

1 Running title: *Klf9 regulates neural stem cell expansion in the adult hippocampus*
2

3 **Transcriptional regulation of neural stem cell expansion in adult hippocampus**
4

5 1,2,3,4 Nannan Guo,^{6, 7} Kelsey D. McDermott,^{1,2,3,4,7} Yu-Tzu Shih,^{1,2,3,4} Haley Zanga,^{1,2} Debolina Ghosh,^{1,2}
6 Charlotte Herber,^{1,2} James Coleman,^{1,2} Alexia Zagouras,^{1,2} William R. Meara,⁵ Lai Ping Wong,⁵ Ruslan
7 Sadreyev,⁶ J. Tiago Gonçalves and ^{1,2,3,4*} Amar Sahay
8
9

10 ¹Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ²Harvard
11 Stem Cell Institute, Cambridge, MA 02138, USA. ³Department of Psychiatry, Massachusetts General
12 Hospital, Harvard Medical School, Boston, MA 02114 USA. ⁴BROAD Institute of Harvard and MIT,
13 Cambridge, MA 02142. ⁵Department of Molecular Biology, Massachusetts General Hospital, Harvard
14 Medical School, Boston, MA 02114 USA. ⁶Ruth L. and David S. Gottesman Institute for Stem Cell Biology
15 and Regenerative Medicine; Dominick Purpura Department of Neuroscience, Albert Einstein College of
16 Medicine, Bronx, NY 10461, USA.
17
18

19 ⁷ These authors contributed equally
20 * Corresponding author: Amar Sahay. asahay@mgh.harvard.edu

21 **Abstract**

22 Experience governs neurogenesis from radial-glia neural stem cells (RGLs) in the adult hippocampus to
23 support memory. Transcription factors in RGLs integrate physiological signals to dictate self-renewal
24 division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions,
25 symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic
26 demands. The identities of transcription factors regulating RGL symmetric self-renewal, unlike those that
27 regulate RGL asymmetric self-renewal, are not known. Here, we show that the transcription factor Kruppel-
28 like factor 9 (*Klf9*) is elevated in quiescent RGLs and inducible, deletion of *Klf9* promotes RGL activation
29 state. Clonal analysis and longitudinal intravital 2-photon imaging directly demonstrate that *Klf9* functions
30 as a brake on RGL symmetric self-renewal. *In vivo* translational profiling of RGLs lacking *Klf9* generated a
31 blueprint of RGL symmetric self-renewal for stem cell community. Together, these observations identify
32 *Klf9* as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

56 Introduction

57 In the adult mammalian brain, radial glial neural stem cells (RGLs) in the dentate gyrus subregion of the
58 hippocampus give rise to dentate granule cells and astrocytes (1-9), a process referred to as adult
59 hippocampal neurogenesis (10-18). Adult-born dentate granule cells integrate into hippocampal circuitry by
60 remodeling the network and ultimately contribute to hippocampal dependent learning and memory and
61 regulation of emotion (7, 19, 20). Levels of adult hippocampal neurogenesis are highly sensitive to
62 experience (21, 22) suggesting that neurogenesis may represent an adaptive mechanism by which
63 hippocampal dependent memory functions are optimized in response to environmental demands. Essential
64 to this adaptive flexibility is the capacity of RGLs to balance long-term maintenance with current or future
65 demands for neurogenesis (“anticipatory neurogenesis”) in response to distinct physiological signals (5, 21-
66 24).

67 Depending on environmental conditions, RGLs make decisions to stay quiescent or self-renew
68 asymmetrically or symmetrically. Whereas enriching experiences (eg: complex environments, exploration,
69 socialization) bias RGLs towards asymmetric divisions to generate astrocytes and neurons (23, 25),
70 unfavorable conditions promote RGL quiescence (eg: chronic stress, aging) or symmetric self-renewal to
71 support neural stem cell expansion at the expense of neurogenesis (eg: social isolation, seizures, aging) (23,
72 26, 27). Asymmetric self-renewal is thought to be the predominant mode of RGL division in the adult
73 hippocampus and it ensures maintenance of RGL numbers while supporting current neurogenic demands (9,
74 22). Conversely, symmetric self-renewal decouples RGL divisions from differentiation and is thought to
75 serve distinct functions. First, symmetric divisions prevent premature differentiation of RGLs in a non-
76 permissive or unhealthy niche, and consequently, avert aberrant integration of adult-born dentate granule
77 cells detrimental to hippocampal functions (27, 28). As such, RGL amplification anticipates future demands
78 for neurogenesis upon return to favorable conditions. Second, RGL expansion may represent an efficient
79 mechanism to replenish the adult RGL pool after injury. Third, symmetric stem cell divisions maybe more
80 efficient than asymmetric divisions for long-term maintenance since fewer divisions are required to maintain
81 RGL numbers. Furthermore, symmetric divisions may be associated with a lower rate of mutations and
82 reduced replicative aging (29).

83 Extracellular physiological signals recruit transcription factors (TFs) within adult hippocampal
84 RGLs to execute quiescence-activation decisions and symmetric or asymmetric self-renewal divisions (22,
85 30, 31). A growing number of transcriptional regulators of quiescence and asymmetric (neurogenic or
86 astrogenic) stem cell renewal has been identified (32-36). Deletion of such factors results in loss of RGL
87 quiescence, increased neurogenesis and ultimately, differentiation-coupled depletion of the RGL pool. In
88 sharp contrast, the identities of TFs that regulate RGL expansion have remained elusive. Here, we report
89 that expression of the ubiquitously expressed TF, Kruppel-like factor 9 (*Klf9*), a regulator of dendritic and
90 axonal plasticity in post-mitotic neurons (37, 38), is elevated in non-dividing RGLs compared to dividing
91 RGLs. Inducible genetic upregulation of *Klf9* in RGLs and progenitors decreased activation, whereas
92 conditional cell-autonomous deletion of *Klf9* in RGLs promoted an activated state. Clonal lineage tracing
93 and longitudinal two-photon imaging of adult hippocampal RGLs *in vivo* directly demonstrated a role for
94 *Klf9* as a brake on symmetric self-renewal. *In vivo* translational profiling of RGLs generated a molecular
95 blueprint for RGL expansion in the adult hippocampus: we found that loss of *Klf9* in RGLs results in
96 downregulation of a program of quiescence associated factors and upregulation of genetic (mitogen, notch)
97 and metabolic (fatty acid oxidation and lipid signaling) programs underlying RGL symmetric self-renewal.
98 Together, these data identify *Klf9* as a transcriptional regulator of neural stem cell expansion in the adult
99 hippocampus. Our study contributes to an emerging framework for how experiential signals may toggle a
00 balance of transcriptional regulators of symmetric and asymmetric self-renewal of RGLs to amplify neural
01 stem cells or asymmetrically divide and generate neurons and astrocytes.

02

03 Results

04 Inducible *Klf9* loss promotes RGL activation

05 To characterize *Klf9* expression in RGLs in the adult dentate gyrus, we bred *Klf9-LacZ* knock-in reporter
06 mice (39) with a Nestin GFP transgenic mouse line in which Nestin+RGLs are genetically labeled with GFP
07 (40). Quantification of *Klf9* expression based on LacZ intensities in *Klf9*^{LacZ/+} mice revealed enrichment in
08 quiescent RGLs relative to activated RGLs (MCM2+)(One-way ANOVA, F=17.07, p=0.003)(**Figures 1A-B**). MCM2 expression captures activated cells that have exited quiescence. To refine this estimation that is

10 based on a surrogate (LacZ) of *Klf9* expression within the RGL compartment, we performed Fluorescence
11 in situ hybridization (FISH) using a *Klf9* specific riboprobe and immunohistochemistry for GFP and BrdU
12 on adult hippocampal sections obtained from *Klf9*^{+/+ or LacZ/LacZ}; Nestin GFP transgenic mice perfused 2 hours
13 following a BrdU pulse (One-way ANOVA, F=5.6, p=0.04) (**Figures 1C-E**). No signal was detected with
14 FISH using the *Klf9* riboprobe on brain sections from *Klf9*^{LacZ/LacZ} mice thus conveying specificity of the
15 riboprobe (**Figure 1D**). Quantification of *Klf9* transcripts using Image J revealed significantly enriched
16 expression in quiescent vs. activated (BrdU+Nestin GFP+) RGLs (**Figures 1C and 1E**).

17 We next asked what happens when we delete *Klf9* in adult hippocampal RGLs. To address this
18 question, we engineered *Klf9* conditional mutant mice (*Klf9*^{ff}) to cell-autonomously delete *Klf9* in RGLs.
19 We first validated our *Klf9*^{ff} mouse line by crossing it with the POMC-Cre mouse line that drives
20 recombination in the dentate gyrus. ISH on hippocampal sections from POMC-Cre: *Klf9*^{ff} revealed salt and
21 pepper expression of *Klf9* in the dentate gyrus consistent with the established pattern of POMC-Cre
22 dependent recombination in the dentate gyrus (41). No signal was detected by in situ hybridization using the
23 *Klf9* riboprobe on brain sections from *Klf9*^{LacZ/LacZ} mice thus conveying specificity of the riboprobe (**Figures**
24 **S1A-C**). We bred *Klf9*^{ff} mice with (GLI-Kruppel family member 1) Gli1 Cre^{ERT2} to recombine *Klf9* (deletion
25 of exon1) in hippocampal RGLs (**Figures 1F-G**). We chose the Gli1 Cre^{ERT2} driver line because population-
26 based lineage tracing and chronic *in vivo* imaging suggests that Gli1 Cre^{ERT2} labeled RGLs contribute to long-
27 term maintenance and self-renewal (3, 42). We next generated *Klf9*^{ff or +/+} mice harboring a Gli1 Cre^{ERT2}
28 allele and a Cre-reporter allele (Ai14, B6;129S6-Gt(ROSA)26Sor^{tm1(CAG-tdTomato)Hze}/J) (43) to indelibly label
29 Gli1+ positive RGLs and their progeny (**Figure 1F**). We induced *Klf9* recombination and tdTomato
30 expression in RGLs of adult (2 months old) Gli1 Cre^{ERT2}; *Klf9*^{ff or +/+}; Ai14 mice and processed brain sections
31 for Nestin, tdTomato, and MCM2 immunohistochemistry 7 days post injection (7dpi) to quantify activated
32 RGLs (**Figures 1F-G**). We found that conditional deletion of *Klf9* in Gli1 Cre^{ERT2} targeted adult
33 hippocampal RGLs significantly increased the fraction of activated RGLs (% of
34 MCM2+tdTomato+RGLs) (**Figure 1G**) (Unpaired t-tests, Figure 1G p=0.02, Figure 1I p<0.0001).
35 Complementing these results, we demonstrated that genetic overexpression of *Klf9* in activated hippocampal
36 neural stem cells and progenitors of adult Sox1 tTA; teto *Klf9* mice (38, 44) significantly decreased the
37 fraction of activated and dividing cells (**Figures S2A-D**). Together, these data demonstrate that *Klf9*
38 expression is enriched in quiescent RGLs and that loss of *Klf9* expression in RGLs either promotes or
39 maintains an activated state of RGLs in the adult hippocampus.

40 ***Klf9* deletion in RGLs produces supernumerary RGL clones**

41 We next asked how *Klf9* loss of function in RGLs affects self-renewal division mode. Population level
42 lineage tracing experiments at short-term chase time points suggested that *Klf9* loss in Gli1+ RGLs increased
43 RGL numbers (data not shown). However, analysis of neural stem cell dynamics at the population level is
44 encumbered by changes in numbers of labeled progeny overtime (5, 42). The challenges of interpreting
45 population-level analysis are exacerbated because *Klf9* is also expressed in immature adult-born neurons and
46 mature dentate granule cells. As such, changes in numbers of labeled descendants following loss of *Klf9* in
47 RGLs makes population-level lineage tracing difficult to interpret. Therefore, to directly investigate whether
48 loss of *Klf9* in RGLs results in neural stem cell expansion at a single clone level, we performed *in vivo* clonal
49 analysis in adult Gli1 Cre^{ERT2}; *Klf9*^{ff or +/+}; Ai14 mice shortly after low dose Tamoxifen administration. Single
50 dose of TAM at 50mg/Kg body weight permitted sparse labeling of single tdTomato+RGLs and visualization
51 of labeled single RGL clones and their individual constituents. Analysis of clonal composition at 7dpi
52 revealed a significantly greater fraction of multi-RGL containing clones and a smaller fraction of single RGL
53 containing clones 7 day post *Klf9* deletion in RGLs (**Figures 2A-D**) (Figure 2B Two-way ANOVA,
54 Genotype X Cell-type p<0.0001, Bonferroni post hoc *Klf9*^{+/+} vs. *Klf9*^{ff}. 1RGL n.s., 2+RGLs p<0.0001,
55 1RGLs+ p<0.0001, No RGL n.s. Figure 2D, left panel, Two-way ANOVA, Genotype X Cell-type p<0.0001,
56 Bonferroni post hoc *Klf9*^{+/+} vs. *Klf9*^{ff}. 2+RGLs p=0.09, 2RGLs+P+A p<0.0001, 2RGLs+P n.s. Figure 2D,
57 right panel, Two-way ANOVA, Genotype X Cell-type p=0.09, Bonferroni post hoc *Klf9*^{+/+} vs. *Klf9*^{ff}. 1RGL
58 n.s., 1RGL+P+A p=0.01, 1RGLs+P p=0.01). Many of the multi-RGL containing clones also comprised of
59 neural progenitors and astrocytes suggesting that loss of *Klf9* biases RGL expansion but does not prevent
60 RGL differentiation into progeny (**Figure 2D**). To corroborate these findings and address any potential
61 confound introduced by bias in the Ai14 genetic lineage tracer, we performed clonal analysis at 7dpi using
62 a different lineage tracing reporter, mTmG (*t(ROSA)26Sor*^{tm4(ACTB-tdTomato,-EGFP)Luo}/J) (45). Our analysis
63 demonstrated a significant increase in multi-RGL clones and decrease in single RGL clones derived from

