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Abstract 
In order to control gene expression, regulatory DNA variants are commonly designed using 20 

random synthetic approaches with mutagenesis and screening. This however limits the size of 

the designed DNA to span merely a part of a single regulatory region, whereas the whole gene 

regulatory structure including the coding and adjacent non-coding regions is involved in controlling 

gene expression. Here, we prototype a deep neural network strategy that models whole gene 

regulatory structures and generates de novo functional regulatory DNA with prespecified 25 

expression levels. By learning directly from natural genomic data, without the need for large 

synthetic DNA libraries, our ExpressionGAN can traverse the whole sequence-expression 

landscape to produce sequence variants with target mRNA levels as well as natural-like 

properties, including over 30% dissimilarity to any natural sequence. We experimentally 

demonstrate that this generative strategy is more efficient than a mutational one when using 30 

purely natural genomic data, as 57% of the newly-generated highly-expressed sequences 

surpass the expression levels of natural controls. We foresee this as a lucrative strategy to expand 

our knowledge of gene expression regulation as well as increase expression control in any 

desired organism for synthetic biology and metabolic engineering applications.  

 35 

Keywords: gene expression, deep learning, generative adversarial networks, regulatory 
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1. Introduction 
Gene expression is a fundamental process underlying the cellular functionality of all living 40 

organisms and researchers have been trying to control it for decades. A major factor driving our 

ability to control gene expression arises from our understanding of the cell's intrinsic regulatory 

code 1, which in turn can be used to design sequences with target expression levels 2–4. State of 

the art machine learning approaches have proven highly useful in this endeavour, helping to 

expand our knowledge of the DNA regulatory grammar driving gene expression 5–8, design novel 45 

promoter and gene sequences 9,10 and accurately predict gene expression across multiple model 

organisms 5,11. The striking capacity of random DNA to evolve into functioning regulatory 

sequences by introducing only a couple of bps of mutations, recently shown in bacteria 12, 

suggests that the richness and plasticity of the DNA regulatory grammar results in a vast 

functional regulatory sequence space far larger than the one existing in nature 6. By learning this 50 

regulatory sequence space using advanced deep learning approaches 9,13,14, one can in principle 

design systems that precisely traverse it to extract completely novel sequence variants with target 

expression levels. 

 

Multiple recent studies show that apart from tuning codon usage in gene coding regions 15,16, also 55 

the DNA sequence of non-coding regulatory regions must be fine-tuned in order to accurately 

control gene expression 5,6,17,18. Proper orchestration of gene expression depends on the 

interaction of regulatory patterns across the whole cis-regulatory structure around the gene, 

including promoters, terminators, coding and untranslated regions (UTRs) 1,5. Despite this, the 

standard synthetic engineering approach to design regulatory regions of varying expression levels 60 

is to apply random mutagenesis in a specific region, most commonly the promoter 6,19–21, though 

also UTRs 17,22 and terminators 23,24 have been targeted, frequently perturbing only short DNA 

segments of less than 100 bp. Similarly, knowledge-guided approaches focus on single regions 

to design minimal synthetic constructs and either stack multiple known highly-functional sequence 

motifs 2,4 or apply machine learning to design them in a generative fashion 9. Thus, existing 65 

approaches to design DNA sequences have limited control of gene expression, instead relying 

on experimental screening of large amounts of random synthetic sequences to find functional 

variants with desired expression levels 3,6,9. This inherent 'blindness' in relating sequence to 

expression and the high resource intensiveness, due to the large sequence space that needs to 

be explored, are also the major factors constraining the length of the explored DNA to only short 70 

segments. However, based on recent achievements in modeling DNA and protein spaces 9,10,14, 
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we hypothesize that state-of-the-art generative deep neural networks are capable of learning the 

entire DNA regulatory landscape directly from natural genomic sequences. Coupled with 

leveraging information from the whole gene regulatory structure including the coding region 1,5, 

this can not only help to overcome the existing experimental limitations, but can also enable 75 

precise and gene-specific navigation of the regulatory sequence space, boosting the accuracy of 

expression control by generating de novo regulatory DNA with desired expression levels. 

 
In the present study, we use deep learning frameworks to demonstrate that a generative modeling 

approach can successfully design novel yet functional regulatory DNA in Saccharomyces 80 

cerevisiae, outperforming targeted mutational approaches in mRNA expression optimization. The 

deep neural networks are trained only on natural genomic sequences spanning the whole gene 

regulatory structure comprising the promoter, UTRs and terminator. First, we verify that a 

conventional mutagenesis approach with in silico screening, (i) using a highly accurate deep 

predictive model 5 and (ii) including targeted mutagenesis of only the most relevant DNA positions, 85 

is inefficient at generating novel functional sequences. Next, we apply deep generative 

adversarial networks  to  design de novo gene regulatory sequences with natural-like properties. 

