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Abstract

The rates of cell growth, division, and carbon loss of microbial populations are key
parameters for understanding how organisms interact with their environment and how
they contribute to the carbon cycle. However, the invasive nature of current analytical
methods has hindered efforts to reliably quantify these parameters. In recent years,
size-structured matrix population models (MPMs) have gained popularity for
estimating rate parameters of microbial populations by mechanistically describing
changes in microbial cell size distributions over time. And yet, the construction,
analysis, and biological interpretation of these models are underdeveloped, as current
implementations do not adequately constrain or assess the biological feasibility of
parameter values, leading to inference which may provide a good fit to observed size
distributions but does not necessarily reflect realistic physiological dynamics. Here we
present a flexible Bayesian extension of size-structured MPMs for testing underlying
assumptions describing the dynamics of a marine phytoplankton population over the
day-night cycle. Our Bayesian framework takes prior scientific knowledge into account
and generates biologically interpretable results. Using data from an exponentially
growing laboratory culture of the cyanobacterium Prochlorococcus, we herein
demonstrate the performance improvements of our approach over current models and
isolate previously ignored biological processes, such as respiratory and exudative carbon
losses, as critical parameters for the modeling of microbial population dynamics. The
results demonstrate that this modeling framework can provide deeper insights into
microbial population dynamics provided by flow-cytometry time-series data.

Author summary

Identifying the growth and population dynamics of marine microorganisms in their
natural habitat is crucial to understanding the flow of carbon in the oceans but remains
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a grand challenge due to the invasive nature of current measurement methods. As
time-series observations of population size structure have become more commonplace in
aquatic environments, matrix population models (MPMs), which aim to mechanistically
describe the change in size structure of these populations over time, have gained in
popularity over the last decade. However, the underlying assumptions and behavior of
MPMs have not been adequately scrutinized, and parameter values are difficult to
interpret biologically, leading to inference that may not reflect plausible physiological
dynamics. Here, we develop a Bayesian extension of the MPM framework to examine
biological assumptions, improve interpretability of model output, and account for
additional biological processes. We evaluated the performance of our models on a
publicly available dataset of laboratory experiment time-series measurements of the
cyanobacterium Prochlorococcus, Earth’s most abundant photosynthetic organisms,
demonstrated the performance improvements of our approach over current models, and
isolated previously ignored respiratory and exudative carbon losses as critical
parameters for the modeling of microbial population dynamics.

Introduction

Marine phytoplankton are photosynthetic microorganisms that account for up to half of
global net primary production [1]. As such, the population dynamics of these organisms
are crucial to understanding the global carbon cycle [2,|3]. One key aspect of
phytoplankton populations is the growth rate, typically defined as the rate of increase in
population biomass over time per unit of existing biomass. Direct in-situ measurement
of this bulk quantity is obscured by heterotrophic biomass and detrital material, which
constitute a variable fraction of the particulate organic carbon pool [4]. Several different
methodologies have been employed to estimate in-situ phytoplankton growth rates;
however, previous estimates relied on analytically challenging and low-throughput
methods such as the radiometric turnover times of *C labeled chlorophyll [5] and 32P
labeled ATP [6], cell cycle analysis |7], and the dilution method [8]. While
taxon-specific growth rates might be estimated with these methods, they often suffer
from large uncertainties caused by coarse sample time resolution or experimental
artifacts (collectively known as “bottle effects”; e.g., [9]). The emergence of continuous
flow cytometry in ocean surveys [10-12] provides high resolution, taxon-specific
measurements of the abundance and size of individual phytoplankton cells and offers a
high-throughput in-situ alternative. In principle, measurements of cell abundance across
different sizes over time provide a means to directly derive rates of carbon fixation and
cell division [4], but the mechanistic modeling frameworks are currently underdeveloped
and cannot accurately isolate these implicit rates from other cellular processes.

The class of mechanistic models we focus on consists of stage-structured matrix
population models (MPMs), which estimate demographic rates from measurements of
abundance across life-cycle stages [13], often defined by the age or size of individuals.
For example, tree species produce seeds once they have reached a particular size [14]
and fish species maximize reproduction at a critical age |15]. These models assume that
individuals in a population can be classified into m discrete stages that define their
response to the environment modeled as a discrete-time process. MPMs assume that
the state of the population at time ¢ + 1 can be written in terms of the state of the
population at time ¢ and a set of transition rates [16]:

N1 = By(0)ny, (1)

where By(0) is a projection matriz that defines the possibly time-dependent population
dynamics, 0 is a parameter vector, and n; is a vector representing the number of
individuals in each stage at time ¢, which defines the state of the population. The vector
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Fig 1. MPM size classes and transitions. Schematic of the MPM’s cell size
classes and its three class transitions: carbon fixation, division, and carbon loss. The
boundaries of the m cell size classes (v; for i = 1,2,...,m + 1) are logarithmically
spaced, so that cells can transition to a size class that is exactly half their original size
when they divide. For this purpose, the integer j is selected so that v;_(;_1) = % v; for
i > j; cells in the first j size classes cannot divide.

0 includes both biological and mechanistic parameters to model population dynamics
and is the target of parameter estimation [17].

In recent years, size-structured MPMs have gained popularity for estimating rate
parameters of phytoplankton populations by mechanistically describing changes in
microbial cell size distributions over the day-night cycle |18-24]. For instance, MPMs
have been employed to estimate daily division rates of the picocyanobacterium
Synechococcus and picoeukaryotic phytoplankton based on a 13-year hourly time series
from a coastal location in the Atlantic Ocean using a submersible flow
cytometer [1923/24]. In the North Pacific Subtropical Gyre, similar MPMs were used to
estimate daily and hourly division rates of another picocyanobacterium, Prochlorococcus,

based on continuous flow cytometry measurements taken over two research cruises [21].

In these studies, cell size measurements provided by high-frequency flow cytometry were
used to define the life-cycle stages of the population. These models assumed that
changes in the cell size distribution over the day-night cycle are driven only by two
biological processes: 1) carbon fixation via photosynthesis and 2) cell division; other
processes such as respiration and exudation, which lead to cell shrinkage, are omitted.
In previous investigations, model performance was judged on the goodness of fit to the
size distribution data rather than the plausibility of model parameters, in part due to
the difficulty of directly assessing biological feasibility of demographic rates of microbial
populations. Uncertainty quantification for model parameters typically involved refitting
methods or was ignored entirely, omitting critical context from the inference procedure.
As a consequence, these MPMs [18}[19]21}24] contain loosely constrained model
parameters that can lead to transition matrices with biologically implausible estimates.
Here, we extend existing size-structured MPMs to test a set of underlying
assumptions describing population dynamics over the day-night cycle and to improve
parameter interpretability and model performance. Model estimates are computed using
the Bayesian implementation in the probabilistic programming language Stan [25],
through which we provide statistically rigorous parameter uncertainty intervals while
constraining parameter values by incorporating prior scientific knowledge. This
approach enabled an evaluation of the sensitivity of posterior distributions to sampling
size, sampling frequency, and initial conditions. In the following, we test nine MPMs
that differ in their parameterizations of three transition terms: cell division, carbon
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Fig 2. Laboratory Prochlorococcus time series measurements. (A) Heatmap
of the number of cells and (B) relative cell abundances in each size class measured every
two hours over a 48-hour period. (C) Cell abundance and photosynthetically active
radiation (PAR). (D) Hourly carbon fixation, carbon loss, and division rates. Error bars
indicate one standard deviation based on two technical and two biological replicates.

fixation, and carbon loss (Fig (1)) which describe the dynamics of the
picocyanobacterium Prochlorococcus, Earth’s most abundant phytoplankton [26].

