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ABSTRACT 

Lipids play important modulatory and structural roles for membrane proteins. Molecular 

dynamics simulations are frequently used to provide insights into the nature of these protein-

lipid interactions. Systematic comparative analysis requires tools that provide algorithms for 

objective assessment of such interactions. We introduce PyLipID, a python package for the 

identification and characterization of specific lipid interactions and binding sites on membrane 

proteins from molecular dynamics simulations. PyLipID uses a community analysis approach 

for binding site detection, calculating lipid residence times for both the individual protein 

residues and the detected binding sites. To assist structural analysis, PyLipID produces 

representative bound lipid poses from simulation data, using a density-based scoring function. 

To estimate residue contacts robustly, PyLipID uses a dual-cutoff scheme to differentiate 

between lipid conformational rearrangements whilst bound from full dissociation events. In 

addition to the characterization of protein-lipid interactions, PyLipID is applicable to analysis 

of the interactions of membrane proteins with other ligands. By combining automated analysis, 

efficient algorithms, and open-source distribution, PyLipID facilitates the systematic analysis 

of lipid interactions from large simulation datasets of multiple species of membrane proteins. 
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INTRODUCTION 

Cell membranes typically contain hundreds of different lipid species, asymmetrically 

distributed between two membrane leaflets 1-2. These lipid molecules are locally organized into 

lateral domains of distinct composition 3-4. The combination of these various chemical 

structures and microdomains results in a diverse lipid landscape that is fully exploited by 

membrane proteins, especially those involved in cellular signaling 5-6. The regulatory roles of 

membrane lipids include ion channel activation 7-8 and allosteric modulation of GPCRs and 

other receptors 9-13. Lipid molecules may also strengthen domain and/or subunit interactions in 

more complex membrane proteins 14-15. It is therefore of importance to characterize protein-

lipid interactions in order to reach an understanding of the dynamics and functions of 

membrane proteins.  

A number of biophysical techniques can reveal the presence of protein-lipid interactions e.g. 

16-17. In particular, following recent advances in single particle cryo-EM 18 including the use of 

nanodiscs to preserve a lipid bilayer environment 19, increasing numbers of membrane proteins 

structures have been determined at near atomic resolution with bound lipids present in the 

structures 20. These membrane protein structures provide gateways for understanding how 

lipids may modulate protein function but also pose challenges regarding the identification of 

interacting lipid species.  

Computational approaches, especially molecular dynamics (MD) simulations, have played an 

increasingly important role as a high throughput “computational microscope” 21 for the 

identification of protein-lipid interactions. Thanks to ongoing increases in computer power, 

development of improved atomistic and coarse-grained force fields 22, and development of 

tools to automate setup of membrane simulations 23-24, MD simulations have been applied to 

many membrane proteins and lipids, providing invaluable structural and mechanistic insights 

into their protein-lipid interactions 25-27.  

For the study of protein-lipid interactions, CG force fields can explore lipid binding sites in an 

unbiased fashion with sufficient sampling due to the decreased degrees of freedom of the 

underlying model. The Martini forcefield 28-30 is widely used for biomembrane applications. 

Simulations using Martini have identified lipid binding sites on a range of proteins 31-33, and 

have assisted the interpretation of lipid-like density in cryo-EM maps34. Some simulation 

studies have adopted a serial multiscale approach in which CG simulations are used to probe 

the lipid binding sites and bound lipid identities followed by atomistic simulations to study 
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residue-level protein-lipid interactions. The conversion of Martini models to atomistic ones can 

be achieved by resolution back-mapping tools 35-38.   

With the increasing number of membrane protein structures determined at high resolution by 

cryo-EM and the increasing complexity of simulated membranes, the use of MD simulations 

to study protein-lipid interactions is accompanied by two challenges: 

(1) How to automatically determine lipid binding sites from simulations? Some simulation 

studies have used the average lipid density to approximately locate lipid binding sites and 

subsequently manually assigned bound poses. Such an approach includes an element of 

subjectivity and may be a bottleneck for large scale comparative simulations. So, can we 

determine the lipid binding sites automatically via a statistically robust method? Additionally, 

can we systematically produce representative bound poses from the trajectories for further 

analysis?  

(2) How to optimally quantify and characterize lipid interactions? Simulation studies have used 

e.g. average lipid occupancies or the fraction of trajectory frames in which lipid contacts are 

formed to a given residue to measure lipid interactions. Can we rigorously calculate lipid 

interactions with binding sites in addition to individual residues to allow for more direct 

comparison with experiments?  

