

1 **A strategy to suppress STAT1 signalling conserved in pathogenic**
2 **poxviruses and paramyxoviruses**

3 **Callum Talbot-Cooper¹, Teodors Pantelejevs², John P. Shannon^{1,3}, Christian R. Cherry³,**
4 **Marcus T. Au¹, Marko Hyvönen², Heather D. Hickman³ and Geoffrey L. Smith^{1*}**

5 ¹ Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2
6 1QP

7 ² Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge,
8 CB2 1GA

9 ³ Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and
10 Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of
11 Health, Bethesda, Maryland 20852, USA

12 * Corresponding Author: gls37@cam.ac.uk (GLS)

13

14 **Summary**

15 The induction of interferon-stimulated genes by signal transducer and activator of transcription
16 (STAT) proteins, is a critical host defence to fight virus infections. Here, a highly expressed
17 poxvirus protein 018 is shown to inhibit IFN-induced signalling by binding the SH2 domain of
18 STAT1 to prevent STAT1 association with an activated IFN receptor. Despite the presence of
19 additional inhibitors of IFN-induced signalling, a poxvirus lacking 018 was attenuated in mice.
20 The 2.0 Å crystal structure of the 018:STAT1 complex reveals a mechanism for a high-affinity,
21 pTyr-independent mode of binding to an SH2 domain. Furthermore, the STAT1 binding motif
22 of 018 shows sequence similarity to the STAT1-binding proteins from Nipah virus, which like
23 018, block the association of STAT1 with an IFN receptor. Taken together, these results
24 provide detailed mechanistic insight into a potent mode of STAT1 antagonism, found to exist
25 in genetically diverse virus families.

26

27 Introduction

28 Interferons (IFNs) activate signal transduction pathways to upregulate IFN-stimulated genes
29 (ISGs) that inhibit virus replication and spread (Schneider et al., 2014). Signal transduction is
30 mediated by signal transducers of transcription (STAT) proteins STAT1 and STAT2, which,
31 in an unstimulated state, exist as latent unphosphorylated hetero (U-STAT1-U-STAT2) or
32 homodimers (U-STAT1) (Mao et al., 2005; Wang et al., 2021). IFNs bind their cognate
33 receptors to activate receptor-associated kinases that in turn phosphorylate receptor tails
34 creating a docking site for STAT SH2 domains. At the receptors, STATs are phosphorylated
35 (pSTAT) and undergo dimer rearrangement from an anti-parallel to an activated parallel
36 conformation, mediated by a reciprocal pTyr:SH2 interaction between two pSTATs (Wenta et
37 al., 2008).

38

39 Type I IFNs (IFN-I) signal through the IFN α / β receptor (IFNAR) to activate kinases that
40 phosphorylate STAT1 and 2. The pSTAT1:STAT2 heterodimer associates with IRF9 to form
41 a trimeric complex known as IFN-stimulated gene factor 3 (ISGF3) (Rengachari et al., 2018).
42 Type II IFN (IFN-II), of which IFN γ is the sole member, signals through the IFN γ receptor
43 (IFN γ GR) and activates kinases that phosphorylate STAT1 only. The pSTAT1 homodimer is
44 known as the gamma-activated factor (GAF). Nuclear ISGF3 and GAF drive the transcription
45 of ISGs with IFN-stimulated responsive element (ISRE) or gamma-activated sequence (GAS)
46 promoters, respectively (Aaronson and Horvath, 2002).

47

48 To overcome the anti-viral activities induced by IFNs, viruses have evolved numerous
49 strategies to antagonise host IFN-pathways, for reviews see (García-Sastre, 2017; Randall and
50 Goodbourn, 2008). Given the importance of viral-mediated IFN-signalling antagonism for

51 productive infection, mechanistic insight into these strategies can guide novel anti-viral
52 therapeutic approaches.

53

54 Poxviruses are large, cytoplasmic DNA viruses. Vaccinia virus (VACV) is the prototypic
55 poxvirus, the vaccine used to eradicate smallpox and an excellent model to study host-pathogen
56 interactions. VACV encodes about 200 proteins of which it is estimated that >1/3 modulate
57 host immune responses, including proteins that target IFN-induced signalling pathways (Smith
58 et al., 2013, 2018). VACV proteins B18 and B8 act as soluble IFN receptors that bind IFN-I
59 and IFN-II, respectively (Alcamí and Smith, 1995; Colamonici et al., 1995; Mossman et al.,
60 1995; Symons et al., 1995). At the intracellular level, the viral phosphatase vH1
61 dephosphorylates STAT1 (Koksal et al., 2009; Najarro et al., 2001), whilst protein C6 inhibits
62 IFN-I signalling in the nucleus (Stuart et al., 2016).

63

64 Here we show that an uncharacterised viral protein (018), encoded by gene VACWR018 of
65 VACV strain Western Reserve (WR), binds directly to the SH2 domain of STAT1 and
66 competes with a phosphorylated IFN receptor to prevent STAT1 receptor association and
67 subsequent STAT1 phosphorylation. A VACV lacking 018 was attenuated in mice and induced
68 enhanced innate immune signalling, demonstrating the *in vivo* importance of this inhibitor of
69 IFN-induced signalling for poxviruses. The crystal structure of 018 complexed with STAT1
70 was determined to 2.0 Å. This revealed a key contact that enables 018 to bind STAT1 and
71 STAT4 selectively, and a non-canonical SH2 binding mode, whereby 018 occupies the SH2
72 domain in a pTyr pocket-independent manner with high affinity. The 018 STAT1-binding
73 motif is identical in variola virus and monkeypox virus orthologues of 018. In addition, it shares
74 remarkable similarity to STAT1-binding regions of V/W and P proteins from Nipah virus
75 (NiV), a highly pathogenic paramyxovirus. Like 018, we show that the minimal STAT1

76 binding region of NiV-V protein can compete with a phosphorylated IFN receptor to bind
77 STAT1. This study reveals a conserved mechanism for targeting STAT1 utilised by members
78 of the poxvirus and paramyxovirus families, to subvert cellular anti-viral responses.

79 **Results**

80 The 018 open reading frame (ORF) from VACV WR (gene VACWR018) is transcribed early
81 during infection and is one of the most abundant viral transcripts (Assarsson et al., 2008;
82 Wennier et al., 2013; Yang et al., 2015). Protein 018 is highly conserved within the
83 orthopoxvirus genus including human pathogens cowpox virus, monkeypox virus and variola
84 virus, the causative agent of smallpox (**Figure S1**). The 018 ORF is also highly conserved in
85 ancient variola viruses dating from the Viking age (Mühlemann et al., 2020).

86

87 As 018 is expressed early during infection, is highly abundant, and encoded within a region of
88 the genome known to harbour immunomodulators (Gubser et al., 2004), we explored if 018
89 modulates anti-viral immunity.

90

91 **Vaccinia protein 018 inhibits IFN-induced signalling**

92

93 To test if 018 modulates anti-viral immunity, reporter plasmids were used that express a
94 luciferase (Luc) gene upon activation of specific anti-viral signalling pathways. Activation of
95 IRF3, NF- κ B and AP-1 pathways that induce IFNs (specifically IFN β) were measured using
96 an IFN β -Luc reporter after stimulation with Sendai virus (SeV), the prototypic paramyxovirus.
97 Downstream, IFN-induced pathways were measured using ISRE or GAS-Luc reporters after
98 stimulation with IFN-I (IFN α) or IFN-II (IFN γ), respectively.

99

100 TAP-tagged (2 X Strep, 1 X FLAG epitope) 018 inhibited pathway activation induced by IFN-
101 I and II (**Figure 1A, B**), whereas it had little effect on the activation of IFN β -Luc (**Figure 1C**).

102 NiV-V (Rodriguez et al., 2002) and VACV protein C6 (Stuart et al., 2016; Unterholzner et al.,
103 2011) were used as positive controls, whereas VACV protein N1 (Maluquer de Motes et al.,
104 2011) was used as a negative control.

105

106 Next, the effect of 018 on expression of endogenous ISGs was tested. T-REx 293 cell lines that
107 inducibly expressed TAP-tagged 018 or controls (EV, TAP-tagged N1 or NiV-V) were
108 stimulated with IFN-I or -II and representative ISGs were analysed by immunoblotting.
109 Stimulation with IFN led to an increase in ISG levels in cells expressing either EV, or N1
110 (**Figure 1D, E**). In contrast, 018 blocked upregulation of ISGs after stimulation with either
111 IFN-I or IFN-II (**Figure 1D, E**). These data show 018 is a potent inhibitor of IFN-I and -II-
112 induced signalling.

113

114 **Phosphorylation of STAT1 at Tyr 701 is blocked by 018**

115

116 To assess if 018 inhibited STAT translocation into the nucleus, HeLa cells were transfected
117 with TAP-tagged 018 or controls and then stimulated with IFN-I or -II. In untransfected cells,
118 stimulation with IFN-I or -II induced STAT1 redistribution to the nucleus (**Figure 2A**),
119 whereas only IFN-I did so for STAT2 (**Figure 2B**). In contrast, translocation of STAT1 and 2
120 was blocked in cells expressing 018 (**Figure 2A, B**). Consistent with previous reports, NiV-V
121 also blocked STAT1 translocation, but unlike 018, NiV-V redistributed STAT1 to a
122 predominantly cytoplasmic localisation in non-stimulated cells due to harbouring a nuclear
123 export signal (Rodriguez et al., 2004) (**Figure 2A**).

124

125 Prior to translocation, STATs are phosphorylated at conserved tyrosine residues near their C
126 terminus. To test if 018 inhibited phosphorylation of STAT1 at Tyr701 (pSTAT1) and STAT2
127 at Tyr-690 (pSTAT2), T-REx 293 cells expressing TAP-tagged 018 or controls were stimulated
128 with IFN-I or -II and lysates were analysed by immunoblotting. IFN-I stimulation increased
129 pSTAT1 and pSTAT2 levels in both EV and N1-expressing cells, whereas cells expressing 018
130 showed very low levels of pSTAT1 (**Figure 2C, Figure S2A**). In contrast, 018 only affected
131 pSTAT2 levels marginally (**Figure 2C, Figure S2B**). Consistent with previous reports, NiV-
132 V blocked STAT1 phosphorylation (Rodriguez et al., 2002). Interestingly, NiV-V also blocked
133 STAT2 phosphorylation, which has not been reported previously, but is consistent with NiV-
134 V harbouring a distinct STAT2-binding site (Rodriguez et al., 2004). IFN-II increased pSTAT1
135 in control cells, whereas STAT1 phosphorylation was blocked by 018 (and NiV-V) (**Figure**
136 **2D, Figure S2C**). These data show 018 blocks phosphorylation of STAT1 at Tyr701 after
137 stimulation with IFN-I or -II and thus prevents STAT1/2 translocation.

138

139 **A minimal 21 aa fragment of 018 is sufficient to bind STAT1**

140

141 Next, we assessed if 018 interacts with cellular proteins involved in IFN signal transduction.
142 TAP-tagged 018 was expressed in 2fTGH cells and its ability to co-precipitate STAT1, STAT2
143 and IRF9 was assessed by pulldown. 018 co-precipitated STAT1 and to a lesser degree STAT2,
144 whereas no interaction with IRF9 was observed (**Figure 3A**). In 2fTGH-derived STAT1
145 knockout cells (U3A), the 018:STAT2 interaction was lost, indicating the interaction was either
146 indirect via STAT1, or STAT1 was required for 018 to precipitate STAT2 (**Figure 3B**). In
147 2fTGH-derived STAT2 knockout cells (U6A), the 018:STAT1 interaction was retained
148 (**Figure 3B**). The 018:STAT1 interaction was confirmed to be direct as 018 and STAT1 still

149 co-precipitated when expressed by a cell-free based transcription and translation system
150 (**Figure S3A**).

151
152 To characterise the 018:STAT1 interaction, each protein was expressed and purified from *E.*
153 *coli*. 018 was fused to the B1 domain of protein G (GB1) to improve solubility and expression.
154 Using isothermal titration calorimetry (ITC), we observed a K_D value of 291 nM, with a
155 stoichiometry of 1.02, indicating a single 018 molecule binds per U-STAT1 protomer (**Figure**
156 **3C**). The effect of 018 on U-STAT1 quaternary assembly was evaluated by SEC-MALS. U-
157 STAT1 alone eluted predominantly as tetrameric and dimeric species, and preincubation with
158 excess GB1-018 resulted in the two peaks having earlier elution volumes and increased masses
159 (**Figure S3B**). This indicates that 018 binds U-STAT1 without altering its oligomeric state.

160
161 Next, the region of 018 required to inhibit IFN signalling was mapped. C-terminal and N-
162 terminal truncations of 018 were constructed and their ability to inhibit IFN-I and -II signalling
163 was assessed (**Figure 3D-F**). For ease of interpretation, inhibitory activity was categorised as
164 (i) greater than 95%, (ii) between 75% and 95%, or (iii) less than 25%, which was deemed to
165 be non-inhibitory. Mutant 1-35 had the largest C-terminal truncation and still demonstrated
166 >95% inhibition (**Figure 3E,F**). Mutant 8-60 inhibited >95%, whereas mutant 22-60 lost
167 inhibitory activity (<25%) and showed comparable expression to the full-length protein
168 (**Figure 3E,F**). These data show that aa 8-35 of 018 is sufficient for pathway inhibition.

169
170 To refine the region of 018 responsible for pathway inhibition, additional mutants, truncating
171 inwards from aa 8 and 35 were constructed (**Figure S3C**). Mutant 11-60 retained >95%
172 inhibition whereas mutants with further N-terminal truncation had reduced inhibitory activity
173 despite WT expression levels (**Figure S3D,E**). Mutant 1-30 inhibited between 75%-95%,

174 demonstrating a marginal loss in inhibitory activity, however, expression was undetectable
175 (**Figure S3D,E**). All further C-terminal truncations showed <25% inhibitory activity, but
176 again, expression was undetectable (**Figure S3D,E**). The same pattern of inhibitory activity by
177 018 truncations mutants was observed for both IFN-I and -II signalling (**Figure S3F**),
178 indicating the same region of 018 is required to inhibit both pathways.

179

180 These observations map a putative minimal inhibitory region of 018 to aa 11-31. The C-
181 terminal boundary was defined assuming the slight reduction in inhibitory activity after
182 deletion of residues 35-31 was due to lower protein expression levels, whereas further
183 truncation removed functional residues. Ser31 is included within the minimal inhibitory region
184 as it is highly conserved in orthopoxvirus orthologues of 018 (**Figure S1**).

185

186 ITC measurements of the putative minimal fragment (018^{T2}) with STAT1 gave a K_D of 235
187 nM, a value comparable to that of full length 018 (291 nM) (**Figure 3H**). Removal of the C-
188 terminal 28-TYTS-31 (018^{T3}) from the putative minimal fragment led to a large reduction in
189 affinity (>10 μM), thereby demonstrating the importance of these residues (**Figure 3I**).
190 Collectively, these data show that a 21-residue segment of 018, aa 11-31, is sufficient for
191 maximal STAT1 binding and inhibitory activity.

192

193 **018 is a virulence factor**

194 To study the role of 018 during infection, a VACV (strain WR) 018 deletion mutant (termed
195 vΔ018) was constructed. The wild-type sibling virus (termed v018) and vΔ018 were analysed
196 by PCR (**Figure S4A**) and genomic sequencing, which showed no differences other than the
197 intended deletion of the 018 ORF. Comparison of v018 and vΔ018 in cell culture displayed no

198 difference in replication or plaque size (**Figure S4B-D**). Another VACV (termed vTAP-018)
199 was constructed by reintroduction of the 018 ORF fused to an N-terminal TAP-tag into vΔ018
200 at its natural locus. Pulldown of TAP-tagged 018 expressed from vTAP-018 confirmed the
201 018:STAT1 interaction during infection (**Figure S4E, F**).

202

203 Next, vΔ018's ability to inhibit IFN signalling was assessed. A549 cells were infected with
204 v018 or vΔ018 and, at the indicated times p.i., were stimulated with either IFN-I or -II, after
205 which the pSTAT1 level was determined by immunoblotting. Cells were washed once prior to
206 stimulation to remove the majority of soluble VACV IFN decoy receptors B8 and B18. This,
207 however, will not fully remove B18 (IFN-I decoy receptor) due to its ability to bind to the cell
208 surface (Alcamí et al., 2000). Although by 2 h p.i., both v018 and vΔ018 inhibited pSTAT1
209 induction after IFN-I stimulation, v018 inhibited earlier and to a greater extent. (**Figure 4A**).
210 In contrast, pSTAT1 induction was inhibited by v018 but almost fully rescued to mock levels
211 in vΔ018-infected cells after IFN-II stimulation (**Figure 4B**). Consistent with this finding,
212 STAT1 translocation was blocked by v018 after IFN-II stimulation, whereas in vΔ018-infected
213 cells, STAT1 was predominantly nuclear (**Figure 4C**). The impaired ability of vΔ018 to inhibit
214 IFN-II signalling was illustrated further by increased IRF1 levels (a canonical IFN γ ISG) in
215 cells infected with v018 compared to vΔ018 after IFN-II stimulation at both the mRNA
216 (**Figure S4G**) and protein level (**Figure 4D**).

217

218 To evaluate if 018 contributes to virulence, BALB/c mice were infected via the intranasal route
219 with either v018 or vΔ018 and their weight was measured daily (**Figure 4E**). Mice infected
220 with vΔ018 lost significantly less weight than those infected with v018 (**Figure 4E**) and
221 showed reduced virus titres at 7 and 9 days p.i. (**Figure 4F**). Furthermore, consistent with 018

222 functioning as an immunomodulator, mRNAs for several ISGs, chemokines and IFNs were
223 upregulated in the lungs of mice infected with vΔ018 compared to v018 (**Figure 4G**).
224 Collectively, these data show VACV lacking 018 is defective in inhibition of IFN-induced
225 signalling and is attenuated in mice.

226

227 **018 binds the STAT1 SH2 domain to block its association with the phosphorylated**
228 **IFNGR1**

229

230 To identify which STAT1 domain/s 018 binds, the ability of 018 to interact with several STAT1
231 truncations and STAT1-STAT3 chimeras was tested (**Figure 5A**). 018 bound a chimera with
232 linker domain (LD), SH2 and transactivation domain (TAD) of STAT1 (31F), but not a chimera
233 with coiled-coil and DNA-binding domains of STAT1 (13F) (**Figure 5B**). These chimeras have
234 been studied with NiV-V, which also only binds 31F (Rodriguez et al., 2004). 018 bound
235 STAT1 C-terminal truncations that lack the final 38 residues (STAT1β, a naturally occurring
236 isoform of STAT1) or the entire TAD (**Figure 5C**). Lastly, 018 bound a chimera that contained
237 only the SH2 and TAD of STAT1 (Fus 1) but not a chimera that contained the LD of STAT1
238 (Fus 2) nor with STAT3 alone (**Figure 5D**). Together, these pulldowns show 018 binds the
239 SH2 domain of STAT1.

240

241 The finding that 018 binds the SH2 domain allowed us to hypothesise how 018 blocks STAT1
242 phosphorylation. Given that 018 inhibition of IFN-II signalling during infection was non-
243 redundant, we focused on this pathway to study 018 mechanistically. The IFNGR is composed
244 of two ligand-binding IFNGR1 chains and two IFNGR2 chains and binds dimeric IFNγ
245 (Mendoza et al., 2019). Ligand engagement induces JAK-1 phosphorylation of IFNGR1 at

246 Tyr440 (Briscoe et al., 1996; Greenlund et al., 1994). STAT1 then docks at the pIFN^{GR1} pTyr
247 site via its SH2 domain and is itself phosphorylated (Greenlund et al., 1995). pSTAT1 then
248 undergoes structural rearrangement to a parallel dimer orientation and dissociates from the
249 receptor. We hypothesised that by binding the SH2 domain, 018 blocks STAT1 recruitment to
250 pIFN^{GR1} and thus prevents STAT1 phosphorylation.

251

252 To test this, a fluorescence polarisation (FP) assay was established using a fluorescent 12-mer
253 peptide corresponding to the pIFN^{GR1} sequence harbouring the STAT1 docking site
254 (pYDKPH) as a probe. Addition of 018 to a preformed STAT1-pIFN^{GR1} probe led to a dose-
255 dependent displacement of probe and an IC₅₀ value of 1.26 μM (**Figure 5E**). IC₅₀ values of 0.93
256 μM and 17.82 μM for 018^{T2} and 018^{T3}, respectively, were obtained, demonstrating that 018^{T2},
257 but not 018^{T3}, has comparable inhibitory activity to full length 018, consistent with ITC data
258 (**Figure 5E**).

259

260 The mechanism was further validated by competition ITC. A 5-mer peptide corresponding to
261 the pIFN^{GR1} docking region (pYDKPH) was titrated into U-STAT1, giving a K_D value of 7.6
262 μM (**Figure 5F**). In contrast, inclusion of excess 018 in the calorimeter cell resulted in complete
263 loss of detectable binding (**Figure 5G**). Taken together, these data demonstrate a competitive
264 inhibition mechanism, whereby 018 binds the SH2 of STAT1 and prevents STAT1 from
265 engaging the active IFN signalling receptor complex.

266

267 **Vaccinia 018 and Nipah virus V protein utilise a shared motif to engage STAT1**

268

269 NiV-V, W and P proteins, encoded by the P gene, all inhibit IFN signalling. They have distinct
270 C-terminal sequences but share a common 407 aa N-terminal region to which the IFN
271 inhibitory activity was mapped (aa 114-140) (Ciancanelli et al., 2009). Here, we focus on this
272 STAT1-binding region and refer to this within NiV-V.

273

274 The observation that 018 and NiV-V bind STAT1, block STAT1 phosphorylation and bind the
275 31F chimera suggested they might share a similar mode of action. Alignment of the NiV-V
276 STAT1 binding region and 018^{T2} revealed aa similarity exemplified by a conserved HxH motif
277 preceded by a cluster of conserved hydrophobic residues (**Figure 6A**). Recent ITC data showed
278 a NiV-V fragment (aa 92-190) binds STAT1 directly but weakly ($K_D > 100 \mu\text{M}$) and mutation
279 of 117-HDH-119 to 117-AAA-119 abolished binding (Jensen et al., 2020). To determine
280 whether the HxH motif of 018 had analogous function, we mutated 17-HGH-19 to 17-AGA-
281 19 (018^{AGA}). Unlike 018, 018^{AGA} did not co-precipitate with endogenous STAT1 in cells
282 (**Figure S5**). Furthermore, ITC titration of purified GB1-fused 018^{AGA} into STAT1 resulted in
283 no detectable binding (**Figure 6B**). Loss in STAT1 binding ability correlated with a loss of
284 inhibitory activity because 018^{AGA} was unable to inhibit IFN-I and -II signalling by reporter
285 gene assay (**Figure 6C,D**). Consistent with this, 018^{AGA} did not interfere with
286 STAT1:pIFN γ R1 12-mer interaction by FP (**Figure 6G**). In addition, 018^{AGA} showed no
287 inhibition of STAT1-pIFN γ R1 binding via ITC (**Figure 6H**).

288

289 Consistent with the idea that 018 and NiV-V harbour analogous motifs, recently the site for
290 NiV-V binding to STAT1 was mapped to the SH2 domain of STAT1 (Keiffer et al., 2020). To
291 assess if these viral proteins target the same SH2 interface, the ability of 018 to outcompete the
292 NiV-V:STAT1 interaction was tested. In cells transfected with TAP-tagged NiV-V, NiV-V co-
293 precipitated with endogenous STAT1, however, this was decreased in a dose-dependent

294 manner by expression of HA-tagged 018 (**Figure 6E**). In contrast, HA-tagged 018^{AGA} did not
295 affect the NiV-V:STAT1 interaction (**Figure 6F**). These data show that 018 and NiV-V utilise
296 a shared motif to bind a common interface on the SH2 domain of STAT1.

