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Abstract

Motivation: Using DNA as the medium to store information has recently been recognized as a promising
solution for long-term data storage. While several system prototypes have been demonstrated, the error
characteristics in DNA data storage are discussed with limited content. Due to the data and process
variations from experiment to experiment, the error variation and its effect on data recovery remain to be
uncovered. To close the gap, we systematically investigate the storage channel, i.e., error characteristics
in the storage process.

Results: We first propose a new concept named sequence corruption to unify the error characteristics into
the sequence level, easing the channel analysis. Then we derived the formulations of the data imperfection
at the decoder including both sequence loss and sequence corruption, revealing the decoding demand and
monitoring the data recovery. Furthermore, we extensively explored several data-dependent unevenness
observed in the base error patterns and studied a few potential factors and their impacts on the data
imperfection at the decoder both theoretically and experimentally. The results presented here introduce a
more comprehensive channel model and offer a new angle towards the data recovery issue in DNA data
storage by further elucidating the error characteristics of the storage process.

Contact: poh.chuehloo@nus.edu.sg

1 Introduction (Organick et al., 2018; Heckel et al., 2019) and the sequence loss has
been studied (Chen et al., 2020; Heckel et al., 2019), the overall impact
of these two types of errors, i.e., base level and sequence level, on the
decoder, remains unclear. To unify the error characteristics and ease the
analysis at the decoder, we introduce the concept of sequence corruption,
transmitting the base type error to sequence type error by incorporating
the effects of physical redundancy (i.e., multiple sequence copies at the
receiver/sequencer) and post-processing method into the channel model.
Different from sequence loss, sequence corruption refers to the failure
of reconstructing the reference sequence from its erroneous copies (i.e.,
with base errors) at the receiver, which is the direct consequence of
the base error. Theoretically, the sequence corruption rate collectively
depends on the base error rate in the received copies of the reference
sequence, the received copy counts of the reference sequence, and the
post-processing methods of reconstructing the reference sequence. From
another perspective, this new concept leverages the multi-count physical
redundancy feature of DNA data storage, enabling the anticipation of
the required logical redundancy in code design with the presence of
specific physical redundancy in experiment. As a result, we define the
data imperfection at the decoder of DNA data storage channel consisting
of sequence loss and sequence corruption. Investigating the characteristic
of base errors where some variance might exist is also important since
it essentially relates to sequence corruption and can guide the sequence
(codeword) design. Meanwhile, many factors, including data structure
design, experiment design and computational processing, could affect the
degree of data imperfection at the decoder, leading to process-dependent
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The explosion of data has driven scientists to explore new technologies
to store information. In recent years, owing to the superior properties like
extremely high physical density and preservation duration, using DNA
molecules as the data storage medium has drawn a rising attention (Church
et al., 2012; Goldman et al., 2013; Grass et al., 2015; Yazdi et al., 2015;
Bornholt et al., 2016; Blawat et al., 2016; Yazdi et al., 2017; Erlich and
Zielinski, 2017; Organick et al., 2018; Choi et al., 2019; Wang et al.,
2019b). In a typical DNA data storage system, the basic data unit is
a DNA strand that represents a string of nucleotide bases consisting of
Adenine (A), Thymine (T), Cytosine (C), and Guanine (G). Data writing
in DNA data storage is performed by encoding the digital information into
an assemble of DNA sequences. Taking the encoded DNA sequences as the
reference, corresponding DNA molecules are synthesized and very often
the number of molecule copies (e.g., copies of oligo) of each reference
sequence varies. The synthesized DNA can then be stored and sequenced
during which several random processes are involved, leading to sequence
loss at the decoder (Erlich and Zielinski, 2017; Chen et al., 2020). Here,
sequence loss refers to the loss of all copies/reads of the reference sequence.
In other words, if all sequence data of one reference sequence could not
be found at the decoder, this reference sequence is considered as lost.
Besides the sequence loss, base error is the other type of error in DNA
data storage. While the general base error statistics have been reported
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Fig. 1. Data flow and error characterization in DNA data storage.

errors. Understanding how the original data (reference sequences) and
these factors affect the overall error rate at the decoder could provide
insights into several aspects of designing advanced DNA data storage
systems, including codec designs, sequence structure designs, experiment
designs, and data processing methods.

