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Abstract

Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its role in
molecular processes and pathobiology is far from understood. A roadblock is that tools for
the functional analysis of AS-set events are lacking. To mitigate this, we developed NEASE,
a tool integrating pathways with protein-protein and domain-domain interactions to
functionally characterize AS events. We show in four application cases how NEASE can
identify pathways contributing to tissue identity and cell type development, and how it
highlights splicing-related biomarkers. With a unique view on AS, NEASE generates unique
and meaningful biological insights complementary to classical pathways analysis.

Keywords: alternative splicing, differential splicing, functional enrichment, systems biology,
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Background

Alternative splicing (AS) boosts transcript diversity in human cells [1] and thus contributes to
tissue identity [2], cell development [3], and pathology in, e.g., cardiomyopathy [4], muscular
dystrophy [5] or autoimmune diseases [6]. It is estimated that up to 30% of
disease-associated genetic variants affect splicing [7]. RNA sequencing technologies
(RNA-seq) allow the quantification of different types of AS events and detect splicing
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abnormalities in disorders. However, RNA-seq ultility is currently limited by our incomplete
understanding of the functional role of specific exons or the transcripts they contribute to.

A major challenge in AS analysis is the functional interpretation of a set of events, including
isoform switching events and differentially spliced exons. The usual approach is to perform
gene set enrichment or overrepresentation analysis [8—10]. This approach treats all genes
affected by AS equally, neglecting that some AS events may not be functionally relevant at
the protein-level [11] or result from noise in the splicing machinery [12]. Furthermore,
functional differences between protein isoforms remain uncertain in many cases. A
promising strategy to identify relevant AS events is to focus on those that lead to meaningful
changes in the protein structure. Recent studies have shown that AS has the potential to
rewire protein-protein interactions by affecting the inclusion of domain families [13] and
linear motifs [14] or by activating nonsense-mediated decay [15].

This motivated the creation of databases and tools that predict the consequences of
individual AS events or isoform switches. IsoformSwitchAnalyzeR [16], tappAS [17], DoChaP
[18] and Spada [19] support transcript-level (as opposed to exon-level) analysis to identify
isoform switches and their impact on the translation and the resulting isoforms features, such
as domains, motifs, and non-coding sites. Exon Ontology [20] and DIGGER [21] support
exon-level analysis to identify exon skipping events and their possible impact on the protein
structure and function. Spada and DIGGER further consider the impact of AS on
protein-protein interactions.

Most existing tools allow investigating AS-driven changes in an explorative fashion but tools
for systematic analysis of functional effects of AS are lacking. Exon Ontology performs
statistical tests to identify enriched features within a set of skipped exons. One example are
domain families affected by AS across proteins more frequently than expected. However,
none of the existing tools offer a systems biology view to specifically highlight functional
consequences of AS events.

To tackle these limitations, we developed the first tool for functional enrichment of AS events.
NEASE (Network-based Enrichment method for AS Events) first detects protein domains
affected by AS and then uses an integrated protein-protein interaction (PPI) and
domain-domain interaction (DDI) network [21] to identify protein interaction partners likely
affected by AS. Next, it employs an edge-level hypergeometric test for gene set
overrepresentation analysis. This approach is new in the way genes are selected for the
enrichment test. Rather than considering only differentially spliced or expressed genes,
which is currently the most common strategy, NEASE uses network information to select
genes that are likely affected in the interactome. This is also superior to a simple network
enrichment analysis, as we consider only those edges for which an AS contribution seems
relevant and for which false positive results are less likely. We evaluated NEASE using
multiple datasets from both healthy and disease cohorts. We show that the NEASE
approach complements gene-level enrichment, and even outperforms it in scenarios where
gene-level enrichment fails to find relevant pathways. Moreover, NEASE generates unique
and meaningful biological insights on the exact impact of AS. Furthermore, since the
statistical approach is network-based, NEASE can prioritize (differentially) spliced genes and
finds new disease biomarkers candidates in case of aberrant splicing. The NEASE Python
package, freely available at https://github.com/louadi/NEASE, provides multiple functions for



https://github.com/louadi/NEASE
https://doi.org/10.1101/2021.07.14.452376
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.14.452376; this version posted July 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a deeper analysis and visualization of affected protein domains, edges, and pathways
(individually or as a set).
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Figure 1. Overview of NEASE. (A) Annotated exons are mapped to Pfam domains. The joint graph of PPIs and
DDIs is used to identify the interactions mediated by these domains. (B) For a list of exons/events, NEASE
identifies interactions mediated by the spliced domains and pathways that are significantly affected by those
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interactions. (C) NEASE provides a corrected p-value, in addition to an enrichment score (NEASE Score) for
every pathway (see Methods). The user can further focus on an individual pathway, where NEASE can prioritize
genes and find new biomarkers. In this example, the gene G3 was not part of the enriched pathway A but it has
the largest number of affected interactions with genes from the pathway.

