

1 **Gut regulatory T cells mediate immunological tolerance in *Salmonella*-infected
2 superspreaders hosts by suppressing cytotoxic activity of T cells.**

3 Massis LM¹, Ruddle S¹, Brewer SM¹, Schade R¹, Narasimhan R¹, Honeycutt JD^{1, #a}, Pham
4 THM¹, McKenna JA¹, Brubaker SW¹, Chairatana P^{1, #b}, Klein JA², Margalef-Català M², Amieva,
5 MR², Vilches-Moure JG³, Monack DM^{1*}

6 Affiliations:

7 ¹Department of Microbiology and Immunology, Stanford School of Medicine, Stanford
8 University, Stanford, CA, USA;

9 ²Department of Pediatrics, Stanford School of Medicine, Stanford University,
10 Stanford, CA, USA;

11 ³Department of Comparative Medicine, Stanford School of Medicine, Stanford University,
12 Stanford, CA, USA;

13 ^{#a}Current: Department of Medicine, Stanford of Medicine, University of California San
14 Francisco, San Francisco, CA, USA;

15 ^{#b}Current: Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol
16 University, Bangkok, Thailand

17

18 *Corresponding author

19 Email: dmonack@stanford.edu

20 **Short title:** Role of Tregs in immunological tolerance of Superspreaders

21

22 ABSTRACT

23 Superspreaders carry out most pathogen transmission events and are often disease tolerant
24 since they remain asymptomatic despite high pathogen burdens. Here we describe the
25 superspreaders immune state that allows for disease tolerance. In a model of *Salmonella* infection,
26 superspreaders mice develop colitis with robust CD4⁺ and CD8⁺ T-cell responses, however, they
27 remain asymptomatic. We found that superspreaders have significantly more regulatory T cells
28 (Tregs) in the distal gut compared to non-superspreaders infected hosts. Surprisingly, the
29 depletion of Tregs did not induce pathogen clearance but rather exacerbated weight loss,
30 increased gut inflammation, and compromised epithelial intestinal barrier. This loss of tolerance
31 correlated with dramatic increases in cytotoxic CD4⁺ and CD8⁺ T cells. Interestingly, CD4
32 neutralization in Tregs-depleted superspreaders was sufficient to rescue tolerance. Our results
33 indicate that Tregs play a crucial role in maintaining immunologic tolerance in the guts of
34 superspreaders mice by suppressing cytotoxic CD4⁺ and CD8⁺ T-cell activities.

35 AUTHOR SUMMARY

36 Superspreaders are the main cause of disease transmission and a very important public
37 health concern. Here, we evaluated the immunological tolerance of the *Salmonella* infected
38 superspreaders in a mouse model. By manipulating Tregs, we demonstrated the immunological
39 mechanism from the host to maintain health status and high pathogen burden. Tregs depletion in
40 the superspreaders led to severe disease, with damage of the intestinal epithelia, and high
41 morbidity without having any effect on shedding and systemic *Salmonella* burden. Furthermore,
42 we demonstrated that the damage of the intestinal epithelia was related to cytotoxic activity of T
43 cells. When Tregs were depleted, CD8⁺ T cells produced high levels of granzyme B and perforin.
44 CD8⁺ T cells neutralization in Tregs depleted mice led to increased cytotoxic CD4⁺ T cells.

45 Interestingly, neutralization of CD4⁺ T cells in the Tregs depleted mice led to a reduction in the
46 CD8⁺ T cells producing granzyme B and it was sufficient to rescue host tolerance in this model.
47 We demonstrate for the first time that cytotoxic CD4⁺ T cells damage the epithelial intestinal
48 barrier and contribute to loss of tolerance in the context of a superspread host. These findings
49 open new perspectives to understand mechanisms of tolerance in the intestine of a superspread host.
50

51 INTRODUCTION

52 In contrast to resistant hosts, which control infection and minimize disease by reducing pathogen
53 load, immune tolerant hosts can sustain higher pathogen loads without losing health (1).
54 Importantly, immune tolerant hosts can become carriers and transmit disease. To exemplify the
55 impact of immune tolerant hosts, the Pareto 80/20 rule has been applied to demonstrate that 20%
56 of infected hosts can be responsible for 80% of diseases that may result in death (2). The 20%
57 responsible for transmitting disease are called superspreaders due to their capacity to spread
58 pathogens to other hosts and, for some diseases, remain asymptomatic. Thus, it is critical to
59 better understand superspreaders in order to address this important public health threat and
60 disease reservoir (3-5).

61 To understand the superspread host *Salmonella* host, previous work from our group demonstrated
62 that 129X1/SvJ mice can be chronically infected with *Salmonella enterica* serovar Typhimurium
63 (STm) (6) whereby 25-30% of the mice become superspreaders, shedding more than 10⁸ bacteria
64 per gram of feces (7). Superspread STm-infected mice are considered tolerant as they lack any
65 signs of disease (e.g., ruffled fur, weight loss, or decrease in temperature) and shed enough
66 bacteria to infect naive hosts (7, 8). Superspread STm hosts also possess a unique systemic
67 immune profile with a neutrophil-dependent blunting of systemic Th1 responses (9). However,

68 the intestinal immunologic response involved in the maintenance of the tolerogenic state of
69 superspreaders remains uncharacterized.

70 The host immune response plays a role in maintaining inflammation to a level that does not lead
71 to detrimental damage to the host (6). Regulatory T cells (Tregs) play a role in protecting the
72 host from severe inflammation by dampening CD4⁺ and CD8⁺ T cell responses during viral
73 infections and establishment of commensalism (10-13). However, Tregs can also facilitate
74 pathogen persistence (14). For example, Tregs have been shown to suppress T cell activation and
75 it correlates with increases in bacterial burden during the early stages of a persistent systemic
76 STm mouse infection, but not in later stages of the infection (15). Although the systemic immune
77 response is very important for the host response to the infection, it is very relevant to study the
78 intestinal immune response in the gut of superspreaders, as it is colonized by high levels of
79 pathogen and the major source of STm transmission(7). Here, we show that Tregs in the infected
80 mucosa are critical for maintaining the health of superspreaders mice. We used a model of Tregs
81 depletion in STm superspreaders hosts and characterized the immunological cellular mechanism
82 involved in tolerance. Our findings show that Tregs are required to suppress cytotoxic T cells in
83 the colon. In the absence of Tregs, cytotoxic T cells cause loss of tolerance in the superspreaders
84 hosts by disrupting the intestinal epithelial barrier.

85

86 **RESULTS**

87 ***Salmonella*-infected superspreader hosts have increased Tregs in the distal gut**

88 To characterize the intestinal immune response to STm in the tolerant superspreader mice, we
89 infected 129X1/SvJ mice orally with 10^8 CFU of wild-type *S. Typhimurium* strain SL1344.
90 Approximately 25-30% of the mice became superspreaders around 21 days post-infection (p.i.),
91 shedding more than 10^8 CFU of pathogen per gram of feces (Fig. 1a; Fig. S1a), similar to our
92 previously published reports (7, 9, 16). Superspreader mice are tolerant to the high load of STm
93 in the intestine as demonstrated by a lack of significant weight loss over the course of 28 days
94 p.i. (Fig. S1b). To characterize immune cell populations in the guts of infected mice, colonic
95 immune cells were extracted from non-superspreader mice (e.g., mice shedding 10^2 - 10^7 CFU/g
96 feces) and superspreader mice (Fig. 1b and Fig S1a) 28 days p.i. and cell populations were
97 analyzed by flow cytometry. As previously published by our group(7, 9), the superspreader mice
98 had increased inflammation in the distal gut as shown by high percentages of neutrophils,
99 dendritic cells, and macrophages (Fig. S1c) when compared to non-superspreaders and
100 uninfected mice. Superspreader mice had increased CD4⁺ (Fig. 1c) and CD8⁺ T (Fig. 1d) cell
101 percentages in the colon compared to non-superspreader mice. Th17 cells are important to impair
102 the translocation of bacteria from the intestine to systemic sites (17), to characterize these cells in
103 the gut of superspreaders, we measured ROR γ t (expressed in Th17 cells) CD4⁺ T cells. There
104 was an increase in Th17 cells in superspreaders compared to non-superspreader mice (Fig. 1e).
105 We then measured the systemic levels of STm in the superspreaders compared to non-
106 superspreaders (Fig. S1d), and there was no difference in the systemic levels of STm, which
107 reflects previous findings that Th17 cells impair bacterial translocation from the gut (17). Tregs
108 are well described to suppress the activity of T cells (Reviewed in (18)), to address if Tregs play

109 a role in the tolerance of superspreader STm infected hosts we measured the expression of the
110 transcription factor Foxp3 (expressed in Tregs) in the CD4⁺ T cells. Superspreader mice had a
111 significantly higher percentage of Tregs compared to non-superspreader mice (Fig. 1f). Indeed,
112 the levels of Tregs in non-superspreader mice were not significantly different from uninfected
113 control mice (Fig. 1f). Thus, Tregs levels positively correlated with CFUs in the feces of
114 superspreader mice (Fig. 1g), and the correlation was even bigger when correlating Tregs with
115 CFU from the mice that shed $>10^7$ CFU/g of feces (Fig. 1h), suggesting that Tregs are important
116 for maintaining tolerance in superspreader hosts.

117 **Antibiotic-induced superspreader hosts phenocopy the natural superspreader immune
118 response**

119 Previous studies have shown an important role for Tregs in controlling the immune response to
120 infections and maintaining homeostasis in the gut (19). In order to test the role of Tregs in
121 maintaining tolerance, we used our previously published model to induce superspreaders in the
122 mice infected with a STm strain that is streptomycin-resistant (7, 16). Briefly, we introduced
123 gastrointestinal dysbiosis by administering a low dose of streptomycin (5 mg/mouse) 14 days p.i.
124 As expected, (7, 16) two days after streptomycin administration, almost all mice shed $>10^8$
125 CFU/g of feces (Fig. 2a) without a significant difference in STm levels in the spleen (Fig. 2b).
126 The induced superspreader hosts did not exhibit significant weight loss or show signs of
127 morbidity after antibiotic treatment (Fig 2c). The antibiotic-induced superspreader hosts had
128 significant increases in the percentage and the total number of CD4⁺ T cells in the colon at day
129 21 p.i. (Fig. 2d), and by day 28 p.i. (Fig. 2h) the percentage of CD4⁺ T cells was similar to the
130 levels in non-induced superspreaders (Fig. 1f). The percentage of CD8⁺ T cells was not altered at
131 days 21 or 28 p.i. (Fig. 2e,i). Importantly, the mice had increased percentages of Th17 cells (Fig.

132 2f,j) and Tregs (Fig. 2g,k) at days 21 and 28 p.i. when compared to the mice that did not receive
133 the antibiotic treatment. These data indicate that these induced superspreaders mice can be used as
134 a model to study tolerance mechanisms in the colon of superspreaders hosts.

