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Abstract 

Understanding the function of genes and their regulation in tissue homeostasis and disease requires 

knowing the cellular context in which genes are expressed in tissues across the body. Single cell 

genomics allows the generation of detailed cellular atlases in human tissues, but most efforts are 

focused on single tissue types. Here, we establish a framework for profiling multiple tissues across 

the human body at single-cell resolution using single nucleus RNA-Seq (snRNA-seq), and apply 

it to 8 diverse, archived, frozen tissue types (three donors per tissue). We apply four snRNA-seq 

methods to each of 25 samples from 16 donors, generating a cross-tissue atlas of 209,126 nuclei 

profiles, and benchmark them vs. scRNA-seq of comparable fresh tissues. We use a conditional 

variational autoencoder (cVAE) to integrate an atlas across tissues, donors, and laboratory 

methods. We highlight shared and tissue-specific features of tissue-resident immune cells, 

identifying tissue-restricted and non-restricted resident myeloid populations. These include a 

cross-tissue conserved dichotomy between LYVE1- and HLA class II-expressing macrophages, and 

the broad presence of LAM-like macrophages across healthy tissues that is also observed in 

disease. For rare, monogenic muscle diseases, we identify cell types that likely underlie the 

neuromuscular, metabolic, and immune components of these diseases, and biological processes 

involved in their pathology. For common complex diseases and traits analyzed by GWAS, we 

identify the cell types and gene modules that potentially underlie disease mechanisms. The 

experimental and analytical frameworks we describe will enable the generation of large-scale 

studies of how cellular and molecular processes vary across individuals and populations. 
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INTRODUCTION 

Tissue homeostasis and pathology arise from an intricate interplay between many different cell 

types, and disease risk is impacted by variation in genes that affect the functions and interactions 

of these diverse cells. Advances in human genetic studies have been instrumental in mapping tens 

of thousands of loci either underlying rare monogenic disease or associated with complex 

polygenic disease risk (Cano-Gamez & Trynka, 2020; Mills & Rahal, 2019; Tam et al., 2019), the 

latter mapping mostly in regulatory regions of the genome and associated as expression 

quantitative trait loci (eQTLs) to downstream effects on the expression of genes in cis and trans 

(GTEx Consortium, 2020; Võsa et al., 2018). More recently, single cell genomics has become 

instrumental in studying human tissue biology, with the construction of cell atlases of both healthy 

organs and diseased tissue, related to common disease, rare disease and cancer (Camp et al., 2019; 

Potter, 2018; G. Sun et al., 2021).  

  

Coupling advances in human genetics and single cell genomics should substantially enhance our 

understanding of changes in the function and regulation of disease genes, because cells and tissues 

are the key intermediates in which disease genes act. In particular, studies have shown that tissue 

(GTEx Consortium, 2020), cell type (Kasela et al., 2017; Kim-Hellmuth et al., 2020; M. G. P. van 

der Wijst et al., 2018; Zhernakova et al., 2017), time point and stimulation (Cuomo et al., 2020; 

Strober et al., 2019; Ye et al., 2014) all induce a diversity of expression patterns and interactions 

with disease-associated genetic loci. Recent studies have combined single cell expression atlases 

with genetic signals (Jagadeesh et al., 2021; Skene et al., 2018; Smillie et al., 2019; Weeks et al., 

2020) to associate risk genes with specific cell types and states in relevant tissues.  

 

However, because complex diseases often manifest in and implicate cells across multiple tissues, 

fully realizing this opportunity requires generating atlases from diverse tissues across the body and 

from larger numbers of individuals, spanning different populations. This poses several challenges. 

First, the collection and processing of fresh tissue samples into single cell suspensions is 

logistically challenging and inherently difficult for some tissues, such as brain, muscle and adipose 

(Habib et al., 2016, 2017; Petrany et al., 2020; W. Sun et al., 2020; H. Wu et al., 2019), and hard 

to scale for most tissues, unless they can be pre-collected and preserved frozen. As a result, large 

scale single cell profiling studies in human populations (Kang et al., 2018; M. van der Wijst et al., 
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2020) have focused on peripheral blood mononuclear cells (PBMCs), which can be frozen and 

thawed for multiplexed single cell analysis. Single nucleus RNA-seq (snRNA-seq), which can be 

applied to frozen tissues (Delorey et al., 2021; Drokhlyansky et al., 2020), offers a compelling 

alternative. Second, annotation and classification of cell type and state across multiple tissues 

requires understanding the biological relationship between parenchymal, immune, and stromal 

cells across tissue types. Third, we need cross-tissue analytical frameworks, for data integration 

(e.g., removing unwanted variation while preserving biological differences), interpretation (e.g., 

identification of cell types and states), and synthesis with genes from studies of monogenic and 

complex traits. 

  

Here, we develop a framework for snRNA-seq of multiple human tissues, and apply it to 8 

archived, frozen tissue types, previously preserved as part of the GTEx project (GTEx Consortium, 

2020)  from the lung, skeletal muscle, heart, esophagus mucosa and muscularis, prostate, skin, and 

breast. We generate a cross-tissue atlas of 209,126 nuclei profiles from 25 samples, spanning 16 

donors, using four snRNA-seq protocols (Drokhlyansky et al., 2020; Slyper et al., 2020). We 

integrate our data across tissues, donors, and protocols with a conditional variational autoencoder 

(cVAE) and annotate each cell subset based on literature-derived marker genes. We identify shared 

and tissue-specific features of tissue resident immune cells, including a dichotomy between 

LYVE1- and HLA class II-expressing macrophages, and the presence of lipid-associated 

macrophage-like cells (LAMs) across tissues. We relate rare, monogenic muscle diseases to the 

cell types that likely underlie the variable presentation of these diseases and nominate biological 

processes and cell-cell interactions involved in their pathology. We also relate common complex 

diseases and trait loci analyzed by GWAS to cell types and gene modules as putative disease 

mechanisms. Finally, we demonstrate pooling of tissues from multiple donors to illuminate a path 

towards profiling much larger numbers of individuals in cell atlases for human genetics and disease 

studies. 
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RESULTS 

A multi-tissue, multi-individual single-nucleus reference atlas from archived frozen human 

tissues 

We constructed a cross-tissue snRNA-seq atlas from 25 frozen archived tissue samples, previously 

collected and banked by the GTEx project, spanning 3-4 samples from each of 8 tissue sites: breast, 

esophagus mucosa, esophagus muscularis, heart, lung, prostate, skeletal muscle and skin from 16 

individuals (7 males, 9 females) (Figure 1A). We selected the samples by RNA quality (from 

matching bulk tissue aliquots), tissue autolysis scores (by pathology review), and the availability 

of existing bulk RNA-seq and genome sequencing data (Methods, Table S1). Histology slides 

corresponding to each tissue were reviewed by a pathologist to provide detailed annotations, 

including descriptions of broad cellular composition and sample quality (Table S1). Because 

different nucleus extraction protocols can be optimal for the characteristics of different tissues 

(Drokhlyansky et al., 2020; Slyper et al., 2020), we isolated nuclei from each sample using four 

protocols (CST, NST, TST and EZ, Methods, Table S1), followed by droplet-based scRNA-seq 

(Methods).  

 

We processed the initial snRNA-seq profiles to retain high-quality nuclei profiles and remove the 

effects of contaminant transcripts from ambient RNA (Methods). In breast and skin, the vast 

majority of the nuclei profiles were recovered from only one individual sample each (breast: 

61.3%, skin: 93.1%, Table S1). Some tissues and protocols had higher levels of ambient RNA 

contamination, reflected by detection of spurious expression of highly-expressed transcripts from 

one cell type in profiles of cells of other types. Such effects were more prominent in skeletal muscle 

and heart (FDR < 0.05), irrespective of protocol, but were also present in other tissues (Methods, 

Figure S1). We corrected for ambient RNA contamination with CellBender v2.1 (Fleming et al., 

2019) (Figure S1) and further applied standard quality control metrics (Methods), retaining 

209,126 nuclei profiles across the eight tissues, with a mean of 918 genes and 1,519 transcripts 

(Unique Molecular Identifiers (UMIs) detected per profile.  
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Cross-tissue atlas annotation recovers diverse cell types, including difficult-to-profile and 

rare cell subsets 
To facilitate exploration of the entire dataset and guide the identification of cell subsets, including 

rare types, we integrated data from all samples and methods using a conditional variational 

autoencoder (cVAE). We designed the cVAE to explicitly correct for multiple sources of variation 

in expression, such as individual-, sex- and protocol-specific effects, while preserving tissue- and 

cell type–specific variation (Methods, Figure 1B-F, Figures S2A and S3). Cells grouped first by 

cell type, and then by tissue-specific sub-clusters (Figure 1B-D), suggesting that the variation 

between cell types is larger than the variation within a cell type across tissues. We comprehensively 

annotated cell types within each tissue after dimensionality reduction and graph-based clustering 

(Methods) by identifying genes differentially expressed between clusters and comparing them 

with known literature-based markers (Methods, tables S2 and S3). Through multiple iterations, 

we hierarchically defined cellular compartments shared across tissues (e.g., adipose, endothelial, 

epithelial, fibroblast, immune, muscle) (Figure 1B), broad cell types (e.g., luminal epithelial cells, 

vascular endothelial cells) (Figure 1C, Figure S4 and S5), and granular cell subsets (e.g., luminal 

epithelial cell 1 and 2, vascular endothelial cell 1 and 2) (Figure S6). The annotations were robust 

across extraction protocols, tissues, and donors (Figure S2B,D). 

 

The atlas features 43 broad cell classes (Figure 1C, tables S2 and S3), including both tissue-shared 

cell types and tissue-specific subsets (e.g., Figure 1G, Figures S2B,D and S4). For example, 

tissue-specific cell types such as pneumocytes (alveolar type I and II), keratinocytes, and luminal 

epithelial cells were the dominant cell types in the lung, skin, and breast, respectively. 

Macrophages (analyzed in depth below) comprised the largest immune population, with diverse 

subsets of tissue-resident cells. Shared cell types such as immune and stromal cells were detected 

across all tissues (Figure S2D,E).  

 

In particular, the single nucleus atlas captured profiles from cell classes that are difficult-to-profile 

by dissociation-based scRNA-seq (Kim et al., 2020; W. Sun et al., 2020; Wolfien et al., 2020), 

including 2,350 adipocytes, 21,607 skeletal myocytes, and 9,619 cardiac myocytes. We detected 

adipocytes in five of the eight tissue types, most prominently breast tissue (86% of adipocytes; 

18% of all breast nuclei profiles; Figure 1G), as well as muscle, heart, esophagus muscularis, and 
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skin. The skeletal muscle and cardiac myocytes we detected included key myocyte subtypes 

(Litviňuková et al., 2020; Tucker et al., 2020). Cardiac myocytes primarily included the previously 

distinguished classical myocytes and “cytoplasmic myocytes” with high myoglobin (MB) 

expression and a high ratio of exon- vs. intron-mapping reads (Methods) (Tucker et al., 2020). In 

skeletal muscle, we similarly observed classical and “cytoplasmic”-like myocytes, as well as 

neuromuscular junction-rich skeletal muscle myocytes, as previously reported from sc/snRNA-seq 

studies in mice (Kim et al., 2020; Petrany et al., 2020; Verma et al., 2021). The high diversity of 

myocyte nuclei may be attributed to nucleus specialization in multinucleation in muscle syncytia. 

Furthermore, we distinguished “fast-twitch” and “slow-twitch” states in both myocyte and 

cytoplasmic myocyte populations (Figure 1B,C, Figure S6G). 

 

Cross-tissue and cross-sample integration enhanced our ability to resolve multiple rare cell subsets 

(Figure 1C, Figures S2B,D, S5 and S6). We identified Schwann cells in multiple tissues by 

differential expression of CDH19, CADM1, CADM2, and S100B; Interstitial Cells of Cajal (ICCs, 

expressing KIT, ANO1 and PRKCQ) and enteric neurons (NPY, VIP, NOS1, ELAVL4, GAL, 

(Drokhlyansky et al., 2020)) in esophagus muscularis; neuro-muscular junction (NMJ)-rich 

myocytes (CHRND, ETV5) and skeletal muscle satellite cells (PAX7, CALCR, MUSK) (Petrany et 

al., 2020); hillock and club epithelial cells in prostate (KRT13, MUC4 and SCGB1A1, SCGB3A1); 

neuroendocrine cells (CHGA, CHGB) in esophagus mucosa and prostate and cornified 

keratinocytes (FLG2, LOR) in skin (Figures S5 and S6).  

 

snRNA-seq protocols perform well across tissues and correspond to scRNA-seq 
 

We benchmarked the performance of our snRNA-seq nucleus extraction protocols (Drokhlyansky 

et al., 2020; Slyper et al., 2020) relative to each other across all 8 profiled tissues and to other 

snRNA-seq, scRNA-seq and bulk RNA-seq data sets in relevant tissues. For each dataset we 

compared standard QC metrics per profiled cell/nucleus, captured cell type diversity and cell type 

proportions. 

 

Among the four tested nucleus isolation protocols (CST, NST, TST and EZ) the EZ protocol 

displayed lower performance in each of the eight profiled tissues according to multiple quality 
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metrics (Luecken & Theis, 2019) (Methods) (Figure 2A, Figure S7), including the lowest total 

number of nuclei captured, higher levels of ambient RNA (FDR<0.05, Figure S1A,B), and 

separate grouping of EZ-profiled samples (Figure S2C, Methods). The extraction protocols varied 

in the proportion of nuclei recovered from each cell type (Figure S2B,D and S8A). TST, CST and 

NST protocols had comparable cell-type diversity as measured by Shannon entropy (Figure 2A, 

Methods), with higher variability in skin, breast, and prostate (p-value = 0.06241, Fligner-Killeen 

test), whereas the EZ protocol resulted in lower diversity (Figure 2A, linear mixed effects model 

effect-size=-1.08, p=5*10-11). 

 

Next, we compared cell type compositions recovered in frozen heart left ventricle samples by 

either our CST, TST, NST and EZ protocols or heart in two public snRNA-seq studies 

(Litviňuková et al., 2020; Tucker et al., 2020), finding agreement in broad cell types (e.g., mast 

cells, adipocytes, “cytoplasmic” cardiac myocytes, and Schwann cells (Figure S8B,C and Table 

S4) but differences in some of their proportions (Figure S8D,E). Both the published studies and 

our EZ snRNA-seq had a higher proportion of muscle cells, whereas CST, NST and TST had a 

higher proportion of endothelial cells (Figure S8E). There was also high concordance between the 

expression profiles of bulk RNA-seq (from GTEx, (GTEx Consortium, 2020)) and pseudobulk 

profiles derived from our snRNA-seq (accuracy 92.3%, Figure S9), with a few samples showing 

lower agreement (heart-EZ, breast-EZ, and two breast-TST samples). 

