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Abstract

In order to control gene expression, regulatory DNA variants are commonly designed using
random synthetic approaches with mutagenesis and screening. This however limits the size of
the designed DNA to span merely a part of a single regulatory region, whereas the whole gene
regulatory structure including the coding and adjacent non-coding regions is involved in controlling
gene expression. Here, we prototype a deep neural network strategy that models whole gene
regulatory structures and generates de novo functional regulatory DNA with prespecified
expression levels. By learning directly from natural genomic data, without the need for large
synthetic DNA libraries, our ExpressionGAN can traverse the whole sequence-expression
landscape to produce sequence variants with target mRNA levels as well as natural-like
properties, including over 30% dissimilarity to any natural sequence. We experimentally
demonstrate that this generative strategy is more efficient than a mutational one when using
purely natural genomic data, as 57% of the newly-generated highly-expressed sequences
surpass the expression levels of natural controls. We foresee this as a lucrative strategy to expand
our knowledge of gene expression regulation as well as increase expression control in any

desired organism for synthetic biology and metabolic engineering applications.

Keywords: gene expression, deep learning, generative adversarial networks, regulatory

genomics, synthetic gene design, random mutagenesis
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1. Introduction

Gene expression is a fundamental process underlying the cellular functionality of all living
organisms and researchers have been trying to control it for decades. A major factor driving our
ability to control gene expression arises from our understanding of the cell's intrinsic regulatory
code ', which in turn can be used to design sequences with target expression levels >*. State of
the art machine learning approaches have proven highly useful in this endeavour, helping to
expand our knowledge of the DNA regulatory grammar driving gene expression >, design novel

9,10

promoter and gene sequences *° and accurately predict gene expression across multiple model

5,11

organisms . The striking capacity of random DNA to evolve into functioning regulatory

sequences by introducing only a couple of bps of mutations, recently shown in bacteria 2,
suggests that the richness and plasticity of the DNA regulatory grammar results in a vast
functional regulatory sequence space far larger than the one existing in nature °. By learning this

regulatory sequence space using advanced deep learning approaches %34

, one can in principle
design systems that precisely traverse it to extract completely novel sequence variants with target
expression levels.

15,16

Multiple recent studies show that apart from tuning codon usage in gene coding regions , also

the DNA sequence of non-coding regulatory regions must be fine-tuned in order to accurately

control gene expression °6'718

. Proper orchestration of gene expression depends on the
interaction of regulatory patterns across the whole cis-regulatory structure around the gene,
including promoters, terminators, coding and untranslated regions (UTRs) . Despite this, the
standard synthetic engineering approach to design regulatory regions of varying expression levels
is to apply random mutagenesis in a specific region, most commonly the promoter ¢! though
also UTRs "2 and terminators * have been targeted, frequently perturbing only short DNA
segments of less than 100 bp. Similarly, knowledge-guided approaches focus on single regions
to design minimal synthetic constructs and either stack multiple known highly-functional sequence
motifs * or apply machine learning to design them in a generative fashion °. Thus, existing
approaches to design DNA sequences have limited control of gene expression, instead relying
on experimental screening of large amounts of random synthetic sequences to find functional
variants with desired expression levels 35° This inherent 'blindness' in relating sequence to
expression and the high resource intensiveness, due to the large sequence space that needs to
be explored, are also the major factors constraining the length of the explored DNA to only short

segments. However, based on recent achievements in modeling DNA and protein spaces %104,
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we hypothesize that state-of-the-art generative deep neural networks are capable of learning the
entire DNA regulatory landscape directly from natural genomic sequences. Coupled with
leveraging information from the whole gene regulatory structure including the coding region ',
75  this can not only help to overcome the existing experimental limitations, but can also enable
precise and gene-specific navigation of the regulatory sequence space, boosting the accuracy of

expression control by generating de novo regulatory DNA with desired expression levels.

In the present study, we use deep learning frameworks to demonstrate that a generative modeling
80 approach can successfully design novel yet functional regulatory DNA in Saccharomyces
cerevisiae, outperforming targeted mutational approaches in mRNA expression optimization. The
deep neural networks are trained only on natural genomic sequences spanning the whole gene
regulatory structure comprising the promoter, UTRs and terminator. First, we verify that a
conventional mutagenesis approach with in silico screening, (i) using a highly accurate deep
85  predictive model ° and (ii) including targeted mutagenesis of only the most relevant DNA positions,
is inefficient at generating novel functional sequences. Next, we apply deep generative
adversarial networks to design de novo gene regulatory sequences with natural-like properties.
Using an optimization procedure that couples the generative and predictive neural networks >,
we add coding sequence information to the generative approach and learn to precisely navigate
90 the regulatory sequence-expression landscape of a specific gene across almost 6 orders of
magnitude of expression levels, accurately controlling the sampling of sequences with targeted
expression levels. Sequence properties of the generated regulatory DNA, including cis-regulatory
grammar such as DNA motifs and motif associations, reflect those of natural sequences across
the range of expression levels. In fact, the generated sequences retain a natural or even higher
95 level of dissimilarity (>30%) to any currently known regulatory sequence. Finally, we
experimentally verify the generated constructs and find that experimentally measured mRNA
expression levels reflect predicted ones across 3 orders of magnitude, with 57% of the constructs
designed to be highly expressed surpassing the level of gene expression of natural high-
expression control sequences.
100


https://doi.org/10.1101/2021.07.15.452480
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452480; this version posted July 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Zrimec et al. 2021

