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Abstract

A microglia response to pathogenic signals in diseases such as Alzheimer’s disease (AD) has long
been recognised, but recent genetic findings have cemented their direct causal contribution to
AD and thus the potential to target them or their effector pathways as a possible treatment

strategy. TREM2 is a highly penetrant microglia risk gene for AD, which appears central to the
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coordination of the damage response by microglia in AD. Its absence has a negative impact on
Tau and amyloid symptoms and pathologies. Full knowledge of its pathway and relationships with
other brain cells in AD has not been fully characterised, but will be essential to fully evaluate the
impact of manipulating this pathway for treatment development and to establish the best targets
for achieving this. We used whole genome RNA sequencing of hippocampus and cortical brain
samples from control, AD, and AD TREM2 risk carriers to identify TREM2-dependent genes driving
changes in pathways, processes and cell types in AD. Through highly influential intra and
intermodular hub genes and overall changes in the levels of gene expression, TREM2-DAP12 was
found to strongly influence a number of other microglia, oligodendrocyte and endothelial genes,
notably those involved in complement and Fcy receptor function, microglia-associated ribosomal
genes and oligodendrocyte genes, particularly proteosomal subunits. These strong TREM2
centred co-expression relationships were significantly disrupted in AD cases with a TREM2 risk
variant, revealing for the first time genes and pathways directly impacted by TREM2 in the brains
of AD patients. Consistent with its function as a lipid sensor, our data supports a role for TREM?2
in mediating oligodendrocyte and/or myelin clearance in AD which may be essential not only for
preserving healthy tissue homeostasis but may also serve to minimise the persistence of antigenic
peptides and lipids which may lead to detrimental pro-inflammatory sequelae. Further work
should expand our knowledge of TREM2 on complement and Fcy receptor function and its impact
on oligodendcrotye and myelin integrity and further evaluate the genes and pathways we have

identified as possible treatment targets for AD.
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Introduction

Rare missense variants in TREM2 (1-2% frequency in AD) can significantly increase the risk of
developing Alzheimer’s disease (AD) and related neurodegenerative diseases (Guerreiro et al.,
2013b; Guerreiro et al., 2013c; Jonsson et al., 2013; Jin et al., 2014; Ridge et al., 2016). As TREM?2

in the brain appears to be exclusively expressed in microglia, this provides compelling evidence
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that microglia are involved in vulnerability to neurodegeneration. TREM2 is a transmembrane
receptor containing an extracellular immunoglobulin V-set domain suggesting potential for high
and low avidity interactions with a broad range of ligands reported to include AB (Lessard et al.,
2018; Zhao et al., 2018), apolipoproteins (Atagi et al., 2015; Yeh et al., 2016), anionic and

zwitterionic lipids (Wang et al., 2015) and anioinic carbohydrates (Daws et al., 2003).

Individual variants are believed to impact TREM2 production (Q33X), expression or turnover at
the cell surface (R47H) (Kleinberger et al., 2014; Park et al., 2017), a-secretase cleavage of an
extracellular soluble ectodomain (H157Y) (Kleinberger et al., 2014; Jiang et al., 2016a; Thornton
et al., 2017) and/or ligand binding (R47H, R62H, T96K, H157Y) (Kober et al., 2016; Song et al.,
2017; Sudom et al., 2018) leading to loss of normal TREM2 function. Additional rare missense
variants affecting both alleles primarily alter protein structure, cell surface expression and
shedding, and cause Nasu-Hakola disease (Paloneva et al., 2002; Kleinberger et al., 2014; Kober
et al., 2016). This very rare fatal disease emerging in early adulthood is characterised by fragility
bone fractures, demyelination, calcification of the basal ganglia and progressive frontal dementia
(Paloneva et al., 2001; Bock et al., 2013). There are clear overlaps with AD, although Nasu-Hakola
patients fail to display appreciable levels of amyloid or Tau deposits in the brain (Satoh et al.,
2018). These evidence serve to highlight the pleiotropic nature of TREM2 activity and highlight
the relevance of temporal and spatial context. In fact, there are widely differing ages of disease
onset, disease symptoms and pathology in the TREM2 AD patients we have evaluated, even those
with the same TREM2 risk variant. Disease manifests just like any other patient with AD, FTD or
similar condition, making TREM2 carriers indistinguishable from other patients in the absence of
genetic knowledge. This suggests partial loss of TREM2 function by itself is insufficient for disease
and that a number of additional stochastic factors can greatly influence disease risk. It also
suggests that dysfunctional TREM2 linked pathways in microglia may be central to AD

pathogenesis even in patients without a predisposing genetic risk in TREM2.

Over-expression or restoration of normal TREM2 function has been shown to have largely

beneficial outcomes in amyloid-driven (Jiang et al., 2014, Lee et al., 2018; Song et al., 2018) or
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Tau-driven AD mouse models (Jiang et al., 2016b). This suggests that the microglia response
observed in AD brain might at least in part be an attempt, albeit one that ultimately fails in AD
patients, to protect from AD pathogenesis. Loss of normal TREM2 function via knock-out or
introduction of a disease variant suports this. In an amyloid background, loss of TREM2 leads to
an exacerbation of AD pathology. There are fewer microglia, defective production of soluble
TREM2 ectodomain, less microglia clustering around plaques (Song et al., 2018), impaired plaque
barrier function and fibrillar AB, plaque and plaque-associated APOE clearance (Wangetal., 2015;
Yuan et al., 2016; Parhizkar et al., 2019). Behavioural data to support these findings is however
currently lacking and some studies have reported lower plaque load in the absence of TREM2 (Jay
et al., 2015; Krasemann et al., 2017). Tau models lacking TREM2 further support the protective
function of normal TREM2, displaying exacerbated Tau pathology, more ramified and fewer
microglia, increased brain atrophy and greater memory deficits (Jiang et al., 2015; Bemiller et al.,
2017; Sayed et al., 2018). Somewhat at odds with this, Leyns et al. (2017) and Sayed et al., (2018)
note that lower cytokine production, less atrophy and synaptic loss occurs in Tau mice completely
lacking TREM2 (Leyns et al., 2017; Sayed et al., 2018), suggesting TREM2 may respond differently
depending on the timing of microglia exposure to pathological cues such as amyloid, aggregated
Tau or neuronal cell loss which emerge at different ages and stages of disease progression. It is
notable that the PS19 Tau line (Leyns et al., 2017; Sayed et al., 2018) has greater and earlier
neuronal cell loss, brain atrophy and microgliosis than the hTau line (Bemiller et al., 2017) and
haplosufficiency versus complete loss of TREM2 may also be a factor. Loss of TREM2 has also been
shown to lead to deficits in phagocytosis, at least in the uptake of AB, myelin debris, apoptotic
neurons and/or E.coli (Takahashi et al., 2005; Kleinberger et al., 2014; Cantoni et al., 2015; Xiang
et al., 2016; Garcia-Reitboeck et al., 2018). These effects are consistent with the known signalling
pathways linking TREM2, through it’s adaptor DAP12 and P13K, PLCy and VAV/RAS/ERK which
impact cell survial, proliferation, cytokine and chemokine secretion and phagocytosis, reviewed

in (Ulland and Colonna, 2018).

Expression profiling of mouse and human tissue has significantly increased our knowledge of

markers specific to different brain cell types and revealed important cellular subpopulations with
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unique molecular identities and behaviours in normal (Hawrylycz et al., 2012; Forabosco et al.,
2013; McKenzie et al., 2018; Olah et al., 2018) and AD brain (Zhang et al., 2013). Recent single-
cell RNA sequencing studies have further refined important molecular profiles representing
different microglia cell sub populations in human brain (Mathys et al., 2017; Del-Aguila et al.,
2019; Patir et al., 2019; Sankowski et al., 2019; Srinivasan et al., 2019) some of which (DAM,
damage-associated microglia) co-localise to disease-relevant structures such as amyloid in mouse
amyloid models of AD (Keren-Shaul et al., 2017) or associate with myelinating oligodendrocytes
(PAM, proliferative-region-associated microglia) during normal early development (Li et al.,
2019). They also highlight the central position of TREM2 and TREM2-associated networks within
specific microglia subpopulations and their likely rippling impacts on other brain cells types

associated with AD (Carbajosa et al., 2018).

We therefore sought to identify genes, processes and cell type changes driven specifically by
TREM2 in human AD by comparing expression profiles in control, and AD patients with and
without an AD-associated TREM2 variant. Modules containing genes with highly correlated
patterns of gene expression and enriched for different cell identities revealed interactions and
highly influential intra and intermodular hub genes. They also allowed us to establish TREM2-
dependent and independent pathways impacting AD and establish which cell types are being
impacted in AD by TREM2. The goal was to establish the influence of microglia within the whole
brain AD environment in people, identify molecular pathways linked to TREM2 and establish a

benchmark by which TREM2-related mouse models can be evaluated.