 

We also compared snRNA-seq and fresh-tissue scRNA-seq of lung (MS, ORR, AR, Avinash 

Whagry, Alexander Tsankov, Jay Rajagopal et al., unpublished results), skin (current study, 

Methods), and prostate (Henry et al., 2018). For cell composition (Figure 2B), we recovered the 

same main cell groups across compartments, as also reflected by the accuracy of a multiclass 

random forest classifier trained on scRNA-seq data in predicting cell types on snRNA-Seq data 

(Methods, Figure 2C-E) and vice versa (Figure S8F-H), and in overall similarity of cell type 

intrinsic (pseudobulk) profiles of protein coding genes (average Spearman ρ across cell types = 

0.58 (skin), 0.69 (prostate), 0.53 (lung), Table S4). Notable divergences include the greater 

expression in cells vs. nuclei profiles of a stress/dissociation signature (Denisenko et al., 2020; van 

den Brink et al., 2017) (Wilcoxon rank-sum test, Benjamini-Hochberg FDR < 10-16, Figure 2F, 

Figure S10A,B), as we previously reported (Slyper et al., 2020), and of ribosomal and nuclear-
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encoded mitochondrial protein genes (Figure 2G, Methods, linear model), consistent with their 

longer half-lives and higher cytoplasmic levels (Rabani et al., 2014; Zaghlool et al., 2021). 

Conversely, nuclei had higher levels of longer transcripts (Figure S10H,I) and of transcripts with 

higher counts of adenine stretches (Figure 2G, Figure S10C-G), consistent with previous reports 

(Solnestam et al., 2012). Notably, snRNA-seq generally captured relatively lower proportions of 

lymphocytes overall and as a component of the immune compartment. For example, for lung and 

skin, respectively, T cells represented 1.7% or 1.4% of all cells and 9% or 29.5% of the immune 

compartment by snRNA-seq, compared to 18.4% or 6.83% overall and 56.8% or 43% of the 

immune compartment by scRNA-seq (with similar patterns for B cells). Proportions varied across 

samples and protocols. Note that a recent study comparing snRNA-seq and in situ measurements 

(Hwang et al., 2020) suggested that scRNA-seq may over-sample immune cells.  

 

A dichotomy between LYVE1- and HLA class II-expressing macrophages preserved across 

tissues  

 

Our cross-tissue atlas allowed us to characterize tissue-specific and shared features of resident 

immune cells, focusing on macrophages. Tissue-resident immune cells play key roles in immune 

surveillance and tissue support and are shaped by both their ontogeny and tissue residence 

(Chakarov et al., 2019).  

 

Integration and annotation of 14,156 myeloid nuclei profiles (Methods) (60% of all immune 

nuclei) revealed distinct monocyte, macrophage and DC populations (Figure 3A, and Figure 

S11A,B). These included CD16+ monocytes (FCGR3A/CD16, LILRB1, LILRB2), CD14+ 

monocytes (VCAN, S100A8, FAM65B), two transitional Mo/MΦ FCGR3Alo and Mo/MΦ 

FCGR3Ahi populations with co-expression of both monocyte and macrophage markers, DC1s 

(C1orf86, CLEC9A, XCR1), DC2s (CD1C, CLEC10A) (Villani et al., 2017), mature DCs (CCR7, 

LAMP3, BIRC3) and Langerhans cells (CD207/Langerin, CD1A, RUNX3) (Figure 3B). Tissue 

macrophage states included lung macrophages (PPARG, SLC11A1, MARCO) expressing a 

reported alveolar macrophage signature (Reyfman et al., 2019) (Figure S11C), proliferating 

macrophages (TOP2A, MKI67, UBE2C), cytokine/chemokine-expressing inflammatory 

macrophages (IL1B, CCL4L2, CCL4) and two additional macrophage subsets: MΦ LYVE1hi 
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(F13A1, SEPP1, LYVE1) and MΦ HLAIIhi (APOE, APOC1, HLA-DRB1) (Figure 3B). Finally, we 

identified lipid-associated macrophage (LAM)-like nuclei profiles, with high expression of LAM-

specific genes (SPP1, FABP5, CD9, TREM2) (Figure 3B and Figure S11C) (Jaitin et al., 2019) 

and of lipid metabolism-related expression modules, including “regulation of lipid localization” 

and “response to lipoprotein particle” (Figure S11D). 

  

Most myeloid subsets were generally present in multiple tissues, with the notable exceptions of 

lung macrophages and Langerhans cells. Myeloid cell proportions were more highly correlated 

between samples within a tissue type (Figure S11E,F) than between different tissues (Figure 

S11F,G), suggesting that tissues have characteristic myeloid state proportions. Moreover, related 

tissues – such as muscle (heart, esophagus muscularis, skeletal muscle) or mucosa (esophagus 

mucosa, skin) – grouped by their myeloid composition profiles (Figure S11G). Breast, esophagus 

mucosa, esophagus muscularis, heart, and skeletal muscle had significantly higher proportions of 

MΦ LYVE1hi (p-value<10-6, Dirichlet regression LRT, Methods), while lung and prostate had 

significantly higher proportions of MΦ HLAIIhi (p-value<10-8, Dirichlet regression LRT, 

Methods) (Figure 3C, and Figure S11E,H,I). In contrast to other subsets, lung macrophages were 

present only in lung, and Langerhans cells only in skin and esophagus mucosa (97%), consistent 

with their role in antigen sampling within stratified epithelia (Capucha et al., 2015; Deckers et al., 

2018) (Figure 3C, and Figure S11H). Interestingly, while LAMs have first been reported in 

human visceral adipose tissue (Jaitin et al., 2019) and multiple pathological contexts (Deczkowska 

et al., 2020), LAM-like cells were more widely distributed across healthy human tissues in our 

atlas, predominantly breast, heart, lung and prostate (Figure 3C, 94%, 268 of 283), as we discuss 

below.  

  

Analysis of MΦ LYVE1hi and MΦ HLAIIhi populations across esophagus mucosa, lung and heart 

revealed that a dichotomy between LYVE1highHLA class IIlow and LYVE1lowHLA class IIhigh states 

was preserved across the tissues. Each subset was characterized by a combination of a common, 

tissue-agnostic signature (MΦ LYVE1hi: F13A1, MRC1, LYVE1, SEPP1 and MΦ HLAIIhi: CD68, 

HLA-A, PSAP, HLA-DRA) along with tissue-specific markers of MΦ LYVE1 hi or MΦ HLAIIhi 

states (Figure 3D, and Figure S11J), such as MARCO and CD209 in breast MΦ LYVE1hi, PTPRG 

in esophagus muscularis MΦ LYVE1hi, LY6E in lung MΦ HLAIIhi, IL18R1  in prostate MΦ 
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HLAIIhi, and NKG7 in esophagus mucosa and prostate MΦ HLAIIhi (all FDR<0.05, Welch’s t-test). 

The dichotomous LYVE1highHLA class IIlow and LYVE1lowHLA class IIhigh states were enriched for 

distinct functions: tissue supporting modules (e.g., “neurogenesis” and “endothelial cell fate 

specification”) for MΦ LYVE1hi and immune-related processes (e.g., “myeloid leukocyte mediated 

immunity”, “interferon-mediated signaling pathway”, “antigen-processing and presentation”) for 

MΦ HLAIIhi (Figure S11K), and were remarkably similar to Lyve1highMHC IIlow and Lyve1lowMHC 

IIhigh resident macrophage populations in mouse tissues (Chakarov et al., 2019) (Figure S11L).  

 

LAM-like macrophages are prevalent across human tissues in health and disease and are 

associated with a shared regulatory program 

 

LAMs and LAM-like cells have been observed in disease contexts in adipose tissue from obese 

human individuals and from mice (Jaitin et al., 2019), injured and fibrotic liver (Perugorria et al., 

2019; Ramachandran et al., 2019; Xiong et al., 2019), fibrotic lung (Ayaub et al., 2021; Reyfman 

et al., 2019), atherosclerotic aortic tissue (Cochain et al., 2018; Willemsen & de Winther, 2020), 

and Alzheimer’s disease brain (Grubman et al., 2019; Keren-Shaul et al., 2017; Mathys et al., 

2019). However, an understanding of their distribution and heterogeneity across human tissues is 

still lacking.  

 

We systematically characterized LAM-like cells in the expanded context of our study and 17 other 

atlases from 14 tissues, by training a linear classifier with published omental scRNA-seq 

containing LAMs (Jaitin et al., 2019) (Methods) and classifying each myeloid profile in our 

dataset and the published compendium as LAM-like macrophages, non-LAM macrophages and 

non-macrophages, recovering 283 LAM-like cells in our study and 4,285 LAM-like cells in 17 

reported studies (Figure 3E-G, and Figure S12A-D, Table S5).  

 

The LAM-like cells were present among tissue-resident macrophages across a broad range of 

tissues and pathologies. These included adipose (Jaitin et al., 2019; Muus et al., 2021) and 

atherosclerotic (Alsaigh et al., 2020; Wirka et al., 2019) tissue, as previously reported, as well as 

many healthy tissues (placenta, testis, kidney, pancreas, prostate, decidua, liver, ovary, skeletal 

muscle, intestine) and other disease contexts (skin from acne, leprosy and atopic dermatitis 
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patients, ileum from Crohn’s disease patients). Notably, 126 microglia (high TMEM119 

expression) from the CNS of epileptic patients were also classified as LAM-like cells, indicating 

that LAM-signature expressing microglia extend beyond Alzheimer’s disease (Grubman et al., 

2019; Keren-Shaul et al., 2017; Mathys et al., 2019). A core signature of LAM genes, including 

FABP5, SPP1, CSTB, APOC1 and CD9, is consistent across most tissues and studies, whereas 

CHIT1 and CHI3L1 showed considerable variation (Figure 3G and Figure S12E). 

  

We predicted transcription factors (TFs) that could mediate LAM-like gene expression, by 

inferring TF activities in LAMs, non-LAM macrophages and all other cells separately, and ranking 

TFs by the mean difference between their activities in LAMs vs. non-LAM macrophages 

(Methods, Figure 3H). LAM-associated TFs included PPARG, USF1 and NR1H3 (LXRA) across 

all classified LAM-like cells (Figure 3I, Figure S12F), consistent with a shared core regulatory 

mechanism. These are major regulators of lipid metabolism-related gene expression (Kidani & 

Bensinger, 2012) and have been proposed to regulate Trem2 expression in mice (Savage et al., 

2015).  

 

Genes from monogenic muscle disease groups are enriched in distinct subsets of myocyte and 

non-myocyte cells in cardiac, skeletal and smooth muscle tissue  

 

While human genetics has successfully identified many rare monogenic disease genes, the cell 

type(s) of action are often unknown, or can even be incorrect, as shown for CFTR, the gene 

underlying cystic fibrosis (Montoro et al., 2018; Plasschaert et al., 2018). Leveraging the three 

muscle types in our atlas—cardiac, skeletal muscle, and smooth muscle—we sought to identify 

the cell type(s) of action for a broad group of well-curated monogenic muscle disease genes 

(Benarroch et al., 2020) (Table S6). We tested the subset of genes for each disease group (e.g., 

hereditary cardiomyopathies, motor neuron diseases) for enrichment in cell type-specific markers 

from our muscle tissues (FDR < 0.1) (Methods, Figure 4A).  

 

Different disease group gene subsets were associated not only with different myocyte subsets 

(spanning 113 of 606 genes; Figure S14), but also with neurons, Schwann cells, fibroblasts, and 

adipocytes (127 genes, Figure S15, Table S7), in patterns that recapitulated known disease 
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mechanisms as well as highlighted new relationships (Figure 4A). Known associations in 

myocytes included skeletal muscle myocytes with congenital myopathy genes (FDR: 7.07*10-5, 

e.g., ACTA1, BIN1, MYH7, MYL1, TPM2, TTN), and cardiac myocytes with hereditary 

cardiomyopathy genes (FDR: 4.24*10-12, e.g., ACTC1, ACTN2, CACNA1C, CACNB2, MYH6, 

MYH7, MYL4, MYOZ2, SCN2B, SCN5A). In some cases, associations highlighted finer myocyte 

subsets, such as congenital myasthenic syndrome (CMS) genes with NMJ-rich skeletal myocytes 

(FDR: 0.015, e.g., CHRNA1, CHRND, CHRNE, MUSK). Notably, CHRNE and MUSK are specific 

to NMJ-rich myocytes but not to other skeletal myocytes (Table S7), highlighting the importance 

of finer subsets. Among non-myocyte cell associations were Schwann cells with hereditary motor 

and sensory neuropathies in all three tissues (FDR: 0.015-0.06; DST, EGR2, MPZ, NDRG1, 

PMP22, PRX) and with Dejerine-Sottas hypertrophic neuropathy in skeletal muscle (FDR: 

2.28*10-5, e.g., EGR2, MPZ, PMP22, PRX); enteric neurons in the esophagus muscularis with 

hereditary motor and sensory neuropathies (FDR: 0.034, e.g., KIF1A, KIF1B, NEFH, NEFL, 

PMP22, SCN11A) and with motor neuron diseases (FDR: 0.01, ERBB4, KIF26B, MAPT, NEFH, 

NEK1), and esophagus muscularis adipocytes with metabolic myopathies related to lipid 

metabolism (FDR: 0.0003, LPIN1, PNPLA2, SLC22A5, SLC25A20). Notably, some of the 

enrichments in non-myocytes are also present in the same cell types in other tissues (e.g., breast 

adipocytes for metabolic myopathies or breast and skin pericytes for cardiomyopathies, Figure 

S13I). This reflects how a specific pathology may arise from the relation between an accessory 

cell’s broader function and specialized tissue demand. 

 

Monogenic muscle disease genes that are significantly highly expressed in non-myocytes but not 

detected in myocytes (Figure 4B, Table S8) are enriched for peripheral nervous system 

development, myelination, ensheathment of neurons, regulation of ion transmembrane transport, 

interaction between L1 and Ankyrins and neurofilament bundle assembly genes (Figure 4C). Key 

examples include PAX7 (congenital myopathy related to PAX7) in satellite cells, TYMP 

(mitochondrial DNA depletion syndrome), and KCNE1 (long QT syndrome). Although the cell 

type of action might be functioning in the CNS for some of these diseases, our analysis identified 

these potential neuronal components of the pathology through enteric neurons, suggesting the 

commonality between neuron identity signatures of the peripheral and central nervous systems. 
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We observed similar enrichment patterns when analyzing the orthologous genes in snRNA-seq 

data from the same muscle tissues in mice (Drokhlyansky et al., 2020) (Methods, Figure S13). In 

particular, we observed significant associations between skeletal muscle myocytes and various 

dystrophies and myopathies (FDR<0.1, Fisher’s exact test), cardiomyocytes and cardiomyopathies 

(FDR<0.1), adipocytes in skeletal esophagus and heart and metabolic myopathies (FDR<0.1), 

Schwann cells in skeletal muscle and hereditary motor and sensory neuropathies (FDR<0.1) 

(Figure S13H).  

