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Abstract

The understanding of bacterial gene function has been greatly enhanced by recent
advancements in the deep sequencing of microbial genomes. Transposon insertion
sequencing methods combines next-generation sequencing techniques with transposon
mutagenesis for the exploration of the essentiality of genes under different
environmental conditions. We propose a model-based method that uses regularized
negative binomial regression to estimate the change in transposon insertions
attributable to gene-environment changes without transformations or uniform
normalization. An empirical Bayes model for estimating the local false discovery rate
combines unique and total count information to test for genes that show a statistically
significant change in transposon counts. When applied to RB-TnSeq (randomized
barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in
strains of Caulobacter crescentus using both total and unique count data the model was
able to identify a set of conditionally essential genes for each target condition that shed
light on their functions and roles during various stress conditions.

Author summary

Transposon insertion sequencing allows the study of bacterial gene function by 1

combining next-generation sequencing techniques with transposon mutagenesis under 2

different genetic and environmental perturbations. Our proposed regularized negative 3

binomial regression method improves the quality of analysis of this data. 4

Introduction 5

A central question in molecular genetics is, What genes are essential for life? Prior to 6

the advent of high-throughput technology this question was addressed by mutagenesis 7

and fine mapping [1, 2]. The simplicity of homologous recombination in S. cerevisiae 8

allowed for the generation of a complete mutant library containing strains each with a 9

complete knockout of a single gene and tagged with a unique genetic barcode [3]. 10

Subsequent analysis of this library by custom microarrays and sequencing revealed 11

genes essential for growth in rich media as well as conditionally essential genes — genes 12

that are dispensable in rich media, but are essential in different environmental 13
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conditions [3–5]. However, generating a mutant pool from individual genetic knockout 14

strains is labor-intensive and not feasible in organisms for which homologous 15

recombination is inefficient. Transposon sequencing (Tn-seq) methods have alleviated 16

this problem and provide a powerful method for identifying essential and dispensable 17

genes under a variety of environmental conditions and genetic backgrounds. 18

Transposon Sequencing Transposon sequencing uses a modified transposon to 19

generate a saturation mutant library of a background strain of interest. Each 20

transposon has a selectable marker; a unique, random DNA barcode (in some cases); 21

and loci for PCR amplification that can be used to identify the DNA adjacent to the 22

transposon insertion site [6, 7]. Once the transposon mutant library is generated, it can 23

be grown in various environmental conditions of interest. Strains that have a fitness 24

defect due to the transposon insertion grow more slowly or not at all. The abundance of 25

the transposon insertion mutant strain in the library can be assayed by sequencing the 26

library after growth and counting the reads that map to a particular insertion site. For 27

each gene, the change in the count of sequenced transposon insertions between the 28

control and the perturbed environment can be used to identify conditionally essential or 29

conditionally dispensable genes. 30

Since the introduction of the original Tn-seq method, many variations have been 31

developed to facilitate the study of a wider range of organisms or to improve 32

efficiency [6]. Random-barcode transposon sequencing amortizes the cost of multiple 33

environmental perturbation experiments by doing the expensive mapping of transposon 34

insertion site to random barcodes once and then using that mapping for all future 35

experiments [8]. Transposon sequencing technology addresses the time consuming and 36

often technically challenging process of generating one-at-a-time gene deletions by using 37

parallel mutagenesis and counting-by-sequencing [9]. But, this technology has 38

introduced a new, statistical problem. How can the transposon count data be used to 39

test the hypothesis that a gene is essential such that all of, and only, the 40

essential/dispensable genes are identified? 41

Related Work There are several existing statistical approaches for analyzing 42

transposon sequencing data. van Opijnen et al. [10] used several normalization steps to 43

compute a ratio of the fold-expansion of the mutant relative to the rest of the 44

population. Then, a t-test with a Bonferroni correction was used for each gene to decide 45

if a change in the fitness statistic is significant. This type of normalization renders the 46

statistic independent of growth duration, but requires an additional calibration 47

experiment to estimate an expansion factor which measures the growth of the bacterial 48

population during library selection. Despite these benefits, the fitness effect estimator is 49