In this paper, we theoretically formulated the sequence corruption
which is cooperatively dictated by the base error statistics, copy counts
of reference sequence, and down-stream processing methods. Combining
the sequence corruption with the sequence loss, we then quantified the
data imperfection by deriving the overall sequence error rate of the DNA
data storage channel. The derivation explicitly takes the unevenness in
both the count distribution and the error patterns into consideration,
revealing distinct data recovery demands in DNA data storage using
different sequencing techniques. Furthermore, we investigated the base
error properties by analyzing the data from our previous work (Wang
et al., 2019b,c). Specifically, we first looked into the single base error
and then analyzed the 2/3/4-mer patterns with different types of errors,
i.e., substitutions, insertions, and deletions. We observed that there are
profound biases in transitions errors among DNA bases; and certain
k-mer patterns (not only homopolymers) are prone to certain type of
errors. Lastly, with data collected from two independent experiments and
theoretical analysis, we broadly studied the factors that might affect the
data integrity in aspects spanning from structure design to biological and
analytical handling methods. By conducting the most comprehensive study
on the imperfect and uneven data in DNA data storage so far, the results in
this work could offer insights and instructions to the design and processing
pipeline of more effective and efficient DNA data storage systems.

2 Approach and Method
2.1 Data flow and errors in DNA data storage

Data are represented in different forms at different stages in the DNA
data storage, such as binary stream, DNA sequences, and physical DNA
molecules (see Fig. 1A). Binary data are encoded and converted into
DNA sequences before sending them to DNA synthesis. At the synthesis
stage, the count of the oligos may vary, and the count distribution can
be approximated by gamma or normal distribution based on the different
synthesis techniques (Chen et al., 2020). Following that, sample might
be stored in a distributed fashion to increase data accessibility, where a
random process happens. To illustrate, Fig. 1A describes one scenario
where physical copies of certain (i.e., purple-colored) reference sequence
are all lost, rendering physical sequence loss (i.e., 0 physical copy of the
reference sequence).

To prepare the stored sample for DNA sequencing, the sample is
usually PCR amplified to meet the sequencing requirements. The PCR
amplification is another random process, where the count of newly
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generated molecule follows a binomial distribution with a probability
of successful amplification. This process is likely to exacerbate the bias
on the count distribution. This biased count distribution usually lead to
additional data (sequence) loss at the DNA sequencing stage since the next-
generation sequencing process is another round of random sampling (Aird
etal.,2011), i.e., the chip only reads certain amounts of molecules from a
molecule population. With a population of highly biased distribution, each
element may have a different probability of being sampled. Hence, if the
sampling size is inadequate (i.e., low sequencing coverage), the Poisson
sampling effect would cause another round of data loss. We categorize
data loss at this stage as sequencing loss (see Fig. 1A).

Apart from sequence loss, base error is the other type of errors in
the sequencing data at the receiver. In Fig. 1A and B, hypothesized
random base errors are black-colored for illustration. Before sending to
the decoder, the received raw sequencing data is usually post-processed
for a preliminary data reconstruction as shown in Fig. 1A and C. Note that
no standard has been set yet for processing the sequencing data while the
processing results given by different processing methods definitely affect
how many remained errors that the decoder needs to handle. Fig. 1C shows
two potential processing results, i.e., successful reconstructed sequence
and sequence corruption, of which the sequence corruption remains to be
resolved by the decoder.

2.2 Pair-end sequencing and sequence alignment

Next-generation sequencing technologies provide protocols to generate
reads from two ends of the DNA strand. These protocols enable the
sequencer to recover long DNA sequences given that the sequence length
is no longer than twice the read length. Besides, pair-end reading is also
recognized to improve the sequencing accuracy due to the overlapping
between the pair of reads. In our two previous works, Pair-end 150
(PE150) protocols were used to read DNA oligos with lengths from 190
to 199 (Wang et al., 2019b,c) to make full use of the current synthesis
and sequencing technologies. To merge the pair-end short reads into the
long reads, several prevalent tools were designed (Zhang et al., 2014;
Masella et al., 2012; Mago¢ and Salzberg, 2011; Liu et al., 2012), among
which we used FLASH (Mago¢ and Salzberg, 2011) to merge PE150 reads
(see Supplementary S1). To estimate the base error statistics, the merged
reads from PE reads are aligned to their corresponding reference/original
sequences using sequence alignment tools. Several tools were devised for
sequence alignment (Langmead and Salzberg, 2012; Li et al., 2009; Li and
Durbin, 2009), among which we used Bowtie 2 (Langmead and Salzberg,
2012).
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3 Result

