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Abstract

The rates of cell growth, division, and carbon loss of microbial populations are key
parameters for understanding how organisms interact with their environment and how
they contribute to the carbon cycle. However, the invasive nature of current analytical
methods has hindered efforts to reliably quantify these parameters. In recent years,
size-structured matrix population models (MPMs) have gained popularity for
estimating rate parameters of microbial populations by mechanistically describing
changes in microbial cell size distributions over time. And yet, the construction,
analysis, and biological interpretation of these models are underdeveloped, as current
implementations do not adequately constrain or assess the biological feasibility of
parameter values, leading to inference which may provide a good fit to observed size
distributions but does not necessarily reflect realistic physiological dynamics. Here we
present a flexible Bayesian extension of size-structured MPMs for testing underlying
assumptions describing the dynamics of a marine phytoplankton population over the
day-night cycle. Our Bayesian framework takes prior scientific knowledge into account
and generates biologically interpretable results. Using data from an exponentially
growing laboratory culture of the cyanobacterium Prochlorococcus, we herein
demonstrate the performance improvements of our approach over current models and
isolate previously ignored biological processes, such as respiratory and exudative carbon
losses, as critical parameters for the modeling of microbial population dynamics. The
results demonstrate that this modeling framework can provide deeper insights into
microbial population dynamics provided by flow-cytometry time-series data.

Author summary

Identifying the growth and population dynamics of marine microorganisms in their 1

natural habitat is crucial to understanding the flow of carbon in the oceans but remains 2

May 26, 2021 1/24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452528doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452528
http://creativecommons.org/licenses/by-nc-nd/4.0/


a grand challenge due to the invasive nature of current measurement methods. As 3

time-series observations of population size structure have become more commonplace in 4

aquatic environments, matrix population models (MPMs), which aim to mechanistically 5

describe the change in size structure of these populations over time, have gained in 6

popularity over the last decade. However, the underlying assumptions and behavior of 7

MPMs have not been adequately scrutinized, and parameter values are difficult to 8

interpret biologically, leading to inference that may not reflect plausible physiological 9

dynamics. Here, we develop a Bayesian extension of the MPM framework to examine 10

biological assumptions, improve interpretability of model output, and account for 11

additional biological processes. We evaluated the performance of our models on a 12

publicly available dataset of laboratory experiment time-series measurements of the 13

cyanobacterium Prochlorococcus, Earth’s most abundant photosynthetic organisms, 14

demonstrated the performance improvements of our approach over current models, and 15

isolated previously ignored respiratory and exudative carbon losses as critical 16

parameters for the modeling of microbial population dynamics. 17

Introduction 18

Marine phytoplankton are photosynthetic microorganisms that account for up to half of 19

global net primary production [1]. As such, the population dynamics of these organisms 20

are crucial to understanding the global carbon cycle [2, 3]. One key aspect of 21

phytoplankton populations is the growth rate, typically defined as the rate of increase in 22

population biomass over time per unit of existing biomass. Direct in-situ measurement 23

of this bulk quantity is obscured by heterotrophic biomass and detrital material, which 24

constitute a variable fraction of the particulate organic carbon pool [4]. Several different 25

methodologies have been employed to estimate in-situ phytoplankton growth rates; 26

however, previous estimates relied on analytically challenging and low-throughput 27

methods such as the radiometric turnover times of 14C labeled chlorophyll [5] and 32P 28

labeled ATP [6], cell cycle analysis [7], and the dilution method [8]. While 29

taxon-specific growth rates might be estimated with these methods, they often suffer 30

from large uncertainties caused by coarse sample time resolution or experimental 31

artifacts (collectively known as “bottle effects”; e.g., [9]). The emergence of continuous 32

flow cytometry in ocean surveys [10–12] provides high resolution, taxon-specific 33

measurements of the abundance and size of individual phytoplankton cells and offers a 34

high-throughput in-situ alternative. In principle, measurements of cell abundance across 35

different sizes over time provide a means to directly derive rates of carbon fixation and 36

cell division [4], but the mechanistic modeling frameworks are currently underdeveloped 37

and cannot accurately isolate these implicit rates from other cellular processes. 38

The class of mechanistic models we focus on consists of stage-structured matrix
population models (MPMs), which estimate demographic rates from measurements of
abundance across life-cycle stages [13], often defined by the age or size of individuals.
For example, tree species produce seeds once they have reached a particular size [14]
and fish species maximize reproduction at a critical age [15]. These models assume that
individuals in a population can be classified into m discrete stages that define their
response to the environment modeled as a discrete-time process. MPMs assume that
the state of the population at time t+ 1 can be written in terms of the state of the
population at time t and a set of transition rates [16]:

nt+1 = Bt(θ)nt, (1)

where Bt(θ) is a projection matrix that defines the possibly time-dependent population 39

dynamics, θ is a parameter vector, and nt is a vector representing the number of 40

individuals in each stage at time t, which defines the state of the population. The vector 41
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Fig 1. MPM size classes and transitions. Schematic of the MPM’s cell size
classes and its three class transitions: carbon fixation, division, and carbon loss. The
boundaries of the m cell size classes (vi for i = 1, 2, . . . ,m+ 1) are logarithmically
spaced, so that cells can transition to a size class that is exactly half their original size
when they divide. For this purpose, the integer j is selected so that vi−(j−1) = 1

2 vi for
i > j; cells in the first j size classes cannot divide.

θ includes both biological and mechanistic parameters to model population dynamics 42

and is the target of parameter estimation [17]. 43

In recent years, size-structured MPMs have gained popularity for estimating rate 44

parameters of phytoplankton populations by mechanistically describing changes in 45

microbial cell size distributions over the day-night cycle [18–24]. For instance, MPMs 46

have been employed to estimate daily division rates of the picocyanobacterium 47

Synechococcus and picoeukaryotic phytoplankton based on a 13-year hourly time series 48

from a coastal location in the Atlantic Ocean using a submersible flow 49

cytometer [19,23,24]. In the North Pacific Subtropical Gyre, similar MPMs were used to 50

estimate daily and hourly division rates of another picocyanobacterium, Prochlorococcus, 51

based on continuous flow cytometry measurements taken over two research cruises [21]. 52

In these studies, cell size measurements provided by high-frequency flow cytometry were 53

used to define the life-cycle stages of the population. These models assumed that 54

changes in the cell size distribution over the day-night cycle are driven only by two 55

biological processes: 1) carbon fixation via photosynthesis and 2) cell division; other 56

processes such as respiration and exudation, which lead to cell shrinkage, are omitted. 57

In previous investigations, model performance was judged on the goodness of fit to the 58

size distribution data rather than the plausibility of model parameters, in part due to 59

the difficulty of directly assessing biological feasibility of demographic rates of microbial 60

populations. Uncertainty quantification for model parameters typically involved refitting 61

methods or was ignored entirely, omitting critical context from the inference procedure. 62

As a consequence, these MPMs [18,19,21,24] contain loosely constrained model 63

parameters that can lead to transition matrices with biologically implausible estimates. 64

Here, we extend existing size-structured MPMs to test a set of underlying 65

assumptions describing population dynamics over the day-night cycle and to improve 66

parameter interpretability and model performance. Model estimates are computed using 67

the Bayesian implementation in the probabilistic programming language Stan [25], 68

through which we provide statistically rigorous parameter uncertainty intervals while 69

constraining parameter values by incorporating prior scientific knowledge. This 70

approach enabled an evaluation of the sensitivity of posterior distributions to sampling 71

size, sampling frequency, and initial conditions. In the following, we test nine MPMs 72

that differ in their parameterizations of three transition terms: cell division, carbon 73
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Fig 2. Laboratory Prochlorococcus time series measurements. (A) Heatmap
of the number of cells and (B) relative cell abundances in each size class measured every
two hours over a 48-hour period. (C) Cell abundance and photosynthetically active
radiation (PAR). (D) Hourly carbon fixation, carbon loss, and division rates. Error bars
indicate one standard deviation based on two technical and two biological replicates.