Using an optimization procedure that couples the generative and predictive neural networks 5,14, 

we add coding sequence information to the generative approach and learn to precisely navigate 

the regulatory sequence-expression landscape of a specific gene across almost 6 orders of 90 

magnitude of expression levels, accurately controlling the sampling of sequences with targeted 

expression levels. Sequence properties of the generated regulatory DNA, including cis-regulatory 

grammar such as DNA motifs and motif associations, reflect those of natural sequences across 

the range of expression levels. In fact, the generated sequences retain a natural or even higher 

level of dissimilarity (>30%) to any currently known regulatory sequence. Finally, we 95 

experimentally verify the generated constructs and find that experimentally measured mRNA 

expression levels reflect predicted ones across 3 orders of magnitude, with 57% of the constructs 

designed to be highly expressed surpassing the level of gene expression of natural high-

expression control sequences. 

  100 
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2. Results 

Random mutagenesis requires multiple testing rounds 

Driven by the idea that DNA sequences are predictive of gene expression levels 1,5,11, we 

reasoned that randomly mutating DNA sequences coupled to virtual screening would be a 

plausible strategy for gene expression control. To design sequences with increased or decreased 105 

gene expression levels, we first set up a random mutagenesis approach with in silico screening 

(Methods M3) using an experimentally validated highly-accurate predictive model (predictor, R2
test

 

= 0.8) of yeast gene expression 5 trained on natural genomic sequences comprising whole gene 

regulatory structures of 1000 bps (Figure 1A,B, Figure S1, Methods M1,2). We focused on 

mutating the promoter region spanning 400 bp (previously found as the optimal predictive region 110 

size 5), whereas the other regions (UTRs and terminator) were kept fixed. Apart from the initial 

strategy of blindly mutating whole 400 bp promoter regions, as an additional strategy, we used 

the predictor to inform the mutational procedure by querying its sensitivity to specific positions in 

the promoter sequence (Figure 1B, Methods M3). Here, only the most sensitive and thus relevant 

positions were preferentially used as the scaffolds for targeted mutagenesis (77 bp on average, 115 

Figure S2).  

 

We evaluated the mutagenesis approach by creating and assessing 16.8 million sequence 

variants at different parameters using 7 natural regulatory regions as scaffolds (Figure S3, 

Methods M3). When aiming to achieve an over 50% increase or decrease in mRNA expression 120 

levels, we found that on average, at most 0.3% of the sequence variants were predicted to achieve 

the desired effect when mutating 10% (40 bp) of whole promoter regions, which increased to 0.4% 

when mutating the most relevant promoter regions (Figure 1C). Unsurprisingly, this value greatly 

decreased with lower percentages of mutated sequence size (Table S1). We then selected and 

experimentally tested 10 of the mutated regulatory sequence variants of the RPL3 gene with the 125 

largest predicted (~2-fold) increase or decrease from the native levels, including both whole and 

only relevant-region mutational strategies and different percentages of mutated sequence size (5 

and 10%, Table S2, Methods M5,6). Of the tested variants, 40% corresponded with predictions, 

of which all were designed to decrease expression (Figure 1D, Figure S4). This indicates that 

even fewer sequences than the above computational estimations are functional when designed 130 
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by the random mutagenesis approach, thus still requiring multiple rounds of selection and testing 

despite the use of in silico screening.  

 

 
Figure 1. Implementing mutational and generative strategies to design regulatory DNA. (A) Schematic depiction 135 
of the Saccharomyces cerevisiae natural genomic sequencing dataset that was used to train both the predictive (P) 5 
and generative (G) models used in the study. The dataset spanned the whole gene regulatory structure of 1000 bps 

and included promoter, terminator and untranslated regions (UTRs) as well as codon frequencies of coding regions. 

Marked are the different natural sequence properties related to DNA cis-regulatory grammar that were further analysed 
with the generator. (B) Schematic depiction of the mutagenesis strategy that included in silico screening, where a 140 
random mutagenesis procedure (M) was coupled with a predictor (P) of yeast gene expression 5, which was also used 

to inform the mutational procedure on which positions were the most relevant to mutate (Methods M3). (C) Amount of 
mutated sequence variants that achieved an over 50% increase or decrease in predicted gene expression levels by 

mutating 10% (40 bp) of whole promoter regions (400 bp) or only the most relevant promoter positions. (D) Quantitative 

PCR (qPCR) measurements of mRNA levels with 10 mutated RPL3 sequence variants predicted to achieve ~2-fold 145 
increases or decreases in expression levels from the native regulatory sequence (see Table S2). Apart from the native 

regulatory regions of RPL3 (predicted TPM of 303),  POP6 regions were used as a low control (predicted TPM of 64). 

(E) Total number and (F) coverage of transcription factor binding sites (TFBS), DNA motifs and motif association rules 
5 uncovered in samples of generated or natural test sequences across generator training iterations. 

