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Abstract

Although cancer immunotherapy with PD-(L)1 blockade is now routine treatment for patients with
lung cancer, remarkably little is known about acquired resistance. We examined 1,201 patients
with NSCLC treated with PD-(L)1 blockade to clinically characterize acquired resistance, finding
it to be common (occurring in more than 60% of initial responders), with persistent but diminishing
risk over time, and with distinct metastatic and survival patterns compared to primary resistance.
To examine the molecular phenotype and potential mechanisms of acquired resistance, we
performed whole transcriptome and exome tumor profiling in a subset of NSCLC patients (n=29)
with acquired resistance. Systematic immunogenomic analysis revealed that tumors with
acquired resistance generally had enriched signals of inflammation (including IFNy signaling and
inferred CD8+ T cells) and could be separated into IFNy upregulated and stable subsets. IFNy
upregulated tumors had putative routes of resistance with signatures of dysfunctional interferon
signaling and mutations in antigen presentation genes. Transcriptomic profiling of cancer cells
from a murine model of acquired resistance to PD-(L)1 blockade also showed evidence of
dysfunctional interferon signaling and acquired insensitivity to in vitro interferon gamma treatment.
In summary, we characterized clinical and molecular features of acquired resistance to PD-(L)1
blockade in NSCLC and found evidence of ongoing but dysfunctional IFN response. The
persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired
resistance informs therapeutic strategies to effectively reprogram and reverse acquired
resistance.
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Introduction

PD-(L)1 blockade can generate profound, durable responses in patients with lung cancer and has
been rapidly incorporated into the treatment paradigm for nearly all patients with advanced non-
small cell lung cancer (NSCLC) (Gandhi et al., 2018; Reck et al., 2016). Unfortunately, even
among those patients who initially respond to PD-(L)1 blockade, over half will eventually develop
progression — termed acquired resistance (Schoenfeld and Hellmann, 2020). Alongside primary
resistance (refractory to initial treatment), acquired resistance represents a significant and
possibly underappreciated clinical challenge (Garon et al., 2019; Gettinger et al., 2018a, 2018b;
Herbst et al., 2020). Remarkably little is known about the molecular mediators of acquired
resistance. Perhaps relatedly, effective therapies to circumvent or reverse acquired resistance
largely remain elusive.

The landscape of immune acquired resistance to PD-(L)1 blockade is poorly understood. By
contrast, several molecular mechanisms of acquired resistance to molecularly targeted therapies
(e.g. EGFR and ALK-directed tyrosine kinase inhibitors) have been identified and led to significant
therapeutic advances (Drilon et al., 2019; Piotrowska et al., 2018; Ramalingam et al., 2018; Shaw
et al., 2019; Solomon et al., 2018). In patients with lung cancer treated with PD-(L)1 blockade,
there have been a few published cases of acquired resistance (Abdallah et al., 2018; Anagnostou
et al., 2017; Ascierto and McArthur, 2017; George et al., 2017; Gettinger et al., 2017; lams et al.,
2019; Koyama et al., 2016). Along with case reports in other diseases, these studies have
identified that loss of key proteins associated with antigen presentation or defects of the IFNy
signaling pathway can contribute to immune resistance (Gettinger et al., 2017; Le et al., 2017;
Sade-Feldman et al., 2017; Zaretsky et al., 2016). Pre-clinical work has further highlighted how
the relative acuity vs chronicity of IFNy exposure can contribute to immune dysfunction and tumor
resistance (Benci et al., 2016, 2019; Grasso et al., 2020). Improved understanding of the nature
and biology underlying acquired resistance is imperative to develop more effective next-
generation immunotherapies in the future.

To address the clinical and molecular landscape of acquired resistance to PD-(L)1 blockade in
patients with NSCLCs, we examined the largest clinical cohort (n = 1,201) of acquired resistance
to PD-(L)1 blockade in lung cancer to date paired with a systematic genomic and transcriptomic
analysis in a subset of patients (n = 29) with available tissue samples. We then also examined a
murine model of acquired resistance to PD-(L)1 blockade to validate relationships identified in
human samples.


https://doi.org/10.1101/2021.07.21.452854
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.452854; this version posted July 22, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Results

Acquired resistance to PD-1 blockade in NSCLC is common

Of 1,201 NSCLC patients treated with PD-1 blockade at MSK between April 2011 through
December 2017, 243 (20%) achieved initial response. Many responding patients ultimately
developed acquired resistance (AR), with an estimated cumulative AR rate of 61% (95% CIl 36%
- 85%) at 5 years of follow up using a competing risk model (Figure 1a). The onset of AR was
variable (52% within 1 year, 39% 1-2 years, 11% >2 years) (Figure 1b). The relative risk of
developing AR decreased with longer duration of initial response (Figure 1c).

Although acquired and primary resistance have not been directly compared previously,
we hypothesize that these scenarios are distinct biologically and clinically. Consistent with this,
we found that several baseline clinical features differ between patients with acquired and primary
resistance (Figure 1d). High tumor PD-L1 protein expression in baseline (pre-treatment) tissue,
in particular, is enriched among patients with acquired resistance compared to primary resistance
(55% vs 28%, Fisher’s p = 0.02). The organ-specific pattern of progression also differed, with liver
metastasis being a common site of progression at primary resistance but relatively uncommon in
acquired resistance (31% vs 7%, Odds Ratio 6.23, Fisher’s p<0.0001, Figure 1e). Perhaps most
notably, the post-progression overall survival was significantly longer in patients with acquired
resistance compared to primary progression (median 18.9 months vs 4.4 months, Log-rank p<
0.0001 Figure 1f), suggestive of persistent, partially effective anti-tumor immune responses that
permits prolonged survival even after the initial onset of acquired resistance. Overall, AR is largely
characterized by distinct clinical features, suggesting acquired resistance may have underlying
immunobiologic features that are distinct from primary resistance and in need of dedicated
analysis.
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Figure 1. Clinical features of acquired resistance to immunotherapy in lung cancer.