We evaluated the performance of our models on a publicly available dataset of
laboratory experiment time-series measurements of a high-light adapted strain of
Prochlorococcus collected during the exponential phase of batch growth over two
simulated day-night cycles (Fig[2]). This dataset contains cell size distributions derived
from flow cytometry (Fig[2] A, B), cell abundance and light measurements (Fig[2] C),
and measurements of carbon fixation, carbon loss, and division (Fig|2| D) at two-hour
intervals. Division rates are derived from changes in cell abundances while carbon loss is
estimated from other measurements (see [Experimental data] below). We fit our models
to the size distribution data (Fig[2| A, B) and then evaluated how well each model was
able to reproduce the observed parameters at daily and hourly time scales. All models
used a logarithmically-spaced discrete cell size distribution, permitting cells to divide
into two daughter cells that are half their size (Fig . While our simplest model has no
size-dependence for carbon fixation and lacks a carbon loss term, the more complex
models include size-dependence for all three transitions, explained below. Finally, we
converted model parameters to estimates of biological rates such as carbon fixation and
carbon loss, connecting microbial growth processes to the marine carbon cycle.

Results
Models

Past work has assumed that changes in cell size result from two processes: carbon
fixation and cell division [18+24]. We built upon these studies by evaluating the
relevance of a range of assumptions and testing models that include an additional
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process: cell shrinkage through exudation and respiration. Another assumption of past
models is that division is a monotonically increasing function of size, i.e. larger cells are
more likely to divide than smaller cells. This implies that the highest rate of cell
division should occur when cells reach their largest size. However, the peak of average
cell size in Synechococcus and Prochlorococcus occurs during daylight while the peak of
division usually occurs at night [28]. In the Prochlorococcus culture dataset used in our
work, hourly cell division lagged 4-8 hours behind the peak of cell size (Fig[3| A). In fact,
hourly division rates showed little correlation with mean cell size (Fig|[3| B). When
comparing the size distribution at 13 hours (peak in cell division) and at 35 hours
(almost no division) after the start of the experiment, we see that the size distributions
are fairly similar despite the large difference in division rates (Fig|3| C). However, we
observed a strong correlation (r=0.84) between hourly division rate and mean cell size
with a 6-hour lag (Fig[3|D), suggesting that cell division is dependent on cell size as well
as additional processes. For instance, cell division in photosynthetic organisms is tightly
regulated by light, although the onset of the cell cycle in Prochlorococcus does not seem
to be strictly light dependent [30]. We therefore tested two different parameterizations
for estimating cell division. In the first, cell division is constrained to be a monotone
function of cell size, but constant over time, as in previous studies. In the second, cell
division still increases monotonically with cell size but is allowed to vary over time. We
also considered size dependence in carbon fixation through power-law relationships
supported by experimental evidence [29]. Finally, we implemented a “free”
parameterization in which carbon fixation and carbon loss rates are estimated
separately for each size class, in order to provide enough flexibility for the model to
capture biological processes that are not explicitly accounted for in our models.

Table 1. Key models.

Model” | Growth Division Loss

Mbmx basic monotonic x (no loss)

Mbmb basic monotonic basic

Mpmb power-law size-dependence | monotonic basic

Memb free size-dependence monotonic basic

Mfmf free size-dependence monotonic free size-dependence
Mbtb basic time-dependent | basic

Mpth power-law size-dependence | time-dependent | basic

Meh free size-dependence time-dependent | basic

Mottt free size-dependence time-dependent | free size-dependence

“The letters in the subscript of the model name denote the growth, division, and loss
parameterizations used in the model, respectively.

We distilled our assumptions into a set of 9 models of differing parameterizations
(Table . Each model is identified by a subscript consisting of three letters
corresponding to the parameterizations of carbon fixation, division, and carbon loss,
respectively. The first letter in each model name corresponds to the carbon fixation
parameterization. The letter b in carbon fixation indicates a basic parameterization in
which carbon fixation is assumed to be constant as a function of size. The letter p
indicates a power-law relationship with respect to size and f represents a free
parameterization where each size class may have its own rate of carbon fixation. With
respect to division, represented by the second letter of the model name, the letter m
indicates a monotone division rate as a function of size with no time-dependence, while
t indicates a parameterization that also includes time-dependence in division. The third
letter, indicating the carbon loss parameterization, can be b (basic) or f (free
parameterization) as in carbon fixation, or x for a model with no carbon loss. As an
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Fig 3. Hourly division rates vs. average cell size. (A) Phytoplankton size
distribution overlaid with hourly division rates (red curve; error bars indicate one
standard deviation based on two technical and two biological replicates). Division rate
and size distribution at ¢ = 13 (blue box) and ¢t = 35 (gold box). (B) Hourly division
rates vs. mean cell size. (C) Cell size distribution at time ¢ = 13 (blue) and ¢t = 35
(gold). (D) hourly division rate at time ¢ vs. mean cell size at time ¢ — 6.
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example, we refer to our simplest model as mpmy, denoting that it has basic carbon
fixation without size-dependence, division rates that monotonically increase with cell
size, and no carbon loss term.

The two division parameterizations split our models into two groups. Within each
group, models contain more parameters down the rows of Table[I] Between the two
groups, models with time-dependent division contain more parameters than their
time-independent versions. Thus, model mp,x was the simplest model and most closely
represented previous MPMs applied to microbial communities, while model myg¢ is the
most complex with respect to the number of parameters.

We fit these 9 models to a dataset gathered in a laboratory experiment. Rates of
division, carbon fixation, and carbon loss were estimated on both daily and hourly
timescales. In the following section, we examine daily rate estimates, which have been
the primary target of inference in past work. Then, we further assess the model rate

estimates at an hourly timescale to inspect the behavior of our models within diel cycles.

Furthermore, we explore the relationship between cell size and division, carbon fixation,
and carbon loss. Finally, we examine the relationships between the estimated parameter
values and perform observation sensitivity experiments.