To provide a unified solution to the above-mentioned problems, we have developed a Python 

package, PyLipID, to assist analysis of protein-lipid interactions from MD simulations. 

PyLipID identifies binding sites by calculating the community structures in the interaction 

network of protein residues. This method was initially applied to the analysis of cholesterol 39

and other lipid 33 binding sites on the Kir2.2 channel. Based on the identified binding sites, 

PyLipID can find representative bound poses for each site. This is achieved by evaluating all 

the bound poses using an empirical scoring function of the lipid density in the chosen binding 

site. This functionality allows for further structural analysis of the protein-lipid interactions 

and makes it possible to automate pipelines for converting bound lipids poses in CG models 

into atomistic ones for use in multiscale simulation studies. PyLipID can also cluster the bound 

poses for binding sites to provide a more in-depth analysis of the lipid interactions. To describe 

lipid interactions, PyLipID calculates residence times, in addition to other commonly used 

metrics such as averaged interaction duration, lipid occupancy, and the average number of 

surrounding lipids, for both individual protein residues and the calculated binding sites. The 

calculation of residence times reveals the dynamical behavior of bound lipids, and calculations 
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based on binding sites allow for improved characterization of the binding events. Notably, 

PyLipID uses a dual-cutoff scheme to deal with the ‘rattling in a cage’ effect sometimes seen 

in protein-lipid simulations.  

In the following sections, we first introduce the methodological details of PyLipID. Then, we 

illustrate the PyLipID analysis pipeline using cholesterol binding to a panel of G-protein 

coupled receptors (GPCRs) as an example. Subsequently, we present two cases of the 

application of PyLipID to interactions of membrane proteins with phospholipids illustrating 

the potential application of PyLipID to assist the interpretation of lipid-like densities in cryo-

EM maps. Finally, we demonstrate the application of PyLipID to non-lipid molecules, using it 

characterize ethanol binding to the cytoplasmic domain of the B. subtilis McpB chemoreceptor 

as seen in atomistic simulations 40. 

METHODS  

PyLipID is an open-source package available on GitHub (https://github.com/wlsong/PyLipID). 

The documentation and tutorials can be found at the ReadtheDocs server 

https://pylipid.readthedocs.io. A tutorial script that runs the PyLipID analysis can be found at 

the documentation website.  

Overview of code.

The current PyLipID package contains four modules: api, func, plot and util. The api

is the outer layer module that handles the analysis workflow and provides some convenient 

functions for plotting and saving data (Fig. 1), whereas the remaining modules provide 

functions that are deployed by api for the heavy lifting in the analysis (SI Fig. S1). Such a 

structure allows for extension of PyLipID functionalities with minimal changes to the code 

base. PyLipID reports results in various forms.  

 Figure 1 here.  

api. This module contains the main python class LipidInteraction that reads 

trajectory information, analyzes lipid interactions and writes/plots interaction data. The 
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PyLipID analyses are carried out by the class methods of LipidInteraction, which can 

be divided into two groups: methods for analysis of interactions with protein residues and with 

the calculated binding sites. Each group has a core function to collect/calculate the required 

data for the rest of the functions in that segment, i.e. collect_residue_contacts()that 

builds lipid index for residues as a function of time for residue analysis; and 

compute_binding_nodes() that calculates the binding sites using the interaction 

correlation matrix of the residues. The remainder of the methods in each group are independent 

of each other and calculate different properties of lipid interactions and of binding site. 

LipidInteraction also has an attribute dataset which stores the calculated interaction 

data in a spreadsheet as a pandas.DataFrame, and updates automatically after each of the 

calculations. It records interaction data for protein residues by row, including interaction 

residence times, averaged durations, occupancy, and lipid count, and the associated interaction 

data for the binding site to which the residue belongs. This pandas.DataFrame data 

structure allows for convenient checking of the interaction data and provides users with 

maximum flexibility to further process PyLipID outputs. For the computationally intensive 

functions, e.g., calculation of koff, bound poses or binding site surface areas, PyLipID uses a 

python multiprocessing library to speed up the calculations. Users can specify the number of 

CPUs these functions can use, otherwise all available CPUs will be used by default.  

func. This module comprises the following four submodules: interaction that contains 

functions for calculation of continuous contacts using a double cutoff scheme; kinetics for 

calculation of koff and residence time; binding_site for calculation of binding sites using 

the Louvain method41 as well as the analysis of bound poses and surface area; and clusterer

for clustering the bound poses.  

plot. This module provides convenient functions to visualize the interaction data, e.g. plots 

of koff, interaction as a function of residue index, the correlation matrix of lipid interactions for 

residues and binding site data.  

util. This is the location of house-keeping functions. For example, trajectory contains 

functions for obtaining topology information from trajectories.  