NEASE uses a hybrid approach that combines biological pathways with PPIs and DDIs to
perform functional enrichment of AS. First, we use the structural annotation of known
isoforms by mapping protein domains from the Pfam database [22] to the corresponding
exons (Figure 1A). Second, we construct a structural joint graph as previously reported [21]
by enriching the BioGrid PPI [23] with DDIs from DOMINE [24] and 3did [25] (see Methods).
In the joint graph, protein domains are mapped to their mediated interactions. Thus, NEASE
addresses the limited exon-level annotation and provides an exon-centric view of the
interactome, where exons are represented by their encoded domains and edges represent
the binding between the domains. In this way, the impact of AS can be seen as an edgetic
change in the network. Analyzed AS events are viewed as a set of affected edges that
represent gained or lost PPlIs.

We then perform statistical tests to find enriched pathways and most likely responsible
genes (Figure 1B). Following, (differential) splicing analysis, a one-sided hypergeometric test
is used to test for enrichment of a given pathway or gene set by considering all edges
affected by AS in an experiment. A similar test is applied for each spliced gene to prioritize
the most relevant events/genes that are affecting a pathway. We further introduce a weighted
score (NEASE score) that penalizes hub nodes that are more likely to be connected to the
pathway of interest by chance. Notably, this approach also considers genes that are not part
of the existing pathway definition but show a significant number of interactions with the
pathway, highlighting new putative biomarkers (see Methods for details).

The Python package provides an interactive analysis. Using a list of exons or events, users
can run a general enrichment on 12 different pathway databases (collected from the
ConsensusPathDB resource [26]), followed up by a specific analysis and visualization for a
single affected pathway or module of interest (Figure 1C). To provide analysis for individual
isoforms and events, we linked NEASE to our previously developed database DIGGER,
which provides an isoform- and exon-centric view of the interactome [21].

NEASE gives insights into the role of the muscle- and neural-specific exons

Recent studies suggest that the regulation of AS occurs in a tissue-specific manner and
leads to remodeling of protein-protein interactions [27]. Understanding the functional impact
of co-regulated exons is critical in understanding gene regulation. We applied NEASE to
tissue-specific exons reported in VastDB, a resource that provides information on multiple
types of AS events detected by RNA-seq from different tissue types and developmental
stages [28]. We extracted 2,831 exon skipping events and Percent Spliced In values (PSI)
from 12 different human tissue types (see Methods). We then performed hierarchical
clustering on the z-score standardized PSI values (Figure 2A). The heatmap shows two
distinct clusters, where neural-specific and muscle-specific (merged with heart-specific)
exons are dominant.
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Figure 2. Analysis of tissue-specific exons. (A) Heatmap and hierarchical clustering of standardized PSI values
obtained from VastDB. The heatmap only shows events with standard deviation of PSI values >=20. The
heatmap shows that clusters of exons up-regulated in neural tissues and muscle/heart tissues are dominant. (B)
NEASE analysis shows that 23% and 27% for both neural and muscle up-regulated exons, respectively, are
encoding protein domains. Around 60% of the spliced domains are known to have interaction partners from the
PPI and DDI joint graph. (C and D) Comparison between gene-level enrichment and NEASE enrichment for the
two sets of exons.

Next, we extracted 66 skipped exons with a high PSI in the muscle tissues and 55 skipped
exons with a high PSI in the neural tissues (z-score >= +2, see Methods). We checked how
many of these events are overlapping with domains. As shown in Figure 2B, 23% of the
upregulated exons in muscle tissues (13) and 27% of the upregulated exons in the neural
tissues (17) overlapped with domains. NEASE also provides statistics of how many of these
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domains have known binding partners in the joint graph. In the two sets, around 60% of the
affected domains have known interactions in our joint graph: 9 binding domains in the
muscle tissues and 10 binding domains in the neural tissues (Additional files 2: Tables S4,
S5 and Additional file 3: Tables S8, S9). For these groups of events, the exact protein
complexes involved can be identified, and NEASE statistical analysis can be performed to
determine affected pathways.

First, we ran a gene set overrepresentation analysis (one-sided hypergeometric test), which
we refer to as gene-level enrichment, to detect enriched pathways (see Methods). Next, we
applied NEASE to the same genes to detect pathways affected by AS. Unlike the gene-level
enrichment, the results obtained from NEASE in both sets better explain the functional role
of the regulated exons (Figure 2 C and D).