Methods

An overview of the data analysis pipeline used in the study can be found in Figure 1.

TREM?2 cohort and RNA extraction

Informed consent for all brain donors was obtained according to the Declaration of Helsinki
(1991) and protocols and procedures were approved by the relevant ethical committee and

obtained by each brain bank. Pathological diagnosis was made according to established methods
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at the time of donation (Braak and Braak, 1991; Braak et al., 2003; Alafuzoff et al., 2006; Alafuzoff
et al., 2008; Josephs et al., 2014). Where necessary for historical cases, retrospective diagnoses
were made using current criteria. Tissue from a total of 69 brain donors (131 samples) were
obtained for the following three groups: Control/MCI/AD/TREM2'®" (donors with a non-
synonymous DNA variant in TREM2 expected to put them at higher risk of AD), AD/TREM2"' (AD
donors with no TREM2 disease associated variant) and Control/TREM2" (tissue from age-
matched donors with no disease associated TREM2 variant nor any evidence of neurological

problems or AD pathology) (Table 1 and Table S1).

The Control/MCI/AD/TREM2"?" group consisted of 24 donors: 10 donors were identified by
sequencing TREM2 Exon 2 in 631 AD and normal elderly control brain donors from the MRC
London Neurodegenerative Diseases Brain Bank (King’s College London, UK); 4 donors were
identified from a screen of 198 AD cases from The Netherlands Brain Bank (Royal Netherlands
Academy of Arts and Sciences, Netherlands) and a further 10 donors which have been described
previously (Guerreiro et al., 2013a) were obtained from the Thomas Willis Brain Collection (John
Radcliffe Hospital, UK) (4 donors) and from the Queen Square Brain Bank for Neurological
Disorders (University College London, UK) (6 donors). Within the Control/MCI/AD/TREM?2Ve"
group, 18 had a pathologically confirmed diagnosis of AD while 6 were pathologically normal at
death, although one donor had symptoms of mild cognitive impairment just prior to death and
their post mortem pathology was assessed as Braak stage Il (Table S1). As expected, the majority
of Control/MCI/AD/TREM2"?" cases had the variant c.140G>A; p.R47H (rs75932628), while the
remainder had one of eight additional variants in TREM2 predicted to be detrimental. One donor
had a novel variant while the remainder have been described previously in AD cases (Table 1 and

Table S1).

Where available, ~100 mg of frozen tissue from post mortem hippocampus and pre-association
cortex (BA9) from each donor, reflecting early and later affected areas in AD pathogensis
(Mastrangelo and Bowers, 2008; Matarin et al., 2015), were homogenized in matrix-lysing D tubes

containing Qiazol reagent. RNA was isolated using the miRNeasy Mini Kit (Qiagen). Both total RNA
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and small RNA fractions were extracted separately according to the manufacturer’s instructions.
The quantity and quality of total RNA was assessed using the NanoDrop 8000 spectrophotometer
V2.0 (ThermoScientific, USA) and Agilent 2100 Bioanalyser (Agilent Technologies, Waldbronn,
Germany), respectively. As reported previously for post mortem brain samples (Proitsi et al.,
2014), RNA integrity numbers (RIN) were variable, ranging from 1.2 to 9.5 with a median of 6.3
(Table 1 and Table S1).

Library generation and RNA-sequencing

100ng of total RNA from each sample was used to prepare total RNA libraries using the KAPA
Stranded RNA-Seq Kit with RiboErase (KAPA Biosystems, Massachusetts, USA). Fragmentation
prior to first strand cDNA synthesis was carried out using incubation conditions recommended by
the manufacturer. For degraded samples (those with a RIN<7) 65°C for 1 minute was used, while
94°C for 6 minutes was used for the remaining samples. 14 cycles of PCR were performed for final
library amplification. Resulting libraries were quantified using the Qubit 2.0 spectrophotometer
(Life Technologies, California, USA) and average fragment size assessed using the Agilent 2200
Tapestation (Agilent Technologies, Waldbronn, Germany). Equimolar amounts of each library
with compatible indexes were pooled together for sequencing, resulting in 5 pools with 22
samples, and one pool of 23. 75bp paired-end reads were generated for each library pool using
the Illlumina NextSeq®500 (lllumina Inc.,, Cambridge, UK) in conjunction with the
NextSeq®500/550 High-Output 150cycle kit. Each pool was sequenced a total of 6 times in order
to achieve 100 million reads per sample. Expression data generated in this study are available at

NCBI’s GEO through accession number GSEXXXXXX.

RNA-Seq Quality Control and Differential Expression

RNAseq reads were aligned to the human GRCm38 rel 79 reference transcriptome using Kallisto
version 0.42.4 (Bray et al., 2016). This transcriptomes was constructed using Ensembl reference
transcriptomes (https://www.ensembl.org/info/data/ftp/index.html.) We downloaded the
reference transcriptome from the Kallisto project website
(“http://bio.math.berkeley.edu/kallisto/transcriptomes/”). The aforementioned resource

provided by the Kallisto project is not available anymore and reference transcriptomes can now
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be downloaded from the patcherlab github at https://github.com/pachterlab/kallisto-
transcriptome-indices/releases where further detail can be obtained on how the indexes are
generated. The efficiency of the mapping varied from 79 to 94% with the number of reads

mapped ranging from 159 million to 379 million (Table S1).

We applied a number of quality control methods implemented in the R Sleuth package. Principal
component analysis revealed that samples clustered by RIN score, so we included RIN score as a
covariate in Differential Expression (DE) analysis or removed samples with a RIN score <2.2 for
network analysis, where this variable could not be controlled (Table S1 and Supplementary File
1). We aligned the RNAseq reads using STAR version 2.5.2a and called variants for the Y
chromosome using samtools version 1.3+htslib-1.3 and bcftools 1.3. Reassuringly, the number of
variants called were always higher in the males when we checked against their recorded sex,
except for one sample which had also failed to meet sequencing quality and was therefore
excluded from the analysis. We also confirmed the presence of the expected TREM2 variant in
the relevant reads as well as conordance of their APOE genotype determined independently.
Overall, there was high sample concordance and high sequencing quality. Only a small number of
samples were excluded from further analysis due to low number of reads count (implying
sequencing failure) and/or because they were outlier samples relative to the population norm
and/or because they had a high rate of duplicate reads and/or where samples with the TREM2
variant did not have a diagnosis of AD (Table S1). Overall, this left 53 hippocampus and 54 BA9

samples for DE analysis and 53 hippocampus and 56 BA9 samples for network analysis (Table 1).

Following quality control filtering, in hippocampus 109,968 transcripts representing 24,467 genes
were available for the Control/TREM2"' and AD/TREM2"! comparison and 109,569 transcripts
representing 24,403 genes were available for the Control/TREM2"* and AD/TREM2'®"
comparison. In BA9, 111,281 transcripts representing 24,782 genes were available for the
Control/TREM2"* and AD/TREM2%' comparison and 110,669 transcripts representing 24,717
genes were available for the Control/TREM2"* and AD/TREM2"?" comparison. We performed DE

analysis on TPM normalized counts with the R sleuth package version 0.28.1 (Pimentel et al.,
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2017). We used Wald tests provided by the sleuth package to statistically compare expression
differences in Control/TREM2"* and AD/TREM2"*' and Control/TREM2"' and AD/TREM2"'®",
controlling for differences in RIN score, sex and age at death by including their values as covariates

in the sleuth model.

We generated plots and graphics using the sleuth (H. Pimentel et al., 2016; H. J. Pimentel et al.,
2016) and ggplot version 2.2.1 (Wickham, 2009) R packages. We used R version 3.3.0.

Comparison in differential gene expression between Control/TREM2*t and AD/TREM2"?" versus

Control/TREM2%! and AD/TREM2%t

To assess if differences in gene expression between Control/TREM2"' and AD/TREM2"®" are
recapitulated between Control/TREM2"' and AD/TREM2"!, we assessed the degree of overlap in
the lists of differentially expressed genes for each comparison in hippocampus and BA9 using a

similar approach to (Kuhn et al., 2007).

We selected the top ranked isoform of each gene by p-value (g-value <0.05) from the
Control/TREM2"* and AD/TREM2"! analysis and compared its ranking in the Control/TREM2*!
and AD/TREM2"? comparison. Genes were ‘condordant’ if they changed in the same direction in
both comparisons (same b value sign). There was strong over-representation of concordant

changes in the top ranking genes across in both comparisons (Supplementary File 1).