2. Results

Random mutagenesis requires multiple testing rounds

Driven by the idea that DNA sequences are predictive of gene expression levels "',

we
reasoned that randomly mutating DNA sequences coupled to virtual screening would be a

105 plausible strategy for gene expression control. To design sequences with increased or decreased
gene expression levels, we first set up a random mutagenesis approach with in silico screening
(Methods M3) using an experimentally validated highly-accurate predictive model (predictor, R%est
= 0.8) of yeast gene expression ° trained on natural genomic sequences comprising whole gene
regulatory structures of 1000 bps (Figure 1A,B, Figure S1, Methods M1,2). We focused on

110  mutating the promoter region spanning 400 bp (previously found as the optimal predictive region
size °), whereas the other regions (UTRs and terminator) were kept fixed. Apart from the initial
strategy of blindly mutating whole 400 bp promoter regions, as an additional strategy, we used
the predictor to inform the mutational procedure by querying its sensitivity to specific positions in
the promoter sequence (Figure 1B, Methods M3). Here, only the most sensitive and thus relevant

115  positions were preferentially used as the scaffolds for targeted mutagenesis (77 bp on average,
Figure S2).

We evaluated the mutagenesis approach by creating and assessing 16.8 million sequence
variants at different parameters using 7 natural regulatory regions as scaffolds (Figure S3,
120  Methods M3). When aiming to achieve an over 50% increase or decrease in mMRNA expression
levels, we found that on average, at most 0.3% of the sequence variants were predicted to achieve
the desired effect when mutating 10% (40 bp) of whole promoter regions, which increased to 0.4%
when mutating the most relevant promoter regions (Figure 1C). Unsurprisingly, this value greatly
decreased with lower percentages of mutated sequence size (Table S1). We then selected and
125  experimentally tested 10 of the mutated regulatory sequence variants of the RPL3 gene with the
largest predicted (~2-fold) increase or decrease from the native levels, including both whole and
only relevant-region mutational strategies and different percentages of mutated sequence size (5
and 10%, Table S2, Methods M5,6). Of the tested variants, 40% corresponded with predictions,
of which all were designed to decrease expression (Figure 1D, Figure S4). This indicates that

130 even fewer sequences than the above computational estimations are functional when designed
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by the random mutagenesis approach, thus still requiring multiple rounds of selection and testing

despite the use of in silico screening.
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135 Figure 1. Implementing mutational and generative strategies to design regulatory DNA. (A) Schematic depiction
of the Saccharomyces cerevisiae natural genomic sequencing dataset that was used to train both the predictive (P) °
and generative (G) models used in the study. The dataset spanned the whole gene regulatory structure of 1000 bps
and included promoter, terminator and untranslated regions (UTRs) as well as codon frequencies of coding regions.
Marked are the different natural sequence properties related to DNA cis-regulatory grammar that were further analysed

140 with the generator. (B) Schematic depiction of the mutagenesis strategy that included in silico screening, where a
random mutagenesis procedure (M) was coupled with a predictor (P) of yeast gene expression °, which was also used
to inform the mutational procedure on which positions were the most relevant to mutate (Methods M3). (C) Amount of
mutated sequence variants that achieved an over 50% increase or decrease in predicted gene expression levels by
mutating 10% (40 bp) of whole promoter regions (400 bp) or only the most relevant promoter positions. (D) Quantitative

145 PCR (gPCR) measurements of mRNA levels with 10 mutated RPL3 sequence variants predicted to achieve ~2-fold
increases or decreases in expression levels from the native regulatory sequence (see Table S2). Apart from the native
regulatory regions of RPL3 (predicted TPM of 303), POP6 regions were used as a low control (predicted TPM of 64).
(E) Total number and (F) coverage of transcription factor binding sites (TFBS), DNA motifs and motif association rules

5 uncovered in samples of generated or natural test sequences across generator training iterations.