  150 
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Deep generative modeling of regulatory DNA 

The above results suggested that, in order to have a more controlled approach of designing 

synthetic regulatory DNA, alternative strategies to random mutagenesis are required and should 

be explored. We therefore tested if an altogether different, generative modeling strategy could be 

used to design regulatory sequence variants with increased or decreased expression levels, by 155 

learning the genetic regulatory and expression landscape directly from natural genomes. We 

trained a generative model (generator) using whole gene regulatory structures (Figure 1A) with a 

generative adversarial network (GAN) approach 25, where a discriminator network was used to 

train a generator, both comprising 6 convolutional layers (Figure S5, Methods M4). As input data 

from which to learn the distribution of the gene regulatory sequence space, we used 4238 160 

sequences of whole gene regulatory structures from yeast, previously found to span all the 

regulatory features important for predicting over 82% of the variability of mRNA expression levels 
5 (Methods M1). The performance of the generator was computationally validated by verifying that 

the sequence properties of the generated variants reflected those of natural sequences, including: 

(i) sequence compositional validity, (ii) sequence similarity measures, (iii) predicted gene 165 

expression levels and (iv) known cis-regulatory grammar, per generated sequence (Figure 1A, 

Table S3, Methods M7). Indeed, after training, the majority of the generated sequences (86%) 

displayed natural sequence-like properties (Figure 1E,F, Figure S6), containing not only 

appropriate sequence composition but also known DNA regulatory motifs 1 including Jaspar 26 

and Yeastract 27 transcription factor binding sites (TFBS), and motif associations 5 (Figure 1A). 170 

We also verified that the generated sequences retained a sequence diversity similar to that of 

natural sequences, with the sequence identity of both the generated and test datasets to the train 

dataset equalling ~67% (Figure S6) and showing that the nucleotide composition of generated 

variants was as variable and dissimilar to natural sequences as they are amongst themselves 

(Figure S7). This ensures that the model did not overfit to the training dataset and shows that it 175 

can generate de novo regulatory sequences with properties indistinguishable from natural ones 

across a wide range of expression levels.  
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Precise gene-specific navigation of DNA regulatory sequence-

expression landscape 

Next, in order to explore the generative model in a directed-evolution fashion and devise a 180 

procedure that produces regulatory sequences with target expression levels, we set up an 

optimization procedure 14 (Figure 2A). The trained DNA regulatory sequence generator and gene 

expression-predictor 5 neural networks were coupled in a feedback loop, where the predictor was 

used to optimize the expression level of generated sequences by guiding the latent space of the 

generator, thus defining the input variables used to draw new sequence samples (Figure 2B, 185 

Methods M4). Since the predictor also evaluates variables describing the coding region (see 

Figure 1A: 64 coding  frequencies), this procedure in fact couples the generated regulatory 

structures to a specific gene of interest. Merging the results of both maximization and minimization 

of gene expression and using t-distributed stochastic neighbour embedding (t-SNE) 

dimensionality reduction 28 over the latent vectors confirmed that with this approach, desired 190 

expression levels are mapped to identified latent subspace resembling a continuous 

multidimensional curve that covers ~6 orders of magnitude of expression levels (Figure 2C, Figure 

S8). Thus, with optimization, the dynamic range of expression levels of the generated sequences 

increased over 3-fold compared to those obtained by randomly sampling the generator (in equally 

sized samples), even surpassing the natural range of expression levels for a specific gene of 195 

interest (Figure 2C: GFP coding sequence shown). Similarly as before, analysis of sequence 

identity verified that the sequences produced by the generator optimization were not similar to 

any natural ones and retained the natural sequence diversity of ~0.67 (Figure S9, Methods M7). 

Importantly, by sampling and computationally analysing sequence selections across a 4 order-of-

magnitude range of expression levels (see Figure 1C, Methods M4), generated variants displayed 200 

sequence properties (Figure 1B, Table S3, Methods M7) reflecting those of natural sequences 

and indicating that they are potentially functional (Figure 2D,E, Figure S10). For instance, the 

overall amounts of cis-regulatory grammar were observed to steadily increase in proportion to the 

predicted gene expression levels (Figure 2D,E). This suggests that points in the generator's latent 

space with desired expression levels can be sampled, which generalize beyond the naturally 205 

available regulatory sequence space to generate novel but functional sequence diversity. 
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Figure 2. Predictor-guided generator optimization enables precise and gene-specific navigation of the 
regulatory sequence-expression landscape. (A) Schematic depiction of the procedure to optimize the generator 210 
using a trained predictor 5, which introduces coding region information into the generative approach and explores the 

input latent space of the generator to produce sequence variants across the whole gene expression range, providing 
precise navigation across the gene regulatory sequence-expression landscape. (B) Predicted expression levels of 

generated sequence variants across optimization iterations set to either maximize or minimize expression levels. (C) 

T-distributed stochastic neighbour embedding (t-SNE) 28 mapping of the input latent subspaces that produce novel 215 
sequence variants spanning ~6 orders of magnitude of gene expression (colored and black dots), uncovered using the 

predictor-guided generator optimization. Black dots represent selections of 10 sequence variants per each of 4 

expression groups covering a 4 order-of-magnitude range of predicted expression levels from TPM ~10 to ~10,000. (D) 
Total number and (E) coverage of transcription factor binding sites (TFBS), DNA motifs and motif association rules 5 in 

the groups of sequence variants produced by generator optimization across 4 orders of magnitude of predicted 220 
expression levels and natural test sequences. (F) Sequence homology of the generated and test dataset sequences to 
the respective closest representative sequences in the training dataset across the 4 regions of the gene regulatory 

structure. (G) Quantitative PCR (qPCR) measurements of mRNA levels with groups of generated sequence variants 

across 3 orders of magnitude of predicted expression levels (TPM of ~10, ~100 and ~1000, see Table S4). Natural 
regulatory regions of the POP6 and RPL3 genes were used as low and high controls with a predicted TPM of 64 and 225 
303, respectively. 
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In vivo gene expression control using generated regulatory DNA  