3.1 Deriving the overall sequence error rate consisting of
sequence loss and sequence corruption

Sequence loss in DNA data storage channel might be due to the physical
sequence loss in the sample preparation and storage and/or the sequencing
loss in sequencing. We used a model which computationally simulates the
whole process of DNA data storage in (Chen et al., 2020) to study the
sequence loss at the decoder. By defining channel coverage as the average
number of reads per reference sequence the decoder receives, we found
that when the channel coverage is sufficient, the overall sequence loss
rate is lower bounded by the physical sequence loss (see Supplementary
S2 Fig. 3). Without loss of generality, the sequence loss is found to be
higher when data are sampled from a population with more severe over-
dispersion, i.e., smaller coefficient of variation (C.V.) (Supplementary S2
Fig. 4). For insufficient channel coverage scenario (i.e., less than 10x), it
was found that the overall sequence loss rate no longer changes linearly
with the physical sequence, implying that the sequencing loss dominates
the overall dropout rate (Supplementary S2 Fig. 5). We also evaluated
the model by fitting it with data from our previous work (Wang et al.,
2019¢), where the correlation coefficient (i.e., RZ = 0.96) shows that the
sequencing sampling effect is well-simulated (Supplementary S2 Fig. 6).
Moreover, by comparing the experimental dilution effect in (Erlich and
Zielinski, 2017) with the simulated dilution effect in a modified version
of the computational model in (Chen et al., 2020), we found that there
is still a notable gap between the experiment and the simulation (see
Supplementary S2 and S2 Fig. 7). To further understand the gap, we
used three different types of amplification efficiency p, i.e., constant,
random, and strand-specific random, in the computational model to probe
the association between PCR amplification and the source of the gap (see
Supplementary S2 Fig. 8). Applying strand-specific randomness in the
computational model gives the closest approximation to the experimental
results in (Erlich and Zielinski, 2017).

Sequence corruption was underestimated in the existing works (Erlich
and Zielinski, 2017; Organick et al., 2018; Chen et al., 2020; Heckel et al.,
2019). However. the impact of sequence corruption on the decoding is not
trivial when establishing more cost-effective and large-scaled DNA data
storage with less accurate synthesis and sequencing technologies where
base error rates are higher and the copy counts of the reference sequences
are limited at the receiver. In the following, we extensively study the overall
sequence error rate by incorporating both sequence loss and sequence
corruption.

3.1.1 Simplified derivation of sequence error rate

‘We start from the simplest formulation in which the copy count is assumed
to be even and the base error rate is assumed to be constant, i.e., each
base has the same error probability. With these assumptions, there is no
sequence loss but only sequence corruption that is stemmed from the
base error; and it highly depends on the available copy counts at the
receiver which is denoted as channel coverage 7). Besides, the sequence
corruption rates may vary if different post-processing methods are used
before decoding. Here, we formulate the sequence error rate for two
commonly adapted methods, i.e., non-consensus (or trial-and-error) and
consensus (i.e., majority selection at each position). The trial-and-error
means one reference sequence is regarded as correctly recovered if at least
one read copy of it at the receiver is error-free. The majority selection is
a well-known consensus algorithm for generating representative data of
clustered data. One reference sequence is regarded as correctly recovered
if the representative sequence is error-free. For simplicity, the formulation
temporarily assumes binary majority selection at each position.

Illumina and Nanopore sequencing are the two commonly used
sequencing techniques in the existing DNA data storage where Nanopore
sequencing can sequence longer sequence but provides lower sequencing
accuracy. To show how channel coverage affects the sequence error rate in
Ilumina- and Nanopore-based DNA data storage differently, we applied
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Fig. 2. The association between the channel coverage and the sequence corruption and
sequence error rate. The major graph in each sub-figure refers to the Illumina-based
systems while the top right embedded figure in each sub-figure refers to the Nanopore-
based systems. (A) The sequence corruption rate with the assumption of non-consensus
method at the receiver. (B) The sequence corruption rate with the assumption of consensus
method (i.e., majority selection at each position) at the receiver. (C) The overall sequence
error rate consisting of sequence loss and sequence corruption. (D) Theoretical and
experimental sequence error rate against channel coverage with the assumption of uneven
copy distribution and using non-consensus method. The overall sequence error rate
decreases with the increase of coverage.

correspondingly different values to parameters including base error rate
€, sequence length M, to the formulation (see Supplementary S3) and
depicted the sequence error rate against the channel coverage. In Fig.
2, all embedded figures in the sub-figures refer to the Nanopore-based
while the rest refers to the Illumina-based. It was found that, using
Illumina sequencing, the sequence corruption rate decreases drastically
with the increase of channel coverage for both non-consensus (Fig. 2A) and
consensus cases (Fig. 2B). Specifically, with only ~ 5 channel coverage,
the corruption rate could be reduced nearly to 0; and with addition of a
consensus processing, the minimum channel coverage is decreased by
half, i.e., ~ 2.5. However, for channels using Nanopore sequencing,
the corruption rate maintains a high plateau with non-consensus method
(embedded figure in Fig. 2A), and decreases much more gradually with
the consensus method (embedded figure in Fig. 2B). With consensus
algorithm, the corruption rate approaches to 0 for a minimum of ~ 20
coverage. Overall, the observation indicates that in Illumina-based storage,
increasing channel coverage (read copy redundancy) could effectively
reduce the error rate even without any consensus algorithm while in
Nanopore-based storage, only with appropriate consensus algorithm and
sufficient coverage, the error rate can be reduced to an acceptable level.