297

298 Previous reports show NiV-V sequesters STAT1 and 2 within the cytoplasm and prevents
299 STAT1 phosphorylation (Rodriguez et al., 2002). The finding that 018 and NiV-V bind STAT1
300 via the same interface prompted us to assess if, like 018, NiV-V competes with pIFNGR1 to
301 bind STAT1. To test this, NiV-V STAT1-binding fragment residues 110-140 (NiV-V¹¹⁰⁻¹⁴⁰)
302 fused to a GB1 tag was purified together with a mutant in which His117 and His119 of the
303 HxH motif were mutated to Ala (NiV-V^{ADA}). By FP assay, addition of NiV-V to the preformed
304 STAT1-pIFNGR1 12-mer complex led to a modest reduction in polarisation, whereas addition
305 of NiV-V^{ADA} was non-competitive (**Figure 6I**). Consistent with these data, preincubation of
306 STAT1 with NiV-V abolished any detectable binding between STAT1 and the pIFNGR 5-mer
307 by ITC (**Figure 6J**). In contrast, preincubation with NiV-V^{ADA} did not prevent
308 STAT1:pIFNGR binding (**Figure 6K**). These data show that, in the context of IFN-II
309 signalling, NiV-V can block STAT1 recruitment to the active IFNGR signalling complex.

310

311 **Phosphotyrosine pocket-independent binding of 018 to the STAT1 SH2 domain**

312

313 A feature of the SH2 interface is a deep pTyr pocket that binds the phosphate group and the
314 phenyl ring of phosphotyrosine. Remarkably, 018 binds the STAT1 SH2 domain with high-
315 affinity and competes with pIFNGR1 without a pTyr modification. Intrigued by this
316 observation, we crystallised the STAT1 132-684 core fragment complexed with the minimal

317 018 peptide (Met11-Ser31). Crystals diffracted to 2.0 Å with 018 electron density clearly
318 defined for most of the peptide, with only Ser31 not visible (**Figure S6A**).

319
320 The 018 peptide forms a β -hairpin fold with a β -turn midway through the sequence (**Figure**
321 **7A,B**) and the two strands of the peptide augment the central β -sheet of the SH2 domain, with
322 Val14-His17 backbone hydrogen-bonding to the β D strand of the SH2 domain (**Figure 7C**).
323 There is spatial overlap with published binding modes of pTyr peptides from pIFNGR1 and
324 pSTAT1 homodimer (**Figure 7B**). The 680 Å² interface is formed by a large number of shallow
325 contacts exclusively within the SH2 domain. Residues Trp12, Val14, Ile16 comprise a
326 continuous hydrophobic interface with STAT1 helix α A and strand β D (**Figure 7D**). This is
327 followed by a HxH motif, in which His17 forms an imidazole-to-imidazole hydrogen bond
328 with His629 of STAT1 (**Figure 7D, E**). The His17 rotamer is stabilised intramolecularly by a
329 second hydrogen bond with the backbone carbonyl of 018 Gly21. Gly18 carbonyl forms a
330 hydrogen bond with Tyr651 hydroxyl of STAT1, similar to pIFNGR1 Pro443 (PDB: 1YVL).
331 His19 occupies the same cleft as His444 of pIFNGR1, forming an identical π -stacking
332 interaction with STAT1 Tyr634. The Asp20 sidechain stabilises the β -turn by hydrogen
333 bonding with the Ser21 backbone and forms an intramolecular salt bridge with Lys24 (**Figure**
334 **7D**). An inter-strand hydrogen bond between the hydroxyl groups of Ser13 and Thr28 act as a
335 non-covalent bridge that may stabilise the β -hairpin fold (**Figure 7D**).
336

337 Strikingly, 018 does not interact with the pTyr pocket. The only tyrosine in the peptide, Tyr29,
338 hydrogen bonds with the ζ -amine of STAT1 Lys584 through its hydroxyl and makes van der
339 Waals contacts with the alkyl chain of the same lysine (**Figure 7D**). The lower affinity of 018^{T3}
340 compared to 018^{T2} may result from the loss of interactions made by Thr28 and Tyr29.

341

342 **A single histidine found in STAT1 and 4 is a key determinant of 018 selectivity**

343

344 High sequence similarity between SH2 domains of STATs led us to investigate if 018 interacts
345 with other STATs. In humans, there are seven STATs (STAT1, 2, 3, 4, 5A, 5B and 6) (Ihle,
346 2001). U3A cells were co-transfected with V5-tagged STAT1-6 and TAP-tagged 018.
347 Pulldown of 018 demonstrated that 018 binds STAT1 and STAT4, but not other STATs
348 (**Figure 7F**).

349

350 To understand the observed specificity of 018 for STAT1 and 4, STAT SH2 domain alignments
351 were integrated with our structural data (**Figure S6B**). In the crystal structure, a specific
352 interaction between 018 His17 and His629 of STAT1 was observed. Only STAT1 and 4 have
353 a histidine at this position, and so other STATs would fail to recapitulate this interaction. To
354 test if STAT1 His629 was critical for specificity, a STAT3 mutant was made in which the
355 structurally equivalent Glu635 was mutated to His. This enabled 018 to co-precipitate
356 STAT3^{Q635H}, allowing the unambiguous assignment of specificity determinants of 018 binding
357 (**Figure 7G**).

358 **Discussion**

359 STAT1 and 2 are central to IFN signalling and thus are common targets for viral antagonism
360 (Harrison and Moseley, 2020), however structural details of STAT:antagonist complexes have
361 remained elusive with a few exceptions. The complex of SeV C protein with the N-terminal
362 domain of STAT1 indicates that C protein interferes with the oligomeric state of STAT1 (Oda
363 et al., 2015) whilst the structures of dengue and Zika virus NS5 proteins in complex with
364 STAT2 revealed that both NS5 proteins overlap the IRF9 binding site to prevent ISGF3

365 assembly (Wang et al., 2020). A similar mechanism was described for measles V protein
366 (Nagano et al., 2020). Here, the structure of 018, an uncharacterised poxvirus protein, with
367 STAT1, shows 018 occupies the STAT1 SH2 domain to block STAT1 association with the
368 active pIFNGR.

369
370 The molecular recognition between STAT SH2 domains and a pTyr site represents a conserved
371 mechanism for STAT recruitment to activated receptors. The pTyr is estimated to contribute
372 half the binding energy, while the remaining specificity is provided by a small number of
373 adjacent residues (Kaneko et al., 2010; Ladbury and Arold, 2011). For STAT1, 018 overlaps
374 with these specificity-determining sites and obstructs the pTyr pocket without occupying it.

375
376 To establish if a similar binding mode exists, we examined 524 SH2-containing structures
377 retrieved from PDB based on either Pfam or SMART annotation. The majority of liganded
378 SH2 domains bind a pTyr-containing peptide, a synthetic pTyr mimetic or an unphosphorylated
379 tyrosine at the pTyr pocket. Several structures contain SH2 domains as part of a larger protein-
380 protein interaction, in which the pTyr pocket is not occupied, however, in such cases, the
381 interface extends significantly beyond the SH2 phosphopeptide site. The closest binding mode
382 analogue to 018 was a monobody that binds at the phosphopeptide site of SHP-1 phosphatase
383 without interacting with the pTyr pocket itself (PDB: 6SM5). Hence, we suggest 018 has an
384 unprecedented mode of high-affinity SH2 domain binding.

385
386 For IFN-I-induced signalling, 018 blocked pSTAT1 induction but only modulated pSTAT2
387 levels minimally. After IFN-I stimulation, STAT2 docks at pTyr466 on IFNAR1 and
388 subsequently is phosphorylated at Tyr690 (Yan et al., 1996). The pTyr690 of STAT2 serves as
389 a docking site for STAT1 to present STAT1 for proximal phosphorylation at Tyr701 by JAKs

390 (Leung et al., 1995; Li et al., 1997; Qureshi et al., 1996). Additional Tyr phosphorylation sites
391 on IFNAR2 are also important for ISGF3 formation and could serve as docking sites for STAT1
392 and 2 functioning in a cell type- or species-dependent manner (Zhao et al., 2008). Thus, we
393 rationalise that during IFN-I signalling, occupancy of the STAT1 SH2 domain by 018 would
394 diminish STAT1 engagement of either STAT2 pTyr690 or IFNAR to prevent STAT1
395 phosphorylation.

396

397 STAT4 was identified as an additional binding partner of 018. STAT4 is activated by
398 phosphorylation predominantly in response to IL-12 and IFN-I and promotes IFN γ production
399 during virus infection (Nguyen et al., 2002; Yang et al., 2020). The activation of STAT4 occurs
400 mainly in lymphoid and myeloid cells, but also vascular endothelial cells (Torpey et al., 2004),
401 thus, for 018 to modulate this pathway, VACV would need to infect these cell types *in vivo*.
402 As the 018-binding interface is conserved between STAT1 and 4, functionally, 018 could
403 prevent STAT4 recruitment to active receptors. Whether the 018:STAT4 interaction plays a
404 physiological role during infection remains to be determined.

405

406 As STATs are an important class of drug targets in a wide range of diseases (Miklossy et al.,
407 2013), the highly specific interaction of 018 for STAT1 and 4, notably via the HxH motif,
408 presents a potential avenue for development of STAT1/4-selective inhibitors via rational drug
409 design. One approach could involve the construction of peptidomimetic derivatives of the HxH
410 motif in a structure-guided manner to deliver high-affinity binders.

411

412 The STAT1-binding region of 018 possesses significant sequence similarity to the STAT1-
413 binding region of V/W and P proteins from NiV, a paramyxovirus first discovered in Malaysia
414 in 1998 (Chua, 2000). NiV is highly pathogenic and has caused numerous sporadic outbreaks,

415 including recently in Kerala, India (Arunkumar et al., 2019) and no effective treatments or
416 vaccines are available (Hauser et al., 2021). Previous studies of NiV-V showed it sequesters
417 STAT1 and 2 and prevents STAT1 phosphorylation (Rodriguez et al., 2002). Our data advance
418 this observation and show that in the context of IFN-II signalling, the NiV STAT1 binding
419 region can block STAT1:pIFNGR1 association. Mechanistically, this is most relevant to the V
420 and P proteins due to their cytoplasmic location (Shaw et al., 2004). Although W harbours an
421 identical STAT1-binding region, it traffics STAT1 to the nucleus to prevent STAT1 activation
422 (Shaw et al., 2004). As we anticipate that the 114-VVYHDHGG-121 region of NiV-V/W and
423 P bind in an analogous fashion to the 14-VFIHGHDG-19 of 018, the 018:STAT1 structure can
424 aid understanding of previous mutagenesis studies of the NiV STAT1 binding region
425 (Ciancanelli et al., 2009; Hagmaier et al., 2006; Jensen et al., 2020; Ludlow et al., 2008;
426 Satterfield et al., 2019).

427

428 Intrinsically disordered proteins that harbour short linear motifs (SLiMs), such as the STAT1-
429 binding region from NiV and 018, are important mediators of virus-host interactions (Mishra
430 et al., 2020). SLiMs are advantageous to viruses because they offer high flexibility and
431 typically can evolve at fast rate allowing quick adaptation to changing host environments (Xue
432 et al., 2014). Virus SLiMs that mimic eukaryotic linear motifs have appeared as a prevalent
433 virus strategy to hijack cellular machinery and disable host defences (Davey et al., 2011; Hagai
434 et al., 2014; Lasso et al., 2021). Because SLiMs are short and evolve easily, they have emerged
435 predominantly independent of their host mimics rather than by horizontal gene transfer from
436 the host (Elde and Malik, 2009; Hagai et al., 2014). In the context of the 018/NiV-V STAT1-
437 binding motif, although it is possible cellular proteins do exist that bind STAT SH2 domains
438 in pTyr-independent manner, none have been identified and thus 018/NiV-V might not mimic
439 a cellular interaction. The STAT1-binding motif described here likely represents a striking

440 example of convergent evolution in diverse virus families and has produced an unconventional
441 binding mechanism to target STAT1. Consistent with the notion that SLiMs preferentially
442 target proteins central to multiple networks (Dyer et al., 2008), STAT1 is required for ISG
443 induction in response to all IFN families (IFN-I, II and III). The existence of the shared motif
444 between disparate viruses highlights its importance as an efficient moiety for inhibiting IFN-
445 induced signalling.

446

447 It is notable that amongst the different STAT domains, the SH2 domain is the most highly
448 conserved across various species (Park et al., 2008). Targeting this conserved domain may
449 enable these viral antagonists to function in multiple species and contribute to the broad species
450 specificity of VACV and NiV. Consistent with this notion, data presented here show that 018
451 antagonises human IFN signalling and contributes to VACV virulence in mice. Along the same
452 lines, the VACV decoy IFN receptors B8 and B18 bind and neutralise IFNs from many species
453 (Alcamí and Smith, 1995; Symons et al., 1995).

454

455 Poxviruses encode multiple antagonists of IFN-induced signalling. The earliest functioning of
456 these, the viral phosphatase vH1, is carried within virions and released into the cytoplasm upon
457 infection where it might dephosphorylate STAT1, although this activity has been demonstrated
458 only in vitro (Najarro et al., 2001; Schmidt et al., 2013). Multiple reports have shown that
459 shortly after VACV infection cells are refractory to pSTAT1 activation by IFN-II stimulation
460 (Mann et al., 2008; Najarro et al., 2001; Schmidt et al., 2013). Hitherto, this phenotype was
461 mainly attributed to vH1, however deletion of 018 led to an almost complete rescue of pSTAT1
462 levels despite the presence of vH1, demonstrating that during infection 018, rather than vH1,
463 is responsible for this phenotype. Consistent with this early block, 018 is one of the earliest
464 viral proteins detected during infection (Soday et al., 2019).

465

466 Despite apparent redundancy in inhibition of IFN-induced signalling by VACV, deletion of
467 individual IFN antagonists leads to virus attenuation *in vivo* (Figure 4; Symons et al., 1995;
468 Unterholzner et al., 2011). These non-redundant phenotypes may stem from each inhibitor
469 having different locations or expression kinetics or being multifunctional. Unlike intracellular
470 inhibitors, B18 and B8 are secreted from cells and thus can neutralise IFNs extracellularly and
471 distally. Also, B18 can bind to cell surface glycosaminoglycans and thereby inhibit IFN-I-
472 induced signalling in uninfected cells (Alcamí et al., 2000; Montanuy et al., 2011). This is the
473 major mechanism by which B18 contributes to virulence (Hernández et al., 2018). Although the
474 B18 orthologue from Yaba-like disease virus (a yatapoxvirus) binds and inhibits IFN-III, the
475 VACV B18 protein does not (Huang et al., 2007), and there is no known specific inhibitor of
476 IFN-III-induced signalling made by VACV. Nonetheless, cells infected with VACV are
477 refractory to pSTAT1 induction after IFN-III stimulation, and IFN-III expression during viral
478 infection has little effect on VACV replication (Bandi et al., 2010; Bartlett et al., 2005). These
479 observations may be explained by the action of 018. Differences in expression kinetics of
480 VACV IFN antagonists could also affect redundancy, for, although B18 functions upstream of
481 018, VACV lacking 018 showed enhanced levels of pSTAT1 after IFN-I stimulation. Lastly,
482 virus proteins are often multifunctional. Indeed VACV protein C6, which inhibits both IFN
483 production (Unterholzner et al., 2011) and IFN-I signalling in the nucleus (Stuart et al., 2016)
484 also degrades HDAC4 and 5, which are restriction factors for VACV, and this might be the
485 major factor contributing to virulence (Lu et al., 2019; Soday et al., 2019).

486

487 Deletion of IFN antagonists can improve the safety and immunological memory of VACV-
488 based vaccine vectors (Albarnaz et al., 2018). Modified vaccinia Ankara (MVA) is a widely
489 used VACV-based vaccine vector and expresses 018 (Wennier et al., 2013). MVAs expressing

490 SARS-CoV-2 proteins have been described as potential vaccine candidates, and thus our
491 findings can inform further development (Chiuppesi et al., 2020; García-Arriaza et al., 2021;
492 Liu et al., 2021).

493

494 In summary, we describe a viral mechanism to antagonise IFN-induced signalling by
495 occupancy of the STAT1 SH2 domain to prevent STAT1 receptor association and subsequent
496 ISG expression. The structure of VACV protein 018 complexed with STAT1 illustrates how a
497 viral protein has evolved an unconventional strategy to bind an SH2 domain with high affinity.
498 The biological importance of 018 is shown by its contribution to virus virulence despite the
499 presence of other IFN antagonists. Finally, this study highlights how disparate viruses can
500 evolve highly similar motifs to target a host response that poses a common threat to all viruses.

501 **Acknowledgments**

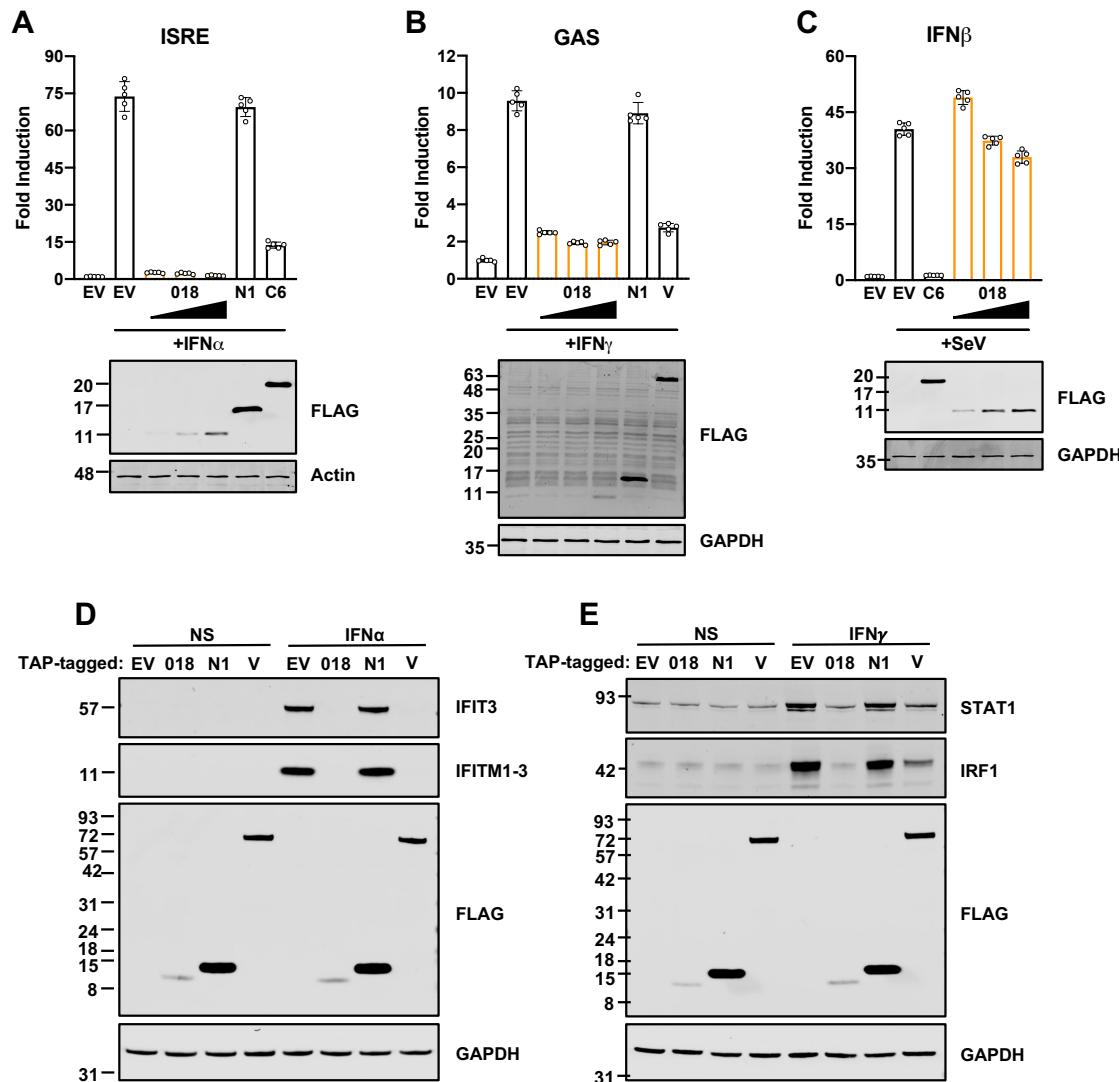
502 This work was supported by a Wellcome Trust Principal Research Fellowship (090315, to
503 G.L.S.). C.T.C was funded by the BBSRC Doctoral Training Partnership. T.P. was funded by
504 the MRC Doctoral Training Partnership. M.T.A. was funded by a Harry Smith vacation
505 studentship from the Microbiology Society. J.P.S., C.R.C. and H.D.H. were supported by
506 the NIAID Division of Intramural Research.

507

508 We thank Diamond Light Source for access to macromolecular crystallography beam line i04
509 (proposal 25402). We are grateful for access to instrumentation and support by the X-ray
510 crystallographic and Biophysical research facilities at the Department of Biochemistry,
511 University of Cambridge.

512

513 Henrietta Lacks, and the HeLa cell line that was established from her tumour cells without her
514 knowledge or consent in 1951, have made significant contributions to scientific progress and
515 advances in human health. We are grateful to Henrietta Lacks, now deceased, and to her
516 surviving family members for their contributions to biomedical research.