Technical features. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.14.452312doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452312
http://creativecommons.org/licenses/by/4.0/


PyLipID_text_v15 figs.docx 14-Jul-21 

7

PyLipID is written in python and compatible with versions 3.6+. It uses MDtraj 42 to handle 

trajectories and coordinates, and thus it is compatible with all major simulation packages. 

PyLipID reads the molecule topology from trajectories and uses a distance-based method to 

measure contacts, it is therefore applicable to the calculation of binding characteristics for any 

type of molecule. In the following section, we will introduce the technical features of PyLipID 

and their implementation in the code.  

Lipid topology. The lipid topology information is read from trajectories and contacts are 

calculated based on the minimum distance of the lipid molecule to the protein. A lipid molecule 

is considered as being in contact with a residue when the distance of any atoms of the lipid 

molecule to any atoms of the residue is smaller than the provided distance cutoff. PyLipID also 

allows for selection of lipid atoms used for defining contacts. This option can be useful for 

cases in which excluding some atoms (e.g. the tails of phospholipids) could generate improved 

definition of binding sites. Given how lipid contact is calculated, PyLipID does not need to 

store or define any lipid topology information in the code, which allows PyLipID to calculate 

the contact of any kind of object with a protein based on their distances.  

Dual-cutoff scheme. Due to the smoothened potentials and/or shallow binding pockets, CG 

simulations may show a 'rattling in a cage' effect, in which lipid molecules undergo rapid 

changes in protein contacts without full dissociation from a given site, such that the minimum 

distances between the two contacting objects may experience sudden jumps. This has also been 

seen in e.g. atomistic simulations of loosely bound cholesterol molecules 43. For bound 

cholesterol molecules in CG simulations, the minimum distance can go up to 0.6-1.0 nm, 

overlapping with that for non-contacting cholesterols (SI Fig. S2A). This effect can also occur 

in the atomistic simulations (SI Fig S2B). Using a single distance cutoff to determine the 

bound/unbound status could thus include unwanted noise.  

To deal with these frequently encountered rapid fluctuations in bound pose, PyLipID adopts a 

dual-cutoff scheme, which uses a lower and upper distance cutoff to measure the status of 

contact. The duration of a continuous contact is determined from the timepoint when a 

molecule moves closer than the lower distance cutoff until the timepoint when the molecule 

moves beyond the upper cutoff distance.  The SI provides a more detailed discussion of cut-

off values and their impact on binding site calculations (SI text and SI Figures S3-S9). In 

addition to the contact duration, PyLipID provides another three metrics for characterization 

of lipid contacts: lipid duration, which is the average duration of the collected contacts; lipid 

occupancy, which is the percentage of frames in which any lipid contact is formed; and lipid 
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count, which is the number of surrounding molecules of the specified lipid species. Both lipid 

occupancy and lipid count are calculated using the lower distance cutoff.  

Residence time. The residence time provides useful insights 44 into the dynamic behavior of 

bound lipids which, due to their interaction with the protein, are no longer diffusive 31, 33. Indeed, 

both prolonged interactions and transient contacts are observed for lipids on the protein surface. 

The residence time, which is calculated from a survival time correlation function, describes the 

relaxation of the bound lipids and can be divided into long and short decay periods, which 

correspond to specific interactions and transient contacts respectively. PyLipID calculates the 

survival time correlation function �(�) as follow: 

�(�) =
1

��

1

� − �
�����(�, � + �)

���

���

��

���

where � is the length of the simulation trajectory, �� is the total number of lipid contacts and 

∑ ���(�, � + �)���
���  is a binary function that takes the value 1 if the contact of lipid j lasts from 

time � to time � + � and 0 otherwise. The values of �(�) are calculated for every value of t

from 0 to � ns, for each time step of the trajectories, and normalized by dividing by σ(0), so 

that the survival time-correlation function has value 1 at t = 0. The normalized survival function 

is then fitted to a bi-exponential to model the long and short decays of lipid relaxation 

respectively: 

�(�)~������ + ������  (�� ≤ ��)

PyLipID takes �� as the dissociation constant, ����, and calculates the residence time from 

� = 1 ����⁄  . It should be noted that providing PyLipID with multiple trajectories of varying 

length could impact the accuracy of the koff calculation. PyLipID measures the ��  of the 

biexponential fitting to the survival function to show the quality of the ����/residence time 

estimation. In addition, PyLipID bootstraps the contact durations and measures the 

����/residence time of the bootstrapped data, to report how well lipid contacts are sampled 

from simulations. The lipid contact sampling, the curve-fitting and the bootstrap results can be 

conveniently checked for individual residues and the calculated binding sites via the koff plots 

generated by PyLipID (see Fig. 2 and discussion below for further details).  

