure 5E) and HCM (Figure 5F). 276 

Next, we compared the relative information flow for each signaling pathway between two conditions (Figure 5G; 277 

Figure VIII in the Data Supplement), and identified pathways that were greatly enhanced in HCM (e.g., PTN, 278 

ITGB2, CSF, PROS, ICAM, CD46, TGFb, MHC-1, ESAM and WNT) or specific to the HCM condition (e.g., 279 

PARs, ANGPTL and SPP1). Through joint manifold learning of the inferred communication networks, the 280 

signaling pathways were grouped based on functional similarity (i.e., similarity in senders and receivers, Figure 281 

5H). The Euclidean distance of each pathway in the learn joint manifold reflected the changes in functional 282 

similarly between the two conditions. As shown in Figure 5I, the pathway with the largest distance was the TGFb 283 

pathway. In line with this, network centrality analysis confirmed that the TGFb pathway greatly changed in 284 

senders and receivers in HCM (Figure 5J): the top sender changed from MAC2 in HEALTHY to effector T/NK 285 

cells in HCM, and the top receiver changed from CM1 to MAC3. Then, we found that TGFB1-286 

(TGFBR1+TGFBR2) was the ligand-receptor pair that contributed most to the network of TGFb signaling in the 287 

cardiac tissues of HCM (Figure 5K). As shown in Figure 5L and 5M, TGFB1-(TGFBR1+TGFBR2) signaling was 288 
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enhanced in HCM, and the paracrine signal of TGFB1 received by fibroblasts, cardiomyocytes and vECs were 289 

predominately secreted by effector T/NK cells, naïve T cells and proinflammatory macrophages MAC5. The 290 

communication strength among subpopulations for any pathway or ligand-receptor pair is accessible through 291 

our web-based interface (http://snsthcm.fwgenetics.org/). 292 

Spatially resolved examination of the expression of candidate genes, the activity of HCM-associated 293 

pathways and subpopulations by spatial transcriptomics. 294 

As shown in Figure IX in the Data Supplement, the four tissue sections selected for spatial transcriptomic assays 295 

contained regions with replacement fibrosis and/or diffuse (interstitial or perivascular) fibrosis that commonly 296 

occur in HCM. The section HCM1225D was characterized by large replacement fibrotic scars and interstitial 297 

fibrosis (also see Figure 6A and 6B). For the section HCM1221A, interstitial fibrosis was restricted to a relatively 298 

narrow region close to the endocardium, while most regions represented non-fibrotic cardiac tissues. The 299 

sections HCM1220B and HCM1220C were featured by extensive diffuse fibrosis. Through unbiased clustering 300 

of the spots, spots in fibrotic regions could be separated from those in non-fibrotic regions. For example, spot 301 

clusters SC0 and SC1 generally represented spots in fibrotic and non-fibrotic regions on the section HCM1225D, 302 

respectively (Figure 6C and 6D; Figure X in the Data Supplement). Likewise, the fibrotic and non-fibrotic spot 303 

clusters were identified for other sections (Figure XI-XIII in the Data Supplement). Following the label transfer 304 

workflow of Seurat, we integrated the snRNA-seq data and the spatial transcriptomic data. CM1, the 305 

cardiomyocyte subpopulation in a homeostatic or compensatory hypertrophy state (marked by FGF12), was 306 

predicted to be localized in non-fibrotic regions, while CM2, the cardiomyocyte subpopulation in a failing state 307 

(marked by NPPB), was localized close to the fibrotic regions (Figure 6E and 6F). FB1, the quiescent fibroblast 308 

subpopulation, was mainly in non-fibrotic regions, while FB2, the activated fibroblast subpopulation, was in 309 

fibrotic regions (Figure 6E). The candidate target genes AEBP1, RUNX1, MEOX1 and MGP were highly 310 

expressed in fibrotic regions (Figure 6F). Therefore, the spatial transcriptomic data confirmed the results of our 311 

snRNA-seq analysis above. Next, the dysregulated genes and pathways in fibrotic versus non-fibrotic regions 312 

were identified separately for each section (Table XII-XIII in the Data Supplement). As shown in Figure 6G, the 313 