Estimation of daily rates

We first assessed our models’ ability to recreate the observed Prochlorococcus cell size
distribution. Then, we examined whether an improved fit to the size distribution data
resulted in improved model performance by comparing model estimates of daily average
carbon fixation, carbon loss, and division rates to independent measurements from
laboratory data. Finally, we investigated model estimated photosynthetic parameters.

As expected, the MSE of the predicted cell size distribution decreased as the number
of model parameters increased (Fig ) Critically, however, this improved fit did not
correlate with better daily rate estimates. One of the most important parameters
estimated by the models is the daily rate of cell division, see Eq . The observed daily
division rate in the population was 0.63 & 0.01 d-*. However, the simplest model 1,y
overestimated this rate by nearly a factor of two (Fig 4| B; 1.06 4 0.05 d™!). This may
stem from the fact that this model did not include carbon loss; thus, it attributed any
reduction in cell size to cell division. Model mpmp, which adds respiratory/exudative
carbon loss, was able to accurately estimate the daily division rate (0.63 4+ 0.02 d—1),
while all other models produced less accurate estimates, despite lower MSE of the
predicted cell size distribution.

Model mpmp, also performed well in estimating daily rates of carbon fixation and loss
(Fig 4| C,D). Again, the models with the best fit to the size distribution (mgme, Mptb,
Mg, M) exhibited lower accuracy in their estimates of these rates. Interestingly, the
addition of size-dependent carbon fixation (mpmn, Mempb) resulted in underestimation of
daily carbon fixation (75.57 4+ 1.00 fg C cell™* d=! and 73.77 & 1.00 fg C cell=! d~! for
Mpmb, Mimb, respectively) and cell division (0.33 £ 0.02 d=! and 0.29 + 0.02 d™ 1,
respectively) but improved estimates of daily carbon loss. The further addition of
size-dependence in carbon loss (mgy) led to overestimates of daily carbon loss and even
lower division rate estimates, indicating that this model attributes too much of the
observed decreases in cell size to carbon loss rather than cell division. Other than myp,
which exhibits more instability than other models and whose results may therefore not
be reliable (see [Observation sensitivity experiments|section), models that added
time-dependent division (mpgn, Meh, Mer) greatly underestimated both carbon fixation
and carbon loss rates. Models without size-dependent carbon loss (mpty,, M)
estimated essentially no carbon loss, leading to inflated division rates as nearly all cell
size decreases were attributed to cell division. This effect was counteracted to some
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Fig 4. Model predicted daily rate parameters. (A) Mean squared error (MSE) of predicted proportions to the
observed particle size distribution (PSD). (B) Predicted daily division rates. (C) Predicted daily carbon fixation. (D)
Predicted daily carbon loss. (E) Predicted photosynthetic saturation parameter. (F) Predicted maximum photosynthetic rate.

(B-F) Green vertical lines indicate ground truth calculated from data. Green shaded areas indicate uncertainty surrounding
ground truth measurements. Model estimates shown as posterior distributions.
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extent by the inclusion of size-dependent carbon loss (mgy), although both the daily
division rate and carbon fixation were underestimated.

Finally, we examined the photosynthetic saturation parameter Ej and the maximum
light-saturated photosynthetic rate Py, ax, two components of the mechanics of carbon
fixation (see section). Model my,my shows the worst performance for
these parameters, but mpmp also greatly overestimates both quantities despite accurate
estimation of daily carbon fixation, highlighting potential identifiability issues - i.e.
similar daily carbon fixation rates can be obtained by different means, as carbon
fixation decreases with higher values of Ej but increases with higher values of Pyax.
Interestingly, mpmp and memy, had much more accurate estimates of the photosynthetic
parameters, despite lower accuracy in overall daily carbon fixation. Size-dependent
carbon loss (M) and time-dependent division (Mugh, Mpth, Mith, M) resulted in
poorer estimates of the photosynthetic parameters relative to mgyy.

Overall, the simplest model myp,x showed the poorest performance in estimation for
nearly every category, highlighting the importance of accounting for carbon loss in our
models. There is no model that performed best with respect to all of the daily rate
estimates we included in our tests; mym,;, created the best division and carbon fixation
estimates, mgmp provided the best performance for Ej and Ppax, and mpm, most
accurately predicted daily carbon loss.

Estimation of hourly rates

In addition to the analysis of daily rate parameters, we examined the models’ abilities
to recreate population dynamics at hourly resolution (Fig[5) to determine whether
discrepancies between model predictions and observations occur at a particular time of
the diel cycle and to help us identify the relevant biological processes at play. For
clarity, we show here the results of the five most distinct models (mymx, Mbmb, Memf,
Mpth, and meg); results for all nine models can be found in the SI (Fig S8). While some
of our models were able to estimate the daily rates of cell division, carbon fixation, and
carbon loss accurately, the hourly patterns were more difficult to replicate (Fig[plA-C).
As expected by the relationship between cell size and hourly division rates (Fig
models that assume that cell division is only size-dependent (Mbmx, Mbmb, Mfmf)
predicted the timing of cell division to be 4 to 8 hours too early (Fig ) On the other
hand, models with both time-dependent division and size-dependent carbon fixation
(Mptb, Miee) were able to more accurately predict the timing of cell division. However,
these models either overestimated division during the morning (myp,) or
underestimated division at dusk (mgy), thus leading to the inaccurate daily rates as
discussed above. All models were able to capture the timing of carbon fixation, which is
tied to the amount of incident light (Fig[5| B). However, most models tended to
underestimate the amount of fixed carbon, with mpy;, coming closest to capturing the
dynamics observed in the data. Surprisingly, the timing of carbon loss computed from
the data (Fig|5| C) closely matched that of carbon fixation. Our models tended to
underestimate carbon loss during daytime peaks and overestimate it at night.

To further explore the predicted dynamics of division, carbon fixation, and carbon
loss, we investigated the predicted proportions of cells undergoing each of these
transitions as a function of cell size (Fig[f] D-F). The estimated shape of the
size-division relationship tended to follow a sigmoidal pattern for all models: the
fraction of dividing cells increases sharply above a critical size, which varied from 60 to
110 fg C depending on the model (Fig ) We note that the model that best estimated
the daily division rate (mpmb) predicted cell division to occur mostly in the largest size
classes (> 110 fg C), which resulted in accurate amplitudes of hourly cell division rates,
albeit at a 6-hour phase shift. In general, models that overestimated cell division rates
(mptb) predicted higher proportions of dividing cells for smaller sizes, while models that
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Fig 5. Model predicted hourly rate parameters. (A) Observed (black) and predicted (colored bands) hourly division
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(colored bands) hourly carbon loss. (A-C) Black points indicate ground truth calculated from data. (D) Predicted cell
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cell size. (F) Predicted cell shrinkage (carbon loss) fraction as a function of cell size. (A-F) Colored bands indicate model
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Fig 6. Bivariate posterior distributions. Scatter plots of the bivariate posterior
distributions of select parameters for the models (A-J) mpmp and (K-T) migs.

underestimated division (mme, M) estimated smaller proportions of dividing cells
within the larger size classes. The exception to this trend is mpmx, which generally
estimates a comparable or lower division fraction than mpn, at a given size yet
overestimates cell division. Because my,,x contains no carbon loss, it predicts more
large cells to be present in the distribution, hence increasing the predicted division rate
relative to mpyp even if the division fraction is lower.