(a) Cumulative incidence of developing acquired resistance among NSCLC patients with initial response to
PD-1 blockade therapy. (b) Time to onset of acquired resistance among responders. (c) Estimated rate of
developing acquired resistance defined by duration of initial response. (d) Rates of baseline clinical features
among patients with primary (n = 346) and acquired resistance (n = 118). Asterisk represents significant
comparisons of p < 0.05. (e) Common organ sites of progression at time of primary or acquired resistance.
(f) Post-progression overall survival in patients with primary or acquired resistance (p < 0.0001).
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Patient cohort for molecular profiling of acquired resistance to PD-1 blockade

To investigate the molecular mechanisms of acquired resistance to PD-1 blockade in
patients with NSCLC, we generated microarray-based whole transcriptome expression data, and
whole exome sequencing (WES) data from pre and/or post-treatment tumors in a subset of
patients. Patients with analyzed samples had similar baseline characteristics to those in the larger
clinical cohort (Table $1). After QC and sample prioritization, the primary analysis of the molecular
data focused on 49 tumor samples (13 pre-treatment, 29 post-treatment) from 29 patients for
expression data and 34 tumor samples (15 pre-treatment, 19 post-treatment) from 22 patients for
exome data (Figure 2a, Table S2). 13 patients had expression data available from both pre- and
post-treatment tissue; 12 patients had exome data available from both pre- and post-treatment
tissue. All post-treatment samples were obtained following radiographic progression to PD-1
blockade (median time from progression to sample collection 3.7 weeks, IQR 1.8-10.4) and prior
to initiation of new systemic therapy (Figure 2b).

Our work and others (Gettinger, J Thor Oncol 2018) have shown that acquired resistance
frequently occurs in an oligoprogressive pattern, highlighting the importance of assessing the
lesion-level response in the analysis of acquired resistance. Therefore, we examined the lesion-
level response (and resistance) from which each sample was collected to optimize that pre-
treatment and post-treatment samples reliably represented the biology of responsive and
acquired resistance tumors, respectively. Specifically, all post-treatment samples were derived
from sites with lesion-specific radiologic rebound growth or de novo growth (Figure 2c, Figure
$1,52).
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Figure 2. Overview of the patient cohort used for the exome and expression analyses. (a) Flow
diagram depicting molecular profiling of samples from NSCLC patients treated with PD-1 blockade who
developed acquired resistance. Paired samples are those collected prior to treatment initiation with PD-1
inhibitor and at time of resistance from the same patient. Unpaired samples include single timepoints of
collection; prior to treatment initiation or at time of resistance. (b) Swimmer’s plot of when each patient
was molecularly profiled. Course of treatment, progression-free survival, and time to tissue acquisition are
depicted. Lines within circles identify the type of sequencing completed. (c) Waterfall plot of RECIST best
overall response in patient (dark blue) and lesion (light blue). Dashed line represents 30% shrinkage.
Asterisk represents new lesions that developed on treatment (de novo growth).
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Acquired resistance to PD-1 blockade is associated with a distinct transcriptional
landscape

Principal components analysis (PCA) of protein-coding gene expression profiles from
whole transcriptome data of all 42 samples showed no major technical or clinical factors
influenced clustering, including batch and site of sample collection (i.e. lung, lymph node, adrenal,
etc) (Figure S3a,b). There was also no separation among phenotypically distinct post-treatment
lesions (Figure S3c). We summarized gene expression values to pathway-level scores using
single-sample gene set enrichment approach (ssGSEA) (Hanzelmann et al., 2013) on hallmark
gene sets categorized into oncogenic, cellular stress, immune, stromal and other processes as
previously applied (Jiménez-Sanchez et al., 2020). PCA clustering of 24 paired samples using
enrichment scores showed a separation of samples based on paired pre- and post-treatment
timepoints, with the separation primarily driven by immune-related hallmark gene sets (Figure
3a,b). Differential expression analysis of paired samples for hallmark gene sets showed a
significant upregulation of IFN alpha/gamma response, oxidative phosphorylation, and DNA
repair pathways after treatment (FDR < 0.1, Figure 3c, Table S3). Clustering of paired samples
based on computational deconvolution of immune cell estimates from bulk expression derived
using CIBERSORT (Newman et al., 2015) showed a separation of pre- and post-treatment
samples particularly driven by infiltration of CD8+ T cells (Figure 3d,e). Significant increase in
immune infiltration (wilcoxon signed-rank test p<0.05; Figure S3d) and specifically CD8+ T cells
was also observed post-therapy from differential analysis of paired pre-treatment and post-
treatment samples (FDR < 0.1, Figure 3f, Table S3).

Several clinical and pre-clinical studies have generated bulk or single-cell RNAseq datasets to
identify gene sets associated with ICB resistance and T cell dysfunction. We curated a non-
redundant resource of these gene sets (See Methods for details) and compared differential
changes among the paired samples (Table S3, S4). Among these, comparing post-treatment to
pre-treatment samples, we found an increase in expression of antigen presentation (AP) pathway,
IFNy (Gao et al., 2016), CD8 T effectors (Rosenberg et al., 2016), and proliferating exhausted
CD8+ T cells (Miller et al., 2019), while genes belonging to WNT (Sanchez-Vega et al., 2018)
pathway showed modest reduction in expression (Figure 3g). Consistent with these gene sets
associated with ongoing immune response to PD-1 blockade, expression of individual genes
enriched in post-treatment tumors included GZMA, B2M, and CXCL9 (Figure 3h, Table S5).
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Figure 3. Resistant lesions show up-regulation of Interferon Gamma Response pathway and
infiltration of CD8+ T cells. (a) Principal components analysis of paired samples using enrichment scores
of hallmark gene sets derived from ssGSEA. Paired pre- and post-treatment lesions from the same patient
are connected using a dashed line. The light grey arrow indicates the average directionality of change for
each pair. (b) Principal components feature loadings of hallmark gene sets with both magnitude and
direction. Biological processes in hallmark gene sets were categorized into sub-groups as described in
(Jiménez-Sanchez et al., 2020) and colour-coded accordingly. (c) Differential comparison of hallmark
enrichment scores (ES) between pre- and post-treatment samples. Each point represents a hallmark gene
set and point size indicates the number of genes in a gene set. The x-axis indicates the change in hallmark
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enrichment scores for paired samples from each patient (Post vs Pre) and the y-axis is FDR adjusted p-
value derived from the comparison of enrichment scores of hallmark gene sets using paired t-test. The
black dashed line represents FDR cutoff to identify significant gene sets (FDR < 0.1). (d) Principal
components analysis of immune cell estimates derived using CIBERSORT immune cell deconvolution
approach. (e) Principal components feature loadings of immune cell estimates. (f) Differential comparison
of immune cell estimates (CIBERSORT) between pre- vs post-treatment samples. Each point represents
an immune cell type and associated colour reference indicated in panel e. The x-axis indicates the change
in immune cell estimates for paired samples from each patient (Post vs Pre) and y-axis is FDR adjusted p-
value derived from paired comparison of immune cell estimates. (g) Summary of key changes in hallmark
gene sets, ICB-resistance related gene signatures and estimates of immune cells using differential analysis
of expression data. All gene sets with p value < 0.05 are shown. * indicates gene sets that were significant
after FDR correction (FDR < 0.1). (h) Differentially expressed genes between pre- and post-treatment
samples. The black dashed line represents FDR cutoff to identify significant genes (FDR < 0.15).
Benjamini-Hochberg (BH) method was used for false discovery rate (FDR) correction.