upregulated pathways were mainly involved in ECM remodeling (e.g., 314 

“REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION” and “REACTOME_TRANSLATION”), fibrosis-315 

related signaling (e.g., “KEGG_TGF_BETA_SIGNALING_PATHWAY” and 316 

“WP_PI3KAKT_SIGNALING_PATHWAY”) and immune response (e.g., 317 

“REACTOME_INTERFERON_SIGNALING” and “WP_IL18_SIGNALING PATHWAY”), while the 318 

downregulated pathways were mainly involved in contraction (e.g., 319 
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“KEGG_CARDIAC_MUSCLE_CONTRACTION”), energy metabolism (e.g., “KEGG_OXIDATIVE 320 

PHOSPHORYLATION”) and TP53-mediated stress response (e.g., 321 

“REACTOME_TRANSCRIPTIONAL_REGULATION_BY_TP53”). Figure 6H showed that the representative 322 

upregulated pathways exhibited high expression activity in the fibrotic regions. 323 

DISCUSSION 324 

Understanding the regulatory changes under diseased conditions is of fundamental importance for successful 325 

drug development. By using snRNA-seq and spatial transcriptomic assays, the present study provided the first 326 

comprehensive analysis of the lineage-specific changes in expression profile, subpopulation composition and 327 

intercellular communication in the cardiac tissues of human HCM patients. The candidate genes we prioritized 328 

based on multiple independent analyses may serve as therapeutic targets to prevent or attenuate the 329 

pathological remodeling of HCM. 330 

While cardiac remodeling is orchestrated by multiple lineages, the cardiomyocytes function as the most 331 

important determinants of cardiac conditions.32 Thus, medical therapies directly targeting the cardiomyocytes 332 

may represent the most promising strategy to alleviate pathological hypertrophy or mitigate the progression to 333 

heart failure in HCM. The single-nuclei resolution data allowed us to examine the cardiomyocyte-specific 334 

regulatory changes of HCM in vivo (Table VI in the Data Supplement). The results of the functional enrichment 335 

analysis and GSEA (Figure 2D and 2E) well recapitulated the features known for pathological cardiac 336 

hypertrophy,16 including increased protein translation, energy metabolism, stress response, immune response, 337 

cell death and contraction. Among the genes that were greatly changed in centrality through the DRN analysis 338 

(Figure II and Table IX in the Data Supplement), some have been implicated in cardiac hypertrophy or heart 339 

failure; For example, CRYAB (Crystallin Alpha B) has been demonstrated to suppress pressure overload-340 

induced cardiac hypertrophy in mice.33 S100A1 (S100 Calcium Binding Protein A1) has been suggested to be 341 

a target for the treatment of heart failure.34 However, the precise roles of most genes have not been elucidated 342 

in the pathogenesis of HCM such as PROS1 (Protein S) and CREB5 (CAMP Responsive Element Binding 343 

Protein 5). Cardiomyocytes were clustered into two subpopulations: CM1 and CM2 (Figure 2A), which 344 

represented a homeostatic or compensatory hypertrophy state and a failing state, respectively. The failing 345 

cardiomyocyte subpopulation CM2 was found to be close to the fibrotic regions by spatial transcriptomics 346 

(Figure 6E), which reflected the detrimental effects of cardiac fibrosis on cardiomyocytes in HCM. Intercellular 347 

communication analysis revealed that cardiomyocytes, especially the failing subpopulation CM2, exhibited 348 

reduced communication with themselves (autocrine) and some other lineages (paracrine) in HCM (Figure 5C 349 
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and 5D), reflecting communication dysfunction of cardiomyocytes in HCM. 350 

