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ABSTRACT

To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from

patients with primary open-angle glaucoma (POAG) were reprogrammed into induced

pluripotent stem cells (iPSCs) before being differentiated into retinal organoids and

compared to those from healthy individuals. We performed single-cell RNA-sequencing

of a total of 330,569 cells and identified cluster-specific molecular signatures.

Comparing the gene expression profile between cases and controls, we identified novel

genetic associations for this blinding disease. Expression quantitative trait mapping

identified a total of 2,235 significant loci across all cell types, 58 of which are specific to

the retinal ganglion cell subpopulations, which ultimately degenerate in POAG.

Transcriptome-wide association analysis identified genes at loci previously associated

with POAG, and analysis, conditional on disease status, implicated 54 statistically

significant retinal ganglion cell-specific expression quantitative trait loci. This work

highlights the power of large-scale iPSC studies to uncover context-specific profiles for

a genetically complex disease.

KEYWORDS
human induced pluripotent stem cells, retinal organoids, retinal ganglion cells,
single-cell RNA sequencing, glaucoma, transcriptomics, eQTL
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INTRODUCTION

Glaucoma is the leading cause of irreversible blindness worldwide and experts predict it

will affect approximately 80 million people by 2040 1. The most common subtype --

primary open-angle glaucoma (POAG) -- is characterized by an open iridotrabecular

meshwork angle and progressive degeneration of retinal ganglion cells (RGCs), which

culminates in loss of visual field 2. Therapeutic options are currently limited; all are

directed at lowering intraocular pressure, which has been shown to slow but not fully

prevent or reverse visual loss 3.

POAG has one of the highest heritabilities of all common and complex diseases
4,5, and much work has focussed on dissecting its genetic architecture. The genetic

aetiology of POAG is varied: rare genetic variants, e.g. myocilin (MYOC)6 and optineurin

(OPTN)7, cause disease with high penetrance, while common variants have smaller

effect sizes. Genome-Wide Association Analyses (GWAS) have identified over 100

independent loci that carry a common risk allele associated with an increased risk of

open-angle glaucoma 8. Unlike rare variants that largely contribute to disease by

changing protein coding, common variants predominantly act via changes in gene

regulation 9. Mapping expression quantitative trait loci (eQTL) is one of the powerful

approaches used to provide functional evidence of the mechanisms of the common

genetic variants, allowing the allelic effect of a variant on disease risk to be linked to

changes in gene expression. To avoid spurious associations, and to best understand

the cellular effects of changes in gene expression, eQTL mapping needs to be

conducted for cells that are pathophysiologically relevant to the disease. In the case of

glaucoma, this includes trabecular meshwork cells and RGCs.

The molecular profiling of RGCs in normal and diseased tissue would improve

our understanding of the mechanisms that bear a disease risk or contribute to the

glaucoma development. Unfortunately, it is impossible to obtain or molecularly profile

RGCs from living donors in a non-invasive manner. To overcome this, somatic cells can

be reprogrammed into patient-specific induced pluripotent stem cells (iPSCs) 10,11, which

can then be differentiated into RGCs 12,13. Over the years, multiple protocols have been
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developed to generate RGCs in vitro 14. Human retinal organoids show a stratified

cellular organisation closely resembling the developing human neural retina 15–20, and

thus it is now possible to generate organoid-derived RGCs for downstream applications,

including disease modelling 13,21,22 and cell transplantation 23. These constructs can also

be subjected to single-cell RNA-sequencing (scRNA-seq) to distinguish cell types based

on their unique transcriptional signature and examine rare populations that would be

missed using bulk RNA-seq 24–26. Here, we used scRNA-seq to characterize the

transcriptomic profile of the organoid-derived retinal cells, in particular RGCs, generated

from a large cohort of the patient-derived iPSCs. We identified a number of cell type and

disease-specific eQTLs. Using an additive linear model, a total of 54,786 eQTLs were

found to be associated with 21,512 SNPs. By combining our data with recent GWAS

results in a transcriptome-wide association study (TWAS), seven genes were identified

to be significantly associated with glaucoma development.

RESULTS

Large-scale generation of patient iPSCs, differentiation into retinal organoids and

scRNA-seq.

We recruited a large cohort of individuals, which included healthy (n=57) and patients

with advanced POAG (n=55), who were matched by sex. The mean ± SD age at

recruitment for controls was : 70.1 ± 8.8 years, and the mean ± SD age at diagnosis for

case subjects was 59.7 ± 10.3 years. Participants underwent skin biopsy and their

cultured fibroblasts were reprogrammed to iPSCs using episomal vectors as we

previously described 27. iPSC lines were differentiated to neural retina for 28 days in

adherent cultures, after which retinal organoids were then excised, cultured in

suspension for 7 days and plated onto Matrigel for an additional 2-week period to allow

neuronal outgrowth from RGCs, and harvested for scRNA-seq (Figure 1A).