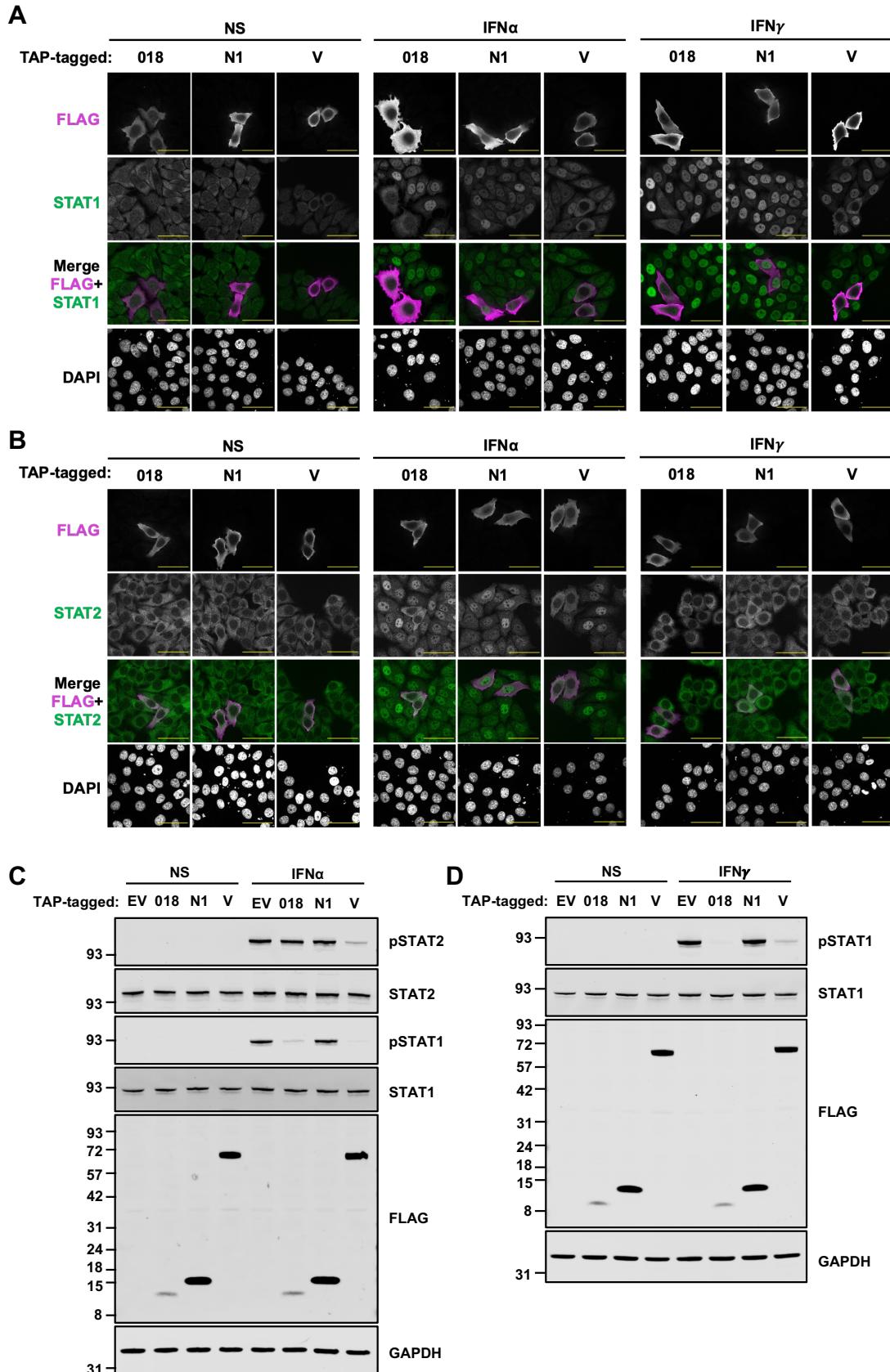

517 **Author contributions**

518 Conceptualisation: C.T.C., T.P. and G.L.S.
519 Methodology: C.T.C., T.P. and J.P.S.
520 Formal Analysis: C.T.C., T.P. and J.P.S.
521 Investigation: C.T.C., T.P., J.P.S., C.R.C. and M.T.A.
522 Resources: T.P., M.H., H.D.H. and G.L.S.
523 Data Curation: C.T.C, T.P., J.P.S. and M.H.
524 Writing: Original draft: C.T.C. and T.P.
525 Writing: Reviewing and Editing: C.T.C, T.P., J.P.S., C.R.C., M.T.A., M.H., H.D.H., and G.L.S.
526 Visualisation: C.T.C. and T.P.
527 Supervision: M.H., H.D.H. and G.L.S.
528 Project Administration: C.T.C. and G.L.S.
529 Funding Acquisition: M.H., H.D.H. and G.L.S.

530 **Declaration of interests**

531 No conflict of interest to declare.

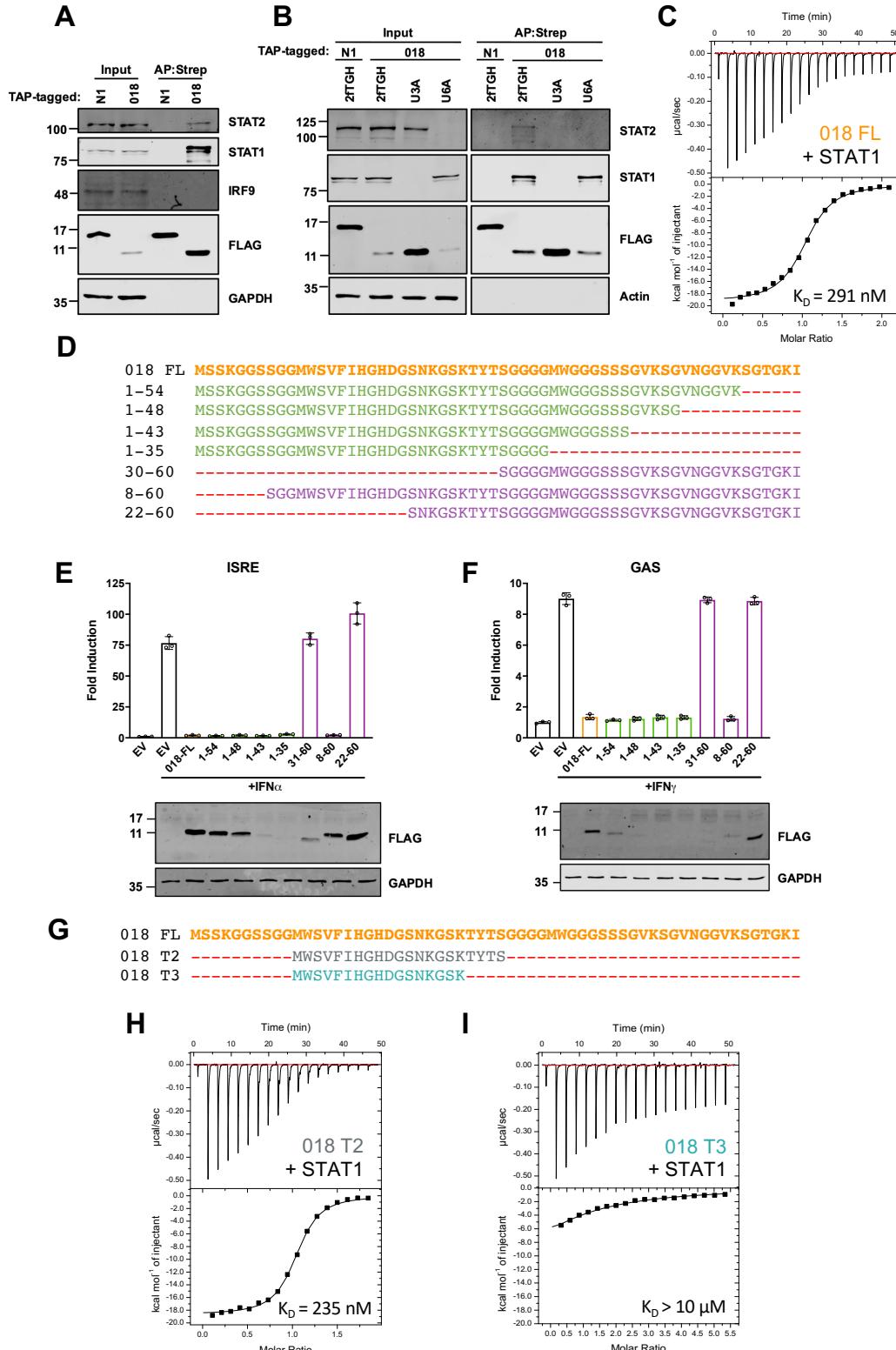
532 **Figures and legends**


533

534 **Figure 1. Vaccinia protein 018 inhibits IFN-induced signalling**

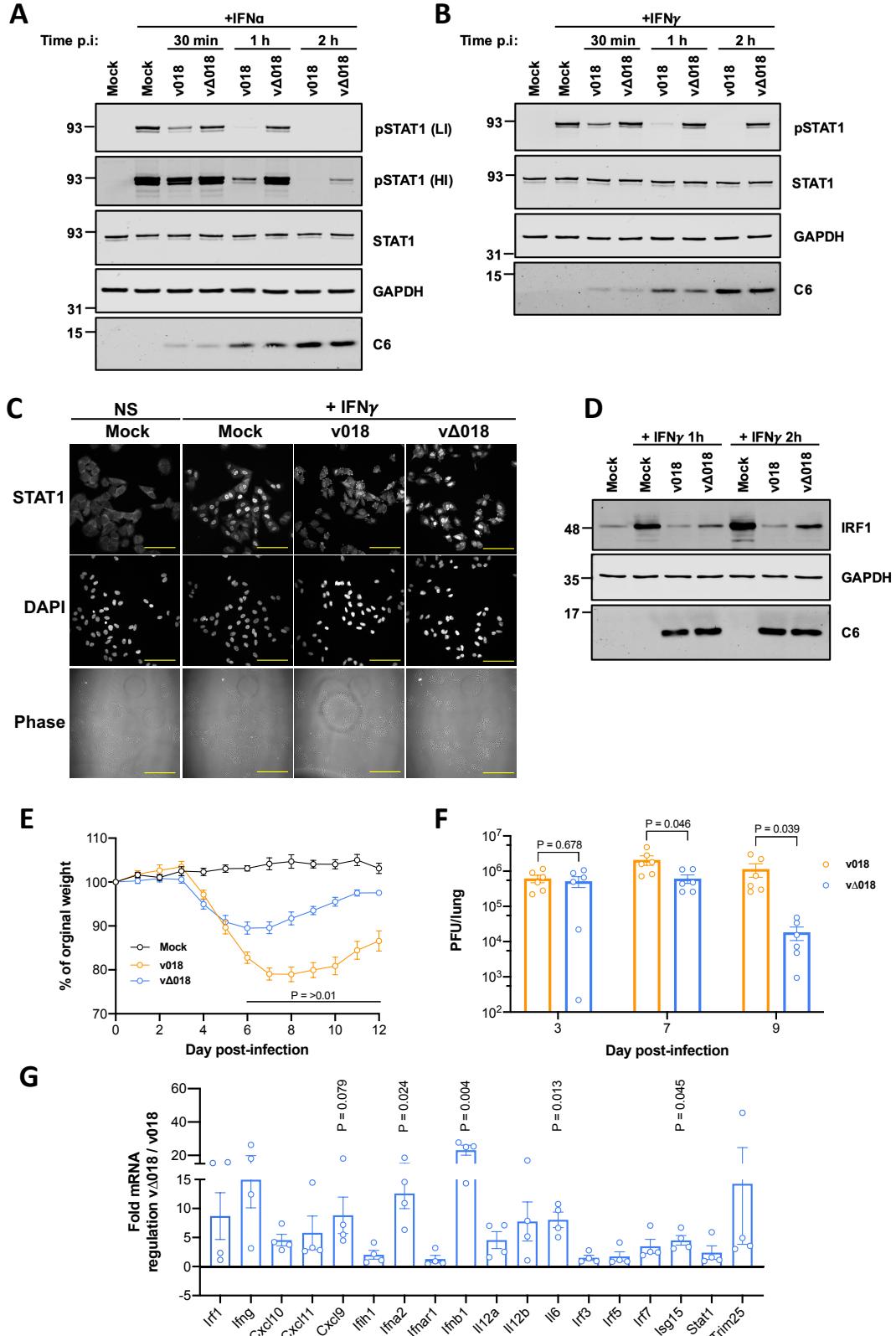
535 **(A, C)** HEK 293T cells or **(B)** HeLa cells were transfected with reporter plasmids ISRE-Luc
536 **(A)**, GAS-Luc **(B)**, or IFN β -Luc **(C)**, plus *TK-Renilla* and vectors expressing proteins indicated
537 fused to a TAP-tag or empty vector (EV). Cells were stimulated with IFN α (1000 U/mL) **(A)**,
538 IFN γ (25 ng/mL) **(B)** or SeV **(C)**, for 6 **(A)**, 8 **(B)** or 24 h **(C)** and then luciferase activity was
539 measured. Means \pm SD (n=5 per condition) are shown. **(D-E)** T-REx 293 cells were induced
540 with doxycycline (dox, 100 ng/mL) to express indicated proteins. Cells were non-stimulated

541 (NS) or stimulated with IFN α (1000 U/mL) (**D**) or IFN γ (25 ng/mL) (**E**) for 24 h and lysates
542 were analysed by immunoblotting. Immunoblots were stained against proteins/epitope
543 indicated (**A-E**). Data for (**A-C**) and (**D-E**) are representative of three or two individual
544 experiments, respectively.


545

547 **Figure 2. Phosphorylation of STAT1 at Tyr 701 is blocked by 018**

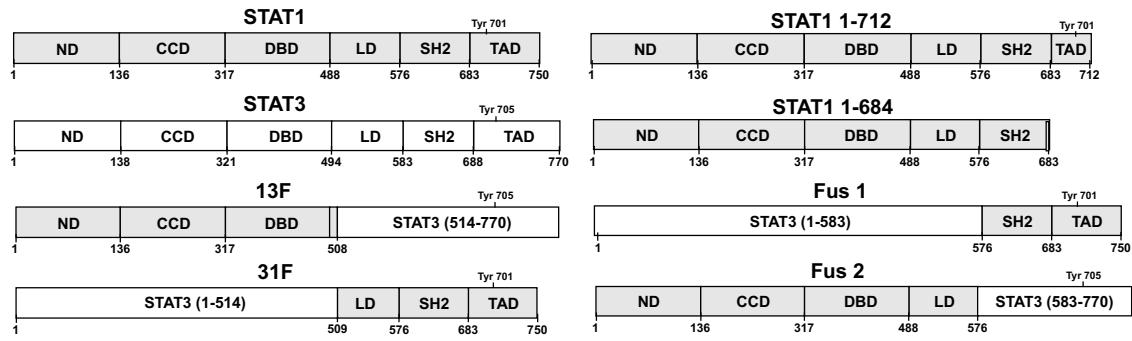
548 (A-B) HeLa cells were transfected with plasmids expressing TAP-tagged 018, N1 or NiV-V
549 and then were stimulated with IFN α (1000 U/mL) or IFN γ (25 ng/mL) for 1 h. Cells were fixed
550 and permeabilised, and then immunostained with α -FLAG (pink) (A-B) and either α -STAT1
551 (green) (A) or α -STAT2 (green) (B) and mounted in Mowiol containing DAPI to stain DNA.
552 Cells were visualised by confocal microscopy. Scale bar (yellow) = 50 μ m. (C-D) T-REx 293
553 cells were induced with dox (100 ng/mL) to express indicated proteins. Cells were stimulated
554 with IFN α (1000 U/mL) (C) or IFN γ (25 ng/mL) (D) for 30 min and lysates were analysed by
555 immunoblotting against proteins/epitope indicated. Quantification of band intensities for (C-
556 D) is provided in **Figure S2**. Data for (A-B) and (C-D) are representative of two or three
557 individual experiments, respectively.


558

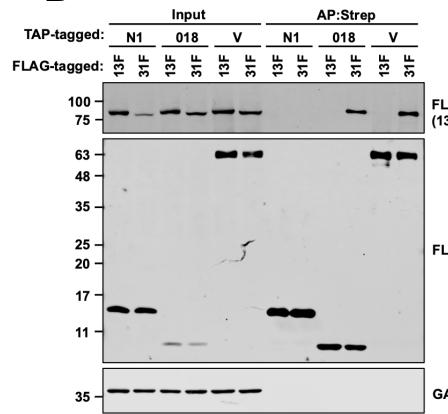
559

560 **Figure 3. A minimal 21 aa fragment of 018 is sufficient to bind STAT1**

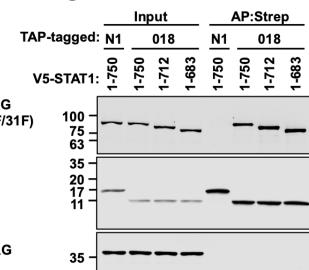
561 (A-B) TAP-tagged 018 and N1 were expressed in 2fTGH cells (A) or 2fTGH, U3A (STAT1^{-/-})
562 and U6A (STAT2^{-/-}) cells (B) by transfection and were affinity purified by Strep-Tactin.
563 Whole cell lysate (Input) and affinity purified proteins (AP:Strep) were analysed by
564 immunoblotting. (C) ITC data for GB1-018 (100 μ M) titrated into U-STAT1 (10 μ M).
565 Fitting of the isotherm (bottom) to a one site model gave a K_D of 290 nM. Initial low volume
566 injection is excluded from analysis. Complete fitted ITC parameters are provided in **Table**
567 **S5.** (D) Sequences for TAP-tagged C-terminal (green) and N-terminal (purple) 018 truncation
568 mutants. (E) HEK 293T or (F) HeLa cells were transfected with reporter plasmids ISRE-Luc
569 (E) or GAS-Luc (F) along with *TK-Renilla* and vectors from (D). Cells were stimulated with
570 IFN α (1000 U/mL) (E) or IFN γ (25 ng/mL) (F) for 6 (E) or 8 h (F) and then luciferase
571 activity was measured. Means \pm SD (n=3 per condition) are shown. Immunoblots were
572 stained with antibodies against proteins/epitopes indicated (A-B) and (E-F). Percentage
573 inhibitory activity and relative protein expression levels from figures (E-F) are provided in
574 **Figure S3.** Data shown in (A-B) and (E-F) are representative of three or two individual
575 experiments, respectively. (G) Sequences for purified GB1-fused 018 truncation mutants. (H-
576 I) ITC data for 150 μ M GB1-018^{T2} (H) or 350 μ M GB1-018^{T3} (I) titrated into 150 μ M
577 STAT1. Accurate fitting of the isotherm for (I) was not possible due to the low C-value of the
578 reaction.
579

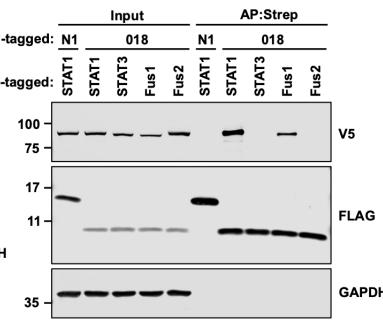

580

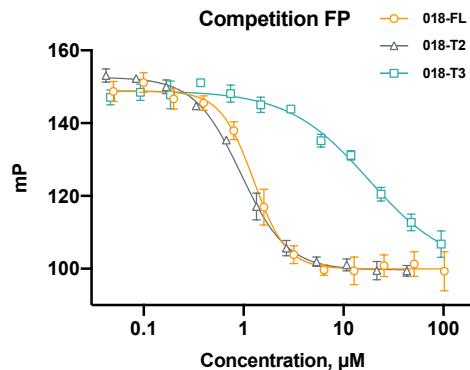
581 **Figure 4. 018 is a virulence factor**

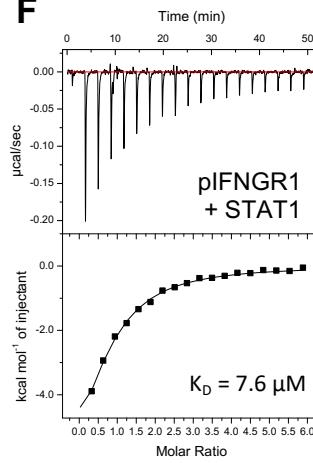

582 (A-B) A549 cells were mock infected or infected with v018 or vΔ018 at 10 pfu/cell. At 30 min,
583 1 h or 2 h post infection (p.i.) cells were washed once, then stimulated with IFN α (1000 U/mL)
584 (A) or IFN γ (25 ng/mL) (B) for 30 mins and lysates were analysed by immunoblotting. (C-D)
585 A549 cells were infected as described for (A-B) and at 2 h p.i., cells were washed once, and
586 then stimulated with IFN γ (25 ng/mL) for 30 mins (C), or 1 and 2 h (D). (C) Cells were fixed
587 and permeabilised then immunostained with α -STAT1 and mounted in Mowiol-containing
588 DAPI to stain DNA and visualised by confocal microscopy. Scale bar (yellow) = 100 μ m. (D)
589 Cell lysates were analysed by immunoblotting. Immunoblots were stained against proteins
590 indicated including the early VACV protein C6 to control for equal infection (A-B and D). For
591 (A) high intensity (HI) and low intensity (LI) scans for α -pSTAT1 are shown. Data for (A-D)
592 are representative of three individual experiments. (E-G) Female BALB/c mice 6-10 weeks
593 old were infected via the intranasal route with either v018 (orange) or vΔ018 (blue) at 10^3 (E-
594 F) or 10^5 (G) pfu and weight was measured daily (E) or virus titres of upper lungs lobes were
595 measured by plaque assay on days 3, 7 and 9 (F), or mice were sacrificed at 3 day p.i. and
596 mRNA levels of indicated genes isolated from upper lung lobes were analysed by RT-qPCR
597 (G). Data from (E-F) are representative of at two individual experiments using either 5 or 3
598 mice, respectively, per group which were then pooled. Data from (G) is representative of 4
599 (vΔ018) or 3 (v018) mice per group. For (E-G) means \pm SEM are shown, and P values were
600 calculated using Unpaired T-test with (E-F) or without (G) Welch's correction.