150
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Deep generative modeling of regulatory DNA

The above results suggested that, in order to have a more controlled approach of designing
synthetic regulatory DNA, alternative strategies to random mutagenesis are required and should
be explored. We therefore tested if an altogether different, generative modeling strategy could be
155  used to design regulatory sequence variants with increased or decreased expression levels, by
learning the genetic regulatory and expression landscape directly from natural genomes. We
trained a generative model (generator) using whole gene regulatory structures (Figure 1A) with a
generative adversarial network (GAN) approach %, where a discriminator network was used to
train a generator, both comprising 6 convolutional layers (Figure S5, Methods M4). As input data
160 from which to learn the distribution of the gene regulatory sequence space, we used 4238
sequences of whole gene regulatory structures from yeast, previously found to span all the
regulatory features important for predicting over 82% of the variability of mMRNA expression levels
® (Methods M1). The performance of the generator was computationally validated by verifying that
the sequence properties of the generated variants reflected those of natural sequences, including:
165 (i) sequence compositional validity, (ii) sequence similarity measures, (iii) predicted gene
expression levels and (iv) known cis-regulatory grammar, per generated sequence (Figure 1A,
Table S3, Methods M7). Indeed, after training, the majority of the generated sequences (86%)
displayed natural sequence-like properties (Figure 1E,F, Figure S6), containing not only
appropriate sequence composition but also known DNA regulatory motifs ' including Jaspar 2
170  and Yeastract ?” transcription factor binding sites (TFBS), and motif associations ° (Figure 1A).
We also verified that the generated sequences retained a sequence diversity similar to that of
natural sequences, with the sequence identity of both the generated and test datasets to the train
dataset equalling ~67% (Figure S6) and showing that the nucleotide composition of generated
variants was as variable and dissimilar to natural sequences as they are amongst themselves
175  (Figure S7). This ensures that the model did not overfit to the training dataset and shows that it
can generate de novo regulatory sequences with properties indistinguishable from natural ones

across a wide range of expression levels.
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Precise gene-specific navigation of DNA regulatory sequence-

expression landscape

180 Next, in order to explore the generative model in a directed-evolution fashion and devise a
procedure that produces regulatory sequences with target expression levels, we set up an
optimization procedure " (Figure 2A). The trained DNA regulatory sequence generator and gene
expression-predictor ° neural networks were coupled in a feedback loop, where the predictor was
used to optimize the expression level of generated sequences by guiding the latent space of the

185  generator, thus defining the input variables used to draw new sequence samples (Figure 2B,
Methods M4). Since the predictor also evaluates variables describing the coding region (see
Figure 1A: 64 coding frequencies), this procedure in fact couples the generated regulatory
structures to a specific gene of interest. Merging the results of both maximization and minimization
of gene expression and using t-distributed stochastic neighbour embedding (t-SNE)

190  dimensionality reduction 2 over the latent vectors confirmed that with this approach, desired
expression levels are mapped to identified latent subspace resembling a continuous
multidimensional curve that covers ~6 orders of magnitude of expression levels (Figure 2C, Figure
S8). Thus, with optimization, the dynamic range of expression levels of the generated sequences
increased over 3-fold compared to those obtained by randomly sampling the generator (in equally

195 sized samples), even surpassing the natural range of expression levels for a specific gene of
interest (Figure 2C: GFP coding sequence shown). Similarly as before, analysis of sequence
identity verified that the sequences produced by the generator optimization were not similar to
any natural ones and retained the natural sequence diversity of ~0.67 (Figure S9, Methods M7).
Importantly, by sampling and computationally analysing sequence selections across a 4 order-of-

200  magnitude range of expression levels (see Figure 1C, Methods M4), generated variants displayed
sequence properties (Figure 1B, Table S3, Methods M7) reflecting those of natural sequences
and indicating that they are potentially functional (Figure 2D,E, Figure S10). For instance, the
overall amounts of cis-regulatory grammar were observed to steadily increase in proportion to the
predicted gene expression levels (Figure 2D,E). This suggests that points in the generator's latent

205 space with desired expression levels can be sampled, which generalize beyond the naturally

available regulatory sequence space to generate novel but functional sequence diversity.
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Figure 2. Predictor-guided generator optimization enables precise and gene-specific navigation of the
210 regulatory sequence-expression landscape. (A) Schematic depiction of the procedure to optimize the generator
using a trained predictor 5, which introduces coding region information into the generative approach and explores the
input latent space of the generator to produce sequence variants across the whole gene expression range, providing
precise navigation across the gene regulatory sequence-expression landscape. (B) Predicted expression levels of
generated sequence variants across optimization iterations set to either maximize or minimize expression levels. (C)
215 T-distributed stochastic neighbour embedding (t-SNE) 22 mapping of the input latent subspaces that produce novel
sequence variants spanning ~6 orders of magnitude of gene expression (colored and black dots), uncovered using the
predictor-guided generator optimization. Black dots represent selections of 10 sequence variants per each of 4
expression groups covering a 4 order-of-magnitude range of predicted expression levels from TPM ~10 to ~10,000. (D)
Total number and (E) coverage of transcription factor binding sites (TFBS), DNA motifs and motif association rules 5 in
220 the groups of sequence variants produced by generator optimization across 4 orders of magnitude of predicted
expression levels and natural test sequences. (F) Sequence homology of the generated and test dataset sequences to
the respective closest representative sequences in the training dataset across the 4 regions of the gene regulatory
structure. (G) Quantitative PCR (qPCR) measurements of mMRNA levels with groups of generated sequence variants
across 3 orders of magnitude of predicted expression levels (TPM of ~10, ~100 and ~1000, see Table S4). Natural
225 regulatory regions of the POP6 and RPL3 genes were used as low and high controls with a predicted TPM of 64 and
303, respectively.
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In vivo gene expression control using generated regulatory DNA