The upregulated exons in heart and muscle tissues were enriched in “Muscle Contraction”
pathways (Figure 2C and Additional file 2: Table S7 ), while, in the gene-level enrichment,
the pathways were related to very common subcellular functions such as the Golgi
apparatus, which also is an organelle for collecting, modifying or destroying protein products
(Figure 2 C and Additional file 2: Table S6). NEASE provides detailed information about the
affected domains and their interaction partners (Additional file 1: Table S1). The domain
Tropomyosin (Pfam id: PF00261), which is part of the gene TPM1, e.g., is involved in the
regulation of muscle contraction via actin and myosin. GAS2 (Pfam id: PF02187) is a domain
of DST, a dystonin encoding gene, which plays a role in maintaining the integrity of the
cytoskeleton. AS affects its binding with the gene CALM1 that encodes a calcium-binding
protein involved in various calcium-dependent pathways like muscle contraction [29].

The exons upregulated in neural tissues showed enrichment in the synaptic vesicle cycle
pathway responsible for the communication between neurons (Figure 2D). Gene-level
enrichment performed on par with NEASE, resulting in the same pathway but with a lower
rank and significance (adjusted p-values: 6.51e-14 using nease and 0.0039 using
gene-level, Additional file 3: Tables S10 and S11). Notably, NEASE also detected an
enrichment in “oxidative phosphorylation”, which is the initiator for powering all major
mechanisms mediating brain information and processing [30]. The neuron's energy demands
are remarkable both in their intensity and in their dynamic range and quick changes [31-34].
Therefore, AS could modify oxidative phosphorylation to serve the tissue-specific needs.
Experimental studies have also found that several key enzymes in “oxidative
phosphorylation” are spliced, e.g. pyruvate kinase (PKM) that shifts from the PKM2 to the
PKM1 isoform [35,36]. NEASE also provides a detailed view on the affected mechanisms,
such as an exon skipping event in the gene ATP6VOA1 overlapping with the V_ATPase_|
domain (PFAM id: PF01496) and affecting the binding with seven other proteins from the
complex vacuolar ATPase (V-ATPase) (p-value: 7.14e-17, Figure 3, Additional files 1: Table
S2 ). V-ATPase is required for synaptic vesicle exocytosis [37] The a1-subunit of the VO
domain in ATP6VOA1 was recently shown to be highly expressed in neurons and to be
essential for human brain development [38,39]. In another example, NEASE identified two
co-regulated events of the genes CLTA and CLTB (Figure 3). CLTA and CLTB genes are
involved in Clathrin-dependent endocytosis which forms clathrin-coated vesicles. Both genes
play a major role in forming the protein complex of the coated vesicle. Both events affect the
same domain Clathrin light chain (Pfam id: PF01086). The Clathrin light chain domain binds
to CLTC and CLTCL1 which are the Clathrin heavy chain genes (p-value: 7.356981e-05).
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These results suggest that the formation of this complex is co-regulated by AS. A similar
finding about the role of the Clathrin light chain in neurons was also described in [40].
NEASE highlights these co-regulated events at the network level (Figure 3). The analysis
generated from VastDB using NEASE agrees with the latest studies at transcriptomics and
proteomics levels that emphasize the crucial role of AS in the function and development of
brain and heart tissues [41—43].
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Figure 3: NEASE visually highlights the impact of the AS regulation at the interactome level. The gray nodes
represent proteins from the pathway and the red nodes represent genes with AS events. Red edges represent
the affected interactions for the nodes with known DDIs. The visualization of the pathway “Synaptic vesicle cycle”
from the KEGG database for the exons up-regulated in the neural tissues shows that the splicing in the genes
CLTA and CLTB is co-regulated and affects the interactions of the same complex. Similarly, NEASE highlights the
importance of the domain ATP6V0A1 which is up-regulated in neural tissues and binds seven proteins from the
“Synaptic vesicle cycle” pathway.

NEASE reveals splicing-related differences of reticulated and mature platelets

AS does not only drive tissue-specific regulation but also plays a major role in cell
differentiation and maturation. To illustrate an example of the utility of NEASE in such
studies, we used the RNA-seq data set from [44] which compares the transcriptome profiles
of reticulated platelets and mature platelets from healthy donors. Reticulated platelets are
younger [45], larger in size, and contain more RNA [46]. Moreover, they have a
prothrombotic potential and are known to be more abundant in patients with diabetes, acute
or chronic coronary syndrome, and in smokers [46-48]. Additionally, elevated levels of
reticulated platelets in peripheral blood are predictors of insufficient response to antiplatelet
therapies (e.g. Aspirin and P2Y12 inhibitors) and are promising novel biomarkers for the
prediction of adverse cardiovascular events in different pathological settings [47,49]. A
strong enrichment of pro-thrombotic signaling in reticulated platelets was observed in healthy
donors [44]. Comparative transcriptomic analysis revealed a differential expression of
several pathways in addition to an enrichment of prothrombotic pathways and transcripts of
transmembrane proteins as the collagen receptor GPVI, the thromboxane receptor A2 and
the thrombin receptors PAR1 and PAR4. Gene set enrichment analysis indicated an
upregulation of entire prothrombotic activation pathways as the thrombin PAR1 and integrin
GPIIb/llla signaling pathway in reticulated platelets.
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Since AS has been described to occur in platelets [50], we wanted to investigate the splicing
patterns between the previously defined reticulated and mature platelet subgroups. Using
MAJIQ [51] (see Methods), we found 169 differentially spliced genes. From 25 affected
protein domains, 17 have known interactions (68% of affected domains, Figure 4 A,
Additional file 4: Tables S12 and S13).