fixation, and carbon loss (Fig 1) which describe the dynamics of the 74

picocyanobacterium Prochlorococcus, Earth’s most abundant phytoplankton [26]. 75

We evaluated the performance of our models on a publicly available dataset of 76

laboratory experiment time-series measurements of a high-light adapted strain of 77

Prochlorococcus [27] collected during the exponential phase of batch growth over two 78

simulated day-night cycles (Fig 2). This dataset contains cell size distributions derived 79

from flow cytometry (Fig 2 A, B), cell abundance and light measurements (Fig 2 C), 80

and measurements of carbon fixation, carbon loss, and division (Fig 2 D) at two-hour 81

intervals. Division rates are derived from changes in cell abundances while carbon loss is 82

estimated from other measurements (see Experimental data below). We fit our models 83

to the size distribution data (Fig 2 A, B) and then evaluated how well each model was 84

able to reproduce the observed parameters at daily and hourly time scales. All models 85

used a logarithmically-spaced discrete cell size distribution, permitting cells to divide 86

into two daughter cells that are half their size (Fig 1). While our simplest model has no 87

size-dependence for carbon fixation and lacks a carbon loss term, the more complex 88

models include size-dependence for all three transitions, explained below. Finally, we 89

converted model parameters to estimates of biological rates such as carbon fixation and 90

carbon loss, connecting microbial growth processes to the marine carbon cycle. 91

Results 92

Models 93

Past work has assumed that changes in cell size result from two processes: carbon 94

fixation and cell division [18–24]. We built upon these studies by evaluating the 95

relevance of a range of assumptions and testing models that include an additional 96
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process: cell shrinkage through exudation and respiration. Another assumption of past 97

models is that division is a monotonically increasing function of size, i.e. larger cells are 98

more likely to divide than smaller cells. This implies that the highest rate of cell 99

division should occur when cells reach their largest size. However, the peak of average 100

cell size in Synechococcus and Prochlorococcus occurs during daylight while the peak of 101

division usually occurs at night [28]. In the Prochlorococcus culture dataset used in our 102

work, hourly cell division lagged 4-8 hours behind the peak of cell size (Fig 3 A). In fact, 103

hourly division rates showed little correlation with mean cell size (Fig 3 B). When 104

comparing the size distribution at 13 hours (peak in cell division) and at 35 hours 105

(almost no division) after the start of the experiment, we see that the size distributions 106

are fairly similar despite the large difference in division rates (Fig 3 C). However, we 107

observed a strong correlation (r=0.84) between hourly division rate and mean cell size 108

with a 6-hour lag (Fig 3 D), suggesting that cell division is dependent on cell size as well 109

as additional processes. For instance, cell division in photosynthetic organisms is tightly 110

regulated by light, although the onset of the cell cycle in Prochlorococcus does not seem 111

to be strictly light dependent [30]. We therefore tested two different parameterizations 112

for estimating cell division. In the first, cell division is constrained to be a monotone 113

function of cell size, but constant over time, as in previous studies. In the second, cell 114

division still increases monotonically with cell size but is allowed to vary over time. We 115

also considered size dependence in carbon fixation through power-law relationships 116

supported by experimental evidence [29]. Finally, we implemented a “free” 117

parameterization in which carbon fixation and carbon loss rates are estimated 118

separately for each size class, in order to provide enough flexibility for the model to 119

capture biological processes that are not explicitly accounted for in our models. 120

Table 1. Key models.

Model* Growth Division Loss

mbmx basic monotonic x (no loss)
mbmb basic monotonic basic
mpmb power-law size-dependence monotonic basic
mfmb free size-dependence monotonic basic
mfmf free size-dependence monotonic free size-dependence
mbtb basic time-dependent basic
mptb power-law size-dependence time-dependent basic
mftb free size-dependence time-dependent basic
mftf free size-dependence time-dependent free size-dependence

*The letters in the subscript of the model name denote the growth, division, and loss
parameterizations used in the model, respectively.

We distilled our assumptions into a set of 9 models of differing parameterizations 121

(Table 1). Each model is identified by a subscript consisting of three letters 122

corresponding to the parameterizations of carbon fixation, division, and carbon loss, 123

respectively. The first letter in each model name corresponds to the carbon fixation 124

parameterization. The letter b in carbon fixation indicates a basic parameterization in 125

which carbon fixation is assumed to be constant as a function of size. The letter p 126

indicates a power-law relationship with respect to size and f represents a free 127

parameterization where each size class may have its own rate of carbon fixation. With 128

respect to division, represented by the second letter of the model name, the letter m 129

indicates a monotone division rate as a function of size with no time-dependence, while 130

t indicates a parameterization that also includes time-dependence in division. The third 131

letter, indicating the carbon loss parameterization, can be b (basic) or f (free 132

parameterization) as in carbon fixation, or x for a model with no carbon loss. As an 133
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Fig 3. Hourly division rates vs. average cell size. (A) Phytoplankton size
distribution overlaid with hourly division rates (red curve; error bars indicate one
standard deviation based on two technical and two biological replicates). Division rate
and size distribution at t = 13 (blue box) and t = 35 (gold box). (B) Hourly division
rates vs. mean cell size. (C) Cell size distribution at time t = 13 (blue) and t = 35
(gold). (D) hourly division rate at time t vs. mean cell size at time t− 6.
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example, we refer to our simplest model as mbmx, denoting that it has basic carbon 134

fixation without size-dependence, division rates that monotonically increase with cell 135

size, and no carbon loss term. 136

The two division parameterizations split our models into two groups. Within each 137

group, models contain more parameters down the rows of Table 1. Between the two 138

groups, models with time-dependent division contain more parameters than their 139

time-independent versions. Thus, model mbmx was the simplest model and most closely 140

represented previous MPMs applied to microbial communities, while model mftf is the 141

most complex with respect to the number of parameters. 142

We fit these 9 models to a dataset gathered in a laboratory experiment. Rates of 143

division, carbon fixation, and carbon loss were estimated on both daily and hourly 144

timescales. In the following section, we examine daily rate estimates, which have been 145

the primary target of inference in past work. Then, we further assess the model rate 146

estimates at an hourly timescale to inspect the behavior of our models within diel cycles. 147

Furthermore, we explore the relationship between cell size and division, carbon fixation, 148

and carbon loss. Finally, we examine the relationships between the estimated parameter 149

values and perform observation sensitivity experiments. 150

Estimation of daily rates 151

We first assessed our models’ ability to recreate the observed Prochlorococcus cell size 152

distribution. Then, we examined whether an improved fit to the size distribution data 153

resulted in improved model performance by comparing model estimates of daily average 154

carbon fixation, carbon loss, and division rates to independent measurements from 155

laboratory data. Finally, we investigated model estimated photosynthetic parameters. 156

As expected, the MSE of the predicted cell size distribution decreased as the number 157

of model parameters increased (Fig 4A). Critically, however, this improved fit did not 158

correlate with better daily rate estimates. One of the most important parameters 159

estimated by the models is the daily rate of cell division, see Eq (4). The observed daily 160

division rate in the population was 0.63± 0.01 d-1. However, the simplest model mbmx 161

overestimated this rate by nearly a factor of two (Fig 4 B; 1.06 ± 0.05 d-1). This may 162

stem from the fact that this model did not include carbon loss; thus, it attributed any 163

reduction in cell size to cell division. Model mbmb, which adds respiratory/exudative 164

carbon loss, was able to accurately estimate the daily division rate (0.63 ± 0.02 d−1), 165

while all other models produced less accurate estimates, despite lower MSE of the 166

predicted cell size distribution. 167

Model mbmb also performed well in estimating daily rates of carbon fixation and loss 168