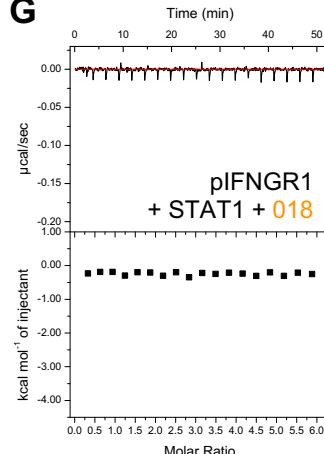
601


A


B

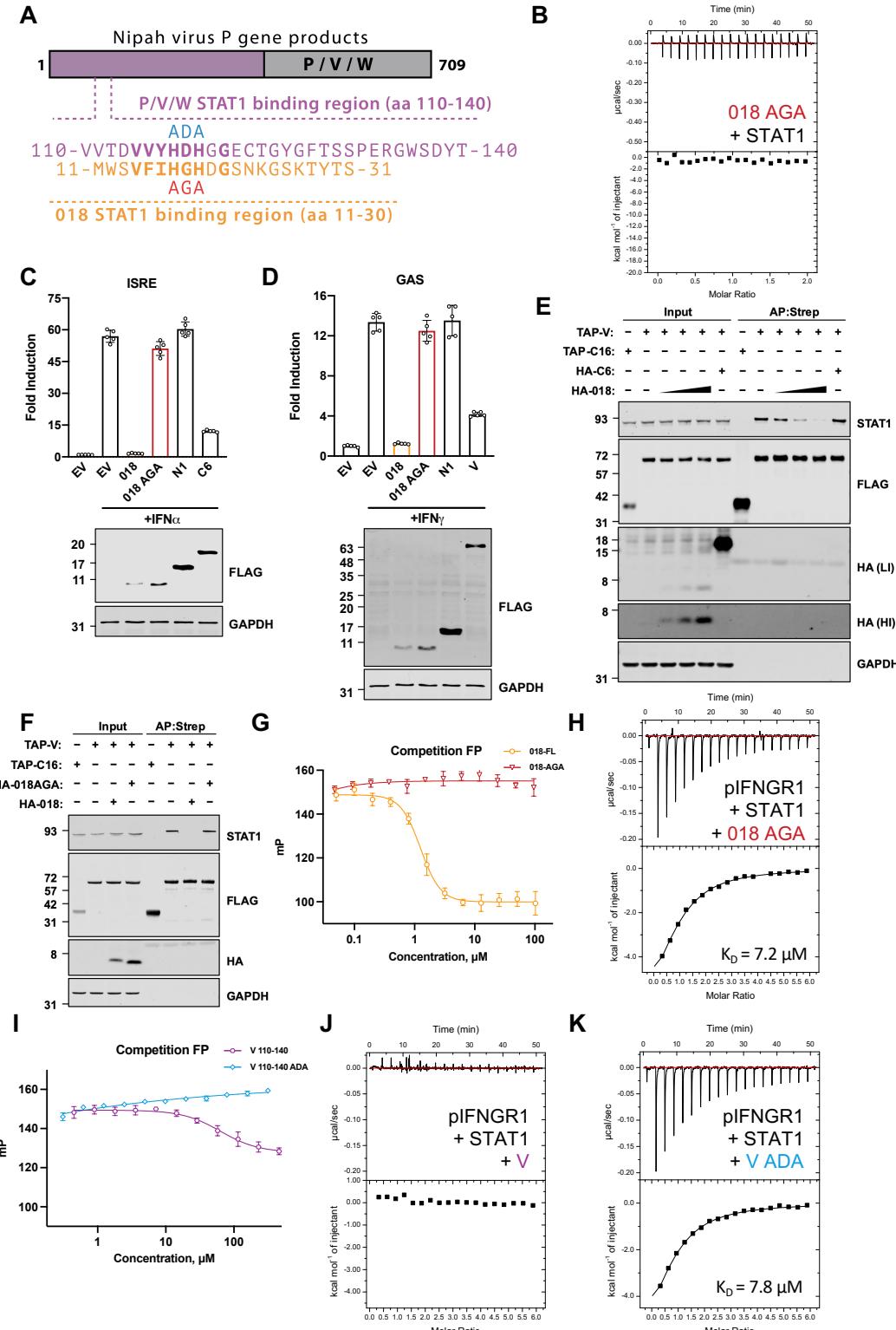

C


D


E

F

G


602

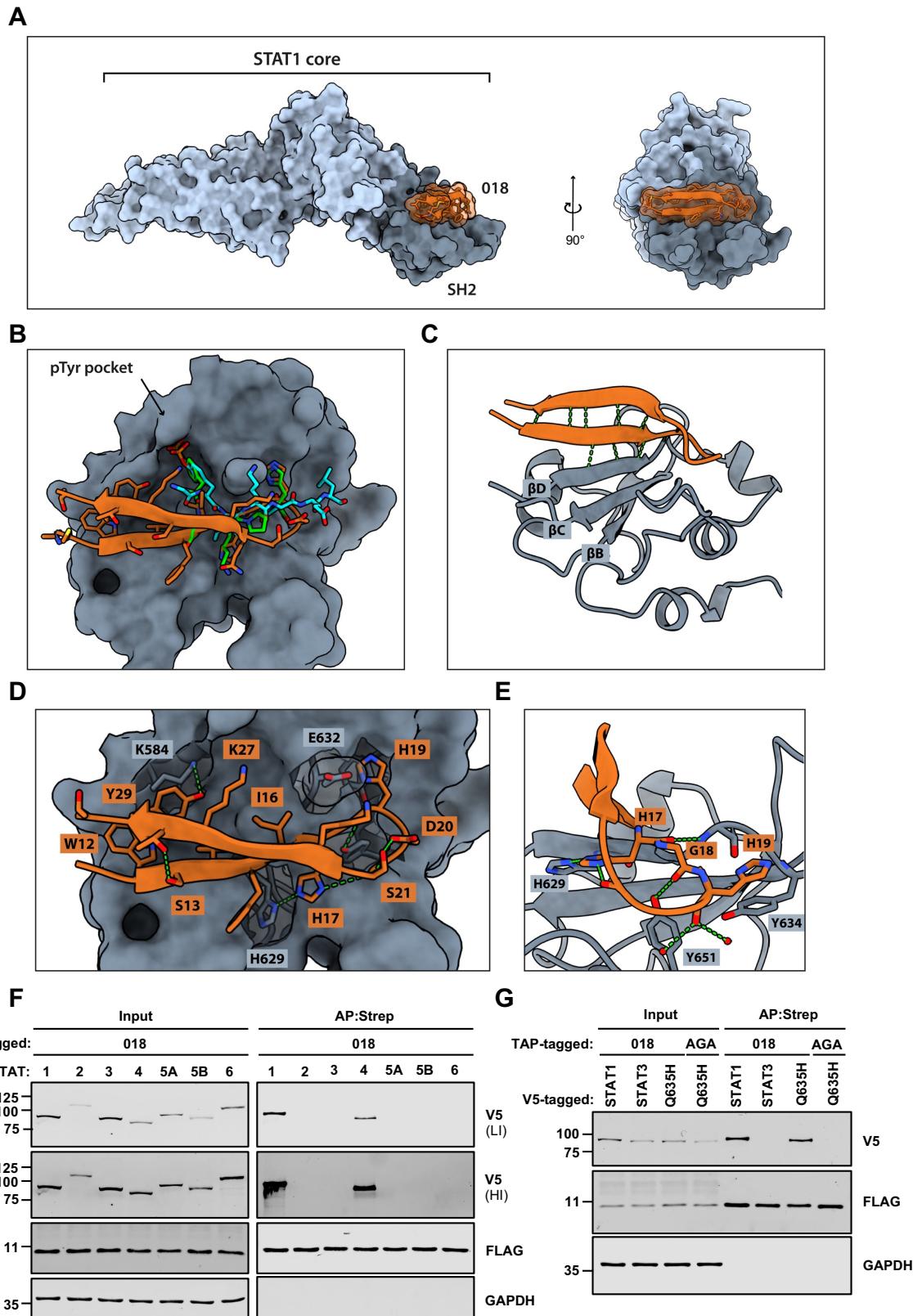
603 **Figure 5. 018 binds the STAT1 SH2 domain to block its association with the**
604 **phosphorylated IFNGR1**

605 (A) Schematic of STAT1-STAT3 chimeras and STAT1 truncation mutants. STAT1 regions
606 (grey) and STAT3 (white) are shown, and domains are annotated as ND (N-terminal domain),
607 CCD (Coiled-coil domain), DBD (DNA-binding domain), LD (Linker-domain), SH2 (Src

608 homology-2-domain), and TAD (Transactivation-domain). **(B-D)** TAP-tagged proteins
609 indicated were co-expressed with either FLAG **(B)** or V5-tagged **(C-D)** STAT proteins from
610 **(A)** by transfection in U3A (STAT1^{-/-}) cells and TAP-tagged proteins were purified by Strep-
611 Tactin. Whole cell lysates (Input) and affinity-purified proteins (AP:Strep) were analysed by
612 immunoblotting for the indicated proteins/epitopes. Data from **(B-D)** are representative of two
613 individual experiments. **(E)** Competition FP measurements for GB1-018 and truncation
614 mutants. Each reaction contained 10 nM fluorescein-pIFNGR1 12-mer preincubated with 1.5
615 μ M U-STAT1, to which two-fold serial dilutions of purified GB1-018 proteins were added (all
616 concentrations are final values). One hundred mP represents the calibrated FP value of the free
617 fluorescent probe. **(F-G)** ITC data for 300 μ M pIFNGR1 5-mer titrated into 100 μ M U-STAT1
618 **(F)** or 100 μ M U-STAT1 preincubated with GB1-018 **(G)**. No heat of binding was detected for
619 **(G)**. Complete fitted ITC parameters are provided in **Table S5**.

620

621


622 **Figure 6. Vaccinia 018 and Nipah virus V protein utilise a shared motif to engage**

623 **STAT1**

624 (A) Schematic of Nipah virus P, V and W proteins encoded by the P gene indicating the
625 common N-terminal region (purple) and unique C-terminal region (dark grey). Below, the
626 STAT1-binding regions of P/V/W (residues 110-140, purple) and 018 (residues. 11-31, orange)
627 are aligned with key conserved residues highlighted in bold. Sites of NiV-V^{ADA} (blue) and
628 018^{AGA} (red) mutants are shown. (B) ITC data for the titration of 100 μ M GB1-018^{AGA} into 10
629 μ M U-STAT1. No heat of binding was observed. (C) HEK 293T or (D) HeLa cells were
630 transfected with reporter plasmids ISRE-Luc (C) or GAS-Luc (D) along with *TK-Renilla* and
631 vectors expressing the proteins indicated fused to a TAP-tag. Cells were stimulated with IFN α
632 (1000 U/mL) (C), or IFN γ (25 ng/mL) (D) for 6 (C) or 8 h (D) and then luciferase activity was
633 measured. Means \pm SD (n=5 per condition) are shown. (E-F) TAP-tagged and HA-tagged
634 proteins were co-expressed in HEK 293T cells by transfection as indicated and TAP-tagged
635 proteins were affinity purified by Strep-Tactin. Whole cell lysates (Input) and affinity purified
636 (AP:Strep) proteins were analysed by immunoblotting. For (E) high-intensity (HI) and low
637 intensity (LI) scans are shown for α -HA. VACV proteins TAP-C16 and HA-C6 were used as
638 a pulldown and competition protein controls respectively. Immunoblots were stained against
639 proteins/epitopes indicated (C-F). Data shown in (C-D) and (E-F) are representative of two or
640 three individual experiments respectively. (G) Competition FP measurements for GB1-018 and
641 GB1-018^{AGA} binding to U-STAT1. Each reaction contained 10 nM fluorescein-pIFNGR1 12-
642 mer preincubated with 1.5 μ M U-STAT1, to which two-fold serial dilutions of purified GB1-
643 018 proteins were added (all concentrations are final values). One hundred mP represents the
644 calibrated FP value of the free fluorescent probe. (H+J+K) ITC data for 300 μ M pIFNGR1 5-
645 mer titrated into 10 μ M U-STAT1 preincubated with 50 μ M GB1-018^{AGA} (H), 200 μ M NiV-
646 V (J) or 200 μ M NiV-V^{ADA} (K). No heat of binding was detected for the reaction containing
647 GB1-NiV-V. Complete fitted ITC parameters are provided in Table S5. (I) Competition FP
648 measurements for GB1-NiV-V and GB1-NiV-V^{ADA} binding to U-STAT1. Each reaction

649 contained 10 nM fluorescein-pIFNGR1 12-mer preincubated with 1.5 μ M U-STAT1, to which
650 two-fold serial dilutions of purified GB1-NiV constructs were added (all concentrations are
651 final values). The NiV-V^{ADA} curve has a positive slope at high protein concentrations due to
652 either increased sample viscosity or non-specific interactions. One hundred mP represents the
653 calibrated FP value of free fluorescent probe.

654

655

656 **Figure 7. Structural basis of 018 binding to U-STAT1**

657 A crystal structure was determined for 018:STAT1 core fragment complex (PDB: 7nuf). In all
658 images, 018 is depicted in orange, the SH2 domain is dark grey and the rest of the core fragment
659 is light grey. **(A)** Surface representation of the complex viewed from two perpendicular axes.
660 **(B)** 018 binding mode at the STAT1 SH2 domain superimposed with IFNGR1 phosphopeptide
661 (green, PDB: 1yvl) and STAT1 pTyr701 phosphopeptide (cyan, PDB: 1bf5). **(C)** Ribbon
662 representation of 018 and the STAT1 SH2 domain with β -sheet-forming hydrogen bonds
663 depicted in green. SH2 domain core β -strands are labelled according to conventional
664 nomenclature. **(D)** Detailed depiction of 018 binding to the STAT1 SH2 domain. 018
665 sidechains are depicted as sticks, while backbone atoms are represented by a ribbon cartoon.
666 Key STAT1 sidechains are depicted as sticks under semi-transparent surface. **(E)** A zoomed
667 view of HxH motif binding. **(F, G)** V5-tagged and TAP-tagged proteins were co-expressed in
668 U3A (STAT1^{-/-}) cells by transfection as indicated in the figure and TAP-tagged proteins were
669 affinity purified using Strep-Tactin. Whole cell lysates (Input) and affinity purified proteins
670 (AP:Strep) were analysed by immunoblotting against the indicated proteins/epitope.
671 STAT3^{Q635H} and 018^{AGA} are labelled as Q635H and AGA, respectively **(G)**. For **(F)** high (HI)
672 and low intensity (LI) scans of α -V5 are shown. Data shown in **(F, G)** are representative of
673 two individual experiments.

674

675

676 **STAR methods**

677 **KEY RESOURCES TABLE**

678

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit anti-STAT1	Cell Signaling Technologies	14994 RRID:AB_2737027
Rabbit anti-STAT2	Cell Signaling Technologies	72604 RRID:AB_2799824
Rabbit anti-IRF9	Cell Signaling Technologies	76684 RRID:AB_2799885
Rabbit anti-pSTAT1 (Tyr 701)	Cell Signaling Technologies	9167 RRID:AB_561284
Rabbit anti-pSTAT2 (Tyr 690)	Cell Signaling Technologies	88410 RRID:AB_2800123
Rabbit anti-IRF1	Cell Signaling Technologies	8478 RRID:AB_10949108
Mouse anti-IFIT3	Santa Cruz	sc-393512 RRID:AB_2857847
Mouse anti-IFTM1-3	Santa Cruz	sc-374026 RRID:AB_10916884
Rabbit anti-C6	Laboratory of Geoffrey L Smith; Unterholzner et al., 2011	N/A
Mouse anti-GAPDH	Sigma-Aldrich	G8795 RRID:AB_1078991
Rabbit anti-actin	Sigma-Aldrich	A2066 RRID:AB_476693
Mouse anti-FLAG	Sigma-Aldrich	F3165; RRID:AB_259529
Mouse anti-HA	Biolegend	901513; RRID:AB_2565335
Rabbit anti-V5	Cell Signaling Technologies	13202; RRID:AB_2687461
IRDye 680RD-conjugated goat anti-rabbit IgG	LI-COR	926-68071; RRID:AB_10956166
IRDye 680LT-conjugated goat anti-mouse IgG	LI-COR	926-68020; RRID:AB_10706161
IRDye 800CW-conjugated goat anti-rabbit IgG	LI-COR	926-32211; RRID:AB_621843
IRDye 800CW-conjugated goat anti-mouse IgG	LI-COR	926-32210; RRID:AB_621842
Donkey anti-Mouse IgG (H+L) secondary antibody, Alexa Fluor 546	Molecular Probes	A10036; RRID:AB_2534012
Goat anti-Rabbit IgG (H+L) secondary antibody, Alexa Fluor 488	Molecular Probes	A11008; RRID:AB_143165
Bacterial and virus strains		
T7 Express competent <i>E. coli</i>	New England Biolabs	C2566I
<i>E. coli</i> (subcloning efficiency DH5 α competent Cells)	Invitrogen	18265-017
VACV strain Western Reserve: v018	This paper	N/A
VACV strain Western Reserve: v Δ 018	This paper	N/A
VACV strain Western Reserve: vTAP-018	This paper	N/A
VACV strain Western Reserve: vTAP-N1	Laboratory of Geoffrey L Smith (Maluquer de Motes et al., 2014)	N/A
Sendai virus (SeV) strain Cantell	A gift from Steve Goodbourn (St George's Hospital Medical School, University of London) Licence No. ITIMP17.0612A	N/A

Chemicals, peptides, and recombinant proteins		
Fluor-pIFNGR1 12-mer peptide (5Flu-GTSFGpYDKPHVLV-NH2)	PeptideSynthetics (UK)	https://www.peptidesynthetics.co.uk/
pIFNGR1 5-mer peptide (Ac-pYDKPH-NH2)	Genosphere Biotechnologies	https://www.genesphere-biotech.com/
018 21-mer peptide (Ac-MWSVFIHGHDGSNKGSKYTS-NH2)	Genosphere Biotechnologies	https://www.genesphere-biotech.com/
Full-length STAT1 protein	This paper	N/A
GB1-018 protein fusions	This paper	N/A
GB1-NiV-V protein fusions	This paper	N/A
STAT1 ^{136-684,Δ183-190,H182A,E393A,E394A} protein	This paper	N/A
DMEM	Gibco	41966-029
MEM	Gibco	31095-029
MEM NEAA	Gibco	11140050
Trypsin-EDTA	Gibco	25300-054
Penicillin-streptomycin	Gibco	15140-122
Fetal bovine serum (FBS)	PAN-Biotech	P30-19375
Opti-MEM I reduced serum medium	Gibco	51985-026
Bovine serum albumin (BSA)	Sigma-Aldrich	A3059
Blasticidin S HCl solution	Santa Cruz	sc-495389
Zeocin	InvivoGen	ant-zn-1
Xanthine sodium salt	Sigma-Aldrich	x3627
Hypoxanthine	Sigma-Aldrich	H9377
Mycophenolic acid	Sigma-Aldrich	M5255
Agarose (low gelling temperature)	Sigma-Aldrich	A4018
Doxycycline hydrochloride	Melford	D43020
cComplete, EDTA-free protease inhibitor cocktail	Roche	11836153001
PhosSTOP phosphatase inhibitor cocktail	Roche	04906837001
16% Paraformaldehyde aqueous solution, EM grade	Electron Microscopy Sciences	15710
IFN α 2 human	Sigma-Aldrich	SRP4594
IFN γ human	PreproTech	300-02
DNase I	Sigma-Aldrich	DN25
DAPI (4',6-diamidino-2-phenylindole)	Biotium	40043
Mowiol 4-88	Calbiochem	475904
Polyethylenimine (PEI), linear, MW 25000	Polysciences	23966
Passive lysis 5X buffer	Promega	E1941
Acetyl coenzyme A (firefly luciferase reagents)	Nanolight Technology	315-500
Luciferin (firefly luciferase reagent)	Nanolight Technology	306-500
Coelenterazine (<i>Renilla</i> luciferase reagent)	Nanolight Technology	303-10
Hanks' balanced salt solution (HBSS)	Lonza	10-527F
Collagenase (type I)	Worthington Biochemicals	LS004216
Crystal violet	Sigma-Aldrich	C0775
Formaldehyde	Sigma-Aldrich	252549

Gentamicin (50 mg/mL)	Sigma-Aldrich	G1397
Carboxymethylcellulose sodium salt	Sigma-Aldrich	419273
TCEP	Melford	T26500
TEV protease	Prepared in-house from the pRK793 expression plasmid (Addgene #8827)	N/A
AEBSF	Melford	A20010
PEG 3350	Sigma-Aldrich	202444
Ni-NTA agarose	Cube Biotech	31103
Critical commercial assays		
Pierce BCA protein assay kit	Thermo Fisher Scientific	23227
MycoAlert mycoplasma detection kit	Lonza	LT07-218
Q5 High-fidelity DNA polymerase	New England Biolabs	M0491
Q5 Site-directed mutagenesis kit	New England Biolabs	E0554
OneTaq Quick-load 2X master mix with standard buffer	New England Biolabs	M486
T4 DNA ligase	New England Biolabs	M0202
TransIT-LT1	Mirus Bio	MIR 2305
Monarch Total RNA miniprep kit	New England Biolabs	T2010
Luna Universal one-step RT-qPCR kit	New England Biolabs	E3005
Strep-TactinXT superflow resin	IBA	2-4030-002
Anti-FLAG M2 affinity gel	Sigma-Aldrich	A220
TnT coupled wheat germ extract (SP6)	Promega	L4130
Lysing matrix S (1/8") metal beads	MPBio	116925100
Qiagen RNeasy mini kit	Qiagen	74104
RT ² First stand kit	Qiagen	330404
Antiviral response qPCR array	Qiagen	PAMM-122Z-24
RT ² SYBR Green ROX qPCR mastermix	Qiagen	330523
RT ² qPCR primer assay for mouse IRF1	Qiagen	PPM03203D-200
RT ² qPCR primer assay for mouse IFN γ	Qiagen	PPM03121A-200
RT ² qPCR primer assay for mouse Actb	Qiagen	PPM02945B-200
RT ² qPCR primer assay for mouse B2M	Qiagen	PPM03562A-200
RT ² qPCR primer assay for mouse GAPDH	Qiagen	PPM02946E-200
Deposited data		
Structure of 018 complexed with STAT1 core fragment	This paper	PDB ID: 7nuf
Experimental models: Cell lines		
BS-C-1	ATCC	CCL-26
CV-1	ATCC	CCL-70
RK13	ATCC	CCL-37
MEF	A gift from Prof. Dr Eugen Kerkhoff – University Hospital Regensburg, Germany	N/A
HEK 293T	ATCC	CRL-11268
HeLa	ATCC	CCL-2

T-REx 293	Life Technologies	R71007
T-REx 293 EV	This paper	N/A
T-REx 293TAP-N1	This paper	N/A
T-REx 293TAP-018	This paper	N/A
T-REx 293 TAP-NiV-V	This paper	N/A
A549	ATCC	CCL-185
2fTGH	Sigma Aldrich	12021508
U3A	Sigma-Aldrich	12021503
U6A	Sigma Aldrich	12021507
TK-143B	ATCC	CRL-8303
Experimental models: Organisms/strains		
BALB/c mice, female, adult aged 6-10 weeks old	Taconic Farms	Mouse strain: BALB/CANNTAC
Oligonucleotides		
Primers for construction of recombinant DNA	See Table S1	N/A
Primers for RT-qPCR (cell culture)	See Table S2	N/A
Primers for analytical PCR or sequencing	See Table S3	N/A
Recombinant DNA		
pcDNA4/TO	Thermo Fisher Scientific	V102020
pcDNA4/TO TAP-018	This Paper	N/A
pcDNA/TO TAP-NiV-V	This Paper	N/A
pcDNA/TO TAP-N1	Laboratory of Geoffrey L Smith (Maluquer de Motes et al., 2011)	N/A
pcDNA4/TO TAP-C6	Laboratory of Geoffrey L Smith (Stuart et al., 2016)	N/A
pcDNA4/TO TAP-C16	Laboratory of Geoffrey L Smtih (Peters et al., 2013)	N/A
pcDNA4/TO TAP-018 (1-54)	This Paper	N/A
pcDNA4/TO TAP-018 (1-48)	This Paper	N/A
pcDNA4/TO TAP-018 (1-43)	This Paper	N/A
pcDNA4/TO TAP-018 (1-35)	This Paper	N/A
pcDNA4/TO TAP-018 (1-30)	This Paper	N/A
pcDNA4/TO TAP-018 (1-27)	This Paper	N/A
pcDNA4/TO TAP-018(1-24)	This Paper	N/A
pcDNA4/TO TAP-018 (1-21)	This Paper	N/A
pcDNA4/TO TAP-018 (8-60)	This Paper	N/A
pcDNA4/TO TAP-018 (11-60)	This Paper	N/A
pcDNA4/TO TAP-018 (14-60)	This Paper	N/A
pcDNA4/TO TAP-018 (17-60)	This Paper	N/A
pcDNA4/TO TAP-018 (22-60)	This Paper	N/A
pcDNA4/TO TAP-018 (31-60)	This Paper	N/A
pcDNA4/TO TAP-018 ^{AGA}	This Paper	N/A
pcDNA3 HA-C6	Laboratory of Geoffrey L Smith (Unterholzner et al., 2011)	N/A

pcDNA3 HA-018	This Paper	N/A
pcDNA3 HA-018 ^{AGA}	This Paper	N/A
pcDNA3 V5-STAT1	This Paper	N/A
pcDNA3 V5-STAT2	This Paper	N/A
pcDNA3 V5-STAT3 (human)	This Paper	N/A
pcDNA3 V5-STAT3 (mouse)	This Paper	N/A
pcDNA3 V5-STAT4	This Paper	N/A
pcDNA3 V5-STAT5A	This Paper	N/A
pcDNA3 V5-STAT5B	This Paper	N/A
pcDNA3 V5-STAT6	This Paper	N/A
pcDNA3 V5-STAT1 (1-712)	This Paper	N/A
pcDNA3 V5-STAT1 (1-684)	This Paper	N/A
pcDNA3 V5-Fus1	This Paper	N/A
pcDNA3 V5-Fus2	This Paper	N/A
pcDNA3 V5-STAT3 ^{Q635H} (human)	This Paper	N/A
13F	A gift from Curt Horvath (Northwestern University, USA)	N/A
31F	A gift from Curt Horvath (Northwestern University, USA)	N/A
ISRE-Luc	Promega	E4141
GAS-Luc	A gift from Andrew Bowie (Trinity College Dublin, Republic of Ireland)	N/A
IFN β -Luc	A gift from T. Taniguchi (University of Tokyo, Japan)	N/A
TK-Renilla-Luc	Promega (GL3-Renilla vector was made by replacing the firefly luciferase ORF from pGL3-control (Promega) with the <i>Renilla</i> luciferase ORF from pRL-TK (Promega))	E2241
pF3A	Promega	L5671
pF3A TAP-018	This Paper	N/A
pF3A STAT1	This Paper	N/A
pF3A TAP-K7	Laboratory of Geoffrey L Smith (Torres et al., 2020)	N/A
pUC13-Ecogpt-EGFP Δ 018	This Paper	N/A
pUC13-Ecogpt-EGFP TAP-018	This Paper	N/A
pOPTH	(Teo et al., 2004)	N/A
pOPTH-TEV	This Paper	N/A
pOPTH-TEV-STAT1 ^{136-684,Δ183-190,H182A,E393A,E394A}	This Paper	N/A
pEXP-nHis	Laboratory of Marko Hyvonen	Addgene #112558
pEXP-nHis-STAT1	This Paper	N/A
pPEPT	Laboratory of Marko Hyvonen	N/A
pPEPT 018	This Paper	N/A
pPEPT 018 ^{T2}	This Paper	N/A
pPEPT 018 ^{T3}	This Paper	N/A
pPEPT 018 ^{AGA}	This Paper	N/A
pPEPT NiV-V (110-140)	This Paper	N/A
pPEPT NiV-V (110-140) ^{ADA}	This Paper	N/A

Software and algorithms		
Image Studio Lite Quantification Software	LI-COR Biosciences	https://www.licor.com/bio/image-studio-lite/
MARS Data Analysis Software	BMG LABTECH	https://www.bmglabtech.com/mars-data-analysis-software/
ImageJ-Fiji	(Schindelin et al., 2012)	https://imagej.net/software/fiji/
QuantStudio Software	Applied Biosystems	https://www.thermofisher.com/uk/en/home/technical-resources/software-downloads/applied-biosystems-viiia-7-real-time-pcr-system.html
Origin for ITC200	Malvern Instruments	https://www.malvernpanalytical.com/en
autoProc	(Vonrhein et al., 2011)	https://www.globalphasing.com/autoproc/
Phenix.refine	(Liebschner et al., 2019)	https://www.phenix-online.org/
autoBuster	(Smart et al., 2012)	https://www.globalphasing.com/buster/
Prism	GraphPad	https://www.graphpad.com/scientific-software/prism/
GeneGlobe Data Analysis Centre	Qiagen	https://geneglobe.qiagen.com/us/analyze
Coot	(Emsley et al., 2010)	https://www2.mrc-lmb.cam.ac.uk/personal/emsley/coot/
ChimeraX	UCSF	https://www.rbvi.ucsf.edu/chimeraX/
ASTRA	Wyatt Technology	https://www.wyatt.com/
Uniprot	(Bateman, 2019)	https://www.uniprot.org/
NCBI blast	(Johnson et al., 2008)	https://blast.ncbi.nlm.nih.gov/Blast.cgi
Clustal Omega	(McWilliam et al., 2013)	https://www.ebi.ac.uk/Tools/msa/clustalo/
ESPrIt 3.0	(Robert and Gouet, 2014)	https://esprit.ibcp.fr

679

680 **RESOURCE AVAILABILITY**

681 Lead contact

682 Further information and requests for resources and reagents should be directed to and will be

683 fulfilled by the lead contact, Geoffrey L Smith (gls37@cam.ac.uk).