We observed that the enrichment at the gene-level using the Reactome [52] database ranks
general cellular pathways higher, including “Membrane Trafficking” and “Vesicle-mediated
transport”’, and “Golgi-to-ER retrograde transport”. An exception is the “Circadian Clock”
pathway, which is hypothesized to be related to platelet activation [53] (Figure 4 B). The
pathway “Platelet activation, signaling and aggregation” was less significant in gene-level
enrichment (adjusted p-value: 0.061, Additional file 4: Table S14) compared to NEASE
enrichment (adjusted p-value: 0.004, Additional file 4: Table S15). Using NEASE, we
obtained more meaningful results and unique pathways. As shown in Figure 4C, the most
significant pathways in reticulated platelets are G Protein-Coupled Receptor-related. G
proteins are essential in the second phase of platelet-dependent thrombus formation [54].
Furthermore, GPCR isoforms are known to have distinct signaling properties [55]. Other
relevant pathways associated with platelet activation are “Hemostasis”, “Thromboxane
signaling through tp receptor”, and “Platelet homeostasis”. The full tables for enrichment at
the gene level and using NEASE are available in the Additional file 4: Tables S14 and S15.
The upregulation of these pathways in reticulated platelets emphasizes their previously
described prothrombotic phenotype and their involvement in several downstream signaling
processes.

A Affected domains Gene-level enrichment
§ Domains with known interactions
Genes ith AS affecting proten domains vembrane Toricking -
Yes
£ creacian cock -
Not affecting a domain
BMALL:CLOCK,NPAS? activates circadian gene expression - [ NN
activatin o gene expression by seeer sesr -
00 02 04 06 08 10 12 14
-log10(Adjusted P-value)
NEASE pathways enrichment Genes/events prioritization
N N c
signaiing by cecr | g o [
i ]
>
E G alpha (q) signalling events _ ic LI l
= = rasea ]
G alpha (s) signalling events -— I
©  ARHGEF12 '
Signal Transduction _ b=
a PPM1A I
G alpha (2) signalling events —_ I . | 0
P 9 9 0 5 10 15 20 25
' ' ' ' ' ' ' ' -log10( P-value)
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5

-log10(Adjusted P-value) GPCR downstream signalling

Figure 4. (A) 14 % of differentially spliced exons, between reticulated and mature platelets, are known to encode
protein domains. (B) Gene level enrichment of all differentially spliced exons in the Reactome database fails to
capture most relevant pathways. (C) In contrast, NEASE shows an enrichment of the GPCR downstream
signaling and other related pathways that are well known to be important in platelet activation. (D) A further look
at the genes driving the enrichment of the GPCR pathway shows the most relevant genes affected by AS.
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We also looked at the individual AS events driving this enrichment. For each affected
domain, NEASE tests if it significantly interacts with the GPCR downstream signaling
pathway (Additional file 4: Table S16, see Methods). Figure 4C illustrates affected genes and
their p-value ranking. The top gene is GNAQ (G-protein subunit alpha q), which is known to
be involved in signal transduction in platelets leading to platelet activation [56]. The
regulation of the G-protein alpha subunit can be an indication that compared to mature
platelets, reticulated platelets are more involved in various signal transduction pathways
related to, e.g., pro-thrombotic processes [46]. PRKCA, which also showed different splicing
patterns between the two platelet subgroups, plays a major role in the platelet formation
process by modulating platelet function [57], megakaryocyte function, and development [58]
and negatively regulates pro-platelet formation [59]. Moreover, the regulation of PRKCA
binding in reticulated platelets might refer to the young nature of reticulated platelets, which
have undergone the pro-platelet formation process more recently than mature platelets
[45,60].

NEASE characterizes complex disorders such as Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central
nervous system. Early in the disease course, MS is characterized by focal lesions in the
brain induced by influx of systemic inflammatory cells. These active lesions infiltrated by
immune cells and activated microglia are characterized by inflammatory demyelination and
axonal loss [61]. The surrounding white matter tissue is termed normal-appearing white
matter due to diffuse pathology without focal lesion activity and dense immune activity [62].
The etiology of MS remains unknown. Recently, a systematic literature review found 27
genes that were alternatively spliced in MS patients [63].