To establish the degree of the association between the two lists of differentially expressed genes
we defined a ‘concordance coefficient’. The concordance coefficient was calculated as:

#concordant — #discordant
N

where #concordant is the number of concordant genes between the two comparisons,

CcC =

#discordant is the number of discordant genes and N the number of genes selected for the
comparison. The value of c ranges from 1 for a perfectly concordant set to -1 for a completely
discordant one. A value of 0 reflects the same number of concordant and discordant genes. We

obtained a value of 1 for both Entorhinal Cortex and BA9 comparisons (i.e. perfect concordance).
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To determine the strength of the association we used three approaches:

1. We permutated the labels of the samples for Control/TREM2"' and AD/TREM2"*" 100
times and compared this to the original outcome. Not one of the alternative comparisons was as
strongly associated as the original (i.e. pval < 0.01 for the strength of the association)

2. To test the specificity of the association to the AD signature we repeated the permutation
for AD/TREM2"! vs Control/TREM2"' and compared this against the original Control/TREM2*!
and AD/TREM2"?" signature. The result was the same as before (i.e. pval < 0.01 for the strength
of the association)

3. Finally, to further test how strongly the Control/TREM2*' and AD/TREM2"®" signature
recapitulates the AD/TREM2"' vs Control/TREM2"' result, we compared it to a random
AD/TREM2'*" vs Control/TREM2"*! gene list. Random signatures were generated by drawing
(without replacement) groups of N non-redundant genes from genes matched between the two
comparisons. We generated a concordant coefficient for each of 10000 random AD/TREM2Y? vs
Control/TREM2"! signatures. In all cases the permutated coefficient was significantly smaller than
the concordance coefficient observed between AD/TREM2'®* vs Control/TREM2"' and

AD/TREM2"* vs Control/TREM2"!.

Gene ontology and pathway enrichment analysis

Genes with transcripts reaching significance, g-value < 0.01, were used for gene ontology and
pathway analysis. We performed gene ontology and pathway analysis using the Enrichr database

(Chen et al., 2013; Kuleshov et al., 2016) as described previously (Newhouse, 2017).

Gene network construction and module detection

For the co-expression analysis, we selected the transcript isoform with highest mean expression
in the filtered list to represent each gene. Genes where there were at least 10 reads in more than
90% of samples for each tissue or group were included (Langfelder and Horvath, 2008). This left

us with 21,844 genes (Figure 1).

10
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We used WGCNA version 1.51 to identify modules of co-expressed genes within gene expression
networks (Langfelder and Horvath, 2008). To construct the networks, we calculated biweight
midcorrelations for all possible genes pairs. We entered the values in a matrix, and transformed
the data so that the matrix followed an approximate scale-free topology (Supplementary File 1).
We used a dynamic tree cut algorithm to detect network modules and used signed networks to
preserve the direction of correlations. We ran singular value decomposition on each module’s
expression matrix and used the resulting module eigengene, which is equivalent to the first
principal component (Langfelder and Horvath, 2007), to represent the overall expression profiles

of the modules.

We used a hypergeometric test to match modules with the most significant gene overlap between
Control/TREM2"* and AD/TREM2"t, and, Control/TREM2" and AD/TREM2"¥" for each brain
region. The AD/TREM2"* and AD/TREM2"?" groups were subsequently re-coloured to match the
corresponding colour used for each module in the Control/TREM2"' group. Modules with no
significant overlap retained their original colour since these modules don’t appear in the

comparator group.

Module preservation statistics

We applied both the module preservation Zsummary and the medianRank statistics to assess the
module preservation between groups (Langfelder et al., 2011). Unlike the cross-tabulation test,
Zsummary not only considers the overlap in module membership, but also the density and
connectivity patterns of modules. We converted the transcript-level measurements into gene-
level measurements using the collapseRows R function and adapted the method to select the
most representative transcript by choosing the transcript isoform with the highest average
expression to represent that gene, as this has been shown to have the highest between-study
consistency (Miller et al., 2011). Overall, we retained 21,844 genes for further analysis. We then
used student t-tests to statistically compare expression differences between modules as

suggested by the WGCNA authors (Langfelder and Horvath, 2008).
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Module membership statistics

The level of correlation between each gene and each module eigenene was assessed to
determine how strong the connection of a gene was with the rest of the module it had been
assigned to, and to each of the other modules. Two different approaches were used, based on
the methods described by the WGCNA authors (Langfelder and Horvath, 2008). The first approach
used all genes to determine overall conservation of the modules. The second used only those
genes assigned to a given module to assess "hub" conservation i.e. this assesses if genes more
strongly correlated to a given module in one of the networks (e.g. Control/TREM2"!) are strongly

correlated to the equivalent module in a comparator network (e.g. AD/TREM2"Y).

We used Cytoscape v3.7.0 to generate network maps of the most highly correlated genes and
modules for each group, retaining the same colours used for each module generated in WGCNA
(Shannon et al., 2003). We only display the genes with correlations stronger than 0.5 for clarity.
This enables graphic visualisation of relationships between modules and how they change
between the three groups and brain regions being compared (Control/TREM2", AD/TREM2"t and
AD/TREM2V).

Integration of cell type markers

A recent study showed that there is a large degree of conservation in cell type-specific
transcriptome-wide RNA expression in brain tissue (McKenzie et al., 2018). This conservation is
not only high between independent studies, but is also high between equivalent cells in human
and mouse brain, thus supporting the validity of using the cell type dataset for the current study.
We therefore selected the top 500 most highly expressed genes for different brain cell types
(astrocytes, microglia, neurons, endothelial cells, oligodendrocyte precursor cells, newly formed
oligodendrocytes and myelinating oligodendrocytes) from a mouse RNA-Sequencing
transcriptome database (Zhang et al., 2014). We obtained human orthologs of these genes using
biomart (http://www.biomart.org/). Of these, it was possible to map 419 marker genes from

astrocytes, 456 from endothelial cells, 447 from microglia, 431 from myelinating

12


https://doi.org/10.1101/2021.07.16.452732
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452732; this version posted July 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

oligodendrocytes, 431 from newly formed oligodendrocytes, 420 from oligodendrocyte
precursors cells and 439 from neurons, to our dataset. These were used in subsequent analyses.
To compare cell type enrichment for each module, the total number of markers present in a given
module was divided by the total number of markers available for each cell type to normalise and
enable comparison between different sized modules. These values were then multipled by 100

to avoid working with very small numbers.

Results

Differentially expressed transcripts in AD largely AD rather than TREM2-dependent

First, we explored the number and directionality of differentially expressed transcripts (DE) for
hippocampus and BA9 between AD cases (AD/TREM2"!) and AD cases with a disease-associated
TREM2 variant (AD/TREM2"?") compared to age-matched controls (Control/TREM2"!) (Tables S2-
S5). Around 110,000 transcripts representing ~23,000 genes were included in this analysis. As
expected, there were more DE transcripts in hippocampus compared to BA9 in AD (gval<0.05)
and greater numbers of up- than down-regulated DE transcripts in AD cases in both tissues (Figure
2). However in AD with a TREM2 variant, there were not only fewer DE genes overall in both
tissues compared to AD (although as with non TREM2 carrier AD, BA9 was less affected) but
greater numbers of down-regulated rather than upregulated DE genes reaching nominal

significance (qval<0.05) (Figure 2).

This likely reflects differences in the number of samples available for each group for analysis, as
although the numbers of transcripts reaching nominal significance for DE (qval <0.05) was
generally lower in those with a TREM2 variant, there was remarkable concordance in the identity
and direction of change of the top ranking differentially expressed transcripts and genes, in both
tissue area’s and AD groups. This is unsurprising given both groups of AD have common
pathological hallmarks and indeed, are indistiguishable at the microscopic level. The concordance
coefficient in DE was 1 in both tissues, indicating a high degree of similarity. In further tests
comparing concordance against randomly selected DE genes, the permutated coefficients were

always lower than the actual concordance coefficient for both tissues.
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However, embedded amongst the many common molecular changes present in end stage AD, we
were particularly interested in uncovering TREM2-dependent differences which might signify
cells, processes, pathways and genes directly controlled by TREM2 and therefore impacted by
TREM2 dysfunction, which could be important targets for treatment development. TREM2-
dependent genes were expected to be those altered between Control/TREM2"' and
AD/TREM2", but not different between Control/TREM2"' and AD/TREM2"®" or having an
exacerbated response in AD/TREM2"?", Examples of such DE genes in hippocampus were LILRB4
and LSR which were significantly up-regulated only in AD cases without a TREM2 variant (Figure
3A and B). Many transcripts displaying this pattern had very low levels of expression, and
sometimes fell below the level of detection in TREM2 carriers, thus explaining their absence from
the DE list in Control/TREM2"' and AD/TREMZ2"?" (Tables S2 and 3). Alternatively, genes such as
LMX1B and PUF60 were down-regulated in AD, but only in donors without a TREM2 variant
(Figure 3C and D, Tables S2 and 3) while SORBS1 and SNX22 had a noticeably greater magnitude
of DE in AD cases with a TREM2 variant (Figure 3D and E, Tables S2 and 3). Many of the TREM2-
dependent DE genes appear to have enriched expression in oligodendrocytes in the human brain

(McKenzie et al., 2018) and/or are ascribed roles in microtubule and cytoskeletal activity.