Chronic and therapy-dependent increase in IFNy response pathway as a potential
route to acquired resistance to ICB

As sustained cancer-intrinsic IFN signalling has been linked to ICB resistance in pre-
clinical mouse models of melanoma and other cancers (Benci et al., 2016, 2019; Jacquelot et al.,
2019), we tested whether the change in ISG signatures (IFNa and IFNy response) observed in
our clinical cohort related to a resistance signature derived from a ICB-resistant mouse model of
melanoma (Benci et al.,, 2019; Twyman-Saint Victor et al., 2015). We found a significant
association between the mouse-derived ICB resistance signature and the treatment-induced
change in IFNy response (spearman’s rank correlation r = 0.90; p = 2.2e-16; Figure 4a), which
persisted after removing overlapping genes (r = 0.86; p = 0.0003). Separately, principal
components analysis of change in enrichment score of hallmark gene sets between paired lesions
showed a separation of patients on the 1st principal components based on the extent of change
of ISG signatures (Figure S4a-c). The correlation was significantly stronger for change in the
IFNy-specific response genes (r = 0.9; p < 2.2e-16) when compared to change in IFNa-specific
response genes (r = 0.48; p = 0.09; Figure S4d-e). Notably, samples could be separated into two
subsets, with about half of the paired samples showing no increase pre- to post-treatment and
the other half characterized by induced expression in the IFNy response pathway. This led us to
categorise the samples into an IFNy “stable” and an IFNy “increase” group (Figure 4b).

Consistent with a differential change of IFNy in these patients, patients with increase in
IFNy generally had an increase in inferred activity of individual transcription factors associated
with activation of IFN-stimulated genes (ISGs), STAT7 and IRF1 as well as immune signatures
(estimated by hallmark and literature gene sets) associated with CD8+ T cell exhaustion across
several studies (Miller et al., 2019; Sade-Feldman et al., 2018) (Figure 4c-f, Table S6). In addition
to signatures of T cell exhaustion, increase in regulatory T cells (Sade-Feldman et al., 2018) were
also noted. FOXP3 was specifically upregulated in the IFNy ‘increase’ subgroup (paired t-test p =
0.005; Figure S4f). In contrast, patients with ‘stable’ IFNy were characterized by a lack of change
in these immune-related pathways and genes (Table S$6). Together these data suggest a
recurrent pattern of acquired resistance to PD-1 blockade in NSCLC is characterized by activation
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of IFNy transcriptional program in tumors, presumptive tumor-specific IFNy insensitivity (given
persistent tumor growth clinically), and a concomitant increase in exhaustion of CD8+ T cells in
the micro-environment.
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Figure 4. Activation of IFNy correlates with CD8+ T cell exhaustion signature. (a) Correlation between
change in the IFNy response signature and change in the ICB-resistance signature derived from a mouse
model of melanoma for the paired samples (Twyman-Saint Victor et al., 2015). (b) Patients were sub-
divided into ‘stable’ and ‘increase’ categories based on the magnitude of change in the INFg response
signature between the pre- and post-treatment samples. (c) Change in enrichment scores of key
differentially regulated gene sets in either ‘stable’ or ‘increase’ patients (p < 0.05) ordered according to
change in enrichment score of IFNy response signature. Activity of IFNy response associated transcription
factors (d) IRF1 and (e) STAT1 in pre- and post-treatment timepoints of patients in ‘stable’ and ‘increase’
sub-groups. (f) Differential change in expression levels of previously reported immune-responsive genes
and resistance associated therapeutic targets in literature in the ‘stable’ or ‘increase’ sub-group. Benjamini—
Hochberg (BH) method was used for p-value adjustment. Statistical comparisons in panel d and e were
performed using two-tailed paired t-test.

Positive selection pressure for antigen presentation gene mutations in acquired
resistance

To examine somatic alterations and potential mechanisms of acquired resistance, we next turned
to evaluate the exome sequencing data pre vs post-treatment for 12 patients (24 samples with
germline SNPs confirming paired samples belonged to the same patient; Figure S5a). NSCLC is
characterized by a high mutation burden, a strong predictor of response to immunotherapy (Rizvi
et al., 2015, 2020; Strickler et al., 2021). Overall, there was no significant difference in tumor
mutation burden (wilcoxon signed-rank test p = 0.6; Table S7), known driver genes (Campbell et
al., 2016), neoantigen burden, fitness (wilcoxon signed-rank test p = 0.74), or tumor heterogeneity
(wilcoxon signed-rank test p = 0.37) before versus after immunotherapy treatment at a summary
level (Figure 5a, Figure S5b,c). However, there was evidence of remodeling of clonal or sub-
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clonal structure in seven patients. For five of these patients, clonal mutations were retained while
a subset of sub-clonal mutations were lost and/or new sub-clonal mutations were also acquired
(Figure 5b, Figure S5d). For two patients (AR_20 and AR_27), post-treatment lesions did not
share any somatic mutations with their respective pre-treatment lesions indicative of emergence
of a potentially new tumour or outgrowth of a rare (i.e. below the limit of detection by WES) pre-
existing tumor clone (Figure S5e). Among the clonal mutations detected in post-treatment lesion
of AR_20 included a nonsense mutation in STK11 gene consistent with previous observations of
an association between mutations in STK11 gene and resistance to immune-checkpoint blockade
in lung adenocarcinoma (Skoulidis et al., 2018). Several mutational processes including extrinsic
factors, particularly smoking, can influence somatic molecular profile in NSCLC and can be
detected as mutational signatures (Alexandrov et al., 2013). The smoking signature was the
dominant signature in pre-treatment lesions and these mutations persisted in post-treatment
lesions. However, post therapy the clonal composition of these tumours had changed potentially
shaped by different sets of factors indicated by depleted proportion of smoking related mutations.
(Figure S5f). Recent studies have shown an enrichment of APOBEC mutational signature in
patients that benefit from immunotherapy treatment (Wang et al., 2018). In two patients, AR_08
and AR_20, we observed a noticeable increase in fraction of private mutations contributing to
APOBEC mutational signatures 2 and 13 in the post-treatment lesions (48.3% in AR_08 and
14.3% in AR_20) relative to those in the pre-treatment lesions (5.4% in AR_08 and 1.6% in
AR_20).