(Fig 4 C,D). Again, the models with the best fit to the size distribution (mfmf, mptb, 169

mftb, mftf) exhibited lower accuracy in their estimates of these rates. Interestingly, the 170

addition of size-dependent carbon fixation (mpmb, mfmb) resulted in underestimation of 171

daily carbon fixation (75.57 ± 1.00 fg C cell−1 d−1 and 73.77 ± 1.00 fg C cell−1 d−1 for 172

mpmb, mfmb, respectively) and cell division (0.33 ± 0.02 d−1 and 0.29 ± 0.02 d−1, 173

respectively) but improved estimates of daily carbon loss. The further addition of 174

size-dependence in carbon loss (mfmf) led to overestimates of daily carbon loss and even 175

lower division rate estimates, indicating that this model attributes too much of the 176

observed decreases in cell size to carbon loss rather than cell division. Other than mbtb, 177

which exhibits more instability than other models and whose results may therefore not 178

be reliable (see Observation sensitivity experiments section), models that added 179

time-dependent division (mptb, mftb, mftf) greatly underestimated both carbon fixation 180

and carbon loss rates. Models without size-dependent carbon loss (mptb, mftb) 181

estimated essentially no carbon loss, leading to inflated division rates as nearly all cell 182

size decreases were attributed to cell division. This effect was counteracted to some 183

May 26, 2021 7/24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452528doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452528
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 0.5 1.0 1.5 2.0 2.5
PSD Misfit (MSE × 104)

mbmx
mbmb
mpmb
mfmb
mfmf
mbtb
mptb
mftb
mftf

0.25 0.50 0.75 1.00 1.25
Division rate (d 1)

mbmx
mbmb
mpmb
mfmb
mfmf
mbtb
mptb
mftb
mftf

50 60 70 80 90
Carbon fixation (fg C cell 1 d 1)

mbmx
mbmb
mpmb
mfmb
mfmf
mbtb
mptb
mftb
mftf

0 20 40 60
Carbon loss (fg C cell 1 d 1)

mbmx
mbmb
mpmb
mfmb
mfmf
mbtb
mptb
mftb
mftf

no carbon loss

100 200 300 400 500
Ek ( mol photons m 2 s 1)

mbmx
mbmb
mpmb
mfmb
mfmf
mbtb
mptb
mftb
mftf

150 200 250 300 350
Pmax (fg C cell 1 d 1)

mbmx
mbmb
mpmb
mfmb
mfmf
mbtb
mptb
mftb
mftf

Fig 4. Model predicted daily rate parameters. (A) Mean squared error (MSE) of predicted proportions to the
observed particle size distribution (PSD). (B) Predicted daily division rates. (C) Predicted daily carbon fixation. (D)
Predicted daily carbon loss. (E) Predicted photosynthetic saturation parameter. (F) Predicted maximum photosynthetic rate.
(B-F) Green vertical lines indicate ground truth calculated from data. Green shaded areas indicate uncertainty surrounding
ground truth measurements. Model estimates shown as posterior distributions.
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extent by the inclusion of size-dependent carbon loss (mftf), although both the daily 184

division rate and carbon fixation were underestimated. 185

Finally, we examined the photosynthetic saturation parameter Ek and the maximum 186

light-saturated photosynthetic rate Pmax, two components of the mechanics of carbon 187

fixation (see Carbon fixation section). Model mbmx shows the worst performance for 188

these parameters, but mbmb also greatly overestimates both quantities despite accurate 189

estimation of daily carbon fixation, highlighting potential identifiability issues - i.e. 190

similar daily carbon fixation rates can be obtained by different means, as carbon 191

fixation decreases with higher values of Ek but increases with higher values of Pmax. 192

Interestingly, mpmb and mfmb had much more accurate estimates of the photosynthetic 193

parameters, despite lower accuracy in overall daily carbon fixation. Size-dependent 194

carbon loss (mfmf) and time-dependent division (mbtb, mptb, mftb, mftf) resulted in 195

poorer estimates of the photosynthetic parameters relative to mfmb. 196

Overall, the simplest model mbmx showed the poorest performance in estimation for 197

nearly every category, highlighting the importance of accounting for carbon loss in our 198

models. There is no model that performed best with respect to all of the daily rate 199

estimates we included in our tests; mbmb created the best division and carbon fixation 200

estimates, mfmb provided the best performance for Ek and Pmax, and mpmb most 201

accurately predicted daily carbon loss. 202

Estimation of hourly rates 203

In addition to the analysis of daily rate parameters, we examined the models’ abilities 204

to recreate population dynamics at hourly resolution (Fig 5) to determine whether 205

discrepancies between model predictions and observations occur at a particular time of 206

the diel cycle and to help us identify the relevant biological processes at play. For 207

clarity, we show here the results of the five most distinct models (mbmx, mbmb, mfmf, 208

mptb, and mftf); results for all nine models can be found in the SI (Fig S8). While some 209

of our models were able to estimate the daily rates of cell division, carbon fixation, and 210

carbon loss accurately, the hourly patterns were more difficult to replicate (Fig 5A-C). 211

As expected by the relationship between cell size and hourly division rates (Fig 3), 212

models that assume that cell division is only size-dependent (mbmx, mbmb, mfmf) 213

predicted the timing of cell division to be 4 to 8 hours too early (Fig 5A). On the other 214

hand, models with both time-dependent division and size-dependent carbon fixation 215

(mptb, mftf) were able to more accurately predict the timing of cell division. However, 216

these models either overestimated division during the morning (mptb) or 217

underestimated division at dusk (mftf), thus leading to the inaccurate daily rates as 218

discussed above. All models were able to capture the timing of carbon fixation, which is 219

tied to the amount of incident light (Fig 5 B). However, most models tended to 220

underestimate the amount of fixed carbon, with mbmb coming closest to capturing the 221

dynamics observed in the data. Surprisingly, the timing of carbon loss computed from 222

the data (Fig 5 C) closely matched that of carbon fixation. Our models tended to 223

underestimate carbon loss during daytime peaks and overestimate it at night. 224

To further explore the predicted dynamics of division, carbon fixation, and carbon 225

loss, we investigated the predicted proportions of cells undergoing each of these 226

transitions as a function of cell size (Fig 5 D-F). The estimated shape of the 227

size-division relationship tended to follow a sigmoidal pattern for all models: the 228

fraction of dividing cells increases sharply above a critical size, which varied from 60 to 229

110 fg C depending on the model (Fig 5D). We note that the model that best estimated 230

the daily division rate (mbmb) predicted cell division to occur mostly in the largest size 231

classes (> 110 fg C), which resulted in accurate amplitudes of hourly cell division rates, 232

albeit at a 6-hour phase shift. In general, models that overestimated cell division rates 233

(mptb) predicted higher proportions of dividing cells for smaller sizes, while models that 234
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Fig 5. Model predicted hourly rate parameters. (A) Observed (black) and predicted (colored bands) hourly division
rates. (B) Observed (black) and predicted (colored bands) hourly carbon fixation. (C) Observed (black) and predicted
(colored bands) hourly carbon loss. (A-C) Black points indicate ground truth calculated from data. (D) Predicted cell
division fraction as a function of cell size. (E) Predicted light-saturated cell growth (carbon fixation) fraction as a function of
cell size. (F) Predicted cell shrinkage (carbon loss) fraction as a function of cell size. (A-F) Colored bands indicate model
estimates. Shading indicates the first to third quartiles of the posterior distributions. (D-F) Fractions correspond to MPM
transitions over a 20-minute time period.
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Fig 6. Bivariate posterior distributions. Scatter plots of the bivariate posterior
distributions of select parameters for the models (A-J) mbmb and (K-T) mftf.