TREM2 and TYROBP central to co-expression module in AD hippocampus

To better understand the impact of TREM2 dysfunction within or between closely coordinated
groups of genes within the brain, we next generated hippocampus and BA9 co-expression
networks for each group (Control/TREM2“, AD/TREM2"*' and AD/TREM2"?") (see Methods and
Figure 1). The hippocampus Control/TREM2"! co-expression network consisted of 14 modules,
each containing between 7 and 9770 gene members, while the AD/TREM2"' and AD/TREM2"?"
modules consisted of 19 modules (6 to 11957 genes) and 28 modules (1 to 10768 genes),
respectively (Figure 4). The bisque4 module contains the largest number of genes, while the grey
module contains unassigned genes and was therefore excluded from further consideration.
Similarly, the BA9 Control/TREM2"' co-expression network consisted of 22 modules, each

containing between 15 and 8126 gene members, while the AD/TREM2** and AD/TREM2"?"
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modules consisted of 20 modules (10 to 11677 genes) and 26 modules (2 to 6837 genes),

respectively (Figure S1).

In hippocampus, most Control/TREM2%' modules had an AD/TREM2"! counterpart, or involved
the split or merger of genes across only two modules. The exception was the Control/TREM2"
dark magenta module, which expanded in AD/TREM2"! to take in genes from 5 different
Control/TREM2"* modules (including magenta and dark magenta) to create a new magenta
module, and in so doing became the third largest module in AD/TREM2"! (Figure 4A). Two other
notable changes included around a third of the magenta module genes in Control/TREM2"
splitting to join the saddle brown module in AD/TREM2"! and half of the dark olive green module
genes from Control/TREM2"! joining the purple module in AD/TREM2"!, thus causing the dark
olive green module to disappear as an independent module in AD/TREM2"!. Interestingly, the
purple module contained TREM2 and TYROBP in both Control/TREM2"“' and AD/TREM2“!
hippocampus (Table S6 and S7). In contrast, there was greater fragmentation in AD/TREM2"?"
where very few modules in Control/TREM2"*' were preserved in AD/TREM2"?". Over half of all
Control/TREM2"* modules became split between more than two AD/TREM2Y®" modules (Figure
4B). Unlike what was found in AD/TREM2"! (Figure 4A) the magenta module remained largely
preserved in Control/TREM2"' and AD/TREM2'®" (Figure 4B). The purple module in
Control/TREM2"! on the other hand, instead of taking in dark olive green genes as was found in
AD/TREM2", fragmented to join blue, saddlebrown and purple modules in AD/TREM2?" (Table
S8).

TREM2 and TYROBP lose their module influence in AD hippocampus in TREM?2 variant carriers

TREM2 and TYROBP completely lost their strong position as intermolecular hub genes with high
module membership (MM) ranking in AD TREM2 carriers compared to the very central position
they had in the purple module in control and AD hippocampus. While TREM2 had the 12" highest
module membership rank in the purple module in control hippocampus (MM correlation 0.92)
and 29™ in AD (MM correlation 0.93), TYROBP was 48™ (MM correlation 0.88) and 4% (0.96),

respectively (Table S6 and S7). Module membership ranking dropped to a lowly 6,983 (MM
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correlation 0.62) for TREM2 and 9,861 position for TYROBP (MM correlation 0.51) in the

saddlebrown module they were assigned to in AD TREM2 carriers.

Some modules were better preserved than others, indicating member genes had retained a
tightly coordinated pattern of gene expression. Of note, the magenta module in the hippocampus
in Control/TREM2"! had the lowest median rank score amongst the modules and was one of
three modules with a z score >10 in AD/TREM2"' and AD/TREM2"?, indicating high module
preservation (Figure S2A-D). Although less strong, a similar profile for the pink and purple
modules was also found in hippocampus. In BA9, high module preservation was consistently

found for the darkgreen and lightpink4 modules (Figure S2E-H).

In BA9, the majority of Control/TREM2"' modules had an AD/TREM2"! counterpart or consisted
of genes splitting between only two modules in AD/TREM2"!, suggesting overall a relatively mild
impact of AD at the level of gene expression in this tissue (Figure S1A). There were a few notable
exceptions where related modules behaved differently in the AD/TREM2"?" group, suggesting
some AD impacted groups of genes were dependent on TREM2 (Figure S1B). The black module in
AD/TREM2"* was largely formed by the merger of genes from the black and dark green modules
in Control/TREM2"' while in AD/TREM2"?¥, rather than joining the black module, many of the
dark green module genes instead moved to a new salmon module not present in AD/TREM2**,
The greenyellow module was the third largest module in Control/TREM2"! and contained TREM?2
and TYROBP (Table S9). In AD/TREM2", this module fragmented in to blue (containing TREM2
and TYROBP, Table S10), dark red and green yellow modules while in AD/TREM2"¥, it fragmented
in to blue, dark red and greenyellow modules (containing TREM2 and TYROBP, Table S11) as well
as a new sky blue 2 module which also drew genes from the steelblue and green modules found
in Control/TREM2", In contrast, the steelblue and green modules remained largely unchanged
in Control/TREM2"' and AD/TREM2"*" suggesting AD pathology is unable to impact these genes
in the absence of fully functional TREM2. Interestingly, TREM2 and TYROBP had very little
influence in the greenyellow module in control where AD pathology is absent or in AD TREM2

carriers as would be expected from TREM2 dysfunction. In contrast, TREM2 and TYROBP had

16


https://doi.org/10.1101/2021.07.16.452732
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452732; this version posted July 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

significant influence in the blue module in AD, where they were ranked 19t" (MM correlation 0.90)

for TREM2 and 40" (0.85) for TYROBP (Tables S9, S10 and S11).

TREM2 and TYROBP in hippocampus module with microglia identity with influence of

oligodendrocyte and endothelial modules in AD/TREM2" but not in AD/TREM2"3"

We next investigated whether any of the modules had a particular cell type identity by looking
for over-representation of genes previously identified as having highly enriched or exclusive
expression in specific brain cell types (endothelial cells, microglia, neurons, astrocytes, newly

formed oligodendrocytes, oligodendrocyte precursor cells, myelinating oligodendrocytes).

As noted above, the purple module in hippocampus contained TREM2 and TYROBP in both
Control/TREM2"* and AD/TREM2"! groups and along with other genes gave this module a very
clear microglial identity in control and AD (Figure 5A). No other module in either group had such
a distinctive microglia identity. However, this module became fragmented in AD/TREM2"?" to
form the blue and saddlebrown modules. Although both retained a weaker microglia identity and
TREM2 and TYROBP still resided in the new saddlebrown microglia module (Figure 5A), they both

dramatically lost their central influence over this module (Figure 5A).

At the same time, a number of genes in the magenta module in Control/TREM2", which
contained many genes enriched in newly formed and myelinating oligodendrocytes (Figure 5B),
either remained in the magenta oligodendrocyte module which additionally took on genes highly
enriched in endothelial cells, or, joined the saddlebrown module in AD/TREM2"* which retained
a slightly reduced but still distinctive oligodendrocyte identity (Figure 5B). In contrast, the
magenta module in AD/TREM2"?" remained largely intact and very similar to that found in people
with no AD pathology (Figure 5B). Thus overall, the close relationship in expression between
microglia, oligodendrocyte and endothelial genes observed in AD failed to fully express itself in
those with TREM2 dysfunction where there was a much more limited correlation involving

microglia and oligodendrocyte, but not endothelial modules.
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The change in relationships between modules (and cell types) across the networks identified in
Control/TREM2%!, AD/TREM2"' and AD/TREM2"3" was visualised through scaled 3D graphical
representations using Cytoscape (Figure 6A). The microglia, endothelial and oligodendrocyte
modules observed in AD/TREM2"' appeared to strongly rely on TREM2 and TYROBP which
directly connected complement and ribosomal subunit genes within the purple microglia module
(Figure 6B). Without their influence, the microglia-endothelial relationship was completely lost in
AD/TREM2"?" and the connection between microglia and oligodendrocytes was weakened (Figure

6).