non-linearly dependent on the calibration factor factor because it appears in both a 50

logarithm and in the denominator of the fitness effect ratio. 51

Wetmore et. al. [8] dispensed with the calibration step and still found good 52

estimates of fitness effect. They computed the log-ratio of start-time t0 count to the 53

stop-time tafter count. They added a pseudo-count term to regularize noisy estimates 54

for low counts. These low count observations were filtered out in [10]. 55

ESSENTIALS is a software package developed by [11] that uses Loess [12] 56

normalization followed by the application of edgeR [13], a software package developed 57

for identifying differentially expressed genes from RNA-seq data, to call essential genes. 58

They demonstrated that their package is robust to transposon sequencing technology—a 59

significant benefit as TnSeq experimental methods continue to be revised and improved. 60

DeJesus et. al. [14] developed a full Bayesian model for Tn-seq count data. They 61

approached the problem by defining a Boolean variable to represent whether a gene is 62

essential or non-essential. In their method, the data for a gene includes the number of 63
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insertions, the longest run of non-insertions, and the span of nucleotides of the longest 64

run of non-insertions. This additional information beyond the number of insertion 65

counts is informative and the Bayesian model elegantly incorporates all of the data into 66

a posterior probability of essentiality. 67

Subramaniyam et. al. [15] focuses on fine-resolution mapping of essential regions. 68

Their method applies to transposon libraries constructed with the mariner transposon 69

family which preferentially inserts in TA dinucleotides. Their method models the 70

number of transposon insertions at each TA dinucleotide site rather than aggregating by 71

gene. Because many TA dinucleotide sites are unlikely to harbor any transposon 72

insertions, they employ a zero-inflated negative binomial model to accommodate the 73

many zero counts. It should be noted that [10] and [8] include a normalization for the 74

number of Tn counts at the start of the experiment, but more recent model-based work 75

does not require this normalization [14,15]. 76

Contributions Our work builds upon these previous works in several ways. Like [15], 77

our approach employs a negative binomial generalized linear model to use information 78

from the entire experimental data set rather than using only pairs of experiments. Our 79

model employs a Bayesian prior over coefficients as in [14] that manifests as a 80

regularization term in the regression formulation. Our work differs from these efforts in 81

that we aggregate transposon counts at the gene level in the context of a negative 82

binomial model with nested effects which allows our model to be robust to the 83

transposon library creation method, and we use a joint false discovery rate approach to 84

call essential/dispensable genes. Our contributions are: (1) a regularized negative 85

binomial model with nested effects to estimate the effect of varying environmental 86

conditions in the context of genetic background, (2) the use of both unique Tn 87

insertions and total Tn insertions to improve sensitivity and specificity, (3) the use of a 88

joint local false discovery rate control to call conditionally essential/dispensable genes. 89

Problem statement The goal of this work is to identify all of the genes that are 90

essential or dispensable in the context of a particular combination of genetic background 91

and environmental condition. Let us denote the genetic background of the experiment 92

g ∈ G and the environmental condition e ∈ E . Note that not all pairwise combinations 93

in G × E may be available in a data set. For a given combination (g, e) the data set 94

contains Rge replicate experiments; we index the replicate with r. In experiment 95

(g, e, r), there are Nger observed transposon insertions that are mapped to genes 96

(perhaps excluding some trimmed region around the start and stop codon of the gene). 97

We reduce the raw data to two features for each gene: (1) the total count of insertions 98

and (2) the count of unique insertions. For gene i and experiment (g, e, r), let ytotgeri be 99

the total count of insertions and let yuniqgeri be the count of unique insertions. 100

Let the number of genes under investigation be m = |G|. The null hypothesis (H0) is 101

that a gene is non-essential (not essential or dispensable) and suppose that there is a 102

true number m0 ≤ m of such genes. The goal of our method is to declare some set 103

R ⊆ G to be essential/dispensable such that R contains all of the genes that are truly 104

essential/dispensable and none of the genes that are non-essential. This task is often too 105

challenging and instead a more approachable task is to ensure that the rate of false 106

discoveries in R is bounding in probability. Therefore, the problem is to identify a set R 107

of called essential/dispensable genes such that the false discovery rate is bounded. 108
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Materials and Methods 109