Given previous studies describing loss of B2M and other genes such as TAP1, TAP2 and
TAPBP involved in antigen presentation pathway as a potential mechanism of immune escape in
resistant tumours, we performed an unbiased analysis to evaluate positive selection pressure on
individual genes before and after therapy (Martincorena et al., 2017). As expected, canonical
driver mutations in lung cancer such as KRAS and TP53 were under strong positive selection
pressure and there were no recurrently altered driver genes with significant enrichment in post-
treatment tumors compared to pre-treatment (Figure 5c, Figure S5g). However, a nonsense
mutation and a frameshift deletion in B2M were exclusively identified in post-treatment tumors of
AR _14 and AR_19 respectively, and other immune-related genes such as IL21R, PDCDS5,
FKBP1A and FNIP1 were indeed enriched post-therapy (Figure 5¢, Figure S5h,i). No potential
pathogenic mutations were observed in TAP1, TAP2 and TAPBP genes.

Given the selective identification of mutation in B2M and other immune-related genes in
the ICB-resistant tumor samples, we evaluated additional gene sets involved in Antigen
Presentation (AP) pathways using the GSEA approach. Specifically, we asked whether there was
evidence of an association between IFNy selective pressure and dysregulation of AP pathways
(Figure 5d). Overlaying mutational changes with IFNy status for the cases with both expression
and mutation data, we observed the mutation enrichment in the AP pathway to be more common
among patients that show an ‘increase’ in IFNy response in contrast to those with ‘stable’ IFNy
response pathway. Notably, 3 out of 4 patients with significant change in clonal or sub-clonal
architecture (AR_20, AR_27, AR _19), also showed presence of new mutations in the AP pathway
genes in their post-treatment lesions (Figure 5e). All 4 of these patients also had available tissue
for B2M and class 1 HLA protein expression testing on tumor cells and all were negative or
decreased from baseline (Figure 5f,g)
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Figure 5. Genomic dynamics in acquired resistance to PD-1 blockade in lung cancer. (a) Summary
of somatic mutations (missense and indels) in our ICB-resistance cohort for known driver genes in non-
small cell lung cancer. Pattern of mutations of recurrently mutated genes derived from a previous study
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(Campbell et al., 2016). The heatmap also indicates the unique and shared mutations in each sample and
the proportion of mutations associated with key somatic signatures (smoking and APOBEC) associated
with lung cancer. (b) Percentage loss or gain of clonal and sub-clonal mutations in each patient. (c)
Comparison of global p-value estimates for genes derived from dN/dS analysis of missense, truncations
and indels to evaluate gene-level selection pressure in pre and post-treatment samples estimated using
dndscv method (Martincorena et al., 2017). (d) Comparison of global p-value estimates genes to identify
gene sets under positive selection in pre and post-treatment samples. The change in gene level global p-
value between pre- and post-treatment samples (shown in c) was used to order genes and estimate GSEA
normalized enrichment score and p-value for each gene-set. (e) Summary of key changes in expression
and mutations in nine patients with pre- and post-treatment measurements for both expression and exome.
The private mutations in post-treatment lesions of patients in genes part of Antigen Presentation Pathway
(KEGG or REACTOME) are shown. Immunohistochemistry based quantification of (f) HLA/MHC-I and (g)
B2M.

Acquired tumor IFNy insensitivity associates with ICB resistance

To further explore the transcriptional features that are associated with acquired resistance to ICB
in our clinical cohort, we also examined cancer cell intrinsic transcriptional programs using a
preclinical murine model system of acquired resistance to ICB inhibitors. Similar to PD-1-
responsive human lung cancer, the CT26 murine model is carcinogen-induced, has high tumor
mutation burden, and is highly sensitive to immunotherapy treatment (Zhong et al., 2020), and
therefore well suited pre-clinical analogue for interrogating acquired resistance. As expected, after
subcutaneous inoculation of CT26 cells, tumors showed significant reduction in tumor volume
over 3 weeks of anti-PD-1 treatment (Figure 6a). To model acquired resistance, following anti-
PD-1 treatment, persistent viable cells were excised, cultured in vitro, and reimplanted in mice.
The re-implanted tumors were then re-treated and this process was repeated for several
passages until the serially progressive CT26 tumors were no longer responsive to anti-PD1
antibody therapy (Figure 6b). Bulk RNAseq was performed on the ICB-resistant cancer cell lines
derived from tumors from the 2nd round (n=2) and 4th round (n=4) of in vivo passage and
compared against the ICB-sensitive parental cell line (n=3; Figure 6c). PCA of whole
transcriptome data did not show any clear trend (Figure S6a), however, PCA of hallmark gene
sets showed the parental and 2nd round samples tend to cluster separately from the 4th round
samples with the separation mainly driven by Interferon Alpha/Gamma Response pathway
(Figure 6d,e). Systematic comparison of 4th round samples with parental samples showed a
significant upregulation of several biological processes including TNFalpha signaling and
IFNa/IFNy response pathway (FDR <= 0.1; Table S8). In contrast, no significant change in gene
sets were observed from the comparison of the 2nd round and parental cell lines (Figure S6b,c).
Alongside the increase in INFg response pathway in the 4th round cells, we also observed a
correlated increase in STAT1 and IRF1 activity inferred from their regulons and expression of
genes part of the Antigen Presentation Pathway (Figure 6f-i). Together, and similar to the human
data, these results indicated that IFNy response signaling was upregulated in ICB resistant cancer
cells.
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To explore if ICB resistant cancer cells maintained responsiveness to type Il IFN signaling, cell
lines were stimulated with IFNy for 24 hours and compared to unstimulated controls. While the
parental and 2nd round cell lines showed an increased expression of genes involved in IFN
signaling, the 4th round cell line did not show additional reactivity to IFNy stimulation at the
transcriptional level (Figure 6j-1; S6d-f; Table S8). In addition, downstream transcription factor
activity of type Il IFNy signaling, such as STAT1 and IRF1, showed the same pattern with no
statistically significant differences detected between IFNy stimulated vs control in the 4th round
cell line (Figure 6m,n). As type Il IFN signaling is known to upregulate antigen presentation
machinery pathway genes (Schroder et al., 2004), we also investigated the effect of IFNy on these
genes, which further supported the observations and showed no additional reactivity to IFNy
stimulation in 4th round cells (Figure 60). Together these data indicate that 4th round PD-1
resistance cell lines have acquired insensitivity to IFN stimulation likely because they have high
baseline IFN signaling activity and the pathway appears to be insensitive without canonical
upregulation of interferon stimulated genes upon IFNy exposure.
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Figure 6. Cell lines derived from mouse CT26 tumours with acquired resistance to PD1 show
dysfunctional IFNy signalling (a) Tumor volume over time after treatment with anti-PD1 therapy or control
(Vehicle) for parental (CT26 parental) and resistant cells (CT26 anti-PD1 Res.) (n = 9 per group). (b)
Percentage of mice that resisted anti-PD1 treatment. (c) Experimental design for development of ICB-
resistance model from anti-PD1 treatment of CT26-derived tumours in mice. Cell lines were derived from
tumors and subjected to RNA sequencing. (d) PCA of IFNy-untreated samples i.e. parental (sensitive), 2nd
round and 4th round ICB-resistant cells based on Enrichment Scores of hallmark gene sets. (e) Principal
components feature loadings of hallmark gene sets with both magnitude and direction. Biological processes
in hallmark gene sets were categorized into sub-groups as described in Jimenez-Sanchez et al, 2020 and
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the vectors were color-coded accordingly. Enrichment Scores in parental, 2nd and 4th round cells for the
following genesets: (f) IFNy response pathway, (g) STAT1, (h) IRF1 and (i) Antigen Processing
machinery.(j) Comparison of significance of change in Enrichment Score between IFNy Stimulated (IFNy®)
and IFNy Untreated (IFNy“) 2nd round and significance of change in Enrichment Score between IFNy* and
IFNy* parental cells. (k) Comparison of significance of change in Enrichment Score between IFNy° and
IFNy“ 4th round and significance of change in Enrichment Score between IFNy* and IFNy* parental cells.
Comparison of Enrichment Scores between IFNy" vs IFNy* (parental or 2nd or 4th) cells for the following
genesets: () IFNy response pathway, (m) STAT1, (n) IRF1 and (o) Antigen Processing machinery. Error
bars are the standard error from the mean (n = 3 independent experiments). Statistical comparisons
between parental and 2nd (or 4th) round samples or between IFNy* and IFNy* cells were made using two-
tailed unpaired t-test.

