

1 ***Botrytis cinerea* BcPTP1 is a late infection phase, cysteine rich protein**

2 **cytotoxic effector**

3 Wenjun Zhu^{1*}, Mengxue Yu¹, Ran Xu¹, Kai Bi¹, Chao Xiong¹, Zhiguo Liu¹, Amir
4 Sharon², Daohong Jiang³, Mingde Wu³, Qiongnan Gu⁴, Ling Gong⁵, Weidong Chen⁶,
5 Wei Wei^{6*}

6

7 1. School of Life Science and Technology, Wuhan Polytechnic University, Wuhan
8 430023, Hubei Province, China.

9

10 2. School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv
11 University, Tel Aviv 69978, Israel.

12

13 3. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural
14 University, Wuhan 430070, Hubei Province, China.

15

16 4. Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural
17 Sciences/Key Laboratory of Integrated Pest Management on Crops in Central China,
18 Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Crop Diseases,
19 Insect Pests and Weeds control, Wuhan 430064, Hubei Province, China.

20

21 5. Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan 430065, Hubei
22 Province, China.

23

24 6. Department of Plant Pathology, Washington State University, United States
25 Department of Agriculture-Agricultural Research Service, Washington State
26 University, Pullman 99164, USA.

27

28 *Corresponding authors.

29 E-mail addresses:

30 Wenjun Zhu: zhuwenjun2017@whpu.edu.cn

31 Wei Wei: wei.wei2@wsu.edu

32

33

34 **Abstract**

35 *Botrytis cinerea* is a broad-host-range necrotrophic phytopathogen responsible
36 for serious crops diseases. To facilitate infection, *B. cinerea* secretes a large number
37 of effectors that induce plant cell death. In screening secretome data of *B. cinerea*
38 during infection stage, we identified a phytotoxic protein (BcPTP1) that can also
39 induce immune resistance in plants. BcPTP1 is a small (90 aa), cysteine rich protein
40 without any known domains. Transiently expression of BcPTP1 in leaves caused
41 chlorosis that intensifies with time and eventually lead to cell death. Point mutations
42 in eight of the 10 cysteine residues of BcPTP1 abolished the toxic effect, however
43 residual toxic activity remained after heating the peptide, suggesting contribution of
44 unknown epitopes to protein phytotoxic effect. The transcript level of the *bcptp1* gene
45 was low during the first 36 h after inoculation and increased sharply upon transition to
46 the late infection stage, suggesting a role of BcPTP1 in lesion spreading. While
47 statistically insignificant, deletion of the *bcptp1* gene led to slightly smaller lesions on
48 bean leaves. Further analyses indicated that BcPTP1 is internalized into plant cells
49 after secreting into the apoplast and its phytotoxic effect is negatively regulated by the
50 receptor-like kinases BAK1 and SOBIR1. Collectively, our findings show that
51 BcPTP1 is a virulence factor that toxifies the host cells and facilitates lesion spreading
52 during the late infection stage.

53

54 **Keywords:** *Botrytis cinerea*, effector, cell death, phytotoxic protein, immune
55 resistance, receptor-like kinases

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72 **Introduction**

73 During the evolutionary arms race with phytopathogens, plants have developed a
74 sophisticated defense system (Jones and Dangl, 2006). The first defense layer is
75 pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI), in which
76 host receptors recognize molecules or domains that are conserved in certain groups of
77 pathogens and induce an effective resistance response (Albert *et al.*, 2020). In fungi
78 and oomycetes, the best studied PAMPs include glucans (Fliemann *et al.*, 2004),
79 xylanase EIX (Rotblat *et al.*, 2002), chitin (Shinya *et al.*, 2015),
80 endopolygalacturonases (Zhang *et al.*, 2014b), Pep13 (Brunner *et al.*, 2002),
81 Cerato-platinin proteins (Yang *et al.*, 2018) and INF1 (Kanneganti *et al.*, 2006). In
82 addition, several PAMPs that induce plant necrosis or PTI across different classes of
83 microbes have also been well characterized, such as glycoside hydrolase 12 proteins
84 (GH12) in the fungal pathogen *Verticillium dahliae* and *Botrytis cinerea* (Gui *et al.*,
85 2017; Zhu *et al.*, 2017) and the oomycete pathogen *Phytophthora sojae* (Ma *et al.*,
86 2015; Ma *et al.*, 2017; Wang *et al.*, 2018), Ave1 protein in multiple plant pathogenic
87 fungi and bacteria (Thomma *et al.*, 2011; de Jonge *et al.*, 2012), and the classical
88 necrosis and ethylene-inducing peptide 1-like proteins (NLPs) in multiple prokaryotic
89 and eukaryotic microbial pathogens (Oome *et al.*, 2014; Albert *et al.*, 2015).

90 To overcome the basal plant immunity and infect hosts effectively, biotrophic
91 and hemibiotrophic pathogens secrete diverse effectors to the interface area between
92 fungal hyphae and host or into plant cells (Stergiopoulos and de Wit, 2009; Lo Presti
93 *et al.*, 2015; Kim *et al.*, 2016). To cope with pathogen effectors, plants have
94 co-evolved a second line of defense, also called effector-triggered immunity (ETI),
95 which is mediated by resistance (R) proteins and is often associated with the local
96 plant cells hypersensitive response (HR) at the infection site (Cui *et al.*, 2015). HR is
97 efficient in restricting biotrophic and hemibiotrophic pathogens (Jones and Dangl,
98 2006; van Ooijen *et al.*, 2007; Cui *et al.*, 2015), but is ineffective against necrotrophic
99 pathogens, which can turn it against the host to facilitate infection (Lorang *et al.*, 2012;
100 Gao *et al.*, 2015).

101 Compared to the large number and well characterized effectors in biotrophic and
102 hemibiotrophic fungal pathogens, relatively fewer effectors have been studied in
103 necrotrophic fungal pathogens, especially the broad-host-range necrotrophic fungal
104 pathogens. *Botrytis cinerea* is a typical broad-host-range necrotrophic fungal
105 phytopathogen, causing gray mold and rot diseases in hundreds of plant species
106 including many agriculturally important crops, and leading to enormous economic
107 losses each year (Dean *et al.*, 2012; Veloso and van Kan, 2018). It was shown that the
108 infection process of *B. cinerea* on host plant includes three typical stages: an early
109 stage characterized by local necrosis lesions formation, an intermediate stage during

110 which a variety of sophisticated interactions between plant-pathogen occur and
111 determine the outcome of *B. cinerea* infections, and the late stage of fast-spreading
112 lesions (Eizner *et al.*, 2017). Since *B. cinerea* infects and colonizes by killing plant
113 cells, it secretes diverse effector proteins to manipulate the host defenses and/or to
114 induce death for facilitating infection on host plants (Heard *et al.*, 2015; Frías *et al.*,
115 2016; Zhu *et al.*, 2017; Denton-Giles *et al.*, 2020; Frías *et al.*, 2011; Shao *et al.*, 2021).
116 These secreted effector proteins play important roles during *Botrytis*-plant interactions.
117 However, compared with biotrophic and hemibiotrophic pathogens effectors, the
118 underlying biochemical activities and molecular mechanisms of the necrotrophic
119 secreted proteins remain incompletely understood.

120 Aiming to characterize potential effectors of *B. cinerea*, we identified a secreted
121 protein with a phytotoxic activity that was named BcPTP1 (phytotoxic protein).
122 Similar to most other cell death inducing proteins (CDIPs, Li *et al.*, 2020; Shao *et al.*,
123 2021), BcPTP1 functions in apoplastic space of plant cell and induces a plant defense
124 response. However, unlike the vast majority of CDIPs, BcPTP1 leads to development
125 of gradual chlorosis rather than instant cell death and the *bcptp1* gene is expressed late
126 during infection and affects lesion development, namely it is a late-stage virulence
127 factor.

128

129 **Results**

130 **BcPTP1 is a secreted protein with phytotoxic activity**

131 The effect of putative effector proteins was tested by *Agrobacterium*
132 *tumefaciens*-mediated transient expression (agroinfiltration) of the candidate proteins
133 fused with GFP tag at the C-terminus in *N. benthamiana* leaves. We found that the
134 protein BcPTP1 (BCIN_05g03680)-GFP containing a potential N-terminal signal
135 peptide caused chlorosis in *N. benthamiana* leaves that developed within 10 days after
136 agroinfiltration, eventually leading to cell death within 15 days after agroinfiltration
137 (Fig. 1). Transient expression of BcPTP1^{ΔSP}-GFP without the secretion signal peptide
138 did not trigger leaf chlorosis, indicating that BcPTP1 may function in the leaf
139 apoplastic space. This phenotype differs from the induction of necrotic cell death that
140 is common to previously characterized apoplastic CDIPs (Li *et al.*, 2020; Shao *et al.*,
141 2021), and suggests that BcPTP1 has a phytotoxic activity rather than a necrotic cell
142 death inducing activity.

143 Two methods were used to verify whether BcPTP1 is a secreted protein. First, the
144 BcPTP1 signal peptide (initial N terminus 19 amino acids) was used to replace the
145 N-terminal signal peptide of BcXYG1, the strong death-inducing secreted protein of *B.*
146 *cinerea* which functions in the apoplastic space (Zhu *et al.*, 2017), to produce
147 SP^(BcPTP1)-BcXYG1^{ΔSP}-HA. The BcXYG1-HA with its native signal peptide was used

148 as a positive control, and the $BcXYG1^{\Delta SP}$ -HA, GFP-HA, $SP^{(BcPTP1)}$ -GFP-HA and
149 empty vector were used as negative controls. Within five days after agroinfiltration,
150 both of $BcXYG1$ -HA and $SP^{(BcPTP1)}$ - $BcXYG1^{\Delta SP}$ -HA fusion proteins, which are
151 secreted from the plant cells to the extracellular space, triggered typical plant cell
152 death, whereas $BcXYG1^{\Delta SP}$ -HA, which lacks the signal peptide and therefore remains
153 inside the plant cell, failed to induce cell death (Fig. 2A). In the second method, we
154 fused the signal peptide of $BcPTP1$ to GFP to form $SP^{(BcPTP1)}$ -GFP. Likewise, we
155 fused the signal peptide of $BcXYG1$ to GFP to form $SP^{(BcXYG1)}$ -GFP for comparison.
156 The constructs were used to transform the wild type *B. cinerea* strain to generate
157 overexpression strains of these fusion proteins. All the indicated proteins were
158 successfully expressed in the hyphae of each strain as shown in western blot analysis
159 (Fig. 2C). Then, all examined strains were cultured in potato dextrose broth (PDB) for
160 3 days, the culture filtrates were collected, purified and presence of the fused proteins
161 was checked by western blot analysis. The results confirmed the accumulation of GFP
162 protein in the culture medium of $SP^{(BcPTP1)}$ -GFP and $SP^{(BcXYG1)}$ -GFP overexpression
163 strains, but not the GFP overexpression or wild type (WT) strain (Fig. 2D).
164 Collectively, these analyses confirmed the secretion function of the $BcPTP1$ signal
165 peptide.

166

167 ***BcPTP1* is internalized into plant cell**

168 The above results showed that $BcPTP1$ is a secreted protein and its phytotoxic
169 activity depends on localization in the leaf apoplastic space (Fig. 1; Fig. 2). Thus, we
170 postulated that $BcPTP1$ remains in apoplastic space after secretion by the fungus.
171 To verify this hypothesis, we analyzed the subcellular localization of $BcPTP1$ -GFP
172 fusion protein following agroinfiltration. Unexpectedly, we found that the
173 $BcPTP1$ -GFP fusion protein was mainly localized at the cytoplasmic vesicles and in
174 the periphery of plant cell plasma membrane, whereas the $BcPTP1^{\Delta SP}$ -GFP and GFP
175 were mainly distributed in the nuclei and cytoplasm, and the SP^{BcPTP1} -GFP was
176 concentrated in the apoplastic space (Fig. 3). The unexpected localization of $BcPTP1$
177 indicates that besides phytotoxic activity in apoplast, $BcPTP1$ can be also internalized
178 into plant cells for other unknown functions after the initial secretion to apoplastic
179 space.

180

181 ***BcPTP1* is toxic to dicot but not monocot plants**

182 To determine whether $BcPTP1$ affects plants other than *N. benthamiana* and to
183 avoid the *A. tumefaciens* incompatibility issues on plants, we produced and purified
184 the $BcPTP1$ protein from *Escherichia coli* (Supplementary Fig. S1). Infiltration assay
185 with different concentrations of the purified protein demonstrated that 25 μ g/ml of
186 $BcPTP1$ recombinant protein was sufficient to trigger leaf chlorosis in *N.*

187 *benthamiana* (Fig. 4A). Cell death developed following treatment of the leaves with
188 higher protein titers (50-100 µg/ml). In addition, BcPTP1 also induced cell death in
189 tomato and *A. thaliana* leaves, but not in the monocot maize even at high protein
190 concentrations (Fig. 4B). These results indicated that BcPTP1 is toxic to multiple
191 dicot plants, but not to monocot cereal.

192

193 **Cysteine residues in BcPTP1 are important for protein toxicity**

194 *bcptp1* is a single-copy gene in *B. cinerea*, encoding 90 amino acids with 10
195 cysteine residues, out of which eight residues are highly conserved (Supplementary
196 Fig. S2). Bioinformatics analysis demonstrated that the first 20 N-terminal amino
197 acids encode a signal peptide. No other known protein domains or possible functions
198 were predicted using **SMART** **MODE** analysis
199 (http://smart.embl-heidelberg.de/smart/change_mode.pl), and also no nuclear
200 localization signal or chloroplast transit peptide were found in protein sequence.
201 BLAST searches against the **NCBI** database with the BcPTP1 sequence as query
202 showed that homologs of BcPTP1 with high similarity are only present in a small
203 number of fungal genera, most of which are plant pathogens, including *Botryotinia*,
204 *Sclerotinia*, *Alternaria*, *Bipolaris*, *Fusarium*, *Colletotrichum*, *Botrytis*, and
205 saprotrophic *Aspergillus* species. Significantly, no homologs were found in any of the
206 biotrophic plant pathogens or in human pathogenic fungi. Multiple sequence
207 alignment and phylogenetic analysis of BcPTP1 and its homologues showed
208 significant sequence similarity (Supplementary Fig. S2A and S2B). 3D structure
209 prediction of BcPTP1 using *I-TASSER* showed that BcPTP1 contains two α -helices on
210 each side of the protein structure and two internal β -strands (Supplementary Fig.
211 S2C).

212 Many effectors are small secreted cysteine-rich proteins (SSCP). The cysteine
213 residues contribute to the formation of disulfide bonds (Sevier and Kaiser, 2002;
214 Marianayagam *et al.*, 2004), which are essential for the structure and function of these
215 proteins (Stergiopoulos and de Wit, 2009). To examine whether phytotoxicity of
216 BcPTP1 depends on its cysteine residues, we replaced each of the 10 cysteine residues
217 with alanine individually using site-directed mutagenesis. *A. tumefaciens* infiltration
218 assay of *N. benthamiana* leaves demonstrated that mutations of C26A or C34A
219 individually could induce more severe phenotype than the native BcPTP1 protein. The
220 activity of the C67A mutant decreased compared to the native protein, whereas
221 mutations in any of the seven remaining cysteine residues completely abolished
222 phytotoxicity (Fig. 5). Additionally, boiling the BcPTP1 protein at 100°C for 30 min
223 reduced, but did not completely abolish phytotoxicity (Fig. 6). These results suggest
224 that certain epitopes, which are affected by specific cysteine residues, mediate the
225 phytotoxic activity of the BcPTP1 protein.

226

227 ***bcptp1* is highly expressed at late infection stage but is not essential for**
228 **pathogenicity**

229 To analyze the biological roles of BcPTP1 during *B. cinerea* infection, we
230 measured the expression levels of the *bcptp1* gene during infection. The transcript
231 levels of *bcptp1* were low at early infection stage and then increased sharply about 48
232 hpi with a peak at 60 hpi, about 35-fold higher than at 0 hpi (Fig. 7). When *B. cinerea*
233 was cultured on solid Gamborg's B5 medium, the transcript level of *bcptp1* was
234 increased about 12-fold at 36 hpi compared to earlier time points, and then remained
235 stable throughout the culture period (Fig. 7).

236 To further investigate possible role of BcPTP1 in *B. cinerea* pathogenicity, we
237 generated *bcptp1* gene deletion and overexpression strains (Supplementary Fig. S3).
238 All the deletion and overexpression strains had normal colony morphology, conidia
239 production and growth rate on potato dextrose agar (PDA) (Supplementary Fig. S4).
240 In addition, we did not observe obvious changes in sensitivity of the transgenic strains
241 to various types of stresses, including 1 M NaCl, 1 M sorbitol, 0.02% SDS, 20 mM
242 H₂O₂, 0.3 mg/ml Calcofluor White and 0.5 mg/ml Congo Red (Supplementary Fig.
243 S5).

244 Pathogenicity study showed that the *bcptp1* deletion strains caused slightly
245 smaller disease lesion on bean leaves than the wild type strain, although the
246 differences were statistically insignificant (Supplementary Fig. S6). Likewise, the
247 *bcptp1* over expression strains did not show obvious difference in lesion size
248 (Supplementary Fig. S6). The results indicated that deletion or overexpression of
249 *bcptp1* does not significantly affect the final outcome of *B. cinerea* infection.

250

251 **BcPTP1 triggers immune response and induces resistance against *B. cinerea* in *N.***
252 ***benthamiana***

253 High proportion of the analyzed CDIPs are recognized by the plant immune
254 system and activate a defense response. To analyze whether BcPTP1 can induce plant
255 resistance to *B. cinerea*, *N. benthamiana* leaves were infiltrated with 10 µg/ml of
256 purified BcPTP1 or GFP proteins, 48 h later, the infiltrated leaves were inoculated
257 with *B. cinerea* mycelia plugs, the plants were incubated for an additional 48 h in a
258 moist chamber and then symptoms were recorded. The results showed that the
259 infection on tobacco leaves pre-treated with BcPTP1 protein was significantly
260 reduced compared to leaves pre-treated with GFP protein (Fig. 8A), indicating that
261 along with phytotoxicity, BcPTP1 can also trigger plant resistance.

262 To verify whether the enhanced resistance of tobacco caused by BcPTP1 is
263 associated with the expression changes of defense-related genes, we analyzed the
264 transcript alteration of salicylic acid (SA) signal pathway genes *NbPRIa* and *NbPR2*,

265 Jasmonic acid (JA) signal pathway genes *NbPR4* and *NbLOX*, ethylene signal
266 pathway gene *NbERF1*, HR-related genes *HIN1*, and PTI-related genes *NbWRKY7*
267 and *NbPTI5* using RT-qPCR, as previously described (Nie *et al.*, 2019). In all cases
268 we observed a drastic increase in gene expression after infiltration of the leaves with
269 10 µg/ml BcPTP1 (Fig. 8B).

270

271 **BAK1 and SOBIR1 negatively regulate the death-inducing activity of BcPTP1 in** 272 *N. benthamiana*

273 Since BcPTP1 is targeted to the apoplast space of *N. benthamiana* tissue, it is
274 possible that similar to other CDIPs, BcPTP1 interacts with plant membrane
275 receptor-like proteins (RLPs) to transmit the immunity signals via the
276 RLP-SOBIR1-BAK1 complex (Liebrand *et al.*, 2013; Zhang *et al.*, 2014b; Albert *et*
277 *al.*, 2015; Ma *et al.*, 2015; Postma *et al.*, 2016; Gui *et al.*, 2017; Zhu *et al.*, 2017). To
278 test this possibility, we generated *NbBAK1*- and *NbSOBIR1*-silenced *N. benthamiana*
279 plants using virus-induced gene silencing (VIGS). The gene-silenced plants were
280 agroinfiltrated with BcPTP1 expression construct. Unexpectedly, BcPTP1 induced a
281 much more severe phytotoxicity in the *BAK1*- or *SOBIR1*-silenced plants than in wild
282 type tobacco plants (Fig. 9). The result indicated that the death-inducing signal of
283 BcPTP1 is mediated through an unknown signal transduction pathway, and is
284 negatively regulated by BAK1 and SOBIR1.

285

286 **Discussion**

287 The search for *B. cinerea* cell death-inducing effectors has yielded an increasing
288 number of candidates DCIPs, most of which are associated with production of local
289 necrosis during the early infection stage (Li *et al.*, 2020; Shao *et al.*, 2021). In search
290 of factors that facilitate disease progression in late infection stage (lesion spreading),
291 we identified BcPTP1, a SSCP with phytotoxic activity, which is expressed at the late
292 infection stage. As such, BcPTP1 fulfills the definition of a late-stage necrotrophic
293 effector.

294 The late *in planta* induction of *bcptp1* (Fig. 7) supports a potential role of
295 BcPTP1 in the pathogenicity of *B. cinerea* at the late infection stage, probably as a
296 factor that facilitates lesion expansion. Since the BcPTP1 is recognized by the plant
297 immune system (Fig. 8), the late expression of the *bcptp1* gene might also prevent
298 early perception and induction of a plant defense response. Despite the phytotoxicity
299 and induction *in planta*, deletion of *bcptp1* gene had only minor effect on fungal
300 virulence (Supplementary Fig. S6). Such minor, or even lack of a visible change in
301 virulence is common to many fungal effectors, and probably reflects presence of
302 similar effectors with a redundant function or a quantitative effect that adds to the

303 overall virulence arsenal of the fungus.

304 Compared to other well studied CDIPs, which possess strong activity and trigger
305 death of tobacco leaves within less than 5 days (Ma *et al.*, 2015; Zhang *et al.*, 2017;
306 Zhu *et al.*, 2017; Yang *et al.*, 2018; Bi *et al.*, 2021; Yang *et al.*, 2021; Yin *et al.*, 2021),
307 treatment of leaves with purified BcPTP1 protein or transient expression of using
308 agroinfiltration, both induced chlorosis rather than instant cell death (Fig. 1; Fig. 4A).
309 Hence, the BcPTP1 protein probably does not cause direct damage to the plant cell
310 but more likely, it affects some unknown pathways that eventually lead to cell death,
311 such as accumulation of toxic metabolites or inhibition of photosynthesis.

312 Homologues of BcPTP1 were found in several additional fungal species, mostly
313 necrotrophic and hemibiotrophic plant pathogens (Supplementary Fig. S2).
314 Significantly, no homologues are found in biotrophic plant pathogens or in human
315 pathogens, which hint to a specific role of the protein in promoting necrotrophic
316 infection. Homologues were also found in saprophytic *Aspergillus* species that
317 colonize and grow on dead plant residues. While these saprotrophic fungi probably do
318 not need the death-inducing activity of the BcPTP1 homologs during their entire life
319 cycle, it is possible that they benefit from an unknown activity of these proteins, or
320 they might have a yet unidentified plant associated phase.

321 Many effectors contain multiple cysteine residues, which form disulphide bonds
322 (Sevier and Kaiser, 2002; Lu and Edwards, 2016). These residues play significant
323 roles in protein folding, structural stability and protection of such proteins against
324 degradation in harsh acidic and protease-rich environment when they are delivered
325 into plant apoplast during infection (Rep, 2005). BcPTP1 contains 10 cysteine
326 residues that are predicted to form potential disulphide bonds. Mutation of seven out
327 of the 10 cysteine residues in BcPTP1 completely abolished, and an additional one
328 greatly reduced, the phytotoxic activity, whereas mutation of two other residues
329 enhanced the activity (Fig. 5A). It is possible that the majority of the cysteine residues
330 are involved in forming the proper tertiary structure of BcPTP1, thus changing these
331 cysteine residues abolished or decreased the death-inducing activity. The other two
332 residues might be part of epitopes that contribute to the cell death-inducing activity
333 and the mutations might lead to exposure of the immunogenic epitopes, resulting in
334 enhanced activity. Similar study recently revealed that the secreted apoplastic protein
335 PC2 from the potato late blight pathogen *Phytophthora infestans* was cleavage by
336 plant apoplastic proteases, which is the essential process for PC2 to release the
337 immunogenic peptides, thus to activate plant defense responses (Wang *et al.*, 2021a).
338 Indeed, several studies demonstrated that heat denaturation or structural mutation of
339 some secreted proteins did not abolished the necrosis-inducing activity (Zhang *et al.*,
340 2014a; Zhang *et al.*, 2014b), indicating that the potential epitopes are sufficient for the
341 plant cell death-inducing activity. Similarly, our study also showed that

342 heat-denatured BcPTP1 still retained a weak cytotoxic activity (Fig. 6). Accordingly,
343 it is possible that in addition to tertiary structure, the unknown immunogenic peptide
344 also contributes to the cell death inducing activity of BcPTP1.

345 Our study showed that BcPTP1 activates an immune response in *N. benthamiana*
346 as measured by infection assay and induced expression of defense genes (Fig. 8).
347 Thus, the BcPTP1 may also function as a potential elicitor. Indeed, our results
348 demonstrated that BcPTP1 is secreted extracellularly (Fig. 1; Fig. 2) and may interact
349 with plants receptor-like kinases (RLKs) and/or receptor like proteins (RLPs) and
350 transmit signals via the RLKs BAK1 and/or SOBIR1, as other well-known elicitors
351 (Albert *et al.*, 2015; Du *et al.*, 2015; Postma *et al.*, 2016; Franco-Orozco *et al.*, 2017;
352 Zhu *et al.*, 2017; Nie *et al.*, 2019; Nie *et al.*, 2021). However, silencing of *BAK1* or
353 *SOBIR1* in tobacco did not block cell death development but instead, it resulted in
354 induction of more severe and faster plant cell death (Fig. 9). Similar studies had also
355 been reported that some apoplast elicitors could induce necrosis independent of
356 BAK1 and/or SOBIR1, such as BcPG3 (Zhang *et al.*, 2014b), TvEIX (Bar *et al.*,
357 2010), VdEIX3 (Yin *et al.*, 2021) and Fg12 (Yang *et al.*, 2021). It is possible that
358 BcPTP1 and its putative interacting RLP may coordinate with other unknown
359 LRR-RLKs as co-receptors to transmit immune or death-inducing signals.

360 Subcellular localization analysis of BcPTP1 showed that the fluorescence signal
361 of BcPTP1-GFP fusion protein is mainly observed in plant cell cytoplasmic vesicles
362 and periphery of plasma membrane, but not the expected apoplastic localization (Fig.
363 3). This intracellular localization of BcPTP1 is unexpected given that an extracellular
364 localization of the protein is necessary for the cytotoxic activity. Several studies
365 showed that the internalization of certain secreted fungal proteins was dependent on
366 the plasma membrane RLKs BAK1 and/or SOBIR1 (Robatzek, 2006a, Robatzek *et al.*,
367 2006b; Chinchilla *et al.*, 2007a, Chinchilla *et al.*, 2007b; Liebrand *et al.*, 2013; Wang
368 *et al.*, 2021b). Based on these studies and our findings, we proposed hypothetical
369 model (Fig. 10) in which following secretion by the fungus, the BcPTP1 interacts in
370 the apoplast with a plant RLK and/or RLP, and this complex transmits the
371 phytotoxicity and defense signals. In parallel, the BcPTP1 protein might be also
372 recognized by other plasma membrane receptor that cooperate with the BAK1 and
373 SOBIR1 complex to mediate the internalization through cytoplasmic vesicles (Fig.
374 10). According to this model, silencing of the *BAK1* or *SOBIR1* genes blocks
375 BcPTP1 internalization leading to accumulation of large amounts of BcPTP1 in
376 apoplastic space and increased phytotoxicity.

377

378 **Acknowledgements**

379 This research was supported by the National Natural Science Foundation of
380 China (Grant No 31972215, 31861143043 and 81903782), Institute of Plant

381 Protection and Soil Science, Hubei Academy of Agricultural Sciences/Key
382 Laboratory of Integrated Pest Management on Crops in Central China, Ministry of
383 Agriculture, P.R. China/Hubei Key Laboratory of Crop Diseases, Insect Pests and
384 Weeds Control (Grant No 2018ZTSJJ14), and Hubei Province Agricultural Science
385 and Technology Innovation Center Project (Grant No 2018-620-003-001).

386

387 **Author contributions**

388 WZ and WW: conceptualization of experiments and research plans; WZ, MY,
389 QG, LG and WW: performing the experiments; RX, KB, CX and ZL: data and
390 statistical analysis; WZ, AS, DJ and MW: funding acquisition; AS and WC:
391 manuscript revision; WZ and WW: writing.