Calculation of binding sites. Binding sites are defined based on a community analysis of 

protein residue-interaction networks that are created from the lipid interaction correlation 

matrix. Given the basic definition of a lipid binding site, namely a cluster of residues that bind 
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to the same lipid molecule at the same time, PyLipID creates a distance vector that records the 

distances to all lipid molecules as a function of time for each residue, and constructs a lipid 

interaction network in which the nodes are the protein residues and the weights are the Pearson 

correlation coefficients of pairs of residues that are calculated from their distance vectors (SI 

Fig. S10). PyLipID then decomposes this interaction network into sub-units or communities, 

which are groups of nodes that are more densely connected internally than with the rest of the 

network. For the calculation of communities, PyLipID uses the Louvain algorithm 41 that finds 

high modularity network partitions effectively. Modularity, which measures the quality of 

network partitions, is defined as 45

� =
1

2�
����� −

����

2�
�����, ���

�,�

where ���is the weight of the edge between node i and node j; �� is the sum of weights of the 

nodes attached to the node i, i.e. the degree of node; �� is the community to which node i is 

assigned; �(��, ��) is 1 if � = � and 0 otherwise; and � = �

�
∑ ����� , i.e. the number edges.  In the 

modularity optimization, the Louvain algorithm orders the nodes in the network, and then, one 

by one, removes and inserts each node in a different community �� until no significant increase 

in modularity. After modularity optimization, all the nodes that belong to the same community 

are merged into a single node, of which the edge weights are the sum of the weights of the 

comprising nodes. This optimization-aggregation loop is iterated until all nodes are collapsed 

into one. PyLipID allows for filtering of the communities based on their sizes, i.e. filtering the 

binding sites based on the number of comprising residues. By default, PyLipID returns binding 

sites of at least 4 residues. This filtering step is particularly helpful for analysis of a small 

number of trajectory frames, in which false correlation is more likely to happen among 2 or 3 

residues. The output from this calculation is a list of binding sites containing sets of binding 

site residue indices. 

Calculation of representative bound poses.  PyLipID evaluates bound poses using an empirical 

density-based scoring function and writes out the most sampled bound poses for each binding 

site. The scoring function of a lipid pose at a binding site is defined as: 

����� =  ��� ∙ ���,�(�)

�

where �� is the weight given to atom i of the lipid molecule, H is the bandwidth, and  ���,�(�)

is a multivariate kernel density estimation of the position of atom i based on the positions of 
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all bound lipid poses in that binding site. The position of atom i is a p-variant vector, 

����,���, . . . ,���� where ���  is the minimum distance to the residue p of the binding site. 

PyLipID uses the Gaussian kernel function and, by default, a bandwidth of 0.15. The 

multivariant kernel density estimation is implemented by statsmodels 46. Higher weights can 

be given to e.g. the headgroup atoms of phospholipids, to generate better defined binding poses, 

but all lipid atoms are weighted equally by default. In the density estimation, PyLipID uses the 

relative positions of lipid atoms in the binding site, which makes the analysis of a binding site 

independent of local protein conformational changes. Lipid poses with the highest scores are 

considered as the representative bound poses for their binding site and can be written out, along 

with the protein conformation to which it binds, in any format supported by MDTraj (e.g., pdb 

and gro). See SI Text for more detailed discussion on the choice of cut-off values and 

representative bound poses/clustered poses.  

Clustering of bound lipid poses. PyLipID can cluster the bound lipid poses of a binding site 

into a user-specified number of clusters using KMeans, in a ‘supervised’ fashion or cluster the 

poses using a density-based cluster, DBSCAN, in an ‘unsupervised’ fashion. In the former case, 

the KMeans function from scikit-learn 47 is used to separate the samples into n clusters of equal 

variances, via minimizing the inertia, which is defined as: 

�min
��∈�

(‖�� − ��‖
�)

�

���

where ��  is the 'centroid' of cluster �. KMeans scales well with large dataset but performs 

poorly with clusters of varying sizes and density, which are often the case for lipid poses in a 

binding site.  