Pathological cardiac hypertrophy is a common predecessor to heart failure.35 A recent study reported the 351 

transcriptomic differences of cardiomyocytes between early (hypertrophic cardiomyocytes) and maladaptive 352 

phage (failing cardiomyocytes) of cardiac remodeling in pressure overload-induced mouse models,36 Through 353 

pseudo-temporal ordering, we identified the transcriptomic dynamics during the transition towards the failing 354 

state of cardiomyocytes in HCM of human patients (Figure 2I). Based on multiple lines of evidence from 355 

independent analyses, we obtained a list of genes that could serve as potential medical targets for mitigating 356 

the progression of heart failure in HCM (Figure 2J), and most have not been implicated in heart failure or cardiac 357 

hypertrophy such as FGF12, IL31RA, BDNF and PROS1. Notably, the expression of FGF12 (fibroblast growth 358 

factor 12) decreased along the trajectory towards the failing state in HCM (Figure 2K). FGF12 has recently 359 

been reported to inhibit the pathological remodeling of SMCs in pulmonary arterial hypertension37. Likewise, 360 

we speculated that it may play a protective role in the pathological remodeling of cardiomyocytes in HCM. 361 

Cardiac fibrosis is a scarring process in the cardiac tissue characterized by excessive deposition of ECM in 362 

response to pathophysiological stimuli.38 A high burden of cardiac fibrosis exists in HCM patients,39 which leads 363 

to diastolic dysfunction. Cardiac fibrosis has been proved to be an independent predictor of adverse outcomes 364 

including SCD and heart failure in HCM.40 Cardiac fibrosis is mediated by the activation of fibroblasts, and 365 

understanding the regulatory mechanism underlying the fibroblast activation in HCM is critical for developing 366 

effective medical therapies to alleviate the cardiac fibrosis and thereby prevent adverse outcomes for HCM 367 

patients. We identified the activated fibroblast subpopulation FB2, which was significantly expanded (Figure 3E) 368 

and localized in fibrotic regions (Figure 6E) as expected. Furthermore, based on multiple lines of evidence from 369 

independent analyses, we obtained 28 candidate target genes for anti-fibrosis medical development (Figure 370 

3M). Among them, some top-ranked TF genes may represent key regulators driving the fibroblast activation in 371 

HCM or other fibrosis-associated conditions. For example, RUNX1 has recently been suggested to be a key 372 

regulator of cardiac fibrosis following myocardial infarction.10 A recent study demonstrated that MEOX1 373 

regulated the pro-fibrotic function and was implicated in the fibrosis of multiple human organs including the 374 

heart, liver, lung and kidney.41 AEBP1 (also named ACLP) has been implicated in the fibroblast activation of 375 

lung fibrosis.42 However, our study also identified an array of novel genes and pathways that have not been 376 

explicitly implicated in fibrosis. For example, LEF1 (encoding a transcription factor involved in the Wnt signaling 377 

pathway; Figure 3M) and IL18 signaling pathway (Figure 6H). Intriguingly, NRXN3, encoding a transmembrane 378 

receptor protein of the neurexin family that is predominantly expressed in neurons and is mostly discussed in 379 

mental diseases,43 was found to be highly expressed in activated fibroblasts (Figure 3B), and its precise role in 380 
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cardiac fibrosis merit further exploration. 381 

Increasing evidence has shown that immune cells coordinate the responses of cardiomyocytes (e.g., 382 

hypertrophy) and other noncardiomyocytes (e.g., fibroblast activation) during pathological cardiac remodeling.44 383 

Therefore, identifying the disease-associated immune cell subpopulations and developing therapies regulating 384 

the phenotype of cardiac immune cells represent another important strategy for treatment, for example, 385 

targeting cardiac fibrosis with engineered T cells.45 We explored the alterations of the immune 386 

microenvironment in the cardiac tissue of HCM and observed the activation of both innate (e.g., tissue-resident 387 

macrophages) and adaptive (e.g., T/NK cells) immunity (Figure 4). Meanwhile, immune response-related 388 

pathways, for example, antigen processing and presentation, were found to be upregulated in all the 389 

nonimmune cell types, reflecting an enhanced immune response in HCM. The TGF-β signaling has many 390 

pleiotropic effects not only in disease, for example, promoting cardiac hypertrophy and fibrosis in the 391 

pathological cardiac remodeling, but also in tissue homeostasis.46 While TGF-β blockade may be a promising 392 

therapeutic strategy, direct and excessive TGF-β inhibition may result in matrix degradation, cardiac dilation 393 

and dysfunction.47 Though intercellular communication analysis, we found that the top sender of TGF-β 394 

changed from MAC2 in HEALTHY to effector T/NK cells in HCM (Figure 5J), which suggest that inhibiting the 395 

activation of T/NK cells may attenuate the TGF-β signaling and thereby alleviate the pathological remodeling in 396 