135 **Tregs depletion in superspreaders hosts leads to loss of tolerance**

136 To test the role of Tregs in the tolerance phenotype of superspreaders hosts, we depleted Tregs in
137 mice that express the high-affinity diphtheria toxin receptor under the control of the *Foxp3*
138 promoter which leads to efficient depletion of Tregs by diphtheria toxin (DT) injection (DEREG)
139 (15, 20). Specifically, 129X1/SvJ males were crossed with *FOXP3*^{DTR} females to overcome
140 *Nramp1* susceptibility of C57BL6 hosts (21). Since the *Foxp3* gene is X-linked, the F1
141 129X1/SvJ X C57BL/6 male progeny have one copy of the *Foxp3*^{DTR} gene (F1-DEREG) and
142 female progeny are *Foxp3*^{129X1/SvJ}/*Foxp3*^{DTR} (F1-DTR^{+/−}) (Fig. 3a). The F1 progeny were
143 infected with STm and the streptomycin treatment was used to induce the superspreaders. Tregs
144 depletion was confirmed by the absence of *Foxp3*⁺ cells in the superspreaders F1-DEREG mice
145 (Fig. 3b,c) as well as the uninfected F1-DEREG mice (Fig. 3c). In addition, the percentage of
146 CD4⁺ T cells (Fig. 3d) or Th17 cells (Fig. 3e) did not increase in Tregs-depleted mice. In
147 contrast, CD8⁺ T cells increased in the colons of superspreaders F1-DEREG mice compared to
148 the levels of control superspreaders F1-DTR^{+/−} mice (Fig. 3f), consistent with Tregs playing a role
149 in suppressing CD8⁺ T cell levels (22). There was no change in the CD4⁺ and CD8⁺ T cell levels
150 in uninfected F1-DEREG compared to uninfected F1-DTR^{+/−} (Fig. 3d,f).

151 Finally, to address the role of Tregs in immunological tolerance in superspreaders hosts, we
152 investigated the influence of Tregs depletion on the severity of infection. Although all the control
153 (Fig. 3g) and superspreaders F1-DTR^{+/−} mice (Fig. 3h) (DT-treated uninfected F1-DEREG mice
154 or STm-infected F1-DTR^{+/−} mice) showed only modest changes in body weight, Tregs-depleted

155 superspreaders (F1-DEREG) mice showed a significant drop in body weight within 3 days of DT
156 treatment (Fig. 3h) and experienced increased morbidity, as indicated by ruffled fur, hunching,
157 and malaise, by day 6 after Tregs depletion (Fig. 3i). To address the role of T cell responses in
158 controlling pathogen levels in the absence of Tregs (15), STm burden was measured in the feces
159 and spleen of F1-DTR^{+/−} and F1-DEREG superspreaders. However, there was no change in
160 the levels of *Salmonella* in the feces or the spleen of superspreaders F1-DEREG mice compared
161 to F1-DTR^{+/−} mice (Fig. 3j), indicating that the loss of tolerance in Tregs-depleted superspreaders
162 hosts is not due to increased pathogen burden. Rather, our results demonstrate that Tregs are
163 important to maintain the immunological tolerance phenotype in superspreaders.

164 **Tregs depleted superspreaders have increased gut inflammation and loss of intestinal
165 epithelial barrier function**

166 To address possible mechanisms of Tregs-mediated tolerance, we characterized levels of
167 inflammation and immune cells in F1-DEREG and F1-DTR^{+/−} STm superspreaders. Similar
168 to our previous studies (9, 16), the cecum (Fig. 4a, and S2a) and colon (Fig. 4b, and S2b) of
169 superspreaders mice were highly inflamed even in the presence of Tregs. The inflammation was
170 characterized by infiltration of inflammatory cells within the intestinal wall, expansion of the
171 connective tissue by edema fluid, and epithelial damage (Fig 4a,b,c). Importantly, there was a
172 very significant increase in disruption of the epithelia, ulceration, and destruction of glands and
173 crypts in the cecum and colon of superspreaders F1-DEREG mice compared to superspreaders F1-
174 DTR^{+/−} mice (Fig. 4a,b,c). The cecum of uninfected F1-DEREG mice had higher pathology
175 scores when compared to uninfected F1-DTR^{+/−} and the pathology cecum was generally greater
176 than that in the colon (Fig. 4c and Fig S2a), showing the importance of Tregs in the maintenance
177 of intestinal integrity during homeostasis (Reviewed in (23)). To address the role of Tregs in the

178 maintenance of immunological tolerance in the inflamed guts of superspreaders mice, we
179 measured the functional integrity of the intestinal epithelial barrier in the presence or absence of
180 Tregs with a low-size (4kDa) FITC-Dextran assay as previously described (24, 25).
181 Superspreaders F1-DEREG mice had significantly higher levels of FITC-dextran in the plasma
182 compared to the superspreaders F1-DTR^{+/−} mice and uninfected control mice (Fig. 4d). Taken
183 together, our data demonstrate that Tregs are crucial for maintaining intestinal epithelial integrity
184 and maintaining tolerance in superspreaders hosts.

185 **Depletion of Tregs causes transcriptional changes in the colon of STm superspreaders hosts**

186 To gain more mechanistic insights into the role of Tregs in maintaining intestinal epithelial
187 integrity in superspreaders hosts, we performed gene expression analysis of the colons of infected
188 mice. RNA was extracted from the proximal portion of the colon from F1-DEREG and F1-
189 DTR^{+/−} mice infected for 28 days as well as uninfected mice. Previously published studies have
190 shown that Tregs are important for epithelial wound healing (26, 27). To test the hypothesis that
191 Tregs were functioning in wound healing pathways, we analyzed the transcriptional profile of the
192 colons from F1-DTR^{+/−} and F1-DEREG mice. We used a NanoString nCounter gene expression
193 system containing 770 genes that cover all the stages of tissue remodeling after injury (e.g.,
194 initiation of stress and immune responses cascades, inflammation, proliferation, and tissue
195 remodeling) (Table S2 and Table S3). The transcriptional profiles in the colons of both STm-
196 infected and uninfected mice in F1-DEREG mice were distinct from the F1-DTR^{+/−} as calculated
197 by the log10 p-value and log2 fold change (Fig 5a). As expected, *Foxp3* expression is
198 significantly higher in the F1-DTR^{+/−} infected or uninfected. However, there were no significant
199 changes in the expression of genes involved with wound healing response, such as the receptor
200 of Amphiregulin, EGF receptor (EGF-R) (28, 29) (Fig 5a, Fig S3f). In contrast, there was a

201 significant difference in the expression of cytotoxic genes such as *Cd8a*, *Cd8b1*, *Prf1*, and *GzmB*
202 in the colons of STm-infected superspreaders F1-DEREG mice, suggesting that an increased
203 cytotoxic response may be involved in damaging the gut epithelial barrier integrity (Fig. 5a, Fig
204 S3b-e). To determine whether CD4⁺ and/or CD8⁺ T cells were involved in the cytotoxic
205 response, the immune cells of the colon were extracted and the granzyme B (GZMB) levels were
206 measured in CD4⁺ and CD8⁺ T cells by flow cytometry. The infected superspreaders F1-DEREG
207 mice had a higher percentage of CD8⁺ T cells (Fig. 5b) as well as a higher percentage of CD8⁺ T
208 cells containing intracellular GZMB when compared to F1-DTR^{+/−} (Fig. 5c). In contrast, there
209 was no change in the percentage of CD4⁺ T cells or of intracellular GZMB in the F1-DEREG
210 infected mice when compared to F1-DTR^{+/−} infected mice (Fig. 5d,e). In addition, the presence of
211 GZMB, perforin (PRF), and CD3⁺ cells in methacarn-fixed tissues were analyzed by
212 immunofluorescence microscopy. Similar to our flow cytometry findings (Fig. 5c,e), colonic
213 tissue sections from infected F1-DEREG mice contained significantly higher numbers of CD3⁺
214 cells co-staining with anti-GZMB and anti-PRF antibodies compared to colon sections from
215 infected F1-DTR^{+/−} (Fig. 5f). The CD3⁺ cells of F1-DEREG mice stained with anti-GZMB and
216 anti-PRF antibodies appear to be localized in clusters within the submucosal area of the colon
217 (Fig. 5f), like previously described colonic patches (30). Collectively, our results suggest that
218 Tregs play a role in dampening the cytotoxic CD8⁺ T cell-dependent epithelial damage in the
219 tolerant superspreaders hosts.

220 **CD4⁺ T cell neutralization restores tolerance in Tregs-depleted superspreaders mice**

221 To address the role of the cytotoxic T-lymphocyte (CTLs) in the loss of tolerance in Tregs-
222 depleted superspreaders hosts, we administered monoclonal anti-CD8b or isotype control
223 antibodies to STm-infected superspreaders F1-DEREG and F1-DTR^{+/−} mice as described in the

224 Methods. We confirmed that CD8⁺ T cells were depleted in the colons of infected mice by flow
225 cytometry (Fig 6a,b). Surprisingly, CD8⁺ T cell neutralization did not restore tolerance in F1-
226 Dereg superspreaders mice as weight loss was similar in the anti-CD8b cell antibody- and
227 isotype control antibody-treated mice (Fig. 6c). In addition, the absence of CD8⁺ T cells did not
228 alter the STm burden in the spleens and feces of superspreaders F1-Dereg or F1-DTR^{+/−} mice
229 (Fig. 6d). Finally, the level of gut epithelial damage was assessed with the FITC-dextran
230 permeability assay in the CD8b-depleted mice and controls. The depletion of CD8⁺ T cells did
231 not reduce gut permeability in the superspreaders F1-Dereg mice (Fig. 6e), suggesting that
232 other immune cell types contribute to loss of tolerance in these mice.

233 Therefore, we next investigated whether CD8⁺ T cell depletion would affect GZMB production
234 in Natural Killer cells (NK) and CD4⁺ T cells. The percentage of NK cells in the CD8b-depleted
235 mice did not increase (Fig. 6f), nor did the level of GZMB-producing NK cells increase when
236 compared to isotype-control treated (Fig. 6g). However, there was a very significant increase in
237 the percentage of CD4⁺ T cells in the colon of F1-Dereg mice treated with anti-CD8b when
238 compared to the isotype treated (Fig. 6h). Interestingly, these CD4⁺ T cells acquired a cytotoxic
239 phenotype as measured by the increased intracellular GZMB when CD8⁺ T cells were depleted
240 (Fig. 6i). Collectively, our results indicate that cytotoxic CD4⁺ T cells are playing a major role in
241 the loss of tolerance in Tregs-depleted superspreaders hosts.