When the number of clusters is not provided by user, PyLipID uses the DBSCAN algorithm 

implemented in scikit-learn to find clusters of core samples of high density. A sample point p

is a core sample if at least min_samples points are within distance � of it. A cluster is defined 

as a set of sample points that are mutually density-connected and density-reachable, i.e. there 

is a path 〈��,��, . . . ,�� 〉 where each ���� is within distance � of �� for any two p in the set. The 

values of min_samples and � determine the performance of this cluster. PyLipID sets the � as 

the knee point of the �-distance graph. Once � is set, the clustering results with all possible 

min_samples are checked using the Silhouette coefficient: 

� =
� − �

���(�, �)
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where a is the mean distance between a sample and all other points in the same cluster, and b

is the mean distance between a sample and all other points in the next nearest cluster. The 

Silhouette coefficient is between -1 and 1, and higher scores suggest better defined clusters. 

The clustering result with the highest Silhouette score is returned as the optimal clustering 

results. For writing out the cluster poses, PyLipID randomly selects one pose from each cluster 

in the case of using KMeans or one from the core samples of each cluster when DBSCAN is 

used, and writes the selected lipid pose with the protein conformation to which it binds using 

MDTraj. The relative position of lipid poses in the binding site, i.e. [��,��, . . . ,��] where ��

is the distance vector of atom i to the residues in the binding site, is used as the pose coordinates 

for clustering. Principal component analysis is used to decrease the lipid coordinate dimension 

before the clustering.  

Calculation of pose RMSD. The root mean square deviation (RMSD) of a lipid bound pose in 

a binding site is calculated from the relative position of the pose in the binding site compared 

to the average position of the bound poses. Thus, the pose RMSD is defined as: 

���� = �
∑ (�� − ��)��
���

�

where �� is the distance vector of atom i to the residues in the binding site, �� is the average of 

the distance vectors of atom i from all bound poses in the binding site and N is the number of 

atoms in the lipid molecule.  

Calculation of binding site surface area. The accessible surface area is calculated using the 

Shrake-Rupley algorithm 48. PyLipID strips the protein coordinates out of the simulation 

system and obtains the accessible surface area of a binding site by summing those of its 

comprising residues. The surface areas of protein residues are calculated by the shrake_rupley 

function of MDTraj.  

RESULTS 

PyLipID analysis outputs, illustrated for CG simulations of the interactions of the β2AdR 

with cholesterol. 

Before describing in detail application cases of PyLipID, we provide a brief overview of 

PyLipID analysis and outputs (Fig. 2). As an example, we use cholesterol interaction with the 

β2AdR (a GPCR). A more detailed account of GPCR/cholesterol interactions is provided in a 
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subsequent section. We carried out PyLipID analysis using simulation data from 3 repeats. 

Therefore, the reported durations, occupancies, and lipid counts, for both residues and binding 

sites, by PyLipID were averaged over the repeats and the residence times were calculated from 

the durations of lipid contacts collected from all repeats. We also recommend evaluating the 

impact of different dual cut-offs on binding sites and interaction durations, prior to using 

PyLipID, to find the optimal values (see SI Text and Figs. S4-S9). For the case of analysis of 

cholesterol interactions with GPCRs, we chose to use 0.475 and 0.80 nm for the dual cut-offs.  

PyLipID outputs results in different forms to assist different analyses. Each analysis is carried 

out by a method of the class LipidInteraction. Users may select specific analysis to 

implement or use the demo script provided on PyLipID website to run all the analysis once. 

We first calculated cholesterol interaction, i.e. interaction residence times in this case, with 

receptor residues via the method compute_residue_koff(). To visualize the residue-

wise interactions, we used the method save_coordinate() to generate a protein databank 

(PDB) file of the receptor coordinates in which the interaction data are saved in the B factor 

column, enabling us to check the locations of interaction hotspots (Fig. 2A).  

We then calculated the binding sites using the method compute_binding_nodes(). 

After this step, the cholesterol interactions, i.e. residence times in this case, with these binding 

sites were calculated using compute_site_koff(). To assist the visualization of these 

binding sites, we used the method save_pymol_script() to generate a python script that 

maps the binding site information to receptor structure in a PyMOL session, in which residues 

from the same binding site are shown as spheres in the same color and the sphere scales 

correspond to their interactions with the lipid (Fig. 2B). This binding site visualization, 

combined with a binding site summary that was generated by write_site_info(),helped 

to filter through binding sites and find ones of interest. To analyze the structural details of 

cholesterol interactions, we used analyze_bound_pose()to find the representative bound 

pose for a given binding site (Fig. 2C) and to cluster all the bound poses in a binding site (Fig 

2D). In addition, we also calculated other properties of the binding sites/bound poses, including 

the RMSDs of bound poses via analyze_bound_poses() (Fig 2E) and the surface areas 

of the binding site via compute_surface_area() (Fig 2F).  