TREM2 and TYROBP impact ribosomal subunit genes in microglia and oligodendrocytes

Gene ontology and pathway analysis were used to reveal further biological insights in to the gene
membership of each module and thereby further reveal the impact of AD and dependency of
TREMZ2 on their behaviour. Significant gene enrichment for a number of biological pathways were
found in modules particularly susceptible to AD and TREM2 dysfunction (Table S12-521). Notably,
the purple-microglia module in AD/TREM2"! (Table S7) was significantly enriched in “Ribosome,
hsa03010, KEGG” genes (adj. p=5x10%%), largely consisting of genes coding for ribosome subunits
(Table S12). These genes had previously resided in the non-microglial darkolivegreen module in
Control/TREM2" (Table S6) or became split across several modules in AD/TREM2"?" (Table S8),

and were thus no longer collectively over-represented together as a group in any module.

As noted above, the magenta-endothelial module became much more closely aligned with
oligodendrocyte genes and the purple-microglia module in AD/TREM2"! (Table S7) and in so
doing, displayed moderate enrichment in “ECM-receptor interaction, hsa04512, KEGG” genes
(adj. p=1x107) (Table S13). The equivalent endothelial module in Control/TREM2"! (Table S6,
lightcyan) and AD/TREM2Y®" (Table S8, purple and darkmagenta) displayed quite different
biological profiles, namely, “Proteoglycans in cancer, hsa05205, KEGG” genes, adj. p=9x107>, Table
S14, “Proteoglycans in cancer, hsa05205, KEGG” genes, adj. p=1x107°, Table S15 and “Hippo
signaling pathway, hsa04390 KEGG” genes, adj. p=2x1073, Table S16, respectively, and the ECM-

receptor interaction genes were no longer enriched in these modules (Table S6 and S8).
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The prominent saddlebrown-oligodendrocyte module in AD/TREM2"! (Table S7) had significant
enrichment in “Proteasome, hsa03050, KEGG” genes (adj. p=2x107%) (Table S17). In contrast, the
equivalent oligodendrocyte modules in Control/TREM2" (Table S6, magenta) and AD/TREM2v®"
(Table S8, magenta) had no significant biological identity (Table S18 and S19). Interestingly, the
same proteosome genes either resided together in the large pink-neuronal module in
Control/TREM2"! or the saddlebrown-microglia module in AD/TREM2'®", and for this reason
were also significantly enriched as a group in these modules (“Proteasome, hsa03050, KEGG”
genes, adj. p=1x10-, Table S20, pink-neuronal module in Control/TREM2"* and “Proteasome,
hsa03050, KEGG” genes, adj. p=1x107'%, Table S21, saddlebrown-microglia module in
AD/TREM2"?").

Oligodendrocyte modules had the greatest proportion of TREM2-dependent DE genes compared

DE genes commonly affected by AD

The modules to which the DE genes were assigned was re-examined to further explore the
impacts of TREM2 on AD pathology. Importantly, we wanted to reveal genes, pathways and cell
types in AD directly dependent on TREM2 (Figure 7). We used the used the top 1000 ranked genes

in each DE comparison to classify them as either AD changes independent of TREM2 (intersection

of Control/TREM2"' and AD/TREM2"' DE genes and Control/TREM2"' and AD/TREM2"?" DE
genes), AD changes dependent on TREM2 (Control/TREM2** and AD/TREM2"! DE genes not in

Control/TREM2"' and AD/TREM2"?" DE genes) or AD independent but TREM2 dependent changes

(Control/TREM2** and AD/TREM2"2" DE genes not in Control/TREM2"* and AD/TREM2"' DE
genes) (Figure 7A and Tables S2-5).

III

As expected, in hippocampus and BA9 the pink “neuronal” modules had the most DE genes across
all groups of which DE genes common to AD dominated, rather than those dependent on TREM2.
Although there was still an appreciable number of TREM2-dependent genes with altered
expression residing in these modules, overall they were similarly represented across the groups

and alterations in their expression didn’t appear to dramatically disrupt the patterning of
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neuronal modules (Figure 7B-D). Similarly AD dominated modules with endothelial identity rather
than those dependent on TREM2. However unlike neuronal modules the proportion of TREM2-
dependent genes residing in the magenta module in AD/TREM2"! hippocampus was markedly
reduced compared to Control/TREM2"! and largely disappeared in the purple- and dark magenta-
endothelial modules in AD/TREM2"¥", suggesting whilst TREM2 does’t affect the expression of all
endothelial genes, it does appear important for maintaining some cohesiveness within the

endothelial module in AD and thereby its relationship with other cell types in AD.

Few DE genes were assigned to microglia modules in hippocampus or BA9. This is not suprising
as microglia form a relatively small fraction in whole brain samples so only the most highly
expressed genes will be captured. Nevertheless, those that were differentially expressed in the
purple-microglia module in the hippocampus of AD/TREM2"! had a clear TREM2 dependency.
And in AD/TREM2Y®" almost no DE genes were found in the blue- or saddlebrown-miroglia
modules, further highlighting the central position of TREM2 in microglia in AD and the impact of

losing TREM2 influence in microglia.

Modules with oligodendrocyte identity in hippocampus were also dominated by DE genes
dependent on TREM2, suggesting, TREM2 (and microglia) have a central influence over
oligodendrocyte function in AD. In BA9, this appeared to lead to the fragmentation of the
oligodendrocyte module as many TREM2-dependent DE genes aligned with an additional new

dark green-oligodendrocyte module in AD/TREM2"®",

Discussion

As we expected, overall the changes captured in the brain by whole genome gene expression
analysis were overwhelmingly common to all AD samples, irrespective of TREM2 risk variant
carrier status. However, we have also gained important insights in to additional TREM2-

dependent changes in genes, pathways and cell types expected to significantly impact AD.
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We find that microglia re-align their gene expression closely with that of oligodendrocytes and
endothelial cells in the hippocampus of AD patients. This microglia-oligodendrocyte-endothelial
expression re-alignment was dependent on TREM2-expressing microglia and AD pathology, as no
such relationship was seen in control or AD cases with a TREM2 risk variant. TREM2-expressing
microglia are therefore expected to play a prominent role in myelin and vascular integrity,
particularly under disease conditions. Healthy myelination is crucial for the establishment and
maintainenance of memories in the adult brain (Pan et al., 2020; Wang et al., 2020b). This
capacity diminishes with age and disease. Significant myelin damage and oligodencrocyte
dysfunction are a recognised feature of AD, even preceding clinical diagnosis (Gao et al., 2011;
Benitez et al., 2014; Caso et al., 2015; Dean et al., 2017; Nasrabady et al., 2018; Mathys et al.,
2019), although the underlying disease mechanisms in AD and its relationship with cells such as
microglia have not been fully explored. A mechanistic link is more established for Multiple
Sclerosis, where cycles of myelin damage and repair involving microglia are directly connected to
neurological symptoms (Compston and Coles, 2008). When TREM2 signalling is blocked in an EAE
mouse model of Multiple Sclerosis, there is greater demyelination and a worse clinical course
(Piccio et al., 2007). It is also noteworthy that myelin pathology and hypomyelinosis attributable
to oligodendrocyte dysfunction is a prominent feature in Nasu-Hakola disease caused by
homozygous TREM2 or TYROBP loss-of-function mutations, a disease where axonal spheroids,
neurodegeneration and cognitive decline occur at the latter stages of disease, but where
characteristic amyloid and Tau AD pathology are absent (Yokoi et al., 1988; Tanaka, 2000;
Paloneva et al., 2001; Kaifu et al., 2003; Klunemann et al., 2005; Turnbull and Colonna, 2007;
Kaneko et al., 2010). Together these data suggest that normal TREM2 function and microglia are
essential to counteract pathologies likely to involve compromises to myelin which also implicates

oligodendrocytes.