Next, we generalize the formulation of sequence error rate with uneven
copy count distribution. In this case, the sequence error is composed of
sequence loss and sequence corruption. The average sequence loss rate
E(P(xz = 0)) against the average copy count, i.e., the channel coverage
(), can be well described by an exponentially decreasing curve e~
which A is a random variable (RV) following an uneven sequence count
distribution A. The overall sequence error rate against the channel coverage
is shownin Fig. 2C, in which the blue and red curves represent the error rate
before and after including sequence loss, respectively. Comparing the blue
and red curves, we observe that the sequence loss has a more significant
impact on the sequence error rate in Illumina-based DNA data storage. On
the contrary, the sequence corruption affects the sequence error rate more
in Nanopore-based DNA data storage (embedded figure in Fig. 2C).

in

3.1.2 Elaborated derivation of sequence error rate
We adjust the simplified majority mechanism from binary to quaternary
and extend the copy count (the channel coverage) from the constant
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value 17 to RV 7; subject to certain distribution H. Thus, for the non-
consensus approach, the expected sequence error rate of {2; with uneven
copy distribution becomes,

Q=Y Pr(H=n)(1—-(1-e)m )

1;=0

where 7); represents a copy count subject to a distribution H (n; ~ H); €
is the base error rate; and M is the sequence length. Fig. 2D compares the
sequence error rates of experimental data from (Wang et al., 2019c) with
the estimates derived by (1).

With majority selection as the consensus approach, we have 22,
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where sign(z) is a sign function which equals 1 when z (mod 4) = 0
while equals 0 when x (mod 4) # 0; and other notations are same as (1).
The formulation implies that the biased copy count distribution is not only
the origin of the sequence loss but also affects the sequence corruption
rate after reconstruction. Specifically, the skewed count distribution of
the data at the receiver jeopardizes the overall performance of consensus
methods which are usually designed under simplified assumptions, i.e.,
the distribution of raw data is even or normal. Acknowledging the biased
copy count distribution helps better design the consensus algorithms and
better estimate the data reconstruction performance from the sequencing
data.

3.1.3 Customizing the derivation of sequence error rate with data-
dependent errors

In the aforementioned formulations, a constant base error rate € is used to
represent the probability of random base errors. However, in systems like
Nanopore-based systems, some errors occur in a non-random way. These
systematic errors (i.e., that are not random) are quantitatively significant
and relevant to the features of the reference sequences (or synthesized
DNA molecules). For instance, it was found that around 44% of reads of
homopolymer runs no less than 5 was observed to contain a deletion error
(Lopez et al., 2019). This high error rate and the systematic fashion of the
error occurrence aggravate the data recovery difficulty at the receiver. We
summarize these errors as data-dependent errors and specify two virtual
channels to differentiate the consequences of random and systematic errors
(see Supplementary S4). We specifically derive the formulation of the
sequence error rate of channels that are prone to data-dependent systematic
errors. For the non-consensus approach, we have the expected error rate
Qs,

Q5= Pr(H = m){ (1= P(M, 1)) (1 — (1 — )™)
n;=0
M 3
I+1

+POM(1— (1 - M3 P(Y =v)(1 - ah)”)}
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i

where P(M, 1) = 1 — q-*192¢* =M 5 the probability of a M-length g-
ary sequence having at least one homopolymer larger than length [ where A

is determined by the maximum homopolymer length [ (see Supplementary
S5); Pr(Y = v) is the probability of a sequence having v substrings with
homopolymer longer than [ ; vy, is the specific data-dependent systematic
error rate; and other notations are the same as (1). For majority selection
approach, we have 24,
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and sign’(z) equals 0 when z (mod 2) = 1 and equals 1 when
z (mod 2) = 0. To alleviate the complexities of the formulations, the
approximations of (3) and (4) could be found in Supplementary S6. Note
that the above formulation is built upon the assumption of storing non-
constrained-formatted data where significant increases of systematic errors
are present. If data has been constrained-formatted (avoiding the presence
of long homopolymer) at the encoding step (Wang et al., 2019a), the severe
systematic errors could be avoided in the channel; and the overall sequence
error rate of the channel could be measured by (1) and (2) again. However,
this constrained formatting/encoding is exploited at the cost of reducing
the code rate, i.e., less information stored per nucleotide.
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3.2 Uneven base-level errors in DNA data storage