684 Materials availability

685 See above.

686 Data and code availability

687 018:STAT1 X-ray crystallographic structure has been deposited on the PDB under the
688 accession code 7nuf.

689

690 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

691 Cell lines

692 BS-C-1 (ATCC), CV-1 (ATCC), MEFs (A gift from Prof. Dr Eugen Kerkhoff), HEK 293T
693 (ATCC), A549 (ATCC), 2fTGH (a human cell line containing the selectable marker guanine
694 phosphoribosyltransferase regulated by IFN- α , Sigma-Aldrich), U3A (a 2fTGH derived
695 STAT1 $^{-/-}$ cell line, Sigma-Aldrich), U6A (a 2fTGH derived, STAT2 $^{-/-}$ cell line, Sigma-Aldrich),
696 and TK $^{-}$ 143B cells (ATCC) were maintained in DMEM (Gibco) supplemented with 10% fetal
697 bovine serum (FBS, PAN-Biotech) and penicillin-streptomycin (PS, 50 μ g/mL, Gibco). T-REx
698 293 cells (Life technologies) were maintained in DMEM supplemented with 10% FBS, PS (50
699 μ g/mL) and blasticidin (10 μ g/mL, Santa Cruz), and T-REx 293 derived cells lines expressing
700 EV, TAP-N1, TAP-018, or TAP-NiV-V were further supplemented with zeocin (100 μ g/mL,
701 Invivogen). HeLa (ATCC) and RK13 cells (ATCC) were maintained in MEM (Gibco)
702 supplemented with 10% FBS, PS (50 μ g/mL) and 1% non-essential amino acids (Gibco). The
703 construction of T-REx 293 cell lines expressing proteins inducibly is outlined in the methods
704 detail section.

705

706 Viruses

707 Recombinant vTAP-N1 was derived from VACV strain WR (VACV-WR, GenBank:
708 AY243312.1) (Maluquer de Motes et al., 2014). v018, vΔ018 and vTAP-018 described in this
709 paper were all derived from VACV strain WR and their construction is outlined in the methods
710 detail section.

711

712 Animals

713 Specific pathogen-free BALB/c mice were obtained from Taconic Farms. 6-10 weeks old
714 female mice were used in all experiments. Mice were housed under specific pathogen-free
715 conditions (including negativity for murine norovirus, mouse parvovirus, and mouse hepatitis
716 virus) and were maintained on standard rodent chow and water supplied *ad libitum*. All animal
717 studies were approved by and performed in accordance with the Animal Care and Use
718 Committee of the National Institute of Allergy and Infectious Diseases, USA.

719

720 **QUANTIFICATION AND STATISTICAL ANALYSIS**

721 Significances were calculated in Prism (GraphPad) by either Dunnett's T3 multiple
722 comparisons test or Unpaired t-test with Welch's correction as indicated. For anti-viral array
723 data (**Figure 4G**), analysis and Unpaired t-tests was performed using GeneGlobe Data Analysis
724 Centre (Qiagen). All significances are indicated with P values.

725

726 **METHOD DETAILS**

727 Orthologue alignments

728 Identifiers for poxvirus genomes from which the amino acids sequences of 018 orthologues
729 were derived: vaccinia strain Western Reserve (VACV-WR, GenBank: AY243312.1),
730 Modified vaccinia Ankara (MVA, GenBank: AY603355.1), variola virus (VARV, GenBank:

731 X69198.1), monkeypox virus (MPXV, GenBank: AF380138.1), cowpox virus strain Brighton
732 Red (CPXV-BR, GenBank: AF482758.2), ectromelia virus (ECTV, GenBank: AF012825.2),
733 camelpox virus (CMLV, GenBank: AF438165.1), rabbitpox virus (RPXV, GenBank:
734 AY484669.1), raccoonpox virus (RCNV, GenBank: KP143769.1), skunkpox virus (SKPTV,
735 GenBank: KU749310.1), taterapox virus (TATV, GenBank: DQ437594.1), Cotia virus
736 (COTV, GenBank: HQ647181.2), Yoka poxvirus (YKPV, GenBank: HQ849551.1).
737 Alignments were performed using Clustal Omega (McWilliam et al., 2013) and conservation
738 annotation was performed using ESPirt 3.0 (Robert and Gouet, 2014).

739

740 Plasmids

741 The 018 open reading frame was codon-optimised for expression in human cells and was
742 synthesised by Gene Art (Thermo Fisher Scientific). All plasmids are described in recombinant
743 DNA key resource table and primers used for construction in **Table S1**.

744 Construction of T-REx 293 cell lines expressing proteins inducibly

745 T-REx 293 were transfected with pcDNA4/TO expression plasmids (pcDNA4/TO (EV),
746 pcDNA4/TO TAP-018, pcDNA4/TO TAP-N1 and pcDNA4/TO TAP-NiV-V) using Transit-
747 LT1 (Mirus Bio). Prior to transfection, pcDNA4/TO expression plasmids were linearised using
748 *Pvu*I (NEB) to decrease the potential for plasmid-chromosomal integration within the viral
749 ORF. Cells with integrated plasmid were selected in the presence of blasticidin (10 µg/mL)
750 and zeocin (100 µg/mL) and single clones were obtained by limiting dilution. Clones were
751 amplified and lysates were analysed for the expression of TAP-tagged protein by
752 immunoblotting.

753

754 The expression of TAP-tagged proteins from T-REx 293-derived cells was induced by addition
755 of doxycycline (100 ng/mL, Santa Cruz) to the medium for 24 h for all experiments.

756

757 Construction of recombinant VACVs

758 Recombinant VACVs (vΔ018 and vTAP-018) were constructed using transient dominant
759 selection (Falkner and Moss, 1990). To construct the pUC13_Ecogpt_EGFP_Δ018 plasmid to
760 remove the entire 018 ORF, the downstream (301 bp) and upstream (300 bp) flanking regions
761 of the 018 ORF were amplified by PCR from purified VACV (strain WR) DNA. A 15 bp
762 complementary sequence was added to the internal upstream and downstream primers to
763 facilitate joining of the two-flanking regions by overlapping PCR. The resulting PCR product
764 was then ligated into pUC13- Ecogpt-EGFP using *Pst*I (NEB) and *Bam*HI (NEB) cloning sites.
765 To construct the pUC13-Ecogpt-EGFP TAP-018 plasmid, the downstream flanking and 018
766 ORF (484 bp) and the upstream region of the ORF (300 bp) were amplified by PCR separately
767 from purified VACV (strain WR) DNA. The 018 ORF plus downstream flanking region PCR
768 product was ligated into pcDNA4/TO vector containing an N-terminal TAP-tag using *Not*I
769 (NEB) and *Xba*I (NEB) as an intermediate cloning step. The N-terminal TAP tag fused 018
770 ORF + downstream flanking region was then amplified by PCR using primers that added a 20-
771 bp overhang sequence complementary to the upstream flanking PCR product. The two PCR
772 products were then joined by overlapping PCR and the product was ligated into
773 pUC13_Ecogpt_EGFP using *Pst*I and *Bam*HI cloning sites.

774

775 To construct vΔ018, CV-1 cells were seeded in a T-25 flask to be 70 % confluent the following
776 day. CV-1 cells were then infected with VACV (strain WR) at 0.05 pfu/cell and after 1 h 30
777 min, the inoculum was removed and cells were transfected with 7.5 μg of

778 pUC13_Ecogpt_EGFP_Δ018 using Transit-LT1 (Mirus Bio). Two days p.i., the majority of
779 cells displayed cytopathic effect and were harvested by scrapping cells into the culture medium.
780 Cells were sedimented by centrifugation (500 RCF) and resuspended in 0.5 mL of infection
781 medium (DMEM supplemented with 2% FBS and PS (50 µg/mL). Samples were freeze-
782 thawed three times to lyse cells and release progeny virus and sonicated to disperse particulate
783 material. A series of progeny virus dilutions (10⁻¹, 10⁻² and 10⁻³ diluted in infection medium)
784 were used to inoculate BS-C-1 cells in 6-well plates that had been preincubated in infection
785 medium, supplemented with mycophenolic acid (25 µg/mL; MPA, Sigma-Alrich), xanthine
786 (250 µg/mL; X, Sigma-Alrich) and hypoxanthine (15 ug/mL; HX, Sigma-Alrich) for 24 h.
787 After 1 h 30 min, the inoculum was removed and replaced with a MEM, 1% (w/v) low gelling
788 temperature agarose (Sigma Alrich), supplemented with MPA, HX, and X. After three days,
789 EGFP-expressing plaques were picked, representing virus that had integrated the pUC13-
790 Ecogpt-EGFP-Δ018, and then further plaque purified in the absence of MPA, HX and X. The
791 genotype of these plaques was then determined by PCR using primers that flank the 018 ORF
792 (**Table S3**) and VACVs containing the desired mutation (vΔ018) or wild type genotype were
793 isolated. vTAP-018 was produced using the same strategy as described above, except that
794 vΔ018 was used as the parental VACV into which the TAP-018 ORF was inserted at its natural
795 locus. Stocks of VACVs were grown in RK13 cells and titrated by plaque assay on BS-C-1
796 cells.

797

798 Purification of VACVs by sedimentation through sucrose

799 VACVs were purified by two rounds of ultracentrifugation through a sucrose cushion as
800 described (Joklik, 1962) and stocks were resuspended in 1 mM Tris-HCl pH 9.0 for cell culture

801 work or in Hank's balanced salt solution (HBSS) + 0.1% BSA for *in vivo* work. Virus titres
802 were determined by plaque assay.

803

804 Viral DNA for vΔ018 and wild-type sibling virus v018 was isolated from sucrose purified virus
805 stocks by phenol:chloroform extraction. Whole genome sequencing of viruses was performed
806 by MircobesNG and virus sequences were aligned to VACV strain WR reference genome
807 (VACV-WR, GenBank: AY243312.1).

808

809 VACV infection for cell culture

810 Virus inoculums were prepared in DMEM supplemented with 2% FBS (infection medium) and
811 virus adsorption was performed at 4 °C for 1 h with gentle agitation every 10 mins. At time 0 h
812 p.i., virus inoculum was removed and replenished with infection medium, and infection was
813 continued at 37 °C.

814

815 Virus growth and spread assays

816 For virus growth curves, BS-C-1 cells were grown to confluence in T-25 flask then infected at
817 5 pfu/cell. At 1, 8 and 24 h p.i., extracellular and cell-associated virus were harvested by
818 collecting either the supernatant or cell monolayers, respectively. Supernatants were cleared
819 by centrifugation (21,000 RCF) to remove detached cells and debris. Cell monolayers were
820 scrapped into new medium and subjected to three cycles of freeze-thawing followed by
821 sonication to release intracellular virus. Viral titres were determined by plaque assay.

822

823 Virus spread was determined by analysis of plaque size growth. Confluent BS-C-1 and RK13
824 cells in 6-well plates were infected with 30 pfu/per well. At 1 h p.i., medium was replaced with

825 a semi-solid MEM overlay supplemented with, L-glutamine, 2% FBS and 1.5 % (w/v)
826 carboxymethylcellulose (Sigma-Aldrich). At 72 h p.i., the semi-solid overlay was removed,
827 and monolayers were stained with crystal violet (Sigma-Aldrich).

828

829 Immunoblotting

830 For immunoblotting analysis, cells were washed once in chilled PBS and harvested on ice by
831 scrapping into lysis buffer (Tris pH 8.0, 150 mM NaCl and 1% NP-40, supplemented with
832 protease (cComplete Mini, Roche) and phosphatase inhibitors (PhosSTOP, Roche). Cell lysates
833 were incubated with rotation at 4 °C for 15 mins before being cleared by centrifugation (21,000
834 RCF) and protein concentrations were determined using BCA Protein Assay (Pierce). Lysates
835 were mixed with 4X SDS-gel loading buffer and incubated at 100 °C for 5 min to denature
836 protein. Samples were briefly centrifuged (17,000 RCF) before loading onto either SDS-
837 polyacrylamide gels or NuPAGE (4 to 12%, 1 mm, Bis-Tris gels (Thermo Fisher Scientific)
838 along with protein ladder (Abcam) and separated by electrophoresis. Protein gels were
839 incubated in transfers buffer (25 mM Tris, 250 mM glycine, 20% (v/v) methanol) with agitation
840 for 15 min. Gels were transferred onto a nitrocellulose transfer membrane (0.2 µM pore size,
841 GE Healthcare) using a semi-dry transfer system (Trans-tubro blot, BioRad). Nitrocellulose
842 membranes were allowed to dry for 30 mins and then blocked with 5% (w/v) BSA (Sigma), in
843 TBS containing 0.1% Tween-20 for 1 h at room temperature (RT). Primary antibodies (see Key
844 Resources Table) were diluted in blocking buffer and incubated with membranes overnight at
845 4 °C. Membranes were probed with fluorophore-conjugated secondary antibodies (LI-COR
846 Biosciences) diluted in 5% (w/v) non-fat milk in PBS containing 0.1 % (v/v) Tween-20 and
847 incubated at RT for 45 min. Membranes were imaged using the Odyssey CLx imagining system

848 (LI-COR Biosciences). Protein band intensities were quantified using Image Studio software
849 (LI-COR Biosciences).

850

851 Reporter gene assays

852 HeLa cells (for GAS-Luc reporter) or HEK 293T cells (for ISRE-Luc and IFN β -Luc) in 96-
853 well plates were co-transfected with 75 ng of firefly luciferase reporter (GAS-Luc, ISRE-Luc
854 or IFN β -Luc), 10 ng of *TK-Renilla* plasmid and the desired expression plasmid using Trans-
855 LT1 (Mirus Bio). In cases where different doses of the expression plasmids were used, the
856 lower doses were topped up by addition of EV plasmids so that equal amounts of DNA were
857 transfected per well. Twenty-four h post transfection, cells were either non-stimulated, or
858 stimulated with IFN α (1000 U/mL, Sigma-Aldrich), IFN γ (25 ng/mL, PreproTech) or SeV (a
859 gift from Steve Goodbourn) for 6, 8 or 24 h, respectively. Following stimulation, cells were
860 lysed in passive lysis buffer (Promega) and firefly and *Renilla* luciferase luminescence were
861 measured using a FLUOstar luminometer (BMG). Firefly values were normalised to *Renilla*
862 luciferase readings and fold inductions were calculated for each sample relative to their own
863 non-stimulated values. Results are presented as individual data point without P values. Relative
864 protein expression levels were determined by immunoblotting.

865

866 Immunofluorescence

867 For VACV infection, A549 cells were seeded onto sterile glass coverslips (Thickness no. 0.13-
868 0.17 mm, diameter 19 mm, Thermo Fisher Scientific) in 12-well plates. Twenty-four h after
869 seeding, cells were serum starved for 16 h prior to infection. Cell were infected at 10 pfu/cell
870 and at 2 h p.i., cells were washed once in medium before being stimulated with IFN γ (25 ng/mL,
871 PreproTech) for 30 min.

872

873 For transfection, HeLa cells were seeded onto sterile glass coverslips (Thickness no. 1.5,
874 diameter 22 mm, Thermo Fisher Scientific) in 6 well plates. Twenty-four h after seeding, cells
875 were transfected with 0.8 μ g of expression plasmids using TransIT LT1 (Mirus Bio). Five h
876 post transfection, medium on cells was replaced with serum-free medium to serum starve cells
877 for 16 h. Cells were then either non-stimulated, stimulated with IFN α (1000 U/mL, Sigma-
878 Alrich) or stimulated with IFN γ (25 ng/mL, Prepotech) for 1 h.

879

880 Following stimulation, cells were fixed in 8% (v/v) paraformaldehyde (PFA, Electron
881 Microscopy Sciences) in 250 mM HEPES pH 7.5 for 5 min on ice followed by 25 min at RT.
882 After fixation, cells were incubated for 5 min with 50 mM ammonium chloride in PBS to
883 quench free aldehydes. Cells were permeabilised by incubating with ice-cold, 100 % methanol
884 at -20 °C for 10 min. Cells were blocked in IF buffer (10 % v/v FBS in PBS) for 30 min before
885 staining with primary antibodies for 1 h. After washing, coverslips were then stained with
886 secondary antibodies (AlexPhore) diluted in IF buffer, supplemented with 5% (v/v) serum from
887 primary antibody source animal for each secondary antibody for 30 mins. Coverslips were then
888 mounted using Mowiol 4-88 containing 4',6-diamidino-2-phenylindole (DAPI) on to
889 microscope slides (Menzel-Gläser). Slides were visualised with a LSM 780 inverted confocal
890 microscope (Zesis) and images were processed using Image J (Schindelin et al., 2012).

891

892 RT-qPCR

893 A549 cells in 12-well plates were infected at 10 pfu/cell. At 2 h p.i. cells were washed once in
894 medium before being stimulated with IFN γ (25 ng/mL, PreproTech) for 1 h. Following
895 stimulation, RNA was harvested using Monarch Total RNA Miniprep Kit (NEB) according to

896 manufacturer's instructions including an optional on-column genomic DNA digestion step.
897 RT-qPCR was performed using Luna Universal One-Step RT-qPCR Kit (NEB).
898 Oligonucleotide primers (**Table S2**) targeting HRPT and IRF1 were designed using
899 PrimerQuest Tool (IDT). RT-qPCRs were carried out using a real-time PCR system (Thermo
900 Fisher Scientific) and fold-inductions of ISG levels were calculated using $2^{-\Delta\Delta Ct}$ taking mock
901 non-stimulated readings as the basal level sample and HRPT as the control housekeeping gene.
902

903 Pulldowns

904 For infection, BS-C-1 cells or MEFs in T-25 flasks were infected at 10 pfu/cell with either
905 vTAP-018 or vTAP-N1. For transfection, 2fTGH, U3A, U6A and HEK 293T cells in 10-cm
906 dishes, were transfected using either TranIT LT1 (Mirus Bio) for 2fTGH, U6A and U3A cells
907 or polyethylenimine (PEI, 2 μ l of 1 mg/mL stock per μ g of DNA, Polysciences) for HEK 293T
908 cells. Prior to transfection, medium was replaced with DMEM supplemented with 2% FBS. At
909 12 h p.i. or 18 h after transfection, cells were lysed in Tris-based IP buffer (50 mM Tris pH 7.4,
910 150 mM NaCl, 0.5% (v/v) NP-40) supplemented with protease (cOmplete Mini, Roche) and
911 phosphatase inhibitors (PhosSTOP, Roche). Cell lysates were incubated with rotation at 4 °C
912 for 15 mins before being cleared by centrifugation (21,000 RCF). A fraction of cleared lysate
913 was taken for input samples and the remaining lysate was incubated with 30 μ l of one of the
914 following affinity resins washed and equilibrated in IP buffer: (i) Strep-Tactin XP super flow
915 (IBA) for pulldown of TAP-tagged proteins via Strep-tag II epitope; (ii) anti-FLAG M2 affinity
916 gel (Sigma-Aldrich) for immunoprecipitation of either FLAG or TAP-tagged protein via the
917 FLAG epitope. Samples were incubated with affinity resins at 4 °C with rotation for 1 h 30 min.
918 Samples were washed three times in IP buffer and proteins were eluted from beads by addition

919 of 2X SDS-gel loading buffer. Subsequently, samples were analysed by either Nu-PAGE
920 (Thermo Fisher Scientific) or SDS-PAGE followed by immunoblotting.

921
922 For pulldowns using proteins produced from a cell-free transcription and translation system,
923 the TnT Sp6 High-Yield wheat germ protein expression system (Promega) was utilised
924 according to manufacturer's instructions.

925
926 *In vivo* experiments
927 Female BALB/c mice 6-10 weeks old were anesthetized and infected intranasally (i.n.) with
928 10^3 pfu for measurement of weight change and pulmonary virus titres or 10^5 pfu for extraction
929 of RNA and RT-qPCR experiments. A final inoculation volume of 20 μ l (10 μ l per nostril) was
930 used with VACVs diluted in HBSS + 0.1% BSA to achieve the required dose. The actual dose
931 administered was confirmed by plaque assay of the diluted virus inoculum.