Differentiation was performed in batches, with cells harvested and multiplexed for

scRNA-Seq with a targeted capture of 16,000 cells from up to eight cell lines per pool.
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Twenty-three lines did not differentiate to retinal organoids and were discarded. A total

number of 330,569 cells from 160 individual cell lines were captured and sequenced at

a mean read depth of 41,020 per cell (Table S1). Following cell-specific quality control,

21,346 poor-quality cells were identified and discarded. Genotyping data were

generated for all individuals and after quality control and imputation, yielded 7,691,208

autosomal SNPs from 162 individuals at a minor allele frequency (MAF) above 0.01.

514,087 exon-only SNPs were used in conjunction with scRNA-seq data to successfully

assign 276,831 cells to 128 donors (Table S2). 32,382 cells were designated doublets

or could not be traced to a donor, and were removed from the dataset. Following

genotype, virtual karyotyping and scRNA-seq quality control assessment, a total of 24

batches containing 247,520 cells derived from 110 donor iPSC lines were used for

subsequent analyses.

Identification and characterisation of 23 subpopulations from 253,107 cells

Clustering identified 23 subpopulations distributed evenly across cell lines from all

donors (Figure 1B, S1 and S2). We compared the percentage of cell types between

patients with POAG and healthy controls, and observed no statistically significant

differences between the groups (p-value ⩾ 0.174, Figure S2). Differential expression

markers were used to classify the subpopulations to different retinal cell classes based

on canonical markers 28–31 (Figure 1C, 1D, Table 1, Table S3). Retinal progenitor cells

(RPCs) represented 77.4% of all cells and localised across 16 subpopulations (Table

1). RPCs expressed PAX6 and SOX2 transcription factors that are key regulators of

neuronal fate 32,33, LHX2, required for maintenance of open chromatin during

retinogenesis 34 and gliogenesis 35, and the RPC markers VSX2 and ASCL1 (Figure 1D,

Figure S1). Cell cycle genes were not evenly distributed within progenitor

subpopulations. The G2/M phase marker MKi67 was predominantly expressed by cells

in RPC1, RPC2 and RPC5. The S phase marker PCNA was distributed more broadly;
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however, the majority of PCNA-positive cells were identified in RPC clusters 1, 2, 4 and

5 (Figure 1D).

RGCs were the second most predominant cell group, representing 17.0% of all

cells across the cohort. Based on previous work, RGCs were classified by the

expression of the following genes: POU4F2, ISL1, RBPMS, SNCG, GAP43, NEFL/M,

ELAVL4, EOMES and DCX 36–38. Three distinct RGC subpopulations (RGC1-3), arising

from one subpopulation of RPCs (RPC9), were identified (Figure 1B-D, Table 1).

Pseudotime analysis confirmed the lineage development of RGC1-3 cell types from a

single progenitor population (Figure S3), with POU4F2 and ISL1 showing increasing

expression as cells differentiated further from a progenitor state (Figure 1D). The

expression of both genes are required for RGC specification and differentiation 39–41.

POU4F2 expression was generally higher in the RGC1 and RGC2 subpopulations than

in RGC3, while ISL1 expression was higher in RGC1 and RGC3 compared to RGC2.

The low levels of ATOH7 expression in RGC1 and RGC3, in conjunction with the fact

that cells in these subpopulations expressed markers of differentiated RGCs such as

SNCG, RBPMS, GAP43 and NEFM (Figure 1D), suggests that these subpopulations

represent more mature RGCs compared to those from RGC2. We also identified cells

expressing markers for photoreceptors/bipolar cells (2.6%) and interneurons (1.7%,

Table 1). Retinal Pigmented Epithelial (RPE) cells localized in one subpopulation and

constituted 1.3% of all cells (Table 1). No Müller cells were identified. The various

subpopulations are fully described in the Supplemental Results. These data are

consistent with Sridhar and colleagues 30, who also found that RPCs and RGCs are the

predominant populations of cells within early retinal organoids.

The genetic control of gene expression is highly cell type-specific

To explore cell type-specific genetic control of gene expression, we tested for cis-eQTL

for each cell population independently. We identified a total of 2,235 eQTL across all cell

types, which surpassed a study-wide significance threshold of FDR < 0.05 and where

the proportion of gene expression in subpopulation-donor pools was > 30% (Table 2).
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The number of eQTL identified per cell type ranged from ten to 456 (Table S4),

indicating consistent power to detect eQTL and also a similarity of cell types in each

population as expected. We assessed the overlap of eQTL between cell types, and

found that the majority of cis-eQTL are cell type-specific (Figure 2A). Cell-type

ubiquitous (shared across cell cell-types) eQTL were rare, with only one eGene

(RPS26) being common to all cell types. However, we identified a greater degree of

shared eQTL amongst related cell types, such as subpopulations belonging to the RGC

lineage, specifically RGC1, RGC2, RGC3 and RPC9, which share eQTL for 58 eGenes

(Figure 2B, C).