392

393 **Data availability**

394 Data of this study are all available within the paper and within its supplementary
395 data published online. Further information may be obtained from the corresponding
396 author.

397

398 **Materials and methods**

399 **Fungi, bacteria, plants and culture conditions**

400 The *Botrytis cinerea* wild type strain B05.10 and derived transformants used in
401 this study were grown and maintained on PDA medium (Acumedia, MI, USA) at 22°C
402 under continuous fluorescent light supplemented with near-UV (black) light. Conidia
403 of all *B. cinerea* strains were obtained from 7-days-old cultures. *Escherichia coli*
404 strains Rosetta-gami (DE3) and JM109 (Shanghai Weidi Biotechnology, Shanghai,
405 China) were respectively used for proteins expression and plasmid construction.
406 *Agrobacterium tumefaciens* strain GV3101(pSoup) (Shanghai Weidi Biotechnology,
407 Shanghai, China) was used for *Agrobacterium*-mediated transient expression of target
408 proteins in plant leaves.

409 Tobacco (*Nicotiana benthamiana*), bean (*Phaseolus vulgaris*, genotype N9059),
410 maize (*Zea mays* cv. Silver Queen) and tomato (*Solanum lycopersicum* cv. Hawaii
411 7981) plants were grown in a greenhouse under 16-h/8-h intervals of 25°C/22°C,
412 light/dark. *Arabidopsis thaliana* Columbia-0 was grown in a chamber under 16-h/8-h
413 intervals of 22°C/20°C, light/dark.

414

415 **Plasmid construction**

416 The *bcptp1* gene deletion construct *Del-bcptp1* was generated as described
417 previously (Zhu *et al.*, 2017) that the 5' (510 bp) and 3' (516 bp) flanks fragments of
418 *bcptp1* gene were amplified and respectively cloned into the upstream and
419 downstream regions of *hph* cassette using Gibson Assembly Master Mix kit (New

420 England Biolabs, Massachusetts, USA). The overexpression plasmid OEBCPTP1-
421 pH2G was generated that the full-length open reading frame of *bcptp1* was cloned
422 into the pH2G vector under the regulation of *B. cinerea* histone H2B promoter (NCBI
423 identifier CP009806.1) and the endo- β -1,4-glucanase precursor terminator (NCBI
424 identifier CP009807.1), as described previously (Zhu *et al.*, 2017).

425 To transiently express the target protein in plant using agroinfiltration, the
426 indicated sequences were cloned into binary plasmid pCNG between the 2 \times CaMV
427 35S promoter and NOS terminator (Yang *et al.*, 2018), then transformed into *A.*
428 *tumefaciens* strain GV3101. The *E. coli* protein expression vectors were constructed
429 that the GFP and *BcPTP1* mature sequence without the signal peptide were,
430 respectively, cloned into vector pET-N-GST-PreScission (Beyotime Biotechnology,
431 Shanghai, China), then transformed into *E. coli* strain Rosetta-gami (DE3). All the
432 primers used for plasmid construction were listed in Table S1.

433

434 **Manipulation of nucleic acids**

435 Total RNA of fungi and plant samples were isolated using RN03-RNApure Kit
436 (Aidlab, Beijing, China), residual DNA was removed using DNase I (Thermo
437 Scientific, MA, USA) according to manufacturers' protocols and stored at -80°C. The
438 first strand cDNA of indicated sample was generated using RevertAid First Strand
439 cDNA Synthesis Kit (Thermo Scientific, MA, USA). The reverse transcription-
440 quantitative PCR (RT-qPCR) was performed to analyze the gene expression profile
441 using SYBR® Green Supermixes (Bio-Rad, CA, USA) and CFX96 Touch Real-Time
442 PCR Detection System (Bio-Rad, CA, USA) according to manufacturer's instructions.
443 The *B. cinerea* *Bcgpdh* gene and the *N. benthamiana* *NbEF1 α* gene were, respectively,
444 used as endogenous control genes for normalizing the expression levels of target
445 genes as described previously (Zhu *et al.*, 2017). Primers were designed across or
446 flanking an intron (Supplementary Table S1). For each analyzed gene, RT-qPCR
447 assays were repeated at least twice, each repetition with three independent replicates.
448 The genomic DNA of indicated *B. cinerea* strains were isolated using Fungal
449 Genomic DNA Purification Kit (Simgen, Hangzhou, China) according to the
450 manufacturer's protocol.

451

452 **Bioinformatics analysis**

453 The NCBI (<http://www.ncbi.nlm.nih.gov/>) database was used to obtain
454 homologous sequences of BcPTP1 from other pathogens using BLASTp analysis. The
455 JGI (<http://genome.jgi.doe.gov/Botci1/Botci1.home.html>) database of *B. cinerea* was
456 used to characterize *B. cinerea* genomic and transcriptomic sequences. The
457 HMMSCAN (<https://www.ebi.ac.uk/Tools/hmmer/search/hmmSCAN>) was used to
458 analyze the protein domain. The SignalP-5.0 Server

459 (<http://www.cbs.dtu.dk/services/SignalP/>) was used to predict signal peptide sequence.
460 The Clustal X and MEGA-X programs were used for protein alignments and
461 phylogenetic tree generation with an unrooted neighbor-joining method. The
462 I-TASSER (<http://zhanglab.ccmb.med.umich.edu/I-TASSER/>) was used to predict 3D
463 structural model.

464

465 **Transformation, pathogenicity and cell wall stress tolerance assay of *B. cinerea***

466 Genetic transformation of *B. cinerea* was performed as described previously (Ma
467 *et al.*, 2017). The *bcptp1* gene deletion mutants $\Delta BcPTP1-1$ and $\Delta BcPTP1-2$,
468 overexpression strains OEBcPTP1-1 and OEBcPTP2, were confirmed using PCR and
469 RT-qPCR.

470 Pathogenicity assays on the primary leaves of 9-days-old bean were performed
471 as previously described (Zhu *et al.*, 2017). Conidia of indicated *B. cinerea* strains
472 were suspended in inoculation medium (Gamborg's B5 medium containing 2% (w/v)
473 glucose and 10 mM KH₂PO₄/K₂HPO₄, pH6.4), the conidia were diluted to 2×10^5
474 conidia/ml and leaves were inoculated with 7.5 μ l of spore suspension. Plants were
475 incubated in a humid chamber at 22°C for 72 h, and the lesion diameter was
476 measured.

477 To determine the possible effect of BcPTP1 on stress tolerance and cell wall
478 integrity, the indicated strains were inoculated on PDA plates supplemented with 0.5
479 mg/ml Congo Red, 0.3 mg/ml Calcofluor White, 1 M sorbitol, 1 M NaCl, 20 mM
480 H₂O₂ and 0.02% SDS at 22°C, as described previously (Zhu *et al.*, 2017).

481

482 ***A. tumefaciens*-mediated transient expression and Western blotting assay**

483 *A. tumefaciens*-mediated transient expression in *N. benthamiana* leaves was
484 performed using agroinfiltration method as previously described (Zhu *et al.*, 2017).
485 For extraction of fungal or plant proteins, 0.2 g of tissue was ground to powder in
486 liquid nitrogen, suspended in 1 ml of cold lysis buffer (Beyotime Biotechnology,
487 Shanghai, China), the samples were incubated on ice for 5 min and then centrifuged at
488 12,000 g for 10 min at 4°C, the supernatant containing soluble proteins was collected.
489 The supernatant proteins were then mixed with 5×SDS-PAGE sample buffer
490 (Beyotime Biotechnology, Shanghai, China), denatured by boiling for 10 min at
491 100°C and then separated by SDS-PAGE electrophoresis and transferred onto PVDF
492 membranes (0.45 μ m). Western blotting was analyzed using anti-GFP antibody
493 (Beyotime Biotechnology, Shanghai, China).

494

495 **Expression and purification of recombinant BcPTP1 protein**

496 Expression of BcPTP1 and GFP recombinant proteins were performed in *E. coli*
497 strain Rosetta-gami (DE3) as described previously (Zhu *et al.*, 2017). Purification of

498 recombinant proteins was performed using Glutathione Beads 4FF
499 (Smart-Lifesciences, Changzhou, China) according to manufacturer's instructions.
500 The proteins were cleaned using Amicon Ultra-4 Centrifugal Filter Devices (15 ml, 10
501 kD; Merck Millipore) to remove the elution buffer, dissolved in phosphate-buffered
502 saline (PBS) and stored at -80°C.

503

504 **Protein infiltration assay and induction of plant resistance by BcPTP1**

505 To test the phytotoxic activity of BcPTP1, leaves were infiltrated with
506 recombinant protein solution. Plants were then kept in chamber at 25°C and
507 photographed at 10- and 15-days after treatment.

508 To test the of BcPTP1 on plant defense response and sensitivity to infection, *N.*
509 *benthamiana* leaves were infiltrated with 10 µg/ml protein solution. The infiltrated
510 plants were kept in a greenhouse for 48 h, and then the treated leaves were inoculated
511 with *B. cinerea* and incubated for an additional 48 h, or used for expression analysis
512 of defense-related genes using RT-qPCR.

513

514 **VIGS in *N. benthamiana***

515 To test whether BcPTP1-induced plant death is associated with *NbBAK1* or
516 *NbSOBIR1* in tobacco, VIGS was used to silence the expression of *NbBAK1* or
517 *NbSOBIR1* as described previously (Zhu *et al.*, 2017). The plasmid pTRV2 :: *GFP*
518 was used as the control. The expression level of *NbBAK1* or *NbSOBIR1* in gene
519 silenced *N. benthamiana* was determined by RT-qPCR analysis. Then, the *BcPTP1*
520 was expressed using *A. tumefaciens*-mediated transient expression in the leaves of
521 *NbBAK1* or *NbSOBIR1* silenced *N. benthamiana*. The infiltrated plants were then kept
522 in greenhouse at 25°C and the plant death development was photographed at 10 days
523 and 15 days after infiltration.

524

525 **Subcellular localization analysis**

526 To analyze the subcellular localization of BcPTP1 in plant cells, the
527 BcPTP1-GFP, BcPTP1^{ΔSP}-GFP, GFP and SP^{BcPTP1}-GFP sequences were cloned into
528 binary vector pCNG between the 2×CaMV 35S promoter and NOS terminator,
529 respectively. Transient expression was carried out using agroinfiltration. *N.*
530 *benthamiana* leaves epidermal cells were harvested 3 days after agroinfiltration and
531 plasmolyzed in 0.75 M sucrose solution, then the samples were imaged under
532 confocal laser scanning microscope (Leica TCS SP8). Excitation wavelength of 488
533 nm, emission wavelength of 495-510 nm was used to detect GFP, and 650-750 nm
534 was used for chloroplast autofluorescence.

535

536 **Statistical analysis**

537 OriginPro 2021b (OriginLab Corporation, Northampton, MA, USA) was used
538 for statistical tests. ANOVA (one-way, $P \leq 0.01$) was used to analyze data significance.
539 In all graphs, results were obtained from three to five independent experiments.
540 Asterisks or different letters in the graphs indicate statistical differences at $P \leq 0.01$.
541

542 References

- 543 1. **Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato**
544 **C, Raaymakers TM, Oome S, Zhang H, Krol E, Grefen C, Gust AA, Chai J,**
545 **Hedrich R, Van den Ackerveken G, Nürnberger T.** 2015. An
546 RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. *Nature*
547 Plants **1**, 15140.
- 548 2. **Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L.** 2020. Surface sensor
549 systems in plant immunity. *Plant Physiology* **182**, 1582–1596.
- 550 3. **Bar M, Sharfman M, Ron M, Avni A.** 2010. BAK1 is required for the
551 attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the
552 decoy receptor LeEix1. *Plant Journal* **63**, 791–800.
- 553 4. **Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz AB, Arroyo J, Zhu W,**
554 **Masrati G, Sharon A.** 2021. The *Botrytis cinerea* Crh1 transglycosylase is a
555 cytoplasmic effector triggering plant cell death and defense response. *Nature*
556 Communications **12**, 2166.
- 557 5. **Brunner F, Rosahl S, Lee J, Rudd JJ, Geiler C, Kauppinen S, Rasmussen G,**
558 **Scheel D, Nürnberger T.** 2002. Pep-13, a plant defense-inducing pathogen
559 associated pattern from *Phytophthora* transglutaminases. *EMBO Journal* **21**,
560 6681–6688.
- 561 6. **Chinchilla D, Boller T, Robatzek S.** 2007a. Flagellin signaling in plant
562 immunity. *Advances in Experimental Medicine and Biology* **598**, 358–371.
- 563 7. **Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD,**
564 **Felix G, Boller T.** 2007b. A flagellin-induced complex of the receptor FLS2 and
565 BAK1 initiates plant defence. *Nature* **448**, 497–500.
- 566 8. **Cui H, Tsuda K, Parker JE.** 2015. Effector-triggered immunity: from pathogen
567 perception to robust defense. *Annual Review of Plant Biology* **66**, 487–511.
- 568 9. **de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P,**
569 **Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BP.** 2012.
570 Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens
571 uncovered by genome and RNA sequencing. *Proceedings of the National*
572 Academy of Sciences, USA **109**, 5110–5115.
- 573 10. **Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A,**
574 **Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD.** 2012. The

575 Top 10 fungal pathogens in molecular plant pathology. *Molecular Plant Pathology*
576 **13**, 414–430.

577 11. **Denton-Giles M, McCarthy H, Sehrish T, Dijkwel Y, Mesarich CH, Bradshaw RE, Cox MP, Dijkwel PP.** 2020. Conservation and expansion of a
578 necrosis-inducing small secreted protein family from host-variable
579 phytopathogens of the Sclerotiniaceae. *Molecular Plant Pathology* **21**, 512–526.

580 12. **Du J, Verzaux E, Chaparro-Garcia A, Bijsterbosch G, Keizer LC, Zhou J, Liebrand TW, Xie C, Govers F, Robatzek S, van der Vossen EA, Jacobsen E, Visser RG, Kamoun S, Vleeshouwers VG.** 2015. Elicitin recognition confers
581 enhanced resistance to *Phytophthora infestans* in potato. *Nature Plants* **1**, 15034.

582 13. **Eizner E, Ronen M, Gur Y, Gavish A, Zhu W, Sharon A.** 2017. Characterization of *Botrytis*-plant interactions using PathTrack \circledR : an automated
583 system for dynamic analysis of disease development. *Molecular Plant Pathology*
584 **18**, 503–512.

585 14. **Fliegmann J, Mithöfer A, Wanner G, Ebel J.** 2004. An ancient enzyme domain
586 hidden in the putative β -glucan elicitor receptor of soybean may play an active
587 part in the perception of pathogen-associated molecular patterns during broad host
588 resistance. *Journal of Biological Chemistry* **279**, 1132–1140.

589 15. **Franco-Orozco B, Berepiki A, Ruiz O, Gamble L, Griffe LL, Wang S, Birch
590 PRJ, Kanyuka K, Avrova A.** 2017. A new proteinaceous pathogen-associated
591 molecular pattern (PAMP) identified in Ascomycete fungi induces cell death in
592 Solanaceae. *New Phytologist* **214**, 1657–1672.

593 16. **Frías M, González C, Brito N.** 2011. BcSpl1, a cerato-platanin family protein,
594 contributes to *Botrytis cinerea* virulence and elicits the hypersensitive response in
595 the host. *New Phytologist* **192**, 483–495.

596 17. **Frías M, González M, González C, Brito N.** 2016. BcIEB1, a *Botrytis cinerea*
597 secreted protein, elicits a defense response in plants. *Plant Science* **250**, 115–124.

598 18. **Gao Y, Faris JD, Liu Z, Kim YM, Syme RA, Oliver RP, Xu SS, Friesen TL.**
599 2015. Identification and characterization of the SnTox6-Snn6 interaction in the
600 *Parastagonospora nodorum*-wheat pathosystem. *Molecular Plant-Microbe
601 Interactions* **28**, 615–625.

602 19. **Gui YJ, Chen JY, Zhang DD, Li NY, Li TG, Zhang WQ, Wang XY, Short
603 DPG, Li L, Guo W, Kong ZQ, Bao YM, Subbarao KV, Dai XF.** 2017. *Verticillium dahliae* manipulates plant immunity by glycoside hydrolase 12
604 proteins in conjunction with carbohydrate-binding module 1. *Environmental
605 Microbiology* **19**, 1914–1932.

606 20. **Heard S, Brown NA, Hammond-Kosack K.** 2015. An interspecies comparative
607 analysis of the predicted secretomes of the necrotrophic plant pathogens
608 *Sclerotinia sclerotiorum* and *Botrytis cinerea*. *PLoS ONE* **10**, e0130534.

609

610

611

612

613

614 21. **Jones JDG, Dangl JL.** 2006. The plant immune system. *Nature* **444**, 323–329.

615 22. **Kanneganti T, Huitema E, Cakir C, Kamoun S.** 2006. Synergistic interactions
616 of the plant cell death pathways induced by *Phytophthora infestans* Nep1-like
617 protein PiNPP1.1 and INF1 elicitin. *Molecular Plant-Microbe Interactions* **19**,
618 854–863.

619 23. **Kim K-T, Jeon J, Choi J, Cheong K, Song H, Choi G, Kang S, Lee Y-H.** 2016.
620 Kingdom-wide analysis of fungal small secreted proteins (SSPs) reveals their
621 potential role in host association. *Frontiers in Plant Science* **7**, 186.

622 24. **Li Y, Han Y, Qu M, Chen J, Chen X, Geng X, Wang Z, Chen S.** 2020.
623 Apoplastic cell death-inducing proteins of filamentous plant pathogens: roles in
624 plant-pathogen interactions. *Frontiers in Genetics* **11**, 661.

625 25. **Liebrand TW, van den Berg GC, Zhang Z, Smit P, Cordewener JH, America
626 AH, Sklenar J, Jones AM, Tameling WI, Robatzek S, Thomma BP, Joosten
627 MH.** 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like
628 proteins in plant immunity against fungal infection. *Proceedings of the National
629 Academy of Sciences, USA* **110**, 10010–10015.

630 26. **Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A,
631 Reissmann S, Kahmann R.** 2015. Fungal effectors and plant susceptibility.
632 *Annual Review of Plant Biology* **66**, 513–545.

633 27. **Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M, Tzeng SC, Maier CS,
634 Wolpert TJ.** 2012. Tricking the guard: exploiting plant defense for disease
635 susceptibility. *Science* **338**, 659–662.

636 28. **Lu S, Edwards MC.** 2016. Genome-wide analysis of small secreted cysteine-rich
637 proteins identifies candidate effector proteins potentially involved in *Fusarium
638 graminearum*-wheat interactions. *Phytopathology* **106**, 166–176.

639 29. **Ma L, Salas O, Bowler K, Oren-Young L, Bar-Peled M, Sharon A.** 2017.
640 Genetic alteration of UDP-rhamnose metabolism in *Botrytis cinerea* leads to the
641 accumulation of UDP-KDG that adversely affects development and pathogenicity.
642 *Molecular Plant Pathology* **18**, 263–275.

643 30. **Ma Z, Song T, Zhu L, Ye W, Wang Y, Shao Y, Dong S, Zhang Z, Dou D,
644 Zheng X, Tyler BM, Wang Y.** 2015. A *Phytophthora sojae* glycoside hydrolase
645 12 protein is a major virulence factor during soybean infection and is recognized
646 as a PAMP. *Plant Cell* **27**, 2057–2072.

647 31. **Ma Z, Zhu L, Song T, Wang Y, Zhang Q, Xia Y, Qiu M, Lin Y, Li H, Kong L,
648 Fang Y, Ye W, Wang Y, Dong S, Zheng X, Tyler BM, Wang Y.** 2017. A
649 paralogous decoy protects *Phytophthora sojae* apoplastic effector PsXEG1 from a
650 host inhibitor. *Science* **355**, 710–714.

651 32. **Marianayagam NJ, Sunde M, Matthews JM.** 2004. The power of two: protein
652 dimerization in biology. *Trends in Biochemical Sciences* **29**, 618–625.

653 33. **Nie J, Yin Z, Li Z, Wu Y, Huang L.** 2019. A small cysteine-rich protein from
654 two kingdoms of microbes is recognized as a novel pathogen-associated molecular
655 pattern. *New Phytologist* **222**, 995–1011.

656 34. **Nie J, Zhou W, Liu J, Tan N, Zhou JM, Huang L.** 2021. A receptor-like
657 protein from *Nicotiana benthamiana* mediates VmE02 PAMP-triggered immunity.
658 *New Phytologist* **229**, 2260–2272.

659 35. **Oome S, Raaymakers TM, Cabral A, Samwel S, Böhm H, Albert I,
660 Nürnberger T, Van den Ackerveken G.** 2014. Nep1-like proteins from three
661 kingdoms of life act as a microbe-associated molecular pattern in *Arabidopsis*.
662 *Proceedings of the National Academy of Sciences, USA* **111**, 16955–16960.

663 36. **Postma J, Liebrand TWH, Bi G, Evrard A, Bye RR, Mbengue M, Kuhn H,
664 Joosten MHAJ, Robatzek S.** 2016. Avr4 promotes Cf-4 receptor-like protein
665 association with the BAK1/SERK3 receptor-like kinase to initiate receptor
666 endocytosis and plant immunity. *New Phytologist* **210**, 627–642.

667 37. **Rep M.** 2005. Small proteins of plant-pathogenic fungi secreted during host
668 colonization. *FEMS Microbiology Letters* **253**, 19–27.

669 38. **Robatzek S.** 2006a. Vesicle trafficking in plant immune responses. *Cell
670 Microbiology* **9**, 1–8.

671 39. **Robatzek S, Chinchilla D, Boller T.** 2006b. Ligand-induced endocytosis of the
672 pattern recognition receptor FLS2 in *Arabidopsis*. *Genes and Development* **20**,
673 537–542.

674 40. **Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A.** 2002.
675 Identification of an essential component of the elicitation active site of the EIX
676 protein elicitor. *Plant Journal* **32**, 1049–1055.

677 41. **Sevier CS, Kaiser CA.** 2002. Formation and transfer of disulphide bonds in
678 living cells. *Nature Reviews Molecular Cell Biology* **3**, 836–847.

679 42. **Shao D, Smith DL, Kabbage M, Roth MG.** 2021. Effectors of plant
680 necrotrophic fungi. *Frontiers in Plant Science* **12**, 687713.

681 43. **Shinya T, Nakagawa T, Kaku H, Shibuya N.** 2015. Chitin-mediated
682 plant–fungal interactions: catching, hiding and handshaking. *Current Opinion in
683 Plant Biology* **26**, 64–71.

684 44. **Stergiopoulos I, de Wit PJGM.** 2009. Fungal effector proteins. *Annual Review
685 of Phytopathology* **47**, 233–263.

686 45. **Thomma BP, Nürnberger T, Joosten MH.** 2011. Of PAMPs and effectors: the
687 blurred PTI-ETI dichotomy. *Plant Cell* **23**, 4–15.

688 46. **van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL.** 2007. Structure
689 and function of resistance proteins in solanaceous plants. *Annual Review of
690 Phytopathology* **45**, 43–72.

691 47. **Veloso J, van Kan JAL.** 2018. Many shades of grey in *Botrytis*-host plant

692 interactions. *Trends in Plant Science* **23**, 613–622.

693 48. **Wang D, Chen J-Y, Song J, Li J-J, Klosterman SJ, Li R, Kong Z-Q, Subbarao KV, Dai X-F, Zhang D-D.** 2021b. Cytotoxic function of xylanase
694 VdXyn4 in the plant vascular wilt pathogen *Verticillium dahliae*. *Plant Physiology*
695 https://doi.org/10.1093/plphys/kiab274

696 49. **Wang Y, Xu Y, Sun Y, Wang H, Qi J, Wan B, Ye W, Lin Y, Shao Y, Dong S, Tyler BM, Wang Y.** 2018. Leucine-rich repeat receptor-like gene screen reveals
697 that *Nicotiana* RXEG1 regulates glycoside hydrolase 12 MAMP detection. *Nature Communications* **9**, e594.

700 50. **Wang S, Xing R, Wang Y, Shu H, Fu S, Huang J, Paulus JK, Schuster M, Saunders DGO, Win J, Vleeshouwers V, Wang Y, Zheng X, van der Hoorn RAL, Dong S.** 2021a. Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. *New Phytologist* **229**, 3424–3439.

701 51. **Yang B, Wang Y, Tian M, Dai K, Zheng W, Liu Z, Yang S, Liu X, Shi D, Zhang H, Wang Y, Ye W, Wang Y.** 2021. Fg12 ribonuclease secretion contributes to *Fusarium graminearum* virulence and induces plant cell death. *Journal of Integrative Plant Biology* **63**, 365–377.

702 52. **Yang G, Tang L, Gong Y, Xie J, Fu Y, Jiang D, Li G, Collinge DB, Chen W, Cheng J.** 2018. A cerato-platinin protein SsCP1 targets plant PR1 and contributes to virulence of *Sclerotinia sclerotiorum*. *New Phytologist* **217**, 739–755.

703 53. **Yin Z, Wang N, Pi L, Li L, Duan W, Wang X, Dou D.** 2021. *Nicotiana benthamiana* LRR-RLP NbEIX2 mediates the perception of an EIX-like protein from *Verticillium dahliae*. *Journal of Integrative Plant Biology* **63**, 949–960.

704 54. **Zhang H, Wu Q, Cao S, Zhao T, Chen L, Zhuang P, Zhou X, Gao Z.** 2014a. A novel protein elicitor (SsCut) from *Sclerotinia sclerotiorum* induces multiple defense responses in plants. *Plant Molecular Biology* **86**, 495–511.

705 55. **Zhang L, Kars I, Essenstam B, Liebrand TWH, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JAL.** 2014b. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the *Arabidopsis* receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. *Plant Physiology* **164**, 352–364.

706 56. **Zhang L, Ni H, Du X, Wang S, Ma XW, Nürnberg T, Guo HS, Hua C.** 2017. The *Verticillium*-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. *New Phytologist* **215**, 368–381.

707 57. **Zhu W, Ronen M, Gur Y, Minz-Dub A, Maserati G, Ben-Tal N, Sharon I, Savidor A, Eizner E, Valerius O, Braus G, Bowler K, Bar-Peled M, Sharon A.** 2017. BcXYG1, a secreted xyloglucanase from *Botrytis cinerea*, triggers both cell death and plant immune responses. *Plant Physiology* **175**, 438–456.