242 We next wanted to dissect the role of cytotoxic CD4⁺ T cells in loss of immune tolerance. Since
243 neither an antibody to neutralize GZMB in vivo nor GZMB-deficient 129X1/SvJ mice are
244 readily available, we neutralized both CD4⁺ and CD8⁺ T cells, or only CD4⁺ T cells in
245 superspreaders F1-Dereg and F1-DTR^{+/−} mice using neutralizing antibodies. The depletion was
246 confirmed by flow cytometry (Fig 7e,g). Strikingly, F1-Dereg superspreaders mice depleted of

247 CD4⁺ and CD8⁺ T cells did not lose significant weight or show signs of morbidity, although mice
248 that received the isotype control antibodies lost significant weight and became moribund (Fig.
249 7a). Surprisingly, STm-infected F1-DEREG mice depleted of only CD4⁺ T cells did not lose
250 weight or show signs of morbidity (Fig. 7a).

251 Neutralization of just CD4⁺ T cells, as well as both CD4⁺ and CD8⁺ T cells in STm-infected F1-
252 DTR^{+/−} superspreaders mice, did not result in significant weight loss (Fig. 7b). Additionally, there
253 was no change in the STm burden in the absence of CD4⁺ T cells or CD4⁺ and CD8⁺ T cells in
254 the feces (Fig. 7c) and only slight increases in the spleen (Fig. 7d) of superspreaders F1-DEREG
255 or F1-DTR^{+/−} mice. In addition, CD4⁺ T cell neutralization led to a decrease in the percentage of
256 CD8⁺ T cells as well as intracellular GZMB levels in the colon of STm-infected F1-DEREG
257 mice when compared to F1-DEREG mice (Fig. 7e,f). The neutralization of CD4⁺ T cell and
258 GZMB intracellular levels was confirmed by flow cytometry (Fig. 7g,h).

259 To gain more insight into how CD4⁺ T cells might contribute to the greater weight loss of Tregs-
260 depleted STm superspreaders hosts, we analyzed transcriptional responses in infected F1-DEREG
261 mice depleted of CD4⁺ and CD8⁺ T cells or CD4⁺ T cells utilizing the same NanoString nCounter
262 gene expression system containing 770 that covers all the stages of tissue remodeling after
263 injury. The relative expression of genes involved in the cytotoxic response was reduced in STm-
264 infected F1-DEREG CD4⁺ and CD8⁺ T cell-depleted mice as well as STm-infected F1-DEREG
265 CD4⁺ T cell-depleted mice. The normalized expression levels of *Cd8a*, *Cd8b*, *GzmB*, *Prf1* were
266 significantly lower in the colon of CD4⁺, CD4⁺CD8⁺-neutralized STm-infected F1-DEREG mice
267 compared to isotype control mice, confirming that the neutralizing antibodies dampened the
268 cytotoxic response in the colon (Fig. S3a-f).

269 Importantly, the neutralization of both CD4⁺ and CD8⁺ T cells or only CD4⁺ T cells reduced gut
270 permeability in the superspread F1-DEREG mice to levels that were similar to superspread
271 F1-DTR⁺⁻ mice (Fig. 7i). Taken together, our results indicate that Tregs-dependent suppression
272 of CD4⁺ T cells in the guts of STm superspread mice is crucial for immunological tolerance
273 (Fig. 7j).

274 **DISCUSSION**

275 Our work demonstrates that Tregs are a central player in controlling an exacerbated immune
276 response that could be detrimental to the host. Understanding the mechanism of tolerance in a
277 superspread host is of great relevance since these hosts are responsible for most of the disease
278 transmission. The present work shows how Tregs are a central player in controlling an
279 exacerbated immune response that could be detrimental to the host.

280 Here, we demonstrate the role of Tregs in controlling cytotoxic T cell responses in the intestines
281 of asymptomatic superspread hosts. The depletion of Tregs increases the cytotoxic response
282 induced by CD4⁺ T cells. These CD4⁺ T cells cause the activation of CD8⁺ T cells by releasing
283 granzyme B and perforin. Our data suggest that the cytotoxic response causes greater damage to
284 intestinal epithelia, disruption of the epithelial barrier, and loss of tolerance (Fig. 7g). To our
285 knowledge, this is the first demonstration of this mechanism in the guts of a superspread host.

286 In other infection models, the depletion of Tregs resulted in increased activation of T cells and
287 control of the pathogen burden (15, 31-35). Johanns et al. (15) demonstrated that after
288 intravenous infection with STm, Tregs play a tempo-dependent role in pathogen clearance. In our
289 model, we orally infected mice, as this is the natural route for *Salmonella* infection. We checked
290 the immune response and pathogen clearance both systemically (spleen) and in the feces of

291 chronically infected and superspread mice. Upon oral infection, Tregs depletion does not lead
292 to pathogen control, but rather to gut permeability (as measured by FITC-dextran assay) and
293 morbidity (as measured by weight loss).

294 Several other studies have shown that in the absence of Tregs, there is an increase in pathogen
295 burden (36, 37). In the work by Wang et al. (36), Tregs depletion in a model of *Citrobacter*
296 *rodentium* infection led to a higher pathogen burden and disease severity, but interestingly, lower
297 histopathology score. In this study, we demonstrated that the depletion of Tregs in chronically
298 infected superspreaders leads to an increase in inflammation, ulceration, and intestinal
299 permeability, showing the protective role of Tregs in the context of a superspread host.

300 Tregs depletion greatly impacts tolerance, as measured by weight loss and morbidity. To
301 understand the mechanism of tolerance loss after Tregs depletion, we used a transcriptome-based
302 approach to check for the expression of genes related to the steps of inflammation, healing, and
303 tissue remodeling. The most prominent response found by this approach led us to investigate the
304 cytotoxic response in the absence of Tregs. We confirmed the transcriptome data by flow
305 cytometry and immunofluorescence, where we could find foci in the colon with CD3⁺ cells
306 releasing granzyme B and perforin.

307 Surprisingly, neutralization of CD8⁺ T cells in STm superspread mice depleted of Tregs was
308 not enough to rescue the tolerogenic phenotype, which is the opposite of what has been described
309 recently for viral infections (38). However, our results demonstrating increased cytotoxic CD4⁺
310 T cells in the guts of superspread hosts in the absence of Tregs and CD8⁺ T cells are similar to
311 previous studies showing that in the absence of CD8⁺ T cells, CD4⁺ T cells can acquire a
312 cytotoxic phenotype (39) and anti-tumoral responses (40) (Reviewed in (41)). The crosstalk
313 between T cells within the guts of superspread mice is complicated but could involve

314 sequestration of IL-2 by Tregs (40) and in the context of STm-infected superspreaders hosts Tregs
315 suppress cytotoxic CD4⁺ and CD8⁺ T cells. However, the increased levels of CD4⁺ T cells
316 expressing granzyme B when Tregs and CD8⁺ T cells are depleted suggests that CD4⁺ T cells
317 drive the cytotoxic response of CD8⁺ T cells. Consistent with this idea, we found that when
318 CD4⁺ T cells are neutralized in Tregs-depleted superspreaders mice, CD8⁺ T cells do not produce
319 higher levels of granzyme B, and tolerance is rescued.

320 Altogether, these data demonstrate the importance of Tregs in dampening the cytotoxic response
321 in the context of high pathogen loads in a superspreaders host. Although the inflammatory
322 response is fairly robust, Tregs play a crucial role in keeping cytotoxic T cell responses in check
323 such that the gut epithelium does not get damaged and lose barrier function as a result of
324 infection. To our knowledge, this is the first time Tregs have been shown to control the cytotoxic
325 lymphoid response for the maintenance of tolerance within the intestine of a superspreaders host.

326 **MATERIALS AND METHODS**

327 **Mice**

328 129X1/SvJ (Stock No: 000691) and B6.129(Cg)-Foxp3tm3(DTR/GFP)Ayr/J (also known as
329 FOXP3^{DTR}, Stock No: 016958) were purchased from The Jackson Laboratory. 129X1/SvJ were
330 also bred in-house from mice purchased from Jackson Laboratory. F1 mice were generated by a
331 cross of the female FOXP3^{DTR} with the male 129X1/SvJ (both purchased from Jackson
332 Laboratory). The offspring females carry a copy of the *Foxp3* from the 129X1/SvJ and a copy of
333 the Foxp3-DTR, the offspring males carry only a copy of the *Foxp3*-DTR (x-linked). All mice
334 were housed under specific pathogen-free conditions. Water and food were provided *ad libitum*.
335 Mice were acclimated for one week at the Stanford Animal Biohazard Research Facility prior to
336 experimentation. All animal procedures were approved by Stanford University Administrative
337 Panel on Laboratory Animal Care (APLAC) and overseen by the Institutional Animal Care and
338 Use Committee (IACUC) under Protocol ID 12826.

339 **Infection, bacterial loads, and antibiotic dysbiosis**

340 A single colony of *Salmonella* Typhimurium SL1344 (STm) was grown for 16 hours in LB
341 supplemented with 200 mg/mL of streptomycin at 37°C and 200 x g agitation. The OD was
342 adjusted to OD 1= 10⁹ CFU/mL. Bacterial pellets were washed twice with PBS and resuspended
343 to a concentration of 5x10⁹ CFU/mL. 8-12 weeks mice were starved from food for 14 hours and
344 infected by feeding the mice with 20 µL of the bacterial suspension (5x10⁹ CFU/mL) directly
345 into the mouth using a pipette.

346

347 Infection was monitored by placing mice in individual boxes and collecting 1-2 fecal pellets in
348 tubes containing 500 μ L of PBS. The samples were weighed, serially diluted, and spot plated in
349 duplicates on LB agar plates for CFU counting, and the counts were adjusted by the weight of
350 the pellets. On day 28 p. i., the mice were humanely euthanized, and the organs were collected in
351 PBS, dissociated with a pestle grinder, and serially diluted for CFU count. The counts were
352 adjusted by the organ weight.

353 To induce dysbiosis, mice received 5 mg (25 μ L of 200 mg/mL stock solution) of streptomycin
354 14 days after the STm infection, by drinking from a pipette tip.

355 **Tregs depletion and in vivo CD4, CD8 T cells neutralization**

356 Mice were intraperitoneally (i.p.) injected with 50 mg/kg DT (diphtheria toxin, sigma cat.
357 D0564) on days 21 and 22 after infection and with 10 mg/kg DT on days 24 and 27 after
358 infection.

359 To neutralize T cells, mice were i.p. injected with anti-CD4 and/or anti-CD8 monoclonal
360 antibodies. 100 μ g of either/both InVivoMAb anti-mouse CD8 β (Lyt3.2) (BE0223, BioXcell)
361 and InVivoMAb anti-mouse CD4 (GK1.5) (BE0003-1, BioXcell) or isotype-matched control
362 antibody (rat IgG2a isotype control, anti-trinitrophenol, BP0089; rat IgG2b isotype control, anti-
363 keyhole limpet hemocyanin, BE0090, BioXcell) were diluted in PBS and administered on days
364 22, 23, 25, and 27 p. i.