Meanwhile, model estimates of the size-dependence of carbon fixation generally
estimated high values for the peak maximum growth fraction (Fig[5| E). Models that
assumed constant maximum growth (Mpmx, Mbmb) estimated this fraction to be near
one. Interestingly, models with a free parameterization of size-dependent carbon
fixation (mgme, mes) generally predicted larger cells to have a lower maximum growth
fraction, as in the power-law formulation (mp). The predicted fractions of cell
shrinkage tended to be significantly lower than the fractions of maximum growth,
ranging from negligible to about one-fifth of the peak maximum growth fraction
(Fig , F). In the two models with size-dependent carbon loss rates (mgmg, mst), the
predicted fraction of cell shrinkage generally increased with cell size. However, both
models estimated a sharp drop near the same critical sizes at which the division fraction
sharply rose, suggesting that the models assign the decreases in cell size to cell division
rather than carbon loss for larger but not smaller cells. These results suggest a trade-off
of daily and hourly rate estimates between our models: models that produced some of
the most accurate daily estimates of cell division, carbon fixation, and carbon loss
showed a systematic offset in timing of cell division, while the models which accurately
captured the timing often performed less well in estimating the daily average rate.
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Posterior parameter distributions

As the cell size distribution is used for model fitting, a model may be able to accurately
capture the net effect of the parameters despite failing to accurately capture the value
of each parameter individually, highlighting potential identifiability issues. We therefore
examined the bivariate joint posterior distributions of estimated rates of daily cell
division, carbon fixation, and carbon loss as well as photosynthetic parameters to better
understand the mechanics of the MPMs and the interdependencies of their parameters.
We focused on two models: miy1,, which had the best overall performance on daily
rates of cell division, carbon fixation, and carbon loss but failed to predict the timing of
cell division, and mg, which was best able to predict the timing of cell division but
failed to provide accurate daily rates (Fig @ A strong correlation between daily carbon
fixation and carbon loss was observed in the posterior distributions of both models (r =
0.61 and 0.81 for mpyp and mgs, respectively; Fig |§| J,K), which was expected since the
carbon fixed by photosynthesis fuels respiration and exudation. However, the
relationship between carbon fixation and cell division differed between the two models
(Fig[6] F,O). Carbon fixation and cell division were positively correlated (r = 0.64) in
Mbmb, Wwhich makes intuitive sense since the faster the cells grow, the faster they divide
(Fig[6] F'), while a negative correlation (r = -0.46) was observed in my; (Fig[6] O). This
negative relationship likely stems from the fact that daily division rate and carbon loss
in mgr were strongly negatively correlated (r = -0.88, Fig |§| L), while this relationship
was much weaker in mpy,p (r = -0.19, Fig @I) As carbon fixation and carbon loss are
tightly correlated, carbon loss may mediate the observed negative relationship between
carbon fixation and daily division in mg¢, making it more difficult for this model to
disentangle these two processes than in mypyy,.

The shape of the posterior distribution highlights the strong relationship between
Piax and Ey (Fig |§| A,T); increases in Pyax and reduction of Fj both increase carbon
fixation in different ways (see Eq )7 which would explain why my,,p could accurately
estimate daily carbon fixation albeit with inaccurate estimates of photosynthetic
parameters. The strong dependence structure between parameters shows that it is
important to consider the joint distributions of the parameters and not solely focus on
the marginal posterior distribution for each parameter. It also demonstrates that the
size-distribution data itself cannot constrain all parameters, emphasizing the importance
of prior knowledge and the prior distribution for limiting the parameter distributions.

Observation sensitivity experiments

In order to quantify the impact of changes in the size distribution data on model
parameter estimates, we performed two sets of experiments. In the first, we used a
sliding window approach to assess the effect of changing the start time of the 48-hour
time series on model output. In the second, we studied the robustness of the models to
changes in the sampling resolution of observations.

In the sliding window experiment, we extended the normalized size distribution time
series by appending the data to itself, thereby creating a four-day dataset. Then, we
estimated parameters and initial conditions within a 48-hour window that was moved
forward in time in four-hour increments. Details about the setup of the sliding window
experiments and their results can be found in the SI (Section S1). With the exception of
Mpmx and My, all models exhibited a high degree of stability in their estimates for
each window, indicating that the starting time of the model fitting procedure had a very
limited effect on the models’ parameter estimates. Some deviations were however
noticeable when the window start time was near the peak of the cell size distribution, at
which the difference between observations and model predictions is most pronounced.
For mpmx and mpyp, estimates showed a high degree of variability among windows,
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suggesting that the results of these models may not be as stable or reliable as the others.

In the second set of experiments, we performed holdout validation experiments in
which time points of the size distribution data were withheld from the training data
used for model fitting. This holdout data was then used as a testing set and we
computed the error for both datasets in order to examine our models’ out-of-sample
performance and the stability of the parameter estimation relative to the full dataset.
We conducted three experiments, sequentially removing an increasing amount of equally
spaced data, roughly mimicking lab experiments in which measurements were collected
at lower resolution. This procedure ensured that the daily cycle was sampled well and
both days are represented equally in the training data. More details of this analysis can
be found in the SI (Section S2). We found that parameter estimates and the observed
cell size distribution remained stable when up to half of the data was removed from
training, but out-of-sample performance deteriorated and parameter estimates differed
significantly from those computed from the full data when two-thirds of the data was
removed. This result suggests that our model could be applied to time series data
collected at 4 hour interval and still provide accurate estimated daily rates of cell
division, carbon fixation, and carbon loss.

Discussion

In this work, we developed a flexible framework that allowed us to test multiple
hypotheses regarding key biological processes that dictate phytoplankton cell growth,
shrinkage, and division. Our investigation focused on a laboratory culture of the
picocyanobacterium Prochlorococcus, whose dynamics over the diel cycle have been
extensively studied [27]. We developed nine models that differed in their
parameterizations of changes in cell size. In addition to a size-dependent relationship for
cell growth and time-dependence in cell division, we considered respiratory and
exudative carbon loss in our models, which had previously been neglected in similar
studies [18+24]. To this end, we implemented our models within a Bayesian framework,
which permitted us to incorporate prior information into the analysis to regularize
parameter inference and avoid biologically implausible parameter values.