Discussion

Although PD-1 blockade has been transformative in the treatment of patients with NSCLC,
acquired resistance is common and understanding of the molecular mechanisms of resistance
remains quite limited. Before embarking on this report, we had hypothesized that “non-inflamed”
or “cold” tumors, characterized by exclusionary immunologic barriers or an absence of T cell
infiltration, would significantly contribute to resistance (Schoenfeld and Hellmann et al., 2020).
Previously, neoantigen loss and tumor-mediated immunosuppression have been associated with
primary resistance to immunotherapy (Anagnostou et al., 2017; Peng et al., 2016; Verdegaal et
al., 2016). In contrast, we found that neoantigen depletion does not appear to be dominant
mediators of acquired resistance. In fact, most tumors have retained or increased inflammatory
characteristics, rather than immune excluded or desert phenotype, with significant upregulation
of IFNy suggestive of persistent, albeit dysfunctional, anti-tumor immune response. The
persistent, if incomplete, anti-tumor immune response may also manifest in the clinical
observation that some patients who develop acquired resistance can still have durable survival
for many years following initial emergence of resistance. In addition to the chronic upregulation of
the IFNy response pathway, we also observed strong upregulation of OxPhos and DNA repair
pathway genes which is consistent with a recent report (Jaiswal et al., 2020) which proposes
acquisition of hypermetabolic state with high expression of glycolytic and oxidative
phosphorylation pathway genes as a potential escape mechanism in ICB-resistant melanoma
cells.

The inflammatory phenotypes we identify have implications for future rational development of new
immunotherapy strategies for patients with acquired resistance. Most notably, immune
recruitment and infiltration did not appear to be the primary biologic challenges, which provides
credence to strategies aimed to reprogram and rescue native anti-tumor immunity. Delivery of de
novo anti-tumor immunity via engineered antigen-specific cellular or TCR-based therapies
(Sarnaik et al., 2020; Creelan et al., 2020; D’Angelo et al., 2018; Doran et al., 2019; Nagarsheth
et al 2021) also appears well-suited to exploit the lack of barriers to immune trafficking and
persistent tumor antigen expression. While we did observe a few instances of sub-clonal/clonal
neoantigen loss, these changes were relatively uncommon and mutation burden was generally
unchanged pre vs post-treatment. One potential limitation of our clinical cohort is that it relies on
bulk exome and transcriptome data which are prone to be affected by tumor purity. Future efforts
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utilizing single cell multi-omics will be important to further parse cancer cell-intrinsic vs immune
or stromally-related mechanisms of resistance.

Our work informs and builds upon the prior pre-clinical and translational data supporting the
intricate role of IFNy in sensitivity and resistance to immunotherapy. Whereas initial IFNy
exposure may be fundamental to T cell activation and a hallmark of immune response, persistent
IFNy related effects and upregulation could signal immune dysfunction (Benci et al., 2016; Benci
et al., 2019) and IFNy insensitivity (Zaretsky et al 2016, Kalbasi et al. 2020, Grasso et al 2020).
In contrast to previous reports linking IFNy insensitivity to mutations in the JAK-STAT pathway,
we did not identify specific defects in the IFNy signalling pathway to explain the dysfunctional
nature of IFNy response observed in a subset of patients. While we found some evidence of B2M
and other antigen presentation alterations, these changes were predominantly sub-clonal and
generally co-occurred in tumors with upregulation of IFNy potentially suggestive they are an
evolutionary consequence rather than an initiating cause of resistance. We have previously
shown that chronic IFNy signaling may trigger a cascade of epigenetic modifications in tumor cells
including enhanced IFN stimulated genes and ultimately generate a feedback loop of innate and
adaptive immune exhaustion and dysfunction (Benci et al., 2016; Benci et al., 2019). In a murine
model of acquired resistance presented here, we recapitulate how acquired resistance is
associated with upregulated cancer-intrinsic IFNy response and ultimately tumor insensitivity to
effective anti-tumor immunity. Further work is needed to identify the specific mechanistic deficits
in response to the dynamics of IFNy signaling in both immune cells and tumor cells. Overall, these
data can further guide more rationally guided therapeutic strategies to prevent, overcome, and
reverse acquired resistance to PD-1 blockade for patients with lung cancer.