Much of the work on TREM2 in AD has focused on it’s role in amyloid-B and Tau pathology.
Overall, boosting or restoring TREM?2 is considered beneficial for these pathologies and improves
clinical outcomes in AD (Schlepckow et al., 2020). Loss of TREM2 on the other hand can lead to

altered amyloid-B plague morphology and/or increased susceptibility to tau seeding and spread
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in dystrophic neurons surrounding amyloid-f plaques in familial models of AD (Ulrich et al., 2014;
Jay et al., 2015; Wang et al., 2015; Wang et al., 2016; Yuan et al., 2016; Bemiller et al., 2017; Jay
etal., 2017; Cheng-Hathaway et al., 2018; Sayed et al., 2018; Song et al., 2018; Leyns et al., 2019;
Parhizkar et al., 2019). While microglia and TREM2 can clearly impact these AD pathologies, our
data does not capture any obvious TREM2-dependent expression profiles pointing to genes or
pathways of influence in the AD hippocampal or cortical samples we examined that specifically
impact these pathologies. This may be because the microglia changes we observe represent a
common microglia response to a wide range of AD pathologies (amyloid, Tau, myelin and cell
damage). Certainly, the expression profile of microglia surrounding amyloid (DAM-microglia)
(Keren-Shaul et al., 2017) ovelaps with that found in white matter (PAM-microglia) associated
with developmental remodelling (Li et al., 2019) despite each involving different cell-types and
processes. Interestingly, PAM-microglia were found to phagocytose newly formed
oligodendrocytes, alhough this was considered TREM2-independent (Li et al., 2019). In fact,
around half of the genes we found in the purple-microglia module in AD are highly enriched in
DAM microglia, notably TREM2, TYROBP, CD74, CD68 and both subunits of the complement
receptor CR3 receptor (Mac-1; ITGAM/ITGB2; CD11b/CD18) and have previously been found to
have correlated expression in AD (Zhang et al., 2013; Haure-Mirande et al., 2019), normal brain
(Hawrylycz et al., 2012; Forabosco et al., 2013; McKenzie et al., 2018; Olah et al., 2018) and a
TREM2 KO mouse model (Carbajosa et al., 2018). However, we also found additional AD-
associated microglia genes in our study which were not prominently enriched in DAM, namely
impacts on ribosomal subunit genes in microglia and proteosomal subunit genes in
oligodendrocytes (discussed below). As DAM cells are a relatively small proportion of the total
microglia population (Keren-Shaul et al., 2017), it is possible that the amyloid/Tau responding
microglia are harder to detect in our whole brain samples, although we could readily detect the
majority of microglia-specific genes previously reported (Zhang et al., 2014). We could also readily
detect genes highly enriched or unique to astrocytes, but unlike the other major cell types present
in brain, somewhat surprisingly their expression was not sufficiently co-ordinated to form a
unique module of their own in our data which would allow us to explore their behaviour towards

other modules or cell types in AD brain and in relation to TREM2.
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Microglia are capable of phagocytosing a range of endogenous and pathogenic cargoes in
response to different DAMPs and PAMPs from whole cells to ‘nibbling” cell membranes such as
occurs in synapse remodelling (Schafer et al., 2012; Hong et al., 2016; Vasek et al., 2016;
Weinhard et al., 2018; Wang et al., 2020a). Loss of TREM2 signalling adversely impacts
phagocytosis (Takahashi et al., 2005; Hsieh et al., 2009; N'Diaye et al., 2009; Stefano et al., 2009;
Kleinberger et al., 2014; Atagi et al., 2015; Gawish et al., 2015; Kawabori et al., 2015) while
boosting TREM2 signalling increases phagocytosis (Takahashi et al., 2005; Takahashi et al., 2007;
Jiang et al., 2014; Kleinberger et al., 2014). TREM2 appears to be a DAMP receptor exclusively
expressed by microglia in the brain able to respond to anionic and zwitterionic lipids, including
sphingomyelin, phosphatidylserine (PS) and phosphatidylethanolamine (PE) (Daws et al., 2003;
Cannon et al., 2012; Wang et al., 2015; Shirotani et al., 2019). These are major components of
both myelin and cell membranes (O'Brien and Sampson, 1965; Aureli et al., 2015), with PS and PE
exposure on degenerating cells marking them out for microglia clearance (Nagata et al., 2016;
Shirotani et al., 2019). TREM2 has previously been shown to have a role in clearance of myelin
debris (Poliani et al., 2015) engulfment of apoptotic neurons (Takahashi et al., 2005; Hsieh et al.,
2009; Garcia-Reitboeck et al., 2018; Shirotani et al., 2019) and lysosomal degradation and egress
of cholesterol and lipid products (Nugent et al., 2020). Microglia can also clear oligodendrocytes
(Li et al., 2019), although it is unclear whether this is a TREM2-dependent process in the context
of AD.

One of the most striking findings in our data is the co-ordinated expression of an FcyR-
complement mediated phagocytic microglia response in AD which relies on TREM2 function. It
was highly correlated and reliant on TREM2-DAP12 for its correlation and connection with
ribosomal genes in the microglia module and proteosomal genes in the oligodendrocyte module.
In addition to TREM2, TYRPOBP, CSFR1 and SPI1, amongst the most significantly correlated 109
microglia-purple module genes in AD, there were Fc receptor genes (FCGR1A/FCGR1B [Fcyl;
CD64], FCGR2A/FCGR2B [Fcyll; CD32], FCGRT, FCER1G), classical complement pathway activation
genes (C1QA, B & C, C3, C3AR1, VSIG4 and ITGB2/ITGAM [CR3; Mac-1; CD11b/CD18; aMp2]),
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phagocytic/lysosomal markers (CD68, CYBA, LAPTMS5, RAB3IL1), MHC Class ll-antigen
presentation genes (CD74, CD4, WDFY4, HCLS1) and 48 large and small ribosomal subunit genes.
There were also many genes linked to the cytoskeletal system (ARHGDIB, APBB1IP, FGD2, GMIP,
LCP1, SAMSN1) which presumably coordinates what appears to represent an active response to
AD pathology. The coordinated expression of many of these genes in AD has been noted
previously (Zhang et al., 2013; Matarin et al., 2015) and FCER1G, LAPTM5 and HCK, which are
highly correlated and central to the AD purple-microglia module in our data have recently been
identified as key drivers of an AD expression module role with effects on phagocytosis and
lysosomal function in microglial cells (Patel et al., 2020). Together, these data suggest the TREM2
pathway is controlling an antibody-dependent cell mediated phagocytosis/cytotoxicity
(ADCP/ADCC) and/or complement-dependent cell-mediated phagocytosis/cytotoxicity
(CDCP/CDCC) in AD. We are unable to distinguish from our results whether ADCP/ADCC and
CDCP/CDCC are both active in AD, are acting independently, synergistically or are protective or

detrimental in AD, but oligodendrocytes and myelin appear to be the main target.

The coordinated expression of this module, particularly the genes detailed above, was disrupted
in AD with a TREM2 risk variant. The expression of the Fc receptor genes, notably FCGR1B and
FCGR2B, and the complement gene C1QA particularly had expression profiles which deviated
from the other genes in the module suggesting TREM2 specifically impacts ADCP/ADCC and
CDCP/CDCC and the humoral immune system. Evidence confirms many of these genes are
uniquely expressed by microglia in the brain (McKenzie et al., 2018) and there are known
functional links between them and TREM2. Fcy receptors and TREM2 (via adapter DAP12;
TYROBP) separately or cooperatively utilise ITAM and downstream signalling through Syk (Zou et
al., 2008; Mécsai et al., 2010; Satoh et al., 2012b; Yao et al., 2019). DAP12 is also an adaptor for
CR3 in microglia-mediated apoptic neuron clearance (Wakselman et al., 2008), highlighting the
close functional relationship between Fc and complement. Knocking out DAP12 in a Tau (Audrain
et al., 2019) or amyloid (Haure-Mirande et al., 2019) mouse model lowers DAM-associated genes
including C1Q, and at least in the Tau model, led to an acceleration of Tau pathology. Somewhat

surprisingly this was associated with clinical improvement in both mouse models (Audrain et al.,

24


https://doi.org/10.1101/2021.07.16.452732
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452732; this version posted July 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2019; Haure-Mirande et al., 2019) which is at odds with the clinical course in Nasu-Hakola disease.
Others show loss of complement function leads to poorer outcomes in AD (Wyss-Coray et al.,
2002; Maier et al., 2008) and mutations (particularly in C1QA) linked to SLE result in greater
autoantibody production and loss of immunotolerance (Sontheimer et al., 2005). Syk
phosphorylation is increased in Nasu-Hakola disease when TREM2 is absent (Satoh et al., 2012a)
and heightened phopho Syk is also associated with autoimmune diseases such as Rheumatoid
Arthirits (Mdcsai et al., 2010). We speculate that compromised TREM2 in the presence of AD
pathologies in microglia alterns the balance of Fcy receptor activity and/or the generation of
autoantibodies and/or the threshold required to respond to them, with impacts on the balance
of ‘silent’” immune complement mediated phagocytosis and a pro-inflammatory response
involving Fcy receptors. A lack of timely clearance of exposed damage signals prevalent in AD, can
lead to destructive self-antigens being generated as the immune pivots its activities against
healthy cell or tissue targets (Park and Kim, 2017). Future work needs to explore these
mechanisms further, particularly TREM2 dependency for Fcy receptor mediated activity in AD,

and its synergy with complement activation.