Finally, in order to test the efficacy and validity of the generative procedure, we selected a group 

of generated sequences across a 3 order-of-magnitude range of predicted expression levels 230 

(Figure 2C: TPM of ~10, ~100 and ~1000). This was based on a selection procedure that retained 

sequences with properties that corresponded to those of natural sequences in each respective 

expression range (Figure 2D,E, Figure S10, Methods M4), with the exception that sequences with 

the lowest sequence similarity to natural ones were preferred (i.e. most different from natural, 

Figure 2F, Figure S11. Similarly, in each expression range, sequence diversity was maximised 235 

(meaning no 2 tested sequences were alike, Figure S11), in order to test a wide range of unique 

sequence variants and not merely multiple versions of a common variant. Although mRNA levels 

were measured, the GFP gene was used due to its low effect on cell growth (Figure S12). As a 

result of the limitations imposed by sequence synthesis, limiting the possibility to synthesize and 

test very highly or lowly expressed sequences (e.g. <10 and >1000 TPM), we succeeded in testing 240 

17 regulatory sequence-GFP constructs. Additionally, regulatory structures of the well known 

POP6 (predicted TPM of 64) and RPL3 (predicted TPM of 303) genes 5 were used as low and 

high controls, respectively. 

 

We observed that experimental measurements of the mRNA levels produced by each construct 245 

achieved strong correlation with the predicted levels (Pearson's r = 0.74, p-value < 1.6e-14, Figure 

S13, Methods M6). The measured levels were also significantly correlated with specific sequence 

properties related to DNA regulatory grammar, including the number and coverage of motifs and 

motif association rules 1,5, 5' UTR length 7,29, nucleosome depletion 30,31 as well as strong Kozak 

32,33 and positioning elements 4,34 (Pearson's r > 0.38, p-value < 7.6e-3, Figure S14). Despite the 250 

strong correlation, on average, the measured expression levels reflected the predicted expression 

range only in the group of constructs with the predicted TPM of ~100 (Figure 2G: avg. measured 

TPM of 114), whereas a 7.7-fold and 2.5-fold difference between predictions and measurements 

was observed with the lower (predicted TPM ~10, avg. measured TPM 77) and higher groups 

(predicted TPM ~1000, avg. measured TPM 397), respectively. Nevertheless, although we were 255 

not able to generate sequences with expression lower than the POP6 control, within the highest 

expression group, 4 out of 7 regulatory constructs (57%) displayed average expression levels that 

surpassed those of the natural RPL3 control by up to 2.7-fold (Figure 2F, Table S4). This 

demonstrates that our generative procedure can independently design completely de novo gene 

regulatory sequences that exceed natural highly expressed controls by learning the natural 260 
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regulatory DNA variation directly from genomic data, showcasing its usefulness to expand the 

available supply of synthetic regulatory DNA with novel and improved sequence variants. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452480doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452480
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zrimec et al. 2021 

12 

3. Discussion 
In the present study, we asked whether whole de novo functional DNA regulatory structures 265 

producing target gene expression levels can be generated just from the knowledge of natural 

regulatory sequences. As there are >1060 ways to construct a mere 100 bp promoter sequence, 

many of which can be functional 12 and spanning more DNA variation than exists in all living 

species on our planet, experimentally exploring even a tiny fraction of such an enormous 

sequence space is challenging and often infeasible due to the vast species diversity and 270 

complexity of eukaryotic gene regulation. Here, we thus used state-of-the-art deep learning 

algorithms 5,14,25,35,36 to learn and map the functional DNA regulatory sequence space to gene 

expression levels directly from natural genomic data in Saccharomyces cerevisiae, enabling the 

design of novel expression systems in a controlled manner.  

 275 

This is made possible by multiple development steps and improvements that have enabled us to 

develop a generative modeling approach, which include: (i) whole gene regulatory structures 1 

within optimized natural genomic datasets 5 (Figure 1A), (ii) highly-accurate predictive models of 

gene expression levels that can explain over 82% of their variation from regulatory sequence 

alone 5, (iii) deep generative modelling procedures that are capable of learning and expanding 280 

functional coding 10 and regulatory 9,14 sequence spaces from natural genomic data (Figure S5), 

and (iv) optimization procedures 14,35,36 that allow us to include coding region information in 

sequence design and thus enable gene-specific fine-tuning of generators across the whole range 

of expression levels (Figure 2A,C). With the latter, due the possibility to connect deep neural 

networks in end-to-end differentiable architectures, the initial capability of deep generative models 285 

to learn the DNA regulatory sequence space from natural genomic data 9 is expanded using 

optimization guided by predictive models (Figure 2A). This enables us to gain control over the 

generator's mapping of the regulatory sequence space to the respective gene expression levels 

and navigate the functional regulatory sequence-expression landscape, to produce generated 

sequences with desired expression levels for any given gene (Figure 2B,C). We can thus design 290 

completely 'alien' variants of gene regulatory structures (Figure 2F) that are nevertheless 

functional, containing natural-like properties and cis-regulatory grammar (Figure 2D,E) and even 

surpassing the expression level of natural highly-expressed genes (Figure 2G). Moreover, since 

our DNA-generator learns the whole functional regulatory sequence space, it can generate a 

practically infinite supply of new sequence samples, while traversing only the most relevant 295 

subspace instead of sampling random sequences from all 41000 possible variants that would 
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otherwise be needed to explore the 1000 bp of regulatory DNA. Therefore, by advancing 

generative models to span complete gene regulatory structures and by mapping sequence 

production directly to the whole range of expression levels, we create the most inclusive solution 

for gene expression control to date.  300 

 

We experimentally demonstrate that the generative strategy to design regulatory DNA is more 

efficient than a mutational one when using models trained purely on natural genomic data. 