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

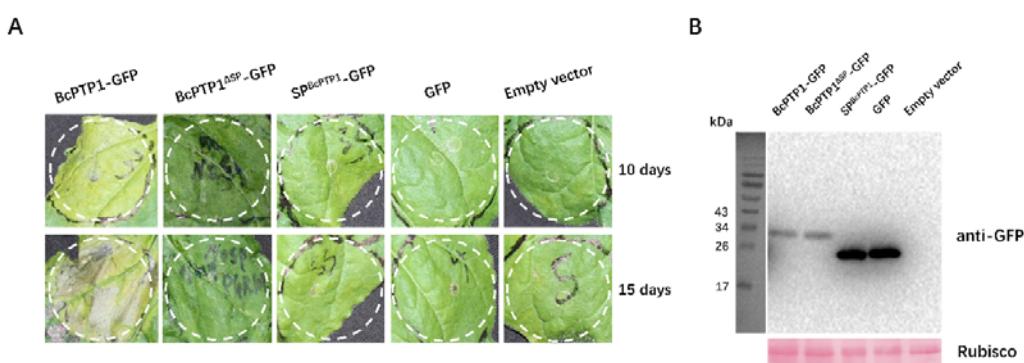
733

734

735

736

737


738

739

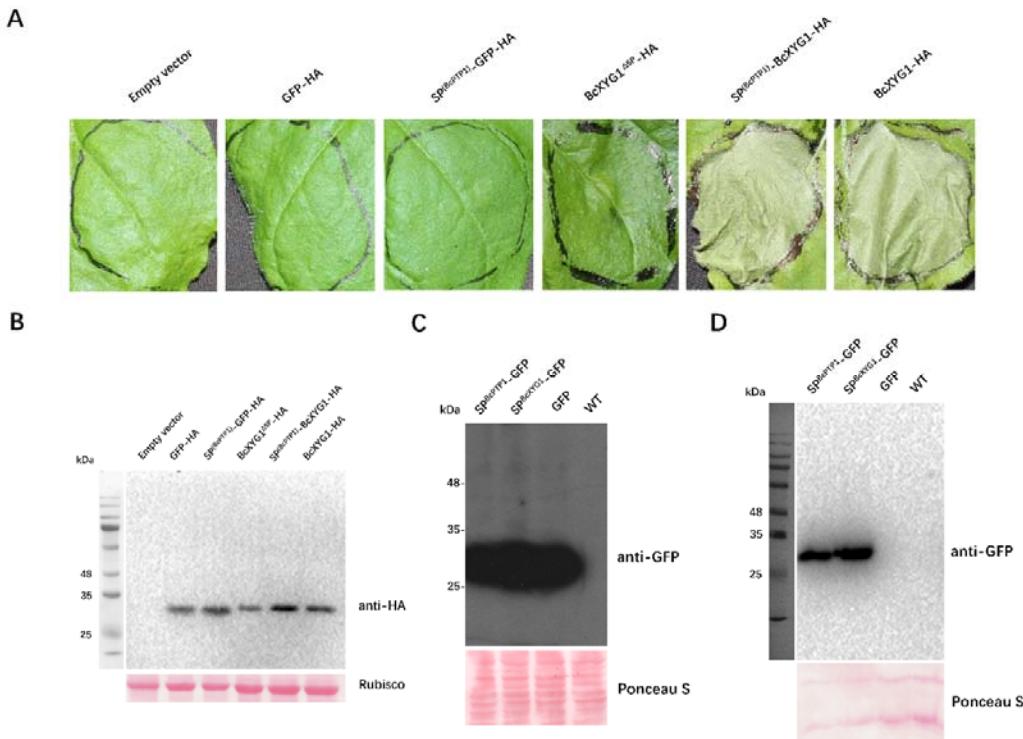
740

741

742 **Figure legends**

743

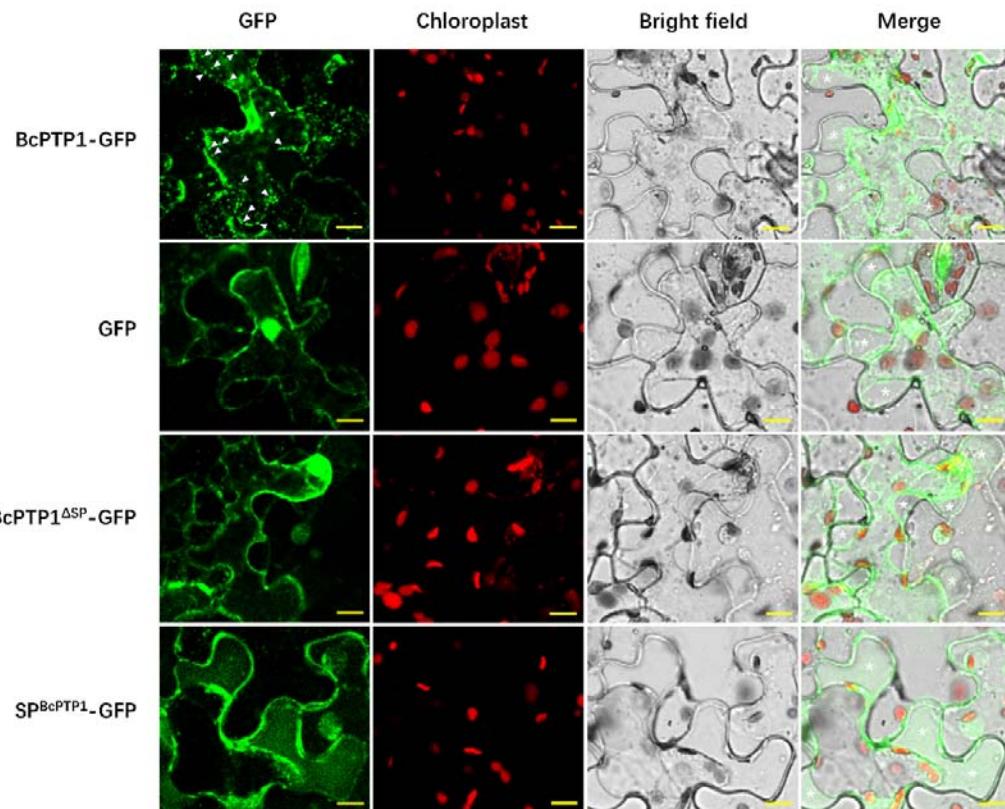
744 **Fig. 1. BcPTP1 is a phytotoxic secreted protein.** (A) Images of *N. benthamiana* 745 leaves 10 days and 15 days after agroinfiltration with *A. tumefaciens* strains carrying 746 the indicated constructs. The *A. tumefaciens* carrying the empty vector was used as 747 control. BcPTP1-GFP, BcPTP1 fused with GFP at the C-terminus; BcPTP1^{ΔSP}-GFP, 748 BcPTP1 without signal peptide fused with GFP at the C-terminus; SP^{BcPTP1}-GFP, GFP 749 fused with the signal peptide of BcPTP1. (B) Immunoblot analysis of proteins from *N.* 750 *benthamiana* leaves transiently expressing the indicated constructs. Top panel, 751 immunoblot using anti-GFP antibody; bottom panel, staining of the Rubisco large 752 subunit with Ponceau S.


753

754

755

756


757

758

759 **Fig. 2. BcPTP1 signal peptide possesses secretion function.** (A) Images of *N. benthamiana* leaves 5 days after agroinfiltration with *A. tumefaciens* strains carrying 760 the indicated constructs. The *A. tumefaciens* carrying the empty vector was used as 761 control. GFP-HA, HA-tagged GFP; SP^(BcPTP1)-GFP-HA, HA-tagged GFP with the 762 signal peptide of BcPTP1; BcXYG1^{ΔSP}-HA, HA-tagged BcXYG1 lacking the native 763 signal peptide; SP^(BcPTP1)-BcXYG1-HA, HA-tagged BcXYG1 with its native signal 764 peptide replaced with the BcPTP1 signal peptide; BcXYG1-HA, HA-tagged BcXYG1 765 with its native signal peptide. (B) Immunoblot analysis of proteins from *N. benthamiana* 766 leaves transiently expressing the indicated constructs. Top panel, 767 immunoblot using anti-HA antibody; bottom panel, staining of the Rubisco large 768 subunit with Ponceau S. (C-D) The indicated genes were expressed under the 769 regulation of *B. cinerea* histone H2B promoter (NCBI identifier CP009806.1) and the 770 endo-β-1,4-glucanase precursor terminator (NCBI identifier CP009807.1). The *B. 771 cinerea* strains were cultured in PDB medium for 72 h, then the culture filtrate was 772 collected and purified by filtration. (C) Immunoblot analysis of total mycelia proteins 773 from indicated *B. cinerea* strains. Top panel, immunoblot using anti-GFP antibody; 774 bottom panel, Ponceau S staining of the total mycelia proteins. (D) Immunoblot 775 analysis of culture filtrate proteins from indicated *B. cinerea* strains. Top panel, 776 immunoblot using anti-GFP antibody; bottom panel, Ponceau S staining of the 777 secretory proteins. SP^{BcPTP1}-GFP, GFP fused with the signal peptide of BcPTP1; 778 SP^{BcXYG1}-GFP, GFP fused with the signal peptide of BcXYG1; GFP, GFP 779

780 overexpression strain; WT, wild type strain.

781

782

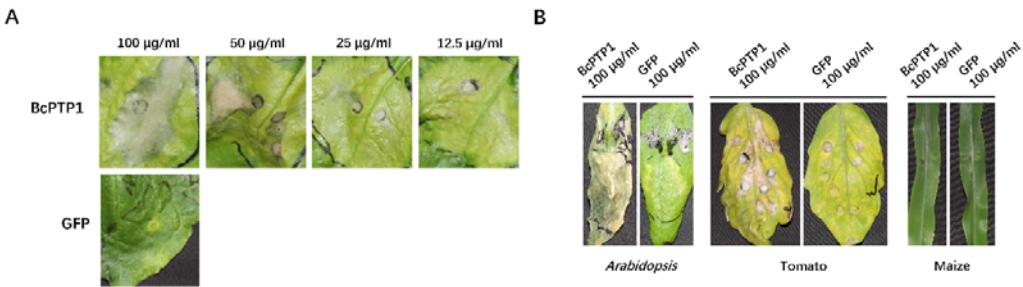
783 **Fig. 3. Subcellular localization of BcPTP1 in *N. benthamiana* epidermal cells.**

784 Leaves epidermal cells were harvested 3 days after agroinfiltration and plasmolyzed
785 in 0.75 M sucrose solution, then the samples were scanned by confocal laser scanning
786 microscope. BcPTP1-GFP, GFP fused to full length BcPTP1; BcPTP1^{ΔSP}-GFP, GFP
787 fused to BcPTP1 without signal peptide; SP^{BcPTP1}-GFP, GFP fused to the BcPTP1
788 signal peptide. The white arrows indicate the internalized cytoplasmic vesicle. White
789 asterisks mark apoplastic space of plant cells. Bars = 10 μ m.

790

791

792


793

794

795

796

797

798

799

800 **Fig. 4. The BcPTP1 protein is phytotoxic to dicot but not monocot plant species.**

801 Proteins were produced in *E. coli*, purified and suspended in phosphate-buffered
802 saline (PBS). (A) Response of *N. benthamiana* leaves infiltrated with different
803 concentrations of BcPTP1 at 15 days after treatment. (B) Response of *Arabidopsis*,
804 *tomato* and *maize* leaves infiltrated with 100 µg/ml protein solution.

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

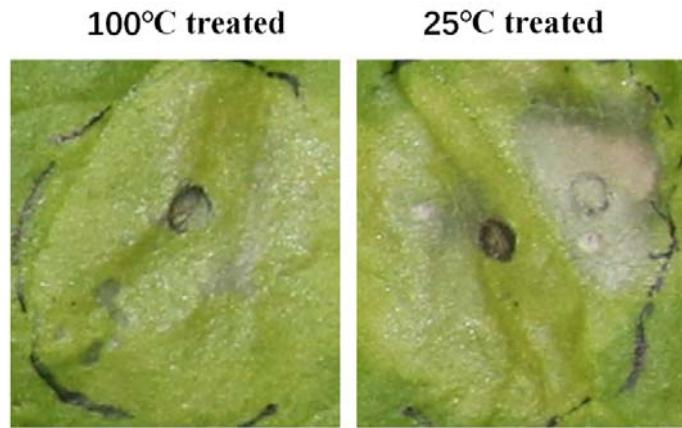
820

821

822

823

824


825

826
827

828 **Fig. 5. Specific cysteine residues necessary for BcPTP1 phytotoxicity.** (A) Images
829 of *N. benthamiana* leaves 10 days and 15 days after transient agroinfiltration. (B)
830 Immunoblot analysis of proteins from *N. benthamiana* leaves transiently expressing
831 the cysteine residue mutant constructs. Top panel, immunoblot using anti-GFP
832 antibody; Bottom panel, staining of the Rubisco large subunit with Ponceau S.

833
834
835
836
837
838
839
840
841
842

843

844 **Fig. 6. Phytotoxicity of BcPTP1 is partially heat-stable.** Images of *N. benthamiana*
845 leaves 15 days after infiltration with 50 μ g/ml of heat-treated (100°C treated for 30
846 min) and native (25°C treated for 30 min) BcPTP1 protein.

847

848

849

850

851

852

853

854

855

856

857

858

859

860

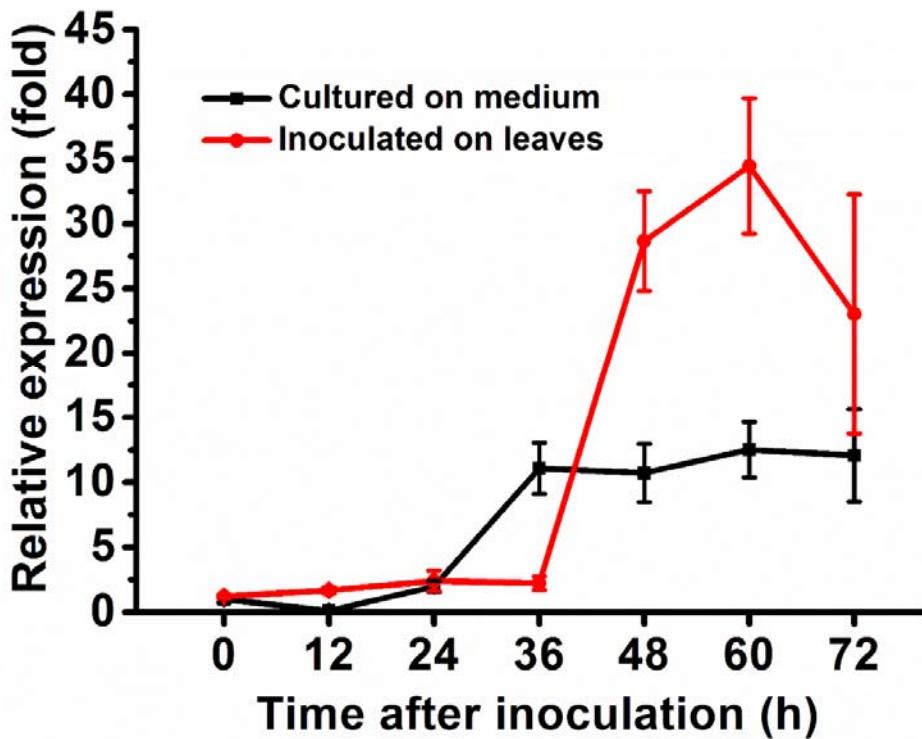
861

862

863

864

865


866

867

868

869

870

871

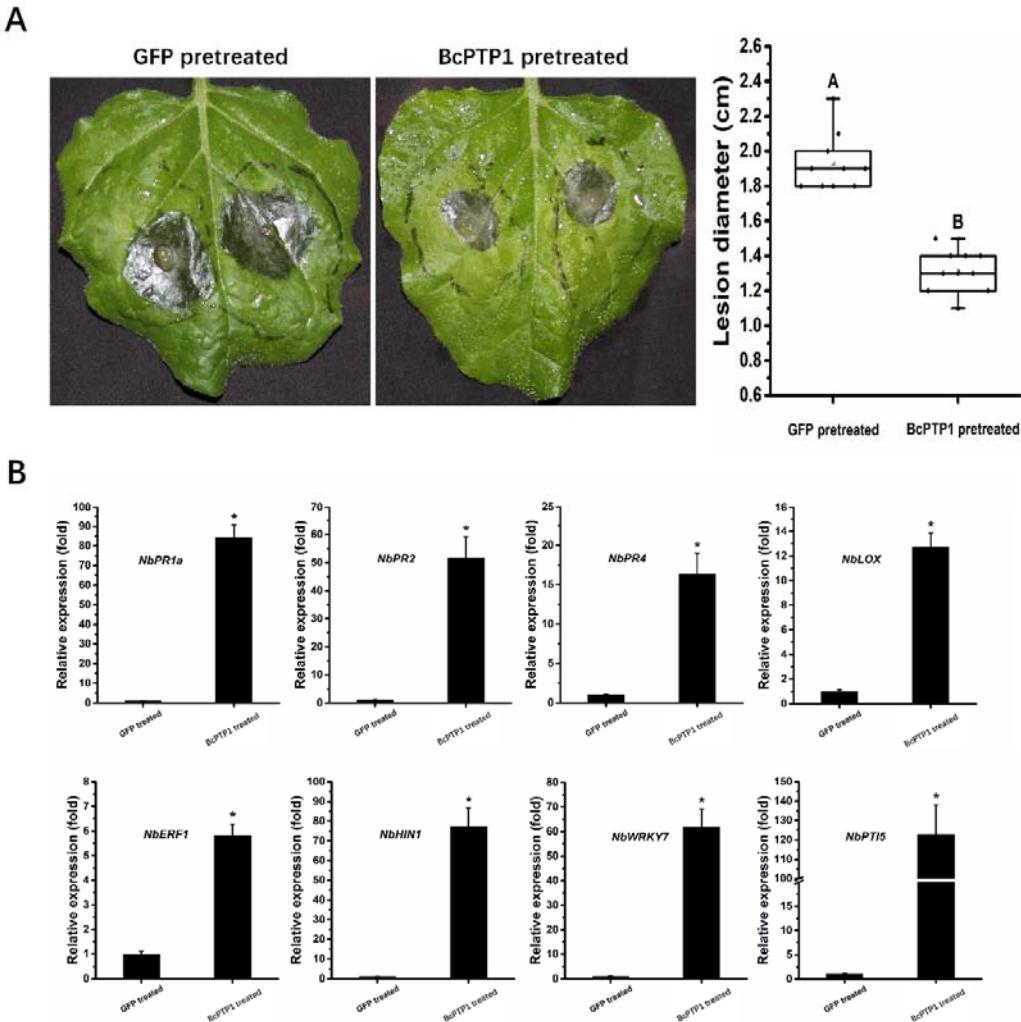
872 **Fig. 7. Expression of the *BcPTP1* gene is up-regulated at late infection stage.**

873 Bean leaves (red line) or Gamborg's B5 medium (black line) were inoculated with *B.*
874 *cinerea* conidia, and expression levels of the *BcPTP1* gene were evaluated by
875 RT-qPCR. The expression level of *BcPTP1* inoculated on plant or in Gamborg's B5
876 medium at 0 h was set as 1, and relative transcript levels were calculated using the
877 comparative Ct method. Transcript levels of the *B. cinerea* *Bcgpdh* gene were used to
878 normalize different samples. Data represent means and standard deviations of three
879 independent replications.

880

881

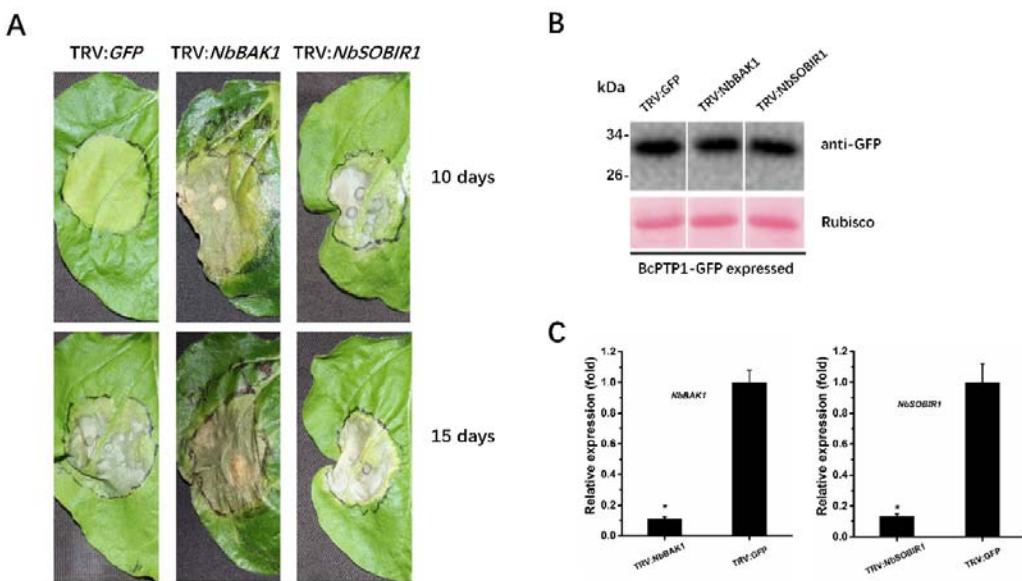
882


883

884

885

886


887

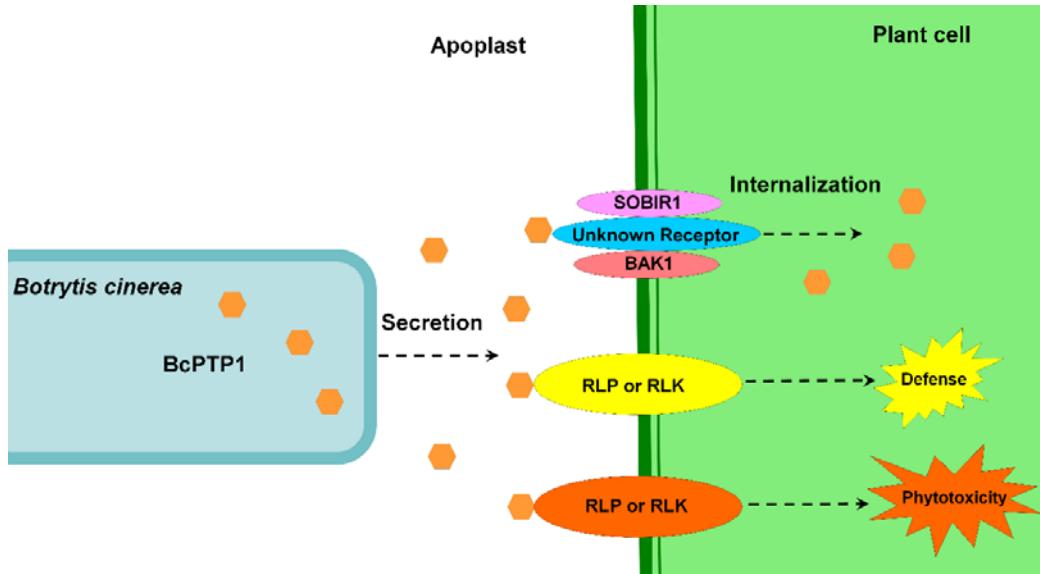
888

889 **Fig. 8. BcPTP1 induces resistance in tobacco.** (A) *N. benthamiana* leaves were
890 infiltrated with 10 μ g/ml purified BcPTP1 or GFP protein. After 2 days, the infiltrated
891 leaves were inoculated with *B. cinerea* in a humid chamber. The lesions were
892 photographed and measured at 48 hpi. Data were obtained from three independent
893 experiments with total 10 samples. In box plots, whiskers indicate the minimum and
894 maximum values, the line indicates the median, the box boundaries indicate the upper
895 (25th percentile) and lower (75th percentile) quartiles, all data are plotted as black
896 dots. Different letters in the graph indicate statistical differences at $P \leq 0.01$ using
897 ANOVA (one-way). (B) Relative expression levels of defense-related genes from
898 *tobacco* leaves that treated with BcPTP1 or GFP for 48 h were determined by
899 RT-qPCR analysis. The expression level of indicated genes in GFP-treated leaves
900 were set as 1. The expression level of the tobacco *NbEF1 α* gene was used to
901 normalize different samples. Data represent means and standard deviations of three
902 independent replicates. Asterisks in the graph indicate statistical differences at $P \leq$

903 0.01 using ANOVA (one-way).

905 **Fig. 9. BAK1 and SOBIR1 negatively regulate the death-inducing activity of**
906 **BAK1 and SOBIR1 in *N. benthamiana*.** TRV-based VIGS vectors were used to initiate silencing
907 of *NbBAK1* (TRV : *NbBAK1*) and *NbSOBIR1* (TRV : *NbSOBIR1*). TRV : *GFP* was
908 used as a control virus treatment in these experiments. (A) Three weeks after initiation
909 of VIGS, *BcPTP1-GFP* was transiently expressed in the gene-silenced leaves using
910 agroinfiltration. Leaves were photographed 10 and 15 days after treatment. (B) Immunoblot analysis of proteins from indicated *N. benthamiana* leaves transiently
911 expressing *BcPTP1-GFP*. Top panel: *BcPTP1-GFP* was detected using anti-GFP
912 antibody; bottom panel, staining of the Rubisco large subunit with Ponceau S. (C)
913 *NbBAK1* and *NbSOBIR1* expression levels in gene-silenced tobacco leaves were
914 determined by RT-qPCR analysis. Expression level in control plants (TRV : *GFP*) was
915 set as 1. *NbEF1 α* was used as an endogenous control. Data represent means and
916 standard deviations from three biological replicates. Asterisks indicate significant
917 differences ($P \leq 0.01$).

919


920

921

922

923

924

925

926

927 **Fig. 10. The model illustrating the internalization of BcPTP1 mediated by BAK1**
928 **and SOBIR1, and the defense and phytotoxicity induced by BcPTP1 through**
929 **RLPs or PLKs in plant cell.** BcPTP1 is secreted from *B. cinerea* hyphae into
930 apoplastic space to interact with plants RLKs and/or RLPs and transmit the
931 phytotoxicity and defense signals. BcPTP1 can also be recognized by other unknown
932 receptor that cooperate with BAK1 and SOBIR1 complex to mediate the
933 internalization.

934

935

936

937

938

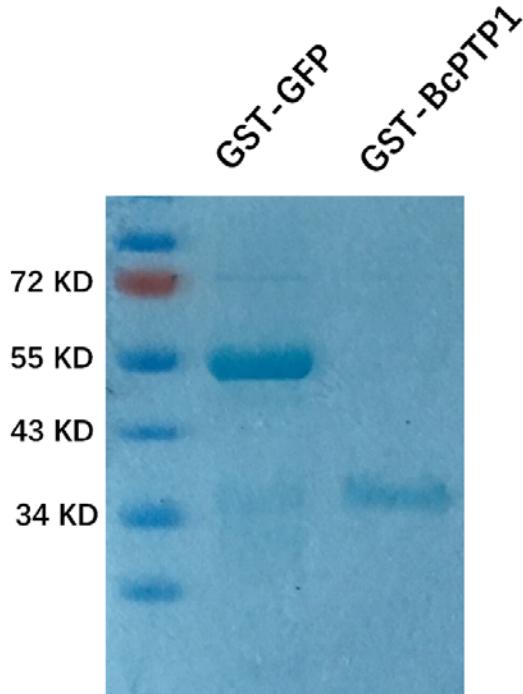
939

940

941

942

943


944

945

946

947

948 **Supplemental data**

949

950 **Fig. S1. Expression of recombinant proteins.** SDS-PAGE analysis of purified GST-
951 BcPTP1 and GST-GFP proteins from *E. coli* stained with Coomassie Blue.