Our AD findings are consistent with a model of heightened pro-inflammatory response
perpetuated through a chronic cycle inducing bystander damage, cell death and a shift away from
immunotolerance previously described for AD. There is numerous evidence implicating immune
activation in AD including inflammasome activation, pro-inflammatory cytokine release (Heneka
et al., 2015), activation of complement intermediates such as the anaphylatoxins C3a and C5a
(Eikelenboom and Veerhuis, 1996; Veerhuis, 2011; Morgan, 2018) and greater antigen
presentation by MHC Class Il (McGeer et al., 1987; Styren et al., 1990; Perlmutter et al., 1992).

Complement activation is a well recognised response in AD brain (Hong et al., 2016; Morgan,
2018) and is a normal developmental mechanism for sculpting neural circuits (Schafer et al.,
2012), but what has not previously been recognised is the central position the TREM2 pathway
may play in this response and the close connection to oligodendrocytes. and by extension, an

impact on myelin integrity.

25


https://doi.org/10.1101/2021.07.16.452732
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452732; this version posted July 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Ribosomes consist of a large 60S subunit containing ~30 “RPL” proteins and a small 40S subunit
consisting of ~20 “RPS” proteins (Schmeing and Ramakrishnan, 2009). It is thereore no surprise
that they need to be coordinately expressed to form equimolar amounts for a functioning
ribosome (Mayer and Grummt, 2006). The strong correlation with each other in our data
exemplifies this. In our brain samples we detected expression of 251 RPL and 151 RPS different
genes. Ribosome composition differs between cell types. We appear to have identified the
microglia-specific ribosomal genes since the same genes were consistently found together in the
same module across samples, they were strongly associated with other microglia genesin AD and
the number we detect in this module is consistent with the number of subunits required to form
a functioning ribosome. Similarly, a large subset of proteosomal subunit genes with co-ordinated
expression in an oligodendrocyte module were positively aligned with the ribosomal and other
microglia genes detailed above. Interestingly, this included PSME1 and PSME4, two of the four
components of the 11S activator proteosomal particle, which has been shown to specialise in
processing antigens in response to INFy (Wang and Maldonado, 2006). The coordinated
expression of the ribosomal genes in microglia and the proteosomal genes linked to an
oligodendcrotye module suggest a ramping up of protein expression in AD alongside the
immune/phagocyic activation in microglia and appears to be associated with apoptosis and/or
cell stress in oligodendrocytes, pehaps linked to myelin damage and a damage and/or antigen-

mediated immune response by microglia.

Overall, our data supports a role for TREM2 in mediating oligodendrocyte and/or myelin
clearance in AD which may be essential not only for preserving healthy tissue homeostasis but
may also serve to minimise the persistence of antigenic peptides and lipids which may lead to
detrimental pro-inflammatory sequelae. We hypothesise that not enough TREM2 activity either
as a result of its dysfunction as pathology emerges or when it becomes overwhelmed by
pathologies which interfere with its ability to adequately clear damaged cells or tissue creates an
imbalance in favour of a more damaging pro-inflammatory response leading to aggressive

damage to cells and tissue, with myelin being particularly vulnerable.
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Figure and Table legends

Table 1: Cohort Characteristics. (A) Number, sex and age of donor hippocampus and BA9 tissue
used in the study. A total of 69 brain donors (131 samples) were obtained for the following three
groups; Control_MCI_AD/TREM2"®" (donors with a non-synonymous DNA variant in TREM2
expected to put them at higher risk of AD), AD/TREM2"! (AD donors with no TREM2 disease
associated variant) and Control/TREM2"! (tissue from age-matched donors with no disease
associated TREM2 variant nor any evidence of neurological problems or AD pathology). (B) The
majority of TREM2'®" cases have c.140G>A; p.R47H (rs75932628) variant or other variant
previously described in AD patients. ¢.173G>C; p.G58A is a novel variant. *All TREM2 variants are
predicted to have functional consequences by either SIFT, PolyPhen and/or PROVEAN) based on
TREM2 coding transcript ENSTO0000373113.7 (Q5TCX1 Q9NZC2).

Figure 1: Data analysis pipeline. Transcriptome profiling of 69 brain donors (131 samples)
comparing Control_MCI_AD/TREM2'*", AD/TREM2"' and Control/TREM2" from hippocampus
and BA9 tissue using RNA-Seq. Read alignment to quantify transcripts was achieved with Kallisto
and different expression determined using Sleuth. Coexpression network analysis was carried out
using WGCNA. Enrichment analysis used Enrichr. To estimate cell type associations with
coexpression modules, gene markers were obtained from an external source (Zhang et al., 2014).
Results were contrasted to infer AD and tissue-specific changes caused by the presence of a
disease-associated TREM2 variant.

Figure 2: The number of differentially expressed transcripts (qval<0.05) in Control/TREM2"! vs
AD/TREM2"*! and Control/TREM2"' vs AD/TREM2"?" in hippocampus (A) and BA9 (B) including
those upregulated () and downregulated ({,) and overlapping between both AD groups.
108,298-110,012 transcripts were detectable in hippocampus and BA9 across the three diagnostic
groups. Of those meeting qval<0.05, 8 transcripts were below detection in AD/TREM2"?" (*) and
2 transcripts were below detection in AD/TREM2"! (%) in hippocampus and 2 transcripts were
below detection in AD/TREM2Y" (¥) in BA9.

Figure 3: Examples of TREM2-dependent genes (transcripts) displaying differential expression
between Control/TREM2"' and AD/TREM2"!, but either not displaying differential expression
between Control/TREM2** and AD/TREM2'*" or having an exacerbated response in
AD/TREM2?". LILRB4 (A) and LSR (B) were significantly up-regulated in hippocampus only in AD
cases without a TREM2 variant. LMX1B (C) and PUF60 (D) were significantly down-regulated in
hippocampus only in AD cases without a TREM2 variant. SORBS1 (E) and SNX22 (F) had noticeably
greater or less differential expression, respectively, in AD cases with a TREM2 variant

Figure 4: WGCNA modules and their preservation between Control/TREM2"' and AD/TREM2"!
networks (A) and Control/TREM2%' and AD/TREM2"?" networks (B) in hippocampus. Each row of
the table corresponds to one Control/TREM2"! set-specific module (assigned a colour as
indicated by the text label). Each column corresponds to one AD/TREM2%' or AD/TREM2"*'set-
specific module, respectively. Numbers indicate the number of genes in each module which are
also divided across the table to indicate the number of genes which intersect each pair of modules
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between the two groups. Red shading within the table is generated by $-\log(p)$, with p being
the hypergeometric test p-value for the degree of overlap of each module pair. The stronger the
red color, the more significant the overlap is. Most Control/TREM2"! set-specific modules have a
corresponding AD/TREM2"! counterpart or involve a split or merger involving only two modules
(A). In contrast, most of the Control/TREM2"' set-specific modules are not conserved in
AD/TREM2Y?", where there is significant fragmentation and generation of additional modules (B).
The grey module which contains unassigned genes is excluded from consideration.

Figure 5:
The cell type identity of the network modules was inferred using gene cell marker enrichment.

Impact of AD and TREM2 variants in Control/TREM2"!, AD/TREM2"' and AD/TREM2"®" in key
microglia and oligodendrocyte modules are presented: (A) Impact on modules with microglia
identity. TREM2 and TYROBP were highly correlated with the purple module in Control/TREM2"!
and AD/TREM2"'. TREM2 and TYROBP completely lost their central influence in AD/TREM2Y?" and
the module fragmented to become the blue and saddlebrown modules (B) Impact on modules
with newly formed or myelinating oligodendrocyte identity. The magenta module with
enrichment of genes from newly formed or myelinating oligodendrocytes split in to two modules
in AD/TREM2"*" with the magenta module becoming highly correlated with a number of
endothelial marker genes. This did not occur in AD/TREM2"®"- The magenta module instead
remained similar to that observed for Control/TREM2"'. Each panel displays the proportion of
markers for each cell type present in the module. The counts of the number of markers per cell
type was divided by the number of markers present for that given cell type to take into account
possible bias (see Methods for further details). The method allows us to approximate the
proportion of each cell type represented in a given module. Key to cell types: endothelial cells
(EN), microglia (MG), neurons (NE), astrocytes (AS), newly formed oligodendrocytes (NO),
oligodendrocyte precursor cells (OP), myelinating oligodendrocytes (MO).