RB-TnSeq experimental methods 110

RB-TnSeq uses a randomly barcoded transposon to amortize the cost of many related 111

experiments [8]. Barcoded transposon donor plasmids are transferred to the cell of 112

interest by either electroporation or conjugation. Subsequently, cells containing 113

plasmids are selected using a selection media, and small aliquots are frozen in 10% 114

glycerol. The frozen aliquot is the mutagenesis libraries used in all experiments. In 115

RB-Tnseq, a sequencing run is done on the libraries to assign each barcode to its 116

genomic location. For subsequent experiments on these libraries, a simple single PCR 117

step is required to amplify and count the barcodes. 118

Read mapping and pre-processing. In this study, we used RB-TnSeq data of 119

Caulobacter crescentus and Pseudomonas fluorescens FW300-N1B4 from Price et. 120

al. [16]. As input we have downloaded all.poolcounts 121

(http://genomics.lbl.gov/supplemental/bigfit/), and generated two different 122

count files from it. The first, labeled “total counts”, are the sum of all insertions 123

aggregated by each gene. The second is the “unique counts”, where instead of using the 124

sum of all insertions, we have used the sum of the number of unique barcodes that have 125

non-zero reads per gene. 126

Tn-seq experimental methods 127

Transposon mutagenesis libraries used in this study were generated as previously 128

described [17]. Briefly, wild-type (wt) and ∆lon Caulobacter crescentus NA1000 strains 129

were grown until mid-log phase, pelleted, washed three times with 10% glycerol, and 130

transformed with EzTn5 <Kan-2> transposomes (Lucigen) by electroporation. 131

Following recovery in PYE, transformed cells were plated on PYE + Kan selection 132

media and grown for 7 days. Colonies were scraped, pooled, and frozen in PYE + 20% 133

glycerol in 1 ml aliquots and frozen for further experiments. For stress condition 134

experiments, 2 aliquots of each library was thawed and separately recovered overnight in 135

2 x 10 ml of PYE in a 30◦C shaker. These saturated cultures were then stressed as 136

described below. All conditions were performed in quadruplicates, optical density (OD) 137

measurements were taken at 600 nm. 138

Control environment. Libraries were back diluted to OD 0.008 into 7 ml of PYE 139

and grown overnight until they reach saturation at OD ∼1.6. 140

Heat shock stress. One ml of the overnight culture was heat-shocked at 42◦C for 141

45 minutes in a heat-block, then back-diluted to OD 0.008 and grown overnight until 142

saturation. 143

L-canavanine. Overnight cultures of cells were back diluted to OD 0.008 in 7 ml of 144

PYE + 100 ug/ml L-canavanine and grown at 30◦C for 90 minutes. After 90 minutes of 145

L-canavanine stress, the cells were spun for 10 minutes at 5000 rpm, washed once with 146

PYE, spun again, then resuspended with 7 ml of PYE, and recovered overnight until 147

they reached saturation. 148

Library preparation Following overnight growth, 1.5 ml of saturated culture from 149

each Tn library was pelleted at 15,000 RPM for 1 minute and gDNA was extracted by 150

MasterPure Complete DNA and RNA purification kit according to manufacturer’s 151

protocol. Sequencing libraries were prepared for Next-generation sequencing via three 152

PCR steps. Indexed libraries were pooled and sequenced at the University of 153

Massachusetts Amherst Genomics Core Facility on a NextSeq 500 (Illumina). 154
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Read mapping and pre-processing Mapping and pre-processing of the Tnseq raw 155

data was done as described previously with some modifications [17]. Briefly, samples 156

were de-multiplexed, and unique molecular identifiers (UMIs) were added during PCR 157

steps removed using Je [18]. Clipped reads mapped to the Caulobacter crescentus 158