underestimated division (mfmf, mftf) estimated smaller proportions of dividing cells 235

within the larger size classes. The exception to this trend is mbmx, which generally 236

estimates a comparable or lower division fraction than mbmb at a given size yet 237

overestimates cell division. Because mbmx contains no carbon loss, it predicts more 238

large cells to be present in the distribution, hence increasing the predicted division rate 239

relative to mbmb even if the division fraction is lower. 240

Meanwhile, model estimates of the size-dependence of carbon fixation generally 241

estimated high values for the peak maximum growth fraction (Fig 5 E). Models that 242

assumed constant maximum growth (mbmx, mbmb) estimated this fraction to be near 243

one. Interestingly, models with a free parameterization of size-dependent carbon 244

fixation (mfmf, mftf) generally predicted larger cells to have a lower maximum growth 245

fraction, as in the power-law formulation (mptb). The predicted fractions of cell 246

shrinkage tended to be significantly lower than the fractions of maximum growth, 247

ranging from negligible to about one-fifth of the peak maximum growth fraction 248

(Fig 5E, F). In the two models with size-dependent carbon loss rates (mfmf, mftf), the 249

predicted fraction of cell shrinkage generally increased with cell size. However, both 250

models estimated a sharp drop near the same critical sizes at which the division fraction 251

sharply rose, suggesting that the models assign the decreases in cell size to cell division 252

rather than carbon loss for larger but not smaller cells. These results suggest a trade-off 253

of daily and hourly rate estimates between our models: models that produced some of 254

the most accurate daily estimates of cell division, carbon fixation, and carbon loss 255

showed a systematic offset in timing of cell division, while the models which accurately 256

captured the timing often performed less well in estimating the daily average rate. 257
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Posterior parameter distributions 258

As the cell size distribution is used for model fitting, a model may be able to accurately 259

capture the net effect of the parameters despite failing to accurately capture the value 260

of each parameter individually, highlighting potential identifiability issues. We therefore 261

examined the bivariate joint posterior distributions of estimated rates of daily cell 262

division, carbon fixation, and carbon loss as well as photosynthetic parameters to better 263

understand the mechanics of the MPMs and the interdependencies of their parameters. 264

We focused on two models: mbmb, which had the best overall performance on daily 265

rates of cell division, carbon fixation, and carbon loss but failed to predict the timing of 266

cell division, and mftf, which was best able to predict the timing of cell division but 267

failed to provide accurate daily rates (Fig 6). A strong correlation between daily carbon 268

fixation and carbon loss was observed in the posterior distributions of both models (r = 269

0.61 and 0.81 for mbmb and mftf, respectively; Fig 6 J,K), which was expected since the 270

carbon fixed by photosynthesis fuels respiration and exudation. However, the 271

relationship between carbon fixation and cell division differed between the two models 272

(Fig 6 F,O). Carbon fixation and cell division were positively correlated (r = 0.64) in 273

mbmb, which makes intuitive sense since the faster the cells grow, the faster they divide 274

(Fig 6 F), while a negative correlation (r = -0.46) was observed in mftf (Fig 6 O). This 275

negative relationship likely stems from the fact that daily division rate and carbon loss 276

in mftf were strongly negatively correlated (r = -0.88, Fig 6 L), while this relationship 277

was much weaker in mbmb (r = -0.19, Fig 6I). As carbon fixation and carbon loss are 278

tightly correlated, carbon loss may mediate the observed negative relationship between 279

carbon fixation and daily division in mftf, making it more difficult for this model to 280

disentangle these two processes than in mbmb. 281

The shape of the posterior distribution highlights the strong relationship between 282

Pmax and Ek (Fig 6 A,T); increases in Pmax and reduction of Ek both increase carbon 283

fixation in different ways (see Eq (12)), which would explain why mbmb could accurately 284

estimate daily carbon fixation albeit with inaccurate estimates of photosynthetic 285

parameters. The strong dependence structure between parameters shows that it is 286

important to consider the joint distributions of the parameters and not solely focus on 287

the marginal posterior distribution for each parameter. It also demonstrates that the 288

size-distribution data itself cannot constrain all parameters, emphasizing the importance 289

of prior knowledge and the prior distribution for limiting the parameter distributions. 290

Observation sensitivity experiments 291

In order to quantify the impact of changes in the size distribution data on model 292

parameter estimates, we performed two sets of experiments. In the first, we used a 293

sliding window approach to assess the effect of changing the start time of the 48-hour 294

time series on model output. In the second, we studied the robustness of the models to 295

changes in the sampling resolution of observations. 296

In the sliding window experiment, we extended the normalized size distribution time 297

series by appending the data to itself, thereby creating a four-day dataset. Then, we 298

estimated parameters and initial conditions within a 48-hour window that was moved 299

forward in time in four-hour increments. Details about the setup of the sliding window 300

experiments and their results can be found in the SI (Section S1). With the exception of 301

mbmx and mbtb, all models exhibited a high degree of stability in their estimates for 302

each window, indicating that the starting time of the model fitting procedure had a very 303

limited effect on the models’ parameter estimates. Some deviations were however 304

noticeable when the window start time was near the peak of the cell size distribution, at 305

which the difference between observations and model predictions is most pronounced. 306

For mbmx and mbtb, estimates showed a high degree of variability among windows, 307
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suggesting that the results of these models may not be as stable or reliable as the others. 308

In the second set of experiments, we performed holdout validation experiments in 309

which time points of the size distribution data were withheld from the training data 310

used for model fitting. This holdout data was then used as a testing set and we 311

computed the error for both datasets in order to examine our models’ out-of-sample 312

performance and the stability of the parameter estimation relative to the full dataset. 313

We conducted three experiments, sequentially removing an increasing amount of equally 314

spaced data, roughly mimicking lab experiments in which measurements were collected 315

at lower resolution. This procedure ensured that the daily cycle was sampled well and 316

both days are represented equally in the training data. More details of this analysis can 317

be found in the SI (Section S2). We found that parameter estimates and the observed 318

cell size distribution remained stable when up to half of the data was removed from 319

training, but out-of-sample performance deteriorated and parameter estimates differed 320

significantly from those computed from the full data when two-thirds of the data was 321

removed. This result suggests that our model could be applied to time series data 322

collected at 4 hour interval and still provide accurate estimated daily rates of cell 323

division, carbon fixation, and carbon loss. 324

Discussion 325

In this work, we developed a flexible framework that allowed us to test multiple 326

hypotheses regarding key biological processes that dictate phytoplankton cell growth, 327

shrinkage, and division. Our investigation focused on a laboratory culture of the 328

picocyanobacterium Prochlorococcus, whose dynamics over the diel cycle have been 329

extensively studied [27]. We developed nine models that differed in their 330

parameterizations of changes in cell size. In addition to a size-dependent relationship for 331

cell growth and time-dependence in cell division, we considered respiratory and 332

exudative carbon loss in our models, which had previously been neglected in similar 333

studies [18–24]. To this end, we implemented our models within a Bayesian framework, 334

which permitted us to incorporate prior information into the analysis to regularize 335

parameter inference and avoid biologically implausible parameter values. 336

Herein, we showed that size-structured MPMs can be used to estimate not only rates 337