One potential explanation for the cell type-specific eQTL detection is that the

gene is only expressed in one cell type, and therefore, we would not expect to observe

an eQTL in the other cell types where the gene is not expressed. To evaluate this, we

correlated the expression of each gene that had a significant cell type-specific eQTL

effect, with its expression levels in each of the other cell types (Figure 2C). These

results indicate that cell type-specific eQTL are not a function of cell type-specific gene

expression, showing high levels of correlation in almost all instances. Another possible

explanation for the cell type-specific eQTL is low statistical power to detect eQTL in

multiple cell types. To assess this hypothesis, we implemented an empirical framework

to test the rank of the test statistics for eGene SNP effects across the non-significant

cell types for each cell type-specific eQTL. In almost all instances we observed none, or

very limited, enrichment of the test statistic across cell types.

Among the RGC eQTL identified, a number are directly involved in neurogenesis

or neurodegeneration. For example, CNOT6L is a poly(A) specific mRNA deadenylase

that controls transcription, and reduced expression has been found to impair retinal

differentiation in D. melanogaster 42. DNAJA1 belongs to a large family of chaperones,

and has been shown to prevent neurodegeneration by decreasing α-synuclein

aggregates 43, whilst TSPAN2, is known to support myelination 44.

To evaluate the context-specific relationship on the eQTL allelic effect due to

disease status, we tested for a SNP-by-disease state interaction and identified 2,175
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lead eQTLs (Table S5). A total of 290 eQTLs were identified where there was a

significant interaction between the SNP allelic effect and POAG disease status.

Fifty-four of these eQTLs were specific to RGC lineage subpopulations (Table S6).

These eQTL are of particular interest, as the data suggest that the allelic effect of the

SNP differs due to disease. Interestingly, rs28368130 at chromosome 9p21, a locus

which has been definitively associated with POAG 8,45, was found to influence CDKN2B

expression in the RGC1 cell population with a disease-status FDR p= 4.67×10-4. An

eQTL for SPP1 was found across all RGC lineages (Figure 3A). SPP1 encodes for

osteopontin, which is known to have reduced expression in eyes from patients with

POAG 46, and is thought to be neuroprotective to the retina 47,48. IGFBPL1 regulates

axonal growth in RGCs 49 and was also found to have a statistically significant

disease-state interaction eQTL in the RPC9, RGC1 and RGC2 subpopulation of cells

(Figure 3B). Similarly, SAR1A, which is involved in transport between the endoplasmic

reticulum to the Golgi apparatus and is associated with axonal growth 50, has an eQTL

identified by rs4746023, in RGC1 cell types. In patients with POAG, carrying each

additional copy of the A allele causes an increase by an average of 1.4 transcripts per

cell, which is approximately 2 times higher than in healthy controls (Figure 3C).

Disease-specific differential expression of genes across cell types identifies

altered transthyretin expression in POAG RGCs.

We next sought to evaluate the relationship between disease status and regulation of

the transcriptome and a cellular level, testing for differences in the expression levels of

genes in each cell population. In total, after Bonferroni correction we identified 3,118

genes whose expression was either up- or down- regulated in POAG cases relative to

the controls (Table S7). We can be confident that these results are due to the genetic

effects underlying POAG risk, as at all steps from iPSC generation, differentiation, cell

capture, and library preparation, the cell lines were either managed in either shared

conditions, or randomized with respect to disease status (Methods). Further, no firm

environmental factors have been found to definitively predispose to POAG risk, and are
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unlikely to account to a difference in gene expression in differentiated cells, given the

epigenetic profile of fibroblast-derived iPSCs is reset during reprogramming 51,52.

Focusing on the three RCG populations, we identified 144 genes differentially

expressed between POAG cases and controls (Figure 4A). Consistent with our

observations of cell type-specific eQTL, 68.06% of genes were identified as differentially

expressed in only one cell type, reinforcing the conclusions that the genetic effects of

POAG are highly cell type-specific. Interestingly, TTR was found to be differentially

expressed between POAG cases and healthy controls across all RGC subpopulations

(Figure 4A). Coding variants in TTR are known to cause familial amyloidotic

polyneuropathy, which is frequently associated with glaucoma 53.

Transcriptome-wide association study (TWAS) identifies novel and refine known

genetic associations for glaucoma

We leveraged this iPSC-derived retinal organoid single cell eQTL data with our recently

reported multitrait glaucoma GWAS summary statistics to prioritize glaucoma risk genes

in a TWAS 8. In the single-cell TWAS, we identified seven genes associated with POAG

after Bonferroni correction (Figure 4B). Of the five genes identified in the RGC1

subpopulation, one is located at a locus (chromosome 17q21) recently associated with

POAG 54. Here, we implicate KANSL1-AS1, which was also identified as a major eGene

for RGCs (Figure 2B). KANSL1-AS1 was also found by TWAS to be associated with

POAG in the RPC9 subpopulation.