NA1000 genome (NCBI Reference Sequence: NC011916.1) using bwa, sorted with 159

samtools [19, 20]. Duplicate transposon reads removed by Je and indexed with 160

samtools. Genome positions are assigned to the 5′ position of transposon insertions 161

using bedtools genomecov [21]. Subsequently, the bedtools map used to count either 162

the total number of transposon insertions per gene using the bedtools map -o sum 163

argument or the unique number of insertions using the bedtools map -o count 164

argument. 165

In-vivo validation Overnight cultures of wild-type and ∆clpA Caulobacter 166

crescentus strains each mixed at a 1:1 ratio with a reporter strain constitutively 167

expressing fluorescent Venus.(CPC798) The mixtures were kept at either 30◦C or 168

heat-shocked at 42◦C for 45 minutes in a thermocycler. After the heat-shock, the 169

mixtures were diluted to 1:4000 in PYE media and allowed to grow for 24 hours (∼ 12 170

doublings) at 30◦C. Number of fluorescent control (Venus) and nonfluorescent tester 171

(WT or ∆clpA) cells were counted in both the initial mixture and after 24 hour growth 172

using phase contrast and fluorescent microscopy. The same tester/control normalization 173

coefficients were used for initial and 24 hour time points for each strain (normalizaton 174

coefficient = 1/(tester/control) at time = 0). and time = 24 by adjusting the time = 0 175

ratios to 1 for each strain. Normalized 24 hour ratios are what we are reporting as 176

competitive index (Figure 6). An index of > 1 means the tester condition were able to 177

grow faster compared to the control and an index of < 1 means the tester grew slower 178

compared to the control. Quantifications of at least 100 cells were performed for each 179

condition with replicates when possible. 180

Regularized negative binomial regression 181

Our approach for integrating all of the experimental data to estimate the effect of the 182

genetic background and the environmental condition is based on a generalized linear 183

model framework. Here, we describe the negative binomial model framework, the nested 184

effects model matrix structure, and the form and rationale for regularization. 185

Negative binomial model The generalized linear model consists of three 186

components: (1) a probability distribution for the sampling error, (2) a model matrix 187

structure, and (3) a link function connecting the expected value of the response to the 188

covariates. It has been observed that Tn-seq count data is often overdispersed and 189

therefore, the data is better fit by a negative binomial distribution rather than a 190

Poisson distribution because of the additional free parameter to allow for a variance 191

that does not directly depend on the mean parameter. The link function that is often 192

chosen for a negative binomial distribution is a log function and we do so here. The 193

generalized linear model takes the form E(yi|x) = f−1(xβ), where yi is the vector of 194

observed Tn counts across all experiments in the data set for gene i, x is the model 195

matrix, β is the vector of parameters, and f−1 is the log link function. 196

Nested effects in generalized linear regression model The model matrix must 197

be designed to specifically address the questions of interest of the data. First, we are 198

interested in the main effect of the genetic background in relation to the wild-type 199

strain. For example, if a there is a drastic reduction in Tn counts in a mutant 200

background relative to wild-type, it indicates that the gene is essential conditional on 201

June 30, 2021 5/17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452443
http://creativecommons.org/licenses/by/4.0/


the strain mutation(s). Likewise if there is a drastic increase in Tn counts in a mutant 202

background relative to wild-type, the gene is likely dispensable conditional on the strain 203

mutation(s). Second, we are interested in the effect of the environmental condition, but 204

only in the context of the genetic background. For example, if there is a reduction in Tn 205

counts in the g = ∆YFG background relative to the wild-type background in rich media 206

growth conditions, but then no change when shifted to a heat-stress, the gene may be 207

viewed as interesting in the genetic background, but not in the conditions specific to 208

heat-stress. One would expect that if a gene is essential in the g = ∆YFG background 209

that it continues to be essential in all environmental conditions — only deviations from 210

that expectation should be flagged as scientifically interesting. These questions of 211

interest logically lead to the consideration of a nested effects model matrix structure: 212

E(yi|x) = f−1(β0 + xgβg + xe|gβe|g), (1)

where xg and xe|g are the standard indicator matrix encodings for the genetic 213

background and nested environmental condition respectively. Note that this nested 214

model matrix structure is different than the one usually employed for modeling 215

interactions in that there is no term corresponding to the main effects of the 216

environmental condition xe. Structuring the model matrix in this way allows the 217

inferential products of the model (the model parameters) to inform the scientifically 218

interesting questions we have of the data. 219

A way to interrogate this data is to observe the baseline number of total and unique 220

insertions in the wild-type background strain with no stress (control). An excess or 221

depletion of insertions in the ∆lon background are viewed as a shift from the control. 222

Finally, an excess or depletion of the stress conditions is viewed relative to the 223

particular background strain the library was created in. This interpretation of the data 224

leads to the nested effects model proposed here.