Importantly, when calculating the residence times using either compute_residue_koff()

or compute_site_koff(), PyLipID can also generate the koff plots, in which the durations 

of the collected contacts are plotted in a sorted order along with the normalized survival 
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function, fitted bi-exponential curve, and bootstrapped data (Fig. 2G). The quality of the 

sampling of binding events, which can be checked by the bootstrapping data, and the quality 

of the evaluation of residence times, which can be checked by r2 of the curve fitting, were 

checked when we filtered the binding sites.  

 Figure 2 here.  

Comparative analysis of cholesterol binding sites on selected class A and B GPCRs.

The application of PyLipID through python scripts allows for a high-throughput and systematic 

analysis of large protein-lipid interaction datasets. Here we demonstrate how PyLipID, in 

conjunction with CG MD simulations, was used to characterize cholesterol binding sites on 

GPCRs. We performed 3 x 10 µs CG simulations for each of ten species of GPCR (see SI Text 

and Table S1 for simulation details), embedded within a membrane containing 35% cholesterol 

and applied PyLipID analysis to study the cholesterol interactions with these receptors.  

Combining the residence time profiles and molecular visualization, we found that cholesterol 

interactions were consistently found between transmembrane helices. However, the strength of 

the interactions (measured as residence times) varied depending on the receptor and the inter-

helical location. We saw stronger cholesterol interactions with β2-AdR and D3R at locations 

around, e.g., TM1, TM7, TM3 and TM4, whereas much weaker interactions were seen in e.g. 

C-C chemokine receptors and P2Y1 (SI Fig 2-3), suggesting the affinities for cholesterol may 

varies among receptors and sites.  

We then analyzed the lipid bound poses in the binding sites. On average, 14-17 cholesterol 

binding sites were revealed per receptor and, in total, 153 cholesterol binding sites from the 10 

receptors. Aligning the representative bound poses from the 10 tested receptors to the β2-AdR 

structure revealed that cholesterol molecules can be found in most of the inter-helical spaces 

(Fig. 3A). This is in agreement with a recent analysis of the locations of bound cholesterols in 

GPCR structures, which reports that cholesterol binding sites lack consensus motifs 49. This 

also lends support to the suggested wedge-like role of cholesterols in stabilizing GPCR 

conformations 50 .  

 Figure 3 here.  
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We next calculated the binding site residence times and cholesterol occupancies. Most of the 

cholesterol binding sites had interaction residence times < 3 µs (Fig. 3B). For these sites there 

was little, if any, correlation between residence time and occupancy (Fig. 3C). The high 

frequency of cholesterol binding and the relatively short residence times suggest that these 

cholesterol molecules act as annular lipids around GPCRs, forming a cholesterol solvation shell. 

However, we also detected a number of binding sites that with residence times > 3 µs (on 

B2AR, D3R, S1PR and GCGR). With one exception these all had an occupancy of > 90% (Fig. 

3C). This suggests that at these sites cholesterol can form longer and more specific interactions. 

We then set out to analyze whether there are sequence or structural motifs that determine the 

length of interaction residence times (i.e. the strength of cholesterol interactions). We first 

checked whether the size of the binding site affects the interaction. We calculated the binding 

site surface areas and the buried area, i.e. contacting surface area of bound cholesterols with 

the receptor. The stronger cholesterol binding sites (i.e. those with residence time > 3 µs) have 

mid-range sizes, with surface areas between 5-12 nm2 (Fig 4A). Visual inspection revealed that 

the larger binding sites on GPCRs were often flat, shallow, and featureless. The calculation of 

the buried surface area of cholesterols in the binding sites showed a similar picture, and the 

bound cholesterols could clearly be separated into two groups (Fig. 4B). For the weaker (non-

specific or annular) sites there was perhaps a weak correlation between residence time and 

buried surface area. For the stronger (specific) sites the contacting surface area did not correlate 

with the residence times. This suggests that specific binding is more subtly determined than 

simply the area of the cholesterol binding site on a GPCRs.  

 Figure 4 here.  

To explore this further we analyzed the amino acid residue composition of the cholesterol 

binding sites, looking to see whether longer residence times resulted from a specific 

composition of the binding sites. We again set a residence time cut-off of 3 µs to separate 

weaker and strong binding sites, selected from a plot of the sorted residence times (SI Fig S13). 

We calculated the amino acid composition for each binding site in the two classes (Fig. 5AB). 