Herein, we showed that size-structured MPMs can be used to estimate not only rates
of cell division but also carbon fluxes, thereby connecting microbial growth processes to
the carbon cycle. The addition of carbon loss, which allows cells to shrink in size
through a process other than cell division, improved the accuracy of model estimates
and the fit to the size distribution data, with my,,p successfully recovering the measured
daily rates of cell division, carbon fixation, and carbon loss (Fig 4| B-D). More complex
models, such as those with size-dependent carbon fixation and time-dependent cell
division, provided better fits to the cell size distribution and photosynthetic parameter
estimates but showed worse model performance in recovering the observed daily rate
parameter values. This result indicates that model fit to the observed cell size
distribution cannot be used as a proxy for overall model performance, as done in
previous studies [18H24].

As expected from the lack of correlation between mean cell size and hourly division
rate in the laboratory data (Fig , most of our models consistently predicted the peak
of cell division about 4-8 hours earlier than observed in the data (Fig |5} Fig S8). This
offset stemmed from the assumption that cell division (i.e. the separation of a single cell
into two daughter cells) occurs instantaneously once the cells reach a certain size. While
this assumption may be reasonable on daily time scales, it becomes problematic at
hourly resolution; cell division is a complex process involving many components, each
highly regulated to ensure that the separation of the cell into two daughter cells occurs
only once DNA synthesis is completed, which takes between 4 and 6 hours depending on
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the strain and culture conditions [27,[30]. Here, the peak of DNA synthesis coinciding
with the peak of cell size [27] suggests that cell size dictates the onset of DNA
replication rather than the final separation of the cell into two daughter cells. Due to
their greater flexibility, models with time-dependent division and size-dependent carbon
fixation successfully captured the timing of cell division but failed to predict accurate
rate estimates. Interestingly, models with a free parameterization of the size-dependent
carbon fixation (Mgmb, Mems, Mieh, and mge) estimated less carbon fixation and more
carbon loss in the large size classes which contains a large fraction of dividing cells (Fig
E,F; Fig S8 E, F). This result suggests that dividing and non-dividing Prochlorococcus
cells may have a different carbon metabolism, as observed in other organisms [31].

Finally, we consider potential future directions for this work. One of the most
interesting results in this study is the offset in the predicted and observed timing of
division for the models with the most accurate daily division rate estimates. While the
addition of time- and size-dependencies for cell division, carbon fixation and loss
allowed our more complex models to capture the timing of cell division, their estimates
of the magnitude of division and other rate parameters suffered. As stated above, we
hypothesize that carbon metabolism differs between dividing and non-dividing cells, yet
our current modeling framework requires extension of the stage structure to encapsulate
this information in order to test such a hypothesis. A hybrid age- and size-structured
MPM may therefore be better suited to assess the importance of including cell division
duration to more accurately simulate the timing of Prochlorococcus division.

An exciting future extension of this work is application to an in-situ Prochlorococcus
and Synechococcus dataset obtained from shipboard flow cytometers [32]. Additional
processes not accounted for in this study, such as grazing and viral lysis, which could
potentially affect phytoplankton size distributions, will need to be tested. The flexibility
of our modeling framework provides a valuable basis for examining and evaluating
MPM results in the face of more complex datasets, which could further improve our
understanding of the dynamics of marine microorganisms and their contributions to the
carbon cycle.

Materials and methods

Microbial MPM

The aim of the MPM applied to microbial populations is to mechanistically describe the
evolution of the population over a day/night cycle. Typically, the target of inference is
the daily division rate, which cannot be measured directly from changes in cell
abundance measured in the field due to cell mortality caused by grazing and viral lysis
as well as physical processes that can add or remove cells from the sampled population.
Thus, in order to estimate this quantity, we infer it via observed changes in the relative
abundance distribution over time. Past work has accomplished this by focusing on
modeling two cellular processes: cell division and carbon fixation; in this work, we
additionally consider carbon loss. We tested nine MPMs involving these processes that
varied in their complexity. All inference was carried out using the Bayesian modeling

software Stan, see [l[mplementation| section below.

Preliminaries

The MPM operates on discrete scales in both cell size and time. Therefore, there are two
user-defined discretization parameters: Av € RT is the size discretization parameter and
dt € RT is the time discretization parameter in hours. We choose the former such that
Av~! € N so that division corresponds to shifting ﬁ size classes, see . We choose
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the latter to match our observation resolution; as the dataset has observations every 2
hours, we enforce dt ' € N. In addition, we define m € N the total number of discrete
size classes and vy the minimum possible cell size, to define m + 1 size class boundaries:

vi =0 % 207VAY Y e (19 m 41}, (2)

If a cell is of size x where v; < x < v;11, then the cell belongs to size class i.
Furthermore, we denote j = ﬁ + 1 so that v; = 2vy, i.e. only cells of size class j or
greater can undergo cell division, see . For size-dependent parameterizations (see
(112), we treat cells in size class i as having size

Vi = \/ViVit1,

that is, they are assigned the geometric mean of the size class boundaries. In this work,
we set m = 27, Av = %, dt = % hour, and v; = 16 fg C.

Model inputs

The observations {nk}fgol consist of cell counts across the m discrete size classes at
K € N time points; that is, ny € N V k € {0,1,2,..., K — 1}. We denote the set of
observation times as T = {to,t1,...,tx—1}, where t; € N refers to the time in hours of
the k' observation. For each k, we also define the simplex wy = JT\’,—Z € A™ where

N, =>", n,(;) is the total number of cells observed at time ¢;. Observations also
include measurements of photosynthetically active radiation (PAR), interpolated at the
times 7* := {0, dt, 2dt, ..., T — 1}, where the times are in hours; this information is
used to estimate carbon fixation. We denote these values as E = {E(t)},. .. In our
case, we have T' =47, K =24, and T = {0,2,4,...,46}.

Model output

Microbial MPMs make projections operate differently from the formulation in . The
predicted counts are normalized at each time step so that model projections estimate
the relative abundance:

Bk(oa E)wk(oa E)
S Y B (6, Eye) (0, B)

Wy41(0, E) = 3)

where 0 is a parameter vector and By (0, E) € R™>*™ is a projection matrix depending
on model parameters, time, and incident light, see the [Projection matrix| section below.
This formulation does not use the counts to estimate division rate directly, allowing for
valid estimates even when mortality and physical movement of cells occur, so long as

these processes do not affect the relative size distribution. We estimate the posterior

distributions of the model parameters from their prior distributions and the likelihood
of the data {nk}f:_ol given the parameters (see [Model likelihood| section). The primary
goal of inference is the daily division rate u, defined as the exponential growth constant:

Ng—1 = Noexp (u(T/24)).