of cell division but also carbon fluxes, thereby connecting microbial growth processes to 338

the carbon cycle. The addition of carbon loss, which allows cells to shrink in size 339

through a process other than cell division, improved the accuracy of model estimates 340

and the fit to the size distribution data, with mbmb successfully recovering the measured 341

daily rates of cell division, carbon fixation, and carbon loss (Fig 4 B-D). More complex 342

models, such as those with size-dependent carbon fixation and time-dependent cell 343

division, provided better fits to the cell size distribution and photosynthetic parameter 344

estimates but showed worse model performance in recovering the observed daily rate 345

parameter values. This result indicates that model fit to the observed cell size 346

distribution cannot be used as a proxy for overall model performance, as done in 347

previous studies [18–24]. 348

As expected from the lack of correlation between mean cell size and hourly division 349

rate in the laboratory data (Fig 3), most of our models consistently predicted the peak 350

of cell division about 4-8 hours earlier than observed in the data (Fig 5; Fig S8). This 351

offset stemmed from the assumption that cell division (i.e. the separation of a single cell 352

into two daughter cells) occurs instantaneously once the cells reach a certain size. While 353

this assumption may be reasonable on daily time scales, it becomes problematic at 354

hourly resolution; cell division is a complex process involving many components, each 355

highly regulated to ensure that the separation of the cell into two daughter cells occurs 356

only once DNA synthesis is completed, which takes between 4 and 6 hours depending on 357
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the strain and culture conditions [27,30]. Here, the peak of DNA synthesis coinciding 358

with the peak of cell size [27] suggests that cell size dictates the onset of DNA 359

replication rather than the final separation of the cell into two daughter cells. Due to 360

their greater flexibility, models with time-dependent division and size-dependent carbon 361

fixation successfully captured the timing of cell division but failed to predict accurate 362

rate estimates. Interestingly, models with a free parameterization of the size-dependent 363

carbon fixation (mfmb, mfmf, mftb, and mftf) estimated less carbon fixation and more 364

carbon loss in the large size classes which contains a large fraction of dividing cells (Fig 5 365

E,F; Fig S8 E, F). This result suggests that dividing and non-dividing Prochlorococcus 366

cells may have a different carbon metabolism, as observed in other organisms [31]. 367

Finally, we consider potential future directions for this work. One of the most 368

interesting results in this study is the offset in the predicted and observed timing of 369

division for the models with the most accurate daily division rate estimates. While the 370

addition of time- and size-dependencies for cell division, carbon fixation and loss 371

allowed our more complex models to capture the timing of cell division, their estimates 372

of the magnitude of division and other rate parameters suffered. As stated above, we 373

hypothesize that carbon metabolism differs between dividing and non-dividing cells, yet 374

our current modeling framework requires extension of the stage structure to encapsulate 375

this information in order to test such a hypothesis. A hybrid age- and size-structured 376

MPM may therefore be better suited to assess the importance of including cell division 377

duration to more accurately simulate the timing of Prochlorococcus division. 378

An exciting future extension of this work is application to an in-situ Prochlorococcus 379

and Synechococcus dataset obtained from shipboard flow cytometers [32]. Additional 380

processes not accounted for in this study, such as grazing and viral lysis, which could 381

potentially affect phytoplankton size distributions, will need to be tested. The flexibility 382

of our modeling framework provides a valuable basis for examining and evaluating 383

MPM results in the face of more complex datasets, which could further improve our 384

understanding of the dynamics of marine microorganisms and their contributions to the 385

carbon cycle. 386

Materials and methods 387

Microbial MPM 388

The aim of the MPM applied to microbial populations is to mechanistically describe the 389

evolution of the population over a day/night cycle. Typically, the target of inference is 390

the daily division rate, which cannot be measured directly from changes in cell 391

abundance measured in the field due to cell mortality caused by grazing and viral lysis 392

as well as physical processes that can add or remove cells from the sampled population. 393

Thus, in order to estimate this quantity, we infer it via observed changes in the relative 394

abundance distribution over time. Past work has accomplished this by focusing on 395

modeling two cellular processes: cell division and carbon fixation; in this work, we 396

additionally consider carbon loss. We tested nine MPMs involving these processes that 397

varied in their complexity. All inference was carried out using the Bayesian modeling 398

software Stan, see Implementation section below. 399

Preliminaries 400

The MPM operates on discrete scales in both cell size and time. Therefore, there are two
user-defined discretization parameters: ∆v ∈ R+ is the size discretization parameter and
dt ∈ R+ is the time discretization parameter in hours. We choose the former such that
∆v−1 ∈ N so that division corresponds to shifting 1

∆v size classes, see (2). We choose
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the latter to match our observation resolution; as the dataset has observations every 2
hours, we enforce dt−1 ∈ N. In addition, we define m ∈ N the total number of discrete
size classes and v1 the minimum possible cell size, to define m+ 1 size class boundaries:

vi = v1 ∗ 2(i−1)∆v ∀ i ∈ {1, 2, . . . ,m+ 1} . (2)

If a cell is of size x where vi ≤ x < vi+1, then the cell belongs to size class i.
Furthermore, we denote j := 1

∆v + 1 so that vj = 2v1, i.e. only cells of size class j or
greater can undergo cell division, see (7). For size-dependent parameterizations (see
(12)), we treat cells in size class i as having size

v̄i =
√
vivi+1,

that is, they are assigned the geometric mean of the size class boundaries. In this work, 401

we set m = 27, ∆v = 1
8 , dt = 1

3 hour, and v1 = 16 fg C. 402

Model inputs 403

The observations {nk}K−1
k=0 consist of cell counts across the m discrete size classes at 404

K ∈ N time points; that is, nk ∈ Nm ∀ k ∈ {0, 1, 2, . . . ,K − 1}. We denote the set of 405

observation times as T = {t0, t1, . . . , tK−1}, where tk ∈ N refers to the time in hours of 406

the kth observation. For each k, we also define the simplex wk = nk
Nk
∈ ∆m, where 407

Nk =
∑m
i=1 n

(i)
k is the total number of cells observed at time tk. Observations also 408

include measurements of photosynthetically active radiation (PAR), interpolated at the 409

times T ? := {0, dt, 2dt, . . . , T − 1}, where the times are in hours; this information is 410

used to estimate carbon fixation. We denote these values as E := {E(t)}t∈T ? . In our 411

case, we have T = 47, K = 24, and T = {0, 2, 4, . . . , 46}. 412

Model output 413

Microbial MPMs make projections operate differently from the formulation in (1). The
predicted counts are normalized at each time step so that model projections estimate
the relative abundance:

ŵk+1(θ,E) =
Bk(θ,E)ŵk(θ,E)∑m

i=1

∑m
j=1B

(i,j)
k (θ,E)ŵ

(j)
k (θ,E)

, (3)

where θ is a parameter vector and Bk(θ,E) ∈ Rm×m is a projection matrix depending
on model parameters, time, and incident light, see the Projection matrix section below.
This formulation does not use the counts to estimate division rate directly, allowing for
valid estimates even when mortality and physical movement of cells occur, so long as
these processes do not affect the relative size distribution. We estimate the posterior
distributions of the model parameters from their prior distributions and the likelihood
of the data {nk}K−1

k=0 given the parameters (see Model likelihood section). The primary
goal of inference is the daily division rate µ, defined as the exponential growth constant:

NK−1 = N0 exp (µ(T/24)) .