Background 
strain(g) 

WT 

Environmental 
condition( e) 

control

canavan1ne 

heat shock 

control 

•Ion •

canavan1ne 

heat shock 

Replicate 
experiments( r)

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

Fig 1. Example of nested experimental design of Tn-seq data. Shown are two
background strains: WT and ∆lon, and three nested environmental perturbations:
control, canavanine, heat shock. Each perturbation experiment is replicated four times.

225
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Regularization Estimating the model parameters when the number of transposon 226

count is small has been noted by others and handled either by filtration [10] or the 227

addition of pseudo-counts [8]. The low counts in response variables can result in inflated 228

regression coefficients and are susceptible to very high variance. They also affect false 229

discovery rate procedures increasing the risk of type-I errors. 230

A gene that has zero observed transposon insertions in a condition is considered 231

frankly conditionally essential and a model is not needed to make that decision. 232

Therefore, we filter for genes in the set G \ G0ge where G0ge = {i|min(ȳgei, ȳcontrol,i) < 1} 233

for each genetic backgrounds (g) and environment (e), where ȳgei is the average across 234

replicates. The model is useful only for genes where the conditional essential decision is 235

ambiguous and we restrict the modeling to those genes. 236

For genes that are not frankly essential, we employ a regularization methodology 237

that has proven successful in many statistical contexts and has Bayesian as well as 238

classical statistical rationale [22–24]. Regularization can be viewed as a prior 239

distribution on the regression coefficients, 240

β ∼ Gaussian(λ). (2)

The Gaussian prior converts the maximum likelihood estimation problem for the 241

regression coefficients to a penalized maximum likelihood estimation problem with an 242

L2 norm penalty or equivalently a maximum a-posteriori estimation problem. The 243

parameters for the penalized count regression are estimated by a combination of the 244

iteratively reweighted least squares (IRLS) algorithm and coordinate descent algorithm 245

as implemented in the mpath package [25]. 246

We have found that this regularization effectively shrinks large coefficient estimates 247

due to small Tn counts. However, it does not address situations where there are exactly 248

zero counts. In those cases, our model is not necessary — the gene can be considered 249

conditionally essential in the condition with high confidence. Therefore, we restrict our 250

modeling to genes that have non-zero Tn counts in all experiments in the data set. 251

Local false discovery rate 252

The regularized negative binomial generalized linear model was fit to both the total 253

count data, ytot
i , and the unique count data, yuniq

i independently for each gene i. The 254

next task is to decide if a gene is conditionally essential/dispensable or non-essential. In 255

a generalized linear model the response is conditionally independent of a covariate given 256

all the other covariates in the model if and only if the associated model coefficient is 257

equal to zero (for proof see [26]). Therefore, under the model-based framework testing if 258

a gene is conditionally essential or dispensable is equivalent to testing whether the 259

model coefficient is equal to zero. 260

Under the assumption that a large fraction of the genes under investigation are 261

non-essential, the local false discovery rate can be used to control the proportion of false 262

positives in the set of called essential/dispensable genes [27]. The central idea is to fit a 263

Gaussian distribution to the center of the empirical distribution of coefficients for a 264

given effect across all genes. Genes that have a coefficient that is unlikely under that 265

distribution are called essential/dispensable. There is abundant theory to support the 266

use of this procedure to control the proportion of false discoveries [28–30]. 267

The false discovery rate of the regression coefficient is 268

Fdr(βic) = Prob{gene i is null in condition c | |βic| ≥ β̄} (3)

The local false discovery rate makes use of a mixture model framework with two 269

components. It fits a Gaussian distribution to the center of the empirical distribution of 270

the regression coefficients βic across genes. Genes associated with coefficients that are 271