365 **Intestinal permeability assay**

366 Mice were administered fluorescein isothiocyanate (FITC)-dextran by oral gavage at 0.44 mg
367 per gram of body weight. Four hours later, mice were humanely euthanized, blood was collected,
368 and FITC-dextran concentrations in the plasma were measured via fluorescence

369 spectrophotometry on Synergy HTX with an excitation of 485 nm (20 nm bandwidth) and an
370 emission wavelength of 528 nm (20 nm bandwidth). Plasma from mice not administered with
371 FITC-dextran was used to determine the background. FITC-dextran concentration was
372 determined by a standard concentration curve (25).

373 **Colonic and splenic cell isolation and flow cytometry**

374 The colon was harvested by cutting distal to the cecum and at the rectum. The fat and mesentery
375 were removed, and the tissue was cut into 0.5cm pieces. Intestinal tissues were sequentially
376 treated with HBSS containing 1 mM DTT at 37°C for 15 min and washed with 25 mM HEPES
377 and 5% FBS at 37°C for 30 min, and then dissociated with gentleMACS dissociator (Myleni)
378 and dissociated in RPMI containing 0.167mg/mL liberase TL (Roche), 0.25mg/mL DNase I
379 (Sigma), and 5% FBS with constant agitation at 37°C for 30 min. The cell suspension was
380 further passed through a 100 μ m cell strainer, followed by 70 μ m and 40 μ m cell strainers
381 (Falcon). The cells were resuspended in FACS buffer (1X PBS with 2mm EDTA).

382 For flow cytometry, the cells were incubated for 5 min on ice with Fc Block (TruStain fcX anti-
383 mouse CD16/32, Biolegend) and washed with 200 μ L FACS buffer. Cells were stained on ice for
384 15 min in FACS buffer with a cocktail of Live/Dead Fixable Blue Viability Dye (ThermoFisher)
385 and antibodies for surface antigens. The antibodies were purchased from eBiosciences, BD
386 Bioscience, or BioLegend (Table S4).

387 For the staining of transcription factors, cells were resuspended in fixation and permeabilization
388 buffer for 16 hours at 4°C (Foxp3 staining buffer set from eBioscience). Cells were washed in a
389 permeabilization buffer and stained with transcription factor antibodies following the
390 manufacturer's protocol. For granzyme B staining, cells were stained for surface markers before

391 fixation and permeabilization and then subjected to intracellular staining for 30 min according to
392 the manufacturer's protocol (Cytofix/Cytoperm buffer set from BD Biosciences). For instrument
393 compensation, splenocytes isolated from naïve mice were stained with α -CD4 antibodies. Flow
394 cytometry acquisition was performed on an LSR Symphony or LSRII.UV (BD Biosciences) and
395 analyzed using FlowJo software (Tree Star) accordingly to gate strategy shown in Fig. S4.

396 **Microscopy**

397 Tissues were harvested and fixed in Methacarn solution for 48 hours at room temperature and
398 maintained in ethanol 70%. The cecum was fixed whole and bisected. The colon was linearized,
399 and the lumen opened. The serosal surface of the colon was placed against a filter paper
400 (Whatman, Cat. no. 100 090), and the linearized and flattened colon was submerged in
401 Methacarn and allowed to fix. After fixation, the linearized colon was rolled into a "Swiss roll".
402 Tissues were routinely processed, embedded in paraffin, sectioned at 5.0 mm, and routinely
403 stained with hematoxylin and eosin (H&E) or processed for immunofluorescence. Tissues
404 stained with H&E were visualized with an Olympus BX43 upright brightfield microscope, and
405 images captured using an Olympus DP27 camera and cellSens software. Tissues were assessed
406 blindly by a board-certified veterinary pathologist. Criteria evaluated included ulceration
407 (defined as the absence of epithelial lining exposing the lamina propria or deeper layers),
408 inflammation (defined as the presence of inflammatory cells at various layers of the intestinal
409 wall), and edema and/or fibrin exudation (defined as the expansion of the connective tissue with
410 edema fluid and/or fibrin, with or without inflammatory cells). Based on these criteria, a grading
411 scheme was developed using the following parameters (which were scored separately): 1)
412 percent of surface area ulcerated, 2) severity of inflammation, 3) depth of inflammatory infiltrate,
413 4) percent area affected by inflammation, 5) absence of glands/crypts, and 6) percent area

414 affected by edema and/or fibrin. For each tissue, each criteria was graded twice, and the scored
415 averaged. The grading scheme and definitions of each score are shown in Table S1 (modified
416 from (42)).

417 For immunofluorescence, the paraffin was removed by heating the slides at 70°C and washing
418 twice with xylene at 70°C, 10 min. Followed by two washes with 100% ethanol, 5 min. The
419 slides were washed twice with Antibody wash buffer (1x TBS IHC wash buffer (Millipore
420 Sigma) with Tween 20 + 0.1% BSA) for 5 min at room temperature (RT), followed by 30 min
421 incubation with blocking solution (1x TBS IHC wash buffer with Tween 20 + 2% Normal
422 Donkey Serum, 0.1% Triton X-100, and 0.05% Sodium Azide). The slides were stained with
423 anti-rabbit Foxp3, anti-rat perforin, anti-goat Granzyme B, anti-rat CD3 overnight at 4°C (Table
424 S3). Slides were washed twice with wash buffer, then incubated for 2 hours at RT with the
425 respective secondary antibody and DAPI. The slides were mounted with Prolong Diamond (Life
426 Technologies) and cured for 48 hours before image acquisition. Images were collected using a
427 10X or 40X oil immersion objective on a Zeiss LSM 700 confocal microscope (Carl Zeiss) with
428 ZEN 2.3 SP1 software (Carl Zeiss) and processed using Volocity Image Analysis software
429 (Quorum Technologies).

430 **RNA extraction and NanoString® nCounter assay**

431 Total RNA was extracted from colonic tissues using the RNAeasy Kit (Qiagen) following the
432 manufacturer's instructions and quantified by NanodropA total of 25 ng of RNA was used for
433 NanoString nCounter assay and the codeset for Mouse Fibrosis Panel (Nanostring) was utilized.
434 The hybridization, processing, and acquisition were performed at the Nanostring facility
435 (NanoString Technologies, Seattle, WA). The normalization and differential expression analysis
436 were conducted using NSolver 4.0 software (Nanostring).

437 **Statistics**

438 All statistical analyses were performed in R (v. 4.0.3.) and GraphPad Prism 9.0 (GraphPad
439 Software, Inc., San Diego, CA), and visualized with ggplot2 and prism. Differences between
440 groups were considered to be significant at a p-value of <0.05.

441 **ACKNOWLEDGEMENTS**

442 The authors thank members of the Monack and Amieva laboratories for valuable discussion and
443 technical support as well as Bokai Xhu for the protocol for immunofluorescence on methacarn-
444 fixed tissue. Tissues for brightfield histology were prepared by the Animal Histology Service
445 (AHS). The graphical abstract was created with BioRender.com.

446 **FINANCIAL DISCLOSURE**

447 This study was supported by Defense Advanced Research Project Agency (DARPA) Grant
448 DARPA-15-21-THoR-FP-006 (to D.M.M.), 5R01-AI11605906 from NIAID (to D.M.M.), 5R01-
449 AI13124903 from NIAID (to D.M.M.), the Novo Nordisk Foundation Challenge Programme (to
450 M.R.A and M.M.-C.). Data was collected on an instrument in the Shared FACS Facility obtained
451 using NIH S10 Shared Instrument Grant 1S10OD026831-01 (Symphony) and S10RR027431-
452 01(LSRII.UV).

453 **COMPETING INTERESTS STATEMENT**

454 All authors declare no competing interests.

455 **REFERENCES**

456

457 1. Ayres JS, Schneider DS. Tolerance of infections. *Annu Rev Immunol.* 2012;30:271-94.

458 2. Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al.
459 Heterogeneities in the transmission of infectious agents: implications for the design of control
460 programs. *Proc Natl Acad Sci U S A.* 1997;94(1):338-42.

461 3. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of
462 individual variation on disease emergence. *Nature.* 2005;438(7066):355-9.

463 4. Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy.
464 *Science.* 2012;335(6071):936-41.

465 5. Paull SH, Song S, McClure KM, Sackett LC, Kilpatrick AM, Johnson PT. From
466 superspreaders to disease hotspots: linking transmission across hosts and space. *Front Ecol*
467 *Environ.* 2012;10(2):75-82.

468 6. Monack DM, Mueller A, Falkow S. Persistent bacterial infections: the interface of the
469 pathogen and the host immune system. *Nat Rev Microbiol.* 2004;2(9):747-65.

470 7. Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. Host
471 transmission of *Salmonella enterica* serovar *Typhimurium* is controlled by virulence factors and
472 indigenous intestinal microbiota. *Infect Immun.* 2008;76(1):403-16.

473 8. Gopinath S, Carden S, Monack D. Shedding light on *Salmonella* carriers. *Trends*
474 *Microbiol.* 2012;20(7):320-7.

475 9. Gopinath S, Hotson A, Johns J, Nolan G, Monack D. The systemic immune state of
476 super-shedder mice is characterized by a unique neutrophil-dependent blunting of TH1
477 responses. *PLoS Pathog.* 2013;9(6):e1003408.

478 10. Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT. CD4+CD25+ T cells regulate
479 virus-specific primary and memory CD8+ T cell responses. *J Exp Med.* 2003;198(6):889-901.

480 11. Dittmer U, He H, Messer RJ, Schimmer S, Olbrich AR, Ohlen C, et al. Functional
481 impairment of CD8(+) T cells by regulatory T cells during persistent retroviral infection.
482 *Immunity.* 2004;20(3):293-303.

483 12. Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, et al. c-MAF-dependent
484 regulatory T cells mediate immunological tolerance to a gut pathobiont. *Nature.*
485 2018;554(7692):373-7.

486 13. Zhang X, Borbet TC, Fallegger A, Wipperman MF, Blaser MJ, Muller A. An Antibiotic-
487 Impacted Microbiota Compromises the Development of Colonic Regulatory T Cells and
488 Predisposes to Dysregulated Immune Responses. *mBio.* 2021;12(1).

489 14. Singh B, Read S, Asseman C, Malmstrom V, Mottet C, Stephens LA, et al. Control of
490 intestinal inflammation by regulatory T cells. *Immunol Rev.* 2001;182:190-200.

491 15. Johanns TM, Ertelt JM, Rowe JH, Way SS. Regulatory T cell suppressive potency
492 dictates the balance between bacterial proliferation and clearance during persistent *Salmonella*
493 infection. *PLoS Pathog.* 2010;6(8):e1001043.