To compare the two sets of data, which have very different sizes, we bootstrapped the data 

from the nonspecific binding sites. Here, we randomly selected 8 binding sites, and compared 

their average amino acid composition to the 8 strong binding sites. This comparison revealed 
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that the strong cholesterol binding sites have increased occurrence of Leu, Ala, and Gly 

residues (Fig 5C). This is broadly consistent with a recent structural analysis 49 which failed to 

reveal distinct sequence motifs for cholesterol binding to GPCRs, but which reported 

cholesterol microenvironments enriched in Leu, Ala, Ile, and Val residues. 

 Figure 5 here.  

We subsequently examined the representative cholesterol bound poses for these strong binding 

sites. These bound poses revealed two types of binding modes that are likely to have 

contributed to the stronger interactions in these binding sites. The first type features 

polar/charged interactions with the hydroxyl group of cholesterol, as seen in BS (binding site) 

id 5 of GCGR, and at BS id 7 and 4 of B2AR (Fig 6A and SI Fig S14).  These polar/charged 

interactions may be the main stabilizing feature for strong cholesterol binding since the rest of 

the cholesterol molecule does not show extensive contacts with the receptor in these binding 

sites. The second type exhibits Leu sidechains at the rim of the sites that form a tight grip on 

the bound cholesterol molecule (Fig 6B and SI Fig S14). These residues might stabilize the 

cholesterol molecule in between the helices.  

Taken together, PyLipID has allowed us to analyze cholesterol interactions efficiently and 

systematically with a set of 10 GPCRs. The analysis of 153 cholesterol binding sites revealed 

that most of cholesterols act as annular lipids around GPCRs, forming transient and potentially 

nonspecific interactions with the receptors. However, cholesterol may also form longer and 

more specific interactions with GPCRs at certain binding sites with distinctive structural 

features. The latter class of sites offer great potential as possible allosteric modulatory sites. 

 Figure 6 here.  

Two examples of characterization of phospholipid interactions.

We have also explored the application of PyLipID to interactions of membrane proteins with 

two (anionic) phospholipids, namely cardiolipin (for bacterial membrane proteins) and PIP2

(for mammalian membrane proteins). A recent survey of the energetics of membrane protein-

lipid interactions as estimated by MD simulations 51 has shown that anionic phospholipids 
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interact more strongly with membrane proteins (estimated free energies of -20 to -40 kJ/mol) 

than is the case for cholesterol (-5 to -10 kJ/mol). Thus, they are expected to exhibit longer 

residence times and provide good test cases for PyLipID analysis. 

We have recently applied PyLipID to analyze cardiolipin interactions for a set of 42 E. coli

inner membrane proteins based on CG-MD simulations using the Martini 3 force field 52. 700 

cardiolipin binding sites were identified using PyLipID, analysis of which yielded a heuristic 

for defining a high affinity cardiolipin binding site, based on 2 or 3 basic residues in proximity, 

alongside the presence of at least one polar residue and one or more aromatic residues 51 .  

As an example of this analysis, we have selected formate dehydrogenase-N (PDB id 1KQF), a 

trimeric membrane protein, each subunit of which has five TM helices and a large cytoplasmic 

domain. The cardiolipin binding site observed in crystal structure was correctly identified by 

PyLipID as having the longest residence time among the 16 possible binding sites (Fig 7A and 

SI Fig S15). Analysis of residence times for individual binding site residues revealed that K254, 

K258, T39 and the main chain of P38 formed polar interactions or hydrogen bonds with 

cardiolipin headgroup, contributing to the main stabilizing force for the lipid bound poses in 

this binding site (Fig 7B). F37 also stabilized the bound lipid by hydrophobic stacking with the 

lipid tails.  

In a second application of PyLipID to anionic lipids, we explored the interaction of PIP2

interaction with polycystin-2 (PC2), a TRP channel. A number of studies have implicated PIPs 

in TRP channel regulations 12. Based on CG-MD simulations in a membrane containing 10 % 

PIP2 in the cytoplasmic leaflet, 6 binding sites were identified from each of the four subunits 

of PC2 (SI Fig 6). The PIP2 binding site seen in the 3 Å resolution cryo-EM structure (PDB id 

6T9N) 53 was identified by PyLipID as the site with the longest residence time. In addition, the 

representative bound pose of PIP2 in this binding site fits nicely within the lipid-like density in 

the cryo-EM map (Fig 7C). This again suggests that when multiple possible binding sites are 

present, residence time analysis using CG-MD simulations and PyLipID can be potentially 

used to identify the strongest interaction sites corresponding to lipid-like density observed by 

cryo-EM.  