Recall that T = tK−1 is the time of the last observation in hours; thus, T/24 is the
length of the time series in days. Rearranging the above equation, we obtain

µ =
24

T
log

(
NK−1

N0

)
. (4)

As populations in their natural environments undergo cell loss due to cell mortality (due
to grazing and viral lysis) and physical processes that can add or remove cells, a
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normalization step (3) was applied to estimate division rate based on relative cell
abundance, as in past applications [18,19,21]. By removing the normalization step, we
estimate the relative increase in cell number caused by cell division. We therefore obtain
the following estimator for the division rate:

µ̂(θ,E) =
24

T
log

(
m∑
i=1

di

)
, (5)

where d ∈ Rm is defined as

d :=

[
K−1∏
k=0

Bk(θ,E)

]
ŵ0(θ,E).

Model likelihood 414

We use the following statistical model to assess the fit to the data:

nk|ηk, σ,θ ∼ Multinomial(Nk;ηk),

ηk|σ,θ ∼ Dirichlet(σŵk(θ,E)),

σ ∼ πσ,
θ ∼ πθ,

where σ is a real-valued concentration parameter, θ is a parameter vector, and π· 415

denotes the corresponding prior distributions (see Table 2). Thus, similar to [19], the 416

model likelihood can be written as 417

p
(
{nk}K−1

k=0 |θ, σ
)

=
K−1∏
k=0

 Γ(σ)Nk!

Γ(Nk + σ)
×

m∏
i=1

Γ
(
n

(i)
k + σŵ

(i)
k (θ,E)

)
Γ
(
σŵ

(i)
k (θ,E)

)
n

(i)
k !

 , (6)

where n
(i)
k ∈ R is the ith entry of nk and ŵ

(i)
k (θ,E) ∈ R is the ith entry of ŵk(θ,E).

The posterior is proportional to the product of the likelihood and the prior distribution
according to Bayes’ theorem; thus, we have

p
(
θ, σ| {nk}K−1

k=0

)
∝ p

(
{nk}K−1

k=0 |θ, σ
)
π(θ, σ).

Now, we characterize the parameter vector θ and the projection matrices Bk(θ,E), 418

which generate model predictions. 419

Projection matrix 420

The projection matrices {Bk(θ,E)}K−1
k=0 define the dynamics of the microbial

population through three cellular processes: cell division, carbon fixation, and carbon
loss. We assume that any individual cell can only undergo one of these three processes
in each dt time step (it may also remain in the same size class). Thus, for each k, we

first construct a set of matrices
{
A

(`)
k (θ,E)

}rk−1

`=0
, where rk := (tk+1 − tk)dt−1 is the

number of dt time steps between time tk and time tk+1. Once these matrices are
defined, we have for each k:

Bk(θ,E) =

rk−1∏
`=0

A
(rk−1−`)
k (θ,E).
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Each matrix A
(`)
k (θ) projects the process from time t

(`)
k := tk + `dt to time 421

t
(`+1)
k := tk + (`+ 1)dt. 422

Let δi(t) ∈ [0, 1] denote the proportion of cells in size class i that divide in one dt
time step at time t, ρi ∈ [0, 1] the proportion of cells in size class i that shrink one size
class in one dt time step given that they do not divide, and γi(t) ∈ [0, 1] the proportion
of cells in size class i that grow one size class in one dt time step at time t given that
they neither divide nor shrink. Then, recalling that j denotes the index of the smallest

size class which can undergo division, the entries of each matrix A
(`)
k (θ) are defined as

follows:

division: ak
(`)
(i−j+1,i)(θ) = 2 δi(t

(`)
k ) for j ≤ i ≤ m,

(7)

growth: ak
(`)
(i+1,i)(θ,E) =


γ1(t

(`)
k )

(1− ρi) γi(t(`)k )

(1− δi(t(`)k )) γi(t
(`)
k ) (1− ρi)

for i = 1

for 2 ≤ i ≤ j − 1

for j ≤ i ≤ m− 1

,

(8)

loss: ak
(`)
(i−1,i)(θ) =

{
ρi

(1− δi(t(`)k )) ρi

for 2 ≤ i ≤ j − 1

for j ≤ i ≤ m
,

(9)

stasis: ak
(`)
(i,i)(θ,E) =


1− γ1(t

(`)
k )

(1− γi(t(`)k )) (1− ρi)
(1− δi(t(`)k )) (1− γi(t(`)k )) (1− ρi)
(1− δm(t

(`)
k )) (1− ρm)

for i = 1

for 2 ≤ i ≤ j − 1

for j ≤ i ≤ m− 1

for i = m

,

(10)

where again t
(`)
k := tk + `dt. Here, only cell growth and stasis involve the PAR 423

measurements E. The coefficient 2 in equation (7) reflects the fact that when a cell 424

divides, it creates two daughter cells. This is the reason the normalization step (3) is 425

needed to maintain the sum-to-one constraint and also the reason (5), which omits the 426

normalization, is able to estimate the rate of cell division. 427

Parameterizations 428

In this work, we tested nine different microbial MPM’s. These models differed in their 429

parameterizations of the three key processes we aim to quantify: cell division, carbon 430

fixation, and carbon loss. Our most complicated models allow these processes to vary as 431

functions of both time and cell size. The parameter vector θ controls the dynamics of 432

these processes, while the concentration parameter σ allows for overdispersion in the 433

data. We can divide the parameter vector θ into four components θ = (θδ,θγ ,θρ, ŵ0). 434

The first three components correspond to each of the three cellular process we aim to 435

model, while the fourth defines the initial conditions. We use Stan’s default Dirichlet 436

prior for the initial condition simplex ŵ0 ∈ ∆m. We describe the parameterizations of 437

the remaining three components in the following. 438
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Cell division 439

The cell division proportions δi(t) are parameterized as

δi(t) =

{
0 i < j
dt
24 δmax q(t)

∑i
k=j δ

(i)
incr i ≥ j , (11)

where δmax ∈ [0, 24dt−1] is the maximum division quotient, q(t) is a function that
induces time-dependence in division, and δincr ∈ ∆m−j+1 is a simplex that defines the
relative increase in the division quotient for each size class. For models with
time-invariant division (m·m·), q(t) = 1. The parameter δmax is normalized by dt in
units of days to better facilitate comparisons among models that vary in their values of
dt; hence, dt

24δmax ∈ [0, 1]. The parameter δincr allows us to constrain cell division to be
monotone without imposing a specific functional form of the relationship between cell
size and cell division. For models with time-dependent division (m·t·), q(t) is estimated
using a periodic cubic spline with 6 knots and associated control points

τcontrol := (τ
(1)
control, . . . , τ

(6)
control)

T ∈ R6. Thus, we have

θδ =

{
(δmax, δincr) m·m·

(δmax, δincr, τcontrol) m·t·

Carbon fixation 440

The cell growth proportions are parameterized as

γi(t) =

{
dt

24(2∆v−1) γmax s
(i)
γ

(
1− exp

(
−E(t)
Ek

))
i < m

0 i = m
, (12)

where γmax ∈ [0, 24
(
2∆v − 1

)
dt−1] is the maximum cell growth quotient, s

(i)
γ is a

function that induces size-dependence in carbon fixation, and Ek ∈ R is a
photosynthetic saturation parameter. Recall that E(t) refers to the incident PAR at
time t. The parameter γmax is normalized by both the choices of time and size
discretization to facilitate comparisons between models with different choices of
discretization parameters. For models without size-dependent carbon fixation (mb··),

s
(i)
γ = 1. For models with a power-law carbon fixation (mp··),

s(i)
γ =

{
(v̄i/v̄m)

βγ βγ ≥ 0

(v̄i/v̄1)
βγ βγ < 0

,

where βγ ∈ R is a parameter that governs the power-law dependence of carbon fixation

on size. For models with a free carbon fixation relationship (mf ··), s
(i)
γ is itself

estimated as a parameter separately for each size class. Thus, we have

θγ =


(γmax, Ek) mb··

(γmax, Ek, βγ) mp··

(γmax, Ek, sγ) mf ··

.