 

Some monogenic muscle disease genes may impact cell interactions in the tissue 

 

To better understand the potential impact of monogenic muscle disease genes on the interplay 

between cell types in the tissue, we related cells in each of the three muscle tissues by receptor-

ligand interactions, where at least one of the genes was a monogenic disease gene (Methods). 

Interactions involving myocytes were mediated by the disease genes DAG1 (congenital muscular 

dystrophy), ACVR1 (fibrodysplasia ossificans progressiva), NPPA (atrial fibrillation), JAG1 

(Charcot-Marie-Tooth disease), ERBB3 (lethal congenital contracture syndrome) and ERBB4 

(Charcot-Marie-Tooth disease), with implications for how myocyte interactions with other cell-

types might be disrupted in these diseases. (Becker et al., 2014; C. Wu et al., 2018) (Figure 4D, 

Table S9). For example, there is a putative Schwann-myocyte interaction, mediated by Schwann 

cell–specific expression of the disease gene ERBB3 and its ligands NRG1 and NRG2 in myocytes, 

as well as by ERBB4 (with a broader expression pattern). Putative cell-cell interactions involving 

only non-myocytes included the disease genes L1CAM (MASA syndrome), MET (arthrogryposis 

and muscular dysplasia) and NGF (hereditary sensory and autonomic neuropathy), each potentially 

affecting multiple cell pairs, including neurons and Schwann, satellite, immune and stromal cells 

(Figure 4E,F, Table S9).  

 

Cell type–specific enrichment of QTL genes mapped to GWAS loci  
 

Studies associating genetic variants to changes in expression (eQTLs) or splicing (sQTLs) traits 

have demonstrated tissue-specific colocalization with multiple loci from GWAS of human traits, 
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including disease risk (Barbeira et al., 2021; Finucane et al., 2015; Gamazon et al., 2018; GTEx 

Consortium, 2020), but lacked cellular resolution (Kim-Hellmuth et al., 2020). To relate e/sQTLs 

to cell types and prioritize causal genes for complex diseases and traits in specific cells and tissues, 

we tested if GWAS loci from 21 complex traits (Table S10), with likely effects in at least one of 

the 8 tissues analyzed, are enriched for genes with high cell type–specific expression in each tissue. 

We defined putative causal genes for each GWAS locus as the set of genes whose e/sQTLs(GTEx 

Consortium, 2020) were in LD (r2>0.8) with the lead GWAS variant(s) (Figure 5A and Methods). 

We further included genes prioritized by additional genomic data (e.g., Hi-C) and linkage to 

predicted deleterious protein coding variants (Ghoussaini et al., 2021). Since more than one gene 

typically maps to a GWAS locus using this approach (mean=2, max = 37 for selected traits and 

170 for null traits), we scored loci by the fraction of cell type-specific genes in the locus (Figure 

5A and Methods). We assessed the enrichment of loci with cell type–specific genes above the 95th 

percentile against a null distribution of thousands of LD-clumped GWAS loci from hundreds of 

complex traits from Open Targets Genetics (Ghoussaini et al., 2021), using a Fisher’s exact test-

based approach (Figure 5A and Methods). 

 

Seventeen (17) of the traits were enriched in both expected and previously undescribed cell types 

at tissue-wide FDR<0.05 (Benjamini-Hochberg), 16 of which were also significant (FDR<0.05) 

across tissues (Figure 5B, Tables S11 and S12, Figures S16 and S17). These included expected 

associations such as skin pigmentation traits in melanocytes, autoimmune and inflammatory 

diseases in T and NK cells, lung fibroblasts in COPD, prostate cancer in luminal epithelial cells, 

atrial fibrillation and heart rate in myocytes, heart rate in lymphatic endothelial cells (Brakenhielm 

& Alitalo, 2019), and coronary artery disease in vascular endothelial cells (Figure 5B). 

Interestingly, type 2 diabetes loci were strongly enriched in skeletal muscle adipocytes as well as 

in lymphatic endothelial cells in multiple tissues, which might underpin the predisposition of type 

2 diabetes to vascular disease (Figure 5B). Less studied examples include DCs in non-melanoma 

skin cancer, adipocytes and breast cancer (Kothari et al., 2020), and adipocytes and atrial 

fibrillation. In many cases, when GWAS loci were enriched in a specific cell type from a known 

tissue of action, a similar enrichment was observed in the same cell type from other uninvolved 

tissues. For example, atrial fibrillation GWAS loci were enriched in myocytes in heart, skeletal 

muscle, esophagus muscularis and prostate (Figure 5B,C), coronary artery disease and heart rate 
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loci were enriched in pericytes in 5-6 other tissues in addition to heart, and prostate cancer loci 

were enriched in luminal epithelial cells in both prostate and breast (Figure 5B, Figures S18 and 

S19).  

 

Cell type enrichment enables prioritization of specific causal genes in GWAS loci with multiple 

LD-mapped genes and cell types, such as NDUFB10, MYH7, FLNC, CFL2, MYH6, MSRB1, and 

CASQ22 for atrial fibrillation and heart myocytes (cardiac, cytoplasmic) (Figure 5D, Tables S11 

and S12). Only a subset of the genes driving the cell type enrichment for different traits (mean = 

66%, 60-71.4% [95% CI]) were common across tissues (e.g., NDUFB10, FLNC, CFL2, MSRB1, 

and CASQ22 for atrial fibrillation and myocytes; Figure 5D), which may point to a high 

confidence set of causal genes in the particular cell type and suggest additional tissue-specific 

genes in specific  cell types (e.g., the cardiac myosin subunits MYH6 and MYH7 in heart myocytes). 

 

Associating GWAS genes with gene programs across cell types reveals six main trait groups 

To chart the cellular programs and processes that may be impacted by genetic variants, we next 

associated a larger set of >2,000 complex phenotypes with cell types and the co-varying gene 

modules they express (Methods). We defined gene modules in the cells in our atlas by correlation-

based gene clustering across cells, scored modules for their overlap with GWAS genes (defined 

by variant to gene mapping in Open Target Genetics (Ghoussaini et al., 2021)) that are also highly 

expressed by cell types (Figure S20, Table S13), and then grouped GWAS phenotypes into major 

groups by the similarity of their module enrichment across cell types (Figure 6A-C, Figure S21). 

For each major group of traits, we identified the relevant cell types associated with the underlying 

modules (Figure 6A,C) and tested the GWAS genes that overlapped with gene modules for 

functional enrichments (Figure 6A,D,E). 

 

We partitioned 6 major groups of module-cell type-trait associations, spanning immune 

hypersensitivity, cardiovascular, calcium channel–related, cognitive/psychiatric, pigmentation, 

and high-density lipoprotein (HDL) cholesterol related traits and/or disease (Figure 6B-E). The 

immune hypersensitivity disorders included asthma, inflammatory bowel disease, Crohn's disease, 

and rheumatoid arthritis, as well as three hypothyroidism traits known for autoimmune links 

(Stassi & De Maria, 2002). This group was associated with T cells, including the expected relation 
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between lung T cells and hay fever, allergic rhinitis, and respiratory disease (Galli et al., 2008; 

Kay, 2001). GWAS genes in the modules associated with these traits were enriched for lymphocyte 

activation and differentiation and TCR signaling and cell-cell adhesion (e.g., PTPRC, IL2RA, 

IL7R, IFNG, FASLG, Figure 6E), with IL-35 signaling genes enriched in hypothyroidism and 

IBD, consistent with IL-35 upregulation in Hashimoto’s thyroiditis (Yilmaz et al., 2016) and IBD 

(Y. Li et al., 2014)) and downregulation in Graves’ disease (Saeed et al., 2021). The cardiovascular 

traits group included hypertension, atrial fibrillation, mean arterial pressure and renin-angiotensin 

system, was associated with pericytes/smooth muscle cells (SMCs, responsible for modulating 

total peripheral resistance in arterioles), and was enriched with blood circulation, smooth muscle 

contraction, muscle structure development and cardiocyte differentiation genes (e.g., CACNA1C, 

CACNA1D, CASQ2, PLN). Notably, the cardiovascular group overlapped with the calcium-

channel related group, which also included blood pressure medication, pulse rate, medication use 

of calcium channel blockers and vascular system traits, as well as schizophrenia (SCZ) and autism 

spectrum disorder (ASD), psychiatric disorders with known L-type calcium channels associations 

(Pinggera et al., 2017), and was enriched with membrane depolarization and calcium ion channel 

genes (e.g., CACNA1C, CACNA1D). Other cognitive/psychiatric phenotypes (e.g., educational 

attainment, intelligence, depression, neuroticism) grouped separately, and were enriched with 

neuronal synapse organization, structure, and activity genes (e.g., NRXN1, CDH2, CNTN4). A 

skin/hair color group was driven by melanocytes and enriched with pigmentation and melanin-

related processes (TYR, OCA2, TYRP1, MLANA). Finally, a group of HDL cholesterol traits was 

associated with adipocytes in all three muscle tissues, and enriched for fatty acid, triglyceride, and 

lipid homeostasis and related metabolic processes (monocarboxylic and glycerol metabolism), 

including ANGPTL8 and PNPLA3, genes involved in lipolysis regulation in adipocytes that might 

impact extrahepatic cholesterol transport via HDLs (Mysore et al., 2017; Yang & Mottillo, 2020).  

 

Toward large-scale snRNA-seq of human tissues with pooling 

To enable future studies at population scale, we tested whether frozen samples from different 

individuals can be pooled for snRNA-seq, followed by computational demultiplexing, as a cost-

effective and scalable approach (Xu et al., 2019), as previously applied to large-scale studies of 

human PBMCs (Kang et al., 2018). To this end, we processed lung and prostate samples jointly 

from three individuals, using the CST and TST protocols. We pooled tissue samples from the three 
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individuals and then processed the pool for single nucleus extraction, thus minimizing technical 

batch effects and wet-lab time. After sequencing, we removed ambient RNA (Fleming et al., 2019), 

and performed de novo genotype-based demultiplexing to assign nuclei to donors (using souporcell 

(Heaton et al., 2020), Figure S22, Methods). We validated the demultiplexing by comparing the 

genotype-based assignments to those from an expression-based multinomial logistic classifier that 

assigned donor identity to each nucleus profile after training with unpooled samples of the same 

donors, which showed high concordance between the two approaches (accuracy 88%-96%, Figure 

S22). Moreover, genotype-based doublet calls were concordant with expression-based doublet 

calls in both lung and prostate (mean balanced accuracy 63%) (Figure S22). 

 

Discussion 

To enable large-scale studies of the human body at single-cell resolution, we developed robust 

wet-lab and analytical frameworks, and applied them to generate a cross-tissue atlas from banked 

frozen tissues, spanning 209,126 nuclei profiles across 25 samples from eight tissue types. We 

benchmarked and optimized four lab protocols for nucleus extraction, developed a robust 

framework for data integration and cross-tissue annotation, and demonstrated multiplexing in two 

tissue types for scaling these approaches to larger populations of individuals.  

 

Cross-tissue atlases allow us to characterize tissue-specific and -agnostic features of cells of a 

common type that serve accessory roles in tissues, such as immune and stroma cells. For example, 

we found a conserved dichotomy between LYVE1- and HLA class II-expressing macrophages 

among tissue-resident macrophages. Building on previously reported cross-tissue analyses in the 

mouse (Chakarov et al., 2019), our results reinforce the notion of functional specification of these 

two macrophage states into tissue support and tissue immunity, respectively. In mice, Lyve1hi 

macrophages are localized perivascularly, whereas MHCIIhi macrophages are found in proximity 

to neurons (Chakarov et al., 2019). Future studies will need to address if the human macrophage 

subsets described here display similar tissue localization as their murine counterparts. The nature 

of the monocyte populations and differentiation trajectories that give rise to these states, and the 

tissue-specific signals that govern the tissue-specific ratios of LYVE1- vs. HLA class II-expressing 

phagocytes, remain unknown. 
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Our analysis further highlighted the presence of LAM-like cells in multiple tissues. Initially 

identified in adipose tissue (Jaitin et al., 2019), prior reports have indicated a broader distribution 

of LAMs (Deczkowska et al., 2020; Subramanian et al., 2021). Our data further demonstrate the 

prevalence of LAM-like cells across tissue contexts and pathologies and identified several 

common themes. In line with a model of lipid-induced differentiation of macrophages towards the 

LAM state (Deczkowska et al., 2020), our classifier recovered LAMs in artherosclerotic arteries, 

creeping fat in Crohn’s small intestine and skin acne, all pathologies characterized by lipid 

accumulation. Analysis of LAM-specific transcription factor activity points towards PPARG and 

NR1H3-driven control of the LAM expression program. These findings might suggest a model 

where signaling through lipid-bound receptors on macrophages such as TREM2 up-regulate the 

expression of more lipid receptors, as well as of lipid modifying enzymes through PPARG and 

NR1H3. Importantly, as we observe LAMs in healthy organs and in other conditions not previously 

linked to the accumulation of lipids, such as leprosy infection, it will be important to analyze 

alternative tissue-specific signals that can trigger macrophage polarization towards the LAM-like 

state. 

 

A key challenge in human biology is to understand how disease-associated genes affect cellular 

function, both for monogenic and complex diseases. We demonstrated the utility of a tissue atlas 

for monogenic disease biology, where we inferred the primary and secondary pathobiology of 

monogenic muscle diseases by analyzing skeletal, cardiac and smooth muscle. Disease groups 

were enriched not only for genes expressed in myocytes, but also for non-myocytes, including 

nervous system, immune and stromal cells (Benarroch et al., 2020). Note that we observed multiple 

subtypes of myocytes within one tissue, including cytoplasmic myocytes (high myoglobin (MB) 

expression and exon:intron ratio), which suggests possible specialization of different nuclei in one 

syncytium. Future work on syncytia can help understand nucleus heterogeneity in multinucleate 

cells and dissect the role of cross-nuclear circuits in muscle, the placenta (Marsh & Blelloch, 2020) 

and viral infection (Cifuentes-Muñoz et al., 2018), as well as whether and how dysfunction of a 

subset of nuclei within syncytia can result in a broader pathology. We also suggest that some 

disease risk genes may disrupt cell-cell interactions in the muscle, such as between myocytes and 
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Schwann cells. Future work may further reveal the mechanisms by which disease perturbations of 

different genes, cell types and nuclei can elicit similar disease phenotypes.  

 

For common complex diseases, we related cell types and programs with GWAS variants across 

multiple diseases and traits. We found significant enrichment in specific cell groups for multiple 

traits, including autoimmune diseases in T cells and NK cells, atrial fibrillation in myocytes, 

cardiovascular traits in pericytes and smooth muscle cells, and cognitive/psychiatric traits in 

Schwann cells and neurons. For over half of the traits we inspected, we observed enrichment for 

the same cell type across different tissues, but this enrichment was driven by both a set of common, 

and tissue-specific, genes. Gene programs allowed us to parse six major trait groups, whose GWAS 

genes were enriched in similar modules and cell types.  