Methods

Description of the clinical cohort

Following MSKCC institutional review board approval, patients with advanced NSCLC treated
with PD-(L)1 based therapy between April 2011 and December 2017 were identified. Response
Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was used to assess objective response
outcomes. Patients with primary resistance were defined as those with progressive disease (PD)
at their first on-treatment scan evaluation. Patients with acquired resistance were defined as those
with partial or complete response (PR/CR) followed by isolated or systemic progression on or
before the date of their last scan (median follow-up 33.6 months). Post-progression overall
survival was calculated from the date of progression on PD-(L)1 inhibitor. Patients who did not
die were censored at the date of last contact. A cumulative incidence function with death as a
competing risk was used to estimate the proportion of acquired resistance over time. Overall
survival was estimated using the Kaplan-Meier method.
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Generation of the molecular dataset

Tumor tissue samples from pre- and post-treatment timepoints were obtained from a subset of
NSCLC patients treated with PD-1 blockade (n = 29). All samples were processed as FFPE. 16
samples were obtained prior to initiation of therapy (pre-treatment) and 37 samples were obtained
at time of acquired resistance. Most patients had a best overall response of CR or PR per RECIST
criteria (n = 22, 76%), with a small subgroup with stable disease (SD) less than -10%. Lesion-
level response was obtained for all samples (Figure S2). Pre-treatment lesions were those that
had at least a -30% reduction in size on treatment or were resected prior to initiating therapy (n =
4). In patients with resected lesion samples, lesion-level response could not be obtained so overall
patient-level must have been CR or PR per RECIST. Of note, consistent with prior work
demonstrating generalized inter-tumor uniformity of response, pre-treatment samples derived
from resected tumors had similar molecular features of tumors in which the lesion-level response
was known (Figure S2). All post-treatment samples were obtained following radiographic
progression to PD-1 blockade. Post-treatment samples were defined as “rebound” or “de novo”
growth (Figure S1a). Rebound lesions were those that were present at initiation of therapy,
responded on treatment, but subsequently progressed. De novo growth lesions were those that
were not present at initiation of therapy and newly grew following treatment. Time to progression
in rebound lesions and growth of de novo lesions were similar (Figure S1b). Only patients with
at least one post-treatment sample were included in this analysis. Samples were molecularly
profiled by microarray-based transcriptome sequencing and/or whole exome sequencing.
Expression and exome data were available on the same sample for 28 tumor lesions. The
following antibodies were used for the Immunohistochemistry of the clinical : B2M (B2M
Polyclonal, DAKO, A0072; RRID: AB_812325) and HLA (HLA-1/MHC-1, Clone: A4, eBioscience,
14-9958; RRID: AB_1210772).

Processing and analysis of microarray data for the clinical cohort

Global RNA expression was measured using the human Affymetrix Clariom D Pico assay. The
RNA samples quantification on Affymetrix Arrays was performed in two separate batches.
Samples from each batch were processed independently using Affymetrix Expression Console
Software. Initially the samples were normalized using the SST-RMA algorithm and outlier samples
were excluded. Samples from the two batches were then combined together into a single dataset
and subject to batch normalization using ComBat. Finally all the samples were further normalized
together using LOESS normalization. For genes with multiple measurements, we selected the
measurement with the highest coefficient of variation. The data analysis was focussed on 14,668
annotated protein-coding genes with expression measurements in the arrays. The expression
dataset was thoroughly evaluated for technical artifacts such as batch effects (Figure S3a).
Differential expression analysis was performed using the limma (Ritchie et al., 2015) package in
R. Normalized expression data of protein-coding genes were fitted to a linear model using ImFit
function and subject to empirical Bayes (eBayes) moderated t-statistics test to identify
differentially expressed genes in paired lesions.
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Estimation of gene set enrichment scores from expression data

Enrichment scores were calculated for gene sets from the normalized expression matrix of
protein-coding genes using the GSVA package (Hanzelmann et al.,, 2013) in R with default
parameters except for method = ‘ssgsea’ and norm = ‘TRUE’. This approach was used to
estimate enrichment scores for the Hallmark Gene sets (msigdb v6.1 database (Liberzon et al.,
2015)) and non-redundant cancer and immune-related gene sets in literature. Although clinical
data for acquired resistance to immunotherapy is fairly limited, recent studies have investigated
the impact of chronic ICB treatment in in vitro cell lines and in vivo settings using mouse models
generating either bulk or single-cell RNAseq datasets. We manually collated gene sets reported
in many of these studies to build an extensive resource of biological processes and gene sets
associated with cancer and immune pathways and more specifically ICB resistance (Table S4).
In order to select for non-redundant gene sets from this resource, jaccard similarity coefficient
was calculated between gene sets based on the number of shared genes and used this metric to
perform hierarchical clustering of gene sets and construct a dendrogram with similar gene sets
clustering together. Clusters of Gene sets were obtained by cutting the dendrogram at a particular
level using cutree function in r (h=1.1). A non-redundant list of gene sets were created by selecting
one gene set per cluster (Table S4).

Patients were classified into ‘increase’ and ‘stable’ sub-group based on the difference in the
enrichment of IFNy response pathway between the paired pre- and post-treatment samples. The
‘increase’ subgroup consisted of patients with difference in scaled enrichment score of IFNy
pathway > 0.025 while ‘stable’ subgroup was defined by minimal change in enrichment score of
IFNy pathway (< 0.025 and > -0.025). Overlap coefficients were calculated between IFNy gene
set and other gene sets to make sure correlation in enrichment score across samples was not
driven by shared genes.Change in enrichment score in paired samples was calculated by first
scaling the signed enrichment scores values using min-max normalization and then taking the
difference in the scaled enrichment scores for paired post and pre-treatment samples for each
patient. Enrichment scores were also calculated for transcription factors using the same approach
as for other gene sets using previously published regulons of each of the 164 transcription factors
(Garcia-Alonso et al., 2019). Deconvolution of immune cells from bulk microarray expression data
was performed using CIBERSORT (Newman et al., 2015) tool with default parameters and
normalized protein-coding gene expression matrix as input. Significance of change in enrichment
score or immune cell estimates for paired samples was calculated using either paired t-test, welch
t-test or wilcoxon signed-rank test depending on the evaluation of equality (Bartlett's test or
Levene’s test) of variance and normality assumptions. All pairwise correlations between gene
sets based on change in enrichment scores were performed using spearman’s rank-order
correlation method.