494 16. Gopinath S, Lichtman JS, Bouley DM, Elias JE, Monack DM. Role of disease-associated
495 tolerance in infectious superspreaders. *Proc Natl Acad Sci U S A.* 2014;111(44):15780-5.

496 17. Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, et al.
497 Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes *Salmonella*
498 dissemination from the gut. *Nat Med.* 2008;14(4):421-8.

499 18. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune
500 tolerance. *Cell.* 2008;133(5):775-87.

501 19. Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. *Cold*
502 *Spring Harb Perspect Biol.* 2013;5(7).

503 20. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic
504 autoimmunity throughout the lifespan of mice. *Nat Immunol.* 2007;8(2):191-7.

505 21. Monack DM, Bouley DM, Falkow S. *Salmonella typhimurium* persists within
506 macrophages in the mesenteric lymph nodes of chronically infected *Nramp1*^{+/+} mice and can be
507 reactivated by IFNgamma neutralization. *J Exp Med.* 2004;199(2):231-41.

508 22. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al.
509 Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal
510 lymphoproliferative disorder of the scurfy mouse. *Nat Genet.* 2001;27(1):68-73.

511 23. Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. *Immunity.*
512 2009;31(3):401-11.

513 24. Purandare S, Offenbartl K, Westrom B, Bengmark S. Increased gut permeability to
514 fluorescein isothiocyanate-dextran after total parenteral nutrition in the rat. *Scand J*
515 *Gastroenterol.* 1989;24(6):678-82.

516 25. Gupta J, Nebreda AR. Analysis of Intestinal Permeability in Mice. *Bio-protocol.*
517 2014;4(22):e1289.

518 26. Barnes MJ, Griseri T, Johnson AM, Young W, Powrie F, Izcue A. CTLA-4 promotes
519 Foxp3 induction and regulatory T cell accumulation in the intestinal lamina propria. *Mucosal*
520 *Immunol.* 2013;6(2):324-34.

521 27. Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, et al. T Helper Cell
522 Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation. *Cell.* 2018;175(5):1307-
523 20 e22.

524 28. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, et al. A Distinct
525 Function of Regulatory T Cells in Tissue Protection. *Cell*. 2015;162(5):1078-89.

526 29. Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced
527 Quiescence of Lgr5+ Stem Cells in Intestinal Organoids Enables Differentiation of Hormone-
528 Producing Enteroendocrine Cells. *Cell Stem Cell*. 2017;20(2):177-90 e4.

529 30. Baptista AP, Olivier BJ, Goverse G, Greuter M, Knippenberg M, Kusser K, et al. Colonic
530 patch and colonic SILT development are independent and differentially regulated events.
531 *Mucosal Immunol*. 2013;6(3):511-21.

532 31. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. CD4+CD25+ regulatory T
533 cells control *Leishmania* major persistence and immunity. *Nature*. 2002;420(6915):502-7.

534 32. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky
535 AY, et al. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. *J*
536 *Exp Med*. 2007;204(9):2159-69.

537 33. Abel S, Ueffing K, Tatura R, Hutzler M, Hose M, Matuschewski K, et al. Plasmodium
538 yoelii infection of BALB/c mice results in expansion rather than induction of CD4(+) Foxp3(+)
539 regulatory T cells. *Immunology*. 2016;148(2):197-205.

540 34. Galdino NAL, Loures FV, de Araujo EF, da Costa TA, Preite NW, Calich VLG.
541 Depletion of regulatory T cells in ongoing paracoccidioidomycosis rescues protective Th1/Th17
542 immunity and prevents fatal disease outcome. *Sci Rep*. 2018;8(1):16544.

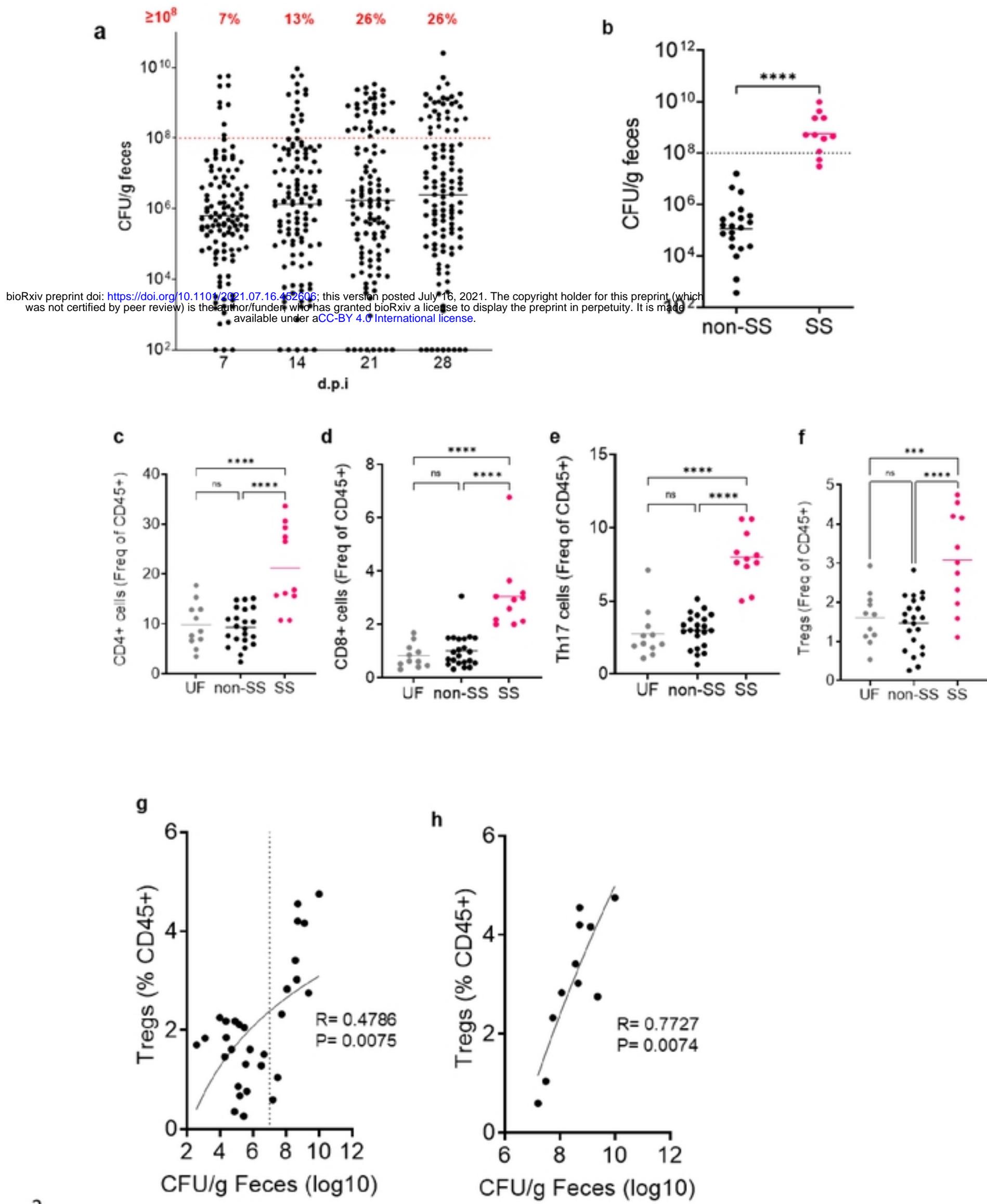
543 35. Hartmann W, Blankenhaus B, Brunn ML, Meiners J, Breloer M. Elucidating different
544 pattern of immunoregulation in BALB/c and C57BL/6 mice and their F1 progeny. *Sci Rep*.
545 2021;11(1):1536.

546 36. Wang Z, Friedrich C, Hagemann SC, Korte WH, Goharani N, Cording S, et al.
547 Regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial
548 infection with *C. rodentium*. *Mucosal Immunol*. 2014;7(6):1290-301.

549 37. Soerens AG, Da Costa A, Lund JM. Regulatory T cells are essential to promote proper
550 CD4 T-cell priming upon mucosal infection. *Mucosal Immunol*. 2016;9(6):1395-406.

551 38. Labarta-Bajo L, Nilsen SP, Humphrey G, Schwartz T, Sanders K, Swafford A, et al.
552 Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection.
553 *J Exp Med*. 2020;217(12).

554 39. Bourgault I, Gomez A, Gomard E, Picard F, Levy JP. A virus-specific CD4+ cell-
555 mediated cytolytic activity revealed by CD8+ cell elimination regularly develops in uncloned
556 human antiviral cell lines. *J Immunol*. 1989;142(1):252-6.


557 40. Sledzinska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF, Ghorani E, et
558 al. Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic
559 Function by CD4(+) T Cells. *Immunity*. 2020;52(1):151-66 e6.

560 41. Takeuchi A, Saito T. CD4 CTL, a Cytotoxic Subset of CD4(+) T Cells, Their
561 Differentiation and Function. *Front Immunol*. 2017;8:194.

562 42. Li B, Alli R, Vogel P, Geiger TL. IL-10 modulates DSS-induced colitis through a
563 macrophage-ROS-NO axis. *Mucosal Immunol*. 2014;7(4):869-78.

564

1 **FIGURE 1**

3 **Figure 1. *Salmonella*-infected superspreaders have increased Tregs in the distal gut.**

4 129x1/SvJ mice were infected with SL1344 by oral route (n=118, pooled from 2 independent

5 experiments). **a**, CFU in the feces of infected mice over the period of 28 days. The red dashed line

6 represents superspreaders levels. The numbers in red are the percentage of SS mice by time point.