 

Advances in single cell epigenomics (Kelsey et al., 2017) and multi-omics (Fiskin et al., 2020; Ma 

et al., 2020; Mimitou et al., 2021) should further enable linking GWAS variants to their target 

genes and the cell types and programs in which they act. Recent findings indicating that a large 

fraction of genetic regulatory effects linked to GWAS variants can only be detected at the cellular 

level (Kim-Hellmuth et al., 2020; M. van der Wijst et al., 2020) suggest that cell-level eQTL maps 

will be essential. The experimental and computational methods we developed for a cross tissue 

atlas, and the biological queries we defined will provide a basis for scaling such efforts to hundreds 

of individuals and diverse populations.  
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Methods 

Biospecimens 

Donor and sample characteristics 

 

All samples were selected from donors that were enrolled as part of the GTEx project. As 

previously described (GTEx Consortium, 2020), all GTEx tissue samples were derived from 

deceased donors, with study authorization obtained via next-of-kin consent for the collection and 

banking of de-identified tissue samples for scientific research. 

 

While the vast majority of tissues collected from GTEx donors were preserved in PAXgene 

fixative (Carithers et al., 2015), which is not compatible for scRNA-seq, a subset of duplicate 

samples were collected from 8 tissue sites (Breast – Mammary tissue, Esophagus – Mucosa, 

Esophagus – Muscularis, Heart – Left Ventricle, Lung, Muscle – Skeletal, Prostate, and Skin – 

Sun Exposed (Lower leg)) and flash frozen. We selected 3-4 samples from each of the 8 tissues 

that satisfied the following criteria: (1) both genders and all available ancestral/ethnic groups are 

represented; (2) approximately span the age range collected for GTEx (21-70 years old); (3) RNA 

quality from the matched PAXgene-preserved tissue fulfilled GTEx requirements for bulk RNA-

Seq (RIN ≥ 5.5); and (4) RNA-seq (from bulk matched tissue) and a donor genotype (from Whole 

Genome Sequencing) were available. 

  

All GTEx samples underwent pathology review as part of that study protocol (Carithers et al., 

2015), to validate tissue origin, content, and integrity. Tissues were also reviewed for evidence of 

any disease (cancer, infectious disease, inflammatory disease) to confirm that collected 

biospecimens were “normal” or non-diseased and were acceptable for inclusion in the GTEx 

inventory and study. For the samples selected for this study, we performed a second pathology 

review to provide greater detail about the broad cellular makeup of each tissue sample (Table S1). 

The accompanying H&E images for each sample are available on the GTEx portal Histology 

Viewer (http://gtexportal.org/home/histologyPage). 
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Sample processing  

Approximately 400mg of frozen tissue was obtained from each sample to allow the application of 

multiple nucleus extraction methods. 20-50 mg of tissue was cut per preparation. For donor 

pooling, ~10-15 mg of tissue from each donor were combined. Tissue remained frozen during 

cutting and weighing.  

Each tissue sample was prepared as previously described for the EZ, CST, NST and TST protocols 

(Drokhlyansky et al., 2020). Briefly, each tissue piece was subjected to nucleus isolation and 

snRNA-Seq, using each of the four conditions, with either commercial EZ buffer and mechanical 

breakdown using dounsing (Habib et al) (EZ), or with nucleus isolation in salt-Tris buffer with 

detergent, either NP-40, CHAPS, or Tween-20 (NST, CST and TST receptively), with chopping 

to assist mechanical breakdown of the tissue (Drokhlyansky et al., 2020).  

For the CST, NST, TST isolations: On ice, each piece of frozen tissue was placed into one well of 

a 6-well plate with salt-Tris buffer containing 146 mM NaCl (Cat#S6546-1L, Sigma-Aldrich), 1 

mM CaCl2 (Cat#97062-820, VWR), 21 mM MgCl2 (Cat#M1028-10X1ML, Sigma-Aldrich), 10 

mM Tris pH 8.0 (CAT#AM9855G, Thermo Fisher Scientific), supplemented with detergent: 

CHAPS (Cat#220201-1GM, EMD Millipore) at 0.49% (w/v), Tween20 (Cat#100216-360, VWR) 

at 0.03% (w/v), or Nonidet™ P40 Substitute (Cat#AAJ19628AP, Fisher Scientific) at 0.02% 

(w/v). Tissue was then chopped with Tungsten Carbide Straight 11.5 cm Fine Scissors (14558-11, 

Fine Science Tools, Foster City, CA) for 10 min on ice. Samples were then filtered through a 

40 µm Falcon cell strainer (Thermo Fisher Scientific, cat. no. 08-771-1) into a 50ml conical tube. 

The well and filter were washed with an additional 1 ml of detergent-buffer solution, followed by 

a wash with 3ml of buffer without detergent. The ~ 5 ml sample volume was then transferred to a 

15 ml conical tube and centrifuged for 5 minutes, 500g at 4°C in a swinging bucket centrifuge with 

soft break. Following centrifugation, the sample was placed on ice, supernatant was removed 

carefully, and the pellet was resuspended in salt-Tris buffer without detergent. The nucleus 

solution was then filtered through a 35 µm Falcon cell strainer (Corning, cat. no. 352235). Nuclei 

were counted, and 7,000 nuclei of the single-nucleus suspension were loaded onto the Chromium 

Chips for the Chromium Single Cell 3′ Library (V2, PN-120233) according to the manufacturer’s 
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recommendations (10x Genomics). Mouse tissues were prepared using the CST nucleus isolation 

protocol.  

For the EZ protocol: Tissue samples were cut into pieces <0.5 cm and homogenized using a glass 

Dounce tissue grinder (Sigma, cat. no. D8938). The tissue was homogenized 20 times with pestle 

A and 20 times with pestle B in 2 ml of ice-cold nuclei EZ lysis buffer (NUC101-1KT, Sigma-

Aldrich). Then, a volume of 3 ml of cold EZ lysis buffer was added, and sample was incubated on 

ice for 5 min. Sample was then centrifuged at 500g for 5 min at 4 °C, washed with 5 ml ice-cold 

EZ lysis buffer and incubated on ice for 5 min. After additional centrifugation as in the previous 

step, supernatant was removed and the nucleus pellet was washed with 5 ml nuclei suspension 

buffer (NSB; consisting of 1X PBS, 0.01% BSA and 0.1% RNase inhibitor (Clontech, cat. no. 

2313A)). Isolated nuclei were resuspended in 2 ml NSB, filtered through a 35 μm cell strainer 

(Corning-Falcon, cat. no. 352235) and counted. A final concentration of 1,000 nuclei per µl was 

used for loading on a 10x V2 channel. 

 

snRNA-seq library preparation and sequencing  

Nuclei were partitioned into Gel Beads in Emulsion (GEMs) using the GemCode instrument. Lysis 

and barcoded reverse transcription of RNA occurred in GEMs, followed by amplification, shearing 

and adaptor and sample index attachment according to the manufacturer's protocol (10x 

Genomics). Libraries were sequenced on an Illumina Next- Seq 500 or Nova-seq 5000/6000. 

 

snRNA-seq data pre-processing  

Raw sequence files were demultiplexed into the fastq format using the cellranger mkfastq 

command (Cell Ranger v2.1.0, 10X Genomics). A pre-mRNA reference genome was generated 

including both introns and exons using the commands recommended by 10X’s Cell Ranger 

pipeline (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/advanced/references). The “cellranger count” command was 

used to generate gene expression matrices.  
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To remove ambient RNA (Fleming et al., 2019; Heaton et al., 2020; Smillie et al., 2019; Young & 

Behjati, 2020), we used CellBender (Fleming et al., n.d.) v2’s probabilistic model to generate 

corrected gene expression matrices after ambient removal. CellBender was run on a Terra cloud 

computing environment (https://app.terra.bio) on all raw gene expression matrices using the 

remove-background-v2-alpha workflow with FPR=0.01 option. The total number of nuclei 

identified by CellBender was 439,772. 

 

Following ambient RNA correction, we removed “low-quality” nucleus profiles defined as those 

with either <200 detected genes, >5,000 detected genes, or <400 UMIs, retaining 265,831 nuclei 

passing QC. Protocol- and individual-specific clusters and the clusters with high predicted doublet 

proportions and mixed marker sets were removed manually retaining 209,126 nuclei for all 

subsequent analyses. 

 

Estimation of exon:intron ratios 

We computed exon:intron ratios from read counts in exonic, intronic, and intergenic regions 

obtained with Scrinvex (https://github.com/getzlab/scrinvex) applied to the processed BAM-file. 

First, a collapsed annotation file was created using the “genes.gtf” created in the Cellranger v2 

reference using the GTEx collapse annotation script (https://github.com/broadinstitute/gtex-

pipeline/tree/master/gene_model). Then, Scrinvex was run as “scrinvex ${collapsed_gtf} 

${cellranger_bam} -b ${barcodes} -o {out_file} -s {summary_file}” where cellranger_bam and 

barcodes are output from cellranger count. 

 

Data harmonization using disentangled conditional VAEs 

 

We used a conditional β-TCVAE (total correlation variational autoencoder) (Chen et al., 2018) to 

obtain disentangled representation of cells, while simultaneously factoring out unwanted sources 

of biological and technical variation (age, sex, self-reported ethnicity, nucleus isolation protocol, 

and ischemic time) from the latent representation of cells via conditioning. Python source code of 

β-TCVAE implemented by Yann Dubois (https://github.com/YannDubs/disentangling-vae) was 
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adapted for tabular single-cell data by adding fully connected encoder and decoder layers. 

Furthermore, we added the conditioning support for continuous and categorical variables.  

 

Conditional β-TCVAE with 64 latent dimensions was applied to log(TP10K+1)-transformed 

counts after subsetting the genes to 10,000 highly variable protein coding genes. Age, sex, nucleus 

isolation protocol, ischemic time and self-reported race/ethnicity were used for conditioning. We 

fitted the model on the entire dataset with beta values 1 (where β-TCVAE reduces to a standard 

cVAE), 2, 3, 5 and 10. Higher beta values lead to over-smoothened reconstructions and higher loss 

of variation in the data (Figure S3). To minimize the loss of structure in the UMAP embeddings 

of nuclei and to keep the distinctness of tissue-specific neighborhoods, we used beta=2.0 as a final 

hyperparameter. We used a softplus output activation to produce non-negative outputs. Mean 

squared error (MSE) was used as a loss function. UMAP embeddings and k-nearest neighbors (k-

NN) graph-based clusters were inferred using a 15-nearest neighbor graph built with the mean 

VAE latent space embeddings of the nuclei profiles using sc.pp.neighbors(), sc.tl.umap() and 

sc.tl.leiden() functions of Scanpy (Wolf et al., 2018). 

 

Mouse skeletal muscle snRNA-seq data pre-processing, integration and annotation 
 

After generating the count matrices from the raw files with CellRanger (v2.1.0, 10X Genomics), 

we removed the “low-quality” nucleus profiles defined as those with either <200 detected genes, 

>5,000 detected genes, or <400 UMIs, retaining 31,904 nuclei passing QC. Processed heart and 

esophagus mouse snRNA-seq datasets from Drokhlyansky et al. (Drokhlyansky et al., 2020) were 

downloaded from https://singlecell.broadinstitute.org/single_cell/study/SCP1038/the-human-and-

mouse-enteric-nervous-system-at-single-cell-resolution. Three muscle datasets were then 

concatenated. 

 

Similar to the human nuclei profiles, we used a conditional β-TCVAE (Chen et al., 2018) to correct 

for mouse- or batch-specific effects. Conditional VAE with 64 latent dimensions was applied to 

log(TP10K+1)-transformed counts after subsetting the genes to the 10,000 highly variable protein 

coding genes. We used beta=2.0 as a hyperparameter with a softplus output activation for non-

negative outputs. UMAP embeddings and graph-based clusters were inferred using a 15-nearest 
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neighbor graph built with the mean VAE latent space embeddings of the nuclei profiles using 

sc.pp.neighbors(), sc.tl.umap() and sc.tl.leiden() functions of Scanpy. After differential expression 

via the sc.tl.rank_gene_groups() function, we manually annotated the clusters by comparing highly 

expressed genes with the literature-based marker lists. 

 

For muscle disease gene set enrichment, we mapped mouse genes to human genes using the 

ortholog gene list from NCBI HomoloGene 

(https://ftp.ncbi.nih.gov/pub/HomoloGene/current/homologene.data). Fisher’s exact test 

(implemented in fisher Python package) was used for the enrichment test. 

 

Curation of reference genes from prior studies 

To curate a literature-based set of reference genes (Table S3), we first screened primary literature 

for cell-types found in histology samples for each targeted region. We then curated, at minimum, 

3 marker genes that were identified by a primary experimental method (i.e., FISH) in the human 

target tissue of interest that overlap with significant, differentially expressed genes (one vs. rest, 

Welch’s t-test). For cell-types that are present in multiple tissues, such as certain immune cell-

types or vascular endothelial cells, we included “pan” annotation markers that may have been 

found in any one tissue to confirm a nucleus’s putative cell-type. Finally, we resort to murine 

experimental confirmation, if needed (denoted in Table S3 with murine analog gene-name). 

 

Data-driven identification of marker genes using differential expression 

Raw counts were converted to log(TP10K+1) values prior to differential expression analysis using 

the “sc.pp.normalize_total” and “sc.pp.log1p” functions of Scanpy. After accounting for the 

protocol- and sex-specific effects using ComBat (Leek et al., 2012) via “sc.pp.combat” function 

of Scanpy, we used Welch’s t-test for differential expression by running “sc.tl.rank_genes_groups” 

function of Scanpy separately in each tissue. 

 

Cell type diversity analysis 

Shannon entropy was calculated for each sample or channel across all N broad cell classes, 

according to the formula -∑(pi*log2(pi)), where pi is the proportion of cells in cell class i. The TST, 

CST and NST protocols generally had comparable cell-type diversity scores in each tissue, with 
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higher variability in skin, breast, and prostate (variance = 0.243 (skin), 0.585 (breast), 0.38 

(prostate), < 0.1 (all other tissues)). Entropy was plotted per sample using the ggplot2 and cowplot 

R packages, and with the “quasirandom” function from the ggbeeswarm package to avoid overlap 

of plotted points. We used a linear mixed-effects model (“lmer” function from the lme4 R package) 

to check for association of entropy with the nuclei preparation protocol. The Fligner-Killeen test 

in the R stats package was used for testing the homogeneity of variances. 

 

Comparison to published heart snRNA-seq 

Our snRNA-seq data for heart left ventricle tissues was compared to two published snRNA-seq 

dataset for the heart left ventricle (Litviňuková et al., 2020; Tucker et al., 2020). For Tucker et al. 