Finally, in order to test the efficacy and validity of the generative procedure, we selected a group
230 of generated sequences across a 3 order-of-magnitude range of predicted expression levels
(Figure 2C: TPM of ~10, ~100 and ~1000). This was based on a selection procedure that retained
sequences with properties that corresponded to those of natural sequences in each respective
expression range (Figure 2D,E, Figure S10, Methods M4), with the exception that sequences with
the lowest sequence similarity to natural ones were preferred (i.e. most different from natural,
235  Figure 2F, Figure S11. Similarly, in each expression range, sequence diversity was maximised
(meaning no 2 tested sequences were alike, Figure S11), in order to test a wide range of unique
sequence variants and not merely multiple versions of a common variant. Although mRNA levels
were measured, the GFP gene was used due to its low effect on cell growth (Figure S12). As a
result of the limitations imposed by sequence synthesis, limiting the possibility to synthesize and
240 testvery highly or lowly expressed sequences (e.g. <10 and >1000 TPM), we succeeded in testing
17 regulatory sequence-GFP constructs. Additionally, regulatory structures of the well known
POP6 (predicted TPM of 64) and RPL3 (predicted TPM of 303) genes ° were used as low and

high controls, respectively.

245  We observed that experimental measurements of the mRNA levels produced by each construct
achieved strong correlation with the predicted levels (Pearson's r=0.74, p-value < 1.6e-14, Figure
S13, Methods M6). The measured levels were also significantly correlated with specific sequence
properties related to DNA regulatory grammar, including the number and coverage of motifs and

motif association rules ', 5' UTR length "?°, nucleosome depletion 3°*'

as well as strong Kozak
250 323 and positioning elements *** (Pearson's r > 0.38, p-value < 7.6e-3, Figure S14). Despite the
strong correlation, on average, the measured expression levels reflected the predicted expression
range only in the group of constructs with the predicted TPM of ~100 (Figure 2G: avg. measured
TPM of 114), whereas a 7.7-fold and 2.5-fold difference between predictions and measurements
was observed with the lower (predicted TPM ~10, avg. measured TPM 77) and higher groups
255  (predicted TPM ~1000, avg. measured TPM 397), respectively. Nevertheless, although we were
not able to generate sequences with expression lower than the POP6 control, within the highest
expression group, 4 out of 7 regulatory constructs (57%) displayed average expression levels that
surpassed those of the natural RPL3 control by up to 2.7-fold (Figure 2F, Table S4). This
demonstrates that our generative procedure can independently design completely de novo gene

260 regulatory sequences that exceed natural highly expressed controls by learning the natural

10
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regulatory DNA variation directly from genomic data, showcasing its usefulness to expand the

available supply of synthetic regulatory DNA with novel and improved sequence variants.

11
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3. Discussion

265 In the present study, we asked whether whole de novo functional DNA regulatory structures
producing target gene expression levels can be generated just from the knowledge of natural
regulatory sequences. As there are >10% ways to construct a mere 100 bp promoter sequence,

many of which can be functional '

and spanning more DNA variation than exists in all living
species on our planet, experimentally exploring even a tiny fraction of such an enormous

270 sequence space is challenging and often infeasible due to the vast species diversity and
complexity of eukaryotic gene regulation. Here, we thus used state-of-the-art deep learning
algorithms °'42°35% to |Jearn and map the functional DNA regulatory sequence space to gene
expression levels directly from natural genomic data in Saccharomyces cerevisiae, enabling the
design of novel expression systems in a controlled manner.

275
This is made possible by multiple development steps and improvements that have enabled us to
develop a generative modeling approach, which include: (i) whole gene regulatory structures '
within optimized natural genomic datasets ° (Figure 1A), (i) highly-accurate predictive models of
gene expression levels that can explain over 82% of their variation from regulatory sequence

280 alone 5, (iii) deep generative modelling procedures that are capable of learning and expanding

%14 sequence spaces from natural genomic data (Figure S5),

functional coding '° and regulatory
and (iv) optimization procedures ***% that allow us to include coding region information in
sequence design and thus enable gene-specific fine-tuning of generators across the whole range
of expression levels (Figure 2A,C). With the latter, due the possibility to connect deep neural
285 networks in end-to-end differentiable architectures, the initial capability of deep generative models
to learn the DNA regulatory sequence space from natural genomic data ° is expanded using
optimization guided by predictive models (Figure 2A). This enables us to gain control over the
generator's mapping of the regulatory sequence space to the respective gene expression levels
and navigate the functional regulatory sequence-expression landscape, to produce generated
290 sequences with desired expression levels for any given gene (Figure 2B,C). We can thus design
completely 'alien' variants of gene regulatory structures (Figure 2F) that are nevertheless
functional, containing natural-like properties and cis-regulatory grammar (Figure 2D,E) and even
surpassing the expression level of natural highly-expressed genes (Figure 2G). Moreover, since
our DNA-generator learns the whole functional regulatory sequence space, it can generate a
295  practically infinite supply of new sequence samples, while traversing only the most relevant

subspace instead of sampling random sequences from all 4'°% possible variants that would
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otherwise be needed to explore the 1000 bp of regulatory DNA. Therefore, by advancing
generative models to span complete gene regulatory structures and by mapping sequence
production directly to the whole range of expression levels, we create the most inclusive solution

300 for gene expression control to date.