Processing and analysis of Exome Data
Processing of raw sequencing reads

Exome samples were aligned to human reference genome (hg19) using bwa aligner (v0.7.17) (Li
and Durbin, 2009) and the aligned BAM files were subjected to deduplication and base
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recalibration methods in GATK (v4.0.2.1) (DePristo et al., 2011). These processed BAM files were
used for all subsequent analyses.

Detection of somatic mutations in tumor samples

Mutation calling for SNPs and Indels was performed for each tumor-normal(serum) pair using
GATK-Mutect2 (v.4.0.2.1) with default parameters and additional filters to remove germline
mutations including SNPs detected in gnomAD (Genome Aggregation Database) (Karczewski et
al., 2020) and mutations in PoN (panel of normal) samples obtained from combining all normal
samples in the cohort. Since exome samples were generated in multiple batches with different
sequencers and using different capture kits (lllumina's Rapid Capture Exome Kit (38Mb target
territory), Agilent SureSelect Human All Exon V2 (44Mb target territory), Agilent SureSelect
Human All exon V4 (51MB target territory)), mutations were only called on common regions
captured by the three different kits. The mutation calls were annotated using the Oncotator v1
(Ramos et al., 2015) tool.

Tumor heterogeneity and clonality

Tumor heterogeneity was evaluated using the Mutant-Allele Tumor Heterogeneity (MATH) score
derived from the variant allele frequencies of somatic mutations as described previously (Mroz
and Rocco, 2013). The clonal population structure of somatic mutations in tumor samples was
inferred using Pyclone-VI (Roth et al., 2014). This method uses a bayesian statistical approach
to estimate cellular prevalence of mutations after accounting for purity of samples. The tumor
purity estimates for Pyclone-VI were obtained from FACETS (Shen and Seshan, 2016) and
manually corrected for each sample based on the distribution of variant allele frequency. The
mean cellular prevalence (MCP) estimates from Pyclone-VI were used to classify somatic
mutation as clonal (MCP > 0.6), sub-clonal (MCP <= 0.6) or absent (MCP < 0.02).

Estimation of somatic signatures in tumor exome data

Mutational signatures were estimated using the Sigfit (Gori and Baez-Ortega, 2018) package in
R. For each exome sample, the proportion of mutations associated with each of the 30 mutational
signatures in the COSMIC (Tate et al., 2019) database were estimated. Signature 4 corresponds
to smoking signature while Signature 13 corresponds to APOBEC signature.

Analysis of selection pressure in mutation data

Gene-level selection pressure was quantified for pre-treatment and post-treatment samples using
the dNdScv (Martincorena et al., 2017) package in R. The dNdScv approach quantifies dN/dS
ratios based on missense, truncations (nonsense and essential splice site) and indel mutations in
a group of samples and identifies genes under positive selection in cancer based on the global p-
values derived from likelihood tests. Selection pressure was calculated for each gene for pre-
treatment and post-treatment samples separately and the difference in selection pressure
between the two groups was used to identify potential biologically important genes associated
with acquired resistance to ICB treatment. Gene sets with significant change in selection pressure
between pre and post-treatment samples were identified via the GSEA (Subramanian et al., 2005)
approach using the clusterProfiler (Yu et al., 2012) package in R with the difference in the -
log10(global p-values) between pre and post-treatment samples, used as a metric to rank genes.
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Phylogeny Tree Reconstruction

For 12 patients with both pre and post-treatment WES available, mutations were filtered based
on the following criteria: 1) total coverage for tumor =10, 2) variant allele frequency (VAF) for
tumor 24%, 3) number of reads with alternative allele =9 for tumor, 4) total coverage for normal
>7, and 5) VAF for normal <1% at a given mutation. These filters applied to all mutations except
for mutations in the KRAS gene. Then pre- and post-therapy mutations were aggregated per

patient. PhyloWGS (Deshwar et al., 2015) software package
(https://github.com/morrislab/phylowgs) was used to infer the clonal structures and estimate clone
sizes.

Neoantigen Prediction and Fitness Score

Filtered mutations were annotated with snpEff.v4.3t software (Cingolani et al, 2012, PMID:
22728672) with options set as “-noStats -strict -hgvs1LetterAa -hgvs -canon -fastaProt [fasta file
name]”. All wild-type (WT) and mutant genomic sequences corresponding to coding mutations
were translated to an amino acid sequence consistent with the GRCh37 reference genome
(GRCh37.75). Only annotations without “WARNING” or “ERROR” were kept and the most
deleterious missense mutation was prioritized in mapping a genomic mutation to a gene.

The mutant amino acid from a missense mutation was centered in a 17 amino acids long peptide.
Then 9-mers were extracted in a left-to-right sliding fashion. Each mutant 9-mer contained the
mutant amino acid on one of the 9 positions. In essence, one missense mutation produced up to
nine 9-mer peptides. Predictions of MHC Class-I binding for both wildtype peptide (P"7) and
mutant peptide (P"*°) were estimated using the NetMHC 3.4 (Lundegaard et al., 2008) software
with patient-specific HLA-I types. All P¥*°s with predicted IC50 affinities below 500 nM to a patient-
specific HLA-I type were defined as neoantigens. Filtered neoantigens were aligned to the known
positive epitopes in the Immune Epitope Database (IEDB, http://www.iedb.org) (Vita et al., 2019)
for all human infectious disease, class-I restricted targets with positive immune assays using
blastp (Altschul et al., 1990) software (https://blast.ncbi.nlm.nih.gov/Blast.cgi). We then calculate
the alignment scores with the Biopython Bio.pairwise2 package (http://biopython.org) for all
identified alignments.

Clonal structure, MHC Class-I affinities, and epitope alignment scores were put together into the
fitness modeling framework in Luksza et al (Luksza et al., 2017). Neoantigens were mapped to
the clonal structure based on the underlying genomic mutations. Then fithess score was
calculated for each clone, and the scores were averaged over all the clones in a sample after
weighting on clonal sizes.