(Tucker et al., 2020), we retrieved a final, annotated Scanpy AnnData object 

(health_human_4chamber_map_unnormalized_V3.h5ad) and raw counts (gene_sorted-

matrix.mtx) from the Broad Institute’s Single Cell Portal at 

https://singlecell.broadinstitute.org/single_cell/study/SCP498/transcriptional-and-cellular-

diversity-of-the-human-heart. CellBender-corrected counts for the GTEx and Tucker et al. datasets 

were converted to log(TP10K+1) values using the “sc.pp.normalize_total” and “sc.pp.log1p” 

functions of Scanpy. For Litviňuková et al. (Litviňuková et al., 2020), we subset the normalized, 

profiled nuclei from their “global” Scanpy AnnData object for the “LV” region available at 

https://www.heartcellatlas.org/. Highly variable genes were selected using the parameters in 

“sc.pp.highly_variable_genes” “min_mean=0.0125”, “max_mean=3”, and “min_disp=0.5.” Data 

were scaled using “sc.pp.scale” and highly variable genes were used for PCA via “sc.tl.pca”. Data 

were integrated between the three cohorts using Harmony (Korsunsky et al., 2019). We identified 

a population of ventricular myocytes in Litviňuková et al. that clustered with our dataset and 

Tucker et al.’s ventricular, cytoplasmic myocytes. We compared sample proportions as described 

below in Proportional Analysis. 

 

Identification of contaminant transcripts from ambient RNA 

We identified contaminant transcripts (from ambient RNA) by comparing the log(TP10K+1)-

transformed expression values before and after the removal of ambient RNA using CellBender 

(Fleming et al., n.d.). In the comparison, we calculated the L2-norm of the differences between the 

expression values before and after ambient RNA removal for each gene separately. We used the 
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linalg.norm function from the NumPy Python package. Norms averaged over the genes were 

compared between the protocols via two-sided t-test using the scipy.stats.ttest_ind function from 

SciPy Python package.  

 

By this analysis, we detected markers of epithelial cell types in breast (e.g., KRT15, KRT7), 

esophagus mucosa (e.g., S100A9, S100A8, KRT13), lung (e.g., SFTPC, SFTPB, SFTPA1), prostate 

(e.g., MSMB, KLK3, KLK2), and skin (e.g., KRT10, DST, COL7A1) as major contributors to 

spurious estimates of gene expression and misidentification of cell types in those tissues. In muscle 

tissues, genes that were highly expressed in myocytes were among the top contaminants (e.g., 

MYL9, TAGLN, DES in esophagus muscularis; MYL2, TPM1, TNNC1 in heart, and ACTA1, TPM2, 

TNNT1, TTN in skeletal muscle). 

 

Comparison of snRNA-seq and scRNA-seq data  

 

Lung  

Samples from the Right Upper Lobe (RUL) of n=6 deceased lung transplant donors (MS, ORR, 

AR, Avinash Whagry, Alexander Tsankov, and Jay Rajagopal et al., unpublished results) were 

profiled for scRNA-seq using the Chromium 3’ gene expression kits (version 2 chemistry) as 

detailed in Slyper et al. (Slyper et al., 2020). (The snRNA-seq in this study was from Left Upper 

Lobe (LUL) samples). The scRNA-seq data was demultiplexed and quantified into cell-by-gene 

matrices using the Cellranger software version 3. Cells of high quality (minimum number of 

UMI=1,000, minimum genes detected=400 and maximum percentage of mitochondrial genes 

detected=10%) were retained, gene counts were log normalized (“NormalizeData”) after total 

sum-scaling with a multiplicative factor of 105 resulting in log(TP10K+1) units, highly variable 

genes calculated (“FindVariableGenes”) and scaled (“ScaleData”) using standard functions of 

Seurat version 3. Data from all donors were merged and subjected to dimensionality reduction 

(number of principal components=20), a shared-NN graph was constructed (k=20) followed by 

Louvain clustering (resolution =1.2) using default parameters as implemented in Seurat version 3. 

No substantial batch effects were observed after merging and clustering, as cells from different 

individuals clustered by cell type identity. Cell clusters were manually annotated at a level of broad 

cell categories by expression of canonical cell type markers, as previously described (Muus et al., 
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2021). 15 cell classes were shared with the snRNA-seq data. All 46,751 scRNA-seq profiles from 

the 15 shared cell categories were compared with 11,983 nuclei profiles from the TST protocol 

matching the same cell categories: immune (alveolar macrophage), immune (macrophage), 

epithelial cell (ciliated), immune (NK cell), epithelial cell (alveolar type II), epithelial cell (alveolar 

type I), epithelial cell (basal), fibroblast, pericyte/SMC, immune (T cell), epithelial cell (club), 

immune (mast cell), immune (B cell), endothelial (vascular) and endothelial (lymphatic). Goblet 

and secretory cells, smooth muscle cells, monocytes and mesothelium cell categories were found 

in scRNA-seq but not snRNA-seq.  

 

Skin 

Collection and experimental processing. Samples for scRNA-seq were obtained from the 

abdomen, from discarded excess tissue removed during abdominoplasty (n=2, IRB 

2017P001913/PHS). (Samples for snRNA-seq in this study were from the left or right leg, 2cm 

below the patella on the medial side as described above). 

 

For processing fresh skin, hair and fat were removed and tissue was cut into small pieces, followed 

by two washes with 30 mL cold PBS in a 50 mL tube. Skin was then dissociated for single cell 

suspension using either the Miltenyi Biotec Whole Skin Dissociation Kit, human (cat no. 130-101-

540) according to manufacturer's guidelines, or with dissociation medium containing 5 mL (2%) 

FBS in RPMI, 100 µg / mL Liberase TM (Sigma Aldrich, cat. no. 5401127001), 100 µg / mL 

Dispase (Sigma Aldrich, cat. no. 4942078001), 100 µg / mL DNase I (Sigma Aldrich, cat. no. 

11284932001). For this protocol, samples were incubated in a rotating 50 mL tube, at 37°C for 3 

hours, with pipetting every hour. After incubation, large undigested pieces were removed, and 

suspension was placed in a new tube, spun down for 3 minutes at 400g, followed by a wash with 

cold PBS. RBC lysis was performed using 500 µL ACK (Thermo Fisher Scientific, cat. no. 

A1049201) on ice for 1 minute, followed by a wash with 8 mL cold PBS. Samples were then 

pelleted and treated with 200 µL TrypLE (Life Technologies, cat. no. 12604013) for two minutes 

while pipetting, and washed with 1 mL 10% FBS in RPMI to quench, followed by a wash with 1 

mL of cold PBS. Pellet was then resuspended in 1 mL of 0.4% BSA (Ambion, cat. no. AM2616) 

in PBS, and filtered through a 70 µm strainer (Falcon, cat. no. 352350). Cells were counted by 

mixing 5 µl of Trypan blue (Thermo Fisher Scientific, cat. no. T10282) with 5 µl of the sample 
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and loaded on INCYTO C-Chip Disposable Hemocytometer, Neubauer Improved (VWR, cat. no. 

82030-468). Cells were loaded onto a 10x Genomics Single-Cell Chromium Controller, using V2 

3’ GEX kit.  

.  

Computational analysis. Sequencing files were demultiplexed and quantified using Cellranger 

2.0.1. and human reference genome version GRCh38-1.2.0 using commands “cellranger mkfastq” 

and “cellranger count”, respectively. We then ran CellBender as described above to remove 

ambient RNA, and retained high quality cells (at least 200 genes detected and at most 20% of reads 

mapping to mitochondrial genes per cell) for a total of 27,199 cells. We performed standard 

processing using the Seurat R package (v3) including total sum normalization and log 

transformation with a multiplicative factor of 105 (“NormalizeData”) resulting in log(TP10K+1) 

units, determination of variable genes (“FindVariableFeatures” using the vst method), scaling 

(“ScaleData”), dimensionality reduction by principal component analysis (“RunPCA”, k=50) and 

graph-based clustering (“FindNeighbors” for k=50 and “FindClusters” at a resolution of 1). Using 

differential gene expression (“FindAllMarkers”) and annotation by curated marker genes, we 

annotated 15 cell classes. Of these, 11 were shared with this study’s skin snRNA-seq broad cell 

types: endothelial cell (lymphatic), endothelial cell (vascular), epithelial cell (basal keratinocyte), 

epithelial cell (suprabasal keratinocyte), melanocyte, immune (Langerhans), sweat gland cell, 

fibroblast, pericyte/SMC, immune (T cell) and immune (DC/macrophage). Adipocytes, cornified 

keratinocytes and sebaceous gland cells were unique to the snRNA-seq data, and a small 

population of neuron-like cells and preadipocytes were found only in the scRNA-seq data. 

 

Prostate 

Published scRNA-seq data from three anatomical zones from coronal sections of the whole 

prostate separated post-cystoprostatectomy was downloaded from GEO GSE117403 (D17, D27, 

Pd). (SnRNA-seq in our study was derived from any representative, non-nodular region, avoiding 

seminal vesicles). All samples were combined and processed as described above for skin scRNA-

seq, resulting in a total of 82,822 cells annotated to 11 shared cell classes: epithelial cell (basal), 

epithelial cell (luminal), epithelial cell (club), epithelial cell (Hillock), endothelial cell (lymphatic), 

endothelial cell (vascular), pericyte/SMC, neuroendocrine, immune (DC/macrophage), fibroblast, 

myocyte (smooth muscle). Additional epithelial subsets identified only in the scRNA-seq data 
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were FOXI1+, SEMG1+, stressed and cycling cells, and only the snRNA-seq data had lymphocytes, 

mast and Schwann cells. The discrepancy in the immune cells may be because the scRNA-seq data 

was enriched for epithelial and mesenchymal cells. 

 

Mapping scRNA-seq and snRNA-seq profiles with a random forest classifier 

To compare profiles between scRNA-seq and snRNA-seq datasets, a multi-class random forest 

classifier was trained on nuclei (cells) profiles as the training set with the function “randomForest” 

from the randomForest R package, and used to predict the classes of cells (nuclei) profiles with 

the “predict” function, with the shared broad cell classes (15 in lung, 11 in skin and 11 in prostate) 

as class labels (cells/nuclei unique to only scRNA-Seq/snRNA-Seq were removed prior to 

analysis). The smaller of up to 70% of the cell class size or 1,000 cells were randomly sampled 

per class to form a training set, and genes were selected as the intersection of the top 3,000 highly 

variable genes from both nuclei and cell profiles. Highly variable genes were derived using the 

FindVariableFeatures function with “vst” as the selection method. Broad cell types were 

accurately predicted in scRNA-Seq by a classifier trained on snRNA-seq with a median accuracy 

of 89%, 89%, 89.3% across skin, lung and prostate, respectively (Figure 2C-E, Figure S8 F-H). 

There was a similarly high accuracy for predicting snRNA-seq broad cell types by a classifier 

trained on scRNA-Seq (median 88% in skin, 90% in lung), suggesting that cell intrinsic programs 

are well-preserved between fresh and frozen samples and techniques.  

 

Correlation analysis between scRNA-seq and snRNA-Seq profiles 

Pseudobulk expression profiles were correlated between cells and nuclei. For each broad cell type 

category separately, pseudobulk profiles were computed as follows: The gene (rows) by cell 

(column) matrix of raw counts for each sample was first scaled per-column by the total counts in 

each cell (nucleus) and then multiplied by 106 to derive counts per million (CPM) for each cell 

(nucleus) profile. CPMs for each gene were then averaged across cells (row-wise) for each broad 

cell type. The resulting expression vector per sample is the pseudobulk profile. Spearman 

correlation was computed for the log2-transformed pseudobulk gene expression profiles of the cell 

and nucleus data of interest separately for protein-coding and long non-coding RNA genes selected 

as follows. The total set of human genes was downloaded from the Ensembl database (GRCh38 

v103, 04/09/2021), using the BiomaRt R package. Mappability scores for GRCh38, computed 
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using the ENCODE pipeline (Derrien et al., 2012), were obtained from GTEx and averaged across 

gene bodies. The complete set was then partitioned into genes with both pre-mRNA and mRNA 

mappability > 90%, and then partitioned into protein coding and long non-coding RNA genes 

based on their Ensembl biotype classification.   

 

To identify genes that deviate from the overall expected similarity, a linear model was fit to 

compute residuals using the command “resid(lm(cells-nuclei ~ 0))”, where the “cells'' and “nuclei” 

are log2-transformed pseudobulk gene expression profiles of the scRNA-seq and snRNA-seq data, 

respectively for either protein-coding or long non-coding RNA genes. Divergent genes were 

defined as those with residuals greater than the 97.5th or lesser than the 2.5th percentile, 

respectively.   

 

Poly-A content was computed using the BSgenome.Hsapiens.UCSC.hg38 R package by searching 

for stretches of at least 20 consecutive adenine “A” bases to qualify as one “polyA” unit. The total 

polyA width for a gene was defined as the total number of As in such units. The gene length was 

also computed using the same package.  

 

Comparison of tissue dissociation induced-stress signature scores 

Single-cell dissociation protocols have been reported to cause dissociation-induced gene 

expression (Denisenko et al., 2020; van den Brink et al., 2017). We scored a published dissociation 

signature (van den Brink et al., 2017) in snRNA-seq and scRNA-seq profiles using the 

“AddModuleScore” function in Seurat for each shared cell classes across snRNA-seq and scRNA-

seq datasets. The score was computed on the normalized gene expression units of log(TP10K+1). 

 

Proportion analysis 

Dirichlet regression was used for proportion analysis via DirichletReg R package version 0.7.0. 

For analysis of broad cell type proportions, “proportions ~ protocol + tissue + Age + Sex” formula 

was used with common parameterization, where lung and CST were used as references for protocol 

and tissue categorical variables.  

We applied this to compare proportions of (1) broad cell types, (2) myeloid states, (3) comparison 

between scRNA-seq and snRNA-seq, and (4) comparison of heart snRNA-seq studies. For 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.19.452954doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452954
http://creativecommons.org/licenses/by-nd/4.0/


 

34 
 

myeloid proportions, the formula “proportions ~ tissue + protocol | protocol” was used with 

alternative parameterization to correct both mean and precision estimates for the protocol effects. 

We fitted eight models, each with a different tissue used as a reference. For comparing proportions 

between protocols, the formula “counts ~ protocol | protocol” was used with the alternative 

parameterization. For comparison of scRNA-seq vs. snRNA-seq, scRNA-seq was used as the 

reference. For comparison between snRNA-seq datasets in heart, this study’s data was used as the 

reference. Samples with fewer than 30 nuclei profiles were excluded from the proportion models. 