We experimentally demonstrate that the generative strategy to design regulatory DNA is more
efficient than a mutational one when using models trained purely on natural genomic data.
Random mutagenesis is a brute-force strategy that starts with an existing natural scaffold and can
305 only traverse the sequence-expression landscape non-intelligently, a set of mutations at a time.
It requires multiple experimental trials to develop functional sequences, even when coupled with
predictive models that can accurately map regulatory sequence to gene expression ° (Figure
1B,C,D). The approach is 'blind' in its capacity to change sequence content, except for the
computational and experimental screening processes that test the functionality of the designed
310  sequences, but which are decoupled from the sequence design. The mutagenesis approach could
thus possibly be enhanced using evolutionary optimization algorithms 3728 that would guide the
targeted sequence evolution indirectly, requiring the optimization algorithm to explore the
predictor's coupling between generated sequences and expression levels via numerous
iterations. In essence, this would be similar to the generator optimization approach used here,
315  however the latter approach presents multiple improvements. Specifically, the generator models
the whole functional regulatory landscape at once, producing natural-like functional sequence
variants and not merely randomly mutated variants of existing sequences. It is therefore based
on two knowledge-based models (Figure 2A: both generator and predictor) and not merely a
single one (Figure 1B: only predictor). Due to this, the generative approach explores the whole
320 allowed sequence space and is not limited to exploring mere subspaces that contain also invalid
sequence variants, such as when using random mutagenesis. Apart from optimization, informing
the mutational procedure by constraining the mutated positions to only relevant ones (Figure 1B),
such as those specified by the predictor that contain important binding sites °, might also be an
insufficient strategy to improve mutagenesis. This is due to the large number of position-specific

325 interactions for each single nucleotide position that affect protein-binding 2'*°

, Which are spread
beyond only the most important binding sites and their immediate vicinity %°. For instance,
constraining mutagenesis to the surrounding bases of the -35 and -10 promoter binding sites in

E. coli led to producing very little functional variants %4

, suggesting that the sequence beyond
these regions contains important information for generating functional promoters. Similarly, we

330 observed only a very small increase in the capacity to create sequences with increased or
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decreased expression levels when mutating only relevant positions (Figure 1C). On the other

hand, generative models resolve the problem of relevance by mapping positional interactions

across whole sequences, learning which positions are the most important for binding and

functionality °°.

335
In synthetic biology, alternative bio-manufacturing hosts offer several potential benefits for
speeding up bioprocess development ' | bringing new drug candidates to the clinic and
maximizing the use of manufacturing facilities during a pandemic ** or facilitating high-yield
manufacturing®®. To reach desired expression levels that are predictable, robust, and tuneable,

340 genetic constructs that can only be built from well-characterized gene regulatory parts are
required **. Moreover, when expressing a gene of interest, all regulatory regions have been shown
to affect gene expression levels. For instance, the promoter can be strongly dependent on the

choice of the terminator >#°

, and both are gene-context dependent and have to be matched with
the coding region comprising codon usage that is optimal to facilitate expression '54¢47 While
345  there are tens of thousands of sequenced genomes, our capability to develop such alternative
expression systems is highly underdeveloped*® and primarily limited by the costly experimental
screening approaches used to design and characterize short parts of single genomic regions 26°
which is remain challenging for many industrially important strains with low transformation
efficiency*®. Considering the benefits of generative models as well as the costs and resource
350 requirements of synthetic library construction and testing, the use and further development of
mutagenesis for regulatory sequence design may not be worthwhile, apart from exploring the
intrinsic functionality of expression regulation °. Instead, we demonstrate that the generative
approach can produce whole gene regulatory structures, while taking into account also the
information from the coding sequence, thus mimicking whole natural regulatory systems in order
355  to ensure the highest control over gene expression. The advantages of the proposed approach
are that (i) it requires only natural genomic data as input, with no need for library construction and
costly experimental screening, (ii) it can be expanded to virtually any sequenced organism
including those with low transformation efficiency, and (iii) it can be used to produce condition-
independent or, if required, even condition-dependent regulatory sequences with controllable
360 gene expression that exceeds the expression levels of natural DNA. Therefore, we foresee this
as a highly versatile and lucrative strategy to expand our knowledge of gene expression regulation
as well as increase expression control in synthetic biology and metabolic engineering

applications.
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365 4. Methods

M1. Data

S. cerevisiae S288C genome sequence data, including gene sequences, as well as transcript and

open reading frame (ORF) boundaries, were obtained from the Saccharomyces Genome

50,51

Database (https://www.yeastgenome.org/) and additional published transcript and ORF

370  boundaries were used °>°3, Coding and regulatory regions were extracted based on the transcript
and ORF boundaries. DNA sequences were one-hot encoded, untranslated region (UTR)
sequences were zero-padded up to the specified lengths (Figure 1A: promoter of 400 bp, 5' UTR
of 100bp, 3' UTR of 250 bp and terminator of 250 bp) ° and the 64 codon frequencies were
normalized to probabilities.