For estimation of the light-saturated photosynthetic rate Pmax, we define the
light-saturated growth proportion

γ?i (t) = lim
E(t)→∞

γi(t)

=
dt

24(2∆v − 1)
γmaxs

(i)
γ .
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Then, Pmax is defined as the amount of carbon fixed when γi(t) is replaced by γ?i (t) for 441

all size classes i and all time points t ∈ T ?. 442

Carbon loss 443

The carbon loss proportions are parameterized as

ρi(t) =

{
0 i = 1

dt
24(2∆v−1) ρmax s

(i)
ρ i > 1

, (13)

where ρmax ∈ [0, 24
(
2∆v − 1

)
dt−1] is the maximum cell shrinkage quotient normalized

in the same way as γmax and s
(i)
ρ induces size-dependence in carbon loss. For models

with no respiration (m··x), s
(i)
ρ = 0. For models with basic respiration (m··b), s

(i)
ρ = 1.

For models with free size-dependent respiration (m··f ), s
(i)
ρ is itself estimated as a

parameter as with s
(i)
γ . Thus, we have

θρ =


∅ m··x

ρmax m··b

(ρmax, sρ) m··f

.

Experimental data 444

A publicly available dataset of laboratory experiment time-series measurements of a 445

high-light adapted strain of Prochlorococcus [27] collected during the exponential phase 446

of batch growth over two simulated day-night cycles (Fig 2) was used to test model 447

predictions. We used changes in cell abundance over time to calculate division rates, 448

since cell mortality is assumed to be negligible in exponentially growing cultures. A 449

suite of measurements, which include cell size distributions and rates of carbon fixation, 450

were collected at 2 hour intervals for a period of 50 hours to capture two complete diel 451

cycles. Cell size distributions were inferred from flow-cytometry based forward-angle 452

light scatter measurements (FALS). FALS signals normalized by calibration beads were 453

converted to a proxy of mass using the relationships M = FALS1/1.74 [33] and then 454

converted to carbon quotas assuming an average carbon quotas of 53 fg C cell−1 [27]. 455

14C-Photosynthetron experiments were conducted in duplicate at each time point to 456

derive carbon fixation rates, maximum photosynthesis rates, and the photosynthetic 457

saturation parameter. Short (1 hour) incubation times were used to approximate gross 458

carbon fixation rates. Using the 2-hourly cell abundance measurements (at), average 459

cell size measurements (st) and approximate carbon fixation rates (ft), we then 460

estimated carbon loss rates (lt) every 2 hours, using 461

st+1 = st
at
at+1

+ dt (ft − lt), (14)

where dt is the two hour time step between measurements. 462

Implementation 463

Parameter inference was carried out in the software package Stan [25]. This software 464

performs Bayesian inference, where the target is the posterior distribution of the 465

parameters, which reflects the likely values of these parameters given the model, our 466

prior beliefs, and the data [34]. In order to generate samples from the posterior 467

distribution, Stan implements a variant of the Hamiltonian Monte Carlo (HMC) 468

algorithm [35,36] which has been shown to have superior speed and performance for 469
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fitting complex, high-dimensional population dynamics models relative to other Markov 470

Chain Monte Carlo (MCMC) methods for sampling from the posterior [37]. In 471

particular, we use Stan’s implementation of the No-U-Turn Sampler (NUTS) [38] to 472

avoid manual selection of application-specific tuning parameters. Though faster, Stan’s 473

implementation of variational inference provided high instability in model estimates, 474

which may indicate that the approximation to the posterior was of poor quality. Thus, 475

we used HMC, which generated reproducible results and provides asymptotic 476

consistency [36]. The implementation of HMC in Stan uses automatic differentiation to 477

provide the gradients needed to integrate Hamiltonian dynamics. The reader is directed 478

to [39] for additional details on HMC in Stan. 479

Six HMC chains were run for 2000 MCMC iterations for each model. The R̂ 480

convergence diagnostic [40] was monitored for all model fits to ensure R̂ < 1.05, 481

otherwise the sampling procedure was considered divergent. 482

Prior distributions 483

The prior distributions are shown in Table 2. Maximum cell division, carbon fixation 484

and loss along with photosynthetic parameter values were chosen within biologically 485

feasible ranges using information derived from literature [27,41], otherwise the Stan 486

default priors were used, corresponding to uniform priors [25]. 487

Table 2. List of model parameters.

Name Used in Description Units Bounds Prior

w(0) all models initial conditions – simplex Dirichlet(1Tm)
Ek all models light-dependent growth parameter µmol photons m−2 s−1 [0, 5000] normal(1000, 1000)
δmax all models maximum division rate d−1 [0, 1

∆t
] uniform(0, 1

∆t
)

δ
(i)
incr all models increment in division rate, size class i – [0, 1] uniform(0,1)
γmax all but mf · · maximum carbon fixation rate d−1 [0, 1

∆
t*

] normal(10.0, 10.0)

βγ mp · · exponent in carbon fixation power law – [−10, 10] normal(0, 0.1)

γ
(i)
max mf · · maximum carbon fixation rate, size class i d−1 [0, 1

∆
t*

] normal(µγ , σγ)

µγ mf · · hierarchical prior for mean of γ
(i)
max d−1 [0, 1

∆
t*

] normal(10.0, 10.0)

σγ mf · · hierarchical prior for s.d. of γ
(i)
max d−1 [0,∞[ exponential(0.1)

ρmax all but m· · f maximum carbon loss rate d−1 [0, 1
∆
t*

] normal(3.0, 10.0)

βρ m· · p exponent in carbon loss power law – [−10, 10] normal(0, 0.1)

ρ
(i)
max m· · f maximum carbon loss rate, size class i d−1 [0, 1

∆
t*

] normal(µγ , σγ)

µρ m· · f hierarchical prior for mean of ρ
(i)
max d−1 [0, 1

∆
t*

] normal(10.0, 10.0)

σρ m· · f hierarchical prior for s.d. of ρ
(i)
max d−1 [0,∞[ exponential(0.1)

τ
(i)
control m· t · control point i for time-dep. division spline – [0, 1] beta(9, 1)
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Supporting Information for A flexible Bayesian
approach to estimating size-structured matrix
population models

S1 Sliding window experiments 1

As part of our observation sensitivity experiments, we modified the start time of the 2

model fitting to examine the resulting changes in parameter estimates. As the original 3

cell size distribution dataset only contains two days of data, we appended the dataset to 4

itself to create a 96-hour time series. This allowed us to fit models to a sequence of 5

two-day continuous cell size distribution data that start at different times of the 6

laboratory-simulated light-dark cycle (Fig S1. The start times of these windows ranged 7

from 2 to 46 hours and were spaced four hours apart. In each experiment, the model 8

initialization time is set to match the start time of the window and data outside of the 9

window is discarded. 10
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Fig S1. The extended size distribution dataset used in the sliding window experiments
and the 2-day windows in which the models are fit.