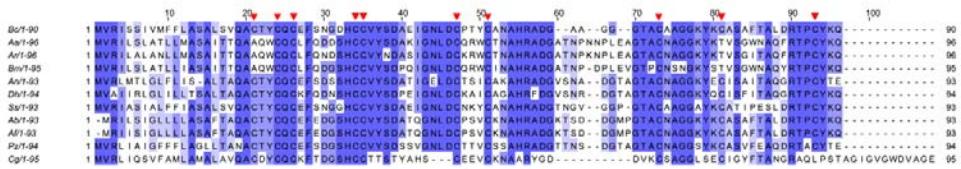
952

953

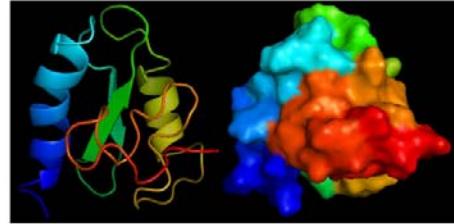
954

955

956


957

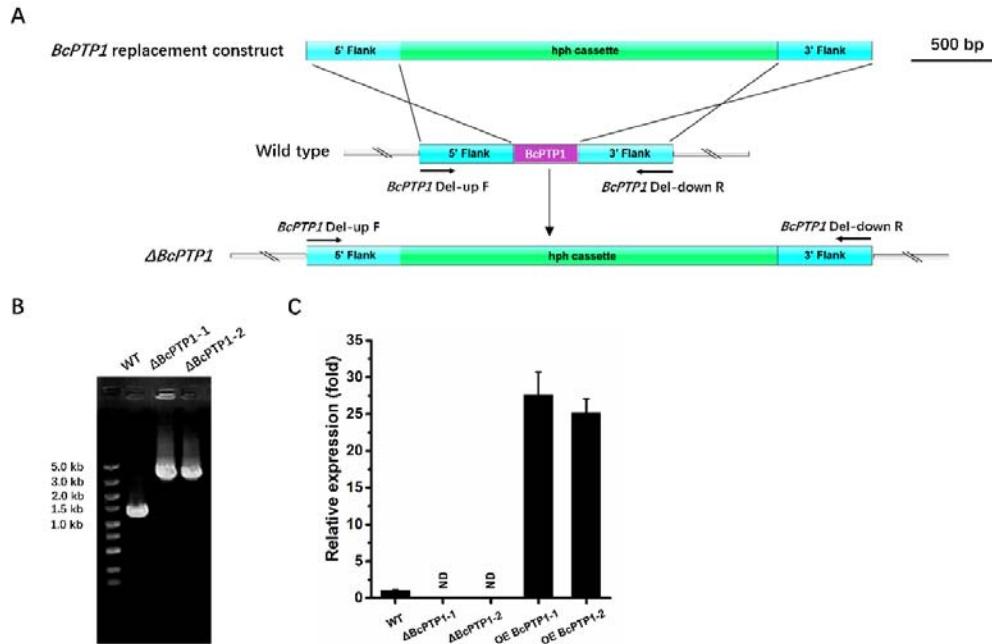
958


959

960

A

C



961

962 **Fig. S2. Sequence similarities between BcPTP1 and its homologs.** (A) Multiple
963 sequence alignment of BcPTP1 and its homologs. Full-length protein sequences were
964 aligned using *Clustal W* and the alignment was edited using *Jalview*. The red triangles
965 show the cysteine residues. Intensity of blue shading reflects the level of amino acid
966 identity at each position. Bc: *B. cinerea* BcPTP1 (BCIN_05g03680); Ss: *S.
967 sclerotiorum* (XP_001593146.1, E-value: 8e-45, 80% identity); Ab: *Aspergillus
968 bombycis* (XP_022393145.1, E-value: 2e-39, 72% identity); Af: *A. flavus*
969 (XP_002382650.1, E-value: 2e-39, 72% identity); Aa: *A. alternata* (XP_018388941.1,
970 E-value: 1e-31, 58% identity); An: *A. niger* (GAQ43359.1, E-value: 2e-31, 61%
971 identity); Cg: *C. gloeosporioides* (ELA33475.1, E-value: 4e-09, 44% identity); Pz:
972 *Penicilliopsis zonata* (XP_022579693.1, E-value: 5e-34, 63% identity); Ar: *Ascochyta
973 rabiei* (KZM20535.1, E-value: 2e-31, 58% identity); Dh: *Diaporthe helianthi*
974 (POS68622.1, E-value: 4e-31, 61% identity); Bm: *Bipolaris maydis* (XP_014074148.1,
975 E-value: 2e-29, 55% identity). (B) Phylogenetic analysis of
976 BcPTP1 and its homologs from other fungi. The full-length protein sequences were
977 analyzed using *MEGA X* with Unrooted neighbor-joining bootstrap (1,000 replicates).
978 The black triangle mark location of BcPTP1. A scale bar at the lower left corresponds
979 to a genetic distance of 0.1. (C) 3D structural models of BcPTP1, predicted using
980 *I-TASSER* and further analyzed by *PyMOL* software. Left: cartoon models; right:
981 surface models.

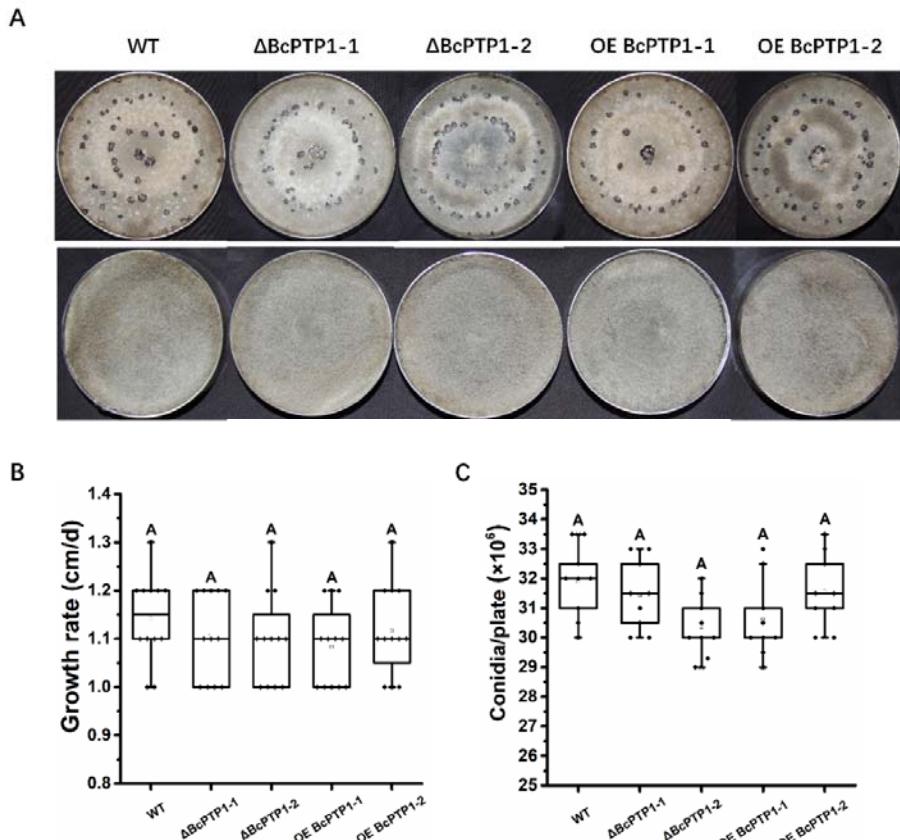
982

983

984

985 **Fig. S3. The *bcptp1* gene deletion strategy and confirmation in *B. cinerea*.** (A) 986 Strategy used to generate the *bcptp1* gene deletion mutants. The deletion construct 987 used to transform the wild type strain contained the hygromycin resistance (*hph*) 988 cassette flanked by upstream and downstream sequence of the *bcptp1* gene. The 989 positions of the PCR primers used to verify the deletion transformants are indicated 990 (*BcPTP1* Del-up F and *BcPTP1* Del-down R). The scale bar indicates 500 bp. (B) 991 PCR amplifications carried out to verify the *bcptp1* deletion mutants using the 5' 992 flank For and 3' flank Rev primers. As templates, genomic DNA from either the wild 993 type strain or the *bcptp1* deletion mutants Δ *BcPTP1*-1 and Δ *BcPTP1*-2, was used as 994 indicated. (C) RT-qPCR carried out to analyze the expression levels of the *bcptp1* 995 gene in the wild type strain, the *bcptp1* deletion mutants Δ *BcPTP1*-1 and Δ *BcPTP1*-2, 996 the *bcptp1* overexpression strains OE *BcPTP1*-1 and OE *BcPTP1*-2. The strains 997 cultured on PDA at 22°C for 72 h were used for RT-qPCR analysis. The relative levels 998 of transcript were calculated using the comparative Ct method. The *bcptp1* gene 999 expression level in wild type strain was set as level 1. The transcript level of the *B.* 1000 *cinerea* *bcgpdh* gene was used to normalize different samples. Data represent means 1001 and standard deviations of three independent replicates. ND=not detected.

1002


1003

1004

1005

1006

1007

1008
1009 **Fig. S4. Phenotypes of *B. cinerea* wild type, and the *bcptp1* deletion and**

1010 **overexpression strains.** (A) Colony morphology, sporulation and sclerotia formation.

1011 Top: colonies on PDA at 22°C for 15 days in complete darkness. Bottom: *B. cinerea*

1012 strains on PDA plates at 22°C for 7 days with continuous fluorescent light. (B)

1013 Hyphal growth rate. *B. cinerea* strains were grown on PDA plates at 22°C with

1014 continuous fluorescent light. Radial growth was measured every day for 5 days and

1015 growth rate was calculated. Data were obtained from three independent experiments,

1016 with four replicates in each experiment. In box plots, whiskers indicate the minimum

1017 and maximum values, the line indicates the median, the box boundaries indicate the

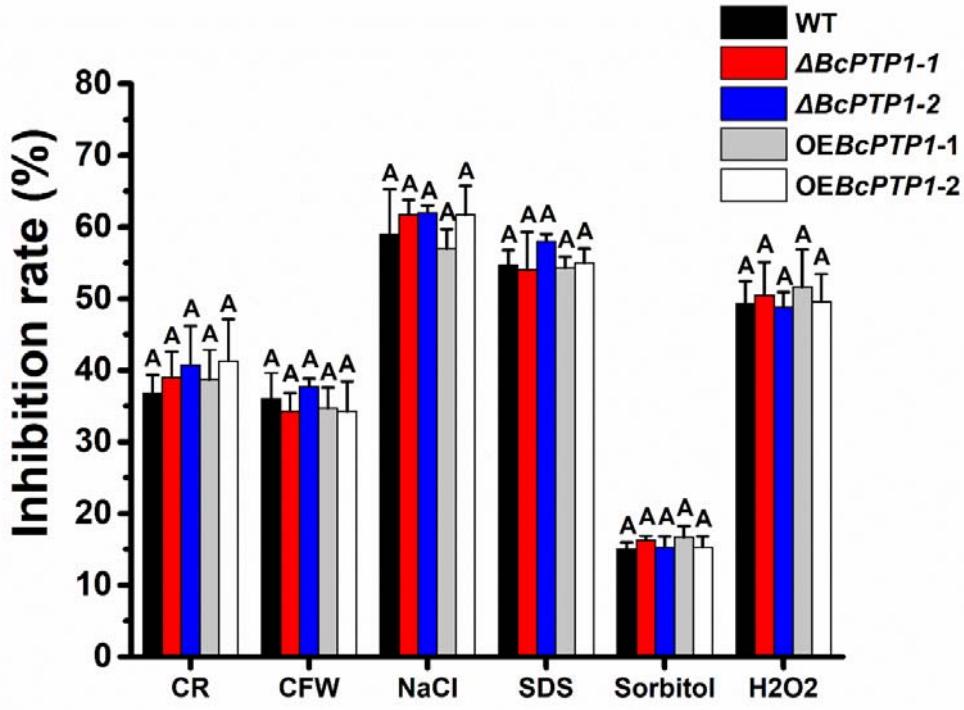
1018 upper (25th percentile) and lower (75th percentile) quartiles, all data are plotted as

1019 black dots. Same letters in the graph indicate no statistical differences at $P \leq 0.01$

1020 using one-way ANOVA one-way. (C) Conidial production of indicated strains cultured

1021 on PDA plates at 22 °C for 7 days. Conidiation of each strain was determined by

1022 collecting and counting conidia with a hematocytometer. Data were obtained from


1023 three independent experiments, with three replicates in each experiment. In box plots,

1024 whiskers indicate the minimum and maximum values, the line indicates the median,

1025 the box boundaries indicate the upper (25th percentile) and lower (75th percentile)

1026 quartiles, all data are plotted as black dots. Same letters in the graph indicate no

1027 statistical differences at $P \leq 0.01$ using one-way ANOVA.

1028

1029 **Fig. S5. *bcptp1* deletion does not affect stress tolerance of *B. cinerea*.** Inhibition
1030 rate of the radial growth of wild type strain, *bcptp1* deletion mutants and *bcptp1*
1031 overexpression strains were analyzed on PDA plates supplemented with 0.5 mg/ml
1032 Congo Red, 0.3 mg/ml Calcofluor White, 1 M sorbitol, 1 M NaCl, 20 mM H₂O₂ and
1033 0.02% SDS at 22°C, respectively. Data represent means and standard deviations from
1034 three independent experiments, each with three replications. Same letters in the graph
1035 indicate no statistical differences at P ≤ 0.01 using ANOVA (one-way).

1036

1037

1038

1039

1040

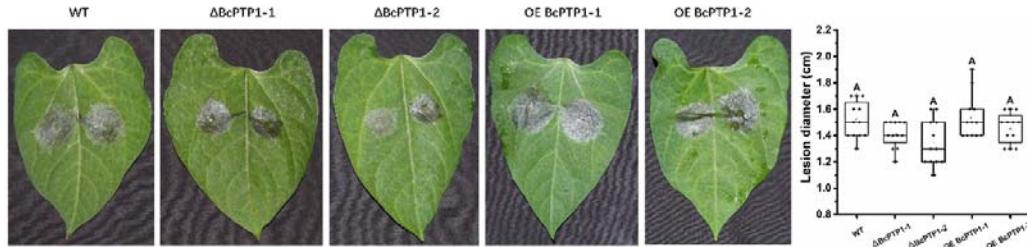
1041

1042

1043

1044

1045


1046

1047

1048

1049

1050

1051

1052 **Fig. S6. Pathogenicity analysis of *B. cinerea* strains.** Beans leaves were inoculated
1053 with 7.5 μ l of conidia suspension (2×10^5 conidia/ml). The plants were incubated in a
1054 humid chamber at 22°C for 72 h, photographed and lesion size was determined. Data
1055 were obtained from three independent experiments, with four replicates in each
1056 experiment. In box plots, whiskers indicate the minimum and maximum values, the
1057 line indicates the median, the box boundaries indicate the upper (25th percentile) and
1058 lower (75th percentile) quartiles, all data are plotted as black dots. Same letters in the
1059 graph indicate no statistical differences at $P \leq 0.01$ using ANOVA (one-way).

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

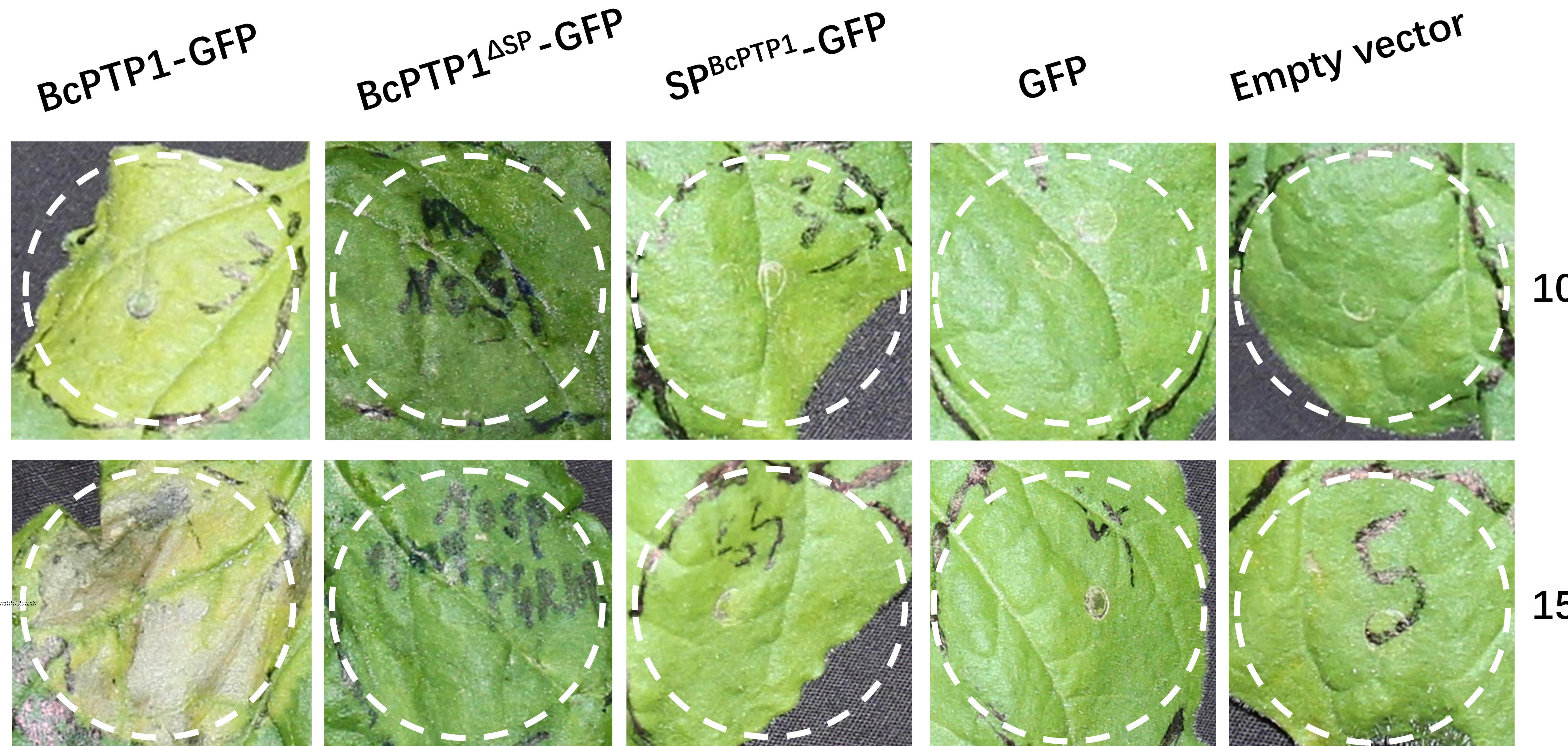
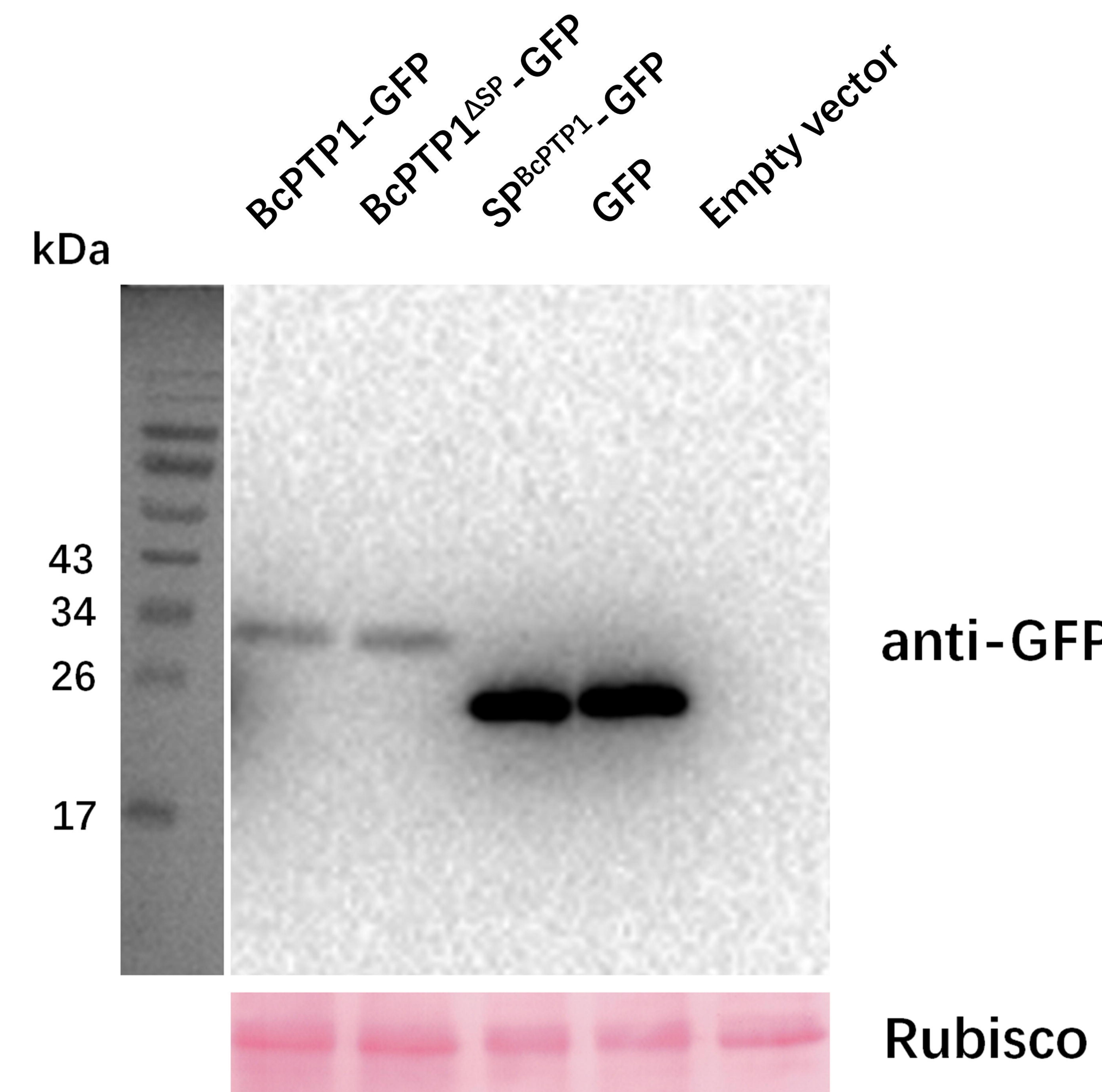
1084

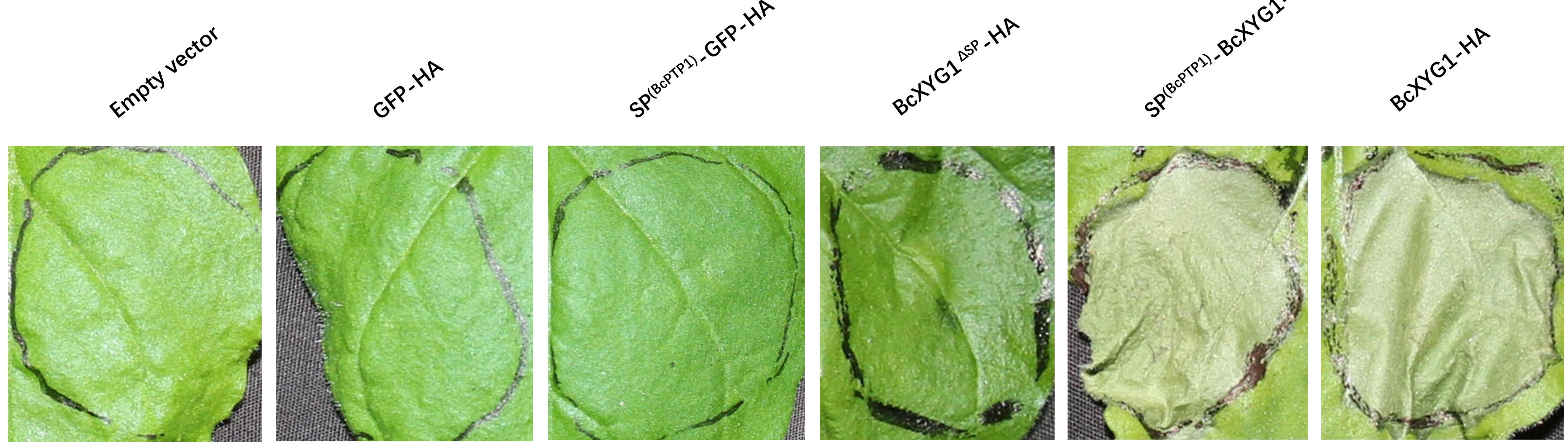
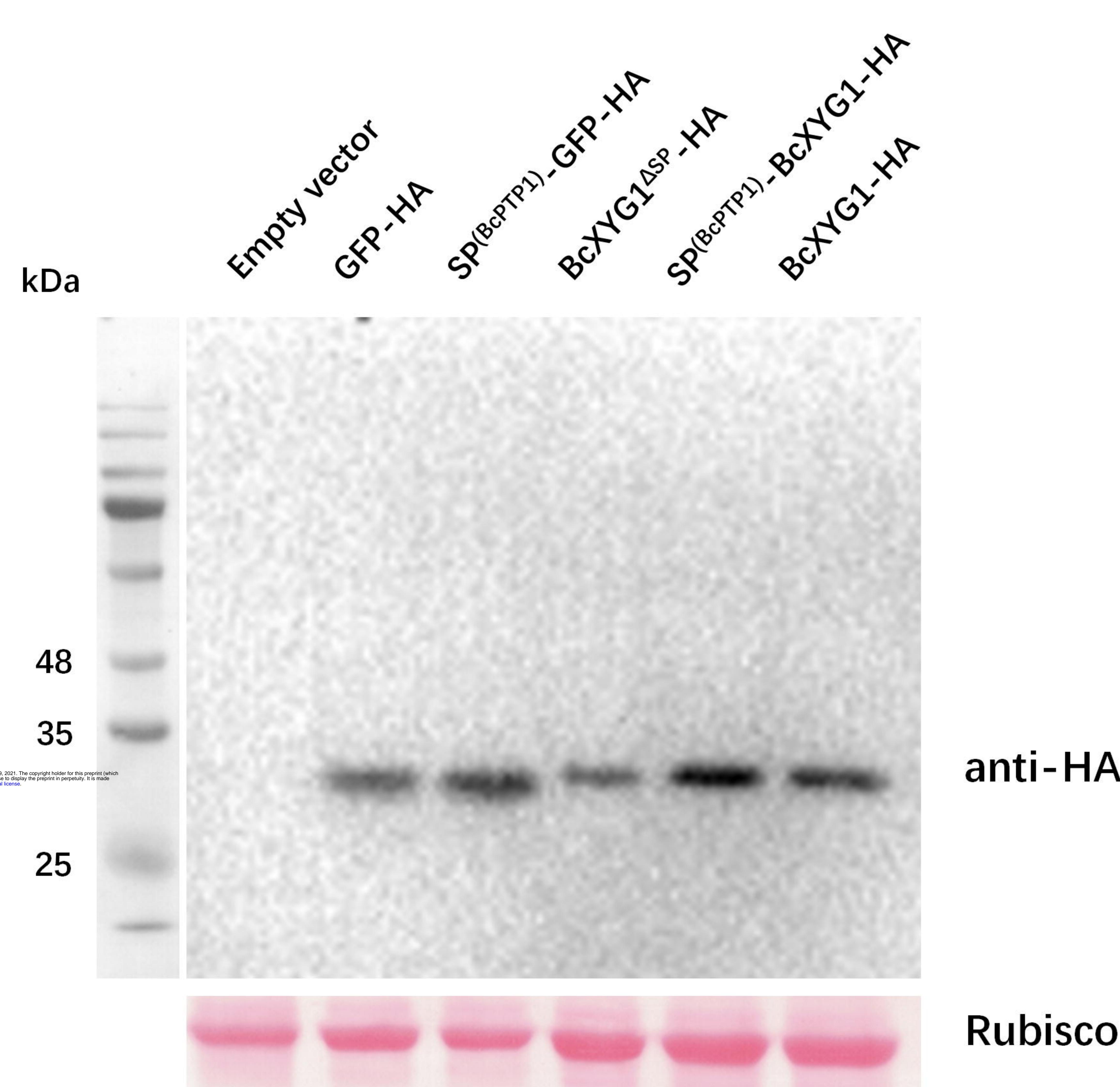
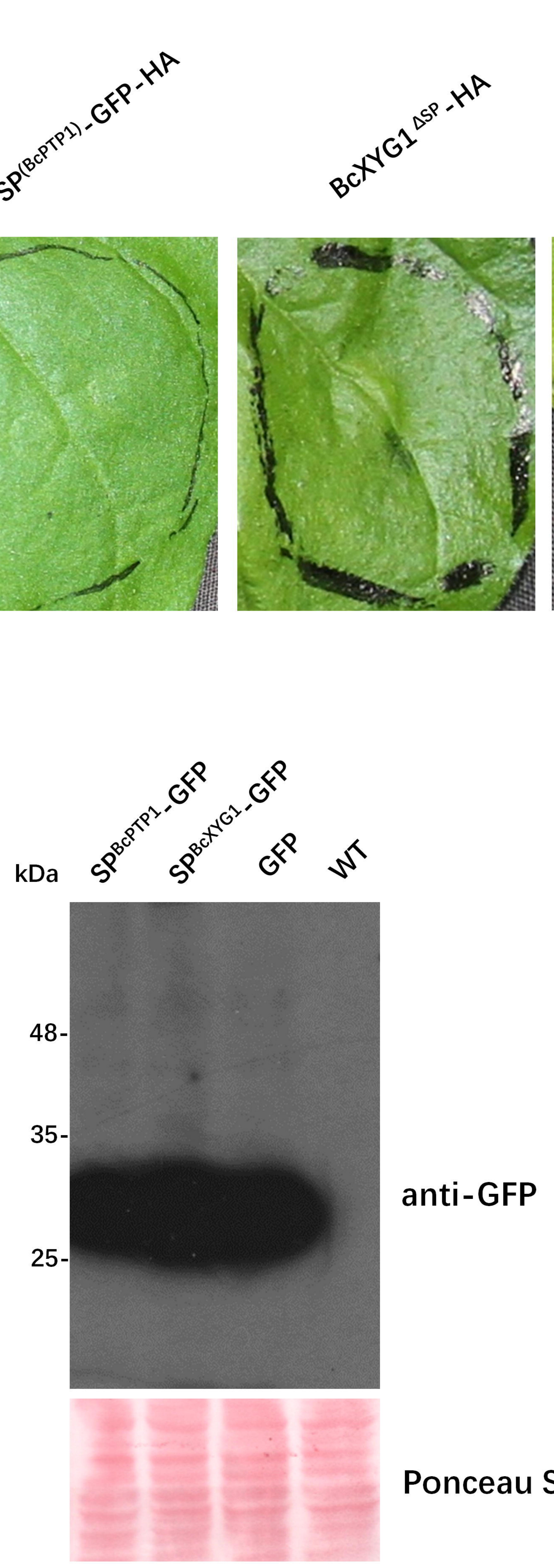
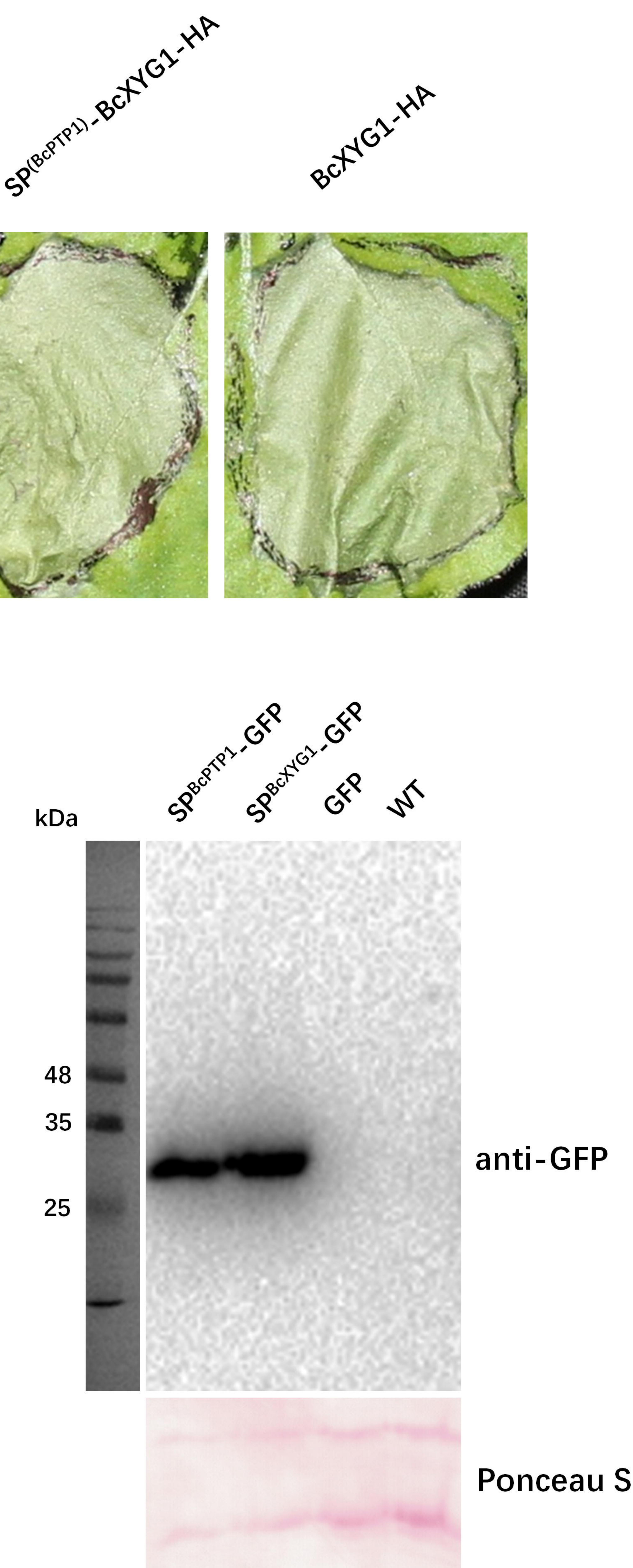
1085