We used RNA-Seq of macrodissected areas from postmortem white matter tissue of patients
with progressive MS [64]. We compared normal-appearing white matter and active lesions
regions from postmortem white matter brains of MS patients. We found 109 differentially
spliced genes and 19 affected domains with known interactions. In total, NEASE identified
150 affected interactions (Additional file 5: Tables S17 and S18).

Gene-level enrichment ranks high pathways likely irrelevant that are involved in muscle
contraction, cardiac conduction, and membrane Trafficking, with the exception of Ca2+ ion
flow across membranes.(Additional file 5: Table S19). Ca2+ is an essential signal molecule
for all cell activity. Although deregulation of calcium signaling is related to the pathogenesis
of multiple diseases [65], including neurological disorders [66], It is not specific to neuronal
tissues. In line with the neurodegenerative and immune-mediated features of MS, NEASE
found unique enriched pathways related to brain network signaling and neuronal pathways
“Neurotransmitter receptors and postsynaptic signal transmission”, “Transmission across
Chemical Synapses”, “Activation of NMDA receptor and postsynaptic events”, “MAPK family
signaling cascades”, “Neuronal System”), as well as pathways related to immune responses
(“interleukin-17 signaling, “Toll Like Receptor 10 (TLF10) Cascade”) (Table 1 and Additional
file 5: Table S20). Two other pathways were related to the uptake of anthrax or bacterial
toxins. This could be a result of clean-up from toxic inflammatory processes or increased
presence of invaders due to the leaky brain-blood-barrier in MS [67—69]. Additionally, it also
supports the theory of infections as the trigger of lesion damage in MS [70].
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As shown in Table 1, the pathway “Uptake and function of anthrax toxins” has the best
overall adjusted p-value, calculated only based on the total number of edges affecting the
pathway. When we also included the number of significant genes and calculated NEASE
scores (see Methods), NEASE ranks the pathway “Neurotransmitter receptors and
postsynaptic signal transmission® first, and moves pathways such as “Transmission across
Chemical Synapses’ and “Neuronal System” higher in the rank. These observations illustrate
the usefulness of the NEASE score as a complement to the global edge-based enrichment.

Two of the most significant genes in the “Neurotransmitter receptors" pathway were GRIN1
and GRIA1 (Additional file 5: Table S21). GRIN1 encodes GIluN1, which is one of the two
obligatory subunits for the NMDAR1 receptor, where GRIA1 encodes the AMPAR1 subunit.
Their ligand is glutamate, and they are both ionotropic receptors and have been associated
with MS disease severity [71-73]. Interestingly, AS of MAP2K4 appeared in both
brain-related and immune-related pathways, significantly enriched in active lesions vs
normal-appearing white matter (Table 1). MAP2K4 is a mitogen-activated protein kinase
(MAPK) orchestrating multiple biological functions [74,75]. AS of MAP2K4 has been found in
rheumatoid arthritis [76], as well as in pathways of patients with other autoimmune diseases
[77]. MS also precedes autoimmune attack, and therefore AS of MAP2K4 in active lesions
detected with NEASE may represent dysregulated immune responses originating from the
infiltrating immune cells or inflammatory-activated brain cells. This is supported by previous
studies that found (i) overactivity of MAPK pathways in microglia (the resident immune cell of
the brain) during neurodegeneration [78,79], and (ii) increased phosphorylation of MAPK
kinases in the systemic immune cells of MS patients [80,81]. A recent study also
characterized activated MS-specific pathways in immune cells from blood using
phosphoproteomics. Here, MAP2K4 and its interaction partners (e.g. TAK1) were present in
MS-specific signaling activity [82]. Future functional studies on the AS of MAP2K4 may help
explain if AS could be the reason for increased phosphorylation and overactivity detected in
MS. AS of MAP2K4 could result in switching protein conformation, increasing susceptibility
to phosphorylation or changing the downstream protein cascade.

With NEASE, we were able to specifically detect AS of genes and related pathways already
known to be dysregulated within MS from excitotoxicity to inflammation. The detected AS
genes in active lesions vs normal-appearing white matter demonstrate how major
components in signaling activiies may be fine-tuned/changed from regulation of a
homeostatic state to an inflammatory state. Combining NEASE with functional experiments
to understand the biological impact of AS could fuel new therapeutic opportunities for
complex neurological diseases as MS. Novel developments in genome-editing tools and
gene-specific strategies have made it possible to use antisense oligonucleotides or small
modulators for splice modification. This is already used in the rare neuromuscular disease,
spinal muscular atrophy, where an antisense oligonucleotide binds to a site near splicing to
ensure the inclusion of an exon during the splicing event [78].