HCM while avoiding the deleterious effects of direct TGF-β blockade. 397 

The number of subjects in the healthy group (n=2) was smaller than the HCM group (n=10) in the current study. 398 

This may limit the statistical power of comparative analyses. Additional control samples would be included to 399 

address this limitation in subsequent studies. In addition, only the TFs, ligands and receptors were considered 400 

in the prioritization of candidate targets for subsequent functional studies of our lab; however, other types of 401 

molecules, e.g., kinases, may also serve as ideal targets for drug development. We provided the analysis results 402 

for all the genes in supplemental tables for further prioritization by the community. 403 

In conclusion, we provided a comprehensive analysis of the lineage-specific regulatory changes in HCM. Our 404 

analysis identified a vast array of candidate therapeutic target genes and pathways to prevent or attenuate the 405 

pathological remodeling of HCM. Our datasets constitute a valuable resource to examine the cell type-specific 406 

expression changes of HCM at single-nucleus and spatial resolution. 407 
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FIGURES WITH LEGENDS 544 
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Figure 1. The proportional changes of the major cell types of the human cardiac tissues under HCM 546 

versus healthy conditions. 547 

A, Schematic representation of the overall experimental procedure. The cardiac IVS tissues of HCM patients 548 

who underwent surgical myectomy were collected for snRNA-seq (n=10;10 samples) and spatial transcriptomic 549 

assays (n=3; 4 tissue sections). As a control, cardiac IVS tissues from healthy donors of heart transplants (n=2; 550 

3 samples) were subjected to snRNA-seq. B, Unbiased clustering of 55,122 nuclei from all 13 samples identifies 551 

9 major cell types. The number in the parenthesis indicates the nucleus count. C, UMAP plots showing the 552 

expression of the established marker genes for each cell type. D, Comparison of the nucleus densities in the 553 

UMAP space between two conditions reveals remarkable changes in the relative proportion of cell types in 554 

HCM. Nuclei were randomly sampled for equal numbers in each group (n= 15,939). E, The relative proportion 555 

of each cell type in each condition. *: P-value < 0.05; **: P-value < 0.01. A permutation-based statistical test 556 

(differential proportion analysis; DPA). CM: cardiomyocyte; FB, fibroblast; lEC: lymphatic endothelial cell; SMC: 557 

smooth muscle cell; vEC: vascular endothelial cell. 558 
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Figure 2. Cardiomyocyte-specific regulatory changes in the pathological remodeling of HCM. 560 

A, Subpopulations of cardiomyocytes. B, Heatmap showing the molecular signatures of each subpopulation. 561 

C, The relative proportion of each subpopulation in each condition. **: P-value of the permutation-based DPA 562 

test < 0.01. D, Representative terms enriched in the significantly upregulated genes in the cardiomyocytes of 563 

HCM. The significance threshold of the hypergeometric test was set to be an adjusted P-value < 0.05. E, 564 

Representative pathways that were significantly upregulated in the cardiomyocytes of HCM detected by GSEA. 565 

The density curve of the log2 fold change in the expression of the core enrichment genes for each pathway is 566 

shown. NES, normalized enrichment score. F, Cellular trajectory reconstructed for the transition towards failing 567 

cardiomyocytes in HCM using Slingshot. The arrow shows the direction of cellular state changes. G, Density 568 

curves showing the distributions of the two subpopulations along the trajectory. H, Density curves showing the 569 

distributions of the cardiomyocytes from different conditions along the trajectory. ** P-value < 2.2e-16; 570 