375  For gene expression levels, processed raw RNA sequencing Star counts were obtained from the

Digital Expression Explorer V2 database (http:/dee2.io/index.html) ** and filtered for experiments

that passed quality control, yielding 3025 high-quality RNA-Seq experiments. Raw mRNA data
were transformed to transcripts per million (TPM) counts ** and genes with zero mRNA output
(TPM < 5) were removed. Prior to modeling, the mRNA counts were Box-Cox transformed ¢ with
380 lambda set to 0.22. As the mRNA counts and ORF lengths were significantly correlated due to

the technical normalization bias from fragment-based transcript abundance estimation °’

, We
computed mRNA counts uncorrelated to gene length. For this, the residual of a linear model,
based on ORF lengths as the response variable and mRNA counts as the explanatory variable,
was used as the corrected response variable °.

385 To obtain training datasets, we considered that for the initial 4,975 protein-coding genes with
genomic sequence information, median expression levels across the RNA-Seq experiments
varied within 1 relative standard deviation (RSD = o/u) for 85% of the genes °. We therefore used
DNA sequences of the regulatory and coding regions of these 4,238 genes with RSD <1 for
training. For predictive modeling, the data comprised paired gene regulatory structure explanatory

390 variables and mRNA count response variables, where a total of 3,433 gene data instances were
used for training the model, 381 for tuning the model hyperparameters and 424 for testing. For
generative modeling, a total of 3,814 regulatory structure sequences were used for training and
the remaining 424 were used as unseen test data. Here, the data was balanced prior to training

by distributing the corresponding mRNA counts across 30 bins and sampling input sequence data
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395 from all bins such that all the values were uniformly represented instead of using the initial

distribution (Figure S15: approximately normal for the Box-Cox transformed data shown).

M2. Deep predictive modeling

To train a predictive model that predicts gene expression levels from whole gene regulatory
structure data, a deep neural network architecture of 3 CNN layers and 2 dense (FC) layers was
400 used "*%% The network was trained consecutively, first on regulatory sequences input to the
first CNN layer and then the dense layers were replaced and the whole network retrained using
the numeric variables (codon frequencies) appended to the output of the last CNN layer and input

to the first dense layer. Batch normalization ® and weight dropout ©'

were applied after all layers
and max-pooling ®2 after CNN layers. The Adam optimizer  with mean squared error (MSE) loss
405 function and ReLU activation function ® with uniform % weight initialization were used. In total, 26
hyper-parameters were optimized using a tree-structured Parzen estimators approach via

.1 % at default settings for 1500 iterations with the same initial value ranges as in °.

Hyperopt v0.1
The best models were chosen according to the minimal MSE on the validation set with the least
spread between training and validation sets. The coefficient of determination (R?) was defined as
410  R? =1 — SSgesidquai/SStotal[EQ. 1], where SSresiaual is the sum of residual squares of predictions
and SSro is the total sum of squares, and statistical significance was evaluated using the two-
tailed F-test. For building and training models Keras v2.2 and Tensorflow v1.10 software

packages were used and accessed using the python interface.

M3. Mutagenesis approach

415  To design novel regulatory sequence variants with the mutation procedure, either whole promoter
sequences or only the most relevant positions were randomly mutated at different settings for the
percentage of the mutated sequence size: 1% (4 bp), 2% (8 bp), 5% (20 bp) and 10% (40 bp).
This was done while verifying that all mutated variants were different from any of the natural
sequences, thus the mutation size also corresponded to the distance from the closest natural

420  sequence. The maximum mutation size of 10% was used in order to limit using the predictor too
far outside of its operational range, defined by the natural training sequence space, which can
potentially cause incorrect predictions %78, 300,000 mutations were performed per each of the
eight settings per gene scaffold sequence.

To obtain the most relevant positions in the promoter sequence, we calculated the relevance

425  profiles that give an estimate of the sensitivity of the predictive model at specific positions in the