Table 1 NEASE enrichment obtained from AS comparison between normal-appearing white matter (NAWM) and
acute lesions (AL), from multiple sclerosis patients. The highly enriched pathways belong to Neurotransmitter
receptors, MAPK, and bacterial infection. Most of these pathways are hallmarks of MS. The NEASE score is
obtained after combining the p-value with the number of significant genes. The latter is obtained after individual
tests for each gene in the column “Spliced genes” (see Methods).
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Pathway name Spliced genes (number of p-value adj p-value NEASE
interactions affecting the score
pathway)

Neurotransmitter receptors GRIA1 (7), ATP2B1 (1), 2.128010e-08 0.000009 15.34

and postsynaptic signal BRAF (4), MAP2K4 (1),

transmission GRIN1 (4)

Uptake and function of anthrax ATP2B1 (1), BRAF (5), 2.468257e-09 0.000004 14.90

toxins MAP2K4 (3)

Transmission across Chemical GRIA1 (7), ATP2B1 (1), 2.207774e-07 0.000037 13.31

Synapses BRAF (4), MAP2K4 (1),

GRIN1 (4)

Uptake and actions of ATP2B1 (1), BRAF (5), 2.560786e-08 0.000009 13.14

bacterial toxins MAP2K4 (3)

Activation of NMDA receptor GRIA1 (2), ATP2B1 (1), 2.447069e-06 0.000194 11.22

and postsynaptic events BRAF (4), MAP2K4 (1),

GRIN1 (3)
MAPK family signaling MYH10 (2), ATP2B1 (1), 1.140595e-06  0.000148 10.29
cascades BRAF (17), MAP2K4 (5),

GRIN1 (3)

Neuronal System GRIA1 (7), ATP2B1 (1), 2.657946e-06 0.000194 9.65
BRAF (4), MAP2K4 (1),

GRIN1 (4)

FCERI mediated MAPK MYH10 (1), BRAF (7), 5.455227e-07 0.000082 8.85

activation MAP2K4 (8)

RAF/MAP kinase cascade MYH10 (1), ATP2B1 (1), 7.076613e-07 0.000099 8.69
BRAF (16), MAP2K4 (4),

GRIN1 (3)
MAPK1/MAPK3 signaling MYH10 (1), ATP2B1 (1), 1.736848e-06 0.000194 8.14
BRAF (16), MAP2K4 (4),
GRIN1 (3)
Interleukin-17 signaling BRAF (6), MAP2K4 (12) 2.203770e-06 0.000194 7.99
MAP kinase activation BRAF (6), MAP2K4 (12) 2.203770e-06 0.000194 7.99
2.618844e-06 0.000194 7.89

Toll Like Receptor 10 (TLR10)
Cascade

BRAF (6), MAP2K4 (13)
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NEASE finds new biomarker candidates for Dilated Cardiomyopathy

AS might play a role in driving Dilated Cardiomyopathy (DCM) [83]. DCM is a common heart
muscle disease that is often diagnosed with structural abnormalities resulting in impaired
contraction. Previous studies have shown a large number of differentially used exons in
DCM patients [4,10]. In this analysis, we used a list of 1,212 differentially used exons
between DCM patients and controls as reported by Heinig et al. [10]. 28% of these exons
overlapped with domains (Additional file 6: Tables S22 and S23). In this exon set, both the
gene level enrichment and NEASE show very similar results (Additional file 6: Tables S24
and S25). In both methods, we found that the list of exons was enriched in the Dilated
cardiomyopathy (DCM) pathway from KEGG, as well as, “Adrenergic signaling in
cardiomyocytes”, and “Regulation of actin cytoskeleton”.

In contrast to gene-level enrichment analysis, NEASE is able to score the contribution of
alternatively spliced genes that are interacting with but are not part of the DCM pathway,
allowing us to highlight putative biomarkers (Table 2, Additional file 6: Table S26, Additional
files 1: Figure S1). The Myosin head domain from the gene MYO19 interacts with 6 other
genes associated with DCM: (1) MYL2, which triggers contraction after Ca+ activation [84];
(2-5) TPM1/TPM2/TPM3/TPM4, which encode the tpm protein - the main regulator of muscle
contraction [85]; and (6) ACTG, which encodes actin. Interestingly, MYO19 has not been
investigated for its role in DCM, while its interacting genes are associated with DCM [86—89].
Additionally, the gene OBSCN has one affected interaction with the TTN gene [90]. The TTN
gene itself is also differentially spliced associated with DCM [90]. OBSCN was recently
reported as a new DCM candidate [91,92]. Another interesting example is CACNA1C
(Calcium Voltage-Gated Channel Subunit Alpha1 C), an already known DCM candidate [93].
The differentially spliced exon overlaps with the domain lon_trans (Pfam id: PF00520) that is
essential for myocyte contraction [94]. The affected interaction identified is with the
Ryanodine receptor 2 (RYR2). In striated muscles, excitation-contraction coupling is
mediated by this complex [95]. Both CACNA1C and RYR2 are part of the KEGG DCM
pathway [96]. Alterations in Ryanodine Receptors were repeatedly reported to be related to
heart failure [97-99].