932
933 For weight change experiments, mice were weighed daily. For virus titration experiments,
934 lungs were collected at 3, 7 and 9 days p.i. and single-cell suspensions were prepared by
935 chopping with scissors followed by collagenase I digestion (Worthington Biochemicals) for 60
936 mins at 37 °C. Cells were disrupted by vigorous pipetting and suspensions were freeze-thawed
937 three times to release virus and infectious virus titres were determined by plaque assay on TK-
938 143B cells. For RT-qPCR experiments the upper lobes of lungs were removed and immediately
939 placed in buffer RLT (Qiagen). Lungs were homogenized and RNA was isolated using Lysing
940 Matrix S (1/8") metal beads (MPBio) and a FastPrep®-24 Instrument (MPBio). RNA was then
941 purified using a Qiagen RNeasy Mini Kit (Qiagen). An on-column DNase (Sigma-Aldrich)
942 digestion was performed prior to RNA elution. cDNA was synthesised using the RT² First

943 Strand Kit (Qiagen) with ~ 1.2 g of RNA/sample. cDNA was then loaded onto an Antiviral
944 Response qPCR array (Qiagen) or onto a separate plate for the analysis of IRF1 and IFN γ for
945 which individual RT² qPCR primer assays (Qiagen) were obtained. RT-qPCRs were carried
946 out using RT² SYBR Green ROX qPCR mastermix (Qiagen) and a real-time PCR system
947 (Thermo Fisher Scientific) and fold-changes of genes were calculated by comparing Ct values
948 of individual v Δ 018-infected mice (n=4) to the Ct averages of v018-infected mice (n=3) using
949 the 2 $^{-\Delta\Delta Ct}$ method. Fold changes of genes were normalised against 5 standard housekeeping
950 genes included on the Antiviral Response qPCR array (Qiagen) or against 3 standard
951 housekeeping genes (Actb, B2M and GAPDH, Qiagen) for analysis of IRF1 and IFN γ
952 (Qiagen). Data analysis and significances were performed using manufacturer's software
953 (GeneGlobe Data Analysis Centre, Qiagen).

954

955 Protein expression and purification

956 The purity of protein preparations was analysed by SDS-PAGE and subsequent Coomassie
957 blue staining (**Figure S7**).

958

959 Full-length STAT1 and STAT1^{136-684,Δ183-190,H182A,E393A,E394A} expression plasmids were
960 transformed into *E. coli* T7 Express cells (NEB) and plated overnight on LB agar supplemented
961 with 100 μ g/mL of ampicillin. The next day colonies of transformed cells were collected and
962 used to inoculate 1 L (TB) medium supplemented with 100 μ g/mL of ampicillin and were
963 grown at 37 °C in 2 L flasks until OD₆₀₀ of 0.8-1.2. Cultures were cooled to 18 °C and incubated
964 overnight with 0.4 mM IPTG to induce protein expression. Cells were collected by
965 centrifugation and resuspended in lysis buffer (25 mL of 50 mM Tris-HCl, pH 8.0, 300 mM
966 NaCl, 20 mM imidazole, 1 mM AEBSF, 1 mM TCEP) and lysed by sonication. Cell lysates

967 were centrifuged at 40,000 RCF for 30 min and the cleared supernatant was loaded on a 3
968 mL Ni-NTA agarose resin (Cube Biotech) or on a 5mL HisTrap HP column (Cytiva). The
969 column matrix was washed with 10 column volumes (CV) of wash buffer (50 mM Tris-HCl,
970 pH 8.0, 300 mM NaCl, 20 mM imidazole, 1 mM TCEP). Proteins were eluted with 50 mM
971 Tris-HCl, pH 8.0, 300 mM NaCl, 200 mM imidazole, 1 mM TCEP into 2 mL fractions.
972 Fractions containing the proteins of interest were pooled. STAT1^{136-684, Δ183-190, H182A, E393A, E394A}
973 fractions were incubated with 100 μL of 2 mg/mL TEV protease (prepared in-house) overnight
974 at 4 °C to remove the N-terminal His₆ affinity tag. STAT1 proteins were then diluted ten-fold
975 in heparin buffer A (20 mM Tris-HCl, pH 8.0, 1 mM EDTA) and loaded on a 5 mL HiTrap
976 Heparin HP column (Cytiva) equilibrated with the same buffer. The column matrix was washed
977 with 10 CV heparin buffer A, followed by elution with a 0-100% linear gradient of heparin
978 buffer B (20 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 M NaCl). STAT1 and STAT1(core)^{Δ183-}
979 ^{190, EE} eluted at approximately 20% heparin buffer B. Fractions containing protein of interest
980 were supplemented with TCEP (1 mM final) and concentrated on a centrifugal filter (MWCO
981 30,000 Da, Amicon) to 2 mL, after which the proteins were loaded on a Superdex 200 16/600
982 GL (Cytiva) size exclusion chromatography (SEC) column equilibrated with 20 mM Tris-HCl
983 pH 8.0, 300 mM NaCl, 1 mM EDTA. SEC fractions corresponding to the later-eluting major
984 peak were pooled and supplemented with TCEP (1 mM final), concentrated to ~0.5 mM on a
985 centrifugal filter (MWCO 30 000 Da, Amicon) and flash-frozen in liquid nitrogen.

986

987 GB1-018 and GB1-NiV-V fusions were expressed from pPEPT1 plasmids (TP, unpublished)
988 that were transformed into *E. coli* T7 Express cells (NEB) and plated overnight on LB agar
989 supplemented with 100 μg/mL of ampicillin. The next day transformed cells were collected
990 and used to inoculate 1 L TB medium supplemented with 100 μg/mL of ampicillin and were
991 grown at 37 °C in 2 L flasks until OD₆₀₀ of 0.8-1.2. Protein expression was induced with 0.4

992 mM IPTG for 3 h at 37 °C. Following bacterial expression, a nickel affinity purification step
993 was performed as described for STAT1 proteins. Fractions containing protein of interest were
994 concentrated on a centrifugal filter (Amicon, MWCO 3000 Da) to 2 mL, after which the
995 proteins were loaded on a Superdex 75 or Superdex 200 16/600 GL (Cytiva) SEC columns
996 equilibrated with 20 mM Tris-HCl pH 8.0, 300 mM NaCl, 1 mM EDTA. SEC fractions
997 corresponding to GB1 fusions were pooled, concentrated on a centrifugal filter (MWCO 3000
998 Da, Amicon) and flash-frozen in liquid nitrogen. For the purification of NiV-V proteins, buffers
999 were supplemented with TCEP (1 mM final) to maintain cysteines in a reduced state.

1000

1001 Isothermal titration calorimetry (ITC)

1002 All proteins were buffer-exchanged into ITC buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl,
1003 1 mM EDTA, 0.1% Tween-20) using a NAP-5 size-exclusion column (Cytiva) and
1004 concentrations were determined by UV/Vis spectrophotometry and adjusted as needed. For
1005 measurements with synthetic peptides, peptides were re-suspended from lyophilised powder in
1006 MilliQ water and then concentrations were measured by UV-Vis and were adjusted to 10x the
1007 final value. Thereafter, the peptides were diluted ten-fold in ITC buffer. ITC measurements
1008 were performed on a Microcal ITC200 instrument (GE Healthcare) with 18 x 2 µL injections,
1009 160 s interval and 5 µCal s⁻¹ reference power. Baseline correction was performed using
1010 injection heats from protein-into-buffer runs. Integration of thermogram peaks and fitting of
1011 data was done using the Malvern ITC package in Origin 7.0 (Originlab). Isotherm fitting was
1012 performed using a one site model. All of the reaction conditions and fitted parameters are
1013 shown in **Table S5**.

1014

1015 Fluorescence polarisation (FP) anisotropy measurements

1016 All proteins were buffer-exchanged into FP buffer (50 mM Tris pH 8.0, 300 mM NaCl, 1mM
1017 EDTA, 0.1% Tween-20, 1 mM TCEP) using a NAP-5 size-exclusion column (Cytiva) and
1018 concentrations were determined by UV/Vis spectrophotometry and adjusted as needed, after
1019 which, BSA was added to 0.1%. Fluorescein-conjugated pIFNLR1 12-mer peptide probe
1020 (Fluor-pIFNLR1) was first re-suspended in DMSO to 10 mM and then diluted in FP buffer
1021 plus 0.1% BSA to the required concentration. Reactions (40 μ) were set up in a 384-well non-
1022 transparent microplate (Corning, #3542). Competition reactions were performed with 10 nM
1023 Fluor-pIFNLR1 and fixed STAT1 concentration of 1.5 μ M and two-fold serial dilutions of 018
1024 or NiV-V GB1 fusions. Each dilution was measured in triplicate. Graphs show means \pm SD
1025 (n=3) per dilution.

1026

1027 Measurements were performed on a Pherastar FS plate reader (BMG) using a FP 485/520/520
1028 optical module. Reactions containing only 10 nM Fluor-pIFNLR1 were prepared as reference
1029 standards and were used to calibrate gain and focal height. Dose-response curves were fitted in
1030 Prism 9.0.0 (GraphPad) using a four-parameter logistic regression.

1031

1032 Peptides for ITC and FP

1033 A 5-mer sequence (pYDKPH) of the pIFNLR1 is responsible for the vast majority of the
1034 receptor STAT1 SH2 domain interaction. For the FP assay we utilised a 12-mer peptide (5Flu-
1035 GTSFGpYDKPHVLV-NH2, PeptideSynthetics, UK) where TSFGpYDKPHVLV corresponds
1036 to 12 aa from pIFNLR1 and 5Flu-G represents an N-terminal 5-carboxyfluorescein and a
1037 spacer glycine. For our ITC measurement we utilised the 5-mer peptide (Ac-pYDKPH-NH2,
1038 Genosphere Biotechnologies) due to greater solubility compared to the 12-mer peptide.

1039 Peptides were prepared using Fmoc-based solid-phase synthesis and purity was >95% as
1040 determined by HPLC.

1041

1042 SEC-MALS

1043 SEC-MALS was performed using a Superdex 200 Increase 10/300 column (Cytiva)
1044 equilibrated with 50 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, 1 mM TCEP. The column
1045 was connected to a DAWN HELEOS II light scattering detector (Wyatt Technology) and the
1046 Optilab T-rEX refractive index detector (Wyatt Technology). Scattering was detected at 664
1047 nm wavelength at RT. One hundred μ L of sample was applied at a concentration of 20 μ M for
1048 STAT1 and 100 μ M of GB1-018. The experimental data were recorded and processed using
1049 the ASTRA software (Wyatt Technology).

1050

1051 X-ray crystallography

1052 A STAT1 core fragment crystallography construct (STAT1^{136-684,Δ183-190,H182A,E393A,E394A}) was
1053 prepared harbouring a loop deletion at the apex of the coiled coil domain (Δ 183-190,H182A)
1054 and surface entropy-reducing mutations (E393A,E394A). The STAT1-018 complex was co-
1055 crystallised using sitting-drop vapour diffusion in a 96-well MRC plate format. The complex
1056 was prepared by mixing STAT1^{136-684,Δ183-190,H182A,E393A,E394A} in SEC buffer (20 mM Tris-HCl
1057 pH 8.0, 300 mM NaCl, 1 mM EDTA) and 018 21-mer peptide (Ac-
1058 MWSVFIHGHDGSNKGSKYTS-NH₂, Genosphere Biotechnologies) in 20 mM Tris-HCl
1059 pH 8.0, to a final concentration of 5 mg/mL protein and 2 mg/mL peptide. Three hundred nL
1060 of the complex was mixed with 300 nL of the crystallisation condition using a Mosquito liquid
1061 handling robot (TTP Labtech). Crystals were obtained using the following condition: 16% PEG
1062 3350, 175 mM KCl, 125 mM (NH₄)₂SO₄. Cryoprotectant solution containing the crystallisation

1063 condition and 30% ethylene glycol was added to the drop and crystals were incubated for 1
1064 min. A crystal was then harvested and cryo-cooled in liquid nitrogen. Diffraction data were
1065 collected at Diamond Light Source (Harwell, UK) synchrotron radiation source, beamline i04.
1066 Diffraction images were processed with autoPROC (Vonrhein et al., 2011). Molecular
1067 replacement phasing was used with STAT1 core residues 133-683 (PDB ID: 1YVL) as a search
1068 model. The structure was refined without peptide first and the peptide was built into the clearly
1069 visible electron density manually (**Figure S6A**). Manual real-space refinement was done in
1070 Coot (Emsley et al., 2010) and automated refinement with phenix.refine (Liebschner et al.,
1071 2019) and autoBUSTER (Smart et al., 2012). Crystallographic data and refinement statistics
1072 are shown in **Table S4**. The coordinates and corresponding structure factors have been
1073 deposited to the PDB under accession number PDB: 7nuf.

1074

1075 Supplemental information

Plasmid	Primers 5'-3'	
pcDNA4/TOP-018	AAAGCGGCCGCGATGAGTTCTAACGCCGATCTTC AAATCTAGATTAGATTTCCGGCGCTGC	AAAGC GGGCCGCAGTCTGTTCTGGGGCTCGTC AAACTCGAGTAACTTACGCGCTGCG
pcDNA4/TOP-Niv-V	AAAAGCGGCCGCGATGAGTTGGAACTAGTCAA AAATCTAGATTAAACCCGAGTGGAAAGCTTCAG	AAAAGCGGCCGCCTCTAGGGTACGAACTTC AAAGCGGCCGCGCTCTAGGTGATACGAACTTC
pcDNA4/TOP-018 (1-54)	AAAGCGGCCGCGATGAGTTCTCA AAATCTAGATTATTCACGGCCGCGTTCACGC	AAAAGCGGCCGCGCTCTAGGGACAGCTGC CCCTCATTTTAAAGGGGCGAAC
pcDNA4/TOP-018 (1-48)	AAAGCGGCCGCGATGAGTTCTCA AAATCTAGATTAGCCAGACCTTACCTCGCTA	CTTGGATATGAAAGGGTGCATCATGGCTCAT AAAAGGGGCCCTATACTGTTGATCATAC
pcDNA4/TOP-018 (1-43)	AAAGCGGCCGCGATGAGTTCTCA AAATCTAGATTAGCTAGATGAGTCTCCGCCCA	AAAAGCGGCCGCGCTCTAGGGTACGAAAC CCCATCATTCAGAGGGGA
pcDNA4/TOP-018 (1-35)	AAATCTAGATTATCCTCCGGCGCAGATGT AAAGCGGCCGCGATGAGTTCTCA	TCCTCTCTGGAAATGATGGTACATCATGGTTCTACAG AAAAGGGGCCCTTACATGGGGGGAGTGCAC
pcDNA4/TOP-018 (1-30)	AAATCTAGATTATGTTGATCTGCTGCCCT AAAGCGGCCGCGATGAGTTCTCA	GACCCAGATCCACTCGGTGAAAC TTACCGCTGATGTCCTTC
pcDNA4/TOP-018 (1-27)	AAAGCGGCCGCGATGAGTTCTCA AAATCTAGATTACTGCTGGCCTTGTGCTG	AAAAGCATGGATGTGGTCTCATCTCAGTT AAAAGTTAAACTTAAAGATTTGGCGTCCGC
pcDNA4/TOP-018 (1-24)	AAATCTAGATTACTGTTGCTGCCATCGTGG AAAGCGGCCGCGATGAGTTCTCA	AAAAGCATGGATGTCAGTGGTACGAGCTTC AAACGATGGTCACTGTTGATCATAC
pcDNA4/TOP-018 (1-21)	AAATCTAGATTAGCCATCGTGGCGTGGAT AAAGCGGCCGCGATGAGTTCTCA	AAACTCGCACTGCTGAGTGTAGTAG AAAGCGGCCGCATACTCGAGAACTTAAATTTTATA
pcDNA4/TOP-018 (8-60)	AAAGCGGCCGCGCTCTGGCGCAGTGGAGC AAATCTAGATTAGATTTGGCGTGGCGCCTT	AAACTCGAGTATGGCGGGCGATTAAAGACTTAAAGACA AAAAGATCCCTAAAGTAAGTAAAGACAA
pcDNA4/TOP-018 (11-60)	AAAGCGGCCGCGATGAGGGTGTGATCCA AAATCTAGATTAGATTTGGCGGTTGCGCTT	AAACTAGATGGCCACTCTGTTAGTAGTGT AAAAGGGGCCGCAGTGTCTTAAAGGGGTA
pcDNA4/TOP-018 (14-60)	AAAGCGGCCGCGCTGTCTACCGGGCACG AAATCTAGATTAGATTTGGCGGTGGCGCTT	ATTAATAGACCTTAAAGACA AAAAGATCCGCTTAATAGTTAAAGAACAA
pcDNA4/TOP-018 (17-60)	AAAGCGGCCGCGCACCGCAGATGGCAG AAATCTAGATTAGATTTGGCGGTGGCGCTT	AAACTCGAGTCCGACACTGCTGTAGTAGTGT TGCCTTAAGGCTTAAATAGTGGTCTCATCCCTAGTT
pcDNA4/TOP-018 (22-60)	AAAGCGGCCGCGAGCACAAAGGAGCAGAAC AAATCTAGATTAGATTTGGCGGTGGCGCTT	CCGGAGAGCTCAATTGGA AAAAGATCCCTGGAAAGTACAGGTTTCTGGTACCGCTATGGTATGGTGATGATGA
pcDNA4/TOP-018 (31-60)	AAAGCGGCCGCGCTCTGGCGCGGAGGAATG AAATCTAGATTAGATTTGGCGGTGGCGCTT	CAAT AAAAGATCCACAGTGTGTTAGAACACAG AAACCGTTTATGGCGGAGTAACTCTT
pcDNA4/TOP-018 ^{4A}	CCCGCATGACACCGCTTACACAGG CCGGCATGACACCGCTTACACAGG ^{4A}	TTGCAGAACAGAGAACCGGATCAGAAACAGCTGTACTC GATGACATGGCCGCGCTTACCATG
pcDNA3 HA-018	SUBCLONED FROM PCDNA4/TOP-018	ACTTTGTGCGGTGGCC
pcDNA3 HA-018 ^{4A}	CCCGCATGACACCGCTTACACAGG CCGGCATGACACCGCTTACACAGG ^{4A}	GAAGAACCTGTTTCAGGGATCTGAGTACAGAACAG AAACCGTTTATGGCGGAGTAACTCTT
pcDNA3 V5-STAT1	AAAAGCGGCCGCGCTCTAGTGGTACGAACTTC AAAAGGGGCCCTTATAGCTGTTCTACATAC	GGAAAGATTCGGCCGCGCATGTTAAAGGGCGATC AAACTCGAGTGGGAAATGCT
pcDNA3 V5-STAT2	AAAGCGGCCGCGATGGCCAGTGGAAATGCT AAACTCGAGATTAGAAAGTCAAGGCACTCAAG	GGAAAGATTCGGCCGCGCATGTTGGCTGGCGCTTTC AAACTCGAGTGGGAAATGCT
pcDNA3 V5-STAT3 (human)	AAAGCGGCCGCGATGGCCCAATGGATCACT AAACTCGAGTTAGATGGGGAGGGTCTGGC	GGAAAGATTCGGCCGCGCATGTTGGCTGGCC AAACTCGAGGGGGATGGCTTCTGGCT
pcDNA3 V5-STAT3 (mouse)	AAAGGGGCCCTCATGGGGGGAGGGAC AAAGGGGCCCTCATGGGGGGAGGGAC	GGAAAGATTCGGCCGCGCATGTTGGCTGGCG AAACTCGAGGGGGATGGCTTCTGGCT
pcDNA3 V5-STAT4	AAAGCGGCCGCGATGCTCTAGGAACTCAAG AAACTCGAGTTATTCAGCAGAATAGAGGACTTC	GGCCGATGGCCACAAAGGG CGCCGATGAAACACCGCTTACCATG
pcDNA3 V5-STAT5A	AAAGCGGCCGCGATGGCCGCTGGTCT AAACTCGAGTTAGAGAGGGAGCTCTGGC	AAAAGATCCGGCGCGCTGGTACAGACGGTGTATA AAACTCGAGCTGTAATCCTACCCCTC
pcDNA3 V5-STAT5B	AAAGCGGCCGCGATGGCCGCTGGTCT AAACTCGAGTTAGATGTCGGTGGCGGGA	TGCTGAGGGAGGAATGACGG TCAGCGTATACAGCTGTGAAACCC*

1076

1077 **Table S1. Oligonucleotide primers for construction of recombinant DNA. Related to**
1078 **STAR methods**

1079 Cloning sites are highlighted in bold (for restriction digest cloning) or underlined (for ligation-
1080 independent cloning). Complementary sequences for overlapping PCR are italicised. Site-
1081 directed mutagenesis primers are indicated with an asterisk (*). All V5 and TAP-tagged
1082 proteins are tagged at the N terminus.