1086

1087

1088

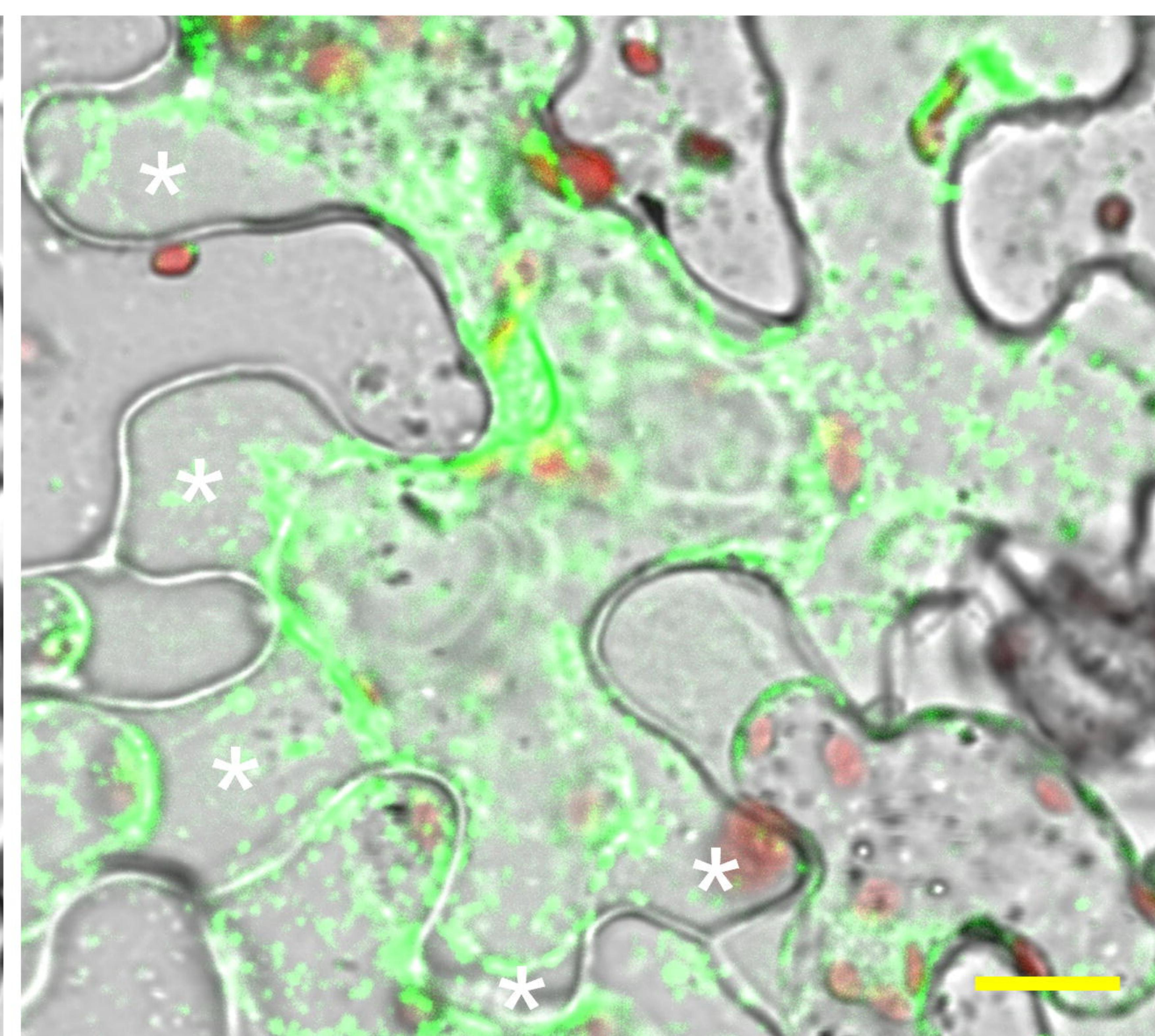
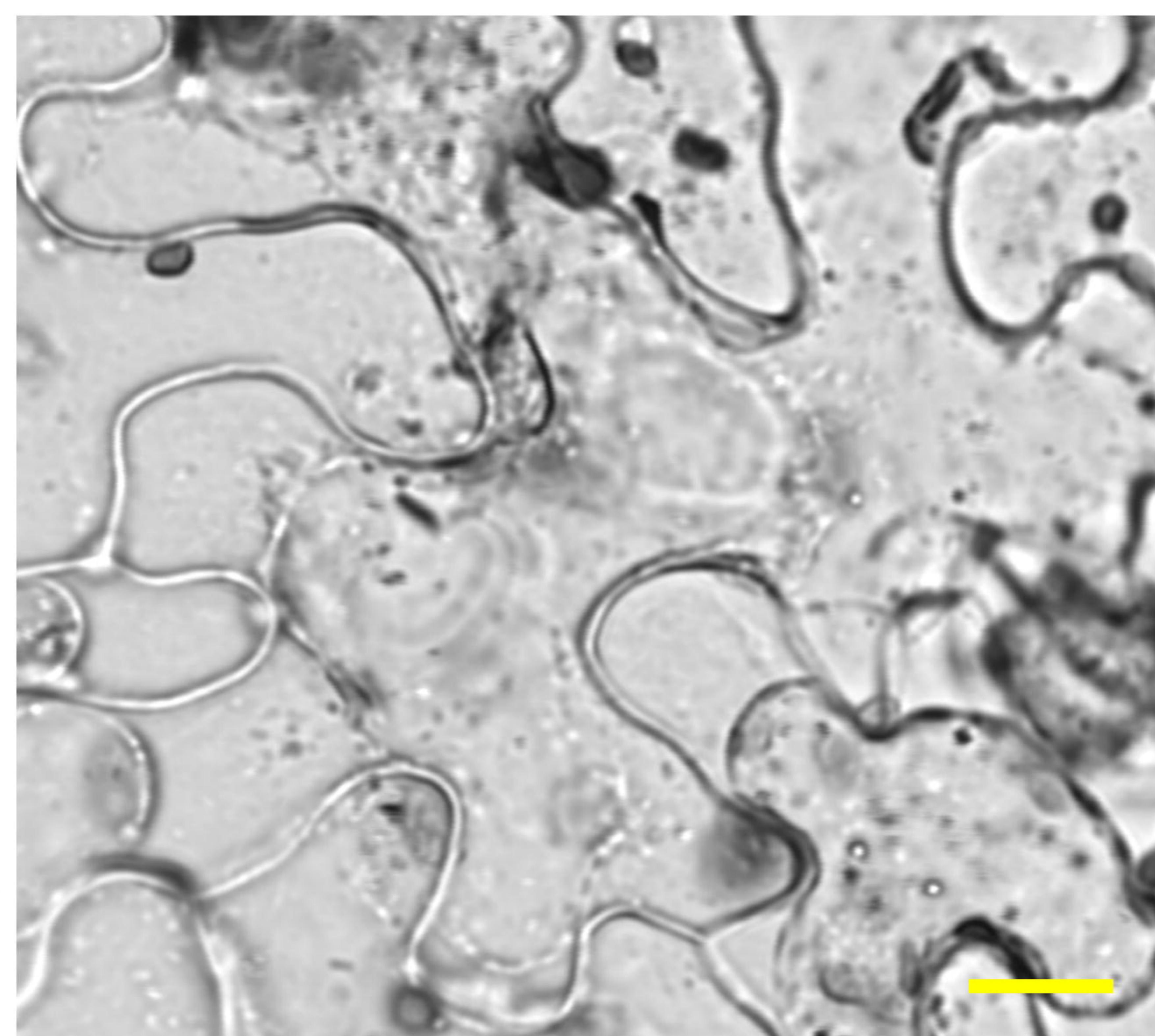
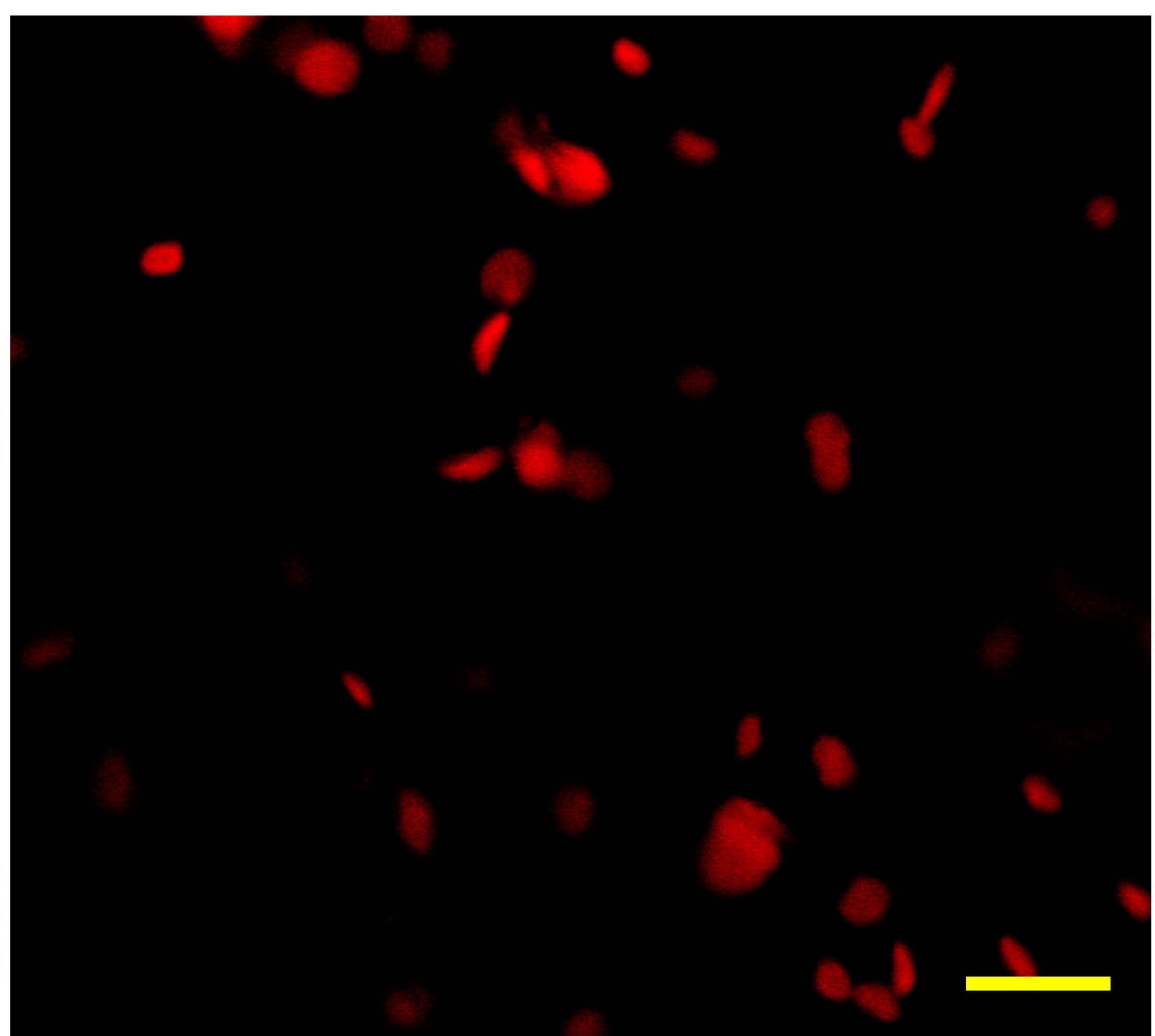
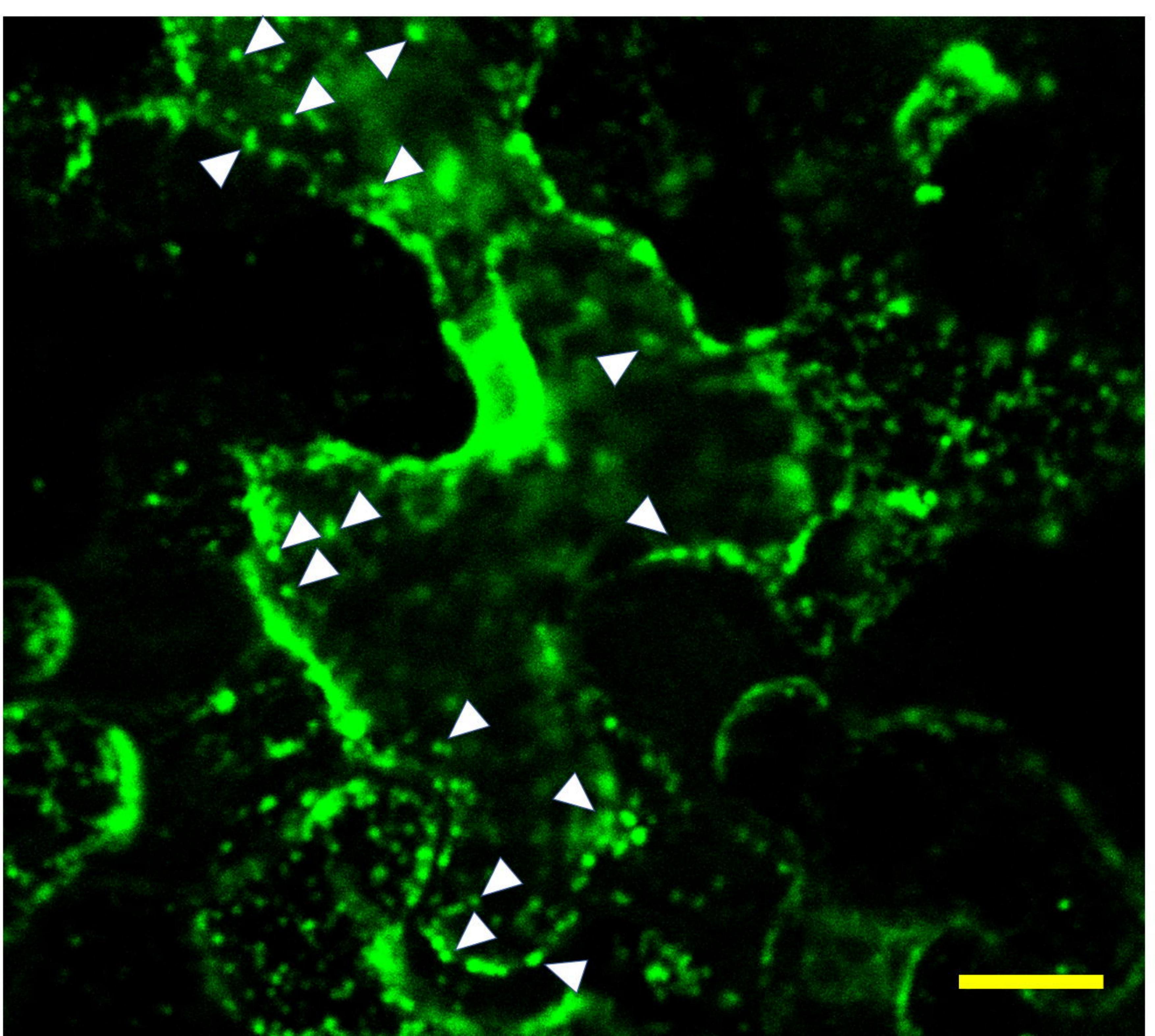


Table S1. Primers used for vector construction and PCR.





Primer purpose	Primer name and sequence		
<i>bcptp1</i> deletion for upstream	<i>BcPTP1</i> Del-up F: 5' TGTTGGGTCTTATGCGGAAAGAGAC 3'		
	<i>BcPTP1</i>	Del-up	R:
	5'CCTTTTTTTTCAGGAATTATTCTCACAGTTGACGGTAGTGAAAAGG		
	ACTTG 3'		
<i>bcptp1</i> deletion for downstream	<i>BcPTP1</i>	Del-down	F:
	5'GATCTAGATGCATTCGCGAGGTACCGAGCTGAATCTCGATGGATGG		
	AGAGTTCT 3'		
	<i>BcPTP1</i> Del-down R: 5' ATCGATGGCTTGTGTTCATCTTC 3'		
<i>bcptp1</i> over expression	<i>BcPTP1</i> -OE F: 5' GGCGCGCCATGGTCCGCATCTCCTCCAT 3'		
	<i>BcPTP1</i> -OE R: 5' GCGGCCGCTTACTGCTTGTAAACATGGGGTACGATC 3'		
<i>bcptp1</i> transient expression	<i>BcPTP1</i> -TE R: 5' TCTAGAATGGTCCGCATCTCCTCCAT 3'		
	<i>BcPTP1</i> -TE R: 5' CCCGGGCTGCTTGTAAACATGGGGTACGATC 3'		
<i>bcptp1</i> ^{ΔSP} transient expression	<i>BcPTP1</i> ^{ΔSP} -TE R: 5' TCTAGAATGTGCACCTATTGCCAGTGCG 3'		
	<i>BcPTP1</i> ^{ΔSP} -TE R: 5' CCCGGGCTGCTTGTAAACATGGGGTACGATC 3'		
<i>GFP</i> transient expression	<i>GFP</i> -TE F: 5' TCTAGAATGGTGAGCAAGGGCGAGGAG 3'		
	<i>GFP</i> -TE R: 5' GAGCTCTTACTTGTACAGCTCGTCCATGCCG 3'		
<i>hph</i> cassette	<i>hph</i> cassette F: 5' AGCTCGGTACCTCGCGAATGCATCTAGATC 3'		
	<i>hph</i> cassette R: 5' ACTGTGAGAATAATTCTGAAAAAAAAGG 3'		
<i>bcptp1</i> for RT-qPCR	<i>BcPTP1</i> -q F: 5' TCACTGCTGTCTATTGGATG 3'		
	<i>BcPTP1</i> -q R: 5' CGCACTTGTATTCCCTCCAGC 3'		
<i>bcgpdh</i> for RT-qPCR	<i>Bcgpdh</i> -q F: 5' CGAAGAATAGCACAAACAGCTGGAC 3'		
	<i>Bcgpdh</i> -q R: 5' CGTCACCTTATGCTTCTGCTCC 3'		
<i>GFP</i> expression in <i>E. coli</i>	<i>GFP</i> GST F: 5' CATATGGTGAGCAAGGGCGAGGAG 3'		
	<i>GFP</i> GST R: 5' CTCGAGTTACTTGTACAGCTCGTCCATGCCG 3'		