Random mutagenesis is a brute-force strategy that starts with an existing natural scaffold and can 

only traverse the sequence-expression landscape non-intelligently, a set of mutations at a time. 305 

It requires multiple experimental trials to develop functional sequences, even when coupled with 

predictive models that can accurately map regulatory sequence to gene expression 5 (Figure 

1B,C,D). The approach is 'blind' in its capacity to change sequence content, except for the 

computational and experimental screening processes that test the functionality of the designed 

sequences, but which are decoupled from the sequence design. The mutagenesis approach could 310 

thus possibly be enhanced using evolutionary optimization algorithms 37,38 that would guide the 

targeted sequence evolution indirectly, requiring the optimization algorithm to explore the 

predictor's coupling between generated sequences and expression levels via numerous 

iterations. In essence, this would be similar to the generator optimization approach used here, 

however the latter approach presents multiple improvements. Specifically, the generator models 315 

the whole functional regulatory landscape at once, producing natural-like functional sequence 

variants and not merely randomly mutated variants of existing sequences. It is therefore based 

on two knowledge-based models (Figure 2A: both generator and predictor) and not merely a 

single one (Figure 1B: only predictor). Due to this, the generative approach explores the whole 

allowed sequence space and is not limited to exploring mere subspaces that contain also invalid 320 

sequence variants, such as when using random mutagenesis. Apart from optimization, informing 

the mutational procedure by constraining the mutated positions to only relevant ones (Figure 1B), 

such as those specified by the predictor that contain important binding sites 5, might also be an 

insufficient strategy to improve mutagenesis. This is due to the large number of position-specific 

interactions for each single nucleotide position that affect protein-binding 21,39, which are spread 325 

beyond only the most important binding sites and their immediate vicinity 1,6,9. For instance, 

constraining mutagenesis to the surrounding bases of the -35 and -10 promoter binding sites in 

E. coli led to producing very little functional variants 9,40, suggesting that the sequence beyond 

these regions contains important information for generating functional promoters. Similarly, we 

observed only a very small increase in the capacity to create sequences with increased or 330 
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decreased expression levels when mutating only relevant positions (Figure 1C). On the other 

hand, generative models resolve the problem of relevance by mapping positional interactions 

across whole sequences, learning which positions are the most important for binding and 

functionality 9,10.  

 335 

In synthetic biology, alternative bio-manufacturing hosts offer several potential benefits for 

speeding up bioprocess development 41 , bringing new drug candidates to the clinic and 

maximizing the use of manufacturing facilities during a pandemic 42 or facilitating high-yield 

manufacturing43. To reach desired expression levels that are predictable, robust, and tuneable, 

genetic constructs that can only be built from well-characterized gene regulatory parts are 340 

required 44. Moreover, when expressing a gene of interest, all regulatory regions have been shown 

to affect gene expression levels. For instance, the promoter can be strongly dependent on the 

choice of the terminator 5,45, and both are gene-context dependent and have to be matched with 

the coding region comprising codon usage that is optimal to facilitate expression 15,46,47. While 

there are tens of thousands of sequenced genomes, our capability to develop such alternative 345 

expression systems is highly underdeveloped48 and primarily limited by the costly experimental 

screening approaches used to design and characterize short parts of single genomic regions 2,6,9 

which is remain challenging for many industrially important strains with low transformation 

efficiency49. Considering the benefits of generative models as well as the costs and resource 

requirements of synthetic library construction and testing, the use and further development of 350 

mutagenesis for regulatory sequence design may not be worthwhile, apart from exploring the 

intrinsic functionality of expression regulation 6. Instead, we demonstrate that the generative 

approach can produce whole gene regulatory structures, while taking into account also the 

information from the coding sequence, thus mimicking whole natural regulatory systems in order 

to ensure the highest control over gene expression. The advantages of the proposed approach 355 

are that (i) it requires only natural genomic data as input, with no need for library construction and 

costly experimental screening, (ii) it can be expanded to virtually any sequenced organism 

including those with low transformation efficiency, and (iii) it can be used to produce condition-

independent or, if required, even condition-dependent regulatory sequences with controllable 

gene expression that exceeds the expression levels of natural DNA. Therefore, we foresee this 360 

as a highly versatile and lucrative strategy to expand our knowledge of gene expression regulation 

as well as increase expression control in synthetic biology and metabolic engineering 

applications.  
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4. Methods 365 

M1. Data 

S. cerevisiae S288C genome sequence data, including gene sequences, as well as transcript and 

open reading frame (ORF) boundaries, were obtained from the Saccharomyces Genome 

Database (https://www.yeastgenome.org/) 50,51 and additional published transcript and ORF 

boundaries were used 52,53. Coding and regulatory regions were extracted based on the transcript 370 

and ORF boundaries. DNA sequences were one-hot encoded, untranslated region (UTR) 

sequences were zero-padded up to the specified lengths (Figure 1A: promoter of 400 bp, 5' UTR 

of 100bp, 3' UTR of 250 bp and terminator of 250 bp) 5 and the 64 codon frequencies were 

normalized to probabilities.  