Table 2: Enrichment of the pathway “Dilated cardiomyopathy (DCM)” from KEGG for the exons
differentially used in DCM patients. The table shows the most significant genes (p_value<0.05) (See
Methods).

Differentially | DCM Percentage of | P-value | Affected binding (edges) associated
Spliced associated | affected with DCM
Genes edges
associated
with DCM
MYO19 No 6/51 0.000002 | MYL2,TPM4,TPM3,TPM2,TPM1,ACTG
OBSCN No 1/2 0.014717 | TTN
USP49 No 1/4 0.029217 | PRKACA
CACNA1C Yes 1/4 0.029217 | RYR2
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Discussion

In spite of its importance for biomarker and therapeutic target discovery, differential AS is still
not a routine part of transcriptome analysis. A key reason for this could be the lack of
suitable methods and software tools for AS-specific functional analysis. Our method NEASE
closes this gap and provides a unique view on the impact of AS complementary to
functional insights gained from traditional gene-level enrichment analysis. We applied
NEASE to four diverse data sets and show that it's results generate novel disease-relevant
insights and provide valuable context to prior findings on altered RNA- and
protein-expression levels consistent with recent literature.

In many cases, NEASE improves over gene-level enrichment analysis focusing on
differentially spliced genes. One potential reason for this could be that not all AS events are
necessarily functional [11,12]. NEASE mitigates this by focusing on AS events that affect
protein domains. However, it is important to keep in mind that this is not the only way to
define functional AS events. AS also affects interacting disordered regions [14] or facilitates
nonsense-mediated decay [100].

AS events could also lead to completely different functions or interactions [101], e.g., two
isoforms can have different interaction partners depending on the inclusion or loss of a
single domain [13]. Such changes in the interactome can not be captured with gene-level
enrichment which has a strict focus on nodes rather than edges. With NEASE, we could
show that integrating structural information at the exon level and PPl networks helps to
identify the functional impact of differentially spliced and co-regulated exons. In practice, we
consider both approaches as complementary and recommend running gene-level and
edge-level enrichments together (both supported by the NEASE package).

NEASE relies on structurally annotated interactions and existing pathway annotations from
databases such as KEGG [96] and Reactome [52]. Leveraging reliable structural information
and established pathways likely removes many false positive PPI from considerations. While
DDI are generally of high quality, it should be noted that not all AS events are necessarily of
functional consequence since other processes such as nonsense-mediated decay need to
be considered as well. With our current approach, a large fraction of the PPl network
remains unexplored, suggesting that adapting de novo network enrichment methods such as
KeyPathwayMiner [102] towards AS could be a promising research direction to uncover
previously unknown disease mechanisms. NEASE currently considers the immediate
neighborhood of a pathway in the PPI network. When carefully considering the expected
increase in false positives, one could also increase the size of the pathway neighborhood
using, e.g., a fixed radius for shortest paths. While these are attractive approaches, the
biases of the PPI towards hubs , as well as the high number of false (or missing) edges of
PPI, in its current form, make such approaches hard to control and statistically challenging.
Even though NEASE is relatively conservative, we demonstrated that it is simple, robust,
and generates meaningful and interpretable results. Thus, it provides an unprecedented
opportunity to understand the functional impact of tissue-, developmental- and
disease-specific AS in a system biology manner.

While a plethora of gene set enrichment methods have been proposed in recent years, AS is
typically not addressed specifically. Thus, NEASE closes an important gap in functional
enrichment analysis of transcriptomics data. The analyses described here, confirm the
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widespread impact of AS in multiple biological processes and disorders. In the future, we
plan to extend NEASE with further model organisms and to add structural annotations
covering more types of AS events. Finally, we plan to integrate NEASE with the DIGGER
web tool [21] for a seamless downstream analysis of AS in the web browser with the vision
of establishing functional AS event analysis as a routine step in transcriptomic analysis.

Methods

NEASE Data sources

We construct a human structurally annotated PPI as described previously [21]. Briefly, we
integrate DDI and PPI information into a joint network where DDIs were obtained from 3did
(v2019_01 [25]) and DOMINE (v2.0 [24] including high- and mid-confidence interactions)
and PPIls were obtained from BioGRid 3.5 [23]. In summary, out of 410,961 interactions from
the human interactome 52,467 have at least one domain interaction. The mapping of exons
to domains was performed using DIGGER's mapping table that in turn uses BioMart and
Pfam annotations [22,103]. We obtain the biological pathways with their gene list from
KEGG [52] and Reactome [96] integrated into the ConsensusPathDB database [26].