3.2.1 Uneven transition errors among nucleotide bases

We first examined the single base error profile. For fair comparison among
independent works (Wang et al., 2019b; Heckel et al., 2019; Wang et al.,
2019c), we used the filtered reads (i.e., reads with the same length as the
encoded sequences) to conduct the analysis. It was found that substitution
is the dominant error regardless the choice of sequencing platforms and
experimental sets (see Supplementary S7). Furthermore, we analyzed the
base transition errors since it could help design more efficient codes as well
as to facilitate decoding (Deng et al., 2019). The normalized transition
probabilities are shown in Table 1. From the table, we could find that A to
C,Cto T, TtoG, and G to A are the most potential transitions for each
reference base, i.e., A, C, T, and G. Regardless of the minor transitions
from any of four bases to the N base, the A to C transition is over 3-fold
and 4-fold to other two transitions accordingly, i.e., A to T and A to G.
Likely, C is almost 3-fold and 4-fold possible to be recognized as T rather
than A and G. For T base, the transitions to C and G are both significantly
high with approximately 3-fold over T to A transition. Base G has the most
considerable transition rates, in which G to A and G to T are about 10-fold
than C to G. Overall, Gto A, Gto T, and A to C are the top three discernible
transitions. Several results in the literature are generally consistent with
our observations (Pfeiffer et al., 2018; Chen et al., 2014; Ma et al., 2019).

3.2.2 Uneven k-mer error patterns

In addition to single base error, we estimated the k-mer error patterns in
DNA data storage channel. We first analyzed the 2-mer error patterns with
respect to deletions, insertions, and substitutions (Fig. 3A). For deletions,
we found that the most erroneous 2-mer patterns of four reference bases
are their corresponding 2-mer repetitions i.e., AA, CC, TT, and GG. For
insertions, the 2-mer patterns that are prone to having an in-between
insertion are AG, CG, TG, and GA for A, C, T, and G, respectively. For
substitution error rates of patterns where the first base is substituted to
other bases, there is no significant discrimination albeit with the most
erroneous 2-mer patterns for each base are the corresponding 2-mer
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For deletions, the most error-prone 3-mer patterns for each nucleotide
base are the corresponding 3-mer repetitions, i.e., AAA, CCC, TTT, and
GGG, which are in line with 2-mer deletion patterns. Moreover, the 3-mer
repetitions present higher error rates than the 2-mer repetitions, implying
that longer homopolymer might have higher deletion tendency. Again,
there are much higher insertion error rates for specific 3-mer patterns,
including AGG, CGG, TGG, and GAA. Interestingly, except GCC, all
other top 3 erroneous 3-mer patterns (that are shown in Fig. 3B) are
with prefixes that are the most error-prone 2-mer patterns, i.e., AG, CG,
TG, and GA. This infers that the insertions observed in the received data
might highly relate to the neighboring bases. Similarly, most of the top
3 erroneous 3-mer patterns with the first nucleotide being substituted are
consistent with the most error-prone 2-mer patterns. However, again, there
is no significant discrimination between repetitive patterns and other non-
repetitive patterns. Equivalently, the 4-mer repetitions are observed to have
the highest tendency toward deletions. And the 4-mer repetitions are with
higher deletion rates than the 2-mer and 3-mer repetitions, which further
proves that the longer the homopolymer, the higher the probability to
encounter deletions (Fig. 3C). For insertions, the most discernible 4-mer
patterns for each base are AGGG, CGGG, TGGG, and GAAA. All of them
are with 3-mer prefixes that are the most error-prone 3-mer patterns, i.e.,
AGG, CGG, TGG, and GAA. For most of the 4-mer patterns, we observe
similar substitution rates as the 2-mer and 3-mer cases. This suggests that
homopolymer does not have significant impact on substitution rates. We
also examined errors occurring at the second position in 2/3/4-mer and the
last position in 3-mer and 4-mer (see Supplementary S8) and we find that
the result is either with no significant erroneous patterns or in line with the
patterns observed in the first position.

3.3 Factors impacting overall sequence error rates in DNA
data storage

3.3.1 Sample preparations affect the copy count distribution

To start with, in Fig. 4, we compared the copy count distributions of
the reference sequences in our two experiments with different sample
preparations (Wang et al., 2019b,c). The scheme in (Wang et al., 2019¢)
was designed with a single primer binding site (PBS) without conducting
PCR amplification before proceeding to DNA sequencing; and the other
one (Wang et al., 2019b) was designed with double PBSs and the sample
was amplified with 9 cycles of PCR before sequencing. We used the data
sets with channel coverage 20x, which means that ideally 20 copy counts of
each reference sequence could be found at the receiver. The two observed
distributions both approximate to negative binomial distribution which
is the consequence of randomly down-sampling from a large population
with gamma distribution. Biases in the count distributions are observed
for both experiments; and the bias in the single PBS set is larger with
size parameter r of smaller value, i.e., 2.7 versus 3.3. Besides, in the
single PBS set, one reference sequence has 174 copy counts far away
from the mean coverage 20x. The different degrees of PCR bias and PCR
stochasticity (see Supplementary S9) might ascribe to the bias difference