In the comparison of proportions among heart snRNA-seq studies, data from this study’s EZ 

protocol, Litviňuková et al. (Litviňuková et al., 2020) and Tucker et al. (Tucker et al., 2020) 

showed a higher proportion of muscle cells in comparison to the CST, NST and TST protocols 

(Dirichlet regression, LRT with CST as baseline: Benjamini-Hochberg FDR=2.5*10-4 (EZ), 0.002 

(Tucker et al., 2020) , 6.3*10-4 (Litviňuková et al., 2020)), and lower proportions of endothelial 

cells (adj. P=0.002 (Tucker et al., 2020), 4*10-10, (Litviňuková et al., 2020)). The immune and 

adipose compartments were comparable in proportions (Benjamini-Hochberg FDR>0.1) across 

protocols and studies, however, Litviňuková et al.(Litviňuková et al., 2020) had lower proportions 

of fibroblasts (Benjamini-Hochberg FDR= 0.1). Taken together, all four protocols retain expected 

cell groups shared with published protocols. 

 

Normalization of proportions 

To account for the variation in total number of nuclei profiled in each tissue (e.g. 5,327 in skin and 

36,574 in heart) in Figures S2D and S13F, where the proportions of nuclei from each tissue for 

each cell type are visualized, we normalized each proportion by the total number of nuclei profiled 

in that tissue. To visualize the proportion of nuclei from tissue q for the cell type p, instead of Np,q/ 

∑iNp,i  where Nx,y represents number of nuclei for cell type x in tissue y, we used (Np,q/ ∑iNi,q) / (∑j 

(Np,j/ ∑iNi,j)) formula. Therefore these visualizations approximately show what the proportions 

would be, if the same number of nuclei were recovered in each tissue. 

 

Co-embedding of bulk and snRNA-Seq pseudobulk profiles 

GTEx v8 bulk RNA-seq expression data were downloaded from the GTEx portal 

https://gtexportal.org  and converted into an AnnData object concatenated with the pseudobulk 

profiles of the nuclei profiled in this study. The number of highly variable genes (calculated only 
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on the pseudobulk data), the number of PCs, the number of neighbors, k, used in the k-NN graph 

and the similarity metric used in the k-NN graph were determined by the Tree of Parzen Estimators 

(TPE) random hyperparameter search method implemented in hyperopt Python package (v0.2.5) 

(Bergstra et al., 2013). The accuracy metric that was optimized in the search was defined as the 

fraction of bulk neighbors of pseudobulk data points that are from the same tissue site. Final 

parameters used were 3,522 HVGs, 70 PCs, 42 nearest neighbors and L1 as the k-NN distance 

metric. Bulk and pseudobulk samples were integrated using the PyTorch implementation of 

harmony (v0.1.5, https://github.com/lilab-bcb/harmony-pytorch) (Korsunsky et al., 2019) in each 

iteration. 

 

Sample embeddings based on cell type compositions  

Broad cell type proportions in each profiled sample were used to construct an k-mutual nearest 

neighbors graph of channels in Scanpy. We used k=7 and Fruchterman-Reingold layout where 

connected components of the graph were considered clusters. 

 

Preprocessing and visualization of myeloid nuclei profiles 

We used log(TP10K+1)-transformed counts to estimate 2,000 highly variable genes. PCA was 

fitted using the HVGs and a k-nearest neighbors (k-NN, k=15) graph was constructed using 50 

PCs. We integrated all myeloid nuclei profiles from eight tissues using the PyTorch 

implementation of Harmony (Korsunsky et al., 2019) (https://github.com/lilab-bcb/harmony-

pytorch) to correct for individual- and protocol-specific variation in the PC space. A PAGA (Wolf 

et al., n.d.) graph was inferred based on the myeloid annotations and UMAP visualization was 

performed with PAGA initialization. Proportion bar plots and dotplots were generated using the 

Python implementation of the ggplot framework, plotnine version 0.7. 

 

Classification of lipid-associated macrophages  

We used a published annotated adipose scRNA-seq study (Jaitin et al., 2019) to train a logistic 

classifier that can classify profiles into three groups: LAMs, non-LAM macrophages and other cell 

types. We performed 5-fold stratified cross-validation that maximizes weighted F1-score, using 

the LogisticRegressionCV function from the scikit-learn Python package to optimize the L2-

regularization parameter. To take highly imbalanced class frequencies, we employed a weighting 
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scheme, where rarer classes (e.g., LAMs) contributed more to the overall loss function. 

log(TP10K+1)-transformed expression values of 17,612 protein coding genes were used in the 

training. 

 

Preprocessing of the external datasets used in LAM classification 

Datasets with IDs GSE115469, GSE117403, GSE127246, GSE128518, GSE153643, GSE131685, 

GSE131778, GSE131886, GSE140393, GSE143380, GSE143704, GSE144085, GSE150672, 

GSE153760, GSE156776, GSE159677 were downloaded from Gene Expression Omnibus (GEO). 

Placenta and decidua datasets were downloaded from EBI Single Cell Expression Atlas 

(https://www.ebi.ac.uk/gxa/sc/home) using the E-MTAB-6701 accession via the 

“sc.datasets.ebi_expression_atlas” function of the Scanpy Python package. Human dataset of the 

enteric nervous system was downloaded from the Single Cell Portal (URL: 

https://singlecell.broadinstitute.org/single_cell/study/SCP1038/the-human-and-mouse-enteric-

nervous-system-at-single-cell-resolution). log(TP10K+1)-transformed counts were used for 

classification. 

 

Gene set enrichment of LAM markers  

LAM profiles were compared to other myeloid profiles by ranking genes by their mean z-scored 

log(TP10K+1) expression values. Top 100 genes were then evaluated for GO term enrichment 

using the “sc.queries.enrich” function of Scanpy (Wolf et al., 2018) after excluding genes from the 

ferritin (FTL, FTH1) and metallothionein (e.g., MT1A, MT2A) families. Finally, REVIGO (Supek 

et al., 2011) was used to project enriched GO terms in 2D, while preserving GO term similarities. 

 

Differential expression of MΦ LYVE1hi vs. MΦ HLAIIhi states 

To compare MΦ LYVE1hi vs MΦ HLAIIhi states in heart and lung, a Wald test with a negative 

binomial regression model was used with the formula “~ 1 + cell_state + participant_id + protocol 

+ log_number_of_genes'” on raw counts. In esophagus mucosa, participant_id and protocol 

covariates were not used since most MΦ HLAIIhi nuclei were detected in the GTEX-15SB6 CST 

sample.  
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Receptor-ligand analysis 

CellPhoneDB version v2.1.4 was used for receptor-ligand analysis. “cellphonedb method 

statistical_analysis” command was used for the analysis of each tissues with the arguments 

“meta.tsv counts.tsv --counts-data hgnc_symbol --project-name tissue --threads 30 --subsampling 

--subsampling-num-cells 50000 --subsampling-log false”. Receptor-ligand plots were created with 

the ggraph R package using the “sugiyama” graph layout. 

 

Gene set enrichment of monogenic muscle disease genes  

Fisher’s exact test implemented by the “fisher” Python package was used to test for the enrichment 

of muscle disease genes in broad and granular cell type markers.  

 

Linking snRNA-seq to genetic variation using GWAS/eQTL enrichment analysis  

To test whether the expression of genes in GWAS loci associated with a given complex disease or 

trait is enriched in specific cell types more than expected by chance, was used to compare the cell 

type specific expression of genes mapped to known GWAS loci for a complex trait of interest to a 

background distribution of GWAS loci. GWAS variant associations were obtained from Open 

Targets Genetics (Ghoussaini et al., 2021) from the NHGRI-EBI GWAS catalog and UK Biobank 

GWAS. Only GWAS with at least part of their samples from European ancestry and genome-wide 

significant associations (P<5x10-8) were considered. 23 traits were selected (Table S10) based on 

pathophysiology related to one of the 8 tissues in this study. Different GWAS that mapped to the 

same trait were considered together for the given trait (Table S10). For each tissue, a background 

of GWAS loci (null set) was defined as the GWAS variants for all traits excluding the set of traits 

selected for the particular tissue (on average 71,411 variants). The enrichment analysis consisted 

of three consecutive steps, as follows:  

 

Gene mapping. Genes were mapped to trait-associated loci for the selected and background (null) 

traits, using the 95% credible set of fine-mapped cis-eQTLs and cis-sQTLs from each of the 49 

GTEx tissues (v8) computed using DAP-G (Barbeira et al., 2021; GTEx Consortium, 2020; Wen 

et al., 2017) . Specifically, all variants in LD (r2>=0.8) with each of the GWAS variants were 

identified using the GTEx whole genome sequencing variant calls as the reference panel (GTEx 

Consortium, 2020) and PLINK 2.0 (Plink --bfile 1KG_chr_files --r2 --ld-snp-list variant_list_file 
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--ld-window-kb 5000 --ld-window-r2 0.8 --ld-window 99999). If a GWAS variant was not present 

in the GTEx samples, LD proxies for the variant were searched in the 1000 Genomes Project panel 

(Zheng-Bradley et al., 2017) at r2>0.8, and these proxies were subsequently checked for LD 

variants in the GTEx panel. GWAS associations whose variant or LD proxy variants were 

significant eVariants or sVariants (FDR<0.05) in any of the 49 GTEx tissues were assigned the 

corresponding eGene/s and sGene/s to their locus. We further included genes mapped to GWAS 

variants based on the ‘bestLocus2Genes’ mapping from Open Target Genetics, which included 

additional omic data (e.g., Hi-C) and predicted deleterious protein coding variants in LD with the 

GWAS variant (Ghoussaini et al., 2021). To avoid inflation of enrichment due to LD between 

GWAS variants, GWAS variants that shared LD proxy variants, or eGenes or sGenes were 

collapsed into a single locus. This was done separately for the GWAS variants for each selected 

trait and for all null traits per tissue. On average, 40% of the null variant sets and 80% of the 23 

selected traits had at least one mapped gene, and of the mapped loci, on average 2 genes mapped 

per locus, ranging from 1-37 for the selected traits and 1-170 for the null traits.  

 

Locus scoring. For each combination of trait of interest, tissue, and cell type, each GWAS locus 

was first scored based on the fraction of log2 fold-change > 0.5 and FDR < 0.1 of all genes mapped 

to the locus.  

 

Cell type specificity significance estimate. The significance of the cell type specificity scores of 

a GWAS locus set for each cell type was assessed against the distribution of values of the 

background GWAS loci from a Bayesian Fisher’s exact test. Specifically, the counts of GWAS 

loci with their scores greater than the 95th percentile of scores from the background loci for a given 

cell type were modeled as Binomial distributions, with the parameters (𝜃!, 𝑛!) and (𝜃", 𝑛") for the 

GWAS locus set and background loci, respectively, where 𝑛!and 𝑛" are the total number of loci 

in the GWAS locus set and background, respectively. Uninformative uniform priors were specified 

for 𝜃! and 𝜃", leading to the conjugate Beta distributed posteriors. Next, fold enrichment was 

defined as the ratio of 𝜃! and 𝜃", and the 95% credible interval was constructed from 106 Monte 

Carlo draws from the posteriors. Of 23 selected traits, 21 had 5 or more GWAS loci with at least 

one mapped gene, which were analyzed for cell type specificity enrichment (Table S10). Multiple 

hypothesis correction was applied tissue-wide (correcting for all cell types tested per tissue and 
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trait) and experiment-wide (correcting for all traits by cell types and tissues tested) using the 

Benjamini-Hochberg FDR. 

 

Variant-to-gene mapping using the OpenTargets Genetics API 

Publicly available JSON files (v20022712) and the GraphQL API (v20.02.07) of the OpenTargets 

Genetics (OTG) portal were used to obtain genes mapped to the independent GWAS loci in Figures 

5 and 6. For study level information (e.g., study IDs, number of individuals, number of significant 

loci), JSON files were downloaded from 

https://ftp.ebi.ac.uk//pub/databases/opentargets/genetics/20022712/lut/study-index. For variant-

to-gene mapping and variant-level details, such as Locus2Gene scores, the manhattan() and 

studyInfo() functions were used through the GraphQL API endpoint http://genetics-

api.opentargets.io/graphql using the sgqlc Python package. The manhattan() function provides the 

list of all significant and independent lead SNPs as well as the genes associated with them using 

the Locus2Gene scoring model for the studies stored in the OTG portal. Closest protein coding 

genes were used in cases where Locus2Gene score was not available. GWAS with fewer than two 

significant loci or fewer than 3,000 individuals were excluded. UK BioBank (UKBB) traits 

containing “None of the above” were also removed. For the remaining studies, only the largest 

GWAS (based on the nInitial field of the study) was considered for a given phenotype, resulting 

in 4,062 studies. 

 

Module-based GWAS enrichment 

To infer gene modules enriched with GWAS risk genes and the cell types expressing these 

modules, genes were first hierarchical clustered with the complete linkage method and a 

correlation distance, i.e. 𝑑𝑖𝑠𝑡(𝑔!, 𝑔") = 1 − 𝑟(𝑔!, 𝑔") where r is the Pearson correlation 

coefficient between genes 𝑔! and 𝑔" , calculated with the scipy.cluster.hierarchy.linkage function 

from the scipy Python package. Models were fit separately in each tissue using all protein coding 

genes. To speed up the inference, clustering was performed in PC space, where gene loadings for 

100 PCs were taken into account in the distance calculations. Gene modules were obtained at 

different resolutions by cutting the linkage tree at 100 different levels starting from only two 

clusters (i.e., modules) to a highly granular level, where the number of clusters is equal to half of 

the number of genes. In a post-processing step, modules that were exactly the same or had fewer 
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than three genes were removed. Next we scored all cells using each module as a signature to 

quantify average expression of the modules using the scanpy.tl.score_genes() function. Finally, 

gene module enrichment with the GWAS risk genes was estimated by testing all modules against 

all GWAS phenotypes using Fisher’s exact test implemented in “fisher” Python package. Final 

cell type enrichment score was defined as the product of the gene set overlap metric (f-score) and 

the signature score (module expression). To prioritize the associations with high expression and 

high gene set overlap we used additional cutoffs such as at least four genes in the intersection of 

the GWAS risk genes and the module genes and enrichment score higher than 0.15. 