Generation of anti-PD1 resistant CT26 tumors

BALB/C mice were acquired from The Jackson Laboratory, after several days of acclimation, mice
were inoculated with 500k CT26 on the rear flank. When the average tumor volume reached 80-
100 mm? (indicating day 0), mice were given a series of intraperitoneal injections of anti-PD1
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(clone RMP1-14; BioXcell), consisting of 100 ug each on days 0,3, and 6. Tumors were excised
from mice that did not respond to anti-PD1 therapy, approximately 10-14 days following the initial
treatment. Tumors were dissociated using collagenase (Stemcell Technologies), washed in 1X
PBS, and plated in IMDM culture media supplemented in 10% fetal bovine serum, 1% GLUTIMAX,
and 1% Antibiotic-Antimycotic (all GIBCO). Cells were passaged at least 5 times and then
inoculated into new recipient mice according to the same protocol as above. Again, when tumors
reached 80-100 mm3, another treatment course of anti-PD1 began. This process was repeated
for a total of 4 rounds, at which point none of the treated mice responded to anti-PD1 therapy.
The cell lines generated after 2 rounds of anti-PD1 selection are referred to throughout this
manuscript as ‘2nd round’, ‘2nd generation’ or ‘F2 generation’, and the cell line generated after 4
rounds of anti-PD1 selection are referred to as ‘4th round’, ‘4th generation’, or ‘F4 generation’.

Transcriptomic profiling of anti-PD1 resistant cell lines

Three distinct vials of parental CT26 cells (ATCC; ‘experimental replicates’), two independently
isolated tumors from ‘2nd round’ mice, and four independently isolated tumors from ‘4th round’
mice (both ‘biological replicates’), were cultured +/- 20 ng/ml of mouse IFNy (Biolegend) for 24
hours at 37°C/5%CO2. The following day, RNA was isolated from cells using Qaigen RNAeasy
reagents according to manufacturer’s instructions, including QiaShredder homogenization and
on-column DNasel digestion. Isolated RNA was sent to Genewiz (www.genewiz.com) for library
generation, RNA-sequencing, and data processing. Briefly, sequencing libraries were generated
and sequenced on an lllumina HiSeq (2x150 paired end reads), targeting >20x10° reads per
sample. Sequences were trimmed using Trimmomatic v.0.36 (Bolger et al., 2014) and mapped to
Mus Musculus GRCm38 reference genome using STAR aligner v.2.5.2b (Dobin et al., 2013).
Unique gene hits were calculated by using featureCounts from the Subread package v.1.5.2. Only
unique reads that fell in exonic regions were counted. The Transcript Per Million (TPM) values
were obtained for each protein-coding gene and subsequently log-transformed (log2(TPM +1))
for downstream analysis. Mouse orthologs of genes in hallmark gene sets and Antigen Processing
Machinery (Senbabaoglu et al., 2016) and regulons of IRF1 and STAT1 were identified using
Ensembl 87 (Howe et al., 2021) and single sample gene set enrichment analysis was performed
in a similar fashion as described for the clinical cohort.

Statistical tests of experimental data

All statistical tests were performed in R. The two-tailed unpaired t test was performed to identify
differences between parental and the resistant cells or between naive and IFNy challenged
cells. Data are shown as mean + SEM.
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Supplementary Figures
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Figure S1. (a) Schematic of patterns of progression in post-treatment lesions. “Rebound growth” is defined
as lesions present at initiation of therapy with response on treatment, but subsequently followed by
progression (top). “De novo growth” is defined as lesions that were not present at initiation of therapy and
newly grew during treatment. (b) Time to progression in rebound and de novo growth lesions.
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Figure S2. Spider plot of individual lesion and best overall response within each profiled patient. Pre-
treatment lesions were defined as with at least 30% reduction after initiation of treatment or resected prior
to treatment. Post-treatment lesions were defined as those with “rebound growth” or “de novo” growth.
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Figure S3. Principal components analysis of expression data to evaluate for a) batch effects, b) site and c)
post-treatment response. d) Comparison of immune score from CIBERSORT between paired pre-treatment

and post-treatment samples.
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Figure S4. (a) Principal components analysis of patients with paired samples based on change in
enrichment score of hallmark gene sets. (b) Principal components feature loadings of hallmark gene sets
with both magnitude and direction. Biological processes in hallmark gene sets were categorized into sub-
groups as described in (Jiménez-Sanchez et al., 2020) and colour-coded accordingly. regulated gene sets
in either ‘stable’ or ‘increase’ patients ordered according to IFNy status. (c) Correlation between Hallmark
gene sets and PC1 from panel a.(d) Correlation between change in the IFNy Response specific signature
with the 1st principal components from panel a. (e) Correlation between change in the IFNa Response
specific signature with the 1st principal components from panel a. (f) Expression levels of FOXP3
(Regulatory T cells marker) in pre- and post-treatment samples of IFNy stable and increase group of
patients.
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Figure S5. (a) Clustering of samples based on germline mutations. Column annotations indicate patient ID
and treatment timepoints. Non-homozygous germline mutations were identified by genotyping the SNPs in
the panel of normal (PoN) samples in the cohort using GATK. The variant allele frequencies of these
germline SNPs in the tumour samples were used to classify them as ref/ref (<0.25), alt/ref (>=0.25 & <0.75)
or alt/alt (>=0.75). (b) Neoantigen Fitness Score and (c) Mutant-Allele Tumor Heterogeneity (MATH) Score
in paired pre-treatment and post-treatment samples. Dynamics of loss and gain of clonal and sub-clonal
mutations between paired pre-treatment and post-treatment samples of patients with (d) sub-clonal
expansion (AR_19 and AR_26) or (e) clonal replacement (AR_20 and AR_27). (f) Proportion of smoking
signature in private pre-treatment and private post-treatment mutations. dN/dS values for genes based on
(g9) missense, (h) indel and (i) truncation (nonsense and splice site) mutations. Genes with high magnitude
of dN/dS values (>100) and significant p-value (<.002) in either the pre-treatment or post-treatment
timepoints are shown.
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Figure S6. (a) PCA of parental, 2nd round and 4th round samples based on whole transcriptome data.
Differential comparison of hallmark gene sets between (b) 2nd round and parental cells, (c) 4th round and
parental cells. The x-axis indicates the change in Enrichment Score and y-axis is FDR adjusted p-value
derived from comparison of Enrichment Score of hallmark gene sets. Differential analysis of hallmark gene
sets for IFNy Stimulated vs IFNy Untreated cells from (g) Parental, (h) 2nd round and (i) 4th round.
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