 Figure 7 here.  
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Application to interactions of a non-lipid ligand with a membrane protein. 

PyLipID can be readily applied to characterize the binding non-lipid molecules in conjunction 

with atomistic simulations whenever sufficient binding/unbinding events are sampled. It 

therefore may be particularly useful for e.g. fragment screening approaches to binding site 

discovery (see 54 for an early application of this approach to GPCRs and 55 for a recent 

application using Martini 3).  

To demonstrate the application of PyLipID to small-molecule/fragment binding, we analyzed 

the interactions of ethanol with a bacterial chemoreceptor, McpB, for which ethanol is a known 

attractant. The analyses were carried out on previously conducted atomistic simulations (3 x 

600 ns) of an McpB cytoplasmic homodimer with 165 ethanol molecules (0.316 M) included 

to reproduce experimental conditions 40. As anticipated, ethanol molecules showed transient 

interactions with the receptor due to their small size and simple structure. Using PyLipID a 

total of 50 ethanol binding sites were identified on McpB, with residence times ranging from 

sub-nanosecond to ~40 ns (SI Fig S16). Notably, the analysis highlighted several binding sites 

with longer residence times located within the center of the coiled-coil bundle (Fig 7D). It is 

suggested that these may facilitate conformational changes induced by ethanol binding to be 

transmitted to other parts of the receptor, thereby enabling the signaling response. To test the 

sensitivity of PyLipID to minor changes in protein sequence, we additionally analyzed 

atomistic simulations (3 x 600 ns) of McpB carrying the A431S mutation, which is known to 

considerably reduce taxis to alcohols 40. While the 51 ethanol binding sites identified by 

PyLipID largely overlap with those on wild-type McpB, ethanol binding to the sidechain of 

residue 431 was no longer observed (SI Fig S16). This example suggests therefore that 

PyLipID could be usefully employed as an analysis tool within an MD-based fragment 

screening study. 

DISCUSSION & CONCLUSIONS 

What does PyLipID allow us to do? 

We have described PyLipID, an integrated package for analysis of protein-lipid interactions 

from MD simulation data. PyLipID has the following main features:  
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1. It calculates binding sites from simulation data using a robust methodology.  

2. It calculates the residence times for lipid interactions with both the binding sites and 

individual amino acid residues.  

3. It generates bound lipid poses and outputs structural representatives for each binding 

site.  

4. It uses a dual-cutoff scheme to robustly quantify lipid interactions in a manner suitable 

for dynamic interactions in both coarse-grained and atomistic simulations.  

5. It outputs interaction data in a convenient format to assist the ease and customization 

of subsequent large scale data analysis.  

Thus, PyLipID provides for systematic and standardized analysis of protein-lipid interactions 

over large simulation datasets from multiple membrane proteins, facilitating comparative 

analysis of lipid binding sites. The inclusion of functions to generate representative bound 

poses allows for in-depth analysis alongside experimental structural data. PyLipID is an open-

source Python package which allows users to customize the functions. It provides various 

portals for further manipulation of the generated data. It can be readily incorporated into 

analysis scripts, allowing for high through-put analysis of big data sets 52.  

How does PyLipID compare with other software in this area? 

There are several frameworks developed for analysis of membrane MD simulations, building 

on the considerable expansion in this area of research over recent years. The closest in spirit to 

PyLipID is ProLint 56. ProLint is web-based, but also available as a standalone Python package 

prolintpy. ProLint provides feature-rich visualization and analysis tools, leaving binding site 

interpretations up to the user. In this respect it differs from PyLipID which automatically 

defines and analyses lipid binding sites to facilitate comparison with experiments, and to 

provide more directly pharmaceutically relevant structural insights. A somewhat simpler 

membrane protein simulation analysis framework is provided by MemProtMD 57, a database 

of CG-MD simulations of all known membrane protein structures in a model bilayer, which 

provides contact-based metrics for protein-lipid interactions, and information local bilayer 

thickness distortion by proteins. MemProtMD is now directly linked to membrane protein 

entries by the RCSB/PDB. There have also been several recent packages developed which are 

aimed at analysis of lipid bilayers. These include e.g. LiPyphilic 58, which is a fast Python 

package for analyzing complex lipid bilayer simulations (but not yet extended to membrane 
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proteins), and FATSLiM 59, also in Python, which enables bilayer leaflet identification, bilayer 

thickness and area per lipid calculations, and which works for various (curved) membrane 

geometries and bilayers including proteins. In terms of more detailed analysis of interactions 

at binding