For gene expression levels, processed raw RNA sequencing Star counts were obtained from the 375 

Digital Expression Explorer V2 database (http://dee2.io/index.html) 54 and filtered for experiments 

that passed quality control, yielding 3025 high-quality RNA-Seq experiments. Raw mRNA data 

were transformed to transcripts per million (TPM) counts 55 and genes with zero mRNA output 

(TPM < 5) were removed. Prior to modeling, the mRNA counts were Box-Cox transformed 56 with 

lambda set to 0.22. As the mRNA counts and ORF lengths were significantly correlated due to 380 

the technical normalization bias from fragment-based transcript abundance estimation 57, we 

computed mRNA counts uncorrelated to gene length. For this, the residual of a linear model, 

based on ORF lengths as the response variable and mRNA counts as the explanatory variable, 

was used as the corrected response variable 5. 

To obtain training datasets, we considered that for the initial 4,975 protein-coding genes with 385 

genomic sequence information, median expression levels across the RNA-Seq experiments 

varied within 1 relative standard deviation (RSD = σ/μ) for 85% of the genes 5. We therefore used 

DNA sequences of the regulatory and coding regions of these 4,238 genes with RSD <1 for 

training. For predictive modeling, the data comprised paired gene regulatory structure explanatory 

variables and mRNA count response variables, where a total of 3,433 gene data instances were 390 

used for training the model, 381 for tuning the model hyperparameters and 424 for testing. For 

generative modeling, a total of 3,814 regulatory structure sequences were used for training and 

the remaining 424 were used as unseen test data. Here, the data was balanced prior to training 

by distributing the corresponding mRNA counts across 30 bins and sampling input sequence data 
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from all bins such that all the values were uniformly represented instead of using the initial 395 

distribution (Figure S15: approximately normal for the Box-Cox transformed data shown). 

M2. Deep predictive modeling 

To train a predictive model that predicts gene expression levels from whole gene regulatory 

structure data, a deep neural network architecture of 3 CNN layers and  2 dense (FC) layers was 

used 1,5,58,59. The network was trained consecutively, first on regulatory sequences input to the 400 

first CNN layer and then the dense layers were replaced and the whole network retrained using 

the numeric variables (codon frequencies) appended to the output of the last CNN layer and input 

to the first dense layer. Batch normalization 60 and weight dropout 61 were applied after all layers 

and max-pooling 62 after CNN layers. The Adam optimizer 63 with mean squared error (MSE) loss 

function and ReLU activation function 64 with uniform 65 weight initialization were used. In total, 26 405 

hyper-parameters were optimized using a tree-structured Parzen estimators approach via 

Hyperopt v0.1.1 66 at default settings for 1500 iterations with the same initial value ranges as in 5. 

The best models were chosen according to the minimal MSE on the validation set with the least 

spread between training and validation sets. The coefficient of determination (R2) was defined as 

𝑅! = 1 − 𝑆𝑆"#$%&'()/𝑆𝑆*+,()[Eq. 1], where SSResidual is the sum of residual squares of predictions 410 

and SSTotal is the total sum of squares, and statistical significance was evaluated using the two-

tailed F-test. For building and training models Keras v2.2 and Tensorflow v1.10 software 

packages were used and accessed using the python interface.  

M3. Mutagenesis approach 

To design novel regulatory sequence variants with the mutation procedure, either whole promoter 415 

sequences or only the most relevant positions were randomly mutated at different settings for the 

percentage of the mutated sequence size: 1% (4 bp), 2% (8 bp), 5% (20 bp) and 10% (40 bp). 

This was done while verifying that all mutated variants were different from any of the natural 

sequences, thus the mutation size also corresponded to the distance from the closest natural 

sequence. The maximum mutation size of 10% was used in order to limit using the predictor too 420 

far outside of its operational range, defined by the natural training sequence space, which can 

potentially cause incorrect predictions 67,68. 300,000 mutations were performed per each of the 

eight settings per gene scaffold sequence.  