Fig. 3. Uneven 2/3/4-mer error patterns for deletions, insertions, and substitutions in DNA
data storage, in which the most erroneous patterns are marked correspondingly. With the
first base being deleted, following an insertion, and being substituted, the error rates of
(A) 2-mer patterns; (B) 3-mer patterns; (C) 4-mer patterns. The homopolymer is observed
to have an impact on the deletion errors. There are specific patterns that are prone to
have an insertion in-between. No significant discrimination among patterns is observed for
substitution errors.

between the two experiment sets. To further confirm the major source of the
bias differentiation between two distributions, we compared the copy count
distributions of all sequences, sequences including 4nt homopolymer,
and sequences without 4nt homopolyer. It is observed that the sequence
with maximum copy counts, i.e., 174, is with 4nt homopolymer. And
there is no obvious discrepancy in distributions among three sets (see
Supplementary S9 Fig. 14). This implies that rather than distinct PCR
biases caused by sequence-specific randomness (due to homopolymer
differentiation), distinct degrees of PCR stochasticity caused by different
sample preparations majorly explain the bias difference.

500 Exp 1
Exp 2
_ 400 Made2
c A Max1
§ 300 A Max2
8
c 200
e
"g 100
o
o .
0 50 100 150

Channel coverage

Fig. 4. Copy count distributions for varied sample preparations. Based on data sets with
20x channel coverage, the blue-colored copy count distribution is from the single primer
binding site (PBS) experimental set; while the red-colored copy count distribution is from
double PBS experimental set. The blue and red solid lines represent the modes of two
distributions, respectively. The maximum counts observed in two sets are triangle marked,
and there is one reference sequence with 174 copy counts in the single PBS set (i.e., blue
triangle). Both distributions approximate to negative binomial distribution, the single PBS
distribution is with higher bias where the size parameter r is smaller. i.e., 2.7 versus 3.3.

3.3.2 Sequence structure and downstream processing affect the base
error, sequence corruption, and system capacity
The basic data unit in DNA data storage, i.e., DNA sequence, is usually
designed with length ~ 200 to tailor the current synthesis and sequencing
techniques. For Illumina-based systems, a PE150 protocol could be used
to increase the sequencing accuracy by stitching two paired-end (PE)
reads. We aligned the merged reads back to the reference sequences
to study how the reference sequence length and the general merging
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Fig. 5. Positional error profile of reference sequence in DNA data storage using PE150
sequencing protocol and merging processing, in which three regions are highlighted along
the coordinate. The positional error rate profile of (A) reference sequences with length of
190nt. (B) reference sequences with lengths ranging from 190nt to 199nt. Two 150-length
positional error profiles starting from two ends of the reference sequences are presented
simultaneously to accommodate the variable-length feature of the reference sequences.

processing cooperatively affect the error profile in DNA data storage
channel. The average positional error rates along the coordinate of the
reference sequence are shown in Fig. 5. The average base error rate along
the coordinate is uneven where the overlapped region (pink-colored in Fig.
5) has lower error rate than the non-overlapped region (blue-colored) does.
And the substitution errors are reduced most notably in the overlapped
region. The overlapped region is a region corresponds to the universal
regions shared by two PE reads. The unevenness between overlapped and
non-overlapped regions is due to the gap between the length of reference
sequences (i.e., 190nt and 190~199nt ) and the length of PE reads (i.e.,
150nt). Moreover, by comparing the blue-colored (i.e., non-overlapped)
regions in Fig. SA, we could find that the non-overlapped region with a
PBS region (gray-colored) as the adjacent has a lower error rate than the
other non-overlapped region.

Additionally, we analyzed the data sets that have been filtered by
lengths. This further proves structural design of the sequence, i.e, appended
with single PBS or double PBS and fixed length or variable lengths,
affects the data integrity at the decoder (see Supplementary S10). Despite
that filtering alleviates errors especially indels, filtering might aggravate
sequence loss especially when the number of reads provided at the
sequencer is limited. Hence, we compared the overall sequence rates
before and after filtering with given amounts of reads (see Supplementary
S11). By incorporating the sequence loss and sequence corruption (under
the trial-and-error assumption), the filtered data set shows higher overall
sequence error rates than those of non-filtered data set up to coverage
~ 30x (Supplementary S11 Fig. 16C). This suggests that while filtering
might immediately reject seemingly erroneous data, the sequence loss
caused by it might be more significantly increase the overall sequence
error rate, rendering more stringent requirements on the code design.