Kolmogorov-Smirnov test. I, Heatmaps showing the expression dynamics of the 216 genes with significantly 571 

different patterns along the trajectory between the two conditions. These genes were detected by differential 572 

expression pattern analysis using the “conditionTest” function of tradeSeq and were categorized into 7 gene 573 

clusters by hierarchical clustering. The significance threshold was set to be an adjusted P-value < 0.05. J, The 574 

candidate target genes that were prioritized based on the results of three independent analyses including the 575 

difference in expression patterns, the fold change of expression levels, and the centrality change in GRNs. DRN 576 

rank: the gene ranking based on the centrality change in GRNs obtained by differential regulatory network 577 

analysis. Log2FC: log2 fold change of the expression levels in cardiomyocytes. Wald stat: the statistics of 578 

differential expression pattern analysis. Only genes encoding transcription factors (TFs), ligands and receptors 579 

were considered. K, Smoothed expression curves of representative candidate targets along the trajectory in 580 

both conditions. 581 
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Figure 3. Fibroblast-specific regulatory changes in the pathological remodeling of HCM. 583 

A, Subpopulations of fibroblasts. B, Heatmap showing the molecular signature of each subpopulation. C, Split 584 

violin plots showing the expression of the markers for activated fibroblasts. D, Hierarchical clustering of the 585 

subpopulations. E, The relative proportion of each subpopulation in each condition. **: P-value of the 586 

permutation-based DPA test < 0.01. F, Representative terms enriched in the significantly upregulated genes in 587 

the fibroblasts of HCM. The significance threshold of the hypergeometric test was set to be an adjusted P-value 588 

< 0.05. G, Representative pathways that were significantly upregulated in the fibroblasts of HCM detected by 589 

GSEA. The density curve of the log2 fold change in the expression of the core enrichment genes for each 590 

pathway is shown. NES, normalized enrichment score. H, UMAP plot showing the subpopulations FB1 and 591 

FB2. I, Cellular trajectory reconstructed for the fibroblast activation in HCM using Slingshot. The arrow shows 592 

the direction of cellular state changes. J, Density curves showing the distributions of the two subpopulations 593 

along the trajectory. K, Density curves showing the distributions of the fibroblasts from different conditions along 594 

the trajectory. ** P-value < 2.2e-16; Kolmogorov-Smirnov test. L, Heatmaps showing the expression dynamics 595 

of the 432 genes with significantly different patterns along the trajectory between the two conditions. These 596 

genes were detected by differential expression pattern analysis using the “conditionTest” function of tradeSeq 597 

and were categorized into 7 gene clusters by hierarchical clustering. The significance threshold was set to be 598 

an adjusted P-value < 0.05. M, The candidate target genes that were prioritized based on the results of three 599 

independent analyses including the difference in expression patterns, the fold change of expression levels, and 600 

the centrality change in GRNs. N, Smoothed expression curves of representative candidate targets along the 601 

trajectory in both conditions. 602 
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 603 

Figure 4. The subpopulations of the immune and vascular lineages and their proportional changes in 604 

HCM. 605 

A, UMAP plots showing the subpopulations of the immune lineage. B, Expression of the established markers 606 

for macrophages (CD68), T cells (CD3D), Natural killer cells (NCR1) and B cells (CD79A) in each immune 607 
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subpopulation. C, Expression of the marker for each of the five macrophage subpopulations. D, Relative 608 

proportion of each subpopulation of macrophages in each condition. E, UMAP plots showing the cytotoxicity 609 

and naiveness scores for each immune nucleus. The cytotoxicity and naiveness scores were calculated by 610 

summing the expression of previously reported signatures for T cell cytotoxicity (PRF1, IFNG, GNLY, NKG7, 611 

GZMB, GZMA, GZMH, KLRK1, KLRB1, KLRD1, CTSW and CST7) and naiveness (TCF7, SELL, LEF1 and 612 

CCR7).48 F, Relative proportion of each subpopulation of T/NK cells in each condition. G, UMAP plots showing 613 

the subpopulations of the vECs. H, Expression of the established markers for venous ECs (ACKR1 and NR2F2), 614 

arterial ECs (SEMA3G and DLL4), capillary ECs (RGCC and CA4) and immune ECs (CX3CL1 and CCL2). I, 615 

Relative proportion of each subcluster of the vECs in each condition. J, UMAP plots showing the subpopulations 616 

of the SMCs. K, Molecular signature for each SMC subpopulation. L, Expression of contractile markers CNN1 617 

and TAGLN in each SMC subpopulation. M, Relative proportion of each SMC subpopulation in each condition. 618 