1083

Target Gene	Primers 5'-3'
HRPT	CGAGATGTGATGAAGGAGATGG
	TTGATGTAATCCAGCAGGTAG
IRF1	CATTCACACAGGCCGATACA
	TGGCTTTACCTCCTCGATA

1084

1085 **Table S2. Oligonucleotide primers for RT-qPCR. Related to STAR methods.**

1086

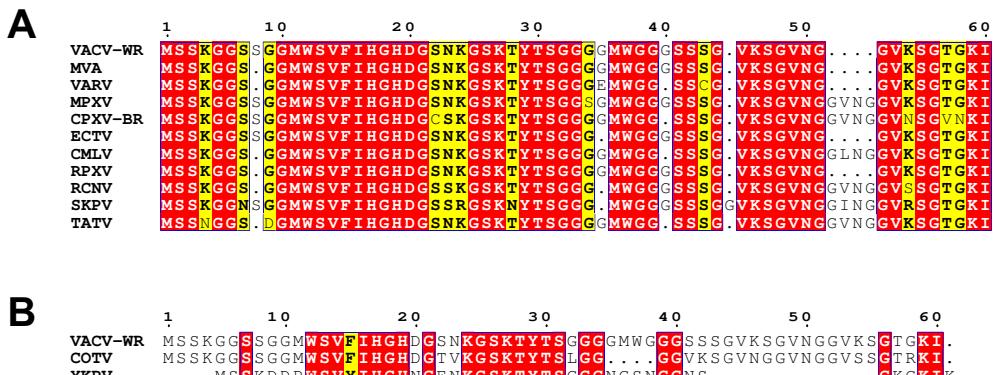
Target	Primers 5'-3'
STAT1 Internal	ATGCTTGCTTGGATCAGC
STAT2 Internal	GTTGGAACAGCTGGAGAC
STAT3 (human) Internal	CAACTTCAGACCCGTCAAC
STAT4 Internal	GAGCTGCAAGACTGGAA
STAT5A Internal	GATGACGAGCTGATCCAGTG
STAT5B Internal	GACGAGCTGATCCAGTGG
STAT6 Internal	GCTGGATGAAGTCCTGAG
VACWR018 Upstream	GTGAACTCTATACACCCACAC
VACWR018 Downstream	ACATTTGATTTCTCGTACGC

1087

1088 **Table S3. Oligonucleotide primers for analytical PCR or sequencing. Related to STAR**
1089 **methods.**

PDB ID:	7nuf
Data collection and processing	
Wavelength (Å)	0.9795
Space group	C 1 2 1
Data collection temperature (K)	100
a, b, c (Å)	169.06, 37.47, 115.48
α, β, γ (°)	90.00, 116.19, 90.00
Resolution range (high resolution bin) (Å)	80.42 - 2.00 (2.00 - 2.04)
R _{meas}	0.124 (3.251)
Completeness (%)	99.7 (99.8)
Number of total / unique reflections	183215 / 44523
Redundancy	4.1 (4.3)
<I/σ(I)>	6.6 (0.5)
CC _{1/2}	1.0 (0.4)
Refinement	
R _{cryst} / R _{free}	0.224 / 0.256
Number of reflections in test set	2136
Number of atoms	4659
Mean/Wilson B-factor (Å ²)	61 / 44.3
Ramachandran favoured/allowed/outliers (%)	98.86/ 1.14 / 0
RMSD bonds (Å)	0.009
RMSD angles (°)	1.309

1090


1091 **Table S4. X-ray crystallographic data collection and refinement statistics.**

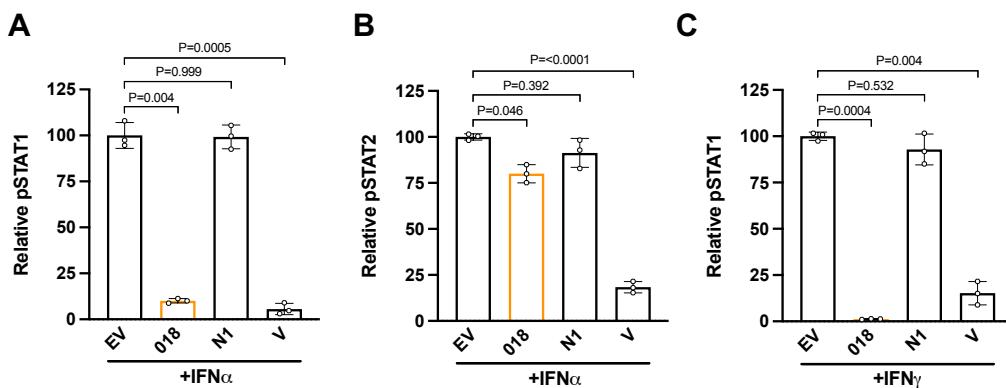
Reaction	Cell	Syringe	K _d , nM	N	ΔH, cal / mol	ΔS, cal / mol / deg
018 + STAT1	10 μM STAT1	100 μM 018	291	1.02	-1.93 x 10 ⁴	-34.9
018T2 + STAT1	15 μM STAT1	150 μM 018T2	235	1.01	-1.87 x 10 ⁴	-32.3
018T3 + STAT1	15 μM STAT1	350 μM 018T3	>10 ⁴	1.00 (fixed)	-2.01 x 10 ⁴	-46.8
018AGA + STAT1	10 μM STAT1	100 μM 018AGA	No binding	n.a.	n.a.	n.a.
pIFNGR1 + STAT1	10 μM STAT1	300 μM pIFNGR1 5-mer	7.6 x 10 ³	0.708	-9172	-7.33
pIFNGR1 + STAT1 / 018	10 μM STAT1 + 50 μM 018	300 μM pIFNGR1 5-mer	No binding	n.a.	n.a.	n.a.
pIFNGR1 + STAT1 / 018 AGA	10 μM STAT1 + 50 μM 018 AGA	300 μM pIFNGR1 5-mer	7.8 x 10 ³	0.79	-8001	-3.48
pIFNGR1 + STAT1 / NiV-V	10 μM STAT1 + 200 μM Ni V	300 μM pIFNGR1 5-mer	No binding	n.a.	n.a.	n.a.
pIFNGR1 + STAT1 / NiV-V ADA	10 μM STAT1 + 200 μM Ni V ADA	300 μM pIFNGR1 5-mer	7.2 x 10 ³	0.88	-8125	-3.72

1092

1093 **Table S5. ITC experimental conditions and fitted parameters**

1094

1095

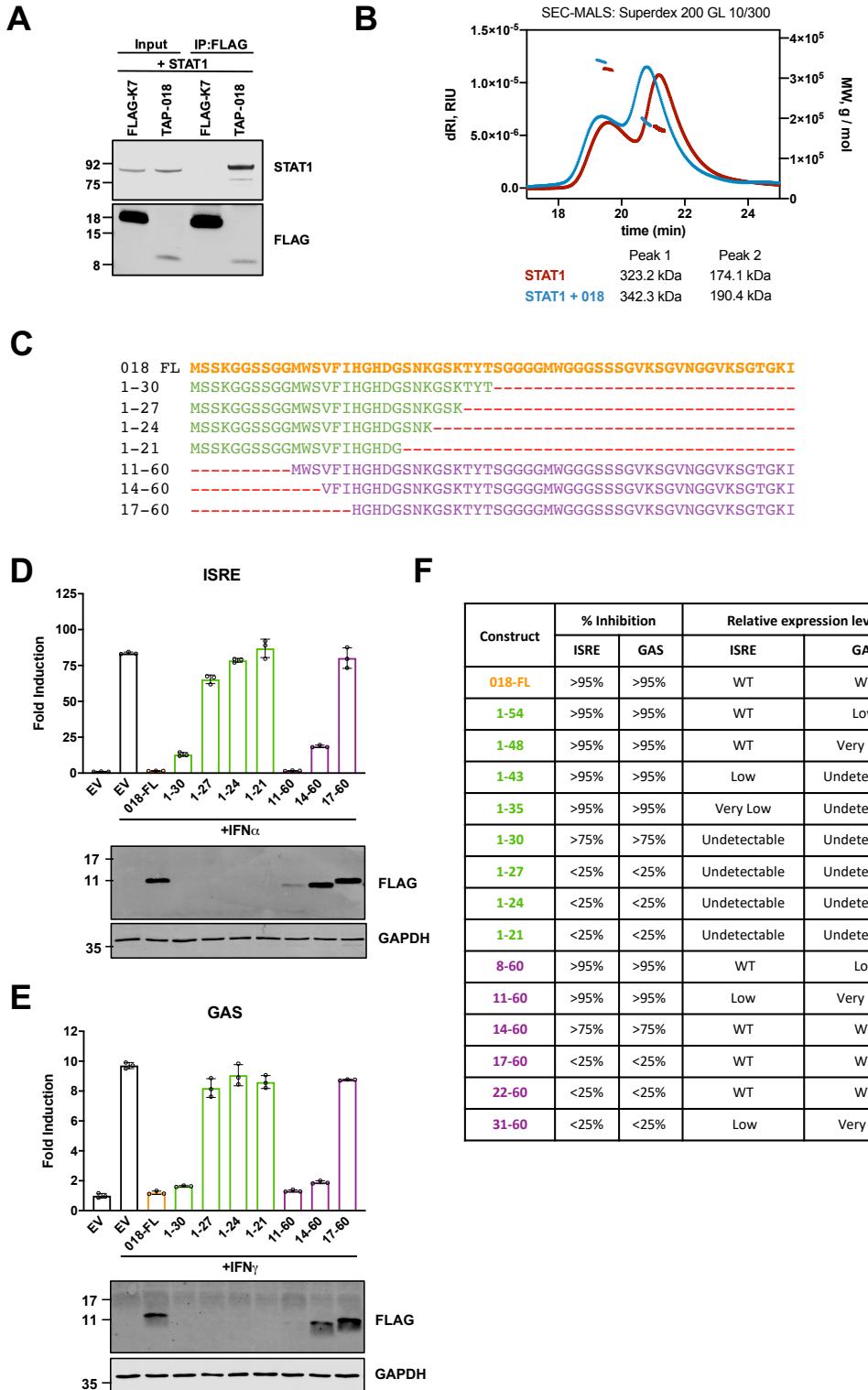

1096 **Figure S1. Sequence alignment of 018 orthologues.**

1097 (A) Alignment of 018 orthologues from representative orthopoxviruses: vaccinia strain
 1098 Western Reserve (VACV-WR), modified vaccinia Ankara (MVA), variola virus (VARV),
 1099 monkeypox virus (MPXV), cowpox virus strain Brighton Red (CPXV), ectromelia virus
 1100 (ECTV), camelpox virus (CMPV), rabbitpox virus (RPXV), racconpox virus (RCNV),

1101 skunxpox virus (SKPV) and taterpox virus (TATV). The 018 ORF is absent from VACV strain
1102 Copenhagen. **(B)** Alignment of 018 poxvirus orthologues from Cotia virus (COTV) and
1103 yokapoxvirus (YKPV), which sit outside of the orthopoxvirus genus. Identical residues are
1104 shown in red, similar residues are shown in yellow **(A-B)**.

1105

1106



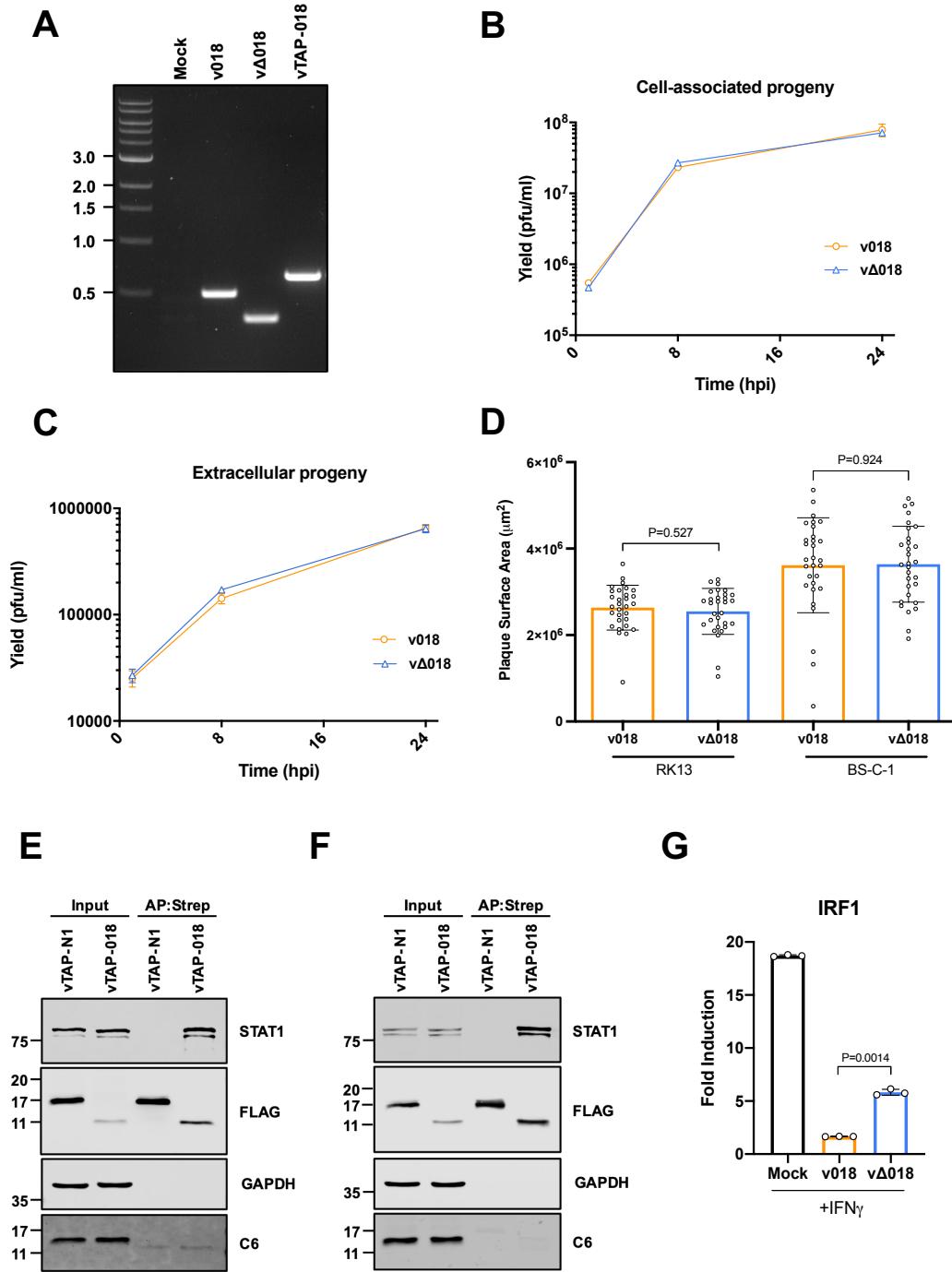
1107

1108 **Figure S2. Related to Figure 2**

1109 Quantification of relative band intensities **(Figure 2)** for pSTAT1 **(A)** and pSTAT2 **(B)** from
1110 **(Figure 2C)** and pSTAT1 **(C)** from **(Figure 2D)**. pSTAT levels were normalised against total
1111 STAT levels and made relative to EV condition. Means \pm SD (n=3 per condition) are shown.
1112 Significances were calculated by Dunnett's T3 multiple comparisons test.

1113

1114

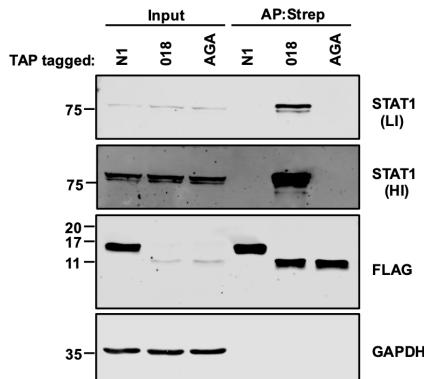

1115 **Figure S3. Related to Figure 3**

1116 (A) 018:STAT1 interaction using a cell-free transcriptional and translation system. Untagged-

1117 STAT1 was co-expressed along with either FLAG-tagged K7 or TAP-tagged 018 using a wheat

1118 germ cell free transcriptional and translation system. FLAG-K7 and TAP-018 were precipitated
1119 using M2-FLAG affinity gel and purified proteins were analysed by immunoblotting with α -
1120 FLAG and α -STAT1 antibodies. **(B)** SEC-MALS measurements of purified free STAT1 (red)
1121 and STAT1:GB1-018 complex (blue). One hundred μ l samples were loaded on a Superdex 200
1122 GL 10/300 column and scattering and refractive index of the eluting peaks were measured.
1123 Concentration of 20 μ M for STAT1 and 100 μ M of GB1-018 were applied. **(C)** Sequences for
1124 C-terminal (green) and N-terminal (purple) 018 refined truncation mutants. **(D)** HEK 293T
1125 cells or **(E)** HeLa cells were transfected with reporter plasmids ISRE-Luc **(D)** or GAS-Luc **(E)**
1126 plus *TK-Renilla* and vectors expressing 018 truncation mutants from **(C)** fused to a TAP-tag.
1127 Cells were stimulated with IFN α (1000 U/mL) **(D)**, or IFN γ (25 ng/mL) **(E)** for 6 h **(D)** or 8 h
1128 **(E)** and luciferase values were measured. Means \pm SD (n=3 per condition) are shown. Lysates
1129 were prepared and analysed by immunoblotting with α -FLAG and α -GAPDH. **(F)** Summary
1130 table of all C-terminal (green) and N-terminal (purple) 018 truncation mutants describing the
1131 percentage inhibitory activity (>95%, >75% (but less then >95%) or <25%) and relative protein
1132 expression levels (wild type (WT), low, very low or undetectable) for ISRE (IFN α) and GAS
1133 (IFN γ) reporters. Data from **(D-E)** are representative of 2 individual experiments.

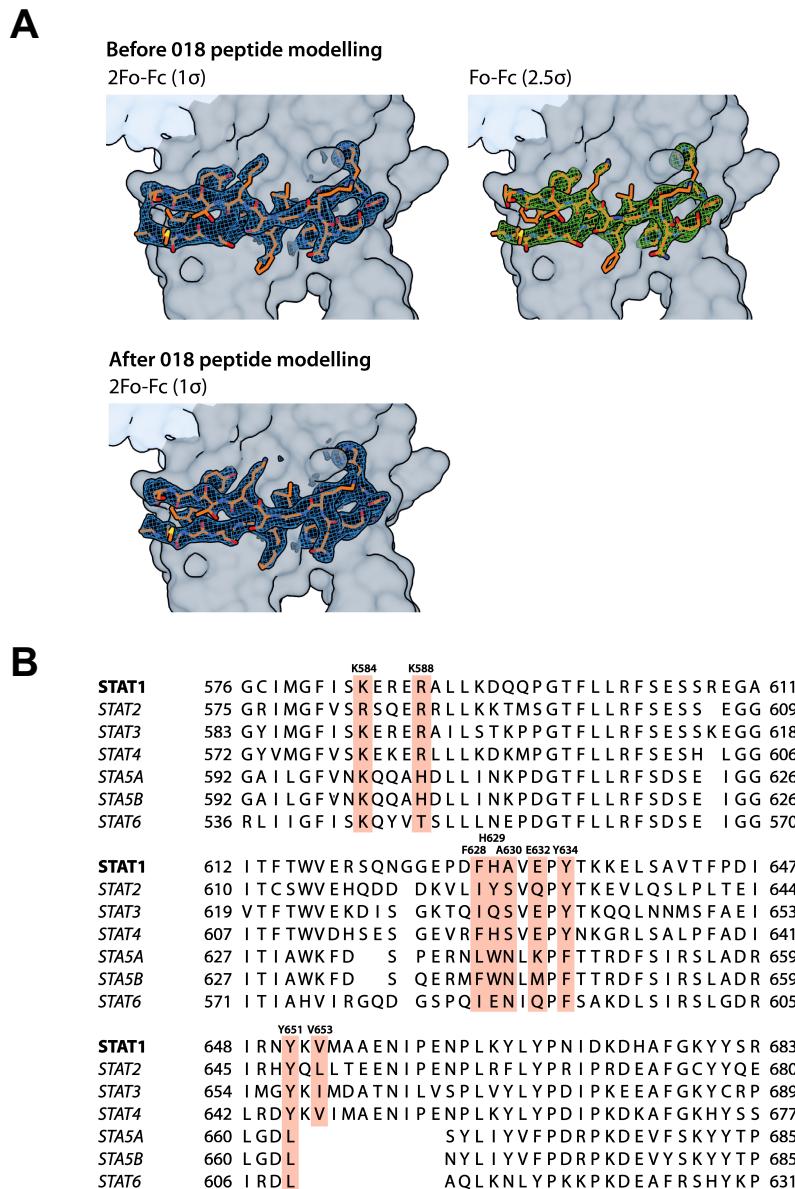
1134



1136 **Figure S4. Related to Figure 4**

1137 (A) PCR amplification of genomic DNA from the indicated viruses using primers upstream
 1138 and downstream of the 018 ORF. The position of DNA size markers (kb) are shown on the left
 1139 side of the image. (B, C) BS-C-1 cells were infected with either v018 (orange) or vΔ018 (blue)
 1140 at 5 pfu/cell. At 1, 8 and 24 h p.i. infectious virus titres associated with cells (B) and in the

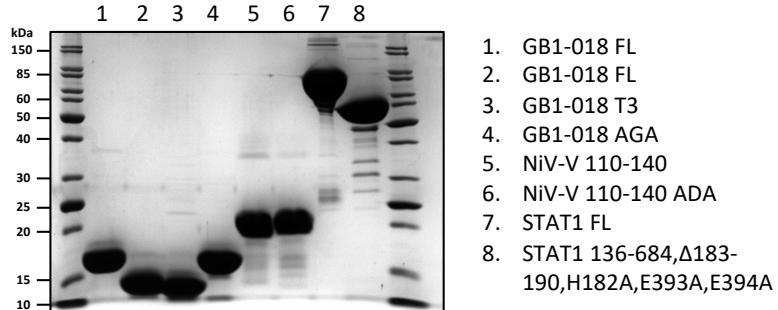
1141 supernatants (**C**) was determined by plaque assay on BS-C-1 cells. Means \pm SD (n=2 per
1142 condition) are shown and P=>0.05 for all timepoints. (**D**) RK13 or BS-C-1 cells were infected
1143 at 30 pfu per well with either v018 (orange) or vΔ018 (blue). At 72 h p.i. monolayers were
1144 stained and plaque surface areas were quantified. Means \pm SD (n=30 plaques per condition)
1145 are shown. (**E**) BS-C-1 cells or (**F**) MEFs were infected with vTAP-018 or vTAP-N1 at 5
1146 pfu/cell for 12 h. TAP-tagged proteins were affinity-purified by Strep-Tactin and whole cell
1147 lysates (Input) and affinity-purified proteins (AP:Strep) were analysed by immunoblotting with
1148 α -FLAG, α -GAPDH, α -STAT1 and α -C6. Data for (**B-F**) are representative of two individual
1149 experiments. (**G**) A549 cells were mock-infected or infected with v018 or vΔ018 at 10 pfu/cell.
1150 At 2 h p.i. cells were stimulated IFN γ (25 ng/mL) for 1 h. Total RNA was extracted and mRNA
1151 for IRF1 was analysed by RT-qPCR. Means \pm SD (n=3 per condition) are shown. Data are
1152 representative of two individual repeats. Significances were determined using Unpaired t-test
1153 with Welch's correction (**B-D, G**).


1154

1156 **Figure S5. Related to Figure 6**

1157 TAP-tagged 018, 018 AGA (labeled AGA) and N1 were expressed by transfection in 2fTGH
1158 cells and affinity purified by Strep-Tactin. Whole cell lysates (Input) and affinity-purified

1159 proteins (AP:Strep) were analysed by immunoblotting with α -FLAG, α -GAPDH and α -
1160 STAT1. A high intensity (HI) and low intensity (LI) scan of α -STAT1 are shown.
1161



1162

1163 Figure S6. Related to Figure 7

1164 (A) Electron density maps of 018 peptide before and after peptide modelling and refinement.
1165 (B) Alignment of STAT family SH2 domains with residues that form contacts with 018 in the
1166 018:STAT1 crystal structure highlighted in orange.

1167

1. GB1-018 FL
2. GB1-018 FL
3. GB1-018 T3
4. GB1-018 AGA
5. NiV-V 110-140
6. NiV-V 110-140 ADA
7. STAT1 FL
8. STAT1 136-684,Δ183-190,H182A,E393A,E394A

1172 References

1173 Aaronson, D.S., and Horvath, C.M. (2002). A road map for those who don't know JAK-STAT.
1174 *Science*. *296*, 1653–1655.

1175 Albarnaz, J., Torres, A., and Smith, G. (2018). Modulating Vaccinia Virus Immunomodulators
1176 to Improve Immunological Memory. *Viruses*. *10*, 101.

1177 Alcamí, A., and Smith, G.L. (1995). Vaccinia, cowpox, and camelpox viruses encode soluble
1178 gamma interferon receptors with novel broad species specificity. *J. Virol.* *69*, 4633–4639.

1179 Alcamí, A., Symons, J.A., and Smith, G.L. (2000). The Vaccinia Virus Soluble Alpha/Beta
1180 Interferon (IFN) Receptor Binds to the Cell Surface and Protects Cells from the Antiviral
1181 Effects of IFN. *J. Virol.* *74*, 11230–11239.

1182 Arunkumar, G., Chandni, R., Mourya, D.T., Singh, S.K., Sadanandan, R., Sudan, P., and
1183 Bhargava, B. (2019). Outbreak investigation of nipah virus disease in Kerala, India, 2018. *J.*
1184 *Infect. Dis.* *219*, 1867–1878.

1185 Assarsson, E., Greenbaum, J.A., Sundström, M., Schaffer, L., Hammond, J.A., Pasquetto, V.,
1186 Oseroff, C., Hendrickson, R.C., Lefkowitz, E.J., Tscharke, D.C., et al. (2008). Kinetic analysis
1187 of a complete poxvirus transcriptome reveals an immediate-early class of genes. *Proc. Natl.*
1188 *Acad. Sci. USA*. *105*, 2140–2145.

1189 Bandi, P., Pagliaccetti, N.E., and Robek, M.D. (2010). Inhibition of type III interferon activity
1190 by orthopoxvirus immunomodulatory proteins. *J. Interf. Cytokine Res.* *30*, 123–133.

1191 Bartlett, N.W., Buttigieg, K., Kotenko, S. V., and Smith, G.L. (2005). Murine interferon
1192 lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection
1193 model. *J. Gen. Virol.* *86*, 1589–1596.

1194 Bateman, A. (2019). UniProt: A worldwide hub of protein knowledge. *Nucleic Acids Res.* *47*,
1195 D506–D515.

1196 Briscoe, J., Rogers, N.C., Witthuhn, B.A., Watling, D., Harpur, A.G., Wilks, A.F., Stark, G.R.,
1197 Ihle, J.N., and Kerr, I.M. (1996). Kinase-negative mutants of JAK1 can sustain interferon-
1198 gamma-inducible gene expression but not an antiviral state. *EMBO J.* *15*, 799–809.