To obtain the most relevant positions in the promoter sequence, we calculated the relevance 

profiles that give an estimate of the sensitivity of the predictive model at specific positions in the 425 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452480doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452480
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zrimec et al. 2021 

17 

input sequence. To calculate the relevance of the different DNA positions for model predictions, 

defined as 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒	 = 	 (𝑌 − 𝑌 +--)'&#&)	/	𝑌 [Eq. 1], where Y is the model prediction, an input 

dataset with sliding window occlusions was used with the predictive model to obtain predictions 
69,70 (Figure S16). The window size of the occlusions was set to either 1 or 10 bp. To obtain only 

highly sensitive regions, relevance z-scores above a cutoff of 1 were selected. 430 

To calculate the amount of mutated sequence variants that achieved an over 50% increase or 

decrease in predicted gene expression level, regulatory sequence scaffolds from the following 7 

genes were used: YDR541C, POP6, PMU1, YBL036C, MNN9, RPC40, RPL3. Experimental 

sequence selection was performed with the RPL3 gene, where the mutated sequences were 

sorted and selected based on largest achieved increases and decreases, targeting ~2-fold 435 

changes, as well as according to the limitations imposed by DNA sequence manufacturers. Thus, 

only sequences with a mutated sequence size of 5 and 10% were selected, where either the 

whole promoter or only relevant positions with a window size of 10 bp were mutated. When 

selecting for increased expression while mutating whole promoters, only sequences with a 

mutated size of 10% achieved the targeted changes in predicted expression levels. Two 440 

representatives were selected for increased gene expression per combination of settings and a 

single representative for decreased expression, yielding the 10 tested sequence constructs (Table 

S2).  

M4. Deep generative modeling 

To devise a system to generate realistic DNA regulatory sequences corresponding to the whole 445 

gene regulatory structure, we trained a generative model using a generative adversarial network 

(GAN) approach 25 (Figure S6). In order to capture all the levels of regulatory information across 

the input sequences, both the generator and discriminator equally comprised 6 convolutional 

neural network (CNN) layers of opposite orientation, where the first (last) 5 layers were residual 

blocks containing skip connections with a residual factor of 0.3 14,71. Each CNN layer comprised 450 

100 filters, a kernel size of 5 and a stride of 1. The dense layer size was equal to the input 

sequence size (1000) x CNN filter size (100). The Adam optimizer 63 with the Wasserstein loss 

function (WGAN) 72,73 and ReLU activation function 64 with uniform 65 weight initialization were 

used. The learning rate parameter was set to 1e-5, beta1 to 0.5 and beta2 to 0.9, and the batch 

size was 64. The ratio of discriminator to generator updates was set to 5. The dimensionality of 455 

the latent space was set to 200 after testing GANs with 100, 200 and 1000 dimensional latent 

spaces and finding no improvement in performance over this size, showing that it sufficiently 
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captured the key information in the DNA sequence data. The latent space was sampled according 

to a standard normal distribution during training. 

To generate sequences that manifest desired target expression levels by connecting the 460 

functional regulatory DNA space modeled by the generator with expression levels and coding 

sequence information modeled by the predictor, a DNA-based activation maximization approach 
14,35,36 was used that incorporates both the trained generator and predictor models (Figure 2A).  

The optimal trained generative model to use for optimization was identified at iteration 200,000 

(Figure S6), further supported by comparing the properties of generators obtained at 6 different 465 

training iteration checkpoints (100,000, 200,000, 300,000, 500,000, 700,000 and 1,000,000) after 

optimization, which included the range of predicted gene expression levels and percentage of 

unique generated sequences (Figure S17). Optimizations were run for 100,000 iterations and, to 

increase the breadth of the investigated latent subspace, 10 optimization runs were performed 

with different initial random states. The results were merged to obtain a set of 6,062,804 unique 470 

sequences that were used for further analysis. 

To obtain a selection of sequences for experimental validation, the following selection procedure 

was used. Four expression bins were defined to cover a 4 order of magnitude range of expression 

levels within a 10% range above or below the TPM values of 10, 100, 1000 and 10,000. 

Approximately 100 sequences per expression bin and per optimization seed were randomly 475 

selected from the above merged optimized sequence dataset, yielding 5706 sequences. Next, by 

comparing 16 sequence properties (see underlined properties in Table S3) of the generated 

sequence selection to those of natural test sequences, 452 sequences were subselected with all 

tested sequence properties within the ranges defined by natural test sequences. From here, the 

experimental set was constructed by randomly selecting 10 sequences in each expression bin, 480 

by optimizing for the highest sequence diversity within each expression bin, whilst retaining the 

natural sequence diversity (Figure S10: avg. seq. id. of 0.67). The final set of 40 selected 

sequences was thus highly diverse and as different from natural sequences as these are among 

themselves, representing as yet unseen sequence variants. Further limitations with sequence 

synthesis when ordering the selected generated variants as gene fragments from either TWIST 485 

Bioscience (www.twistbioscience.com) or IDT (gBlocks, https://eu.idtdna.com/) resulted in the 

final experimental set of 17 sequences, with 4 from the expression bin of ~10 TPM, 6 from ~100 

TPM and 7 from ~1000 TPM (Table S4). 
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M5. Experimental strain construction 

The S. cerevisiae strain S288C (ATCC no. 204508) was used as the base strain for all genetic 490 

engineering. Promoter (including 5' UTR) and terminator (including 3' UTR) DNA sequences were 

ordered as gene fragments from either TWIST Bioscience (www.twistbioscience.com) or IDT 

(https://eu.idtdna.com/). The exception were the RPL3 promoter and RPL3 terminator, for which 

fragments could not be synthesized due to sequence complexities, and were thus amplified from 

the genome with promoter_YOR063W_fwd, promoter_YOR063W_rev and 495 

terminator_YOR063W_fwd, terminator_YOR063W_rev primer pairs, respectively (Table S5). For 

the promoter-GFP-terminator constructs, the UBIMΔkGFP* version of the GFP gene from Houser 

et al. 74 was used (Table S6).  