Recall that T = ¢ _1 is the time of the last observation in hours; thus, T'/24 is the
length of the time series in days. Rearranging the above equation, we obtain

24 Ng_1
- . 4
m=" Og( No ) )

As populations in their natural environments undergo cell loss due to cell mortality (due
to grazing and viral lysis) and physical processes that can add or remove cells, a
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normalization step was applied to estimate division rate based on relative cell
abundance, as in past applications [18,/19,/21]. By removing the normalization step, we
estimate the relative increase in cell number caused by cell division. We therefore obtain
the following estimator for the division rate:

mamziﬁ%<iﬂa, (5)

where d € R™ is defined as
K—1
d = lH Bk(O,E)] wo(6, E).
k=0

Model likelihood

We use the following statistical model to assess the fit to the data:

k| Nk, 0, 0 ~ Multinomial(Ny; 1),
Ni|o, @ ~ Dirichlet(cwg (0, E)),
g~ Tg,

0N7T97

where o is a real-valued concentration parameter, @ is a parameter vector, and .
denotes the corresponding prior distributions (see Table . Thus, similar to [19], the
model likelihood can be written as

K-1 n [T (nf + 00’ (6, E))
PR = I VOORA (ni? + o0l(®,
(ks 10.0) = 11 TNk +0) 1;[1 r(o0(6.B)) n!

: (6)

k=0
where n,(:) € R is the i*" entry of n;, and uA/l(f) (0, E) € R is the i'" entry of W, (0, E).
The posterior is proportional to the product of the likelihood and the prior distribution
according to Bayes’ theorem; thus, we have

P (0, o {nk}fgol) x p ({nk}fzgl 0, g) (8,0).

Now, we characterize the parameter vector € and the projection matrices By (6, E),
which generate model predictions.

Projection matrix

The projection matrices { B (0, E) kK:_Ol define the dynamics of the microbial

population through three cellular processes: cell division, carbon fixation, and carbon

loss. We assume that any individual cell can only undergo one of these three processes

in each dt time step (it may also remain in the same size class). Thus, for each k, we
kal

first construct a set of matrices {A,(f)(e, E)}e , where rj, = (tgr1 — tg)dt™1 is the
=0

number of dt time steps between time ¢ and time t;1. Once these matrices are

defined, we have for each k:

Tk— 1
B.(0,E)= [[ AV "0, E).
=0
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Each matrix A;CZ)(B) projects the process from time tgf) =ty + £dt to time
£ = 4 (€ 1)t

Let 6;(t) € [0, 1] denote the proportion of cells in size class ¢ that divide in one dt
time step at time ¢, p; € [0, 1] the proportion of cells in size class ¢ that shrink one size
class in one dt time step given that they do not divide, and ~;(¢) € [0,1] the proportion
of cells in size class i that grow one size class in one dt time step at time ¢ given that
they neither divide nor shrink. Then, recalling that j denotes the index of the smallest
size class which can undergo division, the entries of each matrix A,(f)(O) are defined as
follows:

division: akgf)_ﬁu) (6)=2 5i(t,(f)) for j <i<m,
(7)
get (tl(f)) fori=1
growthi i () (6. B) = ¢ (1= p0) (1) for2<i<j—1,
(1= 6:(t)) 7(t?) (1= py) for j <i<m-—1
(8)
loss: akgf)q,i) 6) = {Pi o for 2 < z <j-—1
(1 =4i(t;,")) pi for j <i<m
(9)
1= (t)) for i =1
stasis: akgf?i)(97E) _ 1= %(tg)))) (1=pi) " for 2 < Z <j-1 ,
(I=di(ty") L =(t,") A—pi) forj<i<m-—1
(1= bm (i) (1= pm) for i = m
(10)

where again t,(f) =ty + £dt. Here, only cell growth and stasis involve the PAR

measurements F. The coefficient 2 in equation @ reflects the fact that when a cell
divides, it creates two daughter cells. This is the reason the normalization step is
needed to maintain the sum-to-one constraint and also the reason , which omits the
normalization, is able to estimate the rate of cell division.

Parameterizations

In this work, we tested nine different microbial MPM’s. These models differed in their
parameterizations of the three key processes we aim to quantify: cell division, carbon
fixation, and carbon loss. Our most complicated models allow these processes to vary as
functions of both time and cell size. The parameter vector 8 controls the dynamics of
these processes, while the concentration parameter o allows for overdispersion in the
data. We can divide the parameter vector 8 into four components 8 = (65,0, 6,, ).
The first three components correspond to each of the three cellular process we aim to
model, while the fourth defines the initial conditions. We use Stan’s default Dirichlet
prior for the initial condition simplex 1y € A"™. We describe the parameterizations of
the remaining three components in the following.
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Cell division

The cell division proportions §;(t) are parameterized as

0 i<j
8t O 4(1) Yy Oate 127

where Gpax € [0,24dt71] is the maximum division quotient, ¢(¢) is a function that
induces time-dependence in division, and diner € A™ 71! is a simplex that defines the
relative increase in the division quotient for each size class. For models with
time-invariant division (m.,,.), ¢(t) = 1. The parameter 0.y is normalized by dt in
units of days to better facilitate comparisons among models that vary in their values of
dt; hence, ‘2%5max € [0,1]. The parameter 0, allows us to constrain cell division to be
monotone without imposing a specific functional form of the relationship between cell
size and cell division. For models with time-dependent division (m.;.), ¢(¢) is estimated
using a periodic cubic spline with 6 knots and associated control points

4i(t) = (11)

— (D) (6) T 6
Teontrol *= (Tcontml’ t 7Tcontr01) e R Thusv we have
(5maxa (Sincr) m.m.
05 =
6max> 6incr; 7-control) m.g.

Carbon fixation

The cell growth proportions are parameterized as

Yi(t) = {24(222_1) Ymax sz) (1 — exp (%)) 1<m (12)

0 1=1m
where Yax € [0,24 (2% — 1) dt™!] is the maximum cell growth quotient, s(wl) is a
function that induces size-dependence in carbon fixation, and E, € R is a
photosynthetic saturation parameter. Recall that E(t) refers to the incident PAR at
time ¢. The parameter yy.x is normalized by both the choices of time and size
discretization to facilitate comparisons between models with different choices of
discretization parameters. For models without size-dependent carbon fixation (my,..),
s(vz) = 1. For models with a power-law carbon fixation (my,..),

o _ J @) By >0

’ (@)™ By <0’

where 3, € R is a parameter that governs the power-law dependence of carbon fixation

on size. For models with a free carbon fixation relationship (my..), sff) is itself

estimated as a parameter separately for each size class. Thus, we have
(’Ymaxa Ek) my..
0’7 = (’Ymaxy Ek» ﬁ’y) mp-- .
(’YmaxaEkaS"/) mg..
For estimation of the light-saturated photosynthetic rate Py,.x, we define the

light-saturated growth proportion

i (1)

lim 7, (t
e, @)
o)
94(28v — 1) /maxy
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Then, Pnax is defined as the amount of carbon fixed when ~;(¢) is replaced by 77 (t) for
all size classes i and all time points ¢ € T*.