65 RGLs lacking *Klf9* in Gli1 Cre^{ERT2}; *Klf9*^{f/f} mTmG mice (**Figures 2E-F**) (Figure 2F, Two-way ANOVA,
66 Genotype X Cell-type p<0.0001, Bonferroni *post hoc* *Klf9*^{+/+} vs. *Klf9*^{f/f}. 1RGL n.s., 2+RGLs p=0.0001,
67 1+RGLs p=0.03, No RGLs n.s). The lack of a difference in single RGL clones suggests that loss of *Klf9*
68 maintains the activated state associated with increased symmetric divisions. Alternatively, it may reflect a
69 floor effect in the assay that occludes detection of a decrease in number. These findings provide evidence
70 for *Klf9* in cell-autonomous regulation of RGL expansion and are *suggestive* of a role for *Klf9* in inhibition
71 of symmetric self-renewal of RGLs.
72

73 ***Klf9* functions as a brake on symmetric self-renewal of RGLs**

74 To unequivocally establish clonal origin of labeled progeny and directly test the hypothesis that *Klf9* inhibits
75 symmetric self-renewal of RGLs *in vivo*, we performed longitudinal two-photon imaging (46) of RGLs for
76 up to two months and tracked symmetric and asymmetric division patterns (**Figures 3A-B; Figures S3A-B**,
77 **Supplementary Movies S1-S4**). We implanted Gli1Cre^{ERT2}; *Klf9*^{f/f} or ^{+/+}; Ai14 mice with a hippocampal
78 window over CA1 for long term imaging. After allowing 2 weeks for recovery from surgery, we injected
79 mice with a single dose of tamoxifen (150mg/kg) to induce Cre recombination and tdTomato expression in
80 Gli1+ RGLs. This resulted in sparse labeling that allowed us to image and track individual cells and their
81 processes. Imaging sessions started 2 days post tamoxifen injection (dpi) and were repeated daily up to 6 dpi
82 in order to locate isolated labeled RGLs which were clearly identifiable by their tufted radial process.
83 Astrocytes were occasionally labelled but were readily distinguishable from RGLs due to their lack of polar
84 morphology and were disregarded. Post-hoc histology analysis of morphological features and
85 immunoreactivity for GFAP in brain sections corroborated our initial *in vivo* identification of RGLs (**Figure**
86 **S3**). After 6 dpi we track individual RGLs to quantify their first division event: we revisited each previously
87 identified, RGL-containing field-of-view every three days and compared it with previous timepoints in order
88 to quantify the first cell division and classify it as symmetric or asymmetric. As previously described (9),
89 asymmetric divisions resulted in motile daughter cells that migrated away from their progenitors within 1-2
90 imaging sessions (3-6 days) and exhibited shorter and less stable processes, often undergoing further
91 divisions and differentiation (**Figure 3B**) (**Supplementary Movie S1**). Conversely, and as shown previously
92 (9), symmetric divisions resulted in the appearance of a faint radial process of a single static daughter cell
93 that remained adjacent to its mother cell (**Figure 3B**) (**Supplementary Movies S2-S4**). Over time the cell
94 body of the daughter RGL emerged. For our analysis of cell division, we only considered the first division
95 event from an identified RGL, disregarding subsequent divisions of the daughter cells and analysis of RGL
96 derived lineage trees. Deletion of *Klf9* in RGLs resulted in a significantly greater number of symmetric cell
97 divisions (39 symmetric, 38 asymmetric, 10 mice) compared to *Klf9*^{+/+} RGLs (18 symmetric, 47 asymmetric,
98 8 mice) (**Figure 3C**). We made sure to have a similar number of division events across both genotypes so
99 that we were confident that the differences in the mode of division are not due to under/over sampling each
00 experimental group (N= 8 control mice, 65 divisions, mean 8.125 divisions per mouse; 10 experimental
01 mice, 77 divisions, mean 7.7 divisions per mouse) (**Figure 3D**). These data provide definitive evidence for
02 *Klf9* functioning as a brake on symmetric self-renewal of RGLs in the adult hippocampus.
03

04 ***Klf9* regulates a genetic program of RGL activation and expansion**

05 To understand how *Klf9* regulates RGL division mode, we performed *in vivo* molecular profiling of RGLs
06 lacking *Klf9*. We generated Gli1Cre^{ERT2}; Rpl22HA^{f/f}; *Klf9*^{f/f} or ^{+/+} (B6N.129-Rpl22tm1.1Psam/J mice
07 (Ribotag) mice (47) to genetically restrict expression of a hemagglutinin (HA) epitope-tagged ribosomal
08 subunit exclusively in Gli1+ RGLs (**Figure 4A**). Four days following TAM injections to induce HA
09 expression and *Klf9* recombination in a sufficient number of Gli1+RGLs and progeny arising from first
10 division, we dissected the dentate gyrus subregion, biochemically isolated actively translated transcripts,
11 generated cDNA libraries and performed Illumina sequencing (**Figures 4A-C**). Analysis of the resulting
12 data and gene ontology annotation (gGOST, <https://biit.cs.ut.ee/gprofiler/gost>) of differentially expressed
13 genes (DEGs) (**Supplementary Table 1**) broadly categorized signaling pathways and molecular programs
14 associated with neural stem cell activation and quiescence (32, 34, 48-52) (**Figure 4C; Figure S4**,
15 **Supplementary Tables 2 and 3**). Functional categories enriched among upregulated DEGs (276) included
16 phospholipase activity (Pla2g7, Pla2g4e, Gpld1), mitogen growth factor signaling (Egfr, Fgfr3, Ntrk2, Lfng)
17 and ligand-gated ion channels (Gabra1, Chrna7, Grin2C, P2rx7). Additionally, our analysis revealed
18 elevation of metabolic programs sustaining energy production and lipogenesis through generation of Acetyl-
19 CoA: CoA- and fatty acid- ligase activity (Acsl3, Ascl6, Acss1, Acsbg1) and oxidoreductase and aldehyde

20 dehydrogenase activity (Acad12, Acox1, Ak1b10, Aldh3b1, Aldh4a1)(52-55)(**Supplementary Table 2**). A
21 complementary set of modules over-represented in the downregulated gene set (462 DEGs) were quiescence
22 growth factor signaling (Bmp2, Bmp4), extra-cellular matrix binding (Itga3, Itga10, Igfbp), cell adhesion
23 (eg: Emb, Itga3, Itga5), actin binding (Iqgap1), transcription factors (NeuroD4, Zic3) and voltage-gate
24 potassium channel activity (Kcnj8, Kcnq1)(**Supplementary Table 3**).

25 For validation of DEGs previously linked with neural stem cell quiescence and activation (32, 34,
26 49, 50, 52, 56), we performed qRT-PCR on an independent replicate of biochemically isolated mRNAs from
27 this population of Gli1+RGLs *in vivo*. We first confirmed downregulation of Klf9 in RGLs. Next, we
28 validated downregulation of canonical quiescence signaling factors (Bmp4) and upregulation of genes
29 involved in lipid metabolism (Pla2g7), cell cycle (Ccna1a), mitogen signaling (epidermal growth factor
30 receptor, Egfr), and Notch signaling (Lunatic fringe, Lfng) (**Figure 4D**). Consistent with Lfng-mediated
31 potentiation of Notch1 signaling through cleavage of the Notch1 intra-cellular domain (NICD), we observed
32 significantly elevated levels of NICD in Gli1+ RGLs lacking Klf9 (**Figure 4E**)(51, 57). We infer from our
33 loss-of function data that high levels of Klf9 in RGLs induce BMP4 expression and repress gene modules
34 specifying mitogen signaling, fatty acid oxidation, RGL differentiation and cell-cycle exit to inhibit RGL
35 expansion.

36 Discussion

37 Central to experience-dependent regulation of neurogenesis is the ability of RGLs to constantly
38 balance demands for neurogenesis and astrogenesis or RGL expansion with self-preservation through
39 regulation of quiescence. Since interpretation of the external world is dependent on integration and
40 convergence of physiological extracellular signals upon TFs in RGLs, enriching and adverse experiences
41 are likely to modulate the balance between transcriptional programs that regulate RGL division modes
42 supporting amplification or asymmetric self-renewal (22). However, in contrast to our knowledge of TFs
43 that regulate asymmetrical self-renewal of RGLs in the adult hippocampus (32-36), the identities of
44 transcriptional regulators of symmetric self-renewal of RGLs have remained elusive. By combining
45 conditional mouse genetics with *in vivo* clonal analysis and longitudinal two-photon imaging of RGLs, we
46 demonstrated that Klf9 acts as a transcriptional brake on RGL activation state and expansion through
47 inhibition of symmetric self-renewal (**Figure 5**).

48 That Klf9 expression is higher in non-dividing RGLs than in activated RGLs is consistent with gene
49 expression profiling of quiescent adult hippocampal RGLs (42, 52)(Jaeger and Jessberger, personal
50 communication) and other quiescent somatic stem cells such as satellite cells (58) and neural stem cells in
51 the subventricular zone (49, 59, 60). Loss of Klf9 in Gli1+ RGLs resulted in increased RGL activation.
52 Based on our clonal analysis of RGL output and *in vivo* translational profiling, we think that this increased
53 RGL activation reflects maintenance of an activated or cycling state (also discussed later) to support
54 increased symmetric self-renewal (6).

55 Our current knowledge of TFs that regulate symmetric self-renewal in the adult hippocampus can
56 only be extrapolated from studies on hippocampal development (61). Clonal analysis of Gli1-targeted RGLs
57 revealed multi RGL containing clones with progeny. This potentially reflects competition between TFs that
58 dictate balance between symmetric and asymmetric divisions, compensation by downstream effectors of
59 Klf9 or constraints on RGL expansion imposed by availability of niche factors. Such compensatory
60 mechanisms may also explain why constitutive deletion of *Klf9* does not overtly affect size of the dentate
61 gyrus (39).

62 Studies on adult hippocampal neural stem and progenitor cells have relied on assays that induce
63 quiescence and activation *in vitro* (52), unbiased single cell profiling of neurogenesis (50, 51) or FACS
64 sorting of neural stem and progenitor cells *in vivo* (34). Because asymmetric self-renewal is the predominant
65 mode of division, it is most certainly the case that the RGL activation profile inferred from these studies is
66 biased towards asymmetric, rather than symmetric, self-renewal. In contrast, our *in vivo* translational
67 profiling of long-term self-renewing Gli1+RGL population following cell-autonomous deletion of Klf9
68 allowed us to infer how changes in gene expression relate to RGL symmetric division mode and create an
69 exploratory resource for the neural stem cell community. While ribosomal profiling does not allow us to
70 isolate transcripts from single RGLs, it offers other advantages such as minimizing stress response associated
71 with cell dissociation (62). Since Gli1CreERT2 specifically targets RGLs and astrocytes (but not
72 progenitors) and we performed biochemical profiling at 4 days post recombination when we first observe
73 RGL derived progeny, our analysis largely reflects changes in the RGL population, progeny arising from

75 first division and astrocytes. That we observe an enrichment of genes expressed exclusively in RGLs permits
76 us to link gene expression with changes in RGL numbers driven by division mode. Analysis of Klf9 levels
77 by qRT-PCR suggests greater than 50% recombination efficiency of Klf9 in targeted cell populations. Our
78 genome-wide expression analysis suggests that Klf9 functions as an activator or repressor depending on
79 cellular context, although repression appears to be the dominant mode of gene regulation (63, 64). Validation
80 of specific DEGs in biochemically isolated transcripts from RGLs suggests that Klf9 may activate BMP4
81 expression in RGLs to suppress activation *in vivo* (48). Additionally, Klf9 suppresses RGL proliferation
82 through repression of mitogen signaling receptor tyrosine kinases (EGFR), lipidogenesis (Pla2g7) and cell-
83 cycle (CyclinA1). Pla2g7, interestingly, is expressed only in RGLs and astrocytes in the DG (50, 51) and
84 as such may represent a novel marker of activated RGLs. Given the dual roles of Notch signaling in
85 regulation of active and quiescent RGLs (65), we validated that Lfng is significantly upregulated in RGLs
86 lacking Klf9. Lfng is exclusively expressed in RGLs, promotes Notch1 signaling through glycosylation of
87 Notch1 and generation of NICD following ligand binding, and dictates RGL activation in a ligand dependent
88 manner (66). Genetic overexpression of Lfng in T cell progenitors sustained Notch1 mediated self-renewal
89 and clonal expansion at expense of differentiation (67). Consistent with Lfng upregulation in RGLs, we
90 observed elevated levels of NICD in Gli1+ RGLs lacking Klf9 indicative of enhanced Notch1 signaling.

91 Bioinformatics analysis of our data identified enhanced fatty acid β -oxidation (FAO), a substrate for
92 energy production and lipogenesis as a metabolic program recruited to sustain RGL expansion (**Figure 5**).
93 In fact, lineage tracing studies on embryonic neocortical neural stem cells has demonstrated a role for FAO
94 in maintenance of neural stem cell identity and proliferation (53). Specifically, inhibition of Tmlhe (a
95 carnitine biosynthesis enzyme) and carnitine-dependent long-chain fatty acid β -oxidation (carnitine
96 palmitoyltransferase I, CPT1, which catalyzes the rate-limiting reaction in this process) resulted in a marked
97 increase in symmetric differentiating divisions at expense of both symmetric and asymmetric self-renewal
98 of neural stem cells (55). Inhibition of FAO prevented hematopoietic stem cell maintenance and promoted
99 symmetric differentiating divisions of hematopoietic stem cells (68). Deletion of Cpt1a (and inhibition of
00 FAO) in adult hippocampal neural stem cell and progenitors impaired expansion and reduced numbers of
01 RGLs, although it could not be determined if this was due to death and/or inhibition of symmetric self-
02 renewal of RGLs (54).

03 How does Klf9 function as a brake on RGL symmetric self-renewal? We propose that Klf9 co-
04 represses a suite of genes associated with maintenance of RGLs in symmetric division mode. Pioneering
05 studies have implicated Notch signaling in sustaining symmetric divisions of neuroepithelial cells (69),
06 expansion of putative neural stem cells and progenitors (70) and maintenance of radial glial cell like identity
07 through inhibition of differentiation and cell-cycle exit (71, 72). Importantly, genetic gain-of-function of
08 Notch1 signaling in RGLs in the adult DG maintains RGLs at the expense of hippocampal neurogenesis
09 (73). Klf9 may also directly suppress a pro-neurogenic program in RGLs (for eg: NeuroD4, downregulated
10 DEG, **Supplementary Table 3**) (74) or indirectly via competitive interactions with TFs that regulate RGL
11 asymmetric self-renewal. Taken together, loss of Klf9 in RGLs drives expansion through enhanced mitogen
12 and cell-cycle signaling (75), prevention of RGL differentiation, and elevation of lipogenic and FAO
13 metabolic programs (**Figure 5**).