The TWAS results also helped fine-map potential causal genes at known GWAS

loci 55,56. Most of the identified genes map to loci that have previously been associated

with POAG 54. Briefly, the five TWAS genes on chromosome 2 are located near GWAS

reported gene BRE and share the same GWAS variant rs6741499 (or in strong LD)8,

which is also associated with IOP (Gao et al., 2018). Of these, the top TWAS hit MPV17

encodes a mitochondrial inner membrane protein involved in the metabolism of reactive

oxygen species 57 and has been found to play an important role in the pathogenesis of
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RGC damage 58. The gene CTD-3074O7.5 on chromosome 11 from RGC2

subpopulation is near MALAT1, which is also associated with VCDR 59.

We then compared the TWAS results based on scRNA-seq data to bulk RNA-seq

data. The bulk retinal transcriptome data were described previously 60. Of the three

genes with available bulk TWAS results, only KANSL1-AS1 was significant after

Bonferroni correction (Pbulk TWAS = 2.95 × 10-4).

DISCUSSION

Here we present a large-scale scRNA-seq analysis of iPSC-derived RGCs. We

generated over 100 patient-specific iPSC lines and differentiated them into RGCs using

retinal organoids. Following the capture of over 330,000 cells, we analysed 258,071

cells from 112 individuals. We identified a total of 2,235 eQTL across all cell types, and

found 58 eGenes that are specific to the RGC lineage. POAG culminates in loss of

RGCs, and in iPSC-derived RGCs we identified disease-associated loci. Analysis,

conditional on disease status, implicated 54 statistically significant RGC eQTLs, and

single cell TWAS identified seven genes at loci previously associated with POAG.

Several recent studies have employed scRNA-seq to characterize transcriptomic

changes during human retinal development using fetal tissue 38,61, retinal organoids 62–64

or both 30,31. Our results complement these findings and are in concordance with those

of Sridhar et al.30 who also observed RPCs as the major cell type in early organoids

followed by RGCs, photoreceptors and interneurons. Similar observations were made

by Lu and colleagues 31. The absence of glial cells within the retinal organoids in our

dataset is not surprising given these are generally the last retinal cells to develop,65 and

emerged in older retinal organoids 30. Furthermore, we did not observe statistically

significant differences in cellular composition of organoids derived from healthy controls

and patients with POAG, which suggests a high level of consistency across

differentiation batches.
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It is becoming widely recognized that the pharmaceutical pipeline for drug

development has stalled, and that there is a pressing need for human models of

disease to improve our molecular understanding of common, complex diseases and

facilitate preclinical trials 66. We investigated the impact of genetic background and

disease status on gene expression through the eQTL mapping. Highlighting the power

of large-scale iPSC studies to uncover disease-specific profiles, this work lays the

foundation for context-specific drug screening and underscores the efficiency of using

stem cell models for dissecting complex disease.
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FIGURE LEGENDS

Figure 1. Generation of retinal organoids and identification and characterisation
of cell subpopulations. (A) Retinal organoids were generated from iPSCs over a
period of 49 days. iPSCs were differentiated as a monolayer for the first 28 days, and
then cultured in 3D as a suspension for 7 days. Resulting organoids were then plated
onto Matrigel and grown until retinal ganglion cells started to project out of the organoid
at 49 days. These were harvested for scRNA-seq. (B) Uniform Manifold Approximation
and Projection (UMAP) representation of cells grouped into 23 subpopulations, as
identified by Louvain clustering. (C) UMAP plot of the cell types and lineages, as
determined by analysis of differentially expressed genes of individual subpopulations
and trajectory analysis. RGC clusters form one branch of the trajectory. Other cell types
- RPE, interneurons, cones and lens - arise from another branch of the trajectory. The
last main branch consists of differentiating RPC subpopulations. RPC: retinal
progenitor cell. RGC: retinal ganglion cell. RPE: retinal pigmented epithelium. (D)
Heatmap of the mean expression of cell type-specific gene markers across in each
subpopulation. Expression values have been scaled and converted to z-scores and
genes have been grouped by cell type. AC, amacrine cell; BC, bipolar cell; HC,
horizontal cell; MG, Müller glia; PR, photoreceptor; RPC, retinal progenitor cell; RPE,
retinal pigment epithelium; RGC, retinal ganglion cell.