Carbon loss

The carbon loss proportions are parameterized as

pi(t)Z{O dat () o (13)

mpmaxs; ’L>].7

where pmax € [0,24 (2A"J — 1) dt—1] is the maximum cell shrinkage quotient normalized

. 1 . . .
in the same way as Ymax and s,(j) induces size-dependence in carbon loss. For models

with no respiration (m..,), s,(f) = (. For models with basic respiration (m..;), sff) =1.

For models with free size-dependent respiration (m..y), sg) is itself estimated as a

parameter as with s(vi). Thus, we have

0 M.y
Bp = § Pmax m.p .

(pmax7 Sp) m..f

Experimental data

A publicly available dataset of laboratory experiment time-series measurements of a
high-light adapted strain of Prochlorococcus [27] collected during the exponential phase
of batch growth over two simulated day-night cycles (Fig[2]) was used to test model
predictions. We used changes in cell abundance over time to calculate division rates,
since cell mortality is assumed to be negligible in exponentially growing cultures. A
suite of measurements, which include cell size distributions and rates of carbon fixation,
were collected at 2 hour intervals for a period of 50 hours to capture two complete diel
cycles. Cell size distributions were inferred from flow-cytometry based forward-angle
light scatter measurements (FALS). FALS signals normalized by calibration beads were
converted to a proxy of mass using the relationships M = FALSY/17 [33] and then
converted to carbon quotas assuming an average carbon quotas of 53 fg C cell™! [27].
14C-Photosynthetron experiments were conducted in duplicate at each time point to
derive carbon fixation rates, maximum photosynthesis rates, and the photosynthetic
saturation parameter. Short (1 hour) incubation times were used to approximate gross
carbon fixation rates. Using the 2-hourly cell abundance measurements (a;), average
cell size measurements (s;) and approximate carbon fixation rates (f;), we then
estimated carbon loss rates (I;) every 2 hours, using

Qg

+dt (fe —1y), (14)

St+1 = St apon
t+

where dt is the two hour time step between measurements.

Implementation

Parameter inference was carried out in the software package Stan [25]. This software
performs Bayesian inference, where the target is the posterior distribution of the
parameters, which reflects the likely values of these parameters given the model, our
prior beliefs, and the data [34]. In order to generate samples from the posterior
distribution, Stan implements a variant of the Hamiltonian Monte Carlo (HMC)
algorithm [35L36] which has been shown to have superior speed and performance for
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fitting complex, high-dimensional population dynamics models relative to other Markov o
Chain Monte Carlo (MCMC) methods for sampling from the posterior [37]. In n
particular, we use Stan’s implementation of the No-U-Turn Sampler (NUTS) [38] to ar2
avoid manual selection of application-specific tuning parameters. Though faster, Stan’s 4

implementation of variational inference provided high instability in model estimates, 474
which may indicate that the approximation to the posterior was of poor quality. Thus, s
we used HMC, which generated reproducible results and provides asymptotic 476

consistency [36]. The implementation of HMC in Stan uses automatic differentiation to
provide the gradients needed to integrate Hamiltonian dynamics. The reader is directed a7

to [39] for additional details on HMC in Stan. 479

Six HMC chains were run for 2000 MCMC iterations for each model. The R 480
convergence diagnostic [40] was monitored for all model fits to ensure R < 1.05, 481
otherwise the sampling procedure was considered divergent. 482
Prior distributions a3
The prior distributions are shown in Table [2l Maximum cell division, carbon fixation asa
and loss along with photosynthetic parameter values were chosen within biologically a5
feasible ranges using information derived from literature [27,41], otherwise the Stan a6
default priors were used, corresponding to uniform priors [25]. ag7

Table 2. List of model parameters.

Name | Used in Description Units Bounds | Prior
w(0) all models initial conditions - simplex | Dirichlet(17)
jo) all models light-dependent growth parameter pmol photons m=2 s~1 [ [0,5000] | normal(1000, 1000)
Omax all models | maximum division rate d-! [0, A%] uniform(0, A%)
51(1?cr all models increment in division rate, size class i - [0,1] uniform(0,1)
Ymax all but ms.. | maximum carbon fixation rate d—1 [0, x—] normal(10.0, 10.0)
B mp.. exponent in carbon fixation power law - [—10,10] | normal(0, 0.1)
%(ﬁ)ax me.. maximum carbon fixation rate, size class i | d~! [0, =] normal(gt, o)
- L
Py ms.. hierarchical prior for mean of %ﬁ&x d-! [0, Al*} normal(10.0, 10.0)
= L
oy ms.. hierarchical prior for s.d. of ik d-! [0, oof exponential(0.1)
Prmax all but m..¢ | maximum carbon loss rate d-1 [0, Al*} normal(3.0, 10.0)
By m..p exponent in carbon loss power law - [—10,10] | normal(0, 0.1)
pﬁé)ax m..¢ maximum carbon loss rate, size class ¢ d-! [0, z-] normal(ty, o)
Lo m..t hierarchical prior for mean of pgi)ax d-! [0, Al*} normal(10.0, 10.0)
Oy m..¢ hierarchical prior for s.d. of pr(i)ax d-! [0, oof exponential(0.1)
C(é)ntml m.s. control point ¢ for time-dep. division spline | — [0,1] beta(9, 1)
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Supporting Information for A flexible Bayesian
approach to estimating size-structured matriz
population models

S1 Sliding window experiments

As part of our observation sensitivity experiments, we modified the start time of the
model fitting to examine the resulting changes in parameter estimates. As the original
cell size distribution dataset only contains two days of data, we appended the dataset to
itself to create a 96-hour time series. This allowed us to fit models to a sequence of
two-day continuous cell size distribution data that start at different times of the
laboratory-simulated light-dark cycle (Fig The start times of these windows ranged
from 2 to 46 hours and were spaced four hours apart. In each experiment, the model
initialization time is set to match the start time of the window and data outside of the
window is discarded.

140
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Fig S1. The extended size distribution dataset used in the sliding window experiments
and the 2-day windows in which the models are fit.

Here we focus on results for model mypm,, which are representative for most of our
models; when individual models deviate from these results, we note it in the text.
Results for all models can be found in the accompanying GitHub repository . Overall,
parameter estimates remain consistent for most start times, but we noted a weak
cyclical pattern in estimated values and an outlier estimate for a start time of 26 hours
(Fig[S2), which are both examined below.