1199 Chiuppesi, F., Salazar, M. d'Alincourt, Contreras, H., Nguyen, V.H., Martinez, J., Park, Y.,
1200 Nguyen, J., Kha, M., Iniguez, A., Zhou, Q., et al. (2020). Development of a multi-antigenic
1201 SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. *Nat. Commun.* *11*, 1–16.

1202 Chua, K.B. (2000). Nipah Virus: A Recently Emergent Deadly Paramyxovirus. *Science*. *288*,
1203 1432–1435.

1204 Ciancanelli, M.J., Volchkova, V.A., Shaw, M.L., Volchkov, V.E., and Basler, C.F. (2009).
1205 Nipah Virus Sequesters Inactive STAT1 in the Nucleus via a P Gene-Encoded Mechanism. *J.*
1206 *Virol.* *83*, 7828–7841.

1207 Colamonici, O.R., Domanski, P., Sweitzer, S.M., Larner, A., and Buller, R.M.L. (1995).
1208 Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon α
1209 transmembrane signaling. *J. Biol. Chem.* *270*, 15974–15978.

1210 Davey, N.E., Travé, G., and Gibson, T.J. (2011). How viruses hijack cell regulation. *Trends*
1211 *Biochem. Sci.* *36*, 159–169.

1212 Dyer, M.D., Murali, T.M., and Sobral, B.W. (2008). The landscape of human proteins
1213 interacting with viruses and other pathogens. *PLoS Pathog.* *4*, e32.

1214 Elde, N.C., and Malik, H.S. (2009). The evolutionary conundrum of pathogen mimicry. *Nat.*
1215 *Rev. Microbiol.* *7*, 787–797.

1216 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of
1217 Coot. *Acta Crystallogr. Sect. D Biol. Crystallogr.* *66*, 486–501.

1218 Falkner, F.G., and Moss, B. (1990). Transient dominant selection of recombinant vaccinia
1219 viruses. *J. Virol.* *64*, 3108–3111.

1220 García-Arriaza, J., Garaigorta, U., Pérez, P., Lázaro-Frías, A., Zamora, C., Gastaminza, P., del

1221 Fresno, C., Casasnovas, J.M., S. Sorzano, C.Ó., Sancho, D., et al. (2021). COVID-19 Vaccine
1222 Candidates Based on Modified Vaccinia Virus Ankara Expressing the SARS-CoV-2 Spike
1223 Protein Induce Robust T- and B-Cell Immune Responses and Full Efficacy in Mice. *J. Virol.*
1224 95. e02260-20

1225 García-Sastre, A. (2017). Ten Strategies of Interferon Evasion by Viruses. *Cell Host Microbe.*
1226 22, 176–184.

1227 Greenlund, A.C., Farrar, M.A., Viviano, B.L., and Schreiber, R.D. (1994). Ligand-induced
1228 IFN(γ) receptor tyrosine phosphorylation couples the receptor to its signal transduction system
1229 (p91). *EMBO J.* 13, 1591–1600.

1230 Greenlund, A.C., Morales, M.O., Viviano, B.L., Yan, H., Krolewski, J., and Schreiber, R.D.
1231 (1995). Stat recruitment by tyrosine-phosphorylated cytokine receptors: An ordered reversible
1232 affinity-driven process. *Immunity.* 2, 677–687.

1233 Gubser, C., Hué, S., Kellam, P., and Smith, G.L. (2004). Poxvirus genomes: A phylogenetic
1234 analysis. *J. Gen. Virol.* 85, 105–117.

1235 Hagai, T., Azia, A., Babu, M.M., and Andino, R. (2014). Use of Host-like Peptide Motifs in
1236 Viral Proteins Is a Prevalent Strategy in Host-Virus Interactions. *Cell Rep.* 7, 1729–1739.

1237 Hagmaier, K., Stock, N., Goodbourn, S., Wang, L.F., and Randall, R. (2006). A single amino
1238 acid substitution in the V protein of Nipah virus alters its ability to block interferon signalling
1239 in cells from different species. *J. Gen. Virol.* 87, 3649–3653.

1240 Harrison, A.R., and Moseley, G.W. (2020). The Dynamic Interface of Viruses with STATs. *J.*
1241 *Virol.* 94. e00856.

1242 Hauser, N., Gushiken, A.C., Narayanan, S., Kottilil, S., and Chua, J. V. (2021). Evolution of
1243 Nipah Virus Infection: Past, Present, and Future Considerations. *Trop. Med. Infect. Dis.* 6, 24.

1244 Hernández, B., Alonso-Lobo, J.M., Montanuy, I., Fischer, C., Sauer, S., Sigal, L., Sevilla, N., and
1245 Alcamí, A. (2018). A virus-encoded type I interferon decoy receptor enables evasion of host

1246 immunity through cell-surface binding. *Nat. Commun.* *9*, 1–14.

1247 Huang, J., Smirnov, S. V., Lewis-Antes, A., Balan, M., Li, W., Tang, S., Silke, G. V., Pütz,
1248 M.M., Smith, G.L., and Kotenko, S. V. (2007). Inhibition of type I and type III interferons by
1249 a secreted glycoprotein from Yaba-like disease virus. *Proc. Natl. Acad. Sci. USA.* *104*, 9822–
1250 9827.

1251 Ihle, J.N. (2001). The Stat family in cytokine signaling. *Curr. Opin. Cell Biol.* *13*, 211–217.

1252 Jensen, M.R., Yabukarski, F., Communie, G., Condamine, E., Mas, C., Volchkova, V.,
1253 Tarbouriech, N., Bourhis, J.M., Volchkov, V., Blackledge, M., et al. (2020). Structural
1254 Description of the Nipah Virus Phosphoprotein and Its Interaction with STAT1. *Biophys. J.*
1255 *118*, 2470–2488.

1256 Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and Madden, T.L.
1257 (2008). NCBI BLAST: a better web interface. *Nucleic Acids Res.* *36*, W5–W9.

1258 Joklik, W.K. (1962). The purification of four strains of poxvirus. *Virology.* *18*, 9–18.

1259 Kaneko, T., Huang, H., Zhao, B., Li, L., Liu, H., Voss, C.K., Wu, C., Schiller, M.R., and Li,
1260 S.S.C. (2010). Loops Govern SH2 Domain Specificity by Controlling Access to Binding
1261 Pockets. *Sci. Signal.* *3*, ra34.

1262 Keiffer, T.R., Ciancanelli, M.J., Edwards, M.R., and Basler, C.F. (2020). Interactions of the
1263 Nipah Virus P, V, and W Proteins across the STAT Family of Transcription Factors. *MSphere.*
1264 *5*. e00449-20

1265 Koksal, A.C., Nardozzi, J.D., and Cingolani, G. (2009). Dimeric Quaternary Structure of the
1266 Prototypical Dual Specificity Phosphatase VH1. *J. Biol. Chem.* *284*, 10129–10137.

1267 Ladbury, J.E., and Arold, S.T. (2011). Energetics of Src Homology Domain Interactions in
1268 Receptor Tyrosine Kinase-Mediated Signaling. In *Methods in Enzymology.* *488*, 147–183.

1269 Lasso, G., Honig, B., and Shapira, S.D. (2021). A Sweep of Earth’s Virome Reveals Host-
1270 Guided Viral Protein Structural Mimicry and Points to Determinants of Human Disease. *Cell*

1271 Syst. 12, 82-91.e3.

1272 Leung, S., Qureshi, S.A., Kerr, I.M., Darnell, J.E., and Stark, G.R. (1995). Role of STAT2 in
1273 the Alpha Interferon Signaling Pathway. Mol. Cell. Biol. 15, 1312-1317

1274 Li, X., Leung, S., Kerr, I.M., and Stark, G.R. (1997). Functional subdomains of STAT2
1275 required for preassociation with the alpha interferon receptor and for signaling. Mol. Cell. Biol.
1276 17, 2048–2056.

1277 Liebschner, D., Afonine, P. V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B.,
1278 Hung, L.W., Jain, S., McCoy, A.J., et al. (2019). Macromolecular structure determination using
1279 X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. Sect. D
1280 Struct. Biol. 75, 861–877.

1281 Liu, R., Americo, J.L., Cotter, C.A., Earl, P.L., Erez, N., Peng, C., and Moss, B. (2021). One
1282 or two injections of MVA-vectored vaccine shields hACE2 transgenic mice from SARS-CoV-
1283 2 upper and lower respiratory tract infection. Proc. Natl. Acad. Sci. USA. 118, e2026785118.

1284 Lu, Y., Stuart, J.H., Talbot-Cooper, C., Agrawal-Singh, S., Huntly, B., Smid, A.I., Snowden,
1285 J.S., Dupont, L., and Smith, G.L. (2019). Histone deacetylase 4 promotes type I interferon
1286 signaling, restricts DNA viruses, and is degraded via vaccinia virus protein C6. Proc. Natl.
1287 Acad. Sci. USA. 116, 11997–12006.

1288 Ludlow, L.E., Lo, M.K., Rodriguez, J.J., Rota, P.A., and Horvath, C.M. (2008). Henipavirus
1289 V Protein Association with Polo-Like Kinase Reveals Functional Overlap with STAT1
1290 Binding and Interferon Evasion. J. Virol. 82, 6259–6271.

1291 Mann, B.A., Huang, J.H., Li, P., Chang, H.C., Slee, R.B., O’Sullivan, A., Mathur, A., Yeh, N.,
1292 Klemsz, M.J., Brutkiewicz, R.R., et al. (2008). Vaccinia virus blocks Stat1-dependent and
1293 Stat1-independent gene expression induced by type I and type II interferons. J. Interf. Cytokine
1294 Res. 28, 367–379.

1295 Mao, X., Ren, Z., Parker, G.N., Sondermann, H., Pastorello, M.A., Wang, W., McMurray, J.S.,

1296 Demeler, B., Darnell, J.E., and Chen, X. (2005). Structural bases of unphosphorylated STAT1
1297 association and receptor binding. *Mol. Cell.* *17*, 761–771.

1298 McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and
1299 Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. *Nucleic Acids Res.* *41*.

1300 W597-W600

1301 Mendoza, J.L., Escalante, N.K., Jude, K.M., Sotolongo Bellon, J., Su, L., Horton, T.M.,
1302 Tsutsumi, N., Berardinelli, S.J., Haltiwanger, R.S., Piehler, J., et al. (2019). Structure of the
1303 IFN γ receptor complex guides design of biased agonists. *Nature.* *567*, 56–60.

1304 Miklossy, G., Hilliard, T.S., and Turkson, J. (2013). Therapeutic modulators of STAT
1305 signalling for human diseases. *Nat. Rev. Drug Discov.* *12*, 611–629.

1306 Mishra, P.M., Verma, N.C., Rao, C., Uversky, V.N., and Nandi, C.K. (2020). Intrinsically
1307 disordered proteins of viruses: Involvement in the mechanism of cell regulation and
1308 pathogenesis. In *Progress in Molecular Biology and Translational Science.* *174*, 1–78.

1309 Montanuy, I., Alejo, A., and Alcami, A. (2011). Glycosaminoglycans mediate retention of the
1310 poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral
1311 responses. *FASEB J.* *25*, 1960–1971.

1312 Mossman, K., Upton, C., Buller, R.M.L., and McFadden, G. (1995). Species Specificity of
1313 Ectromelia Virus and Vaccinia Virus Interferon- γ Binding Proteins. *Virology.* *208*, 762–769.

1314 Malquer de Motes, C., Cooray, S., Ren, H., Almeida, G.M.F., McGourty, K., Bahar, M.W.,
1315 Stuart, D.I., Grimes, J.M., Graham, S.C., and Smith, G.L. (2011). Inhibition of apoptosis and
1316 NF- κ B activation by vaccinia protein N1 occur via distinct binding surfaces and make different
1317 contributions to virulence. *PLoS Pathog.* *7*, e1002430.

1318 Malquer de Motes, C., Schiffner, T., Sumner, R.P., and Smith, G.L. (2014). Vaccinia virus
1319 virulence factor N1 can be ubiquitylated on multiple lysine residues. *J. Gen. Virol.* *95*, 2038–
1320 2049.

1321 Mühlemann, B., Vinner, L., Margaryan, A., Wilhelmson, H., de la Fuente Castro, C., Allentoft,
1322 M.E., de Barros Damgaard, P., Hansen, A.J., Holtsmark Nielsen, S., Strand, L.M., et al. (2020).
1323 Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age.
1324 *Science*. *369*, eaaw8977.

1325 Nagano, Y., Sugiyama, A., Kimoto, M., Wakahara, T., Noguchi, Y., Jiang, X., Saito, S.,
1326 Shimizu, N., Yabuno, N., Yao, M., et al. (2020). The Measles Virus V Protein Binding Site to
1327 STAT2 Overlaps That of IRF9. *J. Virol.* *94*, e01169-20.

1328 Najarro, P., Traktman, P., and Lewis, J.A. (2001). Vaccinia Virus Blocks Gamma Interferon
1329 Signal Transduction: Viral VH1 Phosphatase Reverses Stat1 Activation. *J. Virol.* *75*, 3185–
1330 3196.

1331 Nguyen, K.B., Watford, W.T., Salomon, R., Hofmann, S.R., Pien, G.C., Morinobu, A., Gadina,
1332 M., O’Shea, J.J., and Biron, C.A. (2002). Critical role for STAT4 activation by type 1
1333 interferons in the interferon- γ response to viral infection. *Science*. *297*, 2063–2066.

1334 Oda, K., Matoba, Y., Irie, T., Kawabata, R., Fukushi, M., Sugiyama, M., and Sakaguchi, T.
1335 (2015). Structural Basis of the Inhibition of STAT1 Activity by Sendai Virus C Protein. *J.*
1336 *Virol.* *89*, 11487–11499.

1337 Park, E.M., Kang, J.H., Seo, J.S., Kim, G. Do, Chung, J., and Choi, T.J. (2008). Molecular
1338 cloning and expression analysis of the STAT1 gene from olive flounder, *Paralichthys*
1339 *olivaceus*. *BMC Immunol.* *9*, 1–9.

1340 Peters, N.E., Ferguson, B.J., Mazzon, M., Fahy, A.S., Krysztofinska, E., Arribas-Bosacoma,
1341 R., Pearl, L.H., Ren, H., and Smith, G.L. (2013). A Mechanism for the Inhibition of DNA-PK-
1342 Mediated DNA Sensing by a Virus. *PLoS Pathog.* *9*, e1003649.

1343 Qureshi, S.A., Leung, S., Kerr, I.M., Stark, G.R., and Darnell, J.E. (1996). Function of Stat2
1344 protein in transcriptional activation by alpha interferon. *Mol. Cell. Biol.* *16*, 288–293.

1345 Randall, R.E., and Goodbourn, S. (2008). Interferons and viruses: An interplay between

1346 induction, signalling, antiviral responses and virus countermeasures. *J. Gen. Virol.* **89**, 1–47.

1347 Rengachari, S., Groiss, S., Devos, J.M., Caron, E., Grandvaux, N., and Panne, D. (2018).

1348 Structural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function.

1349 *Proc. Natl. Acad. Sci. USA.* **115**, E601–E609.

1350 Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new

1351 ENDscript server. *Nucleic Acids Res.* **42**, W320–W324.

1352 Rodriguez, J.J., Parisien, J.-P., and Horvath, C.M. (2002). Nipah virus V protein evades alpha

1353 and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation.

1354 *J. Virol.* **76**, 11476–11483.

1355 Rodriguez, J.J., Cruz, C.D., and Horvath, C.M. (2004). Identification of the Nuclear Export

1356 Signal and STAT-Binding Domains of the Nipah Virus V Protein Reveals Mechanisms

1357 Underlying Interferon Evasion. *J. Virol.* **78**, 5358–5367.

1358 Satterfield, B.A., Borisevich, V., Foster, S.L., Rodriguez, S.E., Cross, R.W., Fenton, K.A.,

1359 Agans, K.N., Basler, C.F., Geisbert, T.W., and Mire, C.E. (2019). Antagonism of STAT1 by

1360 Nipah virus P gene products modulates disease course but not lethal outcome in the ferret

1361 model. *Sci. Rep.* **9**, 1–18.

1362 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,

1363 S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: An open-source platform for

1364 biological-image analysis. *Nat. Methods.* **9**, 676–682.

1365 Schmidt, F.I., Bleck, C.K.E., Reh, L., Novy, K., Wollscheid, B., Helenius, A., Stahlberg, H.,

1366 and Mercer, J. (2013). Vaccinia virus entry is followed by core activation and proteasome-

1367 mediated release of the immunomodulatory effector VH1 from lateral bodies. *Cell Rep.* **4**, 464–

1368 476.

1369 Schneider, W.M., Chevillotte, M.D., and Rice, C.M. (2014). Interferon-stimulated genes: A

1370 complex web of host defenses. *Annu. Rev. Immunol.* **32**, 513–545.

1371 Shaw, M.L., García-Sastre, A., Palese, P., and Basler, C.F. (2004). Nipah Virus V and W
1372 Proteins Have a Common STAT1-Binding Domain yet Inhibit STAT1 Activation from the
1373 Cytoplasmic and Nuclear Compartments, Respectively. *J. Virol.* *78*, 5633–5641.

1374 Smart, O.S., Womack, T.O., Flensburg, C., Keller, P., Paciorek, W., Sharff, A., Vonrhein, C.,
1375 and Bricogne, G. (2012). Exploiting structure similarity in refinement: Automated NCS and
1376 target-structure restraints in BUSTER. *Acta Crystallogr. Sect. D Biol. Crystallogr.* *68*, 368–
1377 380.

1378 Smith, G.L., Benfield, C.T.O., Maluquer de Motes, C., Mazzon, M., Ember, S.W.J., Ferguson,
1379 B.J., and Sumner, R.P. (2013). Vaccinia virus immune evasion: Mechanisms, virulence and
1380 immunogenicity. *J. Gen. Virol.* *94*, 2367–2392.

1381 Smith, G.L., Talbot-Cooper, C., and Lu, Y. (2018). How Does Vaccinia Virus Interfere With
1382 Interferon? In *Advances in Virus Research*. *100*, 355–378.

1383 Soday, L., Lu, Y., Albarnaz, J.D., Davies, C.T.R., Antrobus, R., Smith, G.L., and Weekes, M.P.
1384 (2019). Quantitative Temporal Proteomic Analysis of Vaccinia Virus Infection Reveals
1385 Regulation of Histone Deacetylases by an Interferon Antagonist. *Cell Rep.* *27*, 1920-1933.e7.

1386 Stuart, J.H., Sumner, R.P., Lu, Y., Snowden, J.S., Smith, G.L., Muller, U., Steinhoff, U., Reis,
1387 L., Hemmi, S., Pavlovic, J., et al. (2016). Vaccinia Virus Protein C6 Inhibits Type I IFN
1388 Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2. *PLOS Pathog.*
1389 *12*, e1005955.

1390 Symons, J.A., Alcamí, A., and Smith, G.L. (1995). Vaccinia virus encodes a soluble type I
1391 interferon receptor of novel structure and broad species specificity. *Cell.* *81*, 551–560.

1392 Teo, H., Perisic, O., González, B., and Williams, R.L. (2004). ESCRT-II, an endosome-
1393 associated complex required for protein sorting: Crystal structure and interactions with
1394 ESCRT-III and membranes. *Dev. Cell.* *7*, 559–569.

1395 Torpey, N., Maher, S.E., Bothwell, A.L.M., and Pober, J.S. (2004). Interferon α but not

1396 interleukin 12 activates STAT4 signaling in human vascular endothelial cells. *J. Biol. Chem.*
1397 279, 26789–26796.

1398 Torres, A.A., Macilwee, S.L., Rashid, A., Cox, S.E., Albarnaz, J.D., Bonjardim, C.A., and
1399 Smith, G.L. Spir-1 promotes IRF3 activation and is targetted by vaccinia virus protein K7.
1400 BioRxiv. doi: 10.1101/2020.08.31.276659.

1401 Unterholzner, L., Sumner, R.P., Baran, M., Ren, H., Mansur, D.S., Bourke, N.M., Randow, F.,
1402 Smith, G.L., and Bowie, A.G. (2011). Vaccinia Virus Protein C6 Is a Virulence Factor that
1403 Binds TBK-1 Adaptor Proteins and Inhibits Activation of IRF3 and IRF7. *PLoS Pathog.* 7,
1404 e1002247.

1405 Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, T., and
1406 Bricogne, G. (2011). Data processing and analysis with the autoPROC toolbox. *Acta
1407 Crystallogr. Sect. D Biol. Crystallogr.* 67, 293–302.

1408 Wang, B., Thurmond, S., Zhou, K., Sánchez-Aparicio, M.T., Fang, J., Lu, J., Gao, L., Ren, W.,
1409 Cui, Y., Veit, E.C., et al. (2020). Structural basis for STAT2 suppression by flavivirus NS5.
1410 *Nat. Struct. Mol. Biol.* 27, 875–885.

1411 Wang, Y., Song, Q., Huang, W., Lin, Y., Wang, X., Wang, C., Willard, B., Zhao, C., Nan, J.,
1412 Holvey-Bates, E., et al. (2021). A virus-induced conformational switch of STAT1-STAT2
1413 dimers boosts antiviral defenses. *Cell Res.* 31, 206–218.

1414 Wennier, S.T., Brinkmann, K., Steinhäußer, C., Mayländer, N., Mnich, C., Wielert, U.,
1415 Dirmeier, U., Hausmann, J., Chaplin, P., and Steigerwald, R. (2013). A Novel Naturally
1416 Occurring Tandem Promoter in Modified Vaccinia Virus Ankara Drives Very Early Gene
1417 Expression and Potent Immune Responses. *PLoS One.* 8, e73511.

1418 Wenta, N., Strauss, H., Meyer, S., and Vinkemeier, U. (2008). Tyrosine phosphorylation
1419 regulates the partitioning of STAT1 between different dimer conformations. *Proc. Natl. Acad.
1420 Sci. USA.* 105, 9238–9243.

1421 Xue, B., Blocquel, D., Habchi, J., Uversky, A. V., Kurgan, L., Uversky, V.N., and Longhi, S.

1422 (2014). Structural disorder in viral proteins. *Chem. Rev.* *114*, 6880–6911.

1423 Yan, H., Krishnan, K., Greenlund, A.C., Gupta, S., Lim, J.T., Schreiber, R.D., Schindler, C.W.,

1424 and Krolewski, J.J. (1996). Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts

1425 as a docking site for the latent form of the 113 kDa STAT2 protein. *EMBO J.* *15*, 1064–1074.

1426 Yang, C., Mai, H., Peng, J., Zhou, B., Hou, J., and Jiang, D. (2020). STAT4: An

1427 immunoregulator contributing to diverse human diseases. *Int. J. Biol. Sci.* *16*, 1575–1585.

1428 Yang, Z., Cao, S., Martens, C.A., Porcella, S.F., Xie, Z., Ma, M., Shen, B., and Moss, B. (2015).

1429 Deciphering Poxvirus Gene Expression by RNA Sequencing and Ribosome Profiling. *J. Virol.*

1430 *89*, 6874–6886.

1431 Zhao, W., Lee, C., Piganis, R., Plumlee, C., de Weerd, N., Hertzog, P.J., and Schindler, C.

1432 (2008). A Conserved IFN- α Receptor Tyrosine Motif Directs the Biological Response to Type

1433 I IFNs. *J. Immunol.* *180*, 5483–5489.

1434