Figure 2. Cell subpopulation-specific eQTLs. Summary of eQTLs specific to cell
subpopulations. (A) Minimal overlap of genes with significant eQTLs (eGenes) show
they are predominantly subpopulation-specific. A small proportion of these eGenes
were model-specific. (B) Chromosomal map of significant loci in RGC subpopulations
RGC1, RGC2, RGC3 and RPE. Loci were labelled as significant if FDR < 5✕ 10-8. (C)
Relationships between genotype and mean gene expression at some of the most
significant shared eQTL loci in RGC subpopulations - CNOT6L, DNAJA1 and TSPAN2,
in comparison to corresponding loci within RPE subpopulation.

Figure 3. Disease-associated cis-eQTLs specific to cell subpopulations.
SNP-by-disease interactions were tested for all SNPs within 1 MBP of each gene for
each cell subpopulation. (A) The mean gene expression of the following genes: SPP1,
IGFBPL1 and SAR1A were grouped by disease and genotype and plotted as boxplots.
Regression lines for each condition represent the relationship between genotype and
expression. (B) Locus zoom plots focus on regions ±30,000bp around locus and genes
plotted in the previous panel. FDR values for the significance of eQTL within these
regions are plotted by location, alongside the ideograms of genes within this region.
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Figure 4. Prioritization of glaucoma risk genes. (A) Volcano plot displaying genes
differentially expressed between POAG cases and healthy controls (B) Manhattan plot
displaying the transcriptome-wide association analysis (TWAS) from the scRNA-seq
data.
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TABLES

Table 1. Percentage breakdown of captured cell population. Cells were initially
grouped into subpopulations based on Louvain-based clustering. These subpopulations
were then annotated using gene markers associated with each known cell type
associated with human optic cups.

Cell types Proportion (%)

Retinal progenitor cells 77.4

Retinal ganglion cells 17.0

Retinal pigmented epithelium cells 1.27

Photoreceptors/ bipolar cells 2.56

Interneurons 1.66

Lens cells 0.04

Table 2. Breakdown of significant cis-eQTLs detected in the full cohort and by
disease-status conditional tests. The relationship between genotype and expression
was tested at loci within 1MB of each gene, using four different models. Population and
disease models were tested using mean expression of all donors, and the population
model was used to test control and POAG donors separately. eQTL were labelled
significant using the threshold of FDR < 0.05 and gene expression in at least 30% of the
donors tested.

Model Number of
significant eQTLs

Number of
significant
eGenes

Number of
significant eSNPs

Population 2,235 1,447 1,861

Disease 2,175 1,395 1,809

Control only
population

1,025 804 903

POAG only
population

874 693 770
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METHODS

Participant recruitment.

All participants gave informed written consent 78. All experimental work was approved by

the Human Research Ethics committees of the Royal Victorian Eye and Ear Hospital

(11/1031H, 13/1151H-004), University of Melbourne (1545394), University of Tasmania

(H0014124) and the University of Western Australia (RA/4/1/5255) as per the

requirements of the National Health & Medical Research Council of Australia (NHMRC)

and in accordance with the Declarations of Helsinki. We recruited a large cohort of

patients with POAG and sex-, ethnically, age-matched individuals, through the

Glaucoma Inheritance Study in Tasmania and the Australian and New Zealand Registry

of Advanced Glaucoma, local ophthalmic clinics and adjunct studies (mean ± SD age:

59.7 ± 10.3 years at diagnosis for case subjects; 70.1 ± 8.8 years at recruitment for

controls). To refine translational significance, recruitment of patients with POAG focused

on a) end-stage disease, which carries the greatest visual morbidity: virtually the entire

optic nerve function is lost through RGC degeneration; b) patients designated as having

Normal Tension Glaucoma, as they have RGCs with an increased susceptibility to

degeneration compared to cases with trabecular dysfunction or a very high intraocular

pressure; c) “super selection” of the most severe POAG cases. Case-inclusion criteria

were: in the worst eye a vertical cup:disc ratio >0.95 and a best-corrected visual acuity

worse than 6/60 due to POAG or on a reliable Humphrey Visual Field a mean deviation

of ≤-22dB; or at least 2 out of 4 central squares involved with a Pattern Standard

Deviation of <0.5%. The maximum documented pre-treatment IOP, measured by

Goldmann applanation tonometry, was recorded. To fulfil a standard clinical diagnosis of

Normal Tension POAG the maximum-recorded IOP was required to be <22 mmHg.

Clinical-exclusion criteria were signs of secondary or syndromic glaucoma. For each

control participant, a complete ophthalmologic evaluation (incorporating automated

visual field testing, fundus and optic disc imaging, corneal pachymetry) was performed.

An ophthalmic history was obtained, with questions centred on age at diagnosis, family

history, surgical intervention for glaucoma or cataract, macular degeneration, retinal
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detachment, and refractive surgery. Control subjects, with no known family history of

glaucoma, and who had normal IOP, optic discs (optical coherence tomography retinal

nerve fibre layer analysis within age-matched normal limits), and visual fields, were

selected for analysis.