June 30, 2021 7/17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452443
http://creativecommons.org/licenses/by/4.0/


not attributable to the central Gaussian are called conditionally essential or 272

dispensable [31]. 273

Intersection of marginal local false discovery tests The standard false 274

discovery rate approach only considers the coefficients estimated from one model, 275

however, in our analysis, we estimate coefficients from the model fit to ytot and the 276

model fit to yuniq. Yet, we would like a single decision as to whether the gene is 277

non-essential or not. Our approach is to take the intersection of the decisions from the 278

two models. That is, only genes that are deemed essential/dispensable on the basis of 279

both unique counts and total counts are retained. This approach has the effect of 280

reducing the number of calls and thus the number of false positives. 281

Results 282

We generated simulated data on 4,000 genes under 3 simulated knockout backgrounds 283

and 4 environmental conditions with 5 replicates for each combination of strain 284

background and environment. We compared the fit of the regularized negative binomial 285

model to a zero-inflated negative binomial model of the type used by [15] and to a 286

unregularized negative binomial model [11]. 287

Our method was then applied to two independent data sets using different 288

transposon sequencing methods. First, our method was applied to RB-TnSeq data. 289

This data set explored the essential genes in many organisms across varying carbon 290

sources, nitrogen sources, and environmental stress conditions. We selected only the 291

Caulobacter crescentus data set for this study. The background genotype for all the 292

RB-TnSeq experiments is wild-type so no synthetic lethality combinations are 293

identifiable. Second, our method was applied to Tn-seq data that was collected in our 294

lab. Both wild-type and a ∆lon knockout strain were used as genetic backgrounds for 295

library preparation. These strain pools were subjected to heat-shock stress and 296

canavanine. Each condition was replicated at least two times in biological replicates. 297

Simulation Experiments 298

We simulated samples from total of three background strains (g) with four conditions
(e) and each condition having five replicates (r). First the dispersion parameter was
sampled from a Gamma distribution for each condition and for 8 intervals (l) each
containing 500 genes. The hyper-parameters of the Gamma distribution were drawn
from uniform distributions as

ag ∼ U(0, 5), bg ∼ U(0, 5) for g = 1, 2, 3,

θgel ∼ Gamma(ag, bg) for g = 1, 2, 3, e = 1, . . . , 4, l = 1, . . . , 8.
(4)

The number of unique insertions for each gene was sampled from a negative binomial 299

distribution with mean parameters shared across groups of 500 genes, 300

µ = (0.5, 1, 2, 4, 8, 16, 32, 64), 301

yuniq
gerl ∼ NB(µl, θsl). (5)

This simulation provides the number of unique transposon counts for each gene. For 302

every gene, the total transposon insertion counts were obtained by sampling from a 303

negative binomial distribution with mean µ = 100 and dispersion θ = 1 for each unique 304

insertion site previously generated 305

ytotgeri ∼
yuniq
geri∑
s=1

NB(µ = 100, θ = 1). (6)

June 30, 2021 8/17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452443
http://creativecommons.org/licenses/by/4.0/


Regularized negative binomial model reduces over-fitting Out of 4,000 306

simulated genes, there were 82 for which the regularized negative binomial model fitting 307

algorithm did not converge leaving 3,918 simulated genes for comparison to other 308

algorithms. We observed that for 3,456(86.67%) genes, the regularized negative 309

binomial model had a better fit as measured by residual variance compared to a 310

unregularized negative binomial model [11]. Figure 2 shows the mean counts and the 311

residual variance for each of the 3,918 models. Clearly, the negative binomial model 312

alone fits poorly for low mean count values. Supplementary Figure 1 shows the mean 313

counts and the residual variance for a two condition setup. Even though the regularized 314

negative binomial model has higher variance in the residual variance across genes, on a 315

per-gene basis, the residual variance for the regularized negative binomial model is lower 316

than the zero-inflated negative binomial model and the negative binomial model for the 317

vast majority (86.67%) of genes. 318
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Fig 2. A simple negative binomial model (left) does not fully capture the variance in
genes with low counts. Zero-inflated negative binomial (center) model overfits count
data, attributing almost all variation to strain and conditional effects. As a result,
almost every gene exhibits low residual variance. A regularized negative binomial error
model (right) successfully captured the mean-variance relationship inherent in the data
independent of gene counts. Mean-variance trendline shown in blue for each panel.