Figure 6: Graphical representation of the relationships between modules and how they change
between Control/TREM2"', AD/TREM2"* and AD/TREM2"?" in hippocampus. The network maps
presented are the most highly correlated genes and modules for each group, retaining the same
colours used within their respective group and matching the ones generated in WGCNA. We only
display the genes with correlations stronger than 0.5 for clarity. (A) The whole network for each
group, with individual modules labelled to indicate their cell type identity. (B) A closeup of the
purple module with microglia identity in Control/TREM2%' and AD/TREM2"* highlighting the re-
organisation of genes within this module in AD coinciding with a rise in prominence of TREM2 and
TYROBP in AD/TREM2*!, which emerge to directly connect complement and ribosomal subunit
genes within this module. TREM2 and TYROBP completely lose this influence in AD/TREM2"?
retaining only a weak correlation within the saddlebrown module which has a far weaker
microglia identity.

Figure 7: Evaluation of modules to which DE genes were assigned in hippocampus (B-D) and BA9
(E-G) and the impact of TREM2 and AD pathology (A) on these modules in Control/TREM2"* (B &
E), AD/TREM2"! (C & F) and AD/TREM2"?" (D & G) brain samples. The 1000 top ranking by p-value
DE genes were classified as either AD changes independent of TREM2 (intersection of
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Control/TREM2"! and AD/TREM2"! DE genes and Control/TREM2"' and AD/TREM2"?" DE genes,
black bars), AD changes dependent on TREM2 (Control/TREM2"* and AD/TREM2"! DE genes not
in Control/TREM2"' and AD/TREM2"®" DE genes, white bars) or AD independent but TREM2
dependent changes (Control/TREM2"' and AD/TREMZ2"2" DE genes not in Control/TREM2"' and
AD/TREM2"! DE genes, hatched bars). Each bar represents the relative percentage (and number)
of DE genes in each module and group (B-G).

Supplementary Figure and Table legends

Supplementary File 1: Quality control metrics including sample RNA integrity number PCA plots;
sex concordance between recorded sex versus Y chromosome expression; concordancy of
direction of effect of the differential expressed genes in AD/TREM2Y®" network compared to the
AD/TREM2"! network; Scale free topology Network Assesement

Table S1: Characteristics of cases (A) and samples (B) used in the study, including outcomes of
data and sample quality control checks and justification for sample exclusion from differential
expression or WGCNA analyses.

Table S2: Differentially expressed transcripts in Control/TREM2"! vs AD/TREM2"* hippocampus
Table S3: Differentially expressed transcripts in Control/TREM2" vs AD/TREM2"?" hippocampus
Table S4: Differentially expressed transcripts in Control/TREM2"' vs AD/TREM2"“! BA9

Table S5: Differentially expressed transcripts in Control/TREM2*! vs AD/TREM2"2" BA9

Table S6: Module membership of transcripts in Control/TREM2%“* hippocampus

Table S7: Module membership of transcripts in AD/TREM2"* hippocampus

Table S8: Module membership of transcripts in AD/TREM2Y?" hippocampus

Table S9: Module membership of transcripts in Control/TREM2% BA9

Table S10: Module membership of transcripts in AD/TREM2%' BA9

Table S11: Module membership of transcripts in AD/TREM2'2" BA9

Table S12: KEGG pathway enrichment of genes in purple-microglia module in AD/TREM2"
hippocampus

Table S13: KEGG pathway enrichment of genes in magenta-endothelial module in AD/TREM2"
hippocampus
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Table S14: KEGG pathway enrichment of genes in lightcyan-endothelial module in
Control/TREM2"! hippocampus

Table S15: KEGG pathway enrichment of genes in purple-endothelial module in AD/TREM2"2"
hippocampus

Table S16: KEGG pathway enrichment of genes in darkmagenta-endothelial module in
AD/TREM2"?" hippocampus

Table S17: KEGG pathway enrichment of genes in saddlebrown-oligodendrocyte module in
AD/TREM2"! hippocampus

Table S18: KEGG pathway enrichment of genes in magenta-oligodendrocyte module in
Control/TREM2"! hippocampus

Table S19: KEGG pathway enrichment of genes in magenta- oligodendrocyte module in
AD/TREM2"?" hippocampus

Table S20: KEGG pathway enrichment of genes in pink-neuronal module in Control/TREM2"
hippocampus

Table S21: KEGG pathway enrichment of genes in saddlebrown-microglia module in AD/TREM2"2"
hippocampus

Figure S1: WGCNA modules and their preservation in BA9 between Control/TREM2*' and
AD/TREM2"! networks (A), and Control/TREM2"' and AD/TREM2"3" networks (B). Each row of
the table corresponds to one Control/TREM2"! set-specific module (assigned a colour as
indicated by the text label). Each column corresponds to one AD/TREM2"! or AD/TREM2"*" set-
specific module, respectively. Numbers indicate the number of genes in each module which are
also divided across the table to indicate the number of genes which intersect each pair of modules
between the two groups. Red shading within the table is generated by calculating the — log(p)
with p being the hypergeometric test p-value for the degree of overlap of each module pair. The
stronger the red color, the more significant the overlap is. Most Control/TREM2" set-specific
modules have a corresponding AD/TREM2"! counterpart or involve a split or merger involving
only two modules (A). This is also largely true between Control/TREM2"* and AD/TREM2"*" (B).
Notably, the TREM2 and TYROBP containing greenyellow module in Control/TREM2"! is also
preserved in AD/TREM2"®" but fragments in to the TREM2 and TYROBP containing blue module
in AD/TREM2". Other modules are similarly affected suggesting TREM2 and TYROBP have limited
influence in Control/TREM2"' and AD/TREM2"?" where its activity is either not needed or absent
due to dysfunction. In contrast TREM2 and TYROBP have significant influence in AD/TREM2**,
The grey module which contains unassigned genes is excluded from consideration.

Figure S2: Preservation of Control/TREM2"Y modules in AD/TREM2"' and AD/TREM2'®"
hippocampus (A-D) and BA9 (E-H) networks. Images in (A, C, E, G) show the composite statistic
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median rank versus module size. The higher the median rank the less preserved the module is
relative to other modules. Since median rank is based on the observed preservation statistics (as
opposed to Z statistics or p-values), it is independent of module size. Images in (B, D, F, H) show
the composite statistic Z summary. If Z summary >10 there is strong evidence that the module is
preserved (Langfelder et al., 2011). If Z summary \textless 2, there is no evidence that the module
is preserved. Note that Z summary shows a strong dependence on module size. Colours match
those assigned in WGCNA analysis (Figure 4).
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()
Number Number hippocampus Number hippocampus Number BA9 samples |Number BA9 samples
Median age at hippocampus Median RIN samples included in DE  |samples included in Number BAS Median RIN BAS included in final DE included in final network
Group Number of donors Sex M/F |death, yrs (IQR) [samples hippocampus (IQR) |final analyses network final analyses samples (IQR) analyses analyses
Control/TREM2** 22 13/9 78 (67-81) 20 7.2 (6.1-7.5) 20 20 22 7.1(6.7-7.7) 21 21
AD/TREM2™ 23 8/15 76 (71-81) 23 5.0(2.4-6.2) 20 18 22 5.1(2.8-6.5) 20 19
AD/TREM2* 18 6/12 73 (70-81) 15 4.6 (3.5-7.4) 13 15 18 4.8 (3.5-7.4) 13 16
Control_MCI/TREM2™ |6 2/4 79 (61-81) 5 6.9 (6.2-7.7) 0 0 6 8.5 (7.5-9.0) 0 0
(B)
Functional
Prediction (SIFT Functional Prediction  |Functional Prediction
AD/TREM2" Control_MCI/TREM2"*"  |TREM2 variant score)* (PolyPhen score)* (PROVEAN)*
1 0 €.97C>T; p.Q33X (rs104894002) NA NA NA
1 0 €.117C>G; p.D39E (rs200392967) 0.02 0.892 -1.250
9 4 €.140G>A; p.R47H (rs75932628) 0.02 0.984 -2.661
1 0 €.140G>A; p.R47H (rs75932628) & ¢.259G>A; p.D87N (rs142232675) 0.02/0.43 0.984/1.000 -2.661/-2.076
1 0 ¢.173G>C; p.G58A (NOVEL) 0.13 0.817 -1.973
3 0 €.259G>A; p.D87N (rs142232675) 0.43 1.000 -2.076
1 1 €.287C>A; p.T96K (rs2234253)/c.572G>A; p.W191X (rs2234258)/c.632C>T; p.L211P (rs2234256) 0.00/NA/0.29 1.000/NA/0.000 -4.531/NA/-1.041
1 0 €.292C>T; p.R98W (rs147564421) 0.00 0.851 4.256
0 1 €.314C>T; p.A105V (rs145080901) 0.00 0.949 -3.346
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