Integration of the promoter-GFP-terminator constructs into the genome at the XI-2 locus was done 

using the CRISPR/Cas9 plasmid (pCFB2312) and gRNA helper vectors (pCFB3044) from the 500 

EasyClone marker-free system 75. All transformation steps were performed according to the 

published manual, except that the repair fragment was provided as three fragments: the promoter 

with 90 bp overlap to the genome and 90 bp overlap to the GFP gene, the GFP gene, and the 

terminator with 90 bp overlap to the GFP gene and 90 bp overlap to the genome. The exception 

were the RPL3 promoter and terminator, which were amplified from the S288C genome with a 505 

shorter 40 bp overlap flanking the primers. For each fragment, the promoter, the GFP gene and 

the terminator were ligated together with a linearized pUC19 plasmid by Gibson assembly 76. The 

pUC19 vector was linearized by PCR with pUC19_fwd and pUC19_rev primer pair (Table S5), 

with 20 bp overlaps flanking the ends for the Gibson assembly. All plasmids were extracted using 

the Thermo Scientific GeneJET Plasmid Miniprep Kit and used as the templates for the promoter-510 

GFP-terminator fragments with the L90 and R90 primer pair. To obtain strains with correctly 

integrated fragments at the XI-2 locus, colonies were verified with PCR using the 909 75, GFP_rev 

and 910 75, GFP_fwd primer pairs (Table S5) and the fragments were sequence-verified by 

Eurofins (https://www.eurofins.com/) after amplifying them with the L90, R90 primer pair.  

For the mutagenesis experiment, designed promoter_RPL3 variants were ligated with GFP and 515 

the native terminator_RPL3 with the methods described above (Table S6). For the generative 

experiment, the different generated synthetic promoters and terminators corresponding to 17 

whole constructs were ligated with GFP with the methods described above (Table S7).   
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M6. RNA extraction and quantitative PCR 
All yeast strains were cultured and monitored in a 48-well FlowerPlate (m2p-laboratories GmbH, 520 

Germany) at 30°C and 1200 rpm using a microbioreactor Biolector (m2p-laboratories GmbH, 

Germany). Cultures were started from a preculture grown overnight, at an OD600 of 0.03 in 1 mL 

minimal media with 2% glucose (Table S8). OD600 was monitored in real-time by the Biolector 

approximately every 20 min. After 15 h of cultivation, when the cells were in mid-exponential 

growth phase, the cells were collected and immediately used for RNA extraction with the QIAGEN 525 

RNeasy Mini Kit. For each batch of cultivation, the S288C wild type strain as well as the two 

integration strains with the POP6 and RPL3 regulatory regions were used as control groups. All 

cultivations were performed in biological triplicates.  
cDNA was synthesized with QIAGEN QuantiTect Reverse Transcription Kit by adding 50 ng of 

total RNA to a final RT reaction volume of 20 μL. 1 μL of the cDNA was used as template with the 530 

Thermo Scientific DyNAmo Flash SYBR Green PCR Master Mix in a Mx3005P QPCR System 

(Agilent Technologies, USA). A 2 step qPCR protocol was used: 10 min initialization at 95◦C and 

40 cycles of each: 30 s 95◦C and 60 s 60◦C. S. cerevisiae TAF10 77 was selected as the reference 

gene and previously published primers were used, while primers for GFP were designed using 

IDT’s PrimerQuest tool (Table S5). Measurements were performed in separate batches due to 535 

the constraints of the measurement plate size to 96 wells. For each qPCR batch, samples from 

the S288C wild type strain as well as the two integration strains with the POP6 and RPL3 

regulatory regions were included as the respective reference, low-expression and high-

expression control groups. Each sample has technical duplicates. Cycle thresholds (Ct) of the 

reporter gene were normalized relative to the Ct value of TAF10 77. The 2!""#$ (avg. 2pddct) value 540 

was used as the indicator of the relative expression level of GFP for each construct 78, where the 

wild type strain was used as the reference (Table S2 and S4). The values were equalized across 

all qPCR batches based on the known TPM values of the native POP6 and RPL3 controls present 

in every batch, using a linear curve fit to infer the TPM values of each replicate of the generated 

constructs. 545 

M7. Data analysis and software 
The performance of the generative model was monitored by measuring the sequence properties 

of the generated variants, including (i) sequence compositional validity, (ii) sequence similarity 

measures, (iii) predicted gene expression levels and (iv) known cis-regulatory grammar (Table 

S3), and by testing if they reflected the properties of natural sequences. DNA sequence homology 550 
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was calculated with the ratio function in the python-Levenshtein package v0.12, equaling the 

Levenshtein (edit) distance divided by the length of the sequence. The Jaccard distance between 

two DNA sequences was defined as the intersection over union of sets of their unique k-mers of 

size 4. Nucleosome depletion was calculated using the R package nuCpos 30,31. Samples of 64 

generated or natural test sequences were used per parameter except where stated otherwise. 555 

For statistical hypothesis testing, Scipy v1.1.0 was used with default settings. All tests were two-

tailed except where stated otherwise. Python v3.6 (www.python.org) and R v3.6 (www.r-

project.org) were used for computations. 
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