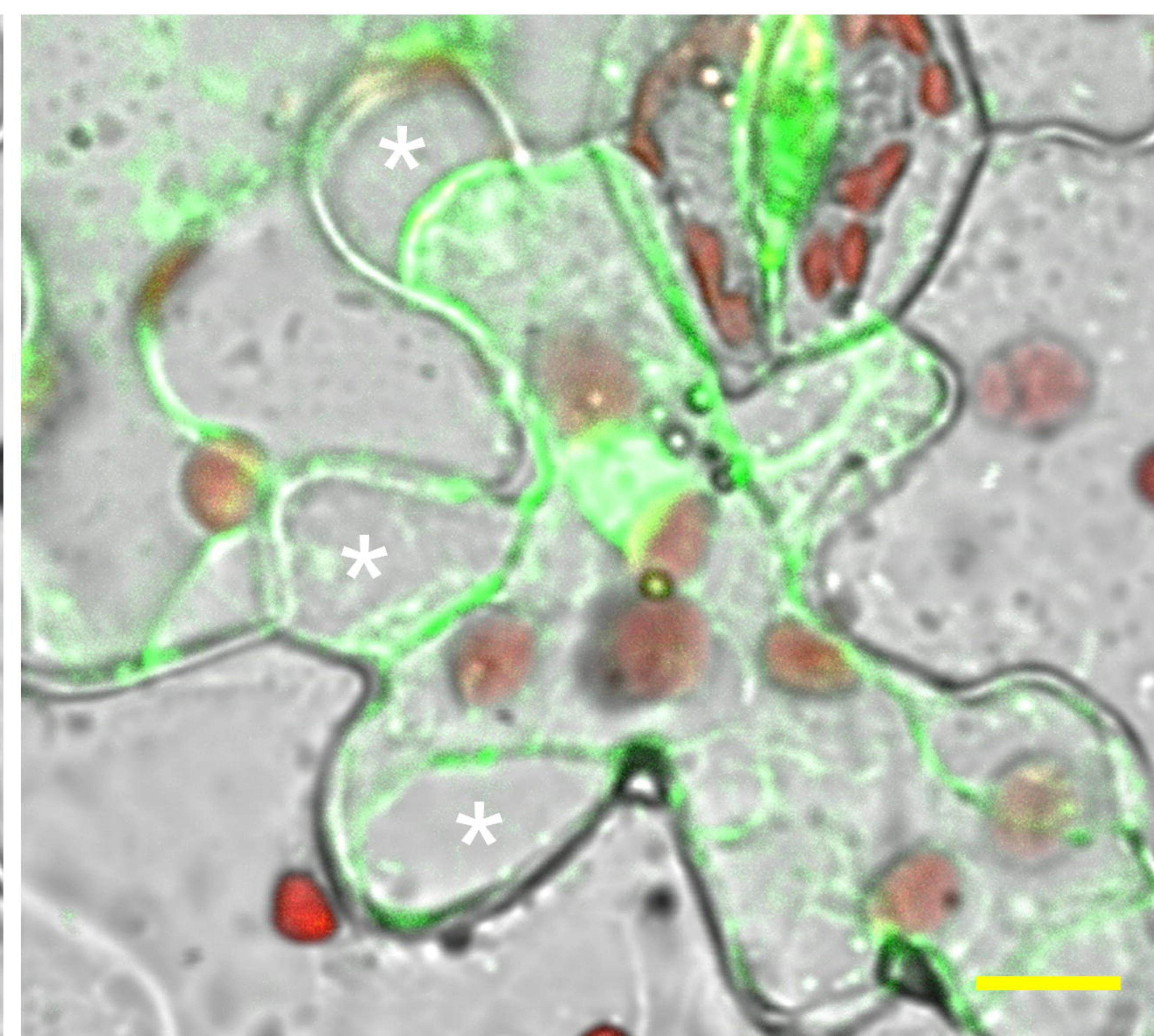
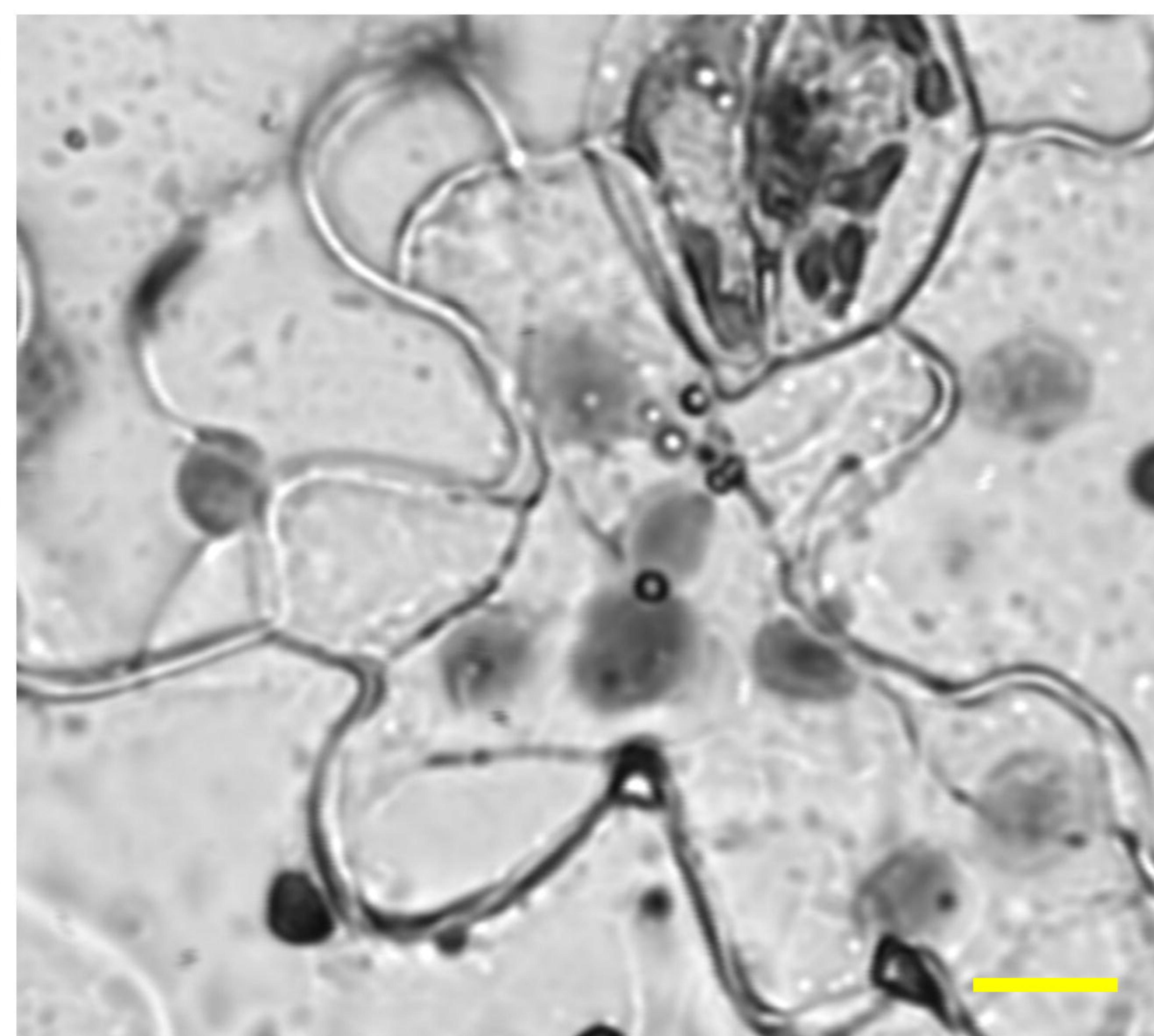
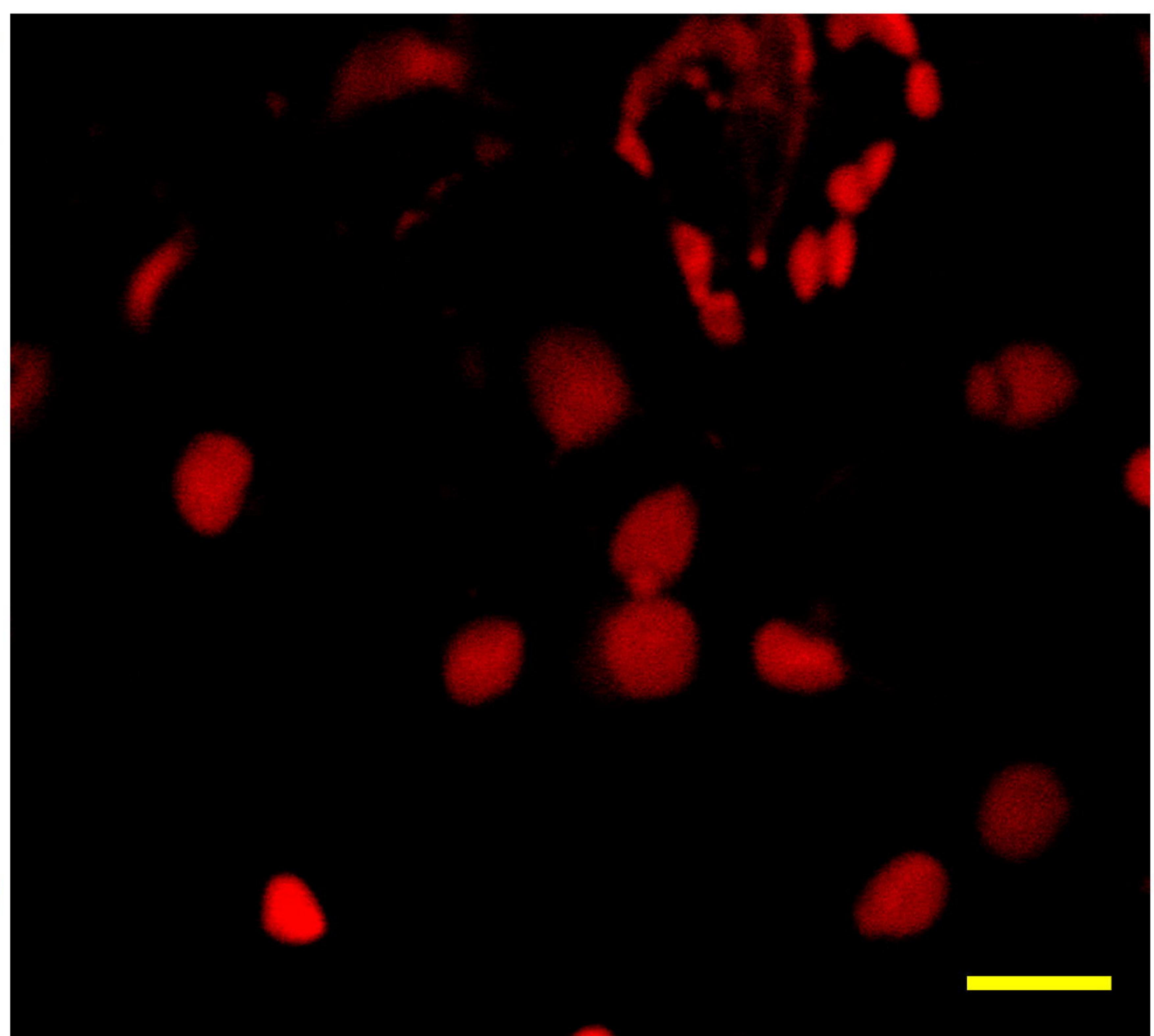
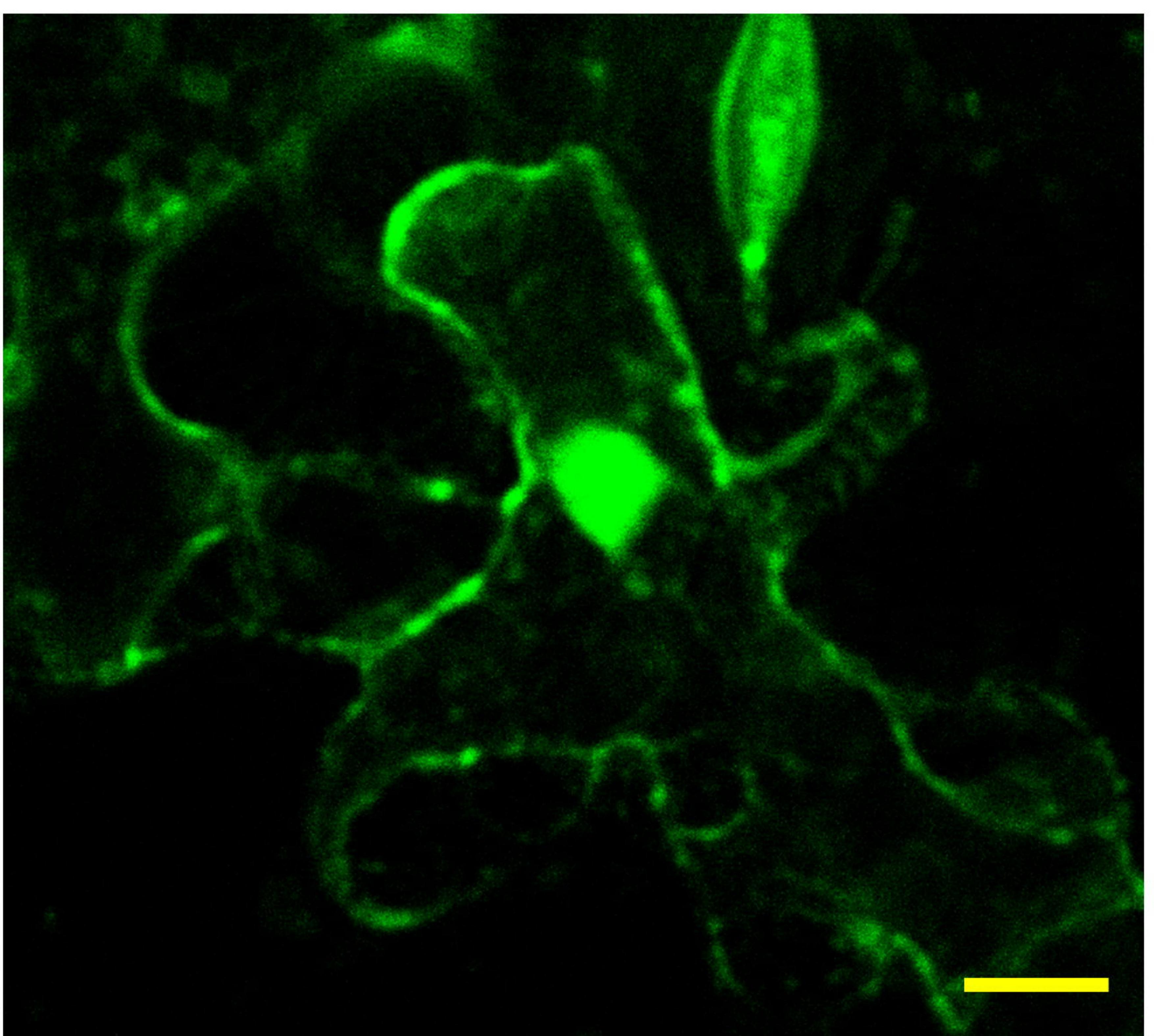
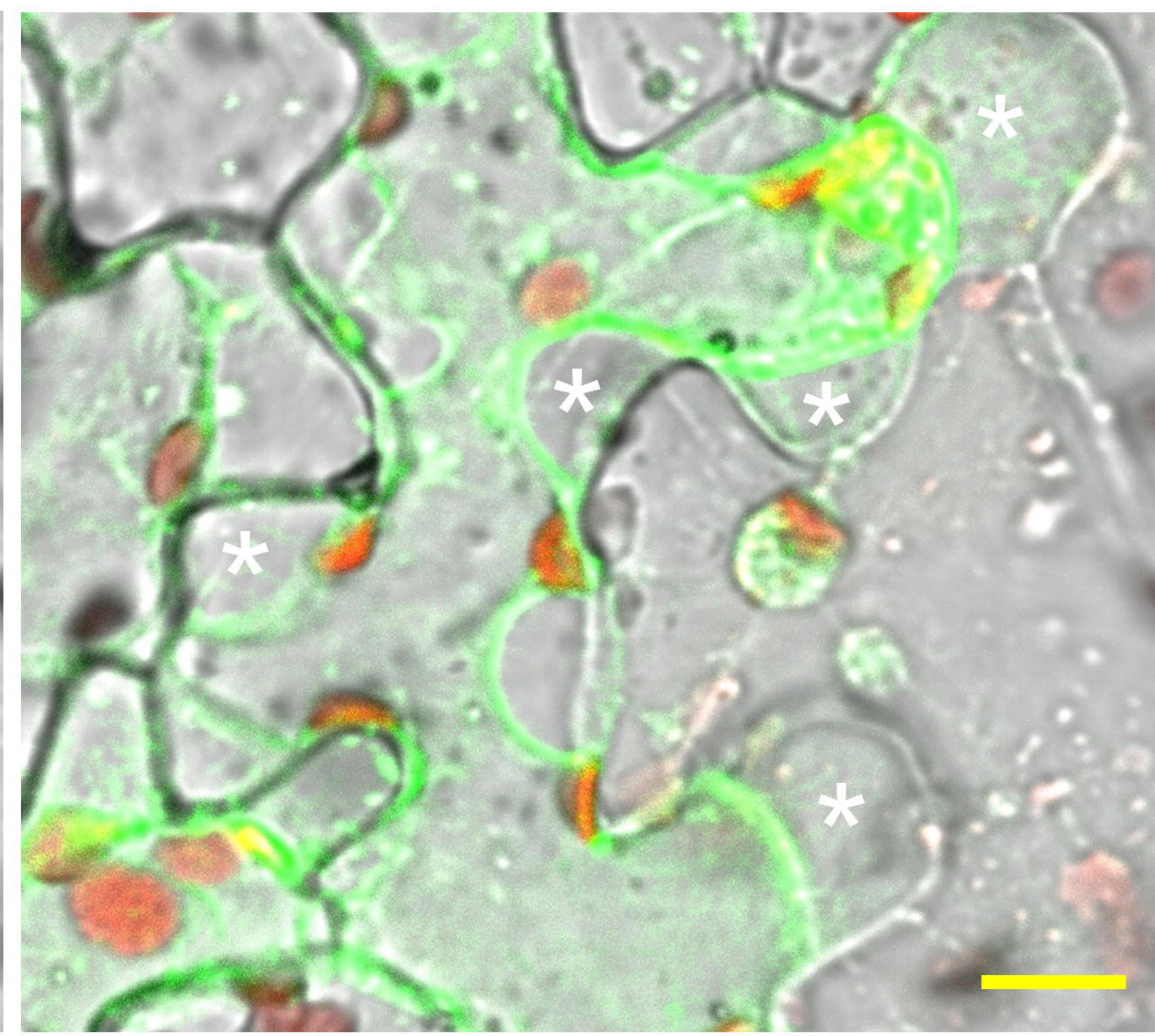
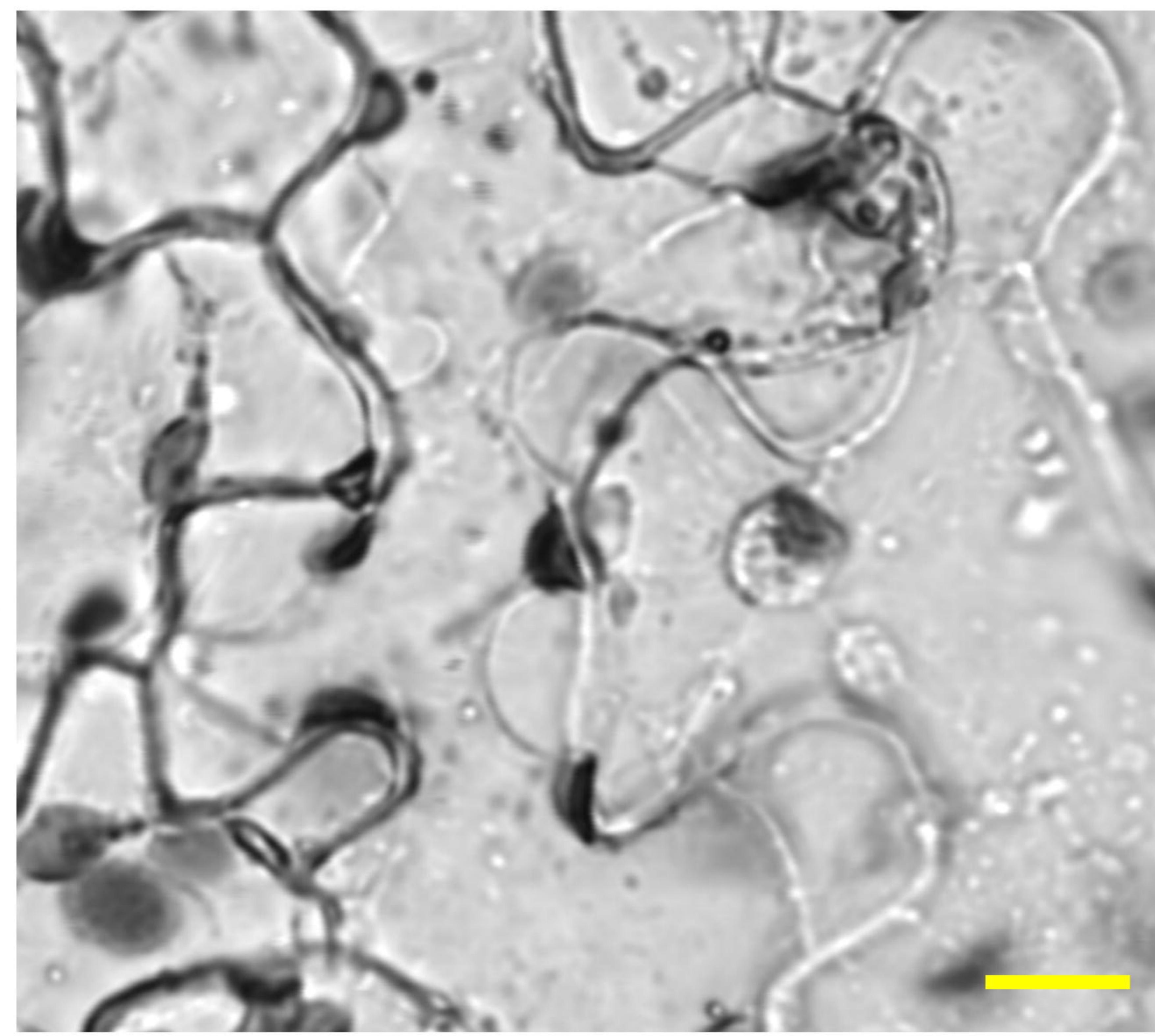
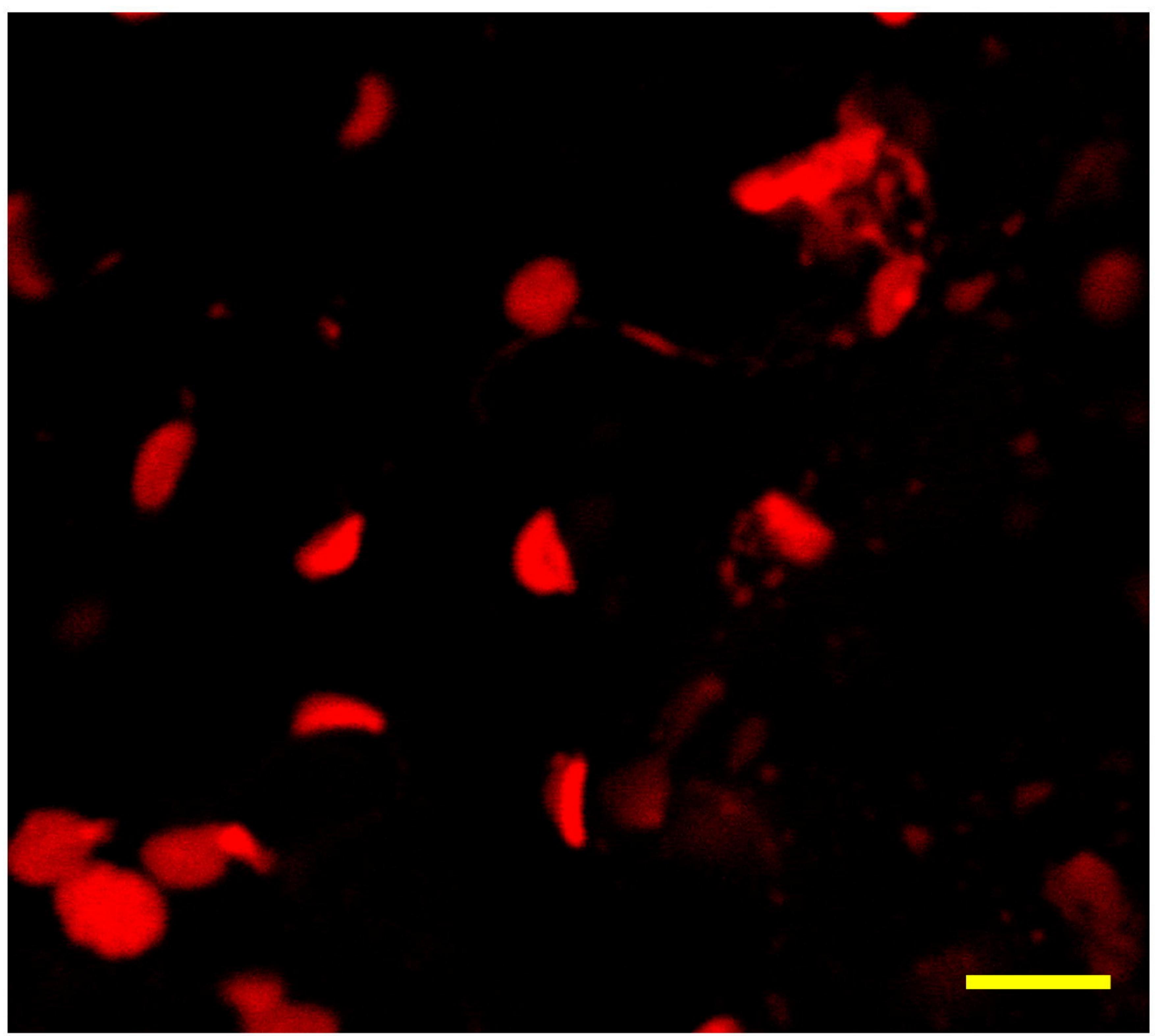
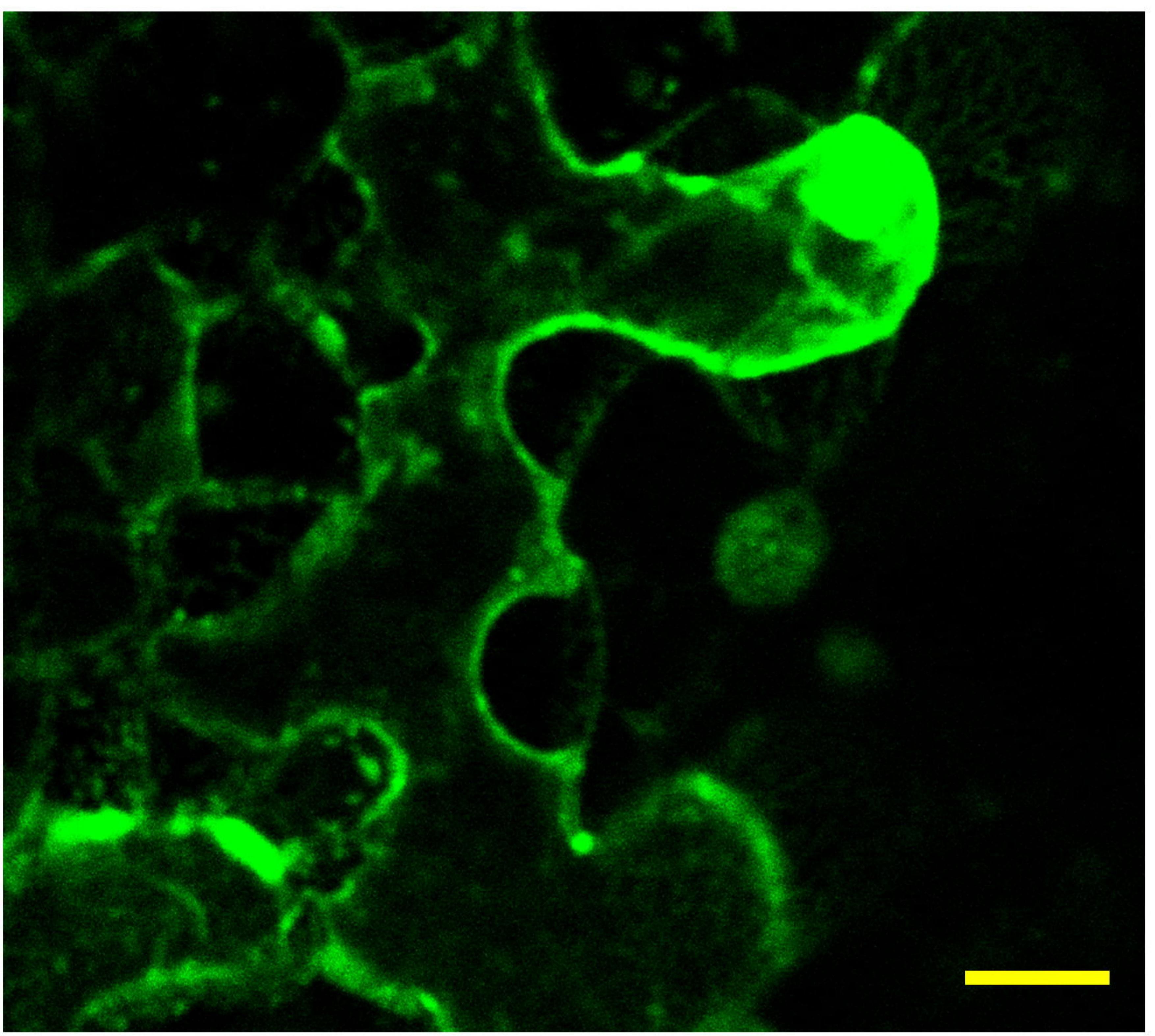
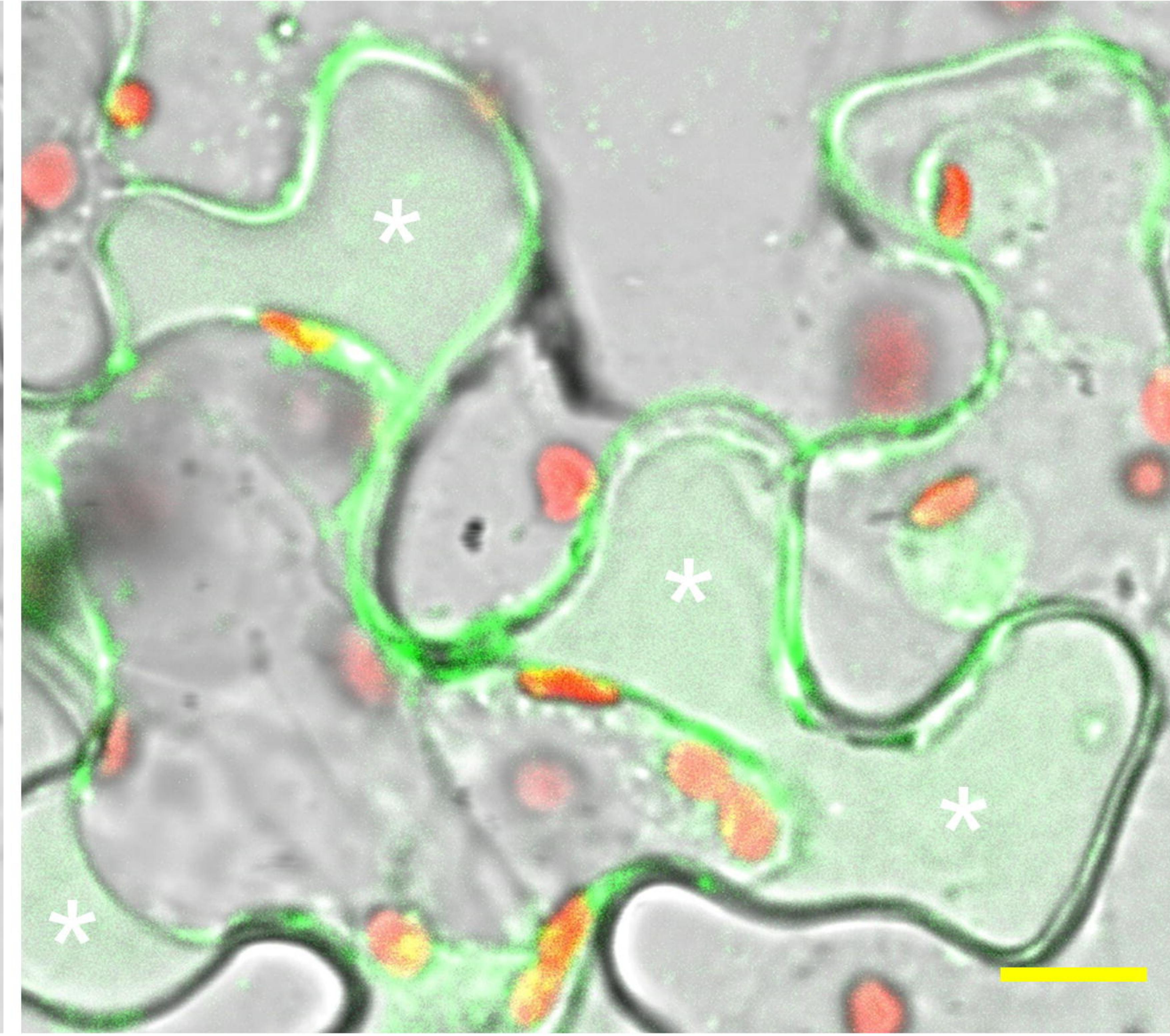
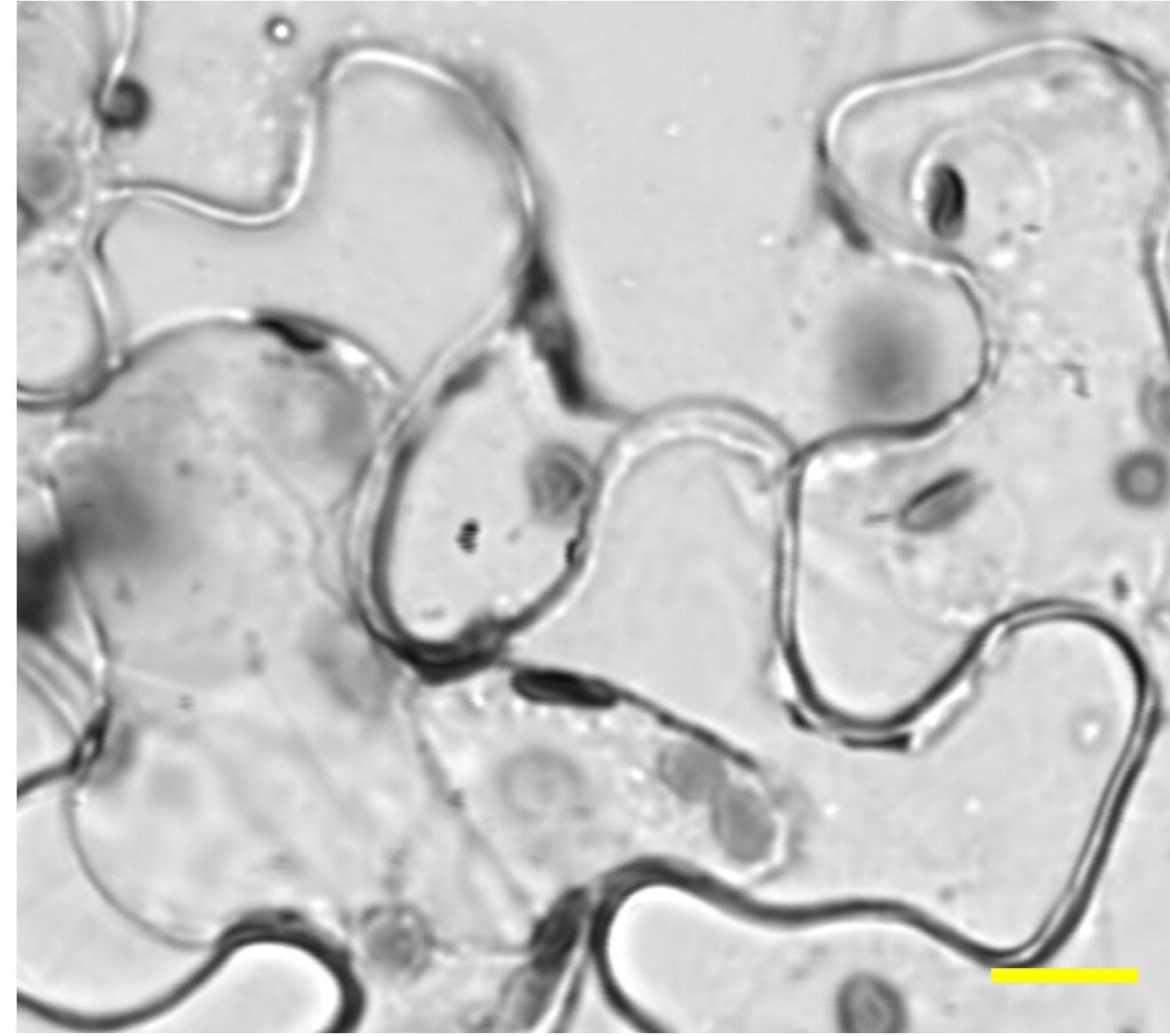
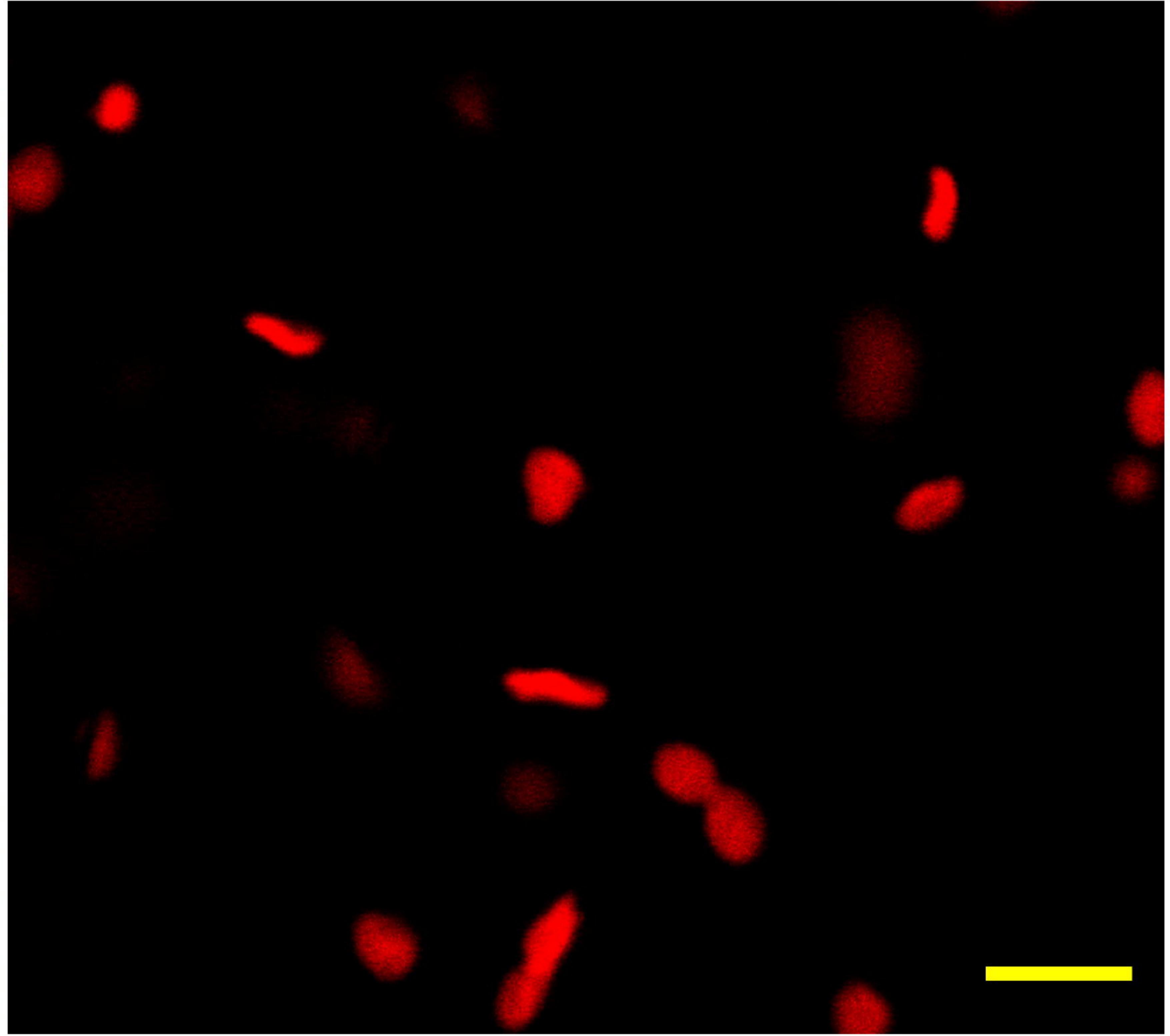
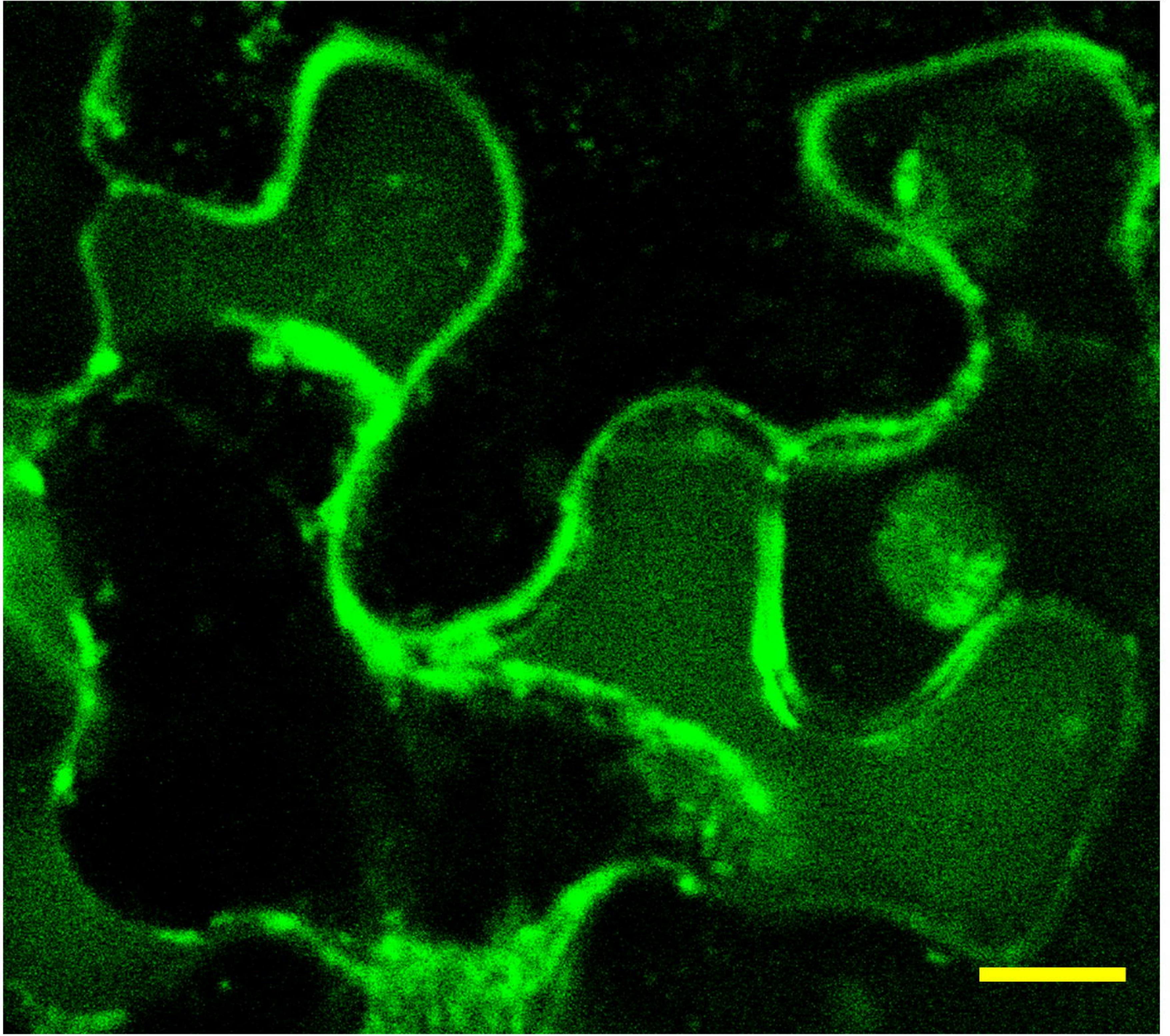
BcPTP1 expression in <i>E. coli</i>	<i>BcPTP1</i> GST F: 5' CATATGTGCACCTATTGCCAGTGCG 3' <i>BcPTP1</i> GST R: 5'CTCGAGTTACTGCTTGTAAACATGGGTACGATC 3'
<i>NbBAK1</i> for RT-qPCR	<i>NbBAK1-q</i> F: 5'GAGGTGGGAGGAATGGCAAA 3' <i>NbBAK1-q</i> R: 5'TTGGCCCCGACAATTCATCT 3'
<i>NbSOBIR1</i> for RT-qPCR	<i>NbSOBIR1-q</i> F: 5'CCAGCAAGTCACAGAAGGGA 3' <i>NbSOBIR1-q</i> R: 5'CCAACACCCACACCAAAGCTG 3'
<i>NbPR1a</i> for RT-qPCR	<i>NbPR1a-q</i> F: 5' CCGCCTTCCCTCAACTCAAC 3' <i>NbPR1a-q</i> R: 5' GCACAACCAAGACGTACTGAG 3'
<i>NbPR2</i> for RT-qPCR	<i>NbPR2-q</i> F: 5' AGGTGTTGCTATGGAATGC 3' <i>NbPR2-q</i> R: 5' TCTGTACCCACCATCTTGC 3'
<i>NbPR4</i> for RT-qPCR	<i>NbPR4-q</i> F: 5' GGCCAAGATTCTGTGGTAGAT 3' <i>NbPR4-q</i> R: 5' CACTGTTGTTGAGTTCTGTTCT 3'
<i>NbLOX</i> for RT-qPCR	<i>NbLOX-q</i> F: 5' AAAACCTATGCCTCAAGAAC 3' <i>NbLOX-q</i> R: 5' ACTGCTGCATAGGCTTGG 3'
<i>NbERF1</i> for RT-qPCR	<i>NbERF1-q</i> F: 5' GCTCTAACGTCGGATGGTC 3' <i>NbERF1-q</i> R: 5' AGCCAAACCCCTAGCTCCATT 3'
<i>NbHIN1</i> for RT-qPCR	<i>NbHIN1-q</i> F: 5' CCAACTTGAACGGAGCCTATTA 3' <i>NbHIN1-q</i> R: 5' AGGCATCCAAAGAGACAACACTAC 3'
<i>NbWRKY7</i> for RT-qPCR	<i>NbWRKY7-q</i> F: 5' CACAAGGGTACAAACACACAG 3' <i>NbWRKY7-q</i> R: 5' GGTTGCATTTGGTTCATGTAAG 3'
<i>NbPTI5</i> for RT-qPCR	<i>NbPTI5-q</i> F: 5' CCTCCAAGTTGAGCTCGGATAGT 3' <i>NbPTI5-q</i> R: 5' CCAAGAAATTCTCCATGCACACTCTGTC 3'
<i>NbEF1α</i> for RT-qPCR	<i>NbEF1α-q</i> F: 5' TGGACACAGGGACTTCATCA 3' <i>NbEF1α-q</i> R: 5' CAAGGGTGAAGCAAGCAAT 3'