7 **b**, Fecal CFU levels of *Salmonella* in the mice used for the colonic prep at day 28. Frequencies of

8 CD45⁺ cells in the colon: CD4⁺ (**c**), CD8⁺ (**d**), CD4⁺Rorγt⁺ (**e**), CD4⁺Foxp3⁺ (**f**). **g**, Correlation of

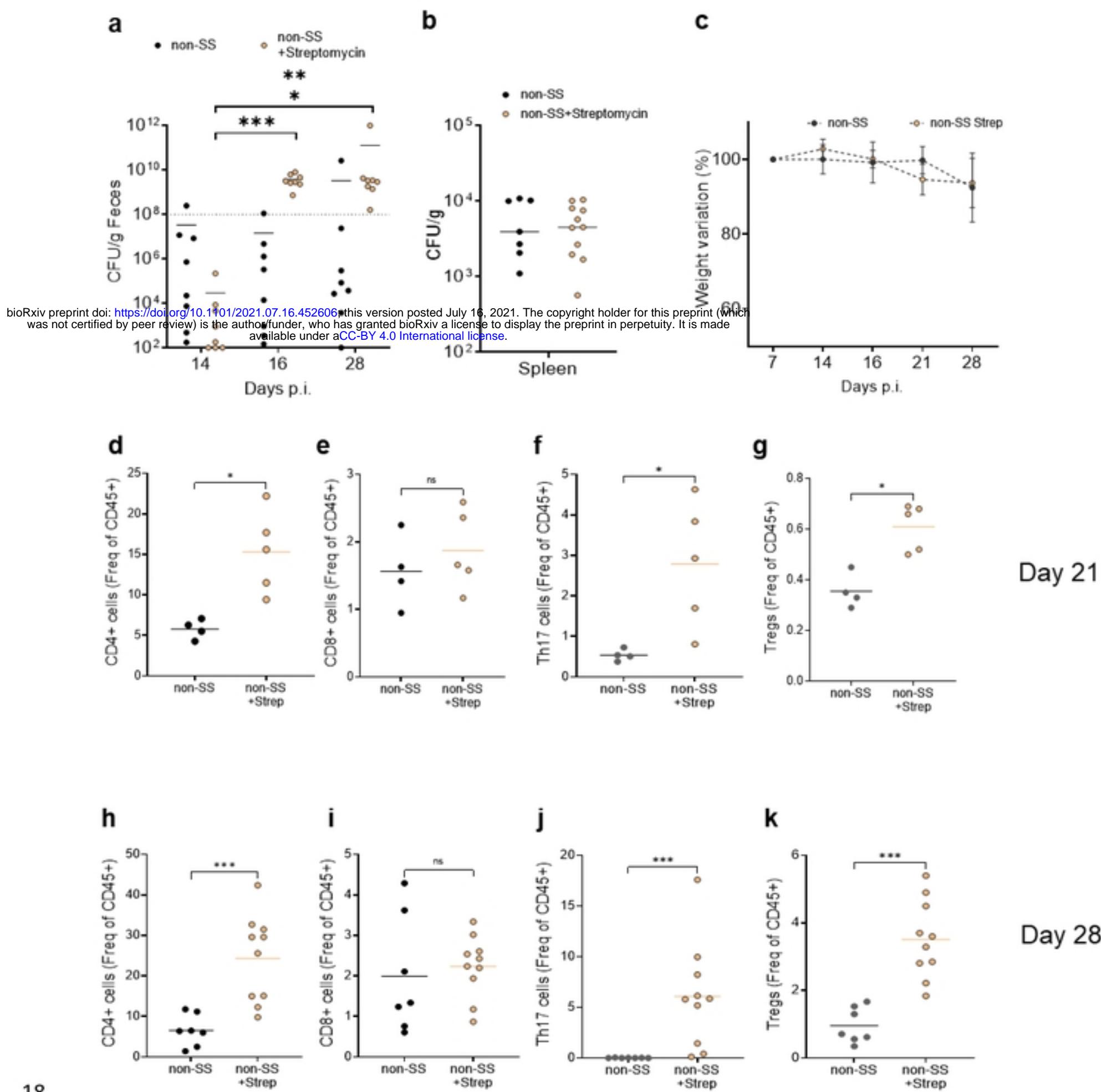
9 fecal spreading and Tregs in the colon. **h**, Correlation of fecal spreading and Tregs from the mice

bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.16.452606>; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

10 spreading more than 10^7 CFU/g feces. Spearman's rank correlation coefficients (R) and P two-

11 tailed (P) are shown. (n= 21 non-SS, 11 SS, 10 UF). Data pooled from 2 independent experiments.

12 Statistics: **b**, Mann-Whitney test. **c-f**, Data are presented as mean with each individual sample, and


13 One Way ANOVA was used for comparison. **g-h**, Correlation line: Semilog line - X is log, Y is

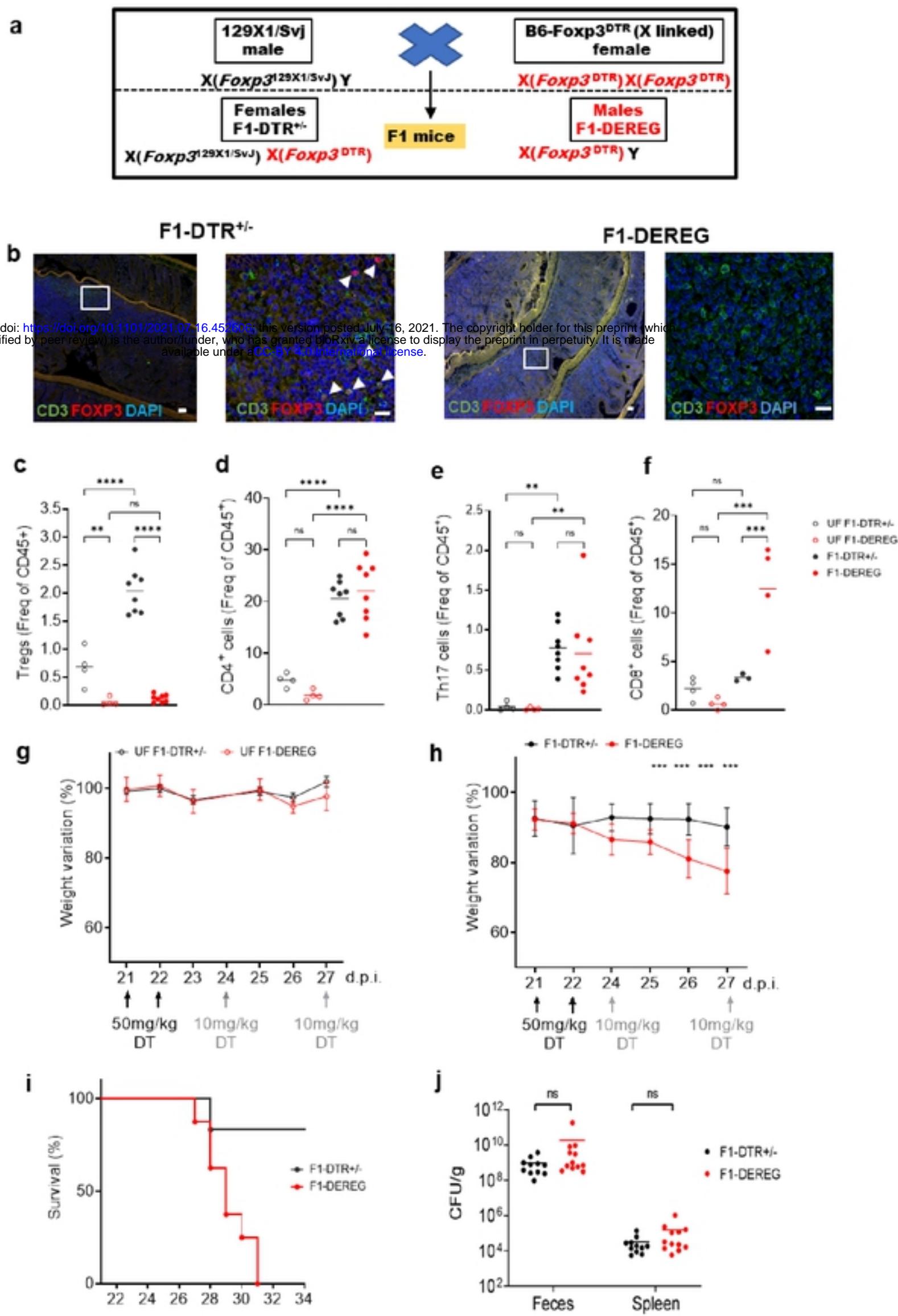
14 linear. non-SS- non-superspreaders, SS- superspreaders, UF- Uninfected controls. For all panels, P

15 values less than 0.05 were considered significant (*P < 0.05; **P < 0.01; ***P < 0.001)

16

17 **FIGURE 2**

18


19 **Figure 2. Antibiotic-induced superspreaders have increased Tregs in the colon.** 129X1/SvJ
 20 mice were infected orally with 10^8 SL1344 and treated with a low dose of Streptomycin at day 14
 21 p. i. **a**, CFU/g of feces during the course of infection. **b**, CFU levels in Spleen at day 28 p.i. **c**,

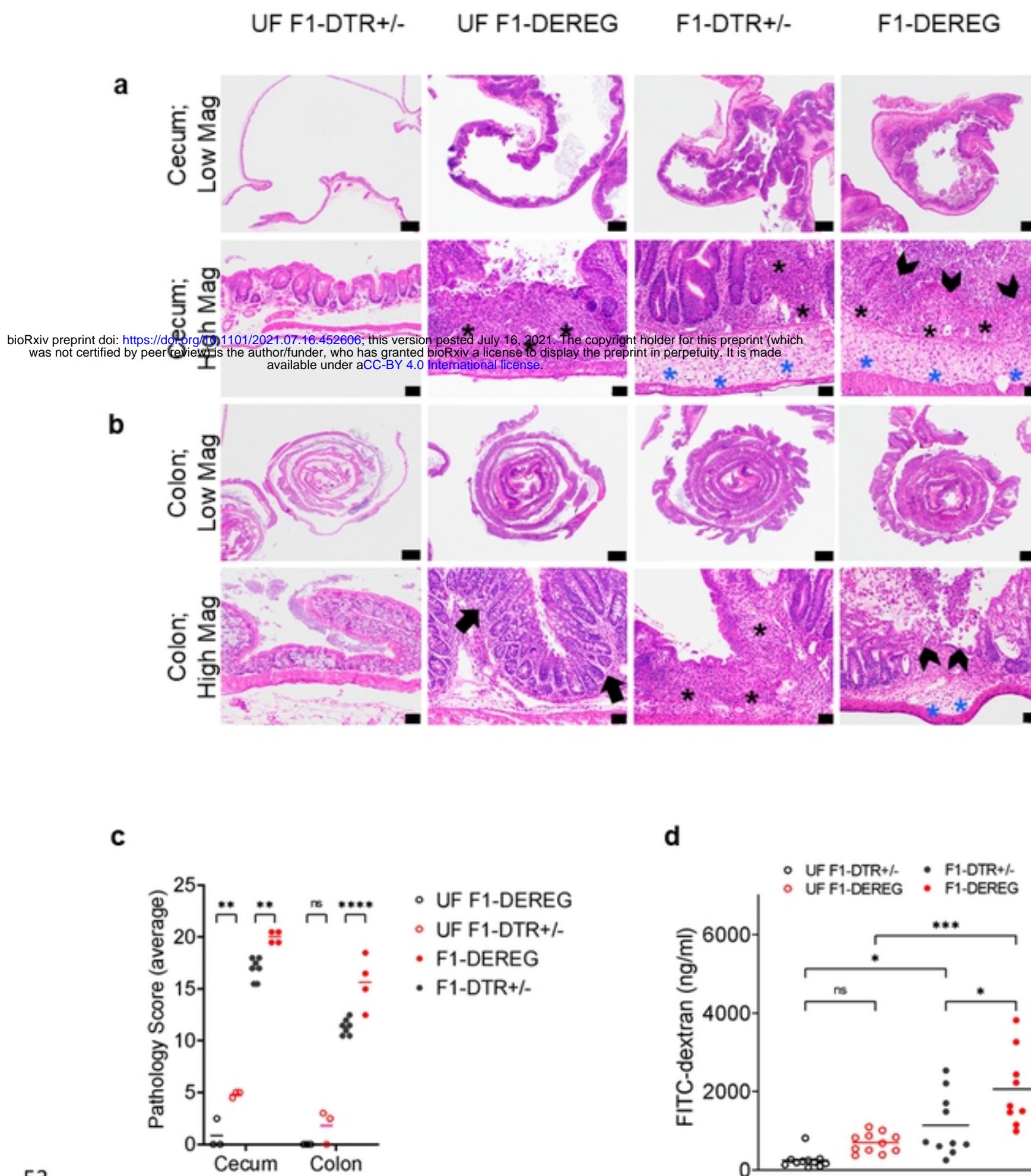
22 weight variation percentage starting at day 7 p.i. **d-k**, Colonic T cells assessed by flow cytometry.
23 CD4⁺ cells in frequency of CD45⁺ cells in the colon at day 21 p.i. (**d**) and at day 28 p.i. (**h**). CD8⁺
24 cells in frequency of CD45⁺ cells in the colon at day 21 p.i. (**e**) and at day 28 p.i. (**i**). CD4⁺ROR γ t⁺
25 cells in frequency of CD45⁺ cells in the colon at day 21 p.i. (**f**) and at day 28 p.i. (**j**). CD4⁺Foxp3⁺
26 cells in frequency of CD45⁺ cells in the colon at day 21 p.i. (**g**) and at day 28 p.i. (**k**). n=9 mice-
27 day 21 p.i., n=18 mice- day 28 p.i. **a**, One-Way ANOVA, **d-k**, Mann-Whitney test. For all panels,
28 P values less than 0.05 were considered significant (*P < 0.05; **P < 0.01; ***P < 0.001)

bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.16.452606>; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

29

30 **FIGURE 3**

32 **Figure 3. Depletion of Tregs leads to loss of tolerance and damaged intestinal epithelial**
33 **barrier. a,** Schematic representation of the F1-DEREG and F1-DTR^{+/−} mice breeding. F1-DEREG
34 and F1-DTR^{+/−} mice were orally infected with 10⁸ SL1344 or left uninfected, treated with a low
35 dose of Streptomycin (5 mg) at day 14 p.i. and with diphtheria toxin (DT). **b,** Representative
36 immunofluorescence staining of colonic “Swiss” roll with anti-CD3 Abs (green), anti-FOXP3
37 (red), and DAPI (blue). Arrowheads indicate Tregs. Scale bars are 50 μ m (left panel) or 10 μ m
38 (right panel). Representative image of 3 mice in each group. CD4⁺ Foxp3⁺ (**c**), CD4⁺ (**d**), Th17

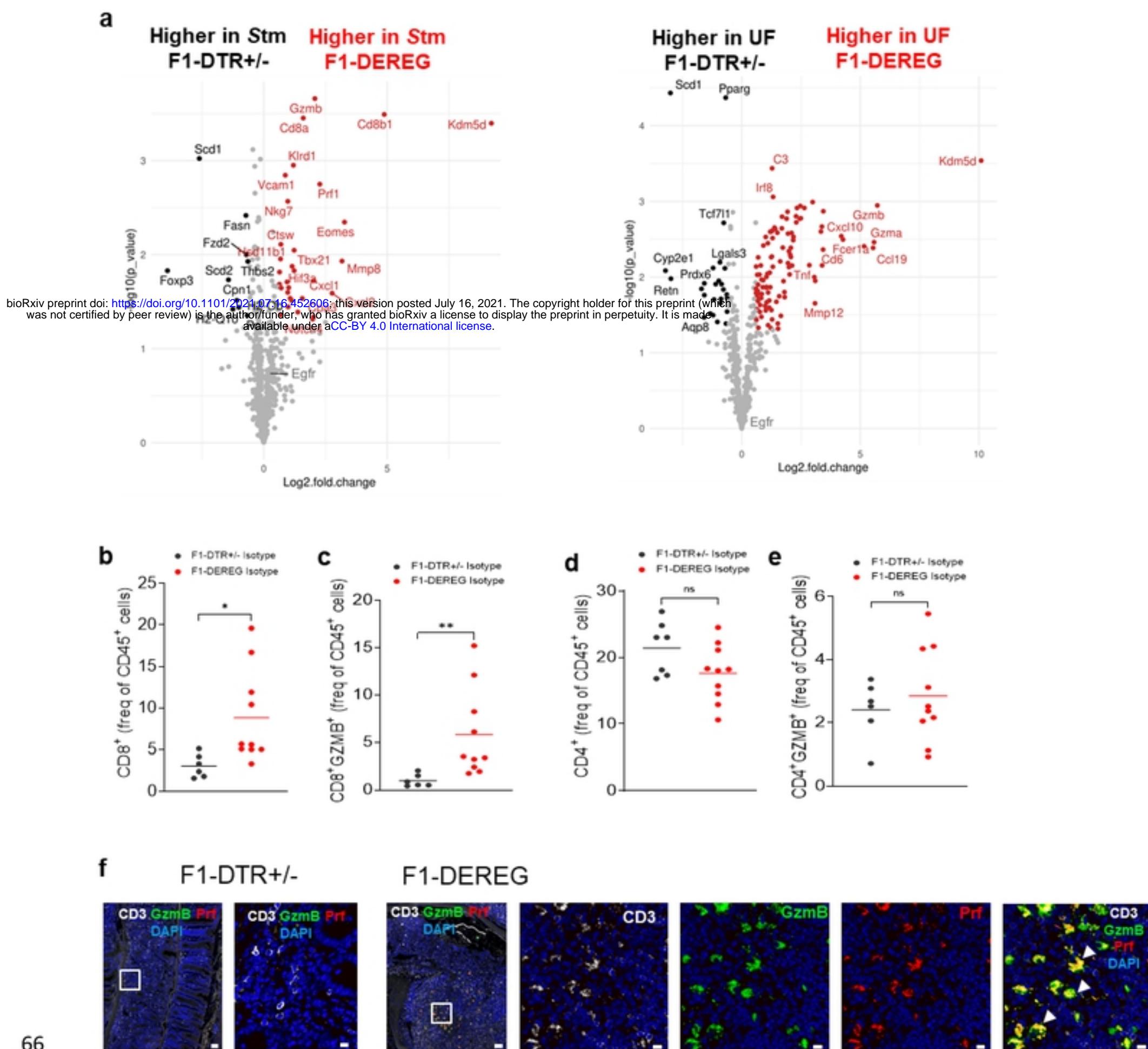

bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.16.452606>; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

39 (**e**), CD8⁺ (**f**) frequencies of CD45⁺ cells in the colon. Weight variation of F1-DEREG and F1-
40 DTR^{+/−} mice uninfected (**g**) or orally infected with 10⁸ SL1344 (**h**), treated with a low dose of
41 Streptomycin (5mg) at day 14 p.i. and with diphtheria toxin (DT) as described in Methods. **i**,
42 Survival curve of F1-DEREG and F1-DTR^{+/−} mice infected with SL1344. **j**, CFU in the feces and
43 spleen of infected mice.

44 Mice numbers used: **b**, F1-DEREG n=25, F1-DTR^{+/−} n=19, **c**, UF F1-DEREG n=12, UF F1-DTR^{+/−}
45 n=12, **d-f**, F1-DEREG n=8, F1-DTR^{+/−} n=8, UF F1-DEREG n=4, UF F1-DTR^{+/−} n=4, **g**, F1-
46 DEREG n=12, F1-DTR^{+/−} n=11, **h**, F1-DEREG n=9, F1-DTR^{+/−} n=10, UF F1-DEREG n=11, UF
47 F1-DTR^{+/−} n=11. **j**, F1-DEREG n=12, F1-DTR^{+/−} n=11. Data pooled from 4 independent
48 experiments. **i**, F1-DEREG n=9, F1-DTR^{+/−} n=7. Data from one experiment. Lines are mean.
49 Statistic: **b-c,g**, Multiple Mann-Whitney test, **d-f,j**) One way ANOVA. UF, Uninfected. For all
50 panels, P values less than 0.05 were considered significant (*P < 0.05; **P < 0.01; ***P < 0.001)