Analysis of RB-TnSeq data 319

We fit the regularized negative binomial model to RB-TnSeq data [8]. We selected all 320

Caulobacter crescentus and Pseudomonas fluorescens experiments and grouped the 321

conditions into carbon-source, nitrogen-source, and stress conditions. The stress 322

conditions, such as heat-stress, antibiotic addition, etc, were conducted in rich media 323

(PYE or LB), while the carbon and nitrogen source changes were conducted in minimal 324

media. The control (wild-type, no stress) experiments were conducted in rich media. 325

The lack of replicate experiments in this data set prevents us from inferring 326

high-confidence conditionally essential genes in finer resolution conditions. 327

Caulobacter crescentus results Of the 3,312 genes with at least one transposon 328

insertion, we identified 2/75 (total/unique) as frankly conditionally essential in carbon, 329

5/75 (total/unique) in nitrogen, and 5/75 (total/unique) in stress by the criteria 330

described previously that the average transposon counts in one or more conditions is 331

less than one. Figure 3(A-C) shows the conditionally essential and dispensable genes in 332

each of the conditions considered for this data set (excluding the frankly conditionally 333

essential genes). Each data point is a gene and genes labeled as green diamonds are 334

called conditionally essential/dispensable by the local FDR criterion. It is clear that 335
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many genes are called conditionally essential (decrease in both total and unique 336

transposon insertions) in both the carbon and nitrogen shift conditions. Our hypothesis 337

is that these genes are required for general biosynthetic processes necessary to survive in 338

minimal media conditions. Figure 4(A) shows the intersection of the gene sets identified 339

in these two conditions and the high degree of overlap and the identities of the genes 340

supports this hypothesis. 341
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Fig 3. Conditionally essential/dispensable genes in the published RB-TnSeq data set
for Caulobacter crescentus NA1000 (A-C) and Pseudomonas fluorescens
FW300-N1B4 (D-F) [8].

342
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Fig 4. Venn diagram showing a high degree of overlap between genes identified in
carbon and nitrogen shift conditions in Caulobacter crescentus NA1000 (A) and
Pseudomonas fluorescens FW300-N1B4 (B) indicating genes involved in the shift to
minimal media are identified.

In total there are 21 conditionally essential/dispensable genes by total insertion 343

counts and 2 conditionally essential/dispensable genes by unique insertion counts for 344

the stress condition. The two genes that are conditionally essential by unique counts: 345

CCNA 03859 (cenR), known to be critical for envelope maintenance [32], and 346

CCNA 03346 ruvC, a nuclease important for homologous recombination. Because so 347

many of the tested stresses involve the cell envelope either directly (ethanol, polymyxin, 348

etc) or indirectly rely on components in the cell envelope (drug transporters), it is not 349
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surprising that a cell envelope maintenance gene like cenR would be important for many 350

of these stresses. Because many stresses also lead to DNA damage (cisplatin, metals, 351

etc) we reason that the conditional essential nature of ruvC stems from its crucial role 352

in resolving crossover junctions, a critical step for DNA damage repair by homologous 353

recombination [33]. 354

Pseudomonas fluorescens results No genes were identified as frankly 355

conditionally essential by the criteria described previously. Figure 3(D-E) shows the 356

conditionally essential and dispensable genes as identified by the mode in each of the 357

conditions considered for this data set. There are two conditionally dispensable genes 358

and one conditionally essential gene by both measures of total insertion counts and 359

unique insertion counts for the stress condition. First, a conditionally dispensable gene, 360

Pf1N1B4 2858 (CbrB), is a two-component sensor needed for cells to use a variety of 361

carbon or nitrogen sources [34]. The second conditionally dispensable gene is 362

Pf1N1B4 1906, a Shikimate 5-dehydrogenase which would influence synthesis of 363

aromatic amino acids. The conditionally essential gene is Pf1N1B4 2106, also known as 364