Here we focus on results for model mbmb, which are representative for most of our 11

models; when individual models deviate from these results, we note it in the text. 12

Results for all models can be found in the accompanying GitHub repository [1]. Overall, 13

parameter estimates remain consistent for most start times, but we noted a weak 14

cyclical pattern in estimated values and an outlier estimate for a start time of 26 hours 15

(Fig S2), which are both examined below. 16

The pattern is aligned with the daily cycle and is characterized by increased division 17

and decreased carbon loss rates at start times near 10 hours and – 24 hours later – near 18

34 hours (Fig S2). It is driven by the estimation of initial conditions at a start time 19

with a large model-observation misfit, which is aligned with the peak of the cell size 20

distribution in most of our models. At the peak of the cell size distribution, for example 21

at t=34 h, the mbmb daily cycle underestimates the Prochlorococcus cell size 22
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Fig S2. Rate parameter estimates of the model mbmb for each window of the sliding
window experiment.

distribution (Fig S5). When the estimation window starts at a peak, the estimated 23

initial conditions deviate strongly from the daily cycle steady state solution (compare 24

the solutions of the 2 hours and 10 hours start time at t=10 h, or the 10 hours start 25

time solution at t=10 h and t=34 h; Fig S5D). Due to the increase in the initial cell size 26

distribution, the division rate, which increases with cell size, becomes inflated, 27

impacting other parameter estimates accordingly. This effect is more pronounced for 28

models with a larger model-data discrepancy, while models that fit the size distribution 29

better throughout the daily cycle, such as mftf, show a weaker cyclical pattern in the 30

parameter estimates (Fig S3). 31

Some models, such as mbmx and mbtb (Fig S4), showed much more volatility in their 32

parameter estimates among windows. This indicates that these models may be more 33

unstable and hence their results may be less reliable than the other models. 34

The second noteworthy pattern in the mbmb estimates is the parameter estimate for 35

the start time of 26 hours. Here, the model fitting procedure converged to solutions 36

with higher average carbon fixation and higher carbon loss compared to simulations at 37

other start times. A likely cause for this pattern is the strong correlation structure 38

between the model parameters (Fig 6 in the main document) combined with the broad 39

priors in our model specification. As a result, changes in the start time and associated 40

changes in the order of the observations, in combination with different initial conditions 41

can lead to changes in the posterior estimates that may appear as outliers with respect 42

to the other sliding window experiments. We observed this type of outlier infrequently 43

for most models but it occurred more often for mbtb which also showed worse 44

convergence properties in our other experiments. 45

To summarize the stability of our models, we plotted the daily division rate for each 46

model in each window against the concentration parameter σ (Fig S6). The vertical 47
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Fig S3. Daily rate parameter estimates of the model mftf for each window of the
sliding window experiment. This model showed greater stability in its parameter
estimates across windows compared to simpler models such as mbmb.
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Fig S4. Daily rate parameter estimates of the model mftf for each window of the
sliding window experiment. Model results were much more volatile for this model and
mbmx than the others.
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Fig S5. Size distribution in the (A) data, the model mbmb in the rolling window
experiment started at (B) hour 2 and (C) hour 10. (D) The evolution of the mean cell
size in data and model.
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line indicates observed daily division rate. Green shaded area indicates one standard
deviation of uncertainty around the observed value.
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Fig S7. Holdout validation experiments. Size distribution misfit for testing and
training data (left and right bar) for each model in the cross-validation experiments (A),
(B), and (C) with top right corner visualizing the indices of the testing (black) and
training data (white). Examples of the posterior distributions of select model
parameters for the full dataset and the two cross-validation experiments: (D) daily
carbon fixation rate for mbmb, (E) daily division rate for mbmb, and (F) daily carbon
loss rate for mbmb.

spread of each cluster corresponds to the variability of the daily division rate, whereas 48

the horizontal spread corresponds to the variability of the concentration parameter. In 49

general, models with greater values of σ exhibited less variability in their daily division 50

rates across windows. 51

S2 Hold-out validation 52

In experiment A, the data from every third time step were removed, in experiment B 53

data were removed from every other time step, and in experiment C, two-thirds of the 54

data were removed (see top right corner of Fig S7 A,B,C). As expected, the error on the 55

training data reflected model complexity and decreased from mbmx to mfmf, and again 56

for the models with time-dependent division mbtb to mftf, in all three experiments 57

(Fig S7 A,B,C). While the ratio of testing to training data error increased for more 58

complex models, the absolute value of the testing data error did not increase with 59

model complexity in most of our experiments. The exception involved mptb and mftb, 60

which differ only in their size-dependent growth parameterizations. While the more 61
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complex mftb with the free growth parameterization exhibited a lower training data 62

error, mptb model with power-law growth achieved a lower testing data error. Taken 63

together with the results for mpmb, which were similar to those of mfmb, we have some 64

evidence that the power-law growth parameterization is suitable for models in this 65

application, creating a size-dependent growth relationship that performed better on 66

testing data than a freely estimated relationship. 67

Reducing the number of observations in the training set had a noticeable impact on 68

the models parameter estimates (Fig S7 D-F). With less data in the training dataset, 69

the posterior distributions of the estimated parameters broadened from those obtained 70

using the full dataset and eventually showed shifts in the mean parameter estimates 71

when more data is excluded (e.g. mbmb daily division in experiment C, Fig S7 E). The 72

broadening matches our intuition: fewer observations constrain the parameter estimates 73

to a lesser extent than the information contained in the full dataset. With two thirds of 74

the data excluded and observations occurring every 6 hours, the rate parameters could 75

no longer be estimated reliably and mean parameter estimates deviated noticeably from 76

their values on the full dataset. In summary, when as much as one half of the data was 77

removed, the predicted rate parameters still capture the daily cycle of Prochlorococcus 78

dynamics. Estimates for the parameters of interest also remained stable. 79

S3 Hourly rate estimates 80

Here, we show the hourly rate estimates for all nine models (Fig S8). The trends 81

discussed in the main text can be seen in the 4 remaining models (mpmb, mfmb, mbtb, 82

mftb). Models mpmb and mfmb, which assume cell division only varies as a function of 83

cell size, predicted cell division to occur too early (Fig S8 A). Again, model mftb, with 84

both time-dependent division and size-dependent carbon fixation, correctly predicted 85

the timing of cell division, but overestimated division during the morning. The model 86

with time-dependent division but no size-dependence in carbon fixation (mbtb) did not 87

correctly predict the timing of cell division. All models underestimated carbon fixation 88

(Fig S8 B) as seen in the main text. They also overestimated carbon loss at night and 89

underestimated carbon loss during the day (Fig S8 C). 90

Of the four models we exclude from the figure in the main text, models that 91

overestimated cell division rates (mbtb, mftb) predicted higher proportions of dividing 92

cells for smaller sizes (Fig S8 D). Similarly, the models that underestimated cell division 93

(mpmb, mfmb) predicted very low proportions of dividing cells in the large size classes. 94

As with the other models that assume no size dependence in carbon fixation, mbtb 95

estimated the maximum possible fraction of dividing cells to be near 1 (Fig S8 E). 96

Again, models with a size-dependent carbon fixation parameterization (mpmb, mfmb, 97

mftb) predicted the maximum proportion of growing cells to decrease as the size of the 98

cells increased. The predicted fractions of cell shrinkage tended to be significantly lower 99

than the fractions of maximum growth, ranging from negligible to about one-fifth of the 100

peak maximum growth fraction (Fig S8 E, F), as observed in the main text. 101
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Fig S8. Model predicted hourly rate parameters. (A) Observed (black) and
predicted (colored bands) hourly division rates. (B) Observed (black) and predicted
(colored bands) hourly carbon fixation. (C) Observed (black) and predicted (colored
bands) hourly carbon loss. (A-C) Black points indicate ground truth calculated from
data. (D) Predicted cell division fraction as a function of cell size. (E) Predicted
light-saturated cell growth (carbon fixation) fraction as a function of cell size. (F)
Predicted cell shrinkage (carbon loss) fraction as a function of cell size. (A-F) Colored
bands indicate model estimates. Shading indicates the first to third quartiles of the
posterior distributions. (D-F) Fractions correspond to MPM transitions over a
20-minute time period.
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