51

52 **FIGURE 4**

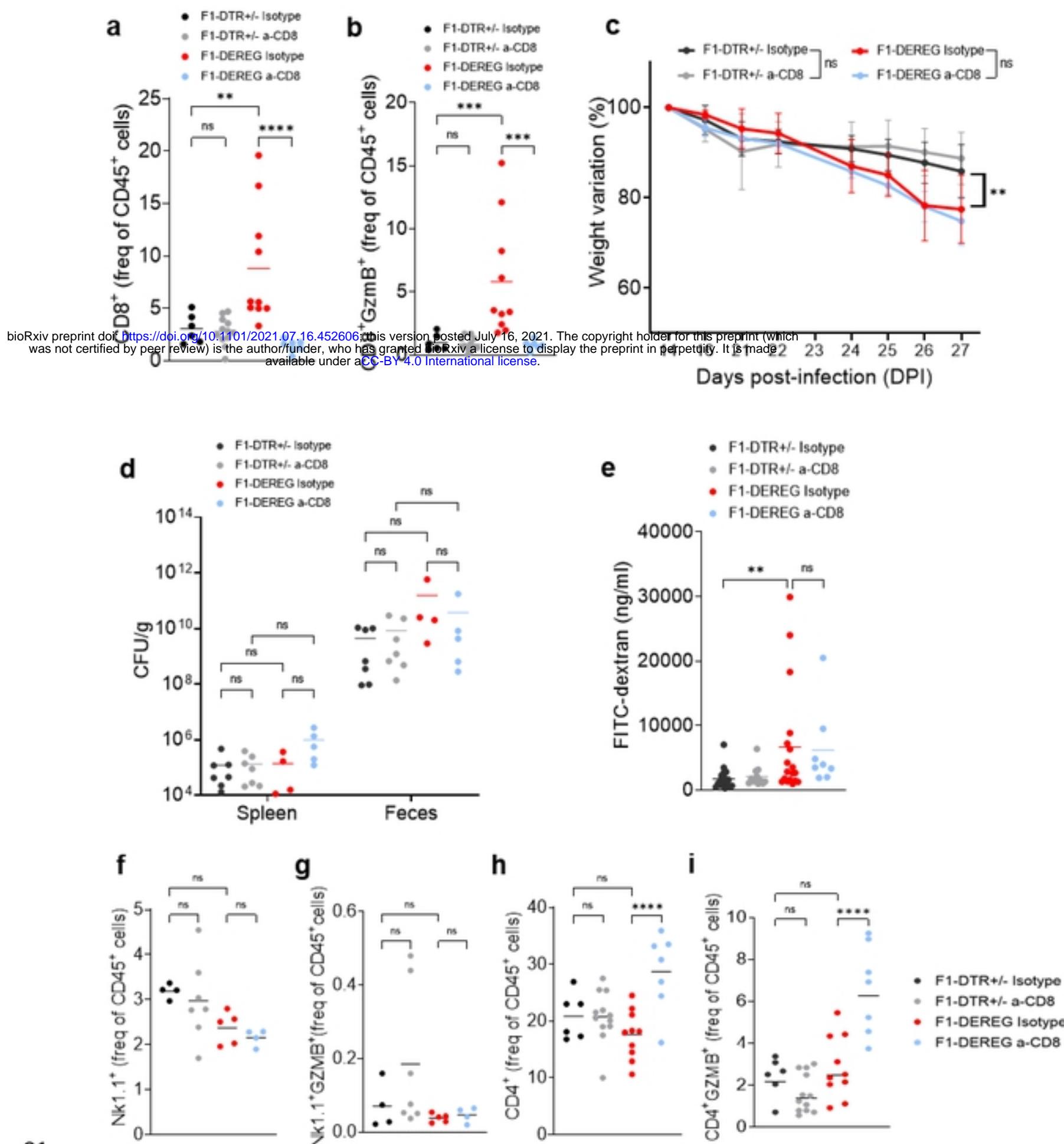

54 **Figure 4. Depletion of Tregs increases the damage of the intestinal epithelial barrier.** Low
 55 and high magnification images of hematoxylin and eosin (H&E)-stained sections of the cecum (a)
 56 and colonic “Swiss roll” (b) preparations. Upper panels= Magnification: 1.25x; Scale Bars: 1.0

57 mm. Lower panels= Magnification: 20x; Scale Bars: 50 μ m. Representative image of 3
58 mice/group. **c**, Average of the pathology scores from colon and cecum. **d**, Gut permeability assay
59 measured by FITC-dextran 4KDa in the plasma of the mice 28 days after infection. Statistics:
60 Multiple Mann-Whitney tests. For all panels, P values less than 0.05 were considered significant
61 (*P < 0.05; **P < 0.01; ***P < 0.001). Inflammatory cells in the lamina propria (black arrows).
62 Paucity of glandular profiles and replacement by stroma and inflammatory cells (black asterisks).
63 **Submucosal edema (blue asterisks). Ulceration (black chevrons).**

bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.16.452606>; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

64

65 **FIGURE 5**

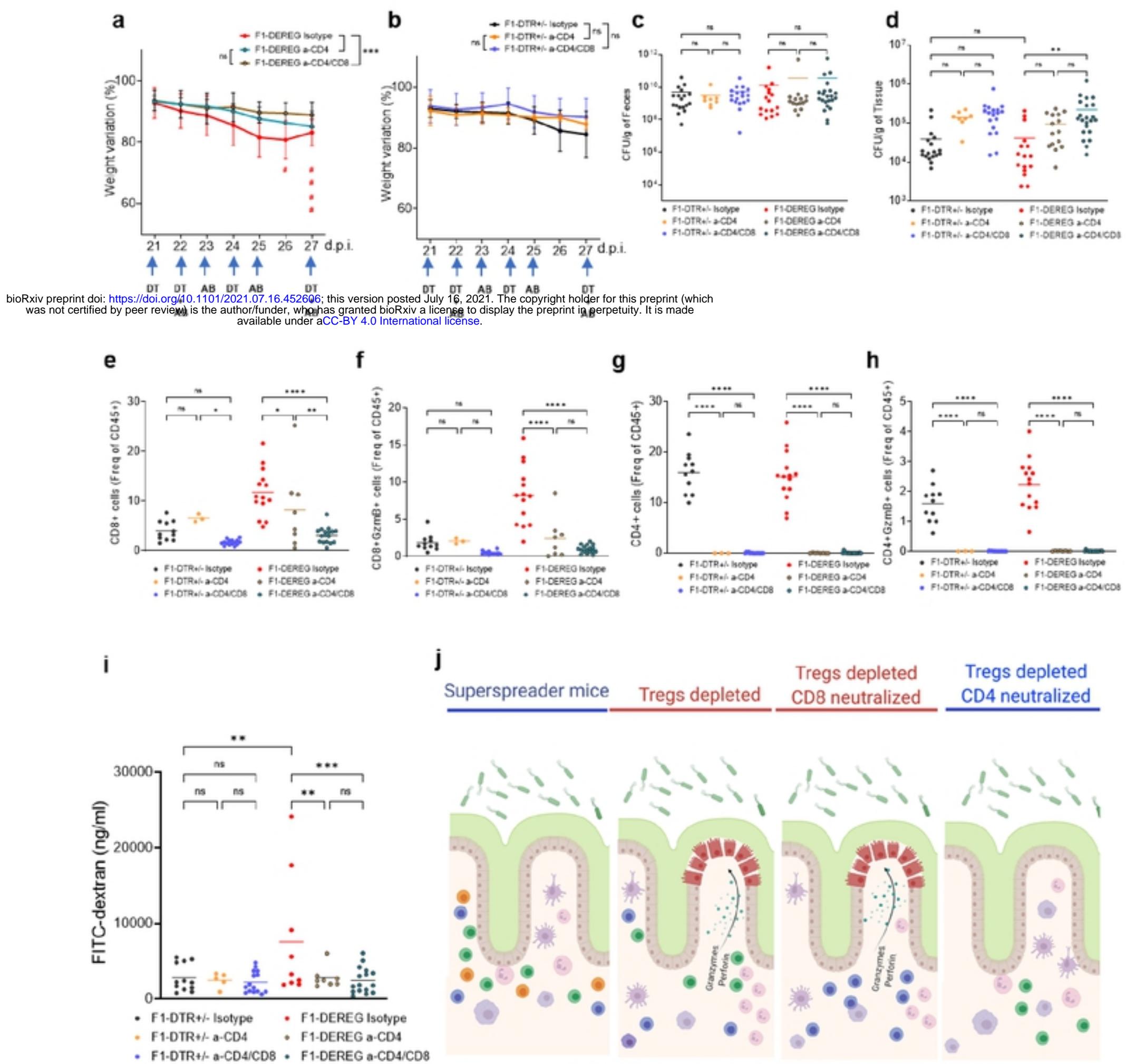

66

67 **Figure 5. Tregs depletion alters cytotoxic response during *Salmonella* infection. a**, Volcano
68 plot of differentially expressed genes between colonic samples from F1-DTR^{+/−} with F1-DEREG
69 mice infected with SL1344 at day 28 p.i. (left panel) or uninfected (right panel), n= 3 per group.

70 Mice were treated with DT as described in Methods. In red genes significantly highly expressed
71 in F1-DEREG, in black genes significantly higher expressed in F1-DTR^{+/−}, in gray genes not
72 differentially expressed in F1-DTR^{+/−} or F1-DEREG. CD8⁺ (b), CD8⁺GzmB⁺ (c), CD4⁺ (d),
73 CD4⁺GzmB⁺ (e) frequencies of CD45⁺ cells in the colon. f, Representative image of
74 immunofluorescence staining of colonic “Swiss” roll with anti-CD3 Abs (white), anti-GzmB
75 (green), anti-perforin (red), and DAPI (blue). Arrowheads highlight GzmB- and Prf-producing
76 cells. Scale bars: 50 μ m (left panel) or 10 μ m (right panel). Representative image of 3 mice in each
77 group. For all panels, P values less than 0.05 were considered significant (*P < 0.05; **P < 0.01;
78 ***P < 0.001)

79

80 **FIGURE 6**


81

82 **Figure 6. CD8⁺ T cells neutralization induces CD4⁺ T cells cytotoxicity in the colon of Tregs-**
 83 **depleted superspreaders. F1-DTR^{+/−} and F1-DEREG infected mice were treated with anti-CD8b**
 84 **(100 µg/mouse) or Isotype control (100 µg/mouse) as described in Methods. Colonic CD8⁺ (a),**

85 CD8⁺GzmB⁺ (**b**) T cells in percentage of CD45⁺ cells. **c**, Weight variation measured by the
86 percentage of change from day 14 after infection. **d**, CFU levels per gram in spleen and feces. **e**,
87 FITC-dextran levels in the plasma. Nk1.1⁺ (**f**), Nk1.1⁺ GzmB⁺ (**g**), CD4⁺ (**h**), CD4⁺GzmB⁺ (**i**) T
88 cells in percentage of CD45⁺ cells in the colon. Statistics: Multiple Mann-Whitney tests. For all
89 panels, P values less than 0.05 were considered significant (*P < 0.05; **P < 0.01; ***P < 0.001).
90 N= 4-12 mice per group.

91 bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.16.452606>; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

92 **FIGURE 7**

93

94 **Figure 7. The tolerance of superspread hosts is dependent on the cytotoxic response of T**
 95 **cells. F1-DTR+/- or F1-DEREG infected mice were treated i.p. with isotype-control (100**

96 $\mu\text{g}/\text{mouse}$) and anti-CD4 (100 $\mu\text{g}/\text{mouse}$) or anti-CD4(100 $\mu\text{g}/\text{mouse}$) and anti-CD8(100
97 $\mu\text{g}/\text{mouse}$) or respective isotype control (100 $\mu\text{g}/\text{mouse}$ of each isotype) as described in Methods.

98 **a, b)** Weight variation measured by the percentage of change from day 14 after infection, red hash
99 (#) represents each mouse that died from the F1-DEREG Isotype group. CFU levels per gram in
100 Feces (**c**) and Spleen (**d**). CD8 $^{+}$ (**e**), CD8 $^{+}$ GzmB $^{+}$ (**f**), CD4 $^{+}$ (**g**), CD4 $^{+}$ GzmB $^{+}$ (**h**) percentage of
101 CD45 $^{+}$ cells in the colon measured by flow cytometry. **i**, FITC-dextran levels in the plasma. **j**,

102 **Schematic representation of the Tregs-dependent superspreader tolerance mechanism.** Statistics:
bioRxiv preprint doi: <https://doi.org/10.1101/2021.07.16.452606>; this version posted July 16, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

103 **a,b)** Multiple Mann-Whitney tests, **c-i)** One-way ANOVA. For all panels, P values less than 0.05
104 were considered significant (* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$). **a-d** and **f**, N= 8-22 mice per
105 group. **g**, Graphical abstracts created using Biorender.com.

106

107