16


https://doi.org/10.1101/2021.07.15.452480
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452480; this version posted July 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Zrimec et al. 2021

input sequence. To calculate the relevance of the different DNA positions for model predictions,
defined as Relevance = (Y =Y ,ccwaea) /Y [EQ. 1], where Y is the model prediction, an input
dataset with sliding window occlusions was used with the predictive model to obtain predictions
69.70 (Figure S16). The window size of the occlusions was set to either 1 or 10 bp. To obtain only
430 highly sensitive regions, relevance z-scores above a cutoff of 1 were selected.
To calculate the amount of mutated sequence variants that achieved an over 50% increase or
decrease in predicted gene expression level, regulatory sequence scaffolds from the following 7
genes were used: YDR541C, POP6, PMU1, YBL036C, MNN9, RPC40, RPL3. Experimental
sequence selection was performed with the RPL3 gene, where the mutated sequences were
435 sorted and selected based on largest achieved increases and decreases, targeting ~2-fold
changes, as well as according to the limitations imposed by DNA sequence manufacturers. Thus,
only sequences with a mutated sequence size of 5 and 10% were selected, where either the
whole promoter or only relevant positions with a window size of 10 bp were mutated. When
selecting for increased expression while mutating whole promoters, only sequences with a
440 mutated size of 10% achieved the targeted changes in predicted expression levels. Two
representatives were selected for increased gene expression per combination of settings and a
single representative for decreased expression, yielding the 10 tested sequence constructs (Table
S2).

M4. Deep generative modeling

445 To devise a system to generate realistic DNA regulatory sequences corresponding to the whole
gene regulatory structure, we trained a generative model using a generative adversarial network
(GAN) approach ?° (Figure S6). In order to capture all the levels of regulatory information across
the input sequences, both the generator and discriminator equally comprised 6 convolutional
neural network (CNN) layers of opposite orientation, where the first (last) 5 layers were residual
450  blocks containing skip connections with a residual factor of 0.3 7', Each CNN layer comprised
100 filters, a kernel size of 5 and a stride of 1. The dense layer size was equal to the input
sequence size (1000) x CNN filter size (100). The Adam optimizer ®® with the Wasserstein loss
function (WGAN) "2 and ReLU activation function ® with uniform ® weight initialization were
used. The learning rate parameter was set to 1e-5, beta1 to 0.5 and beta2 to 0.9, and the batch
455  size was 64. The ratio of discriminator to generator updates was set to 5. The dimensionality of
the latent space was set to 200 after testing GANs with 100, 200 and 1000 dimensional latent

spaces and finding no improvement in performance over this size, showing that it sufficiently
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captured the key information in the DNA sequence data. The latent space was sampled according
to a standard normal distribution during training.

460 To generate sequences that manifest desired target expression levels by connecting the
functional regulatory DNA space modeled by the generator with expression levels and coding
sequence information modeled by the predictor, a DNA-based activation maximization approach
143536 was used that incorporates both the trained generator and predictor models (Figure 2A).
The optimal trained generative model to use for optimization was identified at iteration 200,000

465  (Figure S6), further supported by comparing the properties of generators obtained at 6 different
training iteration checkpoints (100,000, 200,000, 300,000, 500,000, 700,000 and 1,000,000) after
optimization, which included the range of predicted gene expression levels and percentage of
unique generated sequences (Figure S17). Optimizations were run for 100,000 iterations and, to
increase the breadth of the investigated latent subspace, 10 optimization runs were performed

470  with different initial random states. The results were merged to obtain a set of 6,062,804 unique
sequences that were used for further analysis.

To obtain a selection of sequences for experimental validation, the following selection procedure
was used. Four expression bins were defined to cover a 4 order of magnitude range of expression
levels within a 10% range above or below the TPM values of 10, 100, 1000 and 10,000.

475  Approximately 100 sequences per expression bin and per optimization seed were randomly
selected from the above merged optimized sequence dataset, yielding 5706 sequences. Next, by
comparing 16 sequence properties (see underlined properties in Table S3) of the generated
sequence selection to those of natural test sequences, 452 sequences were subselected with all
tested sequence properties within the ranges defined by natural test sequences. From here, the

480 experimental set was constructed by randomly selecting 10 sequences in each expression bin,
by optimizing for the highest sequence diversity within each expression bin, whilst retaining the
natural sequence diversity (Figure S10: avg. seq. id. of 0.67). The final set of 40 selected
sequences was thus highly diverse and as different from natural sequences as these are among
themselves, representing as yet unseen sequence variants. Further limitations with sequence

485  synthesis when ordering the selected generated variants as gene fragments from either TWIST

Bioscience (www.twistbioscience.com) or IDT (gBlocks, https://eu.idtdna.com/) resulted in the

final experimental set of 17 sequences, with 4 from the expression bin of ~10 TPM, 6 from ~100
TPM and 7 from ~1000 TPM (Table S4).
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M5. Experimental strain construction

490 The S. cerevisiae strain S288C (ATCC no. 204508) was used as the base strain for all genetic
engineering. Promoter (including 5' UTR) and terminator (including 3' UTR) DNA sequences were

ordered as gene fragments from either TWIST Bioscience (www.twistbioscience.com) or IDT