14 Our findings stimulate discussion on how experiential signals regulate RGL activation and
15 expansion. To date, GABA(A) R signaling and PTEN signaling (by inhibiting PI3K-Akt pathway) have been
16 shown to promote quiescence and suppress RGL amplifying divisions (5, 25). It is plausible that Klf9
17 participates in these signaling pathways as a downstream actuator. *Klf9* expression is reduced in neural stem
18 cells lacking FoxO3 (60). Thus, Akt dependent regulation of neural stem cell activation through inactivation
19 of FoxO3 (31) may require *Klf9* downregulation. Since some of the identified Klf9 target genes are also
20 regulated by other TFs [(eg: inhibition of EGFR and cyclinA1 by Notch2 (34), activation of Pla2g7 by
21 FoxO3 (60)], we infer that these factors do not compensate each other, but instead, confer flexible integration
22 of diverse physiological signals in RGLs to regulate activation. Inhibition of pulsatile glucocorticoid receptor
23 signaling has also been shown to promote RGL quiescence (24). Because Klf9 expression is regulated by
24 steroid hormone signaling and neural activity (39, 76, 77) and Klf9 represses gene expression through
25 recruitment of a mSin3A co-repressor complex (78), Klf9 may support an epigenetic mechanism for
26 reversible, experiential regulation of NSC decision making.

27 Our genome-wide dataset serves as a general exploratory community resource in several ways. First,
28 it catalyzes further enquiry into mechanisms underlying neural stem cell quiescence and expansion. By way
29 of example, candidate genes such as the cell adhesion molecule Embigin (downregulated DEG) regulates

30 quiescence of hematopoietic stem/progenitor cells (79) whereas the alpha7 nicotinic receptor (upregulated
31 DEG), ChrnA7, has been shown to be required for maintaining RGL numbers (80). Second, numerous genes
32 identified in our blueprint are implicated in driving tumorigenesis and as such may guide differentiation-
33 based strategies to block tumor proliferation (81). Third, our work motivates assessment of how Klf9 may
34 link extracellular, physiological signals with genetic and metabolic programs in RGLs. Fourth, our findings
35 may guide investigation of functional significance of Klf9 enrichment in other quiescent neural (SVZ)(49,
36 59, 60) and somatic stem cell populations (58).

37 Our study enables a more holistic assessment of how competing transcriptional programs in RGLs
38 mediate decision making by including regulators of symmetric and asymmetric self-renewal. A deeper
39 understanding of Klf9-dependent regulation of RGL homeostasis may guide genetic and metabolic strategies
40 to replenish the RGL reservoir and restore neurogenesis following injury or expand the NSC pool in
41 anticipation of future neurogenic demands to support hippocampal dependent memory processing and
42 emotional regulation (19, 20, 38).

43

44 Materials and Methods

45 Animals were handled and experiments were conducted in accordance with procedures approved by the
46 Institutional Animal Care and Use Committee at the Massachusetts General Hospital and Albert Einstein
47 College of Medicine in accordance with NIH guidelines. Mice were housed three to four per cage in a 12 hr
48 (7:00 a.m. to 7:00 p.m.) light/dark colony room at 22°C–24°C with ad libitum access to food and water.
49

50 Mouse lines

51 The following mouse lines were obtained from Jackson Labs: *Klf9-lacZ* knock-in (Stock No: 012909),
52 *Gli1Cre^{ERT2}* (Stock No: 007913), Ai14 (Stock No: 007908), mT/mG (Stock No: 007676), B6N.129-
53 *Rpl22^{tm1.1Psam}*/J (RiboTag)(Stock No: 011029), POMC-Cre (Stock No. 010714). *Sox1tTA* transgenic
54 mice(44) were obtained from Dr. Robert Blelloch (University of California, San Fransisco). *Klf9^{LacZ/LacZ}* mice
55 were obtained from Dr. Yoshiaki Fujii-Kuriyama (University of Tsukuba and is also available from Jackson
56 Labs, Stock No: 012909). tetO *Klf9/Klf9* knock-in mice were generated by us previously (38). Nestin GFP
57 mice (40) were obtained from Dr. David Scadden at MGH.

58 *Klf9* conditional knockout mice were generated through homologous gene targeting using C57BL/6 ES cells
59 by Cyagen. F0s were bred with C57BL/6J mice to generate F1s with germline transmission and mice were
60 backcrossed with C57BL/6J mice for 5+ generations. A set of primers (Forward:
61 GGTAGTCAAATGGCGCAGCTTT; Reverse: CCATCCATTCTTCATCAGTCTCC) was used to
62 genotype *Klf9^{+/+ or fl/fl}* mice to amplify 363 bp mutant band and 240 bp wildtype band. *Gli1Cre^{ERT2}: Klf9^{+/+ or fl/fl}* Ai14, *Gli1Cre^{ERT2}: Klf9^{+/+ or fl/fl}*:mT/mG+/-, were generated by crossing *Gli1Cre^{ERT2}* mice with mT/mG or
63 Ai14 and *Klf9^{+/+ or fl/fl}* mice.
64

65 BrdU administration

66 For analysis of cell proliferation in dentate gyrus, mice were injected with BrdU (200 mg/kg body weight,
67 i.p.) and sampled 2 hours later. For analysis of long-term retaining cells in dentate gyrus, mice were given
68 daily injection of BrdU (25 mg/Kg body weight, i.p.) for 14 days and sampled 24 hours after the last
69 injection.
70

71 Tamoxifen administration

72 Tamoxifen (20 mg/ml, Sigma, T5648) was freshly prepared in a 10% ethanol of corn oil (Sigma C8267).
73 For population analysis, a dose of 150 mg/kg or 250 mg/Kg was intraperitoneally injected into 8 weeks old
74 male and female mice (**Figure 1F**). For clonal analysis, a dose of 50mg/Kg and 100mg/Kg were used in
75 reporter lines of Ai14 and mT/mG respectively (**Figure 2A and Figure 2E**). Mice were sampled 7 or 28
76 days post-tamoxifen injection. For two-photon imaging (**Figure 3A**), one dose of 150 mg/kg Tamoxifen was
77 given 2 days prior to *in vivo* imaging. For ribosomal profiling, a dose of 375 mg/kg body weight was
78 intraperitoneally injected into 2-3 months mice every 12 hours for 3 times. Mice were sampled 4 days after
79 the last injection (**Figure 4A**).
80

81 Tissue processing and immunostaining

82 35 μm cryosections obtained from perfused tissue were stored in PBS with 0.01% sodium azide at 4°C. For
83 immunostaining, floating sections were washed in PBS, blocked in PBS containing 0.3% Triton X-100 and
84 10% normal donkey serum and incubated with primary antibody overnight at 4 °C overnight (Rockland,
85 rabbit anti RFP, 1:500; Millipore, chicken anti-GFAP, 1:2000; goat anti-GFP, Novus, 1:500; Santa Cruz, sc-
86 8066, Goat anti-DCX, 1:500). The Mcm2 (BD Biosciences, mouse anti-Mcm2; 1:500), GFP (Abcam,
87 Chicken anti-GFP, 1:2000), LacZ (Promega, Mouse anti-beta Galactosidase, 1:2000) and Nestin (Aves lab,
88 chicken anti-Nestin, 1:400) antigens were retrieved by incubating brain sections in Citric buffer in pressure
89 cooker (Aprum, 2100 retriever) for 20 min, followed by 60 min cooling to room temperature. BrdU antigen
90 was retrieved by incubating brain sections in 2N HCl for 30 min at 37°C following 15 mins fixation in 4%
91 PFA on previously processed fluorescent signal. On the next day, sections were rinsed three times for 10
92 min in PBS and incubated for 90 min with Fluorescent-label-coupled secondary antibody (Jackson
93 ImmunoResearch, 1:500). Sections were rinsed three times for 10 min each in PBS before mounting onto
94 glass slides (if applicable) and coverslipped with mounting media containing DAPI (Fluoromount with
95 DAPI, Southern Biotech). NICD (rabbit anti-cleaved Notch1, Assay Biotech Cat# L0119
96 RRID:AB_10687460 at 1:100) immunostaining was performed as described (66).
97

99 ***Klf9* in situ hybridization**

00 We used a transgenic mouse line that expresses GFP under the control of the Nestin promoter to label the
01 cell bodies(40). Mice were sacrificed 2 hours after a single BrdU injection (200 mg/Kg). *Klf9* expression
02 was detected by fluorescent in situ hybridization (FISH) using a *Klf9* antisense probe complementary to Exon
03 1 (530-1035bp) of *Klf9* mRNA. Briefly, in situ hybridization (ISH) was performed using dioxygenin-labeled
04 riboprobes on 35 μ m cryosections generated from perfused tissue as described (38). Premixed RNA labeling
05 nucleotide mixes containing digoxigenin-labeled UTP (Roche Molecular Biochemicals) were used to
06 generate RNA riboprobes. *Klf9* null mice were used as a negative control and to validate riboprobe
07 specificity. Riboprobes were purified on G-50 Microspin columns (GE Healthcare). Probe concentration
08 was confirmed by Nanodrop prior to the addition of formamide. Sections were mounted on charged glass
09 (Superfrost Plus) slides and postfixed for in 4% paraformaldehyde (PFA). Sections were then washed in
10 DEPC-treated PBS, treated with proteinase K (40 μ g/ml final), washed again in DEPC-treated PBS, and then
11 acetylated. Following prehybridization, sections were incubated with riboprobe overnight at 60°C, washed
12 in decreasing concentrations of SSC buffer, and immunological detection was carried out with anti-DIG
13 peroxidase antibody (Roche) at 4°C overnight and were visualized using Cy3-conjugated Tyramide Signal
14 Amplification system (Perkin-Elmer) at room temperature. *In situ* hybridization was followed by
15 immunostaining for GFP (Goat anti-GFP, Novus, 1:500), and BrdU (Rat anti-BrdU, Biorad, 1:500)
16 incubated at 4°C overnight and followed by incubation of 488- and Cy5-conjugated secondary antibodies
17 (Jackson ImmunoResearch, 1:500) for 2 hours at room temperature. *Klf9* *in situ* hybridization was performed
18 on POMC-Cre:Klf9^{+/+} and ^{f/f} mice using *Klf9* exon1 probe to validate the Klf9 conditional knockout mice.
19 Immunological detection was carried out with anti-DIG antibody conjugated with alkaline phosphatase
20 (Roche). Color reaction was conducted with NBT/BCIP. *Klf9* null mice were used as a negative control.
21

22 **Images acquisition and analysis**

23 Images were obtained from one set of brain sections (6 sets generated for each brain) for each
24 immunostaining experiment (set of antigens). Stained sections were imaged at 20X or 40x on a Nikon A1R
25 Si confocal laser, a TiE inverted research microscope or a Leica SP8 confocal microscope. All of analysis
26 were performed by an experimenter blind to group identity.
27

28 ***LacZ* intensity quantification.** We used mice carrying a LacZ allele knocked into the endogenous *Klf9* allele
29 (*Klf9*^{Lac/LacZ} or ^{+/LacZ} mice)(39). *Klf9*^{Lac/LacZ} or ^{+/LacZ} mice were crossed with Nestin GFP mice in order to map
30 *LacZ* expression levels in quiescent RGLs (GFP+MCM2- with radial process), activated RGLs
31 (GFP+MCM2+ with radial process), and NPCs (GFP+MCM2+ without radial processes). The distinction
32 between RGLs and NPCs was determined through morphological analysis. Images (1024 resolution) were
33 acquired as 7 Z-stacks with a step size of 1 μ m. 2-4 stacks of images from each mouse were selected for
34 further quantification. Since the *LacZ* gene had been knocked into the endogenous *Klf9* locus, mean intensity
35 of *LacZ* expression, assessed by fluorescent signal with LacZ immunostaining using ImageJ software in
36 each GFP+ cell body, was used as a surrogate for *Klf9* expression in *Klf9*^{+/LacZ} mice. Mean background
37 intensity was obtained from *LacZ* negative regions being divided from the calculations in the same section.
38 *Klf9* FISH signal quantification. Images (2048 resolution) were acquired by a Leica SP8 confocal
39 microscope as 30 Z-stacks with a step size of 0.5 μ m. Representative images were generated by exporting
40 stacked confocal images at full resolution for three-dimensional visualization using Imaris. The distinction
41 between neural progenitor cells (NPCs) and neural stem cells (NSCs) was determined through morphological
42 analysis with GFP staining. Activated RGLs were differentiated from quiescent RGLs through BrdU
43 antibody staining (cell proliferation markers). Analysis and quantification of *Klf9* signal intensity in each
44 GFP+ cell body was conducted using automatic counting with ImageJ software. Images were converted into
45 1-bit images. Then *Klf9* puncta were counted within GFP+ cell body boundaries through particle analysis
46 allowing for number and average size of puncta to be recorded. *Klf9* intensity was calculated as puncta
47 number multiplied by average puncta size. Background was subtracted from the calculations. *Klf9* null mice
48 crossed with Nestin GFP mice were used as a negative control.
49

50 **Clonal lineage analysis**

51 Clonal analysis was conducted with sparse labeling after optimizing dose of Tamoxifen as previously
52 described(5). Ai14 and mTmG reporter mice were used to visualize the recombined cells. Serial coronal
53 sections were generated and immunostained for GFAP, RFP or GFP antigens. Images acquisition and

54 analysis were restricted to entire dentate gyri ~2000 μm along the dorsal-ventral axis. RGLs were classified
55 as cells that were located in the subgranular zone, had radial projections that extended into the granule cell
56 layer, and were co-labeled with GFAP and RFP or GFP. Cells with GFAP labeling without radial processes
57 but exhibiting a bushy morphology were identified as astrocytes. Recombined GFP+ or RFP+ cells without
58 GFAP labeling in close spatial proximity to other cells were identified as neuronal progeny cells. A single
59 cell (astrocyte or neuron) was not counted as a clone. Images (1024 resolution) were acquired using a Leica
60 SP8 confocal microscope as 20-25 Z-stacks with a step size of 1.5 μm . Mice with less than 2 clones per
61 hemisection on average were determined as standard for sparse labeling and were selected for clonal
62 analysis. Except for the single RGL clone category, all the labeled cells within one clone were in close spatial
63 proximity to each other. Clones were categorized according to the presence or absence of an RGL and the
64 type of progeny.