Statistical tests and pathway scores
Gene-level enrichment is performed using a hypergeometric test from the package GSEAPY
(a Python wrapper for Enrichr [104]) by considering all genes with (differential) AS events.

For NEASE enrichment, we filtered the PPI graph G=(V,E), where V is the set of genes and
E is the set of edges, to a subgraph G’=(\V’, E’) containing only structurally annotated
interactions E’ and their nodes V.

For a submitted query list of exons, NEASE first identifies affected domains that overlap with
the exons and their interactions. Let N be two times the number of edges in G’ (the degree of
the network) and n be the number of affected edges from the query. These edges are then
considered using a test modified from [105]: For every pathway P with degree K, let k be the
number of affected edges that are connected to P. We model X whose outcome is k as a
random variable following a hypergeometric distribution:

X ~ Hypergeometric (h=number of affected edges, K= degree of P, N= degree of G’)

where k is considered as the number of observed successes out of n draws, from a
population of size N containing K success. Subsequently, NEASE tests if the number k is
significant using a one-sided hypergeometric test (over-representation). After testing for
multiple pathways, the obtained p-values for the edge-level enrichment are corrected, using
the Benjamini-Hochberg method [106].

For a pathway of interest, a similar test can be applied to determine if a splicing event
significantly affects interactions of a specific gene with this pathway. Here, n is the number of
all affected interactions (edges) of a spliced gene and k is the number of affected
interactions (edges) across genes that are linked to the pathway of interest. As a result, for
every pathway, NEASE provides an overall p-value, as well as the most significant genes.
Since the p-value only depends on the overall number of affected edges but not on the
number of genes, the p-value can be heavily influenced by hub genes. To reduce this
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influence, an optional score (NEASE Score) can be computed by NEASE to scale the
natural logarithm of the p-value with the total number of significant genes using a cutoff from
the user (for instance p-value<0.05):

NEASE Score = —./G X loglo(p — value)

where G is the total number of significantly connected genes obtained after testing individual
spliced genes. Thus, the NEASE Score prioritizes pathways that are affected by a larger
number of spliced genes rather than pathways that have a larger number of affected
interactions (edges). The user can choose to rank enrichment based on the adjusted p-value
or by the NEASE score.

VastDB events processing

PSI values of the exon skipping events from VastDB were quantified by the developers using
vast tools [28,107]. In our analysis, we extracted the PSI values for 32 experiments
belonging to 12 main tissues: muscle/heart, neural (whole brain, cortex and peripheral
retina), placental, epithelial, digestive (colon and stomach), liver, kidney, adipose, testis,
immune-hematopoietic and ovary. We then filtered out the events with low read coverage
(VLOW) and performed hierarchical clustering of standardized values (z-scores). For every
exon, we calculated the mean of PSI values from the samples of the same tissues. To
extract muscle/heart and neural-specific exons, we applied two filters, namely that the
z-score of the exon PSI value in the relevant tissue is higher than 2 and that the mean PSI
value of the exon across all tissues is between 0.15 and 0.90. The latter ensures that we
consider only exons that are part of AS events.

RNA-Seq analysis

Raw RNA-Seq reads for two types of platelets and multiple sclerosis patients were
downloaded from the GEO repository (access numbers: GSE126448 and GSE138614 ). The
number of samples and sequencing depth are reported in Additional file 1: Table S3.
RNA-Seq reads were aligned to the reference human genome (hg38) using STAR 2.7 [108]
in a 2-pass mode and filtered for uniquely mapped reads. Differential AS analysis was
performed by MAJIQ [51] with default parameters, and with a threshold of P(dPSI > 20%) >
0.95.

NEASE: The Python package

NEASE’s Python package relies on NumPy [109], pandas [110], NetworkX [111], SciPy [112],
and Statsmodels [113]. The gene-level enrichment is also supported in the NEASE package
using the Python implementation of Enrichr [104]. To speed up the edge hypergeometric
test, the total degree of every pathway in the structural PPI, as well as the overall degree of
the network were pre-computed. For visualization, we use the complete PPI (not the
structural PPI) and extract connected subnetworks from each pathway as well as spliced
genes and their interactions with the extracted modules. The position of nodes is computed
using the Fruchterman-Reingold force-directed algorithm implemented in NetworkX [114].
The interactive visualization for individual genes and events is implemented with information
from the DIGGER database and the Plotly package.

The standard input of the package is a DataFrame object with the exon coordinates and
Ensembl IDs of the genes. The package also supports the output of AS differential detection
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tools that are event-based such as MAJIQ [51] where NEASE only considers annotated
exons. NEASE is released as open-source under the GPLv3 license and available at
(https://qithub.com/louadi/NEASE). The code used to produce the results in this manuscript
was deposited at Zenodo (https://doi.org/10.5281/zenodo.4985321).
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