(https://eu.idtdna.com/). The exception were the RPL3 promoter and RPL3 terminator, for which

fragments could not be synthesized due to sequence complexities, and were thus amplified from
495 the genome with promoter YOR063W _fwd, promoter YORO063W _rev and
terminator_YORO063W_fwd, terminator_YORO063W_rev primer pairs, respectively (Table S5). For
the promoter-GFP-terminator constructs, the UBIMAKGFP* version of the GFP gene from Houser
et al. " was used (Table S6).
Integration of the promoter-GFP-terminator constructs into the genome at the XI-2 locus was done
500 using the CRISPR/Cas9 plasmid (pCFB2312) and gRNA helper vectors (pCFB3044) from the
EasyClone marker-free system ’°. All transformation steps were performed according to the
published manual, except that the repair fragment was provided as three fragments: the promoter
with 90 bp overlap to the genome and 90 bp overlap to the GFP gene, the GFP gene, and the
terminator with 90 bp overlap to the GFP gene and 90 bp overlap to the genome. The exception
505 were the RPL3 promoter and terminator, which were amplified from the S288C genome with a
shorter 40 bp overlap flanking the primers. For each fragment, the promoter, the GFP gene and
the terminator were ligated together with a linearized pUC19 plasmid by Gibson assembly 7°. The
pUC19 vector was linearized by PCR with pUC19_fwd and pUC19_rev primer pair (Table S5),
with 20 bp overlaps flanking the ends for the Gibson assembly. All plasmids were extracted using
510 the Thermo Scientific GeneJET Plasmid Miniprep Kit and used as the templates for the promoter-
GFP-terminator fragments with the L90 and R90 primer pair. To obtain strains with correctly
integrated fragments at the XI-2 locus, colonies were verified with PCR using the 909 "°, GFP_rev
and 910 "®, GFP_fwd primer pairs (Table S5) and the fragments were sequence-verified by

Eurofins (https://www.eurofins.com/) after amplifying them with the L90, R90 primer pair.

515  For the mutagenesis experiment, designed promoter_RPL3 variants were ligated with GFP and
the native terminator_RPL3 with the methods described above (Table S6). For the generative
experiment, the different generated synthetic promoters and terminators corresponding to 17

whole constructs were ligated with GFP with the methods described above (Table S7).
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M6. RNA extraction and quantitative PCR

520  All yeast strains were cultured and monitored in a 48-well FlowerPlate (m2p-laboratories GmbH,
Germany) at 30°C and 1200 rpm using a microbioreactor Biolector (m2p-laboratories GmbH,
Germany). Cultures were started from a preculture grown overnight, at an OD600 of 0.03 in 1 mL
minimal media with 2% glucose (Table S8). OD600 was monitored in real-time by the Biolector
approximately every 20 min. After 15 h of cultivation, when the cells were in mid-exponential

525  growth phase, the cells were collected and immediately used for RNA extraction with the QIAGEN
RNeasy Mini Kit. For each batch of cultivation, the S288C wild type strain as well as the two
integration strains with the POP6 and RPL3 regulatory regions were used as control groups. All
cultivations were performed in biological triplicates.
cDNA was synthesized with QIAGEN QuantiTect Reverse Transcription Kit by adding 50 ng of

530 total RNA to a final RT reaction volume of 20 uL. 1 uL of the cDNA was used as template with the
Thermo Scientific DyNAmo Flash SYBR Green PCR Master Mix in a Mx3005P QPCR System
(Agilent Technologies, USA). A 2 step gPCR protocol was used: 10 min initialization at 95°C and
40 cycles of each: 30 s 95°C and 60 s 60°C. S. cerevisiae TAF10 ”” was selected as the reference
gene and previously published primers were used, while primers for GFP were designed using

535 IDT’s PrimerQuest tool (Table S5). Measurements were performed in separate batches due to
the constraints of the measurement plate size to 96 wells. For each gPCR batch, samples from
the S288C wild type strain as well as the two integration strains with the POP6 and RPL3
regulatory regions were included as the respective reference, low-expression and high-

expression control groups. Each sample has technical duplicates. Cycle thresholds (Ct) of the

540 reporter gene were normalized relative to the Ct value of TAF10 77. The 2-24CT (avg. 2pddct) value

t 8, where the

was used as the indicator of the relative expression level of GFP for each construc
wild type strain was used as the reference (Table S2 and S4). The values were equalized across
all gPCR batches based on the known TPM values of the native POP6 and RPL3 controls present
in every batch, using a linear curve fit to infer the TPM values of each replicate of the generated

545 constructs.

M7. Data analysis and software

The performance of the generative model was monitored by measuring the sequence properties
of the generated variants, including (i) sequence compositional validity, (ii) sequence similarity
measures, (iii) predicted gene expression levels and (iv) known cis-regulatory grammar (Table

550  S3), and by testing if they reflected the properties of natural sequences. DNA sequence homology
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was calculated with the ratio function in the python-Levenshtein package v0.12, equaling the
Levenshtein (edit) distance divided by the length of the sequence. The Jaccard distance between
two DNA sequences was defined as the intersection over union of sets of their unique k-mers of
size 4. Nucleosome depletion was calculated using the R package nuCpos 3!, Samples of 64
555 generated or natural test sequences were used per parameter except where stated otherwise.
For statistical hypothesis testing, Scipy v1.1.0 was used with default settings. All tests were two-
tailed except where stated otherwise. Python v3.6 (www.python.org) and R v3.6 (www.r-

project.org) were used for computations.
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