Fibroblast culture

Skin biopsies were obtained from non-sun exposed regions using a 3mm2 dermal

punch. Fibroblasts were expanded, cultured and banked in DMEM with high glucose,

10% fetal bovine serum (FBS), L-glutamine, 100 U/mL penicillin and 100 μg/mL

streptomycin (all from Thermo Fisher Scientific, USA) as described previously 79. All cell

lines were mycoplasma-free. Fibroblasts at passage (p) 2 were used for

reprogramming.

Generation, selection and iPSC maintenance

A TECAN liquid-handling platform was used to maintain and passage iPSCs, as

described in 26. iPSCs were generated by nucleofection with episomal vectors

expressing OCT-4, SOX2, KLF4, L-MYC, LIN28 and shRNA against p53 80 in feeder-

and serum-free conditions using TeSR™-E7™medium as described previously 27. The

reprogrammed cells were maintained on the automated platform using

TeSR™-E7™medium, with daily medium change. Pluripotent cells were selected by

sorting anti-human TRA-1-60 Microbeads 27. Cell number was determined; cells were

subsequently plated onto vitronectin XF™-coated plates and in StemFlex™ medium.

Subsequent culturing was performed on the automated platform using

StemFlex™medium, which was changed every 2-3 days. Passaging was performed

weekly on the automated platform using ReLeSR™ onto vitronectin XF™-coated plates

as described in 27. TRA-1-60 quantifications were performed on a MACSQuant®

Analyzer 10 immediately prior to passaging to fresh plates as described 27. Pluripotency

was assessed by expression of the markers OCT3/4 (sc-5279, Santa Cruz
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Biotechnology) and TRA-1-60 (MA1-023-PE, Thermo Fisher Scientific, USA) by

immunocytochemistry. Virtual karyotyping was undertaken using Illumina Human Core

Exome or UK Biobank Axiom™ Arrays, as described in 26. The iPSC lines FSA0001,

FSA0002, FSA0005, FSA0006, IST2168, IST2607, MBE1006, MBE2900, MBE2906,

MBE2909, TOB0199, TOB0224, TOB0412, TOB0421, TOB0431, TOB0435, TOB0474,

WAB0450, WAB0069 were characterised in 26.

Differentiation of iPSCs into retinal organoids

Retinal organoids were generated following 17 with modifications. Briefly, on day 28

formed retinal organoids with surrounding tissue were excised using a 21G needle.

They were maintained in suspension culture for 7 days in PRO medium (DMEM/F12,

1:1, L-glutamine, 1% Non-essential amino acids, Penicillin-Streptomycin 10,000 U/ml)

supplemented with B27 and FGF2 (10 ng/ml). On day 35, organoids were transferred to

Matrigel-coated 24-well tissue culture plates and maintained for 14 days in NDM

medium (Neurobasal, 1% MEM non-essential amino acids, 1% GlutaMAX, 1% glucose

(45%), Penicillin-Streptomycin 10,000 U/ml) with 2% B27 and 1% N2 added fresh.

Medium was changed every 2-3 days. Optic cups were dissociated with Papain

Dissociation System following the manufacturer’s instructions. Briefly, cells were

harvested with papain (20 U/mL) and DNase I (2,000 U/mL) for 30 minutes at 37 °C.

Subsequently, NDM medium was added at a 1:1 ratio and cells were gently triturated

with a P1000 pipette followed by centrifugation (5 minutes, 300 g, 4 °C). Cells were

resuspended in 1 mL of 0.1% BSA in PBS solution. Subsequently, cells were counted

and assessed for viability with Trypan Blue using a Countess II automated counter, then

pooled at a concentration of 1000 cells/ μL (1 × 106 cells/mL). Final cell viability

estimates ranged between 79-99%.

Transcriptome profiling of single cells from retinal organoids and cell-based

quality control
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Multi-donor single-cell suspensions were prepared for scRNA-seq using the Chromium

Single Cell 3′ Library & Gel bead kit (10x Genomics; PN-120237). Each pool was loaded

onto individual wells of 10x Genomics Single Cell A Chip along with the reverse

transcription (RT) master mix to generate single-cell gel beads in emulsion (GEMs).

Reverse transcription was performed using a C1000 Touch Thermal Cycler with a Deep

Well Reaction Module (Bio-Rad) as follows: 45 min at 53 °C; 5 min at 85 °C; hold 4 °C.

cDNA was recovered and purified with DynaBeads MyOne Silane Beads (Thermo

Fisher Scientific; catalog no. 37002D). Subsequently, it was amplified as follows: for 3

min at 98°C; 12× (for 15 sec at 98 °C; for 20 sec at 67 °C; for 60 sec at 72°C); for 60

sec at 72 °C; hold 4 °C followed recommended cycle number based on targeted cell

number. Amplified cDNA was purified with SPRIselect beads (Beckman Coulter; catalog

no. B23318) and underwent quality control following manufacturer’s instructions.