Inspired by the unevenness of base error rates along the sequence
coordinate caused by the length difference between reference sequences
and PE reads, we theoretically analyzed the impact of the sequence length
on the sequence corruption rate. First, Fig. 6A depicts how the ratio of
read length to the sequence length affect the sequence corruption rate.
Specifically, when the ratio is below 0.5, stitching two PE reads is unable
to recover the reference sequence (see Supplementary S1 Fig. 1C), leading
to 100% corruption. When the ratio is from 0.5 to 1, the corruption rate
decreases with the increase of the ratio. When the ratio is no less than 1,
each PE read could ideally cover the whole sequence (see Supplementary
S1 Fig. 1A), rendering the merged read with a fully overlapped region
and consequently reducing the corruption rate to a low floor. Comparing
the curves with different colors, the impact of the ratio on the sequence
corruption rate was found more noticeable for shorter sequence length.
With PE read length 150, Figs. 6B and C show that the sequence length
directly affects the sequence corruption rate and incremental redundancy
for addressing the corruption.

We continue to explore the impact of the sequence length on the
achieved capacity where the capacity is determined by the redundancy
required for correcting the sequence corruption and the redundancy
required for indexing. These two redundancies are highly related to the

sequence length; and the impacts of sequence length on them are opposite.
With different channel coverage 7 and base error rates e, Figs. 6D-G
show how the achieved capacity change with the sequence length in
which different colors represent different stored data sizes ranging from 1
Kilobyte to 1 Terabyte. We found that for higher base error rate systems
(Figs. 6D and E), the achieved capacity decreases with the increase of
sequence length, presenting that the impact of increased redundancy for
error correction on the capacity plays the prime role. This trend also appears
in lower base error rate systems when the coverage is 1x (Fig. 6F), i.e,
ideally only one read for each reference sequence could be used for data
reconstruction. Interestingly, the trend reverses in the lower base error rate
system when the coverage is 10x (Fig. 6G). The much lower corruption
rates ascribed to the high coverage could be the reason of the reversed trend.
The error correction redundancy required by the much lower corruption
rates no longer weighs higher than the indexing redundancy in regard to
affecting the capacity. Therefore, in Fig. 6G, the increased capacity with
the increased sequence length is mainly due to the decreased indexing
redundancy. This indicates that in most cases, designing sequences with
short length could improve the achieved capacity (Figs. 6D-F). However,
for storage systems with very low raw base errors and sufficient coverage
at the receiver (Fig. 6G), sequence length could be designed as long as
possible (up to twice of PE read length) to improve the achieved capacity.

3.3.3 Theoretical estimation of the overall sequence error rate

Using different synthesis techniques and experimental settings gives
different count distributions at the receiver, leading to distinct sequence
loss rates. Meanwhile, using different sequencing techniques and data
processing methods gives different base error rates at the receiver, leading
to distinct sequence corruption rates. We thus theoretically estimate the
overall sequence error rate consisting of sequence loss and sequence
corruption by setting a range of practical values to several important
impacting factors. With the assumption of using non-consensus post-
processing method after merging PE reads, the formulation of the overall
sequence error rate is an extended version of 1 where the base error is
no longer constant along the coordinate but varies with the region, i.e.,
overlapped or non-overlapped.

We separately consider two scenarios. First, the merged reads are with
fully overlapped region. To comply with the assumption, the sequence
length is set equal to the PE read length (i.e., 150nt). The sequence error
rate against the channel coverage is illustrated (see Supplementary S13). In
general, the higher the base error rate is, the higher the channel coverage
is required to achieve a similar sequence error rate at the decoder. The
variations among different base error rates, i.e., among sub-figures, are
not notable. In the aspect of copy count distribution, the smaller the size
parameter is, i.e., the more over-dispersion of the distribution, the higher
the sequence error rate. Next, we analyzed the non-overlapped read case
by setting the sequence length twice of the PE read length. Similarly, we
draw two sub-figures, i.e., Figs. 7A and B, corresponding to two different
raw base error rates, i.e., 0.8%, 0.3%, corresponding to Miseq and Hiseq
Illumina sequencing, respectively (Quail et al., 2012). The trend of the
sequence error rate against the channel coverage in this case is the same as
the overlapped case, but the discrimination among different base error
rates, i.e., among sub-figures, is more notable. Comparing these two
groups of figures (Fig. 7 versus Supplementary S13 Fig. 17), it could
be found that to obtain similar sequence error rate with the same base
error rate and size parameter, the required coverage of the non-overlapped
case is no less than the overlapped case, i.e., ~ 4-fold for 0.8% base
error rate, ~ 1.5-fold for 0.3%. To this end, we conclude that if the raw
base error rate could be kept around 0.3% or less, the sequences could
be designed with long length (i.e., from 150 to 300) where merged reads
are all non-overlapped. However, for systems with higher base error rate,
short sequence design (i.e., no longer than 150) which leads to all merged
reads overlapped or semi-overlapped is a better choice.
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Fig. 7. With the assumption that the sequence length is twice as the read length where the
merged reads are with the full non-overlapped region, the overall sequence error rate in
Illumina-based storage against the channel coverage, where the raw base error rate is (A)
0.8% similar to Miseq ; (B) 0.3% similar to Hiseq (Quail et al., 2012). In each figure,
different colors represent different size parameters of the copy count distribution that are
ascribed to sequence loss.