65

66 Two-photon imaging of *Gli1+ Klf9^{+/+ or f/f}* RGLs division modes *in vivo*

67 12-16 weeks old *Gli1Cre^{ERT2}:Klf9^{+/+ or f/f}*:Ai14 mice were used for intravital 2P imaging of RGLs.

68 Window Implantation: We followed an established protocol to implant a cranial window over the right
69 hemisphere of the dorsal hippocampus (9). Briefly, we drilled a ~3 mm wide craniotomy, removed the
70 underlying dura mater and aspirated the cortex and corpus callosum. A 3-mm diameter, 1.3-mm deep
71 titanium implant, with a glass sealed to the bottom was then placed above the hippocampus. The implant
72 and a titanium bar (29 x 3.8 x 1.3 mm) were held in place with dental cement. A titanium bar was used in
73 order to secure the animal to the microscope stage. Mice were given a single dose of dexamethasone (1
74 mg/Kg, i.p.) before surgery to reduce brain swelling, and carprofen (5mg/Kg, i.p.) for inflammation and
75 analgesic relief after surgery completion. Implanted animals were given two weeks to recover from surgery
76 and allow any inflammation to subside.

77 Two-photon imaging of aRGL divisions: *In vivo* imaging was done on a custom two-photon laser scanning
78 microscope (based on Thorlabs Bergamo) using a femtosecond-pulsed laser (Coherent Fidelity 2, 1075 nm)
79 and a 16x water immersion objective (0.8 NA, Nikon). We imaged mice under isoflurane anesthesia (~1%
80 isoflurane in O₂, vol/vol) and head-fixed to the microscope stage via a titanium bar implant while resting on
81 a 37° C electrical heating pad (RWD ThermoStar). Expression of the tdTomato fluorescent label in *Gli1+*
82 RGLs was induced with a single injection of Tamoxifen (150ul/mg) two weeks after window implantation.
83 Imaging began two days after tamoxifen injection (2 dpi) and continued every day until 6 dpi in order to
84 locate sparse labeled RGLs. Afterwards, mice were imaged every 3 days, whenever possible and were
85 imaged up to 60 days. Using a coordinate system, we marked locations of RGLs for recurrent imaging of
86 the same cell. At each time point, we acquired a three-dimensional image stack of each field-of-view
87 containing tdTomato-expressing cells and annotated their location so that the same cell could be imaged
88 again in the following session.

89 Cell division classification: Cell divisions were analyzed by two different experimenters blinded to
90 genotype. We first compiled all z-stacks into a single sum-projected image for each time point, and then we
91 used FIJI-ImageJ to analyze the images. Only the first recorded cell division for a given clone was included
92 in the analysis. We defined RGL symmetric division as a new RGL generated from the mother RGL,
93 characterized by the development of a stable radial process and static behavior of cell bodies for at least 6
94 days after birth. We defined asymmetric division as new neural progenitor cell(s) generated from the mother
95 RGL that exhibited shorter and less stable processes. These NPCs often began to migrate away within 1-2
96 imaging sessions (3-6 days).

97

98 Ribotag isolation of mRNAs from *Gli1+RGLs*

99 We used *Gli1Cre^{ERT2}:Rpl22HA^{f/+}:Klf9^{f/f or +/+}* mice which enables expression of haemagglutinin (HA)-tagged
00 ribosomal protein RPL22 (RPL22-HA) following Cre recombination in *Gli1+ Klf9^{f/f or +/+}* RGLs. RiboTag
01 immunoprecipitation and RNA extraction were performed 4 days after last TAM injection following the
02 original protocol with minor modifications (47). 6 dentate gyri from 3 mice were pooled per sample and
03 homogenized with a dounce homogenizer in 900 ul cycloheximide-supplemented homogenization buffer.
04 Homogenates were centrifuged and the supernatant incubated on a rotator at 4°C for 4 hours with 9ul anti-
05 HA antibody (CST Rb anti-HA #3724, 1:100) to bind the HA- tagged ribosomes. Magnetic IgG beads
06 (Thermo Scientific Pierce #88847) were conjugated to the antibody-ribosome complex via overnight
07 incubation on a rotator at 4°C. RNA was isolated by RNeasy Plus Micro kit (Qiagen 74034) following the
08 manufacturer's protocol. Eluted RNA was stored at -80°C. For enrichment analysis, 45ul of homogenate

9 (pre- anti-HA immunoprecipitation) was set aside after centrifugation, kept at -20°C overnight, and purified
10 via RNeasy Micro kit as an ‘input’ sample, and used to determine NSC enrichment. RNA quantity and
11 quality were measured with a Tape Station (Agilent) and Qubit fluorimeter (Thermo Fisher Scientific).
12 Sequencing libraries were prepared using Ultra Low Input RNA Kit (Clontech).

13 **RNA-seq analysis**

14 NGS libraries were constructed from total RNA using Clontech SMARTer v4 kit (Takara),
15 followed by sequencing on an Illumina HiSeq 2500 instrument, resulting in 20-30 million 50
16 bp reads per sample. The STAR aligner (82) was used to map sequencing reads to transcriptome in the
17 mouse mm9 reference genome. Read counts for individual genes were produced
18 using the unstranded count function in HTSeq v.0.6.0 (83), followed by the
19 estimation of expression values and detection of differentially expressed transcripts using
20 EdgeR (84) and including only the genes with count per million reads (CPM)
21 > 1 for one or more samples (85). Differentially expressed genes were
22 defined by at least 1.2-fold change with $p < 0.05$. *The data was submitted to*
23 *NCBI GEO database for public access and is being processed (accession number XXX)*.
24

25
26 **qRT-PCR**

27 mRNA was biochemically pooled and isolated as described above for Ribosomal profiling. The first-
28 stranded complementary DNA was generated by reverse transcription with SuperScript IV first-strand
29 synthesis system (Thermo Fisher Scientific). For quantification of mRNA levels, aliquoted cDNA was
30 amplified with specific primers and PowerUp SYBR Master Mix (BioRad) by CFX384 Touch Real-Time
31 PCR detection system (BioRad). Primers were optimized and designed to hybridize with different exons.
32 Primers are listed here (name and sequence 5' -> 3' are indicated).

33 pla2g7 F: TCAAACCTGCAGGCCTTTC, pla2g7 R: AGTACAAACGCACGAAGACG
34 Egfr F: GCCATCTGGGCCAAAGATACC, Egfr: GTCTTCGATGAATAGGCCAAT
35 Lfng F: AAGATGGCTGTGGAGTATGACC, Lfng R: TCACCTTGTGCTGCTGATC
36 Ccn1a F: GATACCTGCTCGGGAAAGAG, Ccn1a R: GCATTGGGGAAACTGTGTTGA
37 Klf9 F: AAACACGCCCTCCGAAAAGAG, Klf9 R: AACTGCTTCCCCAGTGTG
38 Bmp4 F: GACCAGGTTCATTGCAGTTTC, Bmp4 R: AAACGACCATCAGCATTGG
39 Actb F: CATTGCTGACAGGATGCAGAAGG, Actb R: TGCTGGAAGGTGGACAGTGAGG
40

41 **Statistical Analysis**

42 Statistical analysis was carried out using GraphPad Prism software. Both data collection and quantification
43 were performed in a blinded manner. Data in figure panels reflect several independent experiments
44 performed on different days. An estimate of variation within each group of data is indicated using standard
45 error of the mean (SEM). Comparison of two groups was performed using two-tailed student’s unpaired t-
46 test unless otherwise specified. Comparison of one group across time was performed using a one-way
47 ANOVA with repeated measure. Comparison of two groups across treatment condition or time was
48 performed using a two-way repeated measure ANOVA and main effects or interactions were followed by
49 Bonferroni post-hoc analysis. In the text and figure legends, “n” indicates number of mice per group.
50 Detailed statistical analyses can be found in Supplementary Table 4. For statistical analysis of DEGs, please
51 see RNA-seq analysis section for details.

52 Two-photon imaging: In order to compare differences in the modes of RGL division between the two
53 genotypes, we used the R statistical analysis software to fit a generalized linear mixed effects (LME) model
54 to the division numbers across different mice, using genotype as a fixed effect, and including animal identity
55 as a random effect in order to account for differences between individual animals
56 [DivisionType~Genotype+(1|MouseIdentity)]. p-values were calculated with a Likelihood-Ratio Test (LRT)
57 comparing our model to a null model with no genotype information and identical random effects
58 [DivisionType~1+(1|MouseIdentity)].
59

62

Antibodies	Source	Identifier
Rat anti-BrdU	Bio-Rad	Cat# MCA2483T, RRID:AB_1055584
Rabbit anti-GFAP	Millipore	Cat# AB5804, RRID:AB_2109645
Chicken anti-Nestin	Aves lab	Cat# NES, RRID:AB_2314882
Rabbit anti-RFP	Rockland	Cat# 600-401-379, RRID:AB_2209751
Chicken anti-GFAP	Millipore	Cat# AB5541, RRID:AB_177521
Goat anti-GFP	Novus	NB100-1770, RRID:AB_10128178
Goat anti-DCX	Santa Cruz Biotechnology	Cat# sc-8066, RRID:AB_2088494
Mouse anti- beta Galactosidase	Promega	Cat# Z3781, RRID:AB_430877
Chicken anti-GFP	Abcam	Cat# ab13970, RRID:AB_300798
Mouse anti-Mcm2	BD Biosciences	Cat# 610700, RRID:AB_2141952
NICD, rabbit anti-cleaved Notch1	Assay Biotech	Cat# L0119, RRID:AB_10687460
Rabbit anti-HA	Cell Signaling	Cat# 3724, RRID:AB_1549585
Anti-Digoxigenin Fab fragments Antibody, POD Conjugated	Roche	Cat# 11207733910, RRID:AB_514500
Anti-Digoxigenin Fab fragments Antibody, AP Conjugated	Roche	Cat# 11093274910, RRID:AB_514497
Alexa Fluor® 488-, Cy3-, or Cy5- conjugated donkey secondary	Jackson ImmunoResearch	N/A

63
64
65
66
67
68
69
70
71
72
73
74
75

76 **References**

77

78

79 1. B. Seri, J. M. Garcia-Verdugo, B. S. McEwen, A. Alvarez-Buylla, Astrocytes give rise to new
80 neurons in the adult mammalian hippocampus. *J Neurosci* **21**, 7153-7160 (2001).

81 2. A. D. Garcia, N. B. Doan, T. Imura, T. G. Bush, M. V. Sofroniew, GFAP-expressing progenitors
82 are the principal source of constitutive neurogenesis in adult mouse forebrain. *Nat Neurosci* **7**,
83 1233-1241 (2004).

84 3. S. Ahn, A. L. Joyner, In vivo analysis of quiescent adult neural stem cells responding to Sonic
85 hedgehog. *Nature* **437**, 894-897 (2005).

86 4. D. C. Lagace *et al.*, Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. *J*
87 *Neurosci* **27**, 12623-12629 (2007).

88 5. M. A. Bonaguidi *et al.*, In vivo clonal analysis reveals self-renewing and multipotent adult neural
89 stem cell characteristics. *Cell* **145**, 1142-1155 (2011).

90 6. J. M. Encinas *et al.*, Division-coupled astrocytic differentiation and age-related depletion of neural
91 stem cells in the adult hippocampus. *Cell Stem Cell* **8**, 566-579 (2011).

92 7. J. T. Goncalves, S. T. Schafer, F. H. Gage, Adult Neurogenesis in the Hippocampus: From Stem
93 Cells to Behavior. *Cell* **167**, 897-914 (2016).

94 8. J. Moss *et al.*, Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate
95 gyrus ensheathe local synapses and vasculature. *Proc Natl Acad Sci U S A* **113**, E2536-2545
96 (2016).

97 9. G. A. Pilz *et al.*, Live imaging of neurogenesis in the adult mouse hippocampus. *Science* **359**, 658-
98 662 (2018).

99 10. J. Altman, G. D. Das, Autoradiographic and histological evidence of postnatal hippocampal
00 neurogenesis in rats. *J Comp Neurol* **124**, 319-335 (1965).

01 11. P. S. Eriksson *et al.*, Neurogenesis in the adult human hippocampus. *Nat Med* **4**, 1313-1317
02 (1998).

03 12. K. L. Spalding *et al.*, Dynamics of hippocampal neurogenesis in adult humans. *Cell* **153**, 1219-
04 1227 (2013).

05 13. M. Boldrini *et al.*, Human Hippocampal Neurogenesis Persists throughout Aging. *Cell Stem Cell*
06 **22**, 589-599 e585 (2018).

07 14. S. F. Sorrells *et al.*, Human hippocampal neurogenesis drops sharply in children to undetectable
08 levels in adults. *Nature* **555**, 377-381 (2018).

09 15. E. P. Moreno-Jimenez *et al.*, Adult hippocampal neurogenesis is abundant in neurologically
10 healthy subjects and drops sharply in patients with Alzheimer's disease. *Nat Med* **25**, 554-560
11 (2019).

12 16. M. K. Tobin *et al.*, Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer's
13 Disease Patients. *Cell Stem Cell* **24**, 974-982 e973 (2019).

14 17. F. H. Gage, Adult neurogenesis in mammals. *Science* **364**, 827-828 (2019).

15 18. R. Knott *et al.*, Murine features of neurogenesis in the human hippocampus across the lifespan
16 from 0 to 100 years. *PLoS ONE* **5**, e8809 (2010).

17 19. C. Anacker, R. Hen, Adult hippocampal neurogenesis and cognitive flexibility - linking memory
18 and mood. *Nat Rev Neurosci* **18**, 335-346 (2017).

19 20. S. M. Miller, A. Sahay, Functions of adult-born neurons in hippocampal memory interference and
20 indexing. *Nat Neurosci*, (2019).

21 21. E. C. Cope, E. Gould, Adult Neurogenesis, Glia, and the Extracellular Matrix. *Cell Stem Cell* **24**,
22 690-705 (2019).

23 22. C. Vicedomini, N. Guo, A. Sahay, Communication, Cross Talk, and Signal Integration in the Adult
24 Hippocampal Neurogenic Niche. *Neuron* **105**, 220-235 (2020).

25 23. A. Dranovsky *et al.*, Experience dictates stem cell fate in the adult hippocampus. *Neuron* **70**, 908-
26 923 (2011).

27 24. M. Schouten *et al.*, Circadian glucocorticoid oscillations preserve a population of adult
28 hippocampal neural stem cells in the aging brain. *Mol Psychiatry* **25**, 1382-1405 (2020).

29 25. J. Song *et al.*, Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate
30 decision. *Nature* **489**, 150-154 (2012).

31 26. A. Sierra *et al.*, Neuronal hyperactivity accelerates depletion of neural stem cells and impairs
32 hippocampal neurogenesis. *Cell Stem Cell* **16**, 488-503 (2015).

33 27. A. Ibrayeva *et al.*, Early stem cell aging in the mature brain. *Cell Stem Cell*, (2021).

34 28. K. O. Cho *et al.*, Aberrant hippocampal neurogenesis contributes to epilepsy and associated
35 cognitive decline. *Nature communications* **6**, 6606 (2015).

36 29. L. Shahriyari, N. L. Komarova, Symmetric vs. asymmetric stem cell divisions: an adaptation
37 against cancer? *PLoS ONE* **8**, e76195 (2013).

38 30. J. Andersen *et al.*, A transcriptional mechanism integrating inputs from extracellular signals to
39 activate hippocampal stem cells. *Neuron* **83**, 1085-1097 (2014).

40 31. N. Urban, I. M. Blomfield, F. Guillemot, Quiescence of Adult Mammalian Neural Stem Cells: A
41 Highly Regulated Rest. *Neuron* **104**, 834-848 (2019).

42 32. S. Mukherjee, R. Brulet, L. Zhang, J. Hsieh, REST regulation of gene networks in adult neural
43 stem cells. *Nature communications* **7**, 13360 (2016).

44 33. K. M. Jones *et al.*, CHD7 maintains neural stem cell quiescence and prevents premature stem cell
45 depletion in the adult hippocampus. *Stem Cells* **33**, 196-210 (2015).

46 34. R. Zhang *et al.*, Id4 Downstream of Notch2 Maintains Neural Stem Cell Quiescence in the Adult
47 Hippocampus. *Cell reports* **28**, 1485-1498 e1486 (2019).

48 35. O. Ehm *et al.*, RBPJkappa-dependent signaling is essential for long-term maintenance of neural
49 stem cells in the adult hippocampus. *J Neurosci* **30**, 13794-13807 (2010).

50 36. I. Imayoshi, M. Sakamoto, M. Yamaguchi, K. Mori, R. Kageyama, Essential roles of Notch
51 signaling in maintenance of neural stem cells in developing and adult brains. *J Neurosci* **30**, 3489-
52 3498 (2010).

53 37. D. L. Moore *et al.*, KLF family members regulate intrinsic axon regeneration ability. *Science* **326**,
54 298-301 (2009).

55 38. K. M. McAvoy *et al.*, Modulating Neuronal Competition Dynamics in the Dentate Gyrus to
56 Rejuvenate Aging Memory Circuits. *Neuron* **91**, 1356-1373 (2016).

57 39. K. N. Scobie *et al.*, Kruppel-like factor 9 is necessary for late-phase neuronal maturation in the
58 developing dentate gyrus and during adult hippocampal neurogenesis. *J Neurosci* **29**, 9875-9887
59 (2009).

60 40. J. L. Mignone, V. Kukekov, A. S. Chiang, D. Steindler, G. Enikolopov, Neural stem and
61 progenitor cells in nestin-GFP transgenic mice. *J Comp Neurol* **469**, 311-324 (2004).

62 41. T. J. McHugh *et al.*, Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the
63 Hippocampal Network. *Science* **317**, 94-99 (2007).

64 42. S. Bottes *et al.*, Long-term self-renewing stem cells in the adult mouse hippocampus identified by
65 intravital imaging. *Nat Neurosci*, (2020).

66 43. L. Madisen *et al.*, A robust and high-throughput Cre reporting and characterization system for the
67 whole mouse brain. *Nat Neurosci* **13**, 133-140 (2010).

68 44. M. Venere *et al.*, Sox1 marks an activated neural stem/progenitor cell in the hippocampus.
69 *Development* **139**, 3938-3949 (2012).

70 45. M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, L. Luo, A global double-fluorescent Cre reporter
71 mouse. *Genesis* **45**, 593-605 (2007).

72 46. J. T. Goncalves *et al.*, In vivo imaging of dendritic pruning in dentate granule cells. *Nat Neurosci*
73 **19**, 788-791 (2016).

74 47. E. Sanz *et al.*, Cell-type-specific isolation of ribosome-associated mRNA from complex tissues.
75 *Proc Natl Acad Sci U S A* **106**, 13939-13944 (2009).

76 48. H. Mira *et al.*, Signaling through BMPR-IA regulates quiescence and long-term activity of neural
77 stem cells in the adult hippocampus. *Cell Stem Cell* **7**, 78-89 (2010).

78 49. P. Codega *et al.*, Prospective identification and purification of quiescent adult neural stem cells
79 from their in vivo niche. *Neuron* **82**, 545-559 (2014).

80 50. J. Shin *et al.*, Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult
81 Neurogenesis. *Cell Stem Cell* **17**, 360-372 (2015).

82 51. H. Hochgerner, A. Zeisel, P. Lonnerberg, S. Linnarsson, Conserved properties of dentate gyrus
83 neurogenesis across postnatal development revealed by single-cell RNA sequencing. *Nat Neurosci*
84 **21**, 290-299 (2018).

85 52. M. Knobloch *et al.*, Metabolic control of adult neural stem cell activity by Fasn-dependent
86 lipogenesis. *Nature* **493**, 226-230 (2013).

87 53. T. Namba, J. Nardelli, P. Gressens, W. B. Huttner, Metabolic Regulation of Neocortical Expansion
88 in Development and Evolution. *Neuron*, (2020).

89 54. M. Knobloch *et al.*, A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural
90 Stem Cell Activity. *Cell reports* **20**, 2144-2155 (2017).

91 55. Z. Xie, A. Jones, J. T. Deeney, S. K. Hur, V. A. Bankaitis, Inborn Errors of Long-Chain Fatty
92 Acid beta-Oxidation Link Neural Stem Cell Self-Renewal to Autism. *Cell reports* **14**, 991-999
93 (2016).

94 56. A. Baser *et al.*, Onset of differentiation is post-transcriptionally controlled in adult neural stem
95 cells. *Nature* **566**, 100-104 (2019).

96 57. Z. Zhao, H. Wu, An Invasive Method for the Activation of the Mouse Dentate Gyrus by High-
97 frequency Stimulation. *Journal of visualized experiments : JoVE*, (2018).

98 58. G. Pallafacchina *et al.*, An adult tissue-specific stem cell in its niche: a gene profiling analysis of
99 in vivo quiescent and activated muscle satellite cells. *Stem Cell Res* **4**, 77-91 (2010).

00 59. L. Morizur *et al.*, Distinct Molecular Signatures of Quiescent and Activated Adult Neural Stem
01 Cells Reveal Specific Interactions with Their Microenvironment. *Stem cell reports* **11**, 565-577
02 (2018).

03 60. V. M. Renault *et al.*, FoxO3 regulates neural stem cell homeostasis. *Cell Stem Cell* **5**, 527-539
04 (2009).

05 61. H. Noguchi, J. G. Castillo, K. Nakashima, S. J. Pleasure, Suppressor of fused controls perinatal
06 expansion and quiescence of future dentate adult neural stem cells. *eLife* **8**, (2019).

07 62. L. Machado *et al.*, Tissue damage induces a conserved stress response that initiates quiescent
08 muscle stem cell activation. *Cell Stem Cell*, (2021).

09 63. J. R. Knoedler, A. Subramani, R. J. Denver, The Kruppel-like factor 9 cistrome in mouse
10 hippocampal neurons reveals predominant transcriptional repression via proximal promoter
11 binding. *BMC Genomics* **18**, 299 (2017).

12 64. M. Ying *et al.*, Kruppel-like factor-9 (KLF9) inhibits glioblastoma stemness through global
13 transcription repression and integrin alpha6 inhibition. *J Biol Chem* **289**, 32742-32756 (2014).

14 65. R. Sueda, R. Kageyama, Regulation of active and quiescent somatic stem cells by Notch signaling.
15 *Dev Growth Differ*, (2019).

16 66. F. Semerci *et al.*, Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural
17 stem cell maintenance. *eLife* **6**, (2017).

18 67. J. S. Yuan *et al.*, Lunatic Fringe prolongs Delta/Notch-induced self-renewal of committed
19 alphabeta T-cell progenitors. *Blood* **117**, 1184-1195 (2011).

20 68. K. Ito *et al.*, A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem
21 cell maintenance. *Nat Med* **18**, 1350-1358 (2012).

22 69. B. Egger, K. S. Gold, A. H. Brand, Notch regulates the switch from symmetric to asymmetric
23 neural stem cell division in the Drosophila optic lobe. *Development* **137**, 2981-2987 (2010).

24 70. A. Androutsellis-Theotokis *et al.*, Notch signalling regulates stem cell numbers in vitro and in
25 vivo. *Nature* **442**, 823-826 (2006).

26 71. N. Gaiano, J. S. Nye, G. Fishell, Radial glial identity is promoted by Notch1 signaling in the
27 murine forebrain. *Neuron* **26**, 395-404 (2000).

28 72. K. J. Yoon *et al.*, Mind bomb 1-expressing intermediate progenitors generate notch signaling to
29 maintain radial glial cells. *Neuron* **58**, 519-531 (2008).

30 73. J. J. Breunig, J. Silbereis, F. M. Vaccarino, N. Sestan, P. Rakic, Notch regulates cell fate and
31 dendrite morphology of newborn neurons in the postnatal dentate gyrus. *Proc Natl Acad Sci U S A*
32 **104**, 20558-20563 (2007).

33 74. G. Masserdotti *et al.*, Transcriptional Mechanisms of Proneural Factors and REST in Regulating
34 Neuronal Reprogramming of Astrocytes. *Cell Stem Cell* **17**, 74-88 (2015).

35 75. G. Berdugo-Vega *et al.*, Increasing neurogenesis refines hippocampal activity rejuvenating
36 navigational learning strategies and contextual memory throughout life. *Nature communications*
37 **11**, 135 (2020).

38 76. N. A. Datson *et al.*, Specific regulatory motifs predict glucocorticoid responsiveness of
39 hippocampal gene expression. *Endocrinology* **152**, 3749-3757 (2011).

40 77. A. Besnard *et al.*, Targeting Kruppel-like Factor 9 in Excitatory Neurons Protects against Chronic
41 Stress-Induced Impairments in Dendritic Spines and Fear Responses. *Cell reports* **23**, 3183-3196
42 (2018).

43 78. J. S. Zhang *et al.*, A conserved alpha-helical motif mediates the interaction of Sp1-like
44 transcriptional repressors with the corepressor mSin3A. *Mol Cell Biol* **21**, 5041-5049 (2001).

45 79. L. Silberstein *et al.*, Proximity-Based Differential Single-Cell Analysis of the Niche to Identify
46 Stem/Progenitor Cell Regulators. *Cell Stem Cell* **19**, 530-543 (2016).

47 80. S. L. Otto, J. L. Yakel, The alpha7 nicotinic acetylcholine receptors regulate hippocampal adult-
48 neurogenesis in a sexually dimorphic fashion. *Brain Struct Funct* **224**, 829-846 (2019).

49 81. A. Carracedo, L. C. Cantley, P. P. Pandolfi, Cancer metabolism: fatty acid oxidation in the
50 limelight. *Nat Rev Cancer* **13**, 227-232 (2013).

51 82. A. Dobin *et al.*, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013).

52 83. S. Anders, P. T. Pyl, W. Huber, HTSeq—a Python framework to work with high-throughput
53 sequencing data. *Bioinformatics* **31**, 166-169 (2015).

54 84. M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: a Bioconductor package for differential
55 expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140 (2010).

56 85. S. Anders *et al.*, Count-based differential expression analysis of RNA sequencing data using R and
57 Bioconductor. *Nature protocols* **8**, 1765-1786 (2013).

58
59
60 **Author Contributions**

61 Conceptualization: AS and NG
62 Methodology: NG, KM, YS, HZ, DG, CH, JC, AZ, WRM, LPW, RS, TG, AS
63 Investigation: NG, KM, YS, HZ, DG, CH, JC, AZ, WRM, LPW, RS, TG, AS
64 Visualization: NG, KM, YS, HZ, DG, CH, JC, AZ, WRM, LPW, RS, TG, AS
65 Supervision: AS, TG, RS
66 Writing—original draft: AS
67 Writing—review & editing: AS, NG, TG, KM, YS, LPW, RS

68
69 **Competing interests:** The authors declare no competing interests

70
71 **Data and materials availability:** Mouse lines generated in this study are available from the Lead Contact
72 with a completed Materials Transfer Agreement. RNA sequencing data was submitted to
73 NCBI GEO database for public access and is being processed (accession number XXX).

74
75
76 **Acknowledgements**

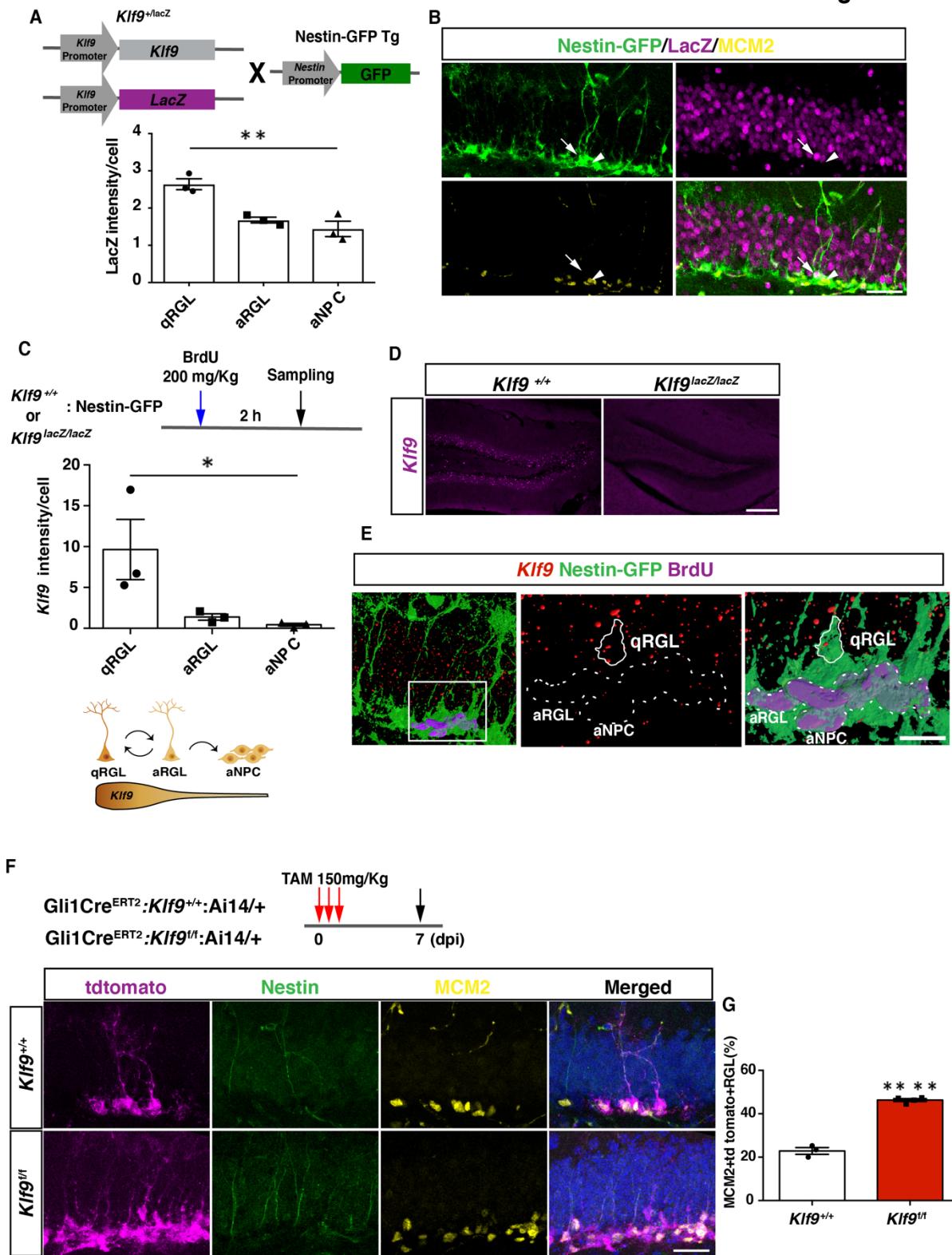
77 We wish to thank members of Sahay and Goncalves labs for input on this work. N.G received support from
78 Department of Psychiatry, MGH. KM is a trainee in the Einstein Training Program in Stem Cell Research,
79 supported by the Empire State Stem Cell Fund through New York State Department of Health Contract
80 C34874GG. Y.S was recipient of Taiwan Ministry of Science Postdoctoral Fellowship. D.G, C.H, J.C and
81 A.Z are recipients of HSCI summer internship fellowships. A.S. acknowledges support from US National
82 Institutes of Health Biobehavioral Research Awards for Innovative New Scientists (BRAINS) 1-
83 R01MH104175, NIH-NIA 1R01AG048908-01A1, NIH 1R01MH111729-01, NINDS R56NS117529, the
84 James and Audrey Foster MGH Research Scholar Award, Ellison Medical Foundation New Scholar in
85 Aging, Whitehall Foundation, the Inscopix Decode Award, the NARSAD Independent Investigator Award,
86 Ellison Family Philanthropic support, Blue Guitar Fund, Harvard Neurodiscovery Center/MADRC Center
87 Pilot Grant Award, a Alzheimer's Association research grant, the Harvard Stem Cell Institute (HSCI)
88 Development grant and a HSCI seed grant. J.T.G. acknowledges support from US National Institutes of
89 Health NINDS R56NS117529 and the Whitehall Foundation. A.S thanks L. M. S. Sahay for proof reading
90 manuscript.

95 **Figure 1. *Klf9* is elevated in non-dividing RGLs and loss of *Klf9* promotes RGL activation**

96 (A-B) *Klf9* expression inferred from LacZ expression intensity in quiescent RGLs, qRGL (GFP+MCM2-
97 with radial process, arrows), activated RGL, aRGL (GFP+MCM2+ with radial process, arrowheads) and
98 activated neural progenitors, aNPCs (GFP+MCM2+ without a radial process) in *Klf9*^{LacZ/+} or *LacZ/LacZ*, Nestin
99 GFP transgenic. qRGLs exhibit higher *Klf9* expression than aRGLs and aNPCs. n=3 mice/group.

00 (C-E) Fluorescence *in situ* hybridization using a *Klf9* specific riboprobe and immunohistochemistry for GFP
01 and BrdU on adult hippocampal sections obtained from *Klf9*^{LacZ/+} or *LacZ/LacZ*, Nestin GFP transgenic mice.

02 (D) Specificity of riboprobe established by detection of *Klf9* expression in dentate gyrus of *Klf9*^{+/+} but not
03 in *Klf9*^{LacZ/LacZ} mice. (C, E) *Klf9* is expressed in qRGLs but not in dividing (BrdU+) RGLs or aNPCs. n=3
04 mice/group.

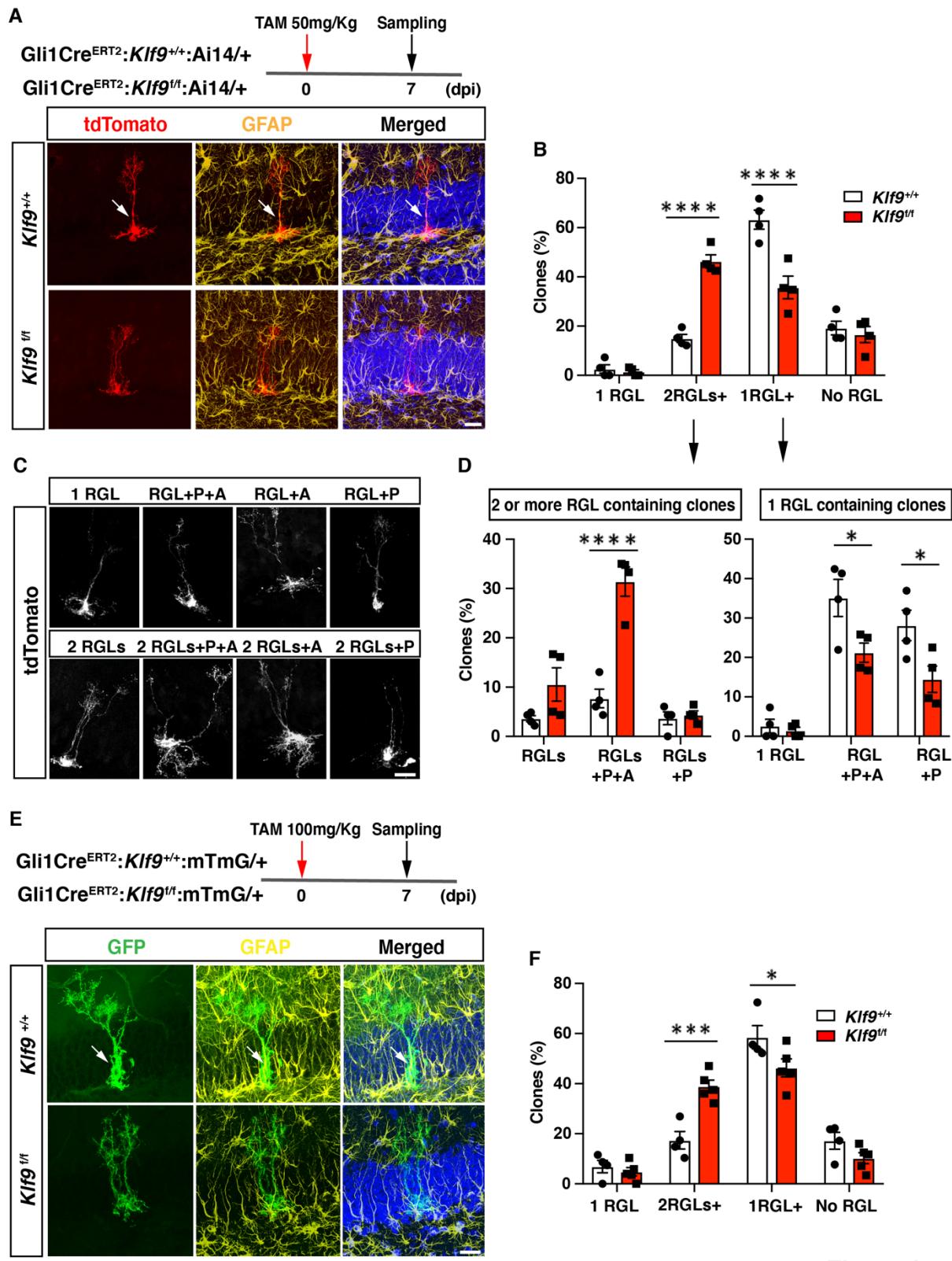

05 (F-G) Inducible deletion of *Klf9* in Gli1+ RGLs in adult mice (Gli1 Cre^{ERT2}:*Klf9*^{+/+}:Ai14 vs. Gli1
06 Cre^{ERT2}:*Klf9*^{fl/fl}:Ai14) results in increased RGL activation (percentage of MCM2+tdTomato+Nestin+RGLs).
07 n=3, 4 mice/group.

08 Data are represented as mean ± SEM. * p<0.05, ** p<0.01, **** p<0.0001. Scale Bar Figures 1B, 1F:
09 50 μm, Figure 1D 250 μm, Figure 1E 20 μm.

10 See also corresponding Supplementary Figures 1 and 2.

11

Figure 1


13 **Figure 2. *Klf9* deletion in RGLs produces supernumerary RGL clones**

14 (A-D) Clonal analysis of sparsely labeled Gli1+RGLs in adult Gli1Cre^{ERT2}:*Klf9*^{+/+ or f/f}:Ai14 mice at 7dpi. (A,
15 C) Representative images of labeled RGL clones and descendants. For example, A top: single RGL (white
16 arrow), A bottom: 2 RGLs. Identification was based on tdTomato+ morphology and GFAP
17 immunohistochemistry. (B) Statistical representation of clones for specified compositions for both
18 genotypes expressed as fraction of total clones quantified. (D) Breakdown of clones into 2RGL+ (2 or more
19 RGL containing clones and progeny) and single RGL+ clones (clones containing only 1 RGL and progeny).
20 Loss of *Klf9* in Gli1+ RGLs results in statistically significant overrepresentation of 2 or more RGL
21 containing clones and significant reduction in “1 RGL containing clones” suggestive of *Klf9* repressing RGL
22 expansion. n=4 mice/group.

23 (E-F) Clonal analysis of sparsely labeled Gli1+RGLs (white arrow) in adult Gli1Cre^{ERT2}:*Klf9*^{+/+ or f/f}:mTmG
24 mice at 7dpi. Inducible deletion of *Klf9* in Gli1+ RGLs results in statistically significant overrepresentation
25 of multiRGL containing clones (2 or more RGLs, 2RGL+) and a significant reduction in single RGL
26 containing clones (1RGL+). Identification was based on GFP+ morphology and GFAP
27 immunohistochemistry. Representative images (E) and corresponding quantification in (F). n=4 and 5
28 mice/group.

29 P: Progenitor, A: Astrocyte. Data are represented as mean \pm SEM. * p<0.05, *** p<0.001, ****p<0.0001.
30 Scale Bar Figures 2A, 2C and 2E 20 μ m.

31

Figure 2

34 **Figure 3. Klf9 functions as a brake on symmetric self-renewal of RGLs**

35 (A) Diagram of experimental design for *in vivo* 2-photon imaging experiments. Inset is a high magnification

36 image of a sparsely labeled single RGL in an adult $\text{Gli1Cre}^{\text{ERT2}}:\text{Klf9}^{\text{+/+}}:\text{Ai14}$ mouse.

37 (B) Representative series of longitudinal imaging from four fields of view showing RGL symmetric and

38 asymmetric divisions. Arrows point to mother cell and arrowheads point to daughter cells. Scale bars: 20

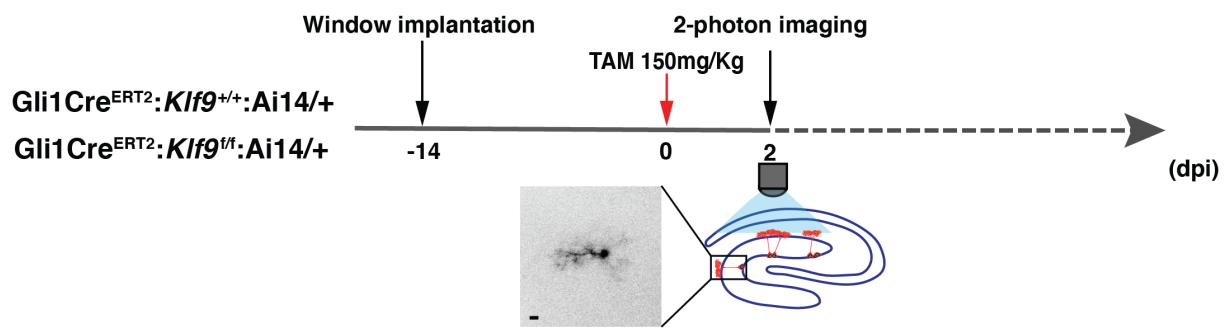
39 μm .

40 (C) Quantification of RGL symmetric and asymmetric divisions showing an increase in symmetric divisions

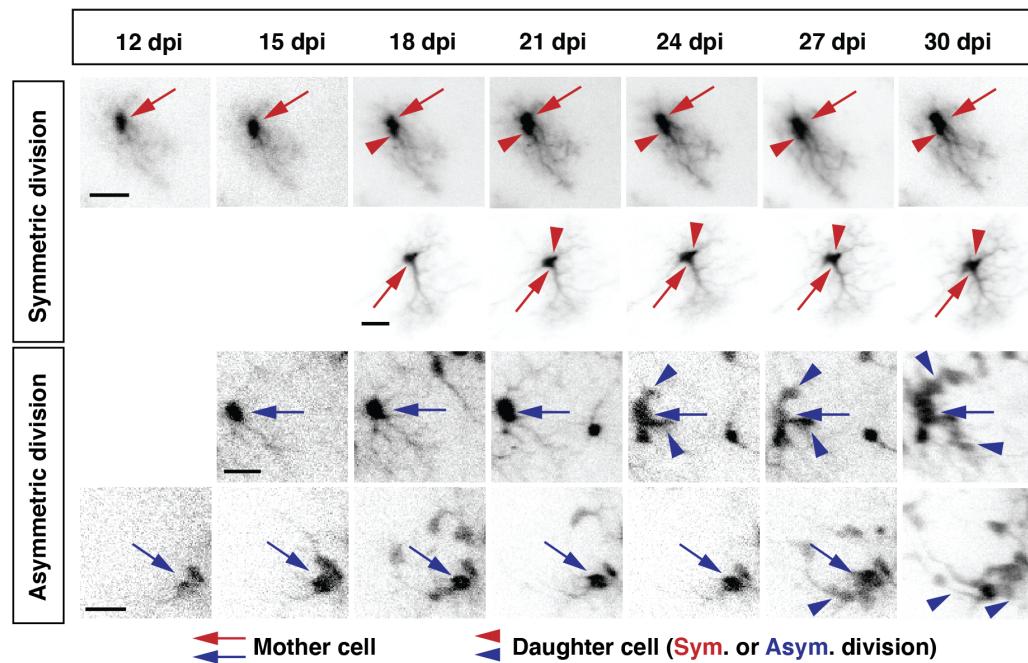
41 in $\text{Gli1Cre}^{\text{ERT2}}:\text{Klf9}^{\text{f/f}}:\text{Ai14}$ mice. $n=8$ $\text{Gli1Cre}^{\text{ERT2}}:\text{Klf9}^{\text{+/+}}:\text{Ai14}$ mice, 65 divisions; $n=10$ Gli1

42 $\text{Cre}^{\text{ERT2}}:\text{Klf9}^{\text{f/f}}:\text{Ai14}$ mice, 77 divisions. Odds of symmetric division are 2.7x higher in $\text{Klf9}^{\text{f/f}}$, $p=0.015$

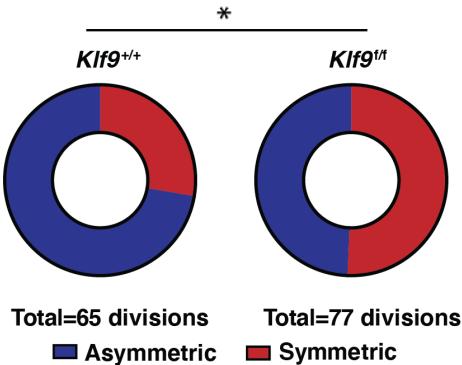
43 Likelihood-Ratio Test.


44 (D) Similar number of divisions were recorded for each group to avoid biased assessment of division mode

45 ($n=8$ and 10 mice/group).


46 See also corresponding Supplementary Figure 3 and Supplementary Movies S1, S2, S3 and S4.

47


A

B

C

D

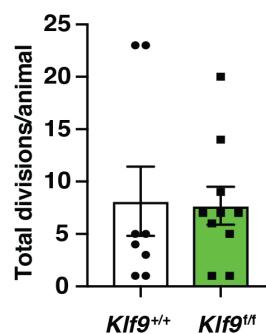


Figure 3

49 **Figure 4. *Klf9* regulates genetic programs underlying RGL expansion**

50 (A) Schematic of experimental workflow to biochemically isolate and sequence translated mRNAs from

51 Gli1+RGLs (Gli1Cre^{ERT2}:Rpl22HA^{f/+}:*Klf9*^{f/f} or ^{+/+} mice). n=3 mice, 6 dentate gyri/sample, 3 samples per

52 group.

53 (B) Principal component analysis (PCA) plot of translational profiles of Gli1Cre^{ERT2} targeted *Klf9*^{+/+} or ^{f/f}

54 RGLs. First two principal components are shown with the corresponding fractions of variance.

55 (C) Left: Heatmap of expression values for differentially expressed genes. Middle: Volcano plot of statistical

56 significance (-log10 P-value) vs. magnitude of change (log2 of fold change) of gene expression.

57 Differentially expressed genes are marked in red. Upregulated genes in *Klf9*^{f/f} RGLs are on the right and

58 downregulated genes in *Klf9*^{f/f} RGLs are on the left. Right: Piechart of numbers of upregulated and

59 downregulated genes in Gli1Cre^{ERT2} targeted *Klf9*^{f/f} RGLs.

60 (D) qRT-PCR on biochemically isolated mRNAs from Gli1Cre^{ERT2}:Rpl22HA^{f/+}:*Klf9*^{f/f} or ^{+/+} mice validating

61 candidate differentially expressed genes. n=3 mice, 6 dentate gyri/sample, 3 samples per group.

62 (E) Immunostaining and quantification of NICD in RGLs of Gli1Cre^{ERT2}: *Klf9*^{f/f} or ^{+/+} mice. Deletion of *Klf9*

63 results in increased NICD levels in RGLs consistent with Lnfg dependent potentiation of Notch1 signaling

64 (Cartoon, top left). n=3 mice/group. Data are represented as mean \pm SEM. * p<0.05, ** p<0.01, ***

65 p<0.001. Scale bar: top, 20 um; bottom, 10 um.

66 See also corresponding Supplementary Figure 4 and Supplementary Tables 1-3.

67

68

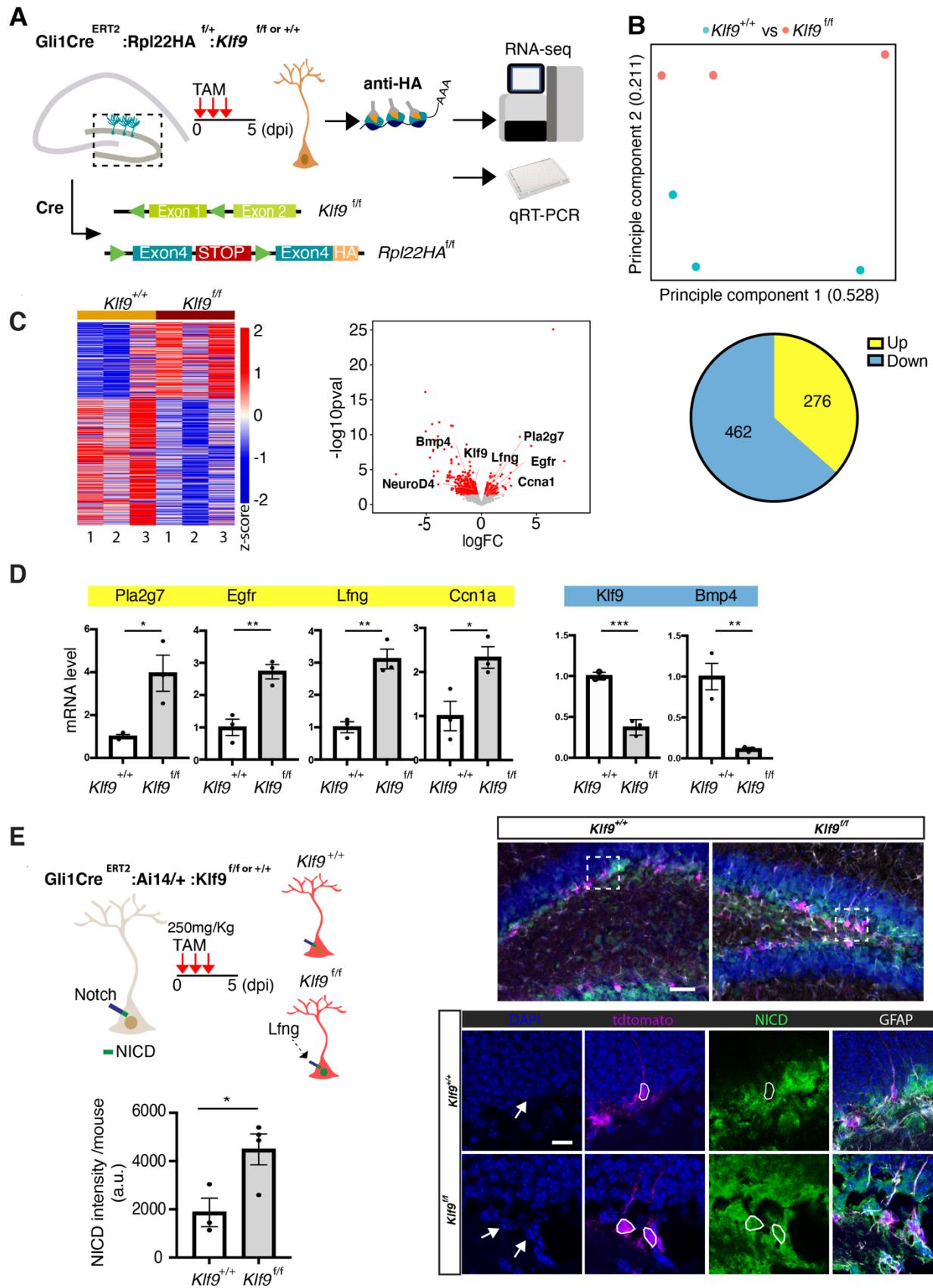
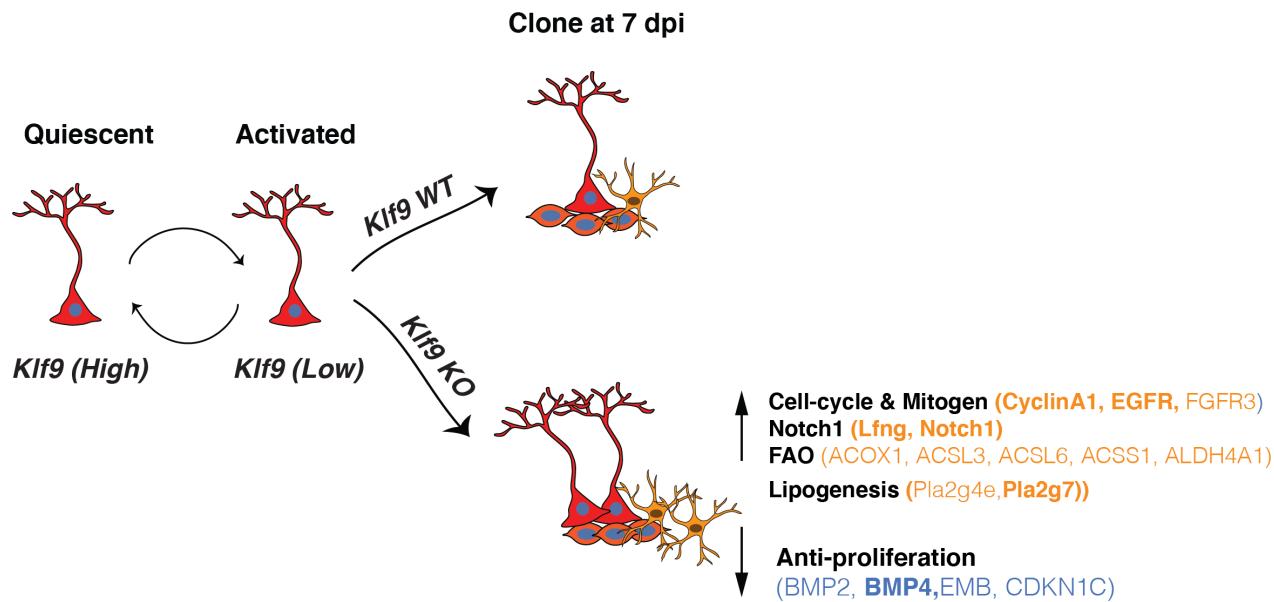



Figure 4

71
72
73
74
75
76
77
78
79
80
81

Figure 5. Summary schematic conveying *Klf9* functions in RGL activation and self-renewal

RGLs integrate extracellular, experiential signals to exit quiescence, the dominant state, and become activated. *Klf9* expression is elevated in quiescent RGLs. Low levels of *Klf9* in RGLs is associated with increased activation. Once activated, RGLs lacking *Klf9* are biased towards symmetric self-renewal and RGL expansion. Translational profiling of RGLs reveals how loss of *Klf9* results in downregulation of a program of quiescence and activation of genetic (mitogen, notch) and metabolic (fatty acid oxidation and lipid signaling) programs underlying RGL symmetric self-renewal. Candidate differentially expressed upregulated (orange) and downregulated genes (blue) in RGLs following *Klf9* deletion are shown here. Genes in bold indicates validation by qRT-PCR.

Figure 5

Transcriptional regulation of neural stem cell expansion in adult hippocampus

Nannan Guo, Kelsey D. McDermott, Yu-Tzu Shih, Haley Zanga, Debolina Ghosh, Charlotte Herber, James Coleman, Alexia Zagouras, William R. Meara, Lai Ping Wong, Ruslan Sadreyev, J. Tiago Gonçalves and *Amar Sahay

*Corresponding author. Email: asahay@mgh.harvard.edu

This PDF file includes:

Figs. S1 to S4

Other Supplementary Materials for this manuscript include the following:

Tables S1 to S4

Supplementary Table 1 Complete lists of differentially expressed genes (DEGs) in Gli1+RGLs following *Klf9* deletion. DEGs were defined by at least 1.2-fold change with FDR < 0.05.

Supplementary Table 2 Gene ontology annotation (gGOSt, <https://biit.cs.ut.ee/gprofiler/gost>) of differentially upregulated genes in Gli1+RGLs following *Klf9* deletion.

Supplementary Table 3 Gene ontology annotation (gGOSt, <https://biit.cs.ut.ee/gprofiler/gost>) of differentially downregulated genes in Gli1+RGLs following *Klf9* deletion.

Supplementary Table 4 Complete statistical analysis

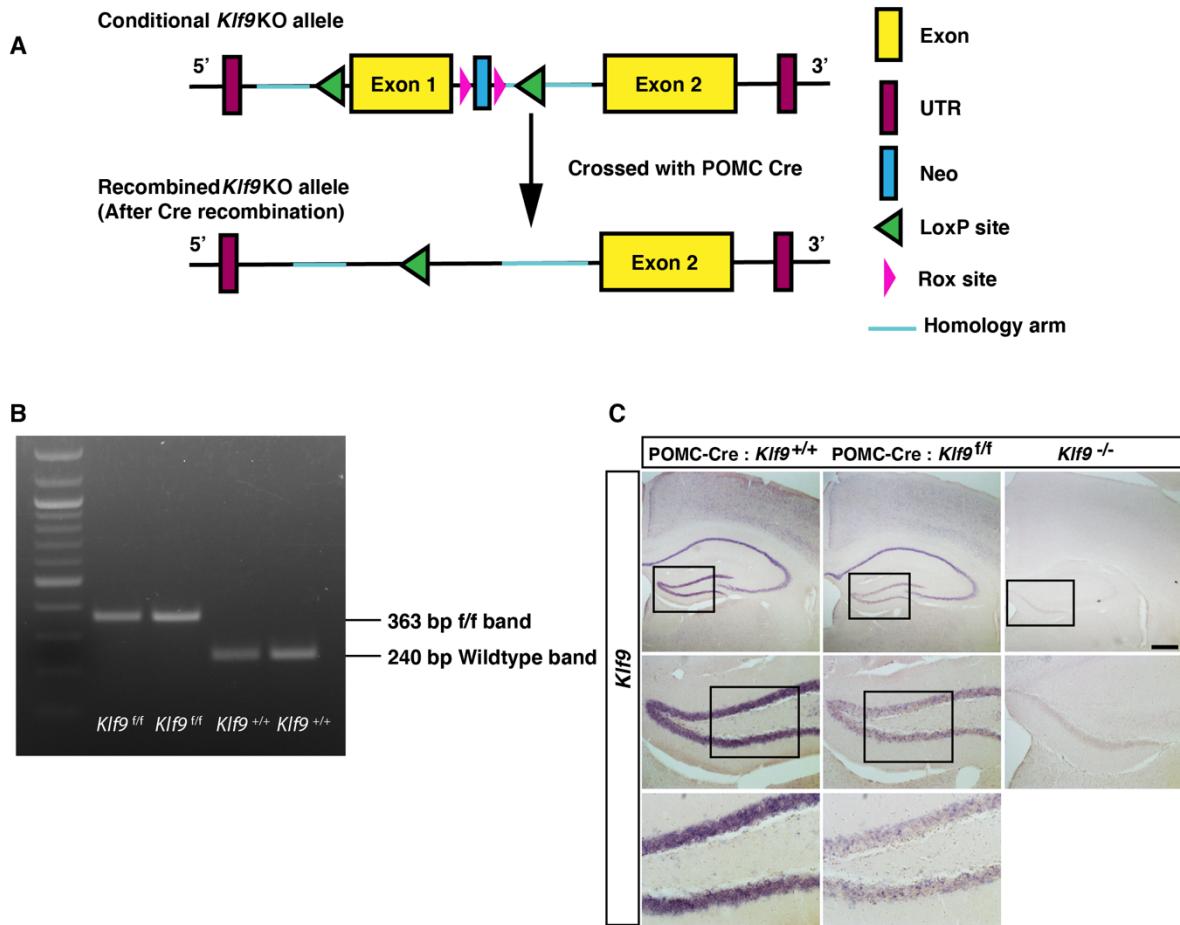
Movies S1 to S4

Supplementary Movie S1: Example of longitudinal imaging of asymmetric NSC divisions. Two-photon imaging across days showing two examples of asymmetric division of NSCs (red arrows).

Supplementary Movie S2: Example of longitudinal imaging of symmetric cell divisions. Two-photon imaging across days showing two examples of symmetric division of NSCs (blue arrows).

Supplementary Movie S3: 3-dimensional reconstruction of RGL cells imaged *in vivo* before undergoing symmetric division. Field of view corresponds to second row of Figure 3B at 18 dpi.

Supplementary Movie S4: 3-dimensional reconstruction of RGL cells imaged *in vivo* after undergoing symmetric division. Field of view corresponds to second row of Figure 3B at 30 dpi.


Fig. S1. Generation and characterization of *Klf9* conditional mutant mouse line.

Related to Figure 1.

(A) Schematic of wild-type and modified *Klf9* alleles.

(B) PCR on tail DNA showing expected bands conveying wild-type and conditional alleles.

(C) (Left) *Klf9* *in situ* hybridization on hippocampal sections from 4 months old POMC Cre: *Klf9*^{+/+} or f/f mice showing expected salt and pepper pattern of recombination in dentate gyrus that is characteristic of POMC Cre recombination pattern in dentate gyrus. (Right) *Klf9* *in situ* hybridization on hippocampal sections from adult *Klf9*^{-/-} mice conveying specificity of *Klf9* riboprobe.

Figure S1

Figure S2. Inducible overexpression of *Klf9* in activated neural stem and progenitors promotes quiescence.

Related to Figure 1.

(A-B) Two cohorts of Adult Sox1tTA: tetO *Klf9* mice were used. *Klf9* induction in neural stem and progenitors following 3 weeks off Dox significant reduced the fraction of activated RGLs (%MCM2+Nestin+RGLS, n=6 and 4 mice/group). (C-D) A second cohort of mice was given BrdU pulses during the Off Dox window when *Klf9* is upregulated. Analysis of BrdU+Nestin+ RGLs (n=3 mice/group) revealed a significant reduction in total numbers of dividing RGLs. Representative images shown here. Unpaired t-tests, Figure S2B p=0.0003, Figure S2D p=0.005. Data are represented as mean \pm SEM. ** p<0.01, *** p<0.001

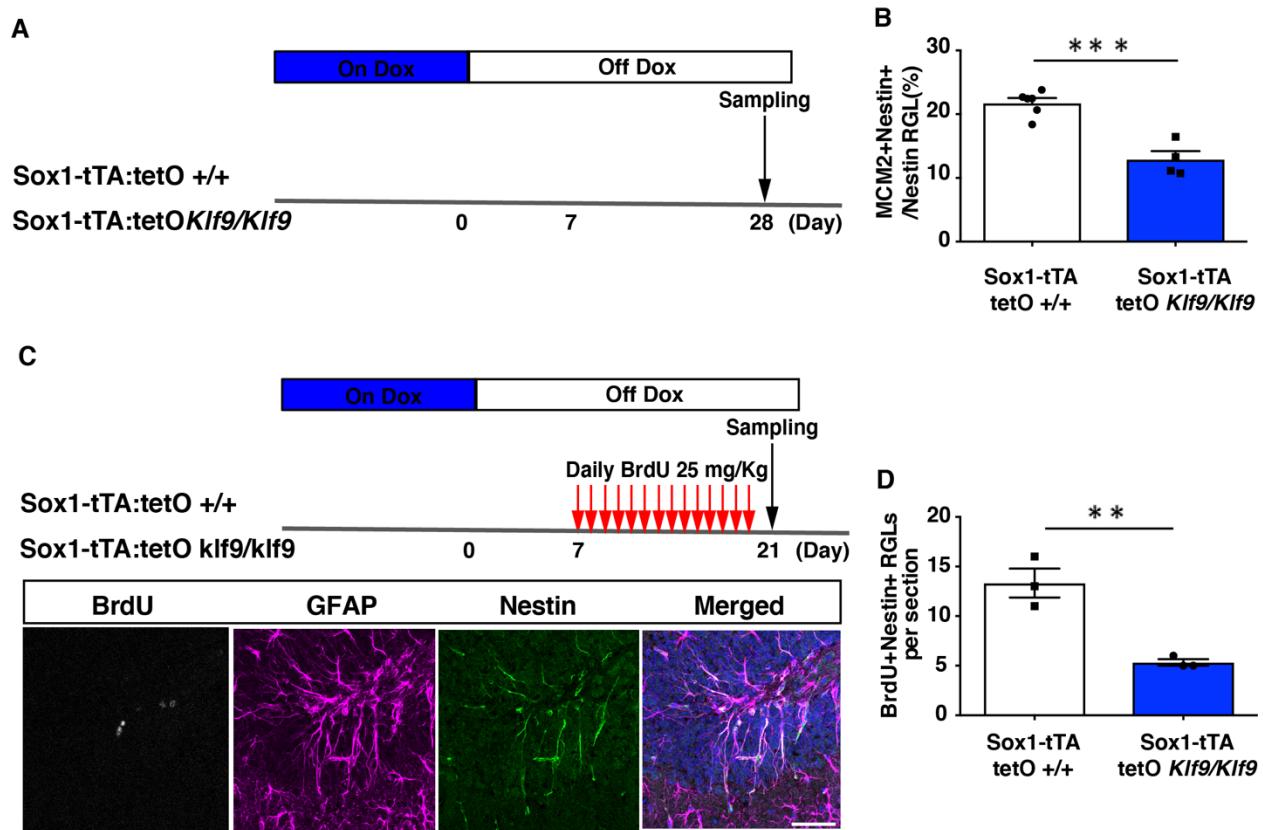
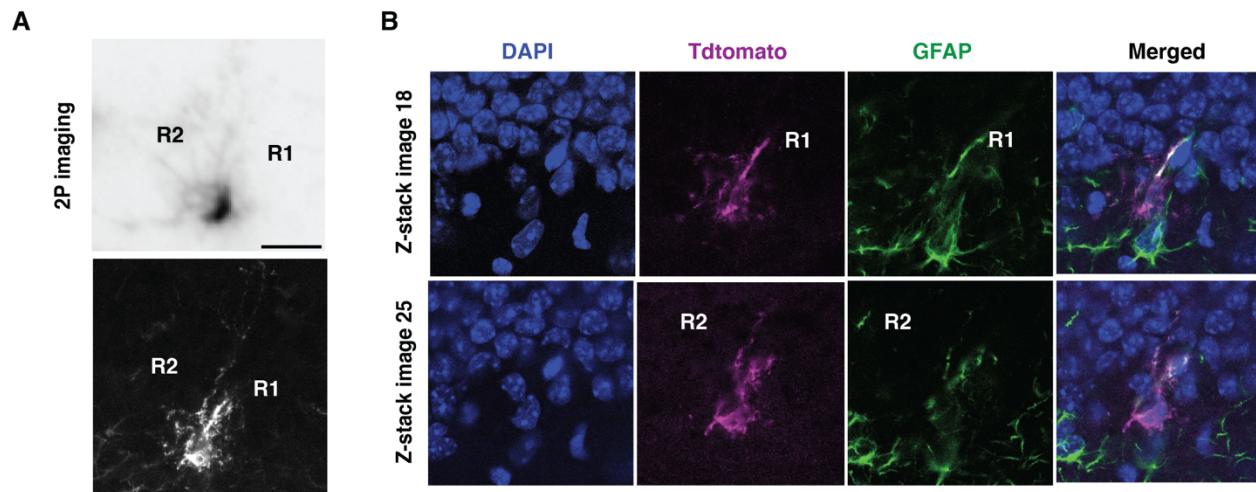



Figure S2

Figure S3. Representative images of RGL divisions captured using 2-photon imaging *in vivo*
Related to Figure 3.

(A) Representative 2-photon images of RGL cells R1 and R2 *in vivo* (top) and their respective post-hoc fluorescence image (bottom). (B) Confocal immunofluorescence images of the same GFAP+/tdTomato+ cells at different depths, confirming their RGL identity. Scale bars: 20 μ m.

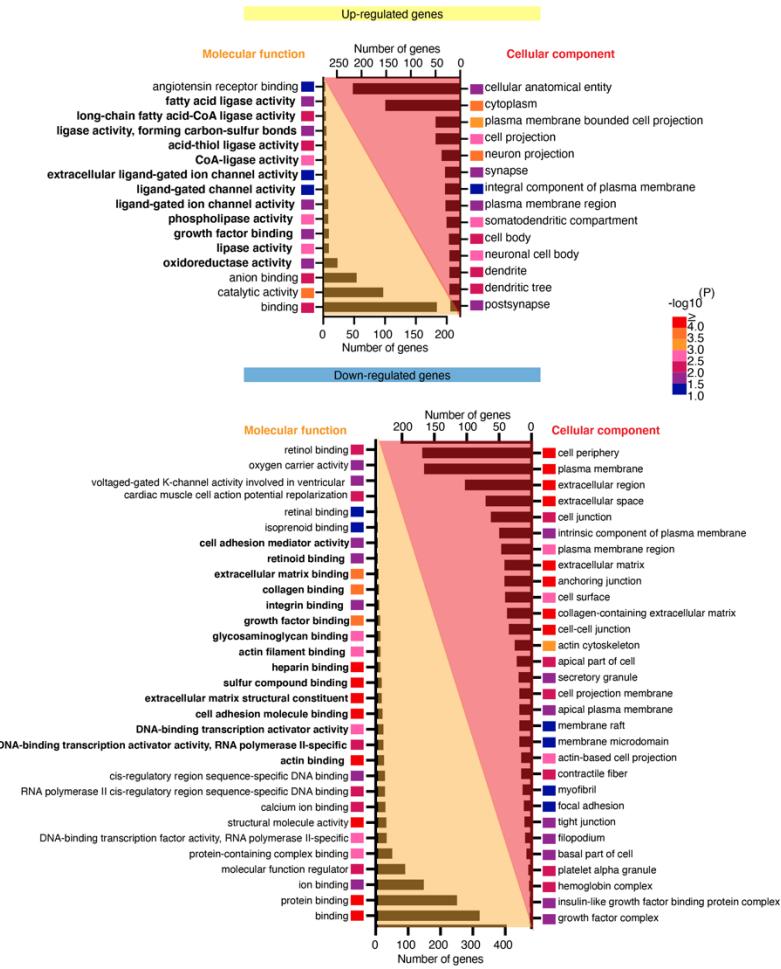

Figure S3

Figure S4. Annotation of upregulated and downregulated DEGs in Gli1+RGLs following *Klf9* deletion

Related to Figure 4.

Gene ontology annotation (gGOSt, <https://biit.cs.ut.ee/gprofiler/gost>) of differentially expressed genes (DEGs) in Gli1+RGLs following *Klf9* deletion.

A