Sequencing libraries for each pool were labelled with unique sample indices (SI) and

combined for sequencing across two 2 x 150 cycle flow cells on an Illumina NovaSeq

6000 (NovaSeq Control Software v1.6) using S4 Reagent kit (catalog no. 20039236).

Raw base calls from the sequencer then underwent demultiplexing, quality control,

mapping and quantification with the Cell Ranger Single Cell Software Suite 3.1.0 by 10x

Genomics (https://www.10xgenomics.com/). Processed reads from the sequencer were

mapped to the Homo sapiens reference hg19/GRCh37 from ENSEMBL (release 75),

and the pipeline was run using the estimated cell count value of 20,000. scRNA-seq

data from each pool underwent quality control separately in R using the ascend

package 69. Cells were removed if they did not meet thresholds calculated from 3

Median Absolute Deviations (MAD) of the following statistics: total Unique Molecular

Identifier (UMI) counts, number of detected genes, and fraction of mitochondrial and

ribosomal transcripts to total expression.

SNP genotype analysis and imputation

DNA was extracted from cell pellets using QIAamp DNA Mini Kit (QIAGEN, 51306)

following the manufacturer's instructions. DNA concentration was determined with
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SimpliNano spectrophotometer (GE Life Sciences), diluted to a final concentration of

10-15 ng/µl and genotyped on UK Biobank Axiom™ Arrays at the Ramaciotti Centre for

Genomics, Sydney, Australia. Samples previously screened using Illumina arrays, were

re-genotyped on UK Biobank Axiom™ Arrays. Genotype data were exported into PLINK

data format using GenomeStudio PLINK Input Report Plug-in v2.1.4 and screened for

SNP and individual call rates (<0.97), HWE failure (P<10-6), and MAF (<0.01) 81.

Samples with excess autosomal heterozygosity or with sex-mismatch were excluded. In

addition, a genetic relationship matrix from all the autosomal SNPs were generated

using the GCTA tool and one of any pair of individuals with estimated relatedness larger

than 0.125 were removed from the analysis 82. Individuals with non-European ancestry

were excluded outside of an “acceptable” box of +/- 6SD from the European mean in

PC1 and PC2 in a SMARTPCA analysis. The 1000G Phase 3 population was used to

define the axes, and the samples were projected onto those axes. Imputation was

performed on each autosomal chromosome using the Michigan Imputation Server with

the Haplotype Reference Consortium panel (HRC r1.1 2016) and run using Minimac3

and Eagle v2.3 67,68. Only SNPs with INFO > 0.8 were retained.

Demultiplexing of cell pools into individual donors

demuxlet v1.0 70 and scrublet v0.20 71 were used to demultiplex cells from mixed-donor

pools using transcriptome and genotype data. Each pool was demultiplexed separately.

demuxlet was run with exon-only SNPs and the following arguments: “--field GP,

--geno.error = 0.01, --min-mac 1, --min-callrate 0.5, alpha = 0.5, doublet-prior = 0.5”.

Cells were initially assigned a putative donor based on the maximum likelihood of reads

from scRNA-seq overlapping sets of unique variants (SNPs) mapped by genotyping.

scrublet was then used to confirm if a cell was a neotypic doublet by building a

simulation of doublets based on sampled transcriptome data and scoring the cell based

on its neighbors in k-means nearest neighbor graph. A cell was designated a singlet if

scrublet agrees, and if the posterior probability of it being a singlet in demuxlet is greater
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than 0.99. Unassigned donors, doublets and cells with ambiguous assignments were

omitted from downstream analyses.

Aggregation, normalization and dimensionality reduction of scRNA-seq datasets

The unfiltered count matrices of all batches were combined into one dataset using the

cellranger aggr pipeline. This pipeline equalized the read depth of all batches by

downsampling reads from higher-depth libraries to match the lowest depth library 83.

Cells that had been removed from single-batch analyses due to low quality, being

labeled as a doublet, or with conflicting assignments, were also removed from the

combined expression matrix. The SCTransform function from Seurat (v3.0.2) was

applied to the filtered count matrix to perform cell-cell and batch normalization 84. The

fraction of mitochondrial and ribosomal expression of total expression was regressed

out as a part of this step, and the top 3000 most variable genes were used to calculate

residuals. The residuals were then reduced to 30 principal components (PCs) using PC

Analysis (PCA). These PCs were reduced further into two dimensions, for visualization

and clustering via Uniform Manifold Approximation Projection (UMAP) 75.