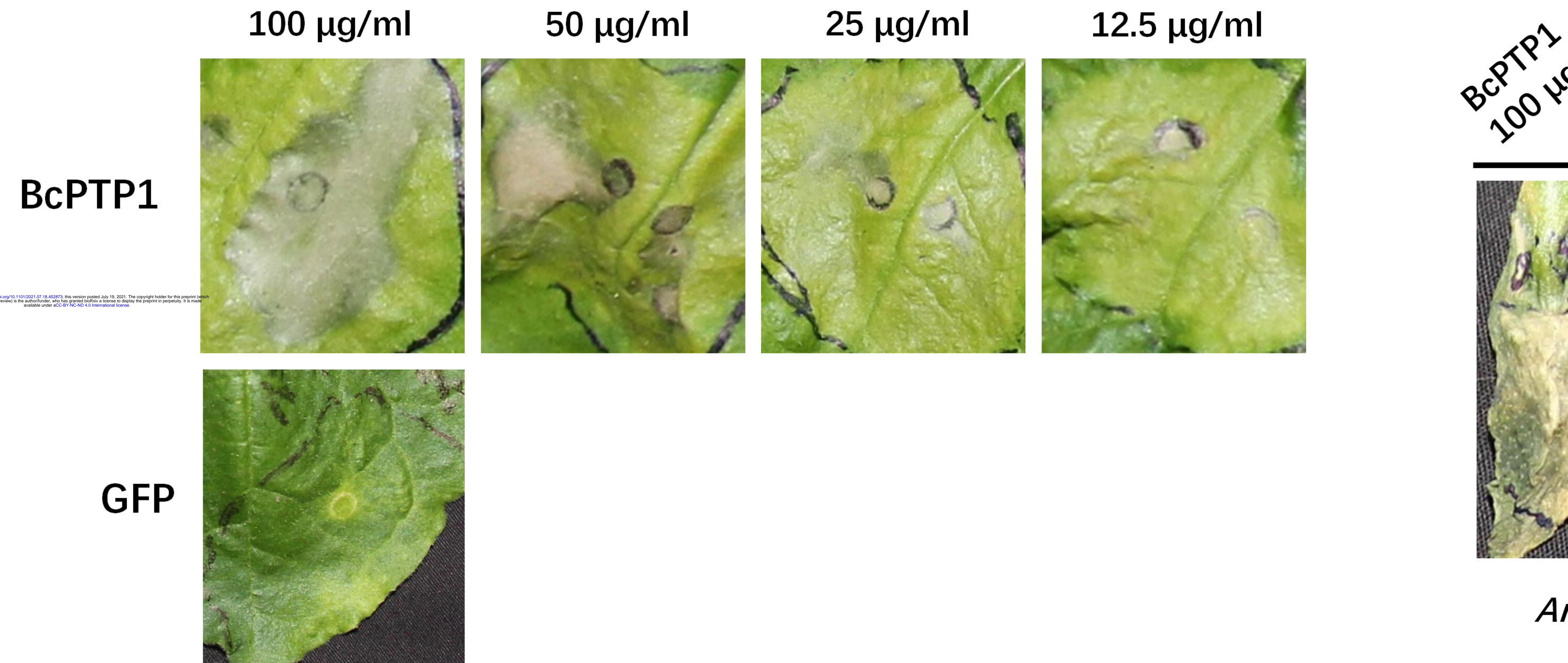
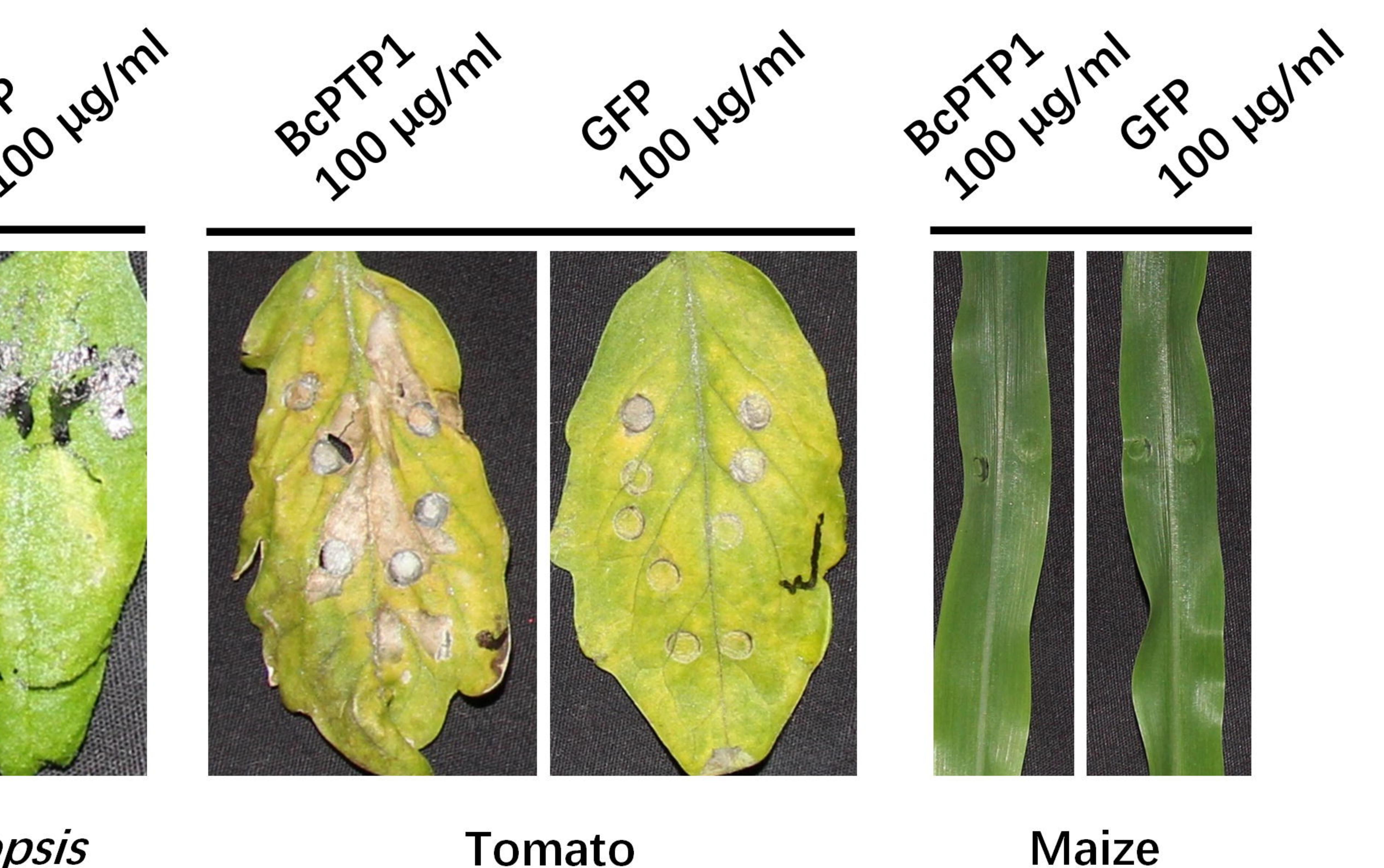
A**B**

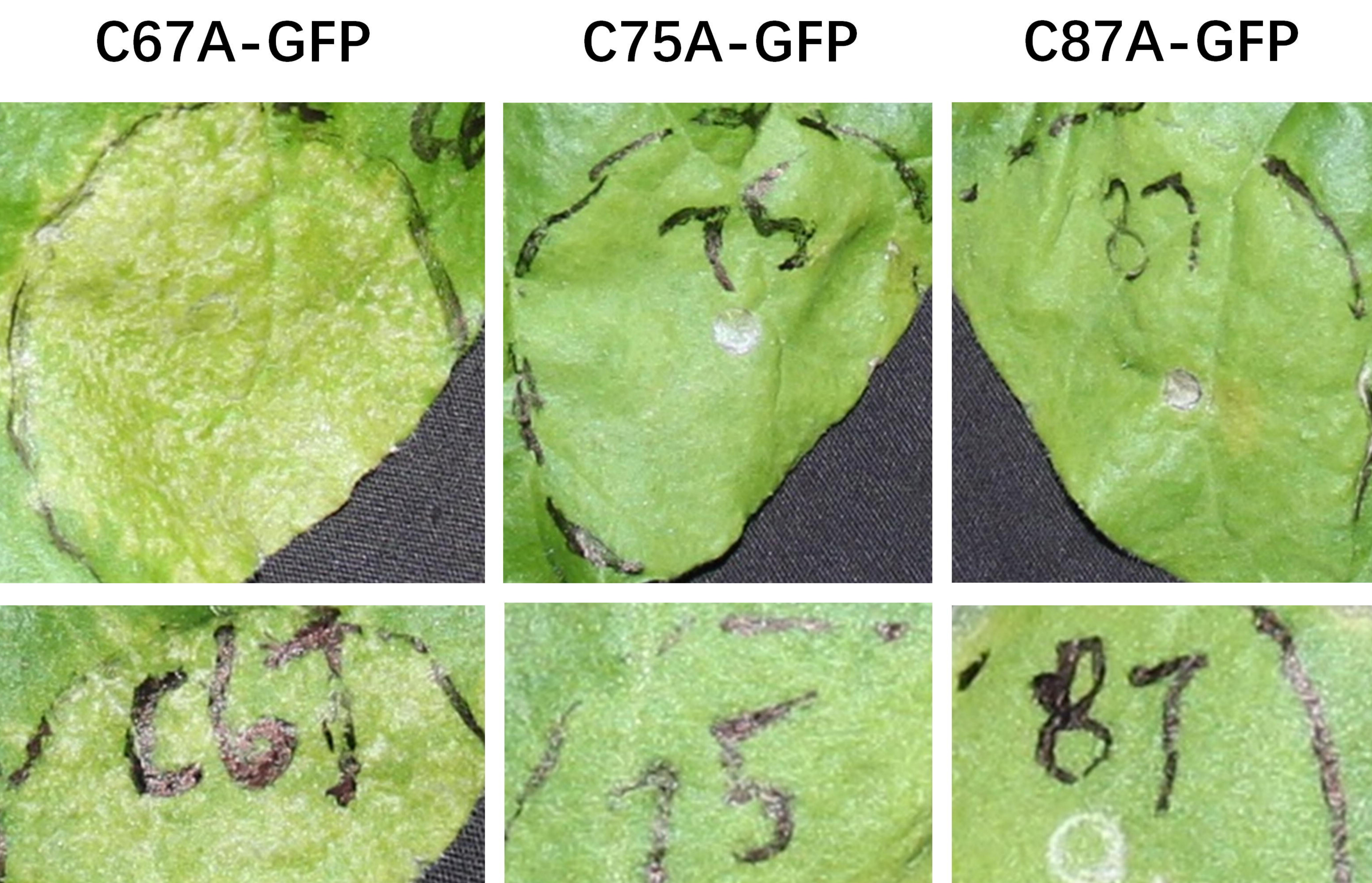
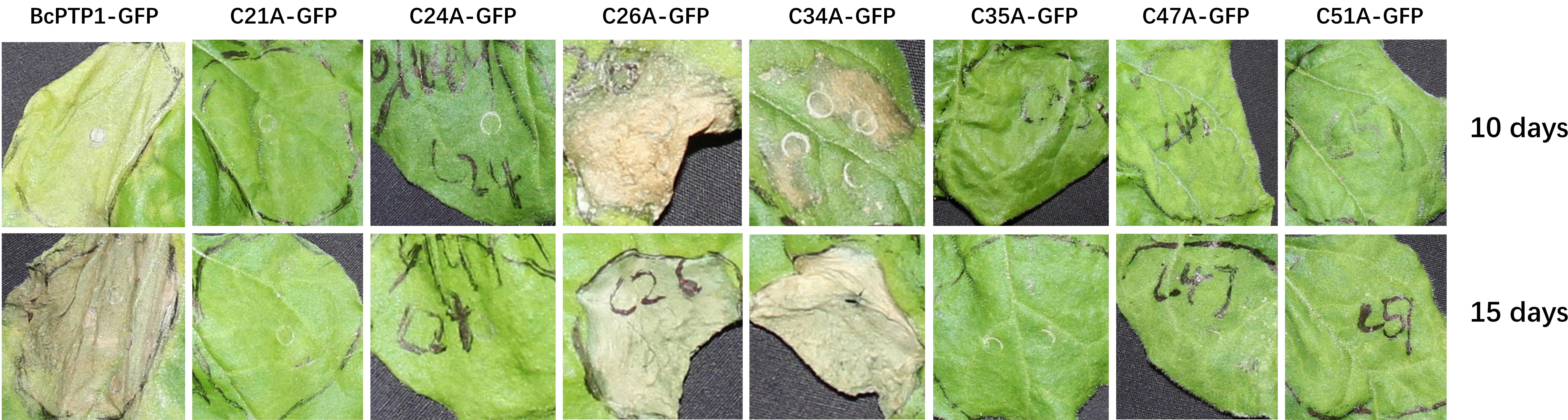
A**B****C****D**