 

Preprocessing and demultiplexing of pooled samples 

For genotype-based demultiplexing and doublet detection, souporcell (Heaton et al., 2020) was 

used as available in a Docker image from Cumulus (B. Li et al., 2020) (Cumulus version 2020.03, 

souporcell version eeddcde). Vartrix v1.1.20 (https://github.com/10XGenomics/vartrix) was used 

instead of the older version included in the Docker image. Souporcell was applied to four samples 

with the following command line arguments “-t 32 -o outputdir --min_alt 10 --min_ref 10 --restarts 

100 --common_variants common_variants_grch38.vcf -k 3”. Using the unpooled lung and prostate 

samples from the same individuals, an expression-based multinomial logistic classifier was trained 

to predict the individuals. The “LogisticRegression(max_iter=500, penalty='l2', solver='liblinear', 

C=0.001, class_weight='balanced')” function from the scikit-learn Python package (v0.24.1) was 

used for the training. scrublet Python package for doublet detection was used to compare to the 

souporcell doublet detection method.  
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Figure 1. Cross tissue snRNA-seq atlas in eight adult human frozen archived tissues. (A) 

Study design. Tissue sites (I. top) and individuals sampled (I. bottom), along with experimental 
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and computational pipelines (II). (B-F). Cross-tissue single nucleus atlas. Uniform Manifold 

Approximation and Projection (UMAP) representation of single nucleus profiles (dots) colored by 

main compartments (B), broad cell types (C), tissues (D), isolation protocol (E) and individual 

donors (F). (G) Distinct cell type composition across tissue. Overall proportion of cells (%) of 

each type (color legend) in each of eight tissues (rows), and number of nuclei profiled in each 

tissue (right). Numbers in circles: corresponding broad cell type in the legend. Black vertical lines 

within each colored bar: relative proportion of nuclei from each individual. 
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Figure 2. Concordance of cell type diversity and cell intrinsic profiles between snRNA-seq, 

and scRNA-seq. (A) The EZ protocol captures the least cell type diversity. Cell-type diversity 

(Shannon entropy, y axis) of each snRNA-seq dissociation protocol (color legend) in each sample 

(dot) and  tissue (x axis). (B) Difference in cell proportions captured by snRNA-seq vs. scRNA-
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Seq. Proportion (% y axis) of cells from major categories (color legend) in each individual, 

stratified by tissue by each snRNA-seq protocol and by scRNA-seq. (C-E) Broad concordance of 

cell intrinsic programs between scRNA-seq and snRNA-Seq. Proportion of cells (dot color and 

size) of a test cell class (rows) predicted to belong to a given nucleus class (columns) by a random 

forest classifier trained on nuclei and applied to cells of the same tissue for skin (C), lung (D) or 

prostate (E). (G) Limited number of divergent genes between cell and nuclei profiles are associated 

with longer polyA stretches. Averaged pseudobulk expression values (Methods) of protein-coding 

genes (dots) in skin basal keratinocytes nuclei (x axis) and cells (y axis). Divergent genes (black 

dot outline) deviating from straight line regression fit by size of residuals (Methods) . Color scale: 

total length of polyA stretches with at least 20 adenine bases in log2 scale. (F) Induction of tissue 

dissociation expression signatures in scRNA-seq but not snRNA-seq profiles. Distribution of the 

score (y axis, average background corrected log(TP10K+1)) of a dissociation–related stress 

signature van den Brink et al. [REF] in scRNA-seq (pink) and snRNA-seq (blue) profiles in each 

major lung cell type (x axis). (*** Benjamini-Hochberg FDR < 10-16, Wilcoxon rank-sum test). 

Box plots show median, quartiles, and whiskers at 1.5 IQR (interquartile range). 
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Figure 3. Cross-tissue analysis of myeloid cells highlights a dichotomy between LYVE1- and 

HLA class II-expressing macrophages and broad presence of LAM-like populations. (A-C) 
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Myeloid cell states in the cross-tissue atlas. (A) UMAP visualization of snRNA-seq profiles of 

myeloid cells (dots) in the cross-tissue atlas, colored by cell type/state and overlaid with a PAGA 

graph of myeloid states (large nodes). (B) Mean expression (circle color) and fraction of expressing 

cells (circle size) of marker genes (columns, labels at bottom) associated with each myeloid subset 

(rows, and labels on top). (C) Myeloid cell distribution across tissues. Top: Overall proportion of 

myeloid cells of each subset (%, colors) in each tissue (bars). Bottom: Overall proportion of cells 

from each tissue (%, colors) for each myeloid subset (bars). (D) Cross-tissue and tissue-specific 

markers of MΦ LYVE1hi and MΦ HLAIIhi states. Mean expression (circle color) and fraction of 

expressing cells (circle size) of marker genes (columns, labels at bottom) associated with the two 

myeloid subsets (labels on left) in each tissue (rows). Common (cross-tissue) and tissue-specific 

markers are labeled on top. Right bar plot: number of nuclei for each subset in each tissue. (E-G) 

LAM-like cells across tissues. (E) UMAP visualization of myeloid cells (dots) colored by their 

classification as LAM-like, other macrophages (Mɸ) and non-macrophages (non-Mɸ) using a 

linear classifier (color legend, Methods). (F) Distributions of classification scores (y axis) of 

LAM-like and other macrophages across tissues (x axis). (G) Mean expression (circle color) and 

fraction of expressing cells (circle size) of LAM marker genes (columns) in cell or nuclei profiles 

from other studies (rows) classified as LAM-like by the classifier. (H,I) PPARG, NR1H3, USF1 

are inferred as TFs regulating the LAM-like program. (H) TF differential activity score between 

LAMs and other macrophages (y axis) for each TF (dot) ranked by their score (x axis). (I) 

Distribution of TF differential activity scores (x axis) for three TFs with significantly high (two 

tailed t test, *:Benjamini-Hochberg FDR<0.05, **:FDR<0.01, ***:FDR<0.001) scores in LAMs 

(PPARG, NR1H3, USF1) or other macrophages (RUNX3, TWIST1) in LAM-like, other 

macrophages (Mɸ) and non-macrophages (non-Mɸ) myeloid cells (color legend) in each study (y 

axis). Box plots show median, quartiles, and whiskers at 1.5 IQR (interquartile range).  
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Figure 4. Monogenic muscle disease genes are enriched in subsets of myocytes and non-

myocyte cells and their interactions in cardiac, skeletal and smooth muscle tissue. (A) 

Relation of broad cell types to monogenic muscle disease groups. Effect size (log odds ratio, dot 

color) and significance (-log10(Benjamini-Hochberg FDR), dot size) of enrichment of genes from 

each monogenic muscle disease group (rows) for cell type markers of broad cell subsets in each 

tissue (columns). Red border: Benjamini-Hochberg FDR<0.1. (B) Monogenic muscle disease 

genes expressed in non-myocytes in three muscle tissues. Expression (z score, x axis) of 

monogenic muscle disease genes (y axis) ordered by disease category (labels on left) in each cell 

type (color legend) in each of three tissues (labels on top). Grey (“other”): Cell types with low 

expression of the indicated genes. (C) Biological processes enriched in monogenic muscle disease 

genes expressed in non-myocytes. F-score (circle size, harmonic mean of precision and recall) of 

the degree of overlap between a functional gene set (rows; GO biological process and Reactome, 

Methods) and the muscle disease genes in (B) that are expressed in non-myocytes. An entry is 

shown if the functional gene set is enriched (FDR<0.1, Fisher’s exact test) and the gene is a 

member of the functional set. (D,E) Putative cell-cell interactions in muscle implicating 

monogenic muscle disease genes. Cell types (circle nodes, inner dot color) from muscle tissues 

(circle nodes, outer circle color) connected by putative interactions (dotted edges) between a 

receptor (left square nodes) expressed in one cell type and a ligand (right square nodes) expressed 

in the other (solid edges; black: cell type with high expression), where either the receptor or the 

ligand is a monogenic muscle disease gene (bold), shown for interactions involving myocytes (D) 

or only non-myocyte (E) cells. (F) Diseases and disease groups of monogenic disease genes 

highlighted in the cell-cell interactions in (D,E). Acronyms ALS: Amyotrophic lateral sclerosis; 

CMT: Charcot-Marie-Tooth disorder; AR: Autosomal recessive; AD: Autosomal dominant; NMJ: 

Neuromuscular junction. 
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Figure 5. Cell type-specific enrichment of expression and splicing QTL-mapped genes to 

GWAS loci in 17 diseases and traits relevant to the 8 atlas tissues 

(A) Schematic of the GWAS cell type specificity enrichment method. (B) Cell type enrichment of 

genes mapped to GWAS loci for 17 of the 21 complex traits tested with at least one tissue-wide 

significant result (Benjamini Hochberg (BH) FDR<0.05 correcting for all cell types tested per 

tissue per trait) across 8 GTEx tissues. Significance (circle size, -log10(P-value)) and effect size 

(circle color, fold-enrichment) of enrichment of GWAS locus sets (rows) in each broad cell type 
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category (columns) in the eight tissues in the cross-tissue atlas (panels). Grey, orange, red borders: 

nominal, tissue-wide, and experiment-wide (BH FDR<0.05 correcting for all cell types tested 

across 8 tissues and 21 traits) significance results. Cell types with no tissue-wide significant 

enrichment were omitted. (C,D) Myocyte and pericyte genes enriched in atrial fibrillation GWAS 

loci (P<0.05). (C) Fold-enrichment (x axis) of the cell types (y axis) for atrial fibrillation GWAS 

in heart (top) and skeletal muscle (bottom). Error bars: 95% credible intervals. Red: tissue-wide 

significant; Orange: nominal significance; Blue: non-significant (P≥0.05). (D) Differential 

expression (log2(Fold-change), y axis) in myocytes compared to all other cell types from heart 

(red, cardiac myocytes), skeletal muscle (blue, skeletal muscle cytoplasmic myocytes), esophagus 

muscularis (orange, smooth muscle) and prostate (brown, smooth muscle) of the genes (x axis) 

driving the enrichment signal of the atrial fibrillation GWAS loci in heart cardiac myocytes. Gray 

vertical lines: genes with log2(fold-change) >0.5 and FDR<0.1 in myocytes in all four tissues. 
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Figure 6. GWAS module enrichment suggests cell types and gene modules relevant for trait 

groups 

(A) Schematic of the GWAS gene module enrichment analysis. Shaded edges in the middle panel 

represent associations between cell types and phenotypes. (B-E) Six disease groups identified by 

GWAS-cell type relationships. (B) Similarity (Spearman correlation coefficient, color bar) 

between GWAS traits/diseases (rows, columns) based on their enriched cell types. Six GWAS 

trait/disease modules are labeled and marked by dashed lines. (C) Cell type enrichment scores (y 

axis) for cell types (x axis) for each of the GWAS-enriched modules. (D) Significance (-log10(FDR 

(Benjamini-Hochberg), circle size) and F score (circle color) of enrichment of functional gene sets 

(columns) with the genes in the intersection of a gene module and GWAS genes for each 

trait/disease in (B) (rows). Red border: significant enrichment, Benjamini-Hochberg FDR<0.1. (E) 

Number of traits (x axis) in each module in (B) where a gene (y axis) is detected as the driver of 

the association between the genes in the 3-way intersection of gene modules, a trait enriched in 

the module, and a functional gene set, for the top 10 most frequently identified genes in the 

enrichment analysis of each module. Acronyms UKBB: UK Biobank, EA: East Asian, SCZ: 

Schizophrenia. 
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	 	Fig. S1. Ambient RNA correction improves cell type specificity of gene markers. (A, B) Ambient 
contamination level. Average contamination level (y-axis, L2-norm of the difference between uncorrected 
and corrected log(TP10K+1)-transformed expression levels averaged across genes) for each protocol 
and tissue (A) or for all samples from one protocol (B). Horizontal bar in violin plots: median. (C–K) 
Potential top sources of the ambient RNA. (C) Mean difference between corrected and uncorrected 
expression values (y-axis) for the top genes (x-axis) in each tissue, colored by their cell type of highest 
expression in the tissue (color legends). (D–K) Mean expression (circle color) and fraction of expressing 
cells (circle size) for each of the contaminant genes from (C) (columns) in each cell type (rows) in each 
tissue before and after the correction for ambient RNA (as labeled on top).  
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Fig. S2. Characterization of the cross-tissue snRNA-seq atlas. (A) Sample characteristics in integrated 
atlas. UMAP visualization of snRNA-seq profiles (as in Figure 1B), colored by donor sex, self-reported 
ethnicity, age, BMI and sample ischemic time. (B) Distinct cell type composition of each tissue. Overall 
proportion of cells (%) of each type (color legend) in each experiment (rows, 1), along with number of nuclei 
profiled (2), lab protocol (3), tissue (4) and specimen (label on right). Numbers on bars: broad cell type 
numbers (color legend). (C) EZ isolation protocol is more distinct. Force-directed graph layout embedding 
of samples (dots), where sample similarity is calculated based on cell type composition (Methods). 
Samples are colored by tissue, sex of the donor, nuclei prep and participant ID. (D,E) Tissue specific and 
shared cell types. (D) Overall proportion of cells from each cell subset (bars, (1)) that are derived from 
each tissue (colors; normalized for the total number of nuclei profiled in each tissue, Methods), along with 
total number of nuclei from that cell type (2), and the proportion of nuclei from each protocol (3). Black 
vertical lines: relative proportion of nuclei from each individual. (E) Significance (–log10(Benjamini–
Hochberg FDR), circle size) and effect size (circle color) of the differential abundances of each cell type 
(columns) in each tissue (rows) compared to lung as a reference. Samples with fewer than 30 nuclei are 
not shown. 
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Fig. S3. Hyperparameter sweep for the beta parameter of the conditional variational autoencoder. 
(A–E) Higher beta values over-smoothened data representations. UMAP representation of single-nucleus 
profiles (dots) colored (from left to right) by broad cell type, tissue, individual, or protocol using the mean 
latent space coordinates from conditional beta-TCVAEs trained with beta hyperparameter values of (A) 
1.0 (B) 2.0, (C) 3.0, (D) 5.0, and (E), 10.0. The beta-TCVAE with beta = 2.0 was selected to minimize loss 
of granularity.  
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Fig. S3. Hyperparameter sweep for the beta parameter of the conditional variational autoencoder. 
(A–E) Higher beta values over-smoothened data representations. UMAP representation of single-
nucleus profiles (dots) colored (from left to right) by broad cell type, tissue, individual, or protocol using 
the mean latent space coordinates from conditional beta-TCVAEs trained with beta hyperparameter 
values of (A) 1.0 (B) 2.0, (C) 3.0, (D) 5.0, and (E), 10.0. The beta-TCVAE with beta = 2.0 was selected to 
minimize loss of granularity.  