OxyR, a hydrogen peroxide-inducible transcriptional activator which controls expression 365

of oxidative stress response proteins. The conditional essentiality of this gene makes 366

mechanistic sense because many of the stress conditions impact the oxidative stress 367

system. 368

Analysis of Tn-seq data 369

We fit the regularized negative binomial model to our own Tn-seq data on Caulobacter 370

crescentus experiments described previously. Of the 4,084 genes with at least one 371

transposon insertion, we identified 337/395 (total/unique) as frankly conditionally 372

essential in heat shock, 285/323 (total/unique) in canavanine, 304/348 (total/unique) in 373

∆lon, 296/334 (total/unique) in ∆lon+heat shock, and 311/346 (total/unique) in 374

∆lon+canavanine by the criteria described previously that the average transposon 375

counts in in the condition or control is less than one. Figure 5 shows the conditionally 376

essential and dispensable genes in each of the conditions considered for this data set 377

(excluding the frankly conditionally essential genes). Each data point is a gene and 378

genes labeled as triangles are called conditionally essential/dispensable by the local 379

FDR criterion. 380

Conditionally Essential Genes In wildtype strains under heat stress conditions, 381

we found four genes that are conditionally essential. One of these (metK ) is a known 382

substrate of the chaperone GroEL [35], suggesting that during heat stress prolific 383

misfolding of MetK could result in a higher need for the metK gene in Caulobacter. 384

Under canavanine conditions, there is only one gene found essential in this condition, 385

the katG gene, a peroxidase-catalase gene that is critical for oxidative tolerance in 386

stationary phase [36]. Neither of these genes seem to be conditionally essential during 387

stress conditions for cells lacking the Lon protease, suggesting that these mutant strains 388

respond differently to protein homeostasis stresses. 389

Conditionally Dispensable Genes We found twelve genes that were conditionally 390

dispensable during heat stress and eight during canavanine stress in wildtype strains. 391

For those dispensable during heat stress, we were intrigued to find katG as well, 392

suggesting that while katG is important for tolerating canavanine induced protein 393

misfolding, its presence confers less fitness when cells are subject to heat stress. We 394

note that during canavanine stress, the dksA gene becomes dispensable. dksA was 395

identified as a multicopy suppressor of growth defects stemming from loss of the DnaK 396
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Fig 5. Analysis of transposon sequencing data of Caulobacter crescentus. Shown are
the regularized model coefficients for the genetic background effect for ∆lon and the
nested environmental conditions: heat shock and canavanine for total count and unique
count data.

chaperone and it is known to inhibit ribosome synthesis [37], suggesting a strong role in 397

protoestasis. We speculate that loss of dksA may guard against protein misfolding stress 398

resulting from canavanine misincorporation, or improve ribosome capacity which is 399

taxed due to misincorporation of canavanine. Again, while we see similar numbers of 400

genes being conditionally dispensable in cells lacking Lon under these stress conditions, 401

there is no overlap in the sets, suggesting a different program in place for stress response. 402

Validation Experiments Our model has identified clpA to be conditionally 403

dispensable by both measures of total and unique counts in the wt background under 404

heat stress.To validate this we performed competitive mutant fitness assays comparing 405

the growth rate of wt and ∆clpA in competition with a wt strain constitutively 406

expressing the fluorescent reporter, Venus. The competition assay results in Figure 6 407

shows that heat-stress (42◦C) compensates for the fitness defect caused by the loss of 408

clpA under normal conditions (30◦C) across three biological replicates. 409

Conclusion 410

We have presented a model-based method that uses regularized negative binomial 411

regression to estimate the change in transposon insertions attributable to 412

gene-environment changes without transformations or uniform normalization. 413

Simulation experiments indicate that the regularized negative binomial model performs 414

well without over-fitting. When applied to RB-TnSeq and Tn-Seq using both total and 415

unique data. The model able to identify sets of conditionally essential/dispensible genes 416

for each perturbation that shed light on their functions and roles during various stress 417

conditions. 418
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Supplementary Figure 1. Comparison of regularized negative binomial model(right)
for the two-condition setup with a simple negative binomial model (left) and
Zero-inflated negative binomial (center).
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