The pattern is aligned with the daily cycle and is characterized by increased division
and decreased carbon loss rates at start times near 10 hours and — 24 hours later — near
34 hours (Fig. It is driven by the estimation of initial conditions at a start time
with a large model-observation misfit, which is aligned with the peak of the cell size
distribution in most of our models. At the peak of the cell size distribution, for example
at t=34 h, the mypy, daily cycle underestimates the Prochlorococcus cell size
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Model m bmb Results 48-hour Rolling Window
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Fig S2. Rate parameter estimates of the model my,y, for each window of the sliding
window experiment.

distribution (Fig . When the estimation window starts at a peak, the estimated
initial conditions deviate strongly from the daily cycle steady state solution (compare
the solutions of the 2 hours and 10 hours start time at t=10 h, or the 10 hours start
time solution at t=10 h and t=34 h; Fig ) Due to the increase in the initial cell size
distribution, the division rate, which increases with cell size, becomes inflated,
impacting other parameter estimates accordingly. This effect is more pronounced for
models with a larger model-data discrepancy, while models that fit the size distribution
better throughout the daily cycle, such as mg, show a weaker cyclical pattern in the
parameter estimates (Fig .

Some models, such as mpmx and myep (Fig 7 showed much more volatility in their
parameter estimates among windows. This indicates that these models may be more
unstable and hence their results may be less reliable than the other models.

The second noteworthy pattern in the myy, estimates is the parameter estimate for
the start time of 26 hours. Here, the model fitting procedure converged to solutions
with higher average carbon fixation and higher carbon loss compared to simulations at
other start times. A likely cause for this pattern is the strong correlation structure
between the model parameters (Fig[6]in the main document) combined with the broad
priors in our model specification. As a result, changes in the start time and associated
changes in the order of the observations, in combination with different initial conditions
can lead to changes in the posterior estimates that may appear as outliers with respect
to the other sliding window experiments. We observed this type of outlier infrequently
for most models but it occurred more often for my, which also showed worse
convergence properties in our other experiments.

To summarize the stability of our models, we plotted the daily division rate for each
model in each window against the concentration parameter o (Fig . The vertical
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Fig S3. Daily rate parameter estimates of the model mg for each window of the
sliding window experiment. This model showed greater stability in its parameter
estimates across windows compared to simpler models such as mymp-
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Fig S4. Daily rate parameter estimates of the model mg for each window of the
sliding window experiment. Model results were much more volatile for this model and
Mpmx than the others.
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Fig S7. Holdout validation experiments. Size distribution misfit for testing and
training data (left and right bar) for each model in the cross-validation experiments (A),
(B), and (C) with top right corner visualizing the indices of the testing (black) and
training data (white). Examples of the posterior distributions of select model
parameters for the full dataset and the two cross-validation experiments: (D) daily
carbon fixation rate for mpmp, (E) daily division rate for mpmp, and (F) daily carbon
loss rate for mpmp-

spread of each cluster corresponds to the variability of the daily division rate, whereas
the horizontal spread corresponds to the variability of the concentration parameter. In
general, models with greater values of ¢ exhibited less variability in their daily division
rates across windows.

S2 Hold-out validation

In experiment A, the data from every third time step were removed, in experiment B
data were removed from every other time step, and in experiment C, two-thirds of the
data were removed (see top right corner of Fig[S7 A,B,C). As expected, the error on the
training data reflected model complexity and decreased from mpmx t0 mens, and again
for the models with time-dependent division myp, to mygg, in all three experiments
(Fig[S7 A,B,C). While the ratio of testing to training data error increased for more
complex models, the absolute value of the testing data error did not increase with
model complexity in most of our experiments. The exception involved mpe, and Mg,
which differ only in their size-dependent growth parameterizations. While the more
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complex myg, with the free growth parameterization exhibited a lower training data
erTor, My, model with power-law growth achieved a lower testing data error. Taken
together with the results for mymy, which were similar to those of mgyy, we have some
evidence that the power-law growth parameterization is suitable for models in this
application, creating a size-dependent growth relationship that performed better on
testing data than a freely estimated relationship.

Reducing the number of observations in the training set had a noticeable impact on
the models parameter estimates (Fig[S7| D-F). With less data in the training dataset,
the posterior distributions of the estimated parameters broadened from those obtained
using the full dataset and eventually showed shifts in the mean parameter estimates
when more data is excluded (e.g. mpmp daily division in experiment C, Fig|S7|E). The
broadening matches our intuition: fewer observations constrain the parameter estimates
to a lesser extent than the information contained in the full dataset. With two thirds of
the data excluded and observations occurring every 6 hours, the rate parameters could
no longer be estimated reliably and mean parameter estimates deviated noticeably from
their values on the full dataset. In summary, when as much as one half of the data was
removed, the predicted rate parameters still capture the daily cycle of Prochlorococcus
dynamics. Estimates for the parameters of interest also remained stable.

S3 Hourly rate estimates

Here, we show the hourly rate estimates for all nine models (Fig|S8). The trends
discussed in the main text can be seen in the 4 remaining models (Mpmb, Memb, Mbib,
Mieb). Models mpmp and Mgy, which assume cell division only varies as a function of
cell size, predicted cell division to occur too early (Fig[S8 A). Again, model mgy,, with
both time-dependent division and size-dependent carbon fixation, correctly predicted
the timing of cell division, but overestimated division during the morning. The model
with time-dependent division but no size-dependence in carbon fixation (mpgp) did not
correctly predict the timing of cell division. All models underestimated carbon fixation
(Fig|S8 B) as seen in the main text. They also overestimated carbon loss at night and
underestimated carbon loss during the day (Fig|S§| C).

Of the four models we exclude from the figure in the main text, models that
overestimated cell division rates (mptn, Mmin) predicted higher proportions of dividing
cells for smaller sizes (Fig[S8| D). Similarly, the models that underestimated cell division
(Mpmb, Memb) predicted very low proportions of dividing cells in the large size classes.
As with the other models that assume no size dependence in carbon fixation, mpsp
estimated the maximum possible fraction of dividing cells to be near 1 (Fig[S8 E).
Again, models with a size-dependent carbon fixation parameterization (mpmb, Mmb,
mgp) predicted the maximum proportion of growing cells to decrease as the size of the
cells increased. The predicted fractions of cell shrinkage tended to be significantly lower
than the fractions of maximum growth, ranging from negligible to about one-fifth of the
peak maximum growth fraction (Fig|S8 E, F), as observed in the main text.
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Fig S8. Model predicted hourly rate parameters. (A) Observed (black) and
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bands) hourly carbon loss. (A-C) Black points indicate ground truth calculated from
data. (D) Predicted cell division fraction as a function of cell size. (E) Predicted
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Predicted cell shrinkage (carbon loss) fraction as a function of cell size. (A-F) Colored
bands indicate model estimates. Shading indicates the first to third quartiles of the
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