4 Discussion

Distinct from other traditional storage systems, DNA data storage systems
exhibit few unique characteristics. Specifically, there are generally amount
of redundant data copies of original data albeit these copies might be
corrupted by base errors; and the number of the redundant data copies
for each original data unit are uneven. Most of existing works (Erlich
and Zielinski, 2017; Heckel et al., 2019) only discussed the adverse
consequence of the uneven copy count distribution, i.e., sequence loss,
while overlooked the multi copies’ benefit to data reconstruction. Also,
physical redundancy of data copies at the decoder was excluded from the
channel and discussed separately from the logical redundancy of error
control code. In fact, the multi-count data feature of DNA data storage
enables a pre-decoder data reconstruction from multi (erroneous) copies
where the failure of the reconstruction is termed as sequence corruption.
With the preliminary reconstruction before decoding, the data imperfection
at the decoder that consists of sequence loss and sequence corruption offers
a unified error profile for DNA data storage channel, easing the channel
analysis and giving new insights for future code design.

Diving into the data imperfection observed from the experiments,
biases have been found both in copy counts and base error patterns. The
existence of these biases further distinguishes the DNA data storage from
other conventional storage systems, suggesting that facilitating higher
performance gains in terms of capacity, reliability, and robustness in DNA

data storage are possible. Moreover, the unevenness in the error rates of
base patterns, including uneven error rates of single base transition and
k-mer deletion/insertion, could be used as prior knowledge for decoding
and optimizing encoding. For instance, using the transition tendency as
the additional information to the decoder increases the error correction
performance (Deng et al., 2019). Also, the uneven transition feature could
be leveraged to design unequal codes with higher efficiency. In addition, the
deletion-prone characteristic in the long homopolymer patterns especially
in Nanopore-based systems suggests that coding techniques that restrict
the homopolymer length, i.e., constrained coding (Wang et al., 2019a;
Immink and Cai, 2017; Song et al., 2018), might be a promising solution
provided that the subsequent reduction on code rate/capacity is tolerable.
Additionally, with the prevalent PE sequencing protocol and merging
processing as the premises, the uneven error rate along the sequence
coordinate (between non-overlapped and overlapped regions) is another
unevenness that could be used for code design, e.g., unequal encoding, to
increase the achieved capacity.

In this work, the impact of sample preparation on the data at the receiver
was investigated based on two experiments with different rounds of PCR
amplifications before DNA sequencing. Specifically, the amount of the
copy count before sending to sequencing which is the consequence of the
sample preparation (i.e., PCR) affects the bias observed in the sequenced
data. And this bias subsequently causes sequence loss that pertains to the
sequence error threatening on the decoder. We have shown that samples
with more rounds of PCR attribute to less biased sequenced data since it
provides more sufficient initial amount of molecules which avoids severe
PCR stochasticity. Besides PCR, other sample preparation steps should
also affect the data integrity at the receiver and could be investigated in
the future work. The impact of sequence length on the data imperfection
at the decoder and channel capacity was also theoretically studied. It
was observed that only with sufficient coverage and low base error
rate, the achieved capacity could increase with the increase of sequence
length. However, in other cases, the achieved capacity decreases with the
increase of the length because of the increased redundancy for addressing
increased corruption rate. Hence, the system should be designed through
comprehensive consideration of the involved impacting factors and the
trade-offs among them.

5 Conclusion

In this work, we have conducted a comprehensive investigation of errors in
DNA data storage channel. Quantitatively, the data imperfection including
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sequence loss and sequence corruption at the decoder has been presented.
Besides deriving the sequence error rate to monitor the data reconstruction
demand, we also further studied on the imperfect data and found out that
unevenness exists in several aspects and it could in turn to help designing
systems with better performance. Additionally, we experimentally and
theoretically analyzed the sequence error rates under different experiment
settings and various but realistic parameter settings, including sequence
lengths, base error rates, and over-dispersion degrees of distribution. From
the perspective of data reconstruction, the results reported provide new
perspectives for the development of the advanced future DNA data storage.
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