Identification and annotation of cell subpopulations

Graph-based clustering via the Louvain algorithm that was implemented in Seurat was

used to identify cell subpopulations 85,86. First, cell-cell Euclidean distances calculated

from PCs were projected onto a K-means nearest-neighbor graph (KNN). Next, the

Louvain algorithm was implemented at resolutions between 0 and 1, at 10 equal

intervals of 0.1. Finally, the movement of cells between subpopulations at these

resolutions were visualized on to a clustree plot (Figure S2A) as implemented in the

clustree R package 87. Regions of stability were identified from the plot, and the

resolution where this region began - 0.4, was selected as the optimal resolution. Cells

were divided into 22 subpopulations at this resolution. Cells that could not be assigned

to a subpopulation - singletons, were assigned to a group designated ‘Cluster 0’. To

annotate each subpopulation, the combined Likelihood Ratio Test (LRT) as described
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by 88 was applied to normalized, log-transformed UMI counts. Disease-specific markers

within subpopulations were identified using the Wilcoxon Rank Sum test 89. Genes were

classified as markers if they were differentially expressed, based on the thresholds of

average log2 fold change > |0.25| and  Bonferroni-corrected p-value < 0.01.

Identification of differentiation lineages via pseudotime analysis

Differentiation lineages were identified using the slingshot R package 76. Singletons

were excluded from the trajectory, and the UMAP matrix was used as input for the

‘slingshot’ function. RPC1 was selected as the root of the trajectories due to the

expression of the proliferative marker MKI67, and the end-points of trajectories were

defined as the relatively mature cell subpopulations: RGC1, Cones, Interneurons, RPE

and Lens.

Identification of cis-eQTL using transcriptome and genotype data

We investigated cis-eQTL associated with each subpopulation using the R package

Matrix eQTL 90. To prepare scRNA-seq data for this stage of analysis, the normalized,

corrected UMI count matrix was split by subpopulation. The mean expression of each

gene, for all cells within the subpopulation from a donor, was used to build a gene-donor

count matrix. Genes that were expressed in less than 30% of the donor population were

excluded, and remaining mean counts were transformed (log(x+1)). SNPs with a Minor

Allele Frequency (MAF) of less than 10% were filtered from the genotype dataset. SNPs

within one mega-base pairs of a gene were tested. To identify lead eQTL based on

population, Matrix eQTL was run with an additive linear model using sex, age and the

top six genotype principal components as covariates. To identify eQTL specific to

POAG, disease status was included in the model. eQTL were determined to be

significant based on a threshold of FDR < 0.05. Lead eQTLs identified using the disease

model underwent additional testing using the lm function from R to measure the size

and significance of interactions between genotype and disease status.
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Transcriptome wide association study analysis

Transcriptome-wide association study analysis (TWAS) was performed using summary

statistics generated by eQTL analysis. We customized our prediction models based on

the online tutorial (available through https://github.com/hakyimlab/MetaXcan) to

evaluate the association between predicted gene expression and glaucoma risk using

GWAS summary statistics. The gene-expression prediction models were constructed

from the single-cell eQTL data using the following models: “blup”, “lasso”, “top1” and

“enet”. The GWAS summary statistics from a recent multitrait meta-analysis of

glaucoma were used 8. S-PrediXcan was used to harmonize the GWAS summary

statistics and to compute the gene-level association results using each subpopulation of

single-cell expression data and glaucoma GWAS summary statistics 91. A total of 3,573

genes (across tested subpopulations) were tested for glaucoma. To correct for multiple

testing, we adjusted the gene-level association P values using the Bonferroni correction

method (0.05 / (total number of tests across all subpopulations)). We then compared the

transcriptome-wide association results based on scRNA-seq data to bulk RNA-seq data.

The bulk retinal transcriptome data were described previously 60. Briefly, 406 controls

and age-related macular degeneration cases that passed RNA-seq and genotyping

quality control were modeled with mixed models, LASSO, or elastic net according to

Gusev et al 92. The effect sizes from these models were used as weights to calculate the

gene-trait associations.
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SUPPLEMENTAL INFORMATION TITLES AND LEGENDS

Figure S1. Identification and characterisation of cell subpopulations.

Figure S2. Variation in cell differentiation between control and POAG samples.

Figure S3. Pseudotime analysis across lineages and sub-lineages.

Figure S4. Boxplots displaying the relationships between genotype and mean
gene expression for all eQTLs in RGC subpopulations with a FDR < 5 ✕ 10-8.

Table S1. Summary of single cell RNA-sequencing metrics.

Table S2. Cell-donor deconvolution summary metrics.

Table S3. Subpopulation-specific markers identified by differential expression
gene analysis.

Table S4. Number of significant cis-eQTLs across cell subpopulations.

Table S5. Lead cis-eQTLs from RGC subpopulations.

Table S6. Statistically significant SNP-by-disease state interaction eQTLs in the
RGC lineage specific subpopulations.

Table S7. Disease-specific differentially-expressed genes in retinal ganglion cells.

Supplemental Results. Description of delineated cell subpopulations.
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