GFP

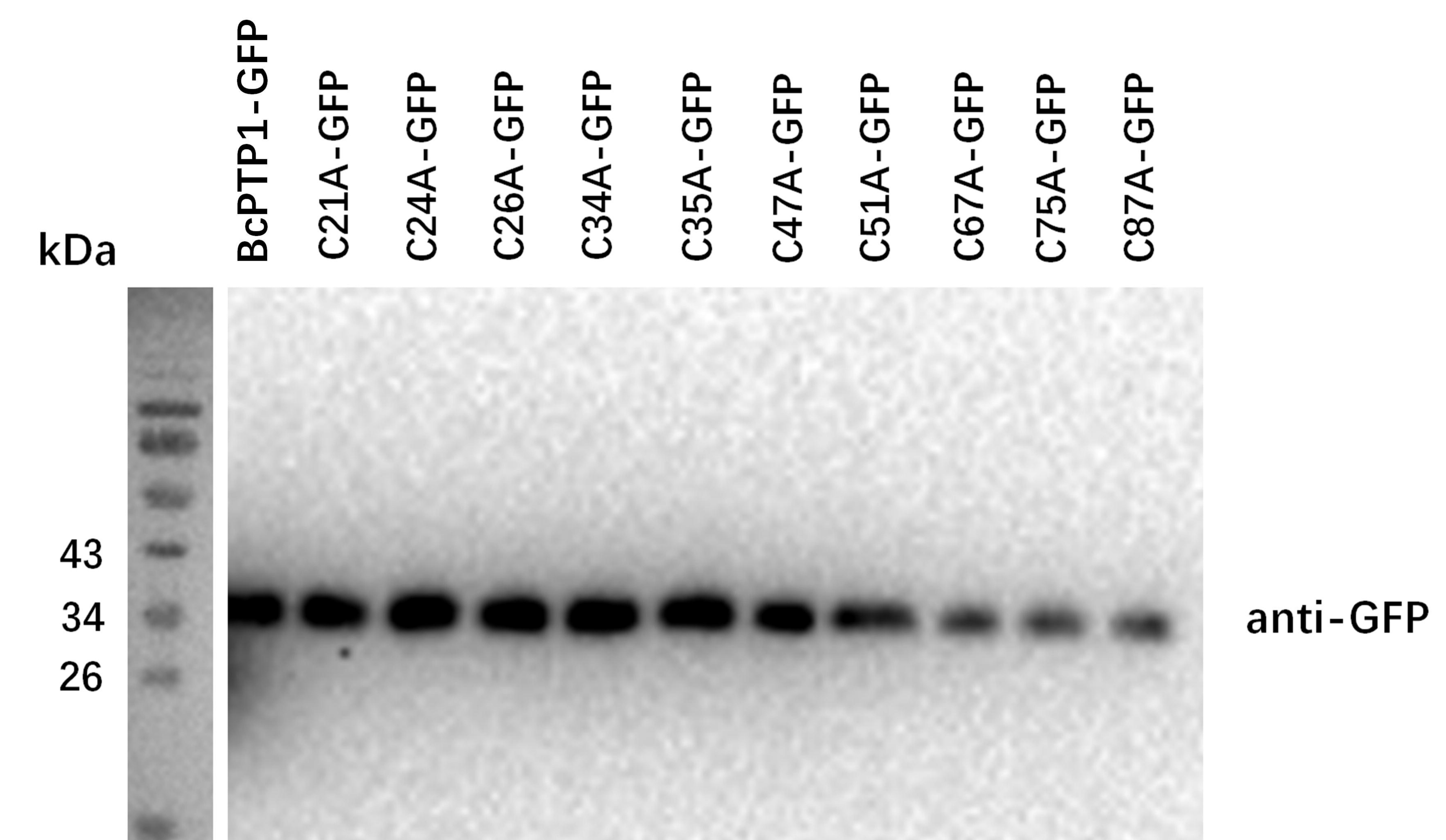
Chloroplast













Bright field



Merge



BcPTP1-GFP

GFP


BcPTP1^{ΔSP}-GFPSP^{BcPTP1}-GFP

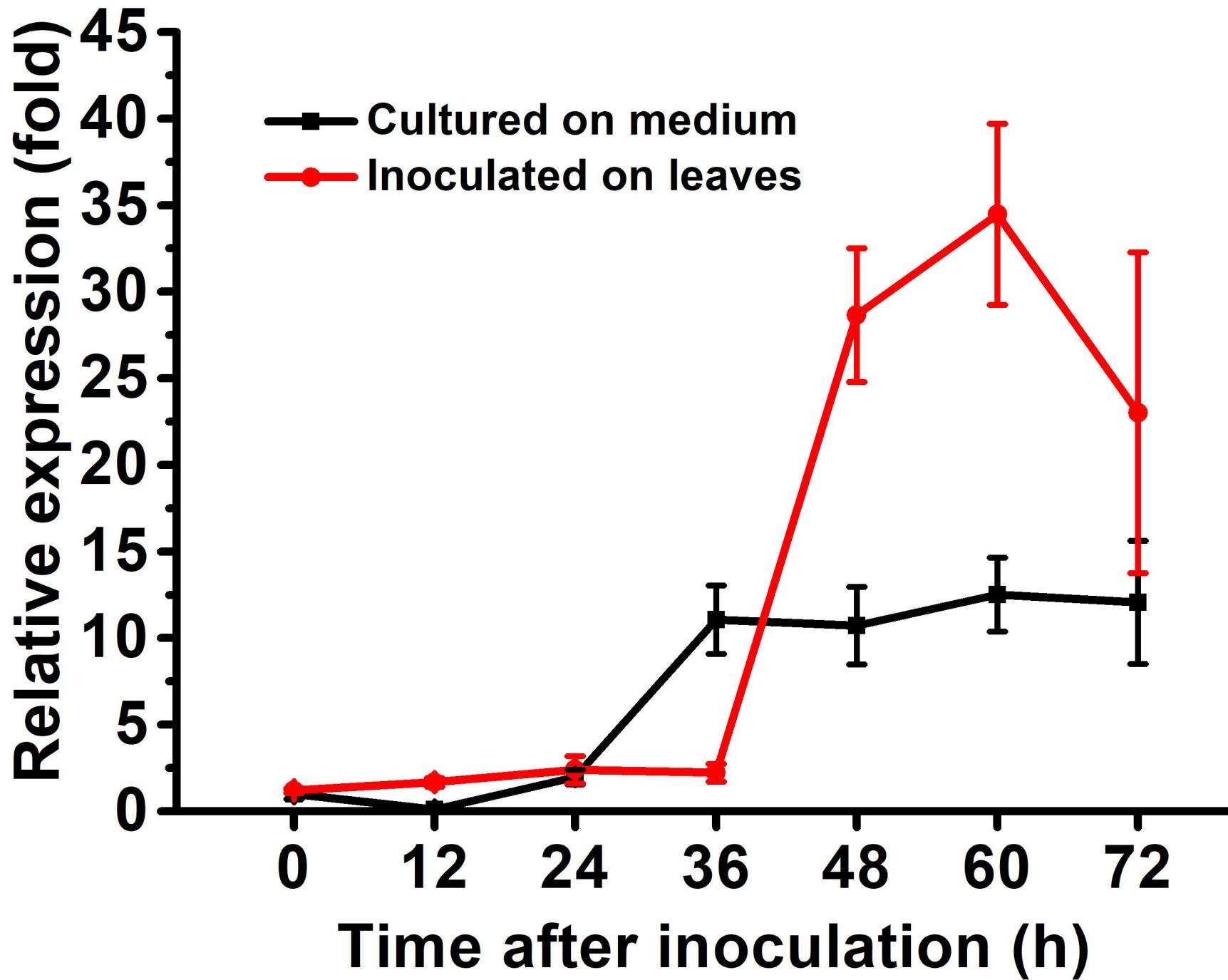
A**B**

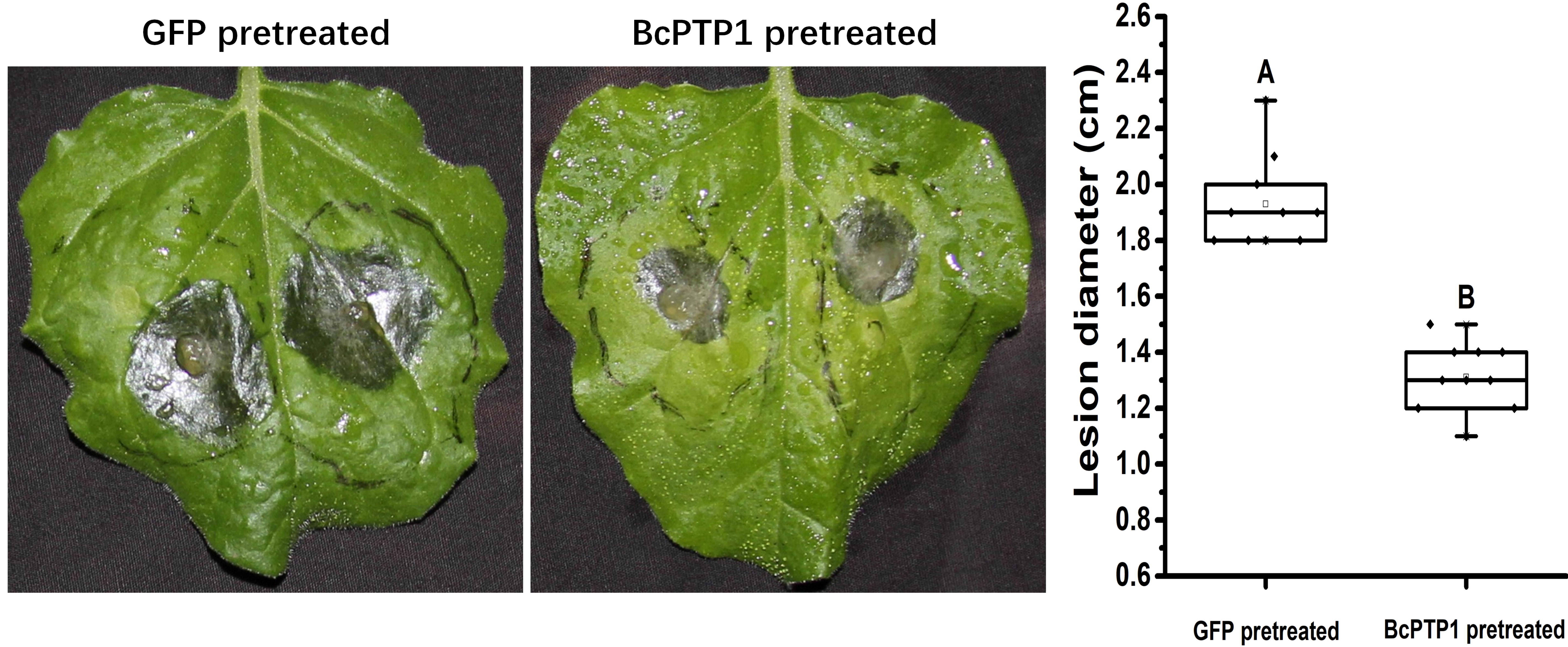
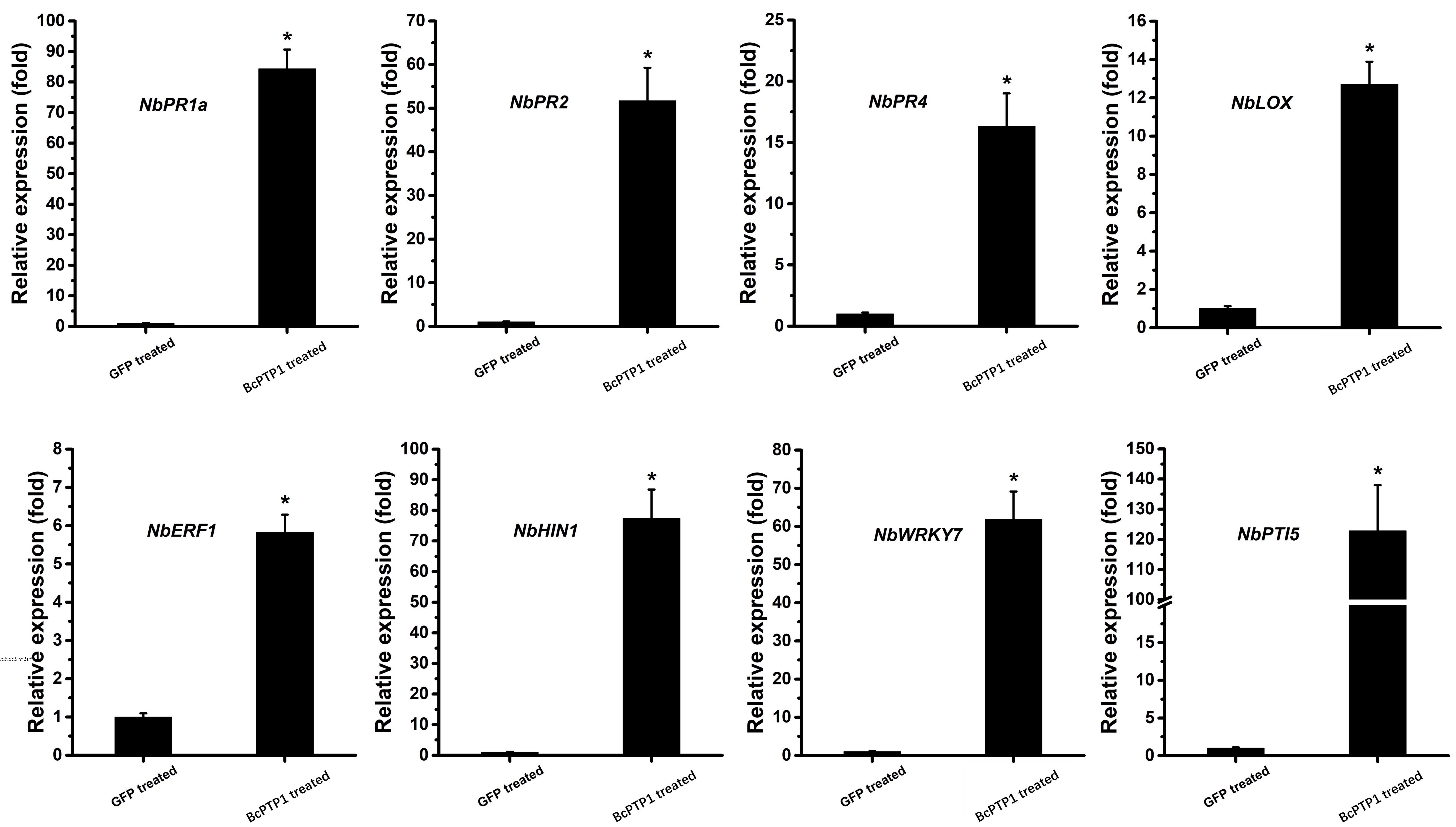
A

10 days

15 days

B

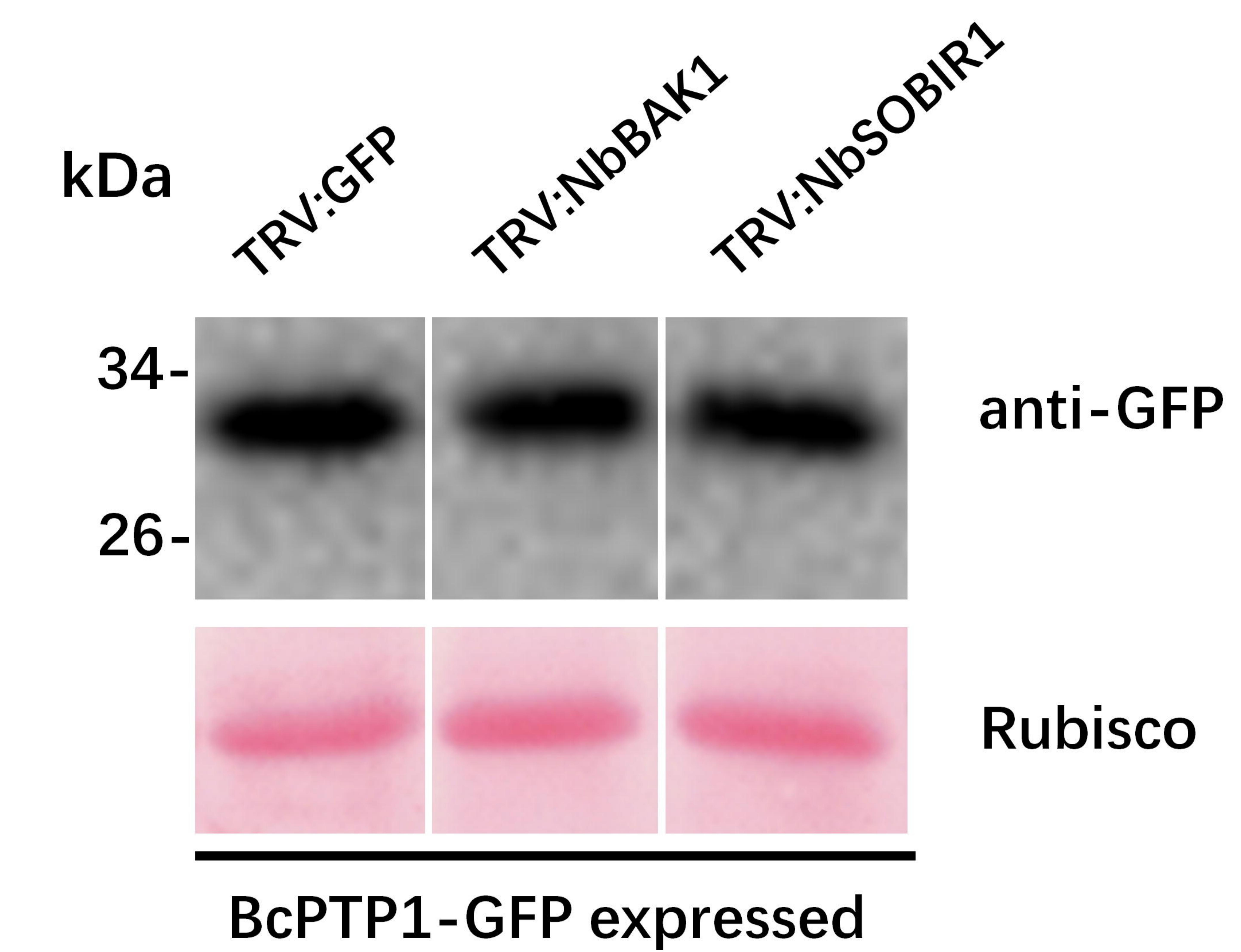
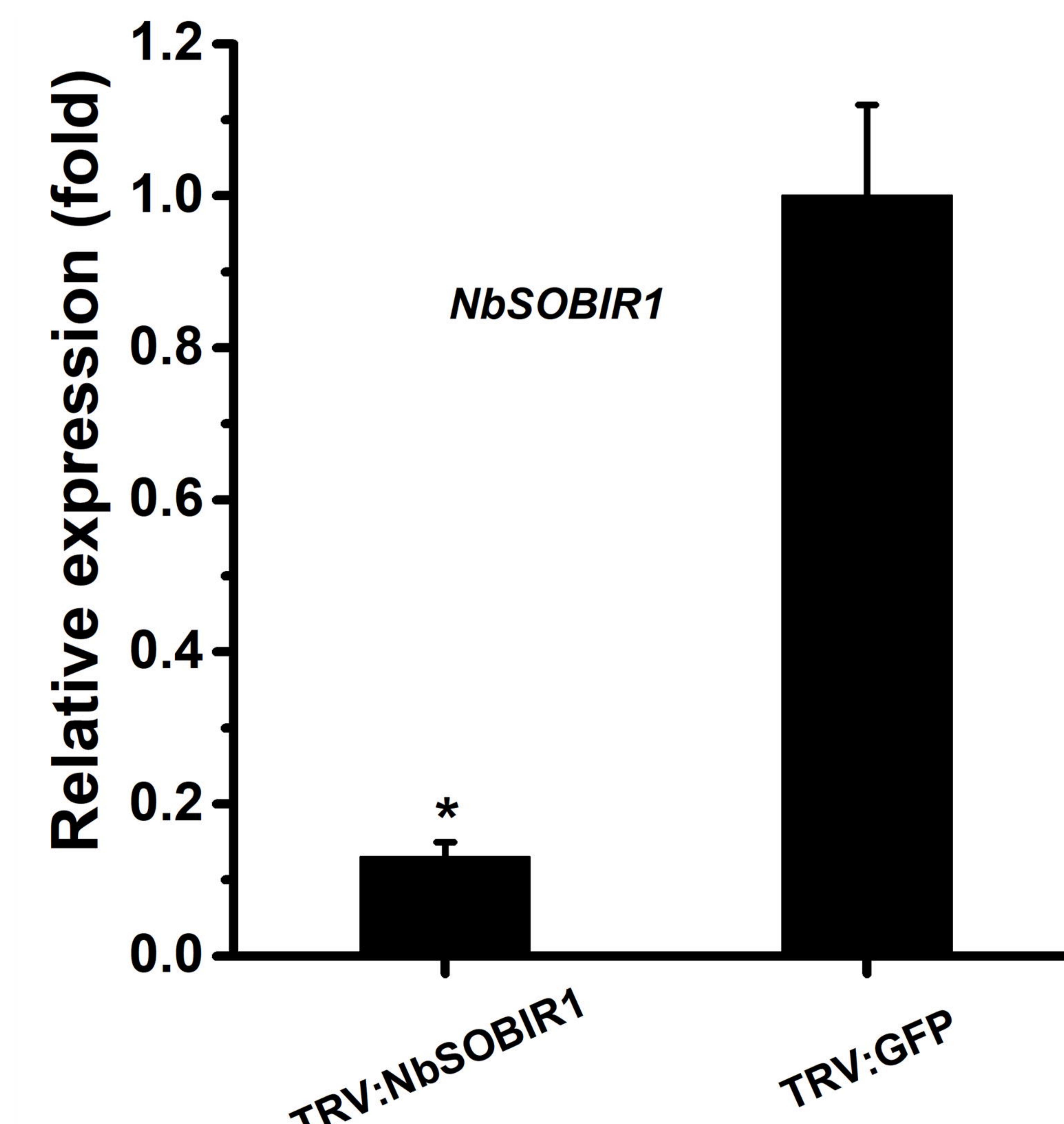
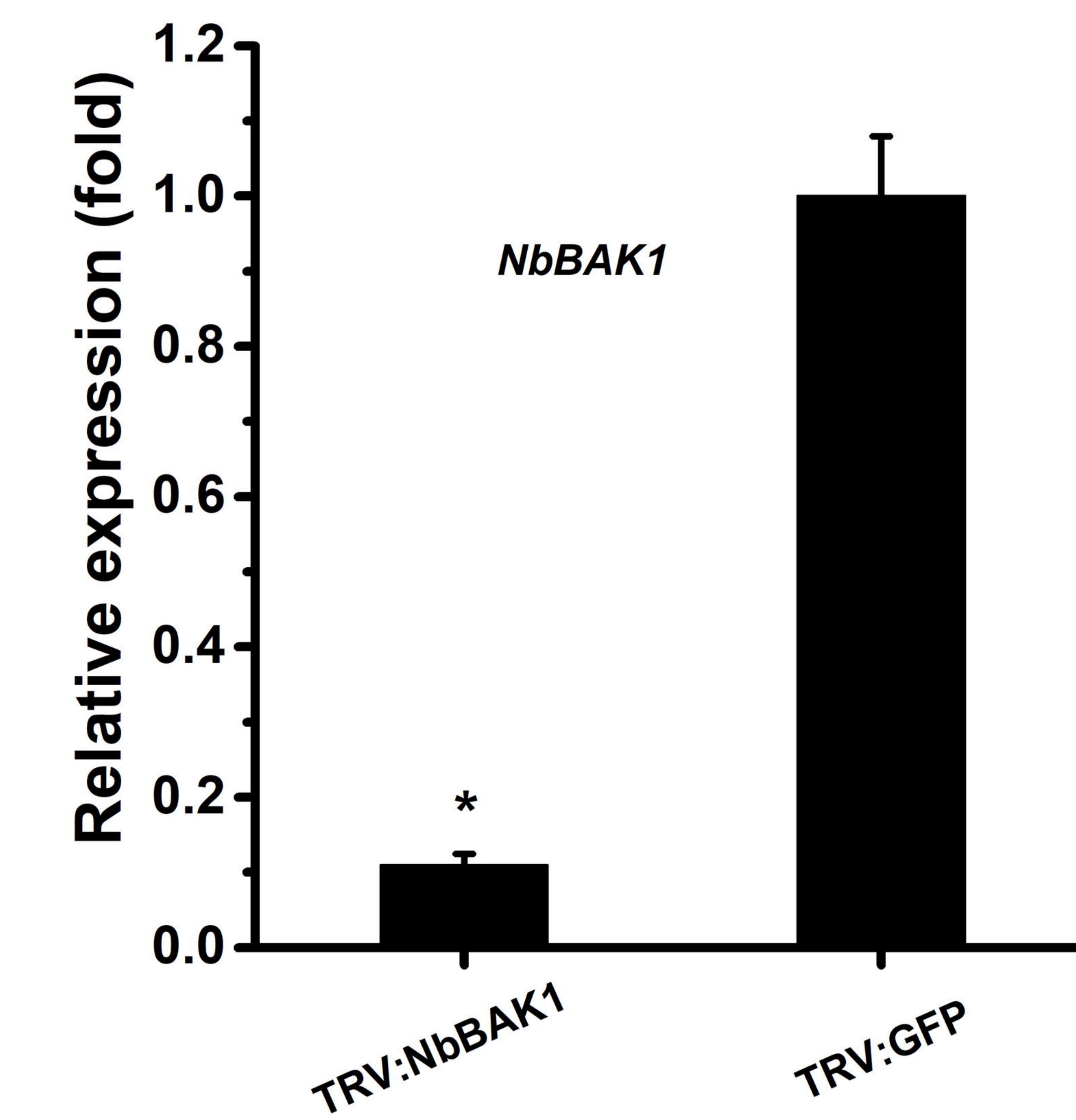

100°C treated

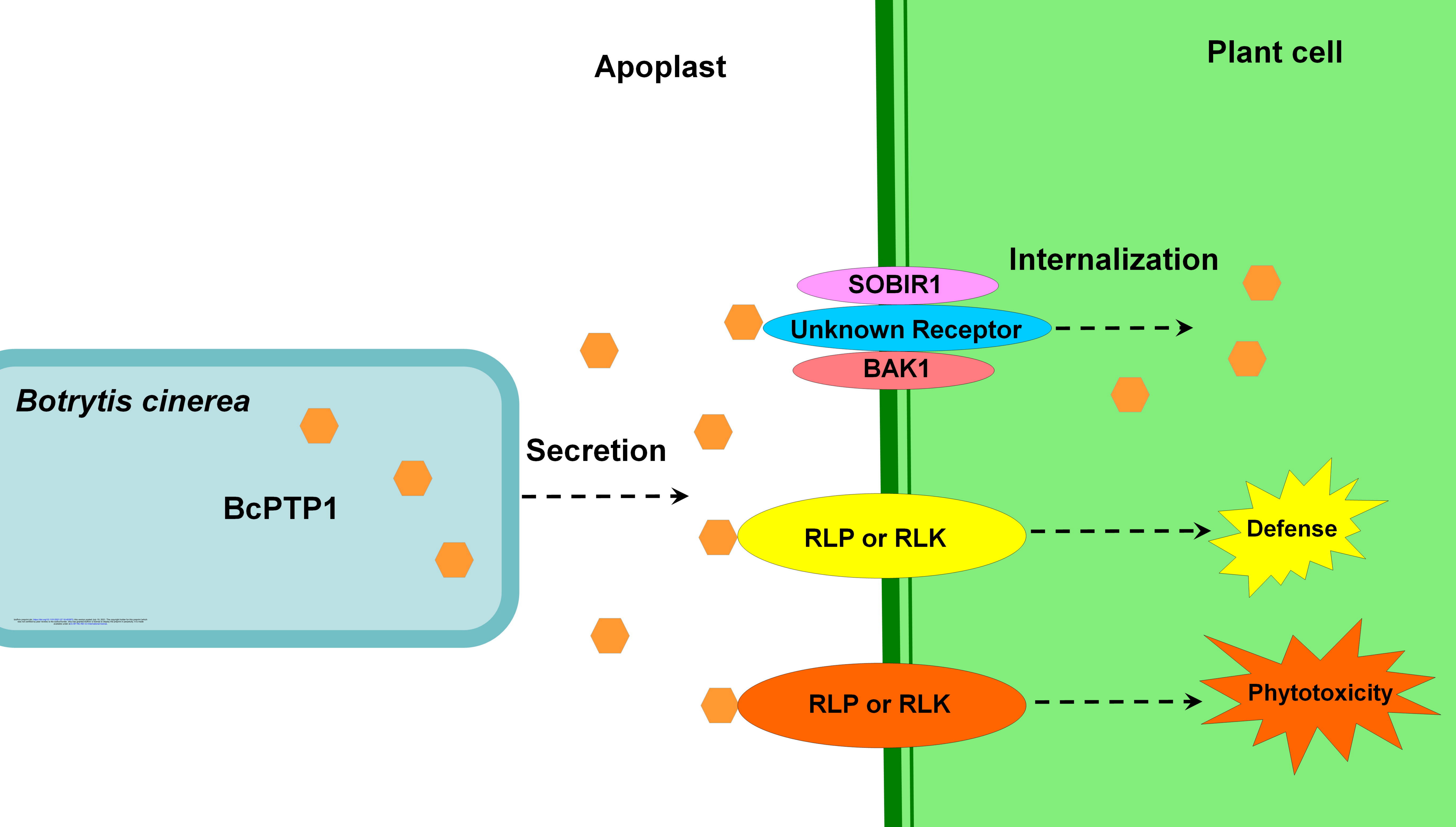



25°C treated

bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.18.452873>; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A**B**




A


TRV:GFP TRV:NbBAK1 TRV:NbSOBIR1

10 days

15 days

B**C**