N, UMAP plots showing the subpopulations of the pericytes. O, Molecular signature for each pericyte 619 

subpopulation. P, Relative proportion of each subpopulation of the pericytes in each condition. In E, F, I, M and 620 

P, *: P-value < 0.05, **: P-value < 0.01, the permutation-based DPA test. MAC: macrophage; SMC: smooth 621 

muscle cell; vEC: vascular endothelial cell. 622 
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Figure 5. Intercellular communication changes in the cardiac tissues of HCM. 624 

A, Bar plot showing the total number of ligand-receptor interactions among the subpopulations of the cardiac 625 

tissues in both conditions. B, Bar plot showing the total interaction strength among the subpopulations of the 626 

cardiac tissues in both conditions. The total interaction strength was calculated by summing the communication 627 

probability of all inferred interactions. C, Heatmap showing the differential number of interactions among 628 

subpopulations in HCM versus HEALTHY. In the color bar, red represents an increase in the number of 629 

interactions and blue represents a decrease in the number of interactions. The top bar plot shows the sum of 630 

the changes in the number of incoming signals for each subpopulation. The right bar plot shows the sum of the 631 

changes in the number of outgoing signals for each subpopulation. D, Heatmap showing the differential 632 

interaction strength among subpopulations in HCM versus HEALTHY. E, Bubble plot showing the incoming and 633 

outgoing interaction strength for each subpopulation in HCM. The dot size represents the count of interactions. 634 

F, Bubble plot showing the incoming and outgoing interaction strength for each subpopulation in HEALTHY. G, 635 

Relative information flow for each signaling pathway in both conditions. The information flow is defined by the 636 

sum of the communication probability among all pairs of subpopulations. H, Joint manifold learning of the HCM 637 

and HEALTHY communication networks and grouping the signaling pathways based on functional similarity. A 638 

high degree of functional similarity means that the major senders and receivers are similar. I, The Euclidean 639 

distance of each pathway in the learn joint manifold. A larger distance means a larger difference in functional 640 

similarity (i.e., similarity in senders and receivers) between the two conditions. Only overlapping pathways 641 

between the two conditions are shown. J, The major senders and receivers of the TGFb signaling pathway 642 

inferred through network centrality analysis in HEALTHY (upper panel) and HCM (lower panel). K, Relative 643 

contribution of each ligand-receptor pair to the overall signal of the TGFb pathway in HCM. L, Hierarchical plot 644 

showing the inferred communication network for TGFB1-(TGFBR1+TGFBR2) signaling in HEALTHY. M, 645 

Hierarchical plot showing the inferred communication network for TGFB1-(TGFBR1+TGFBR2) signaling in 646 

HCM. In L and M, open and solid circles represent target and source, respectively. Edge width represents the 647 

interaction strength and circle size is proportional to the number of nuclei in each subpopulation. Edges are 648 

color-coded by the signal source. 649 
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 650 

Figure 6. Spatially resolved examination of the expression of candidate genes, the activity of HCM-651 

associated pathways and subpopulations by spatial transcriptomics.  652 

A, H&E staining image for the cardiac tissue section HCM1225D. B, Masson's trichrome staining image for a 653 
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section adjacent to HCM1225D. C, UMAP plot showing the spot clusters identified by unbiased clustering of 654 

the spots on HCM1225D. D, Distribution of the spot clusters on the section HCM1225D. E, Spatial location of 655 

the subpopulations FB1, FB2, CM1 and CM2 on the section HCM1225D predicted by integrating the snRNA-656 

seq data and the spatial transcriptomic data. F, Expression distribution of representative markers and candidate 657 

target genes on the section HCM1225D. G, Dysregulated pathways in fibrotic versus non-fibrotic regions of the 658 

cardiac tissue sections of HCM. The dysregulated pathways were detected based on the pathway activity score 659 

of each spot using the Wilcoxon rank-sum test. The significance threshold was set to be a P-value adjusted for 660 

multiple testing < 0.05. The tests were performed separately for each of the four sections. H, Activity of 661 

representative upregulated pathways in fibrotic regions on the section HCM1225D. 662 
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