Fig. S4. Broad cell types in the cross-tissue atlas. Illustration of 40 (of 43) broad cell types in the 
cross-tissue atlas labeled by cellular compartments (horizontal color line) and tissues in which the cell 
type is detected (colored boxes). Cytoplasmic myocytes are not shown and suprabasal epithelial cells 
from esophagus mucosa and skin are shown as a single cell type. 
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Fig. S5. Broad cell type gene markers. Scaled mean expression (z-score, circle color) and fraction of 
expressing cells (circle size) of marker genes (columns, labels at bottom) associated with each granular 
cell subset (rows, and labels on top) with epithelial cells with tissue-specific markers shown separately. 
Right: number of nuclei in each cell subset. 
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Fig. S6. Granular cell subsets in each tissue. UMAP visualization (left) of single nucleus profiles (dots) 
colored by granular cell type annotation and scaled mean expression (z-score, circle color) and fraction of 
expressing cells (circle size) of marker genes (columns, labels at bottom) associated with those subsets 
(rows, with nuclei number on right and labels on top) for breast (A), esophagus mucosa (B), esophagus 
muscularis (C), heart (D), lung (E), prostate (F), skeletal muscle (G), and skin (H). 
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Fig. S7. Relative benchmarking of four snRNA-seq protocols on different QC measures.  
(A, B) Number of recovered nuclei. Distribution (A) and number (B) of high-quality nuclei profiles (y-axis) 
recovered from each protocol in aggregate (A, x-axis) and for each sample in each tissue (B, x-axis).  
(C–E) Number of recovered genes. Distribution (C, E) and mean number (D) of genes (y-axis) recovered 
from each protocol in aggregate (C, x-axis), for each sample in each tissue (D, x-axis), and for each protocol 
in each tissue (E, x-axis). (F–H) Fraction of mitochondrial transcripts. Distribution (F, H) and mean (G) of 
the fraction of mitochondrial transcripts (y-axis, Unique Molecular Identifiers (UMIs)) recovered from each 
protocol in aggregate (F, x-axis), for each sample in each tissue (G, x-axis), and for each protocol in each 
tissue (H, x-axis). (I–K) Fraction of ribosomal transcripts. Distribution (I, K) and mean (J) of the fraction of 
ribosomal transcripts (y-axis, UMIs) recovered from each protocol in aggregate (F, x-axis), for each sample 
in each tissue (G, x-axis), and for each protocol in each tissue (H , x-axis). (L) Number of transcripts. Mean 
number of UMIs (y-axis) in each sample in each tissue. Box plots show median, quartiles, and whiskers at 
1.5 IQR (interquartile range). The horizontal bar in violin plots represents the median. Error bars in (D,G,J,L) 
show one standard deviation above and below the mean.  
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	 	Fig. S8. Benchmarking of snRNA-seq protocols by cell composition and comparison to scRNA-seq. 
(A–E) Impact of snRNA-seq protocol on recovered cell composition. (A) Significance (Benjamini–Hochberg 
FDR < 0.1; circle outline color) of the enrichment of each cell type (rows) in each protocol (columns) relative 
to the CST protocol across all tissues and samples after correction for tissue specific effects (Methods). 
(B,C) UMAP representation of snRNA-seq profiles (after batch correction by individual with Harmony 
(Korsunsky et al. 2019), Methods) colored by study (B) and cell type (C). (D) Proportion of cells or nuclei 
(y-axis) across broad cell groups (color legend) in each sample (x-axis), stratified by tissue and protocol. 
(E) Proportion of cells or nuclei (y-axis) across broad cell groups (color legend) in each tissue (x-axis), 
stratified by tissue and protocol. Asterisks indicate significantly higher (muscle EZ, Tucker et al. and 
Litviňuková et al.) or lower (endothelial, Tucker et al. and Litviňuková et al.) proportions compared to the 
CST protocol (Dirichlet regression, Benjamini–Hochberg FDR < 0.01, Methods). (F–H) Agreement in cell-
intrinsic expression profiles between scRNA-Seq and snRNA-Seq. Proportion of nuclei (circle size and 
color) of each subset (rows) that are predicted to be in each cell class (columns) by a random forest 
classifier trained on cells, for skin (F), lung (G) or prostate (H). 
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	 	Fig. S9. snRNA-Seq pseudobulk matches bulk RNA-seq of matched samples. (A–C) Co-embedding 
of bulk and pseudobulk RNA-seq profiles. UMAP representation of bulk RNA-seq and pseudobulk snRNA-
seq samples (dots), with each sample colored by tissue site (A) detailed tissue site (B), or highlighting only 
the pseudobulk samples from each site (C). (D) Co-embedding successfully places bulk and pseudobulk 
samples from the same tissue in proximity, as shown by the fraction of bulk nearest neighbors (color bar) 
of each pseudobulk sample (columns) that are derived from each tissue site (rows). 
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Fig. S10. Differences in gene expression between snRNA-seq and scRNA-seq 
(A, B) Expression of tissue dissociation signatures in scRNA-seq but not snRNA-seq. Distribution of 
the score (y-axis, average background corrected, log(TPX+1)) of a dissociation signature van den Brink et 
al. in scRNA-seq (pink) and snRNA-seq (blue) profiles in each major lung cell type category (x-axis). (*** 
Benjamini-Hochberg FDR < 10–16, Wilcoxon rank-sum test). Box plots show median, quartiles, and whiskers 
at 1.5 IQR (interquartile range). (C–G) Limited divergence of gene expression between scRNA-seq and 
snRNA-Seq. Averaged pseudobulk expression values (Methods) of genes (dots) in nuclei (x-axis) and 
cells (y-axis), shown for protein-coding genes in (C) prostate epithelial (basal) cells (D) lung alveolar type 
II cells, and long non-coding RNA genes in (E) skin basal keratinocytes, (F) prostate epithelial cells (basal), 
and (G) lung alveolar type II cells. Divergent genes (dot outline color) deviating from straight line regression 
fit by size of residuals (Methods). Color scale: total length of polyA stretches with at least 20 adenine 
bases. (H, I) Relation between gene expression differences in nuclei vs. cells, gene length and polyA 
stretches. (H) The number of polyA stretches (y-axis) and length (x-axis) of each gene. (I) Divergence (y-
axis, residual of straight-line regression fit) between pseudobulk gene expression of single cell and single 
nucleus RNA-seq and gene length (x-axis) for each protein coding gene expressed in skin basal 
keratinocytes in both datasets.  
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	 	Fig. S11. Cross-tissue analysis of myeloid cell subsets. (A, B) Myeloid cell subsets across tissues. 
UMAP visualization of myeloids snRNA-seq profiles, highlighting cells from each tissue (A) or colored by 
protocol, donor, or sex (B). (C) Alveolar and lipid-associated macrophage signatures. Distribution of 
signature scores (y-axis) of alveolar macrophages (top) and lipid-associated macrophage (LAM) (bottom) 
for each myeloid cell subset (x-axis). Signature genes are listed on the right. (D) Key processes enriched 
in the LAM-like signature. Semantic similarity space of functional gene sets (circles; circle size proportional 
to gene set size) preserving distances between similar GO terms colored by enrichment (–log10(Benjamini–
Hochberg FDR), Fisher's exact test) of LAM-like markers.  (E) Myeloid cell proportions across tissues. 
Proportion (%, y axis) of different myeloid subsets in each sample (x-axis).  (F, G) Myeloid cell composition 
is similar in the same tissue and different between tissues. (F) Distribution of pairwise Spearman correlation 
coefficients (y-axis) of myeloid cell subset proportion profiles for samples within each tissue and between 
different tissues (x-axis). Box plots show median, quartiles, and whiskers at 1.5 IQR (interquartile range). 
(G) Spearman correlation coefficient (color bar) of myeloid cell subset proportion profiles of each pair of 
samples (columns, rows). Rows and columns were hierarchically clustered using the Euclidean distance 
and complete linkage. (H) Differences in myeloid cell distributions across tissues. Significance (circle size, 
–log10(FDR)) and effect size (circle color) of the difference in proportion in each myeloid cell subset (rows) 
between each tissue (columns) relative to one reference tissue (label on top). (I) Macrophage cell 
proportions across tissues. Proportion (%, y axis) of different macrophage subsets in each individual tissue 
(x-axis). (J-L) Mɸ LYVE1hi and Mɸ HLAIIhi distinctive signatures. (J) Difference in expression (x-axis, 
log2(Fold change), x < 0: enriched in Mɸ HLAIIhi x < 0: enriched in Mɸ LYVE1hi) and its significance (–
log10(FDR (Benjamini-Hochberg)), Wald test) between Mɸ LYVE1hi vs. Mɸ HLAIIhi profiles in three tissues 
where both populations are observed. (K) Significance of enrichment (x-axis, –log10(Benjamini-Hochberg 
FDR), Fisher’s exact test) of GO gene sets (y-axis) in genes differentially expressed between Mɸ LYVE1hi 
and Mɸ HLAIIhi populations in the three tissues in J. (L) Differential expression plots as in (J) with marker 
genes of mouse Lyve1hiMHCIIlo and Lyve1loMHCIIhi cells (Chakarov et al.) highlighted. 
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Fig. S12. Tissue distribution of LAM-like cells. (A–D) UMAP visualization of nuclei profiles from 
breast (A), heart (B), lung (C) and prostate (D) (where LAM-like profiles are detected), colored by 
classification probabilities of LAMs (left) or by broad cell type annotations (right). (E) Consensus LAM 
signature. The number of published studies (y-axis) and tissue type (color) in which each LAM marker 
gene (x-axis, Methods) is detected as a marker. (F) LAM-associated TFs. Distribution of activity scores 
(x-axis) of TFs (y-axis) that are significantly high in LAMs or non-LAM macrophages. *** = p-value < 10–

20 (p-values in Figure 3I are combined across studies using Fisher’s method). 
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Fig. S13. Analysis of monogenic muscle disease gene in mouse muscle tissues. (A–D) Mouse 
muscle tissue atlas. UMAP visualization of snRNA-seq profiles from skeletal muscle, heart and 
esophagus in mouse, colored by cell type (A), tissue (B), mouse (C) or sample IDs (D). (E, F) Mouse 
muscle atlas cell type composition. Proportion of nuclei (x-axis) of each type (color) in each tissue 
(sample) (E), and of each tissue in each cell type (F, after normalizing for the total number of nuclei 
profiled in each tissue, Methods) along with the number of profiled nuclei (right). Circled numbers refer 
to cell types in the color legend. Black vertical lines in bars in F: relative proportion from each mouse. 
(G) Cell type markers. Scaled mean expression (dot color, z-score) and fraction of expressing cells (dot 
size) for marker genes (columns) in each cell subset (rows). (H, I) Enrichment of broad cell type 
markers with monogenic muscle disease genes. Effect size (log odds ratio, dot color) and significance 
(–log10(Benjamini–Hochberg FDR), dot size) of enrichment of mouse orthologs (Methods) of genes 
from each monogenic muscle disease group (rows) for (H) cell type markers of broad cell subsets 
(columns) in each mouse tissue (I) or from human muscle tissues (as in Figure 4A) as well as skin and 
breast. Red border: Benjamini–Hochberg FDR < 0.1. 
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Fig. S14. Expression of monogenic muscle disease genes highly expressed in myocytes in three 
muscle tissues. Expression (z-score, x-axis) of monogenic muscle disease genes (y-axis) that are 
highly expressed in myocytes ordered by disease category (labels on left) in each cell type (color 
legend) in each of three mouse tissues (labels on top). Grey (“other”): Cell types with low expression of 
the indicated genes. 
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Fig. S15. Expression of monogenic muscle disease genes in non-myocytes in three muscle 
tissues, including genes expressed also in myocytes. Expression (z-score, x-axis) of monogenic 
muscle disease genes (y-axis) expressed in non-myocytes (and possibly in myocytes too) ordered by 
disease category (labels on left) in each cell type (color legend) in each of three mouse tissues (labels 
on top). Grey (“other”): Cell types with low expression of the indicated genes.  
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Fig. S16. Cell type enrichment of GWAS loci from 21 complex traits in 8 tissues using broad cell 
type annotations. Significance (circle size, –log10(p-value)) and effect size (circle color, fold-
enrichment) of enrichment of GWAS locus sets of complex traits (rows) in each broad cell type category 
(columns) in the eight tissues in the cross-tissue atlas (panels). Grey, orange, red borders: nominal, 
tissue-wide (Benjamini–Hochberg (BH) FDR < 0.05 correcting for all cell types tested per tissue and per 
trait) and experiment-wide (BH FDR < 0.05 correcting for all cell types tested across 8 tissues and 21 
traits) significance results, respectively. 
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Fig. S17. Cell type enrichment of GWAS loci from 21 complex traits in 8 tissues using granular 
cell type annotations. Significance (circle size, –log10(p-value)) and effect size (circle color, fold-
enrichment) of enrichment of GWAS locus set (rows) in each granular cell type category (columns) in 
the eight tissues in the cross-tissue atlas (panels). Grey, orange, red borders: nominal, tissue-wide 
(Benjamini–Hochberg (BH) FDR < 0.05 correcting for all cell types tested per tissue and trait) and 
experiment-wide (BH FDR < 0.05 correcting for all cell types tested across 8 tissues and 21 traits) 
significance results.    
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Fig. S18. Cell type specificity enrichment of 21 complex traits across broad cell types from 8 
tissues. Fold-enrichment (color bar) of each GWAS locus set (rows) for specificity in each broad cell 
type category (columns). Red stars: nominal significance (P < 0.05). Only traits with at least one 
enrichment at tissue-wide significance (BH FDR < 0.05 correcting for number of cell types tested per 
tissue per trait) are shown. Rows and columns are hierarchically clustered using the Euclidean distance 
and average linkage method. Red stars denote nominal significance. 
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Fig. S19. Cell type specificity enrichment of 21 complex traits across granular cell types from 8 
tissues. Fold-enrichment (color bar) of each GWAS locus set (rows) for specificity in each granular cell 
type category (columns). Red stars: nominal significance (P < 0.05). Only traits with at least one 
enrichment at tissue-wide significance (BH FDR < 0.05 correcting for number of cell types tested per 
tissue per trait) are shown. Rows and columns are hierarchically clustered using the Euclidean distance 
and average linkage method. Red stars denote nominal significance.  
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Fig. S20. Module-based GWAS gene set enrichment analysis highlights associations between 
cell types and traits/diseases. Significance (–log10(Benjamini–Hochberg FDR), dot size) of enrichment 
of GWAS module (rows) expression (dot color) in each cell type (columns). 
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Fig. S21. Disease/trait grouping by GWAS-cell type enrichments. Similarity (Spearman correlation 
coefficient, color bar) between each pair of GWAS traits/diseases (rows, columns) based on their 
enriched cell type profiles (as in Figure S20).  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.19.452954doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452954
http://creativecommons.org/licenses/by-nd/4.0/


	 	

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.19.452954doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452954
http://creativecommons.org/licenses/by-nd/4.0/


	
Fig. S22. Successful processing of multiplexed samples by snRNA-Seq. Analysis of snRNA-Seq 
profiles from frozen tissue samples from 3 individuals processed in multiplex for lung (A–L) and prostate 
(M–X) by either the CST (A–F, M-R) or the TST (G–L, S–X) protocols. UMAP visualizations of nuclei 
profiles colored by the demultiplexing assignments of each nucleus by souporcell to individuals 
(A,G,M,S), doublets (B,H,N,T), log10-transformed total number of UMIs (C,I,O,U), demultiplexing 
predictions of an expression-based linear classifier (D,J,P,V), and doublets predicted by Scrublet 
(E,K,Q,W). Heat maps (F,L,R,X) show the concordance (% precision, color bar) between souporcell 
(rows) and the linear classifier (columns) calls. Accuracy values are labeled on top. 
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