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Abstract

The understanding of bacterial gene function has been greatly enhanced by recent
advancements in the deep sequencing of microbial genomes. Transposon insertion
sequencing methods combines next-generation sequencing techniques with transposon
mutagenesis for the exploration of the essentiality of genes under different
environmental conditions. We propose a model-based method that uses regularized
negative binomial regression to estimate the change in transposon insertions
attributable to gene-environment changes without transformations or uniform
normalization. An empirical Bayes model for estimating the local false discovery rate
combines unique and total count information to test for genes that show a statistically
significant change in transposon counts. When applied to RB-TnSeq (randomized
barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in
strains of Caulobacter crescentus using both total and unique count data the model was
able to identify a set of conditionally essential genes for each target condition that shed
light on their functions and roles during various stress conditions.

Author summary

Transposon insertion sequencing allows the study of bacterial gene function by
combining next-generation sequencing techniques with transposon mutagenesis under
different genetic and environmental perturbations. Our proposed regularized negative
binomial regression method improves the quality of analysis of this data.

Introduction

A central question in molecular genetics is, What genes are essential for life? Prior to
the advent of high-throughput technology this question was addressed by mutagenesis
and fine mapping [1,[2]. The simplicity of homologous recombination in S. cerevisiae
allowed for the generation of a complete mutant library containing strains each with a
complete knockout of a single gene and tagged with a unique genetic barcode [3].
Subsequent analysis of this library by custom microarrays and sequencing revealed
genes essential for growth in rich media as well as conditionally essential genes — genes
that are dispensable in rich media, but are essential in different environmental
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conditions [3H5]. However, generating a mutant pool from individual genetic knockout
strains is labor-intensive and not feasible in organisms for which homologous
recombination is inefficient. Transposon sequencing (Tn-seq) methods have alleviated
this problem and provide a powerful method for identifying essential and dispensable
genes under a variety of environmental conditions and genetic backgrounds.

Transposon Sequencing Transposon sequencing uses a modified transposon to
generate a saturation mutant library of a background strain of interest. Each
transposon has a selectable marker; a unique, random DNA barcode (in some cases);
and loci for PCR amplification that can be used to identify the DNA adjacent to the
transposon insertion site [6}7]. Once the transposon mutant library is generated, it can
be grown in various environmental conditions of interest. Strains that have a fitness
defect due to the transposon insertion grow more slowly or not at all. The abundance of
the transposon insertion mutant strain in the library can be assayed by sequencing the
library after growth and counting the reads that map to a particular insertion site. For
each gene, the change in the count of sequenced transposon insertions between the
control and the perturbed environment can be used to identify conditionally essential or
conditionally dispensable genes.

Since the introduction of the original Tn-seq method, many variations have been
developed to facilitate the study of a wider range of organisms or to improve
efficiency [6]. Random-barcode transposon sequencing amortizes the cost of multiple
environmental perturbation experiments by doing the expensive mapping of transposon
insertion site to random barcodes once and then using that mapping for all future
experiments [8]. Transposon sequencing technology addresses the time consuming and
often technically challenging process of generating one-at-a-time gene deletions by using
parallel mutagenesis and counting-by-sequencing [9]. But, this technology has
introduced a new, statistical problem. How can the transposon count data be used to
test the hypothesis that a gene is essential such that all of, and only, the
essential /dispensable genes are identified?

Related Work There are several existing statistical approaches for analyzing
transposon sequencing data. van Opijnen et al. [10] used several normalization steps to
compute a ratio of the fold-expansion of the mutant relative to the rest of the
population. Then, a t-test with a Bonferroni correction was used for each gene to decide
if a change in the fitness statistic is significant. This type of normalization renders the
statistic independent of growth duration, but requires an additional calibration
experiment to estimate an expansion factor which measures the growth of the bacterial
population during library selection. Despite these benefits, the fitness effect estimator is
non-linearly dependent on the calibration factor factor because it appears in both a
logarithm and in the denominator of the fitness effect ratio.

Wetmore et. al. [8] dispensed with the calibration step and still found good
estimates of fitness effect. They computed the log-ratio of start-time ¢y count to the
stop-time t, f¢er count. They added a pseudo-count term to regularize noisy estimates
for low counts. These low count observations were filtered out in [10].

ESSENTIALS is a software package developed by [11] that uses Loess [12]
normalization followed by the application of edgeR [13|, a software package developed

for identifying differentially expressed genes from RNA-seq data, to call essential genes.

They demonstrated that their package is robust to transposon sequencing technology—a

significant benefit as TnSeq experimental methods continue to be revised and improved.

DeJesus et. al. [14] developed a full Bayesian model for Tn-seq count data. They
approached the problem by defining a Boolean variable to represent whether a gene is
essential or non-essential. In their method, the data for a gene includes the number of
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insertions, the longest run of non-insertions, and the span of nucleotides of the longest
run of non-insertions. This additional information beyond the number of insertion
counts is informative and the Bayesian model elegantly incorporates all of the data into
a posterior probability of essentiality.

Subramaniyam et. al. [15] focuses on fine-resolution mapping of essential regions.
Their method applies to transposon libraries constructed with the mariner transposon
family which preferentially inserts in TA dinucleotides. Their method models the
number of transposon insertions at each TA dinucleotide site rather than aggregating by
gene. Because many TA dinucleotide sites are unlikely to harbor any transposon
insertions, they employ a zero-inflated negative binomial model to accommodate the
many zero counts. It should be noted that [10] and [8] include a normalization for the
number of Tn counts at the start of the experiment, but more recent model-based work
does not require this normalization [14}/15].

Contributions Our work builds upon these previous works in several ways. Like [15],
our approach employs a negative binomial generalized linear model to use information
from the entire experimental data set rather than using only pairs of experiments. Our
model employs a Bayesian prior over coefficients as in [14] that manifests as a
regularization term in the regression formulation. Our work differs from these efforts in
that we aggregate transposon counts at the gene level in the context of a negative
binomial model with nested effects which allows our model to be robust to the
transposon library creation method, and we use a joint false discovery rate approach to
call essential/dispensable genes. Our contributions are: (1) a regularized negative
binomial model with nested effects to estimate the effect of varying environmental
conditions in the context of genetic background, (2) the use of both unique Tn
insertions and total Tn insertions to improve sensitivity and specificity, (3) the use of a
joint local false discovery rate control to call conditionally essential/dispensable genes.

Problem statement The goal of this work is to identify all of the genes that are
essential or dispensable in the context of a particular combination of genetic background
and environmental condition. Let us denote the genetic background of the experiment
g € G and the environmental condition e € £. Note that not all pairwise combinations
in G x £ may be available in a data set. For a given combination (g, e¢) the data set
contains R4 replicate experiments; we index the replicate with r. In experiment
(g,e,7), there are Ny, observed transposon insertions that are mapped to genes
(perhaps excluding some trimmed region around the start and stop codon of the gene).
We reduce the raw data to two features for each gene: (1) the total count of insertions
and (2) the count of unique insertions. For gene 4 and experiment (g, e,r), let y;‘;';l be
the total count of insertions and let y;;l? be the count of unique insertions.

Let the number of genes under investigation be m = |G|. The null hypothesis (Hy) is
that a gene is non-essential (not essential or dispensable) and suppose that there is a
true number my < m of such genes. The goal of our method is to declare some set
R C G to be essential/dispensable such that R contains all of the genes that are truly
essential /dispensable and none of the genes that are non-essential. This task is often too
challenging and instead a more approachable task is to ensure that the rate of false
discoveries in R is bounding in probability. Therefore, the problem is to identify a set R
of called essential/dispensable genes such that the false discovery rate is bounded.
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Materials and Methods

RB-TnSeq experimental methods

RB-TnSeq uses a randomly barcoded transposon to amortize the cost of many related
experiments [§]. Barcoded transposon donor plasmids are transferred to the cell of
interest by either electroporation or conjugation. Subsequently, cells containing
plasmids are selected using a selection media, and small aliquots are frozen in 10%
glycerol. The frozen aliquot is the mutagenesis libraries used in all experiments. In
RB-Tnseq, a sequencing run is done on the libraries to assign each barcode to its
genomic location. For subsequent experiments on these libraries, a simple single PCR
step is required to amplify and count the barcodes.

Read mapping and pre-processing. In this study, we used RB-TnSeq data of
Caulobacter crescentus and Pseudomonas fluorescens FW300-N1B/ from Price et.

al. |16]. As input we have downloaded all.poolcounts
(http://genomics.1bl.gov/supplemental/bigfit/), and generated two different
count files from it. The first, labeled “total counts”, are the sum of all insertions
aggregated by each gene. The second is the “unique counts”, where instead of using the
sum of all insertions, we have used the sum of the number of unique barcodes that have
non-zero reads per gene.

Tn-seq experimental methods

Transposon mutagenesis libraries used in this study were generated as previously
described [17]. Briefly, wild-type (wt) and Alon Caulobacter crescentus NA1000 strains
were grown until mid-log phase, pelleted, washed three times with 10% glycerol, and
transformed with EzTn5 <Kan-2> transposomes (Lucigen) by electroporation.
Following recovery in PYE, transformed cells were plated on PYE + Kan selection
media and grown for 7 days. Colonies were scraped, pooled, and frozen in PYE + 20%
glycerol in 1 ml aliquots and frozen for further experiments. For stress condition
experiments, 2 aliquots of each library was thawed and separately recovered overnight in
2 x 10 ml of PYE in a 30°C shaker. These saturated cultures were then stressed as
described below. All conditions were performed in quadruplicates, optical density (OD)
measurements were taken at 600 nm.

Control environment. Libraries were back diluted to OD 0.008 into 7 ml of PYE
and grown overnight until they reach saturation at OD ~1.6.

Heat shock stress. One ml of the overnight culture was heat-shocked at 42°C for
45 minutes in a heat-block, then back-diluted to OD 0.008 and grown overnight until
saturation.

L-canavanine. Overnight cultures of cells were back diluted to OD 0.008 in 7 ml of
PYE + 100 ug/ml L-canavanine and grown at 30°C for 90 minutes. After 90 minutes of
L-canavanine stress, the cells were spun for 10 minutes at 5000 rpm, washed once with
PYE, spun again, then resuspended with 7 ml of PYE, and recovered overnight until
they reached saturation.

Library preparation Following overnight growth, 1.5 ml of saturated culture from
each Tn library was pelleted at 15,000 RPM for 1 minute and gDNA was extracted by
MasterPure Complete DNA and RNA purification kit according to manufacturer’s
protocol. Sequencing libraries were prepared for Next-generation sequencing via three
PCR steps. Indexed libraries were pooled and sequenced at the University of
Massachusetts Amherst Genomics Core Facility on a NextSeq 500 (Illumina).
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Read mapping and pre-processing Mapping and pre-processing of the Tnseq raw
data was done as described previously with some modifications [17]. Briefly, samples
were de-multiplexed, and unique molecular identifiers (UMIs) were added during PCR
steps removed using Je [18]. Clipped reads mapped to the Caulobacter crescentus
NA1000 genome (NCBI Reference Sequence: NC011916.1) using bwa, sorted with
samtools [19,20]. Duplicate transposon reads removed by Je and indexed with
samtools. Genome positions are assigned to the 5’ position of transposon insertions
using bedtools genomecov [21]. Subsequently, the bedtools map used to count either
the total number of transposon insertions per gene using the bedtools map -o sum
argument or the unique number of insertions using the bedtools map -o count
argument.

In-vivo validation Overnight cultures of wild-type and AclpA Caulobacter
crescentus strains each mixed at a 1:1 ratio with a reporter strain constitutively
expressing fluorescent Venus.(CPC798) The mixtures were kept at either 30°C or
heat-shocked at 42°C for 45 minutes in a thermocycler. After the heat-shock, the
mixtures were diluted to 1:4000 in PYE media and allowed to grow for 24 hours (~ 12
doublings) at 30°C. Number of fluorescent control (Venus) and nonfluorescent tester
(WT or AclpA) cells were counted in both the initial mixture and after 24 hour growth
using phase contrast and fluorescent microscopy. The same tester/control normalization
coefficients were used for initial and 24 hour time points for each strain (normalizaton
coefficient = 1/(tester/control) at time = 0). and time = 24 by adjusting the time = 0
ratios to 1 for each strain. Normalized 24 hour ratios are what we are reporting as
competitive index (Figure 6). An index of > 1 means the tester condition were able to
grow faster compared to the control and an index of < 1 means the tester grew slower
compared to the control. Quantifications of at least 100 cells were performed for each
condition with replicates when possible.

Regularized negative binomial regression

Our approach for integrating all of the experimental data to estimate the effect of the
genetic background and the environmental condition is based on a generalized linear
model framework. Here, we describe the negative binomial model framework, the nested
effects model matrix structure, and the form and rationale for regularization.

Negative binomial model The generalized linear model consists of three
components: (1) a probability distribution for the sampling error, (2) a model matrix
structure, and (3) a link function connecting the expected value of the response to the
covariates. It has been observed that Tn-seq count data is often overdispersed and
therefore, the data is better fit by a negative binomial distribution rather than a
Poisson distribution because of the additional free parameter to allow for a variance
that does not directly depend on the mean parameter. The link function that is often
chosen for a negative binomial distribution is a log function and we do so here. The
generalized linear model takes the form E(y;|x) = f~1(x3), where y; is the vector of
observed Tn counts across all experiments in the data set for gene i, x is the model
matrix, 3 is the vector of parameters, and f~! is the log link function.

Nested effects in generalized linear regression model The model matrix must
be designed to specifically address the questions of interest of the data. First, we are
interested in the main effect of the genetic background in relation to the wild-type
strain. For example, if a there is a drastic reduction in Tn counts in a mutant
background relative to wild-type, it indicates that the gene is essential conditional on

June 30, 2021

155

156

157

158

159

160

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201


https://doi.org/10.1101/2021.07.15.452443
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452443; this version posted July 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

the strain mutation(s). Likewise if there is a drastic increase in Tn counts in a mutant
background relative to wild-type, the gene is likely dispensable conditional on the strain
mutation(s). Second, we are interested in the effect of the environmental condition, but
only in the context of the genetic background. For example, if there is a reduction in Tn
counts in the ¢ = AYFG background relative to the wild-type background in rich media
growth conditions, but then no change when shifted to a heat-stress, the gene may be
viewed as interesting in the genetic background, but not in the conditions specific to
heat-stress. One would expect that if a gene is essential in the ¢ = AYFG background
that it continues to be essential in all environmental conditions — only deviations from
that expectation should be flagged as scientifically interesting. These questions of
interest logically lead to the consideration of a nested effects model matrix structure:

E(Yi|x) = fﬁl(ﬂo + Xgﬂg + Xe\gﬂelg)v (1)

where x, and x,|, are the standard indicator matrix encodings for the genetic
background and nested environmental condition respectively. Note that this nested
model matrix structure is different than the one usually employed for modeling
interactions in that there is no term corresponding to the main effects of the
environmental condition x.. Structuring the model matrix in this way allows the
inferential products of the model (the model parameters) to inform the scientifically
interesting questions we have of the data.

A way to interrogate this data is to observe the baseline number of total and unique
insertions in the wild-type background strain with no stress (control). An excess or
depletion of insertions in the Alon background are viewed as a shift from the control.
Finally, an excess or depletion of the stress conditions is viewed relative to the
particular background strain the library was created in. This interpretation of the data
leads to the nested effects model proposed here.

Replicate
Environmental experiments(r)
condition(e)
Background 1
strain(g) 2
_ control - 3
4
1
) 2
WT canavanine 3
4
1
heat shock ———— g
4
1
2
_ control - 3
e 4
. 2
Alon canavanine 3
AN 4
AN
\\ 1
~ heat shock ;
4

Fig 1. Example of nested experimental design of Tn-seq data. Shown are two
background strains: WT and Alon, and three nested environmental perturbations:
control, canavanine, heat shock. Each perturbation experiment is replicated four times.
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Regularization Estimating the model parameters when the number of transposon
count is small has been noted by others and handled either by filtration [10] or the
addition of pseudo-counts [8]. The low counts in response variables can result in inflated
regression coefficients and are susceptible to very high variance. They also affect false
discovery rate procedures increasing the risk of type-I errors.

A gene that has zero observed transposon insertions in a condition is considered
frankly conditionally essential and a model is not needed to make that decision.
Therefore, we filter for genes in the set G\ gge where Q_ge = {i| min(Zgei, Yeontrol,i) < 1}
for each genetic backgrounds (g) and environment (e), where gg.; is the average across
replicates. The model is useful only for genes where the conditional essential decision is
ambiguous and we restrict the modeling to those genes.

For genes that are not frankly essential, we employ a regularization methodology
that has proven successful in many statistical contexts and has Bayesian as well as
classical statistical rationale [2224]. Regularization can be viewed as a prior
distribution on the regression coefficients,

B ~ Gaussian(A). (2)

The Gaussian prior converts the maximum likelihood estimation problem for the
regression coefficients to a penalized maximum likelihood estimation problem with an
Ly norm penalty or equivalently a maximum a-posteriori estimation problem. The
parameters for the penalized count regression are estimated by a combination of the
iteratively reweighted least squares (IRLS) algorithm and coordinate descent algorithm
as implemented in the mpath package |25].

We have found that this regularization effectively shrinks large coefficient estimates
due to small Tn counts. However, it does not address situations where there are exactly
zero counts. In those cases, our model is not necessary — the gene can be considered
conditionally essential in the condition with high confidence. Therefore, we restrict our
modeling to genes that have non-zero Tn counts in all experiments in the data set.

Local false discovery rate

The regularized negative binomial generalized linear model was fit to both the total
count data, y!°!, and the unique count data, y;™? independently for each gene i. The
next task is to decide if a gene is conditionally essential/dispensable or non-essential. In
a generalized linear model the response is conditionally independent of a covariate given
all the other covariates in the model if and only if the associated model coefficient is
equal to zero (for proof see |26]). Therefore, under the model-based framework testing if
a gene is conditionally essential or dispensable is equivalent to testing whether the
model coefficient is equal to zero.

Under the assumption that a large fraction of the genes under investigation are
non-essential, the local false discovery rate can be used to control the proportion of false
positives in the set of called essential/dispensable genes [27]. The central idea is to fit a
Gaussian distribution to the center of the empirical distribution of coefficients for a
given effect across all genes. Genes that have a coefficient that is unlikely under that
distribution are called essential/dispensable. There is abundant theory to support the
use of this procedure to control the proportion of false discoveries [28-30].

The false discovery rate of the regression coefficient is

Fdr(B;.) = Prob{gene i is null in condition ¢ | |B;.| > 3} (3)

The local false discovery rate makes use of a mixture model framework with two
components. It fits a Gaussian distribution to the center of the empirical distribution of
the regression coefficients ;. across genes. Genes associated with coefficients that are
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not attributable to the central Gaussian are called conditionally essential or 272
dispensable [31]. 2
Intersection of marginal local false discovery tests The standard false 274
discovery rate approach only considers the coefficients estimated from one model, 215
however, in our analysis, we estimate coefficients from the model fit to y** and the 216
model fit to y"™4, Yet, we would like a single decision as to whether the gene is 217

non-essential or not. Our approach is to take the intersection of the decisions from the s
two models. That is, only genes that are deemed essential/dispensable on the basis of 2

both unique counts and total counts are retained. This approach has the effect of 280
reducing the number of calls and thus the number of false positives. 281
Results -
We generated simulated data on 4,000 genes under 3 simulated knockout backgrounds 2
and 4 environmental conditions with 5 replicates for each combination of strain 284
background and environment. We compared the fit of the regularized negative binomial s
model to a zero-inflated negative binomial model of the type used by [15] and to a 286
unregularized negative binomial model [11]. 287

Our method was then applied to two independent data sets using different 288
transposon sequencing methods. First, our method was applied to RB-TnSeq data. 280
This data set explored the essential genes in many organisms across varying carbon 200
sources, nitrogen sources, and environmental stress conditions. We selected only the 201
Caulobacter crescentus data set for this study. The background genotype for all the 202
RB-TnSeq experiments is wild-type so no synthetic lethality combinations are 203

identifiable. Second, our method was applied to Tn-seq data that was collected in our 2
lab. Both wild-type and a Alon knockout strain were used as genetic backgrounds for 2

library preparation. These strain pools were subjected to heat-shock stress and 206
canavanine. Each condition was replicated at least two times in biological replicates. 207
Simulation Experiments 208

We simulated samples from total of three background strains (g) with four conditions
(e) and each condition having five replicates (r). First the dispersion parameter was
sampled from a Gamma distribution for each condition and for 8 intervals (1) each
containing 500 genes. The hyper-parameters of the Gamma distribution were drawn
from uniform distributions as

ag ~ U(0,5), by ~U(0,5) for g=1,2,3, )

Oger ~ Gammal(agy, by) forg=1,2,3,e=1,...,4,l=1,...,8.
The number of unique insertions for each gene was sampled from a negative binomial 20
distribution with mean parameters shared across groups of 500 genes, 300
w=1(0.5,1,2,4,8,16,32,64), 301
Ygert ~ NB(w, 0s1). (5)
This simulation provides the number of unique transposon counts for each gene. For 302
every gene, the total transposon insertion counts were obtained by sampling from a 303
negative binomial distribution with mean p = 100 and dispersion 6 = 1 for each unique 30
insertion site previously generated 305
uniq
geri
Yk ~ Y NB(u=100,0 = 1). (6)
s=1
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Regularized negative binomial model reduces over-fitting Out of 4,000
simulated genes, there were 82 for which the regularized negative binomial model fitting
algorithm did not converge leaving 3,918 simulated genes for comparison to other
algorithms. We observed that for 3,456(86.67%) genes, the regularized negative
binomial model had a better fit as measured by residual variance compared to a
unregularized negative binomial model [11]. Figure 2| shows the mean counts and the
residual variance for each of the 3,918 models. Clearly, the negative binomial model
alone fits poorly for low mean count values. Supplementary Figure [1| shows the mean
counts and the residual variance for a two condition setup. Even though the regularized
negative binomial model has higher variance in the residual variance across genes, on a
per-gene basis, the residual variance for the regularized negative binomial model is lower
than the zero-inflated negative binomial model and the negative binomial model for the
vast majority (86.67%) of genes.

Negative Binomial Model Zero Inflated Negative Binomial Model Regularized Negative Binomial Model

Residual Variance

[ 2500 5000 7500 10000 [ 10000 [ 2500 5000 7500 10600

2500 5000 500
Total Count Gene Mean

1] S == = ]/'—"_—\_/"
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3 % E) 7 1% 3 3 EY 7 150 [ 3 E) 7 150
Unique Count Gene Mean

Fig 2. A simple negative binomial model (left) does not fully capture the variance in
genes with low counts. Zero-inflated negative binomial (center) model overfits count
data, attributing almost all variation to strain and conditional effects. As a result,
almost every gene exhibits low residual variance. A regularized negative binomial error
model (right) successfully captured the mean-variance relationship inherent in the data
independent of gene counts. Mean-variance trendline shown in blue for each panel.

Analysis of RB-TnSeq data

We fit the regularized negative binomial model to RB-TnSeq data [8]. We selected all
Caulobacter crescentus and Pseudomonas fluorescens experiments and grouped the
conditions into carbon-source, nitrogen-source, and stress conditions. The stress
conditions, such as heat-stress, antibiotic addition, etc, were conducted in rich media
(PYE or LB), while the carbon and nitrogen source changes were conducted in minimal
media. The control (wild-type, no stress) experiments were conducted in rich media.
The lack of replicate experiments in this data set prevents us from inferring
high-confidence conditionally essential genes in finer resolution conditions.

Caulobacter crescentus results Of the 3,312 genes with at least one transposon
insertion, we identified 2/75 (total/unique) as frankly conditionally essential in carbon,
5/75 (total/unique) in nitrogen, and 5/75 (total/unique) in stress by the criteria
described previously that the average transposon counts in one or more conditions is
less than one. Figure A—C) shows the conditionally essential and dispensable genes in
each of the conditions considered for this data set (excluding the frankly conditionally
essential genes). Each data point is a gene and genes labeled as green diamonds are
called conditionally essential/dispensable by the local FDR criterion. It is clear that
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many genes are called conditionally essential (decrease in both total and unique
transposon insertions) in both the carbon and nitrogen shift conditions. Our hypothesis
is that these genes are required for general biosynthetic processes necessary to survive in
minimal media conditions. Figure A) shows the intersection of the gene sets identified
in these two conditions and the high degree of overlap and the identities of the genes
supports this hypothesis.
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Fig 3. Conditionally essential/dispensable genes in the published RB-TnSeq data set
for Caulobacter crescentus NA1000(A-C) and Pseudomonas fluorescens
FW300-N1B4(D-F) [g].

A Carbon Nitrogen B Carbon Nitrogen

10.92% 8.4% 20.93% 6.98%

Fig 4. Venn diagram showing a high degree of overlap between genes identified in
carbon and nitrogen shift conditions in Caulobacter crescentus NA1000 (A) and
Pseudomonas fluorescens FW300-N1B/ (B) indicating genes involved in the shift to
minimal media are identified.

In total there are 21 conditionally essential/dispensable genes by total insertion
counts and 2 conditionally essential/dispensable genes by unique insertion counts for
the stress condition. The two genes that are conditionally essential by unique counts:
CCNA_03859 (cenR), known to be critical for envelope maintenance [32], and
CCNA _03346 ruvC, a nuclease important for homologous recombination. Because so
many of the tested stresses involve the cell envelope either directly (ethanol, polymyxin,
etc) or indirectly rely on components in the cell envelope (drug transporters), it is not
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surprising that a cell envelope maintenance gene like cenR would be important for many
of these stresses. Because many stresses also lead to DNA damage (cisplatin, metals,
etc) we reason that the conditional essential nature of ruvC stems from its crucial role
in resolving crossover junctions, a critical step for DNA damage repair by homologous
recombination [33].

Pseudomonas fluorescens results No genes were identified as frankly
conditionally essential by the criteria described previously. Figure (D—E) shows the
conditionally essential and dispensable genes as identified by the mode in each of the
conditions considered for this data set. There are two conditionally dispensable genes
and one conditionally essential gene by both measures of total insertion counts and
unique insertion counts for the stress condition. First, a conditionally dispensable gene,
PfIN1B4.2858 (CbrB), is a two-component sensor needed for cells to use a variety of
carbon or nitrogen sources [34]. The second conditionally dispensable gene is
PfIN1B4.1906, a Shikimate 5-dehydrogenase which would influence synthesis of
aromatic amino acids. The conditionally essential gene is Pf1IN1B4_2106, also known as
OxyR, a hydrogen peroxide-inducible transcriptional activator which controls expression
of oxidative stress response proteins. The conditional essentiality of this gene makes
mechanistic sense because many of the stress conditions impact the oxidative stress
system.

Analysis of Tn-seq data

We fit the regularized negative binomial model to our own Tn-seq data on Caulobacter
crescentus experiments described previously. Of the 4,084 genes with at least one
transposon insertion, we identified 337/395 (total/unique) as frankly conditionally
essential in heat shock, 285/323 (total/unique) in canavanine, 304/348 (total/unique) in
Alon, 296/334 (total/unique) in Alon+heat shock, and 311/346 (total/unique) in
Alon+canavanine by the criteria described previously that the average transposon
counts in in the condition or control is less than one. Figure [f] shows the conditionally
essential and dispensable genes in each of the conditions considered for this data set
(excluding the frankly conditionally essential genes). Each data point is a gene and
genes labeled as triangles are called conditionally essential /dispensable by the local
FDR criterion.

Conditionally Essential Genes In wildtype strains under heat stress conditions,
we found four genes that are conditionally essential. One of these (metK) is a known
substrate of the chaperone GroEL [35], suggesting that during heat stress prolific
misfolding of MetK could result in a higher need for the metK gene in Caulobacter.
Under canavanine conditions, there is only one gene found essential in this condition,
the katG gene, a peroxidase-catalase gene that is critical for oxidative tolerance in
stationary phase [36]. Neither of these genes seem to be conditionally essential during
stress conditions for cells lacking the Lon protease, suggesting that these mutant strains
respond differently to protein homeostasis stresses.

Conditionally Dispensable Genes We found twelve genes that were conditionally
dispensable during heat stress and eight during canavanine stress in wildtype strains.
For those dispensable during heat stress, we were intrigued to find katG as well,
suggesting that while katG is important for tolerating canavanine induced protein
misfolding, its presence confers less fitness when cells are subject to heat stress. We
note that during canavanine stress, the dksA gene becomes dispensable. dksA was
identified as a multicopy suppressor of growth defects stemming from loss of the DnaK
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Fig 5. Analysis of transposon sequencing data of Caulobacter crescentus. Shown are
the regularized model coefficients for the genetic background effect for Alon and the
nested environmental conditions: heat shock and canavanine for total count and unique
count data.

chaperone and it is known to inhibit ribosome synthesis |37], suggesting a strong role in
protoestasis. We speculate that loss of dksA may guard against protein misfolding stress
resulting from canavanine misincorporation, or improve ribosome capacity which is
taxed due to misincorporation of canavanine. Again, while we see similar numbers of
genes being conditionally dispensable in cells lacking Lon under these stress conditions,

there is no overlap in the sets, suggesting a different program in place for stress response.

Validation Experiments Our model has identified clpA to be conditionally
dispensable by both measures of total and unique counts in the wt background under
heat stress.To validate this we performed competitive mutant fitness assays comparing
the growth rate of wt and AclpA in competition with a wt strain constitutively
expressing the fluorescent reporter, Venus. The competition assay results in Figure [f]
shows that heat-stress (42°C) compensates for the fitness defect caused by the loss of
clpA under normal conditions (30°C) across three biological replicates.

Conclusion

We have presented a model-based method that uses regularized negative binomial
regression to estimate the change in transposon insertions attributable to
gene-environment changes without transformations or uniform normalization.
Simulation experiments indicate that the regularized negative binomial model performs
well without over-fitting. When applied to RB-TnSeq and Tn-Seq using both total and
unique data. The model able to identify sets of conditionally essential/dispensible genes
for each perturbation that shed light on their functions and roles during various stress
conditions.
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Fig 6. Competitive mutant fitness experiment comparing fitness of wild-type and
AclpA under heat stress. Y-axis corresponds to the ratio of cells after 24 hours growth
either with no heat stress (30) or after a transient 42 degrees C heat stress (42)
compared to the Venus reporter strain. Ratios of initial mixtures normalized to 1. Error
bars indicate the standard error of the mean of each group.
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Supplementary Figure 1. Comparison of regularized negative binomial model(right)
for the two-condition setup with a simple negative binomial model (left) and
Zero-inflated negative binomial (center).

June 30, 2021 17


https://doi.org/10.1101/2021.07.15.452443
http://creativecommons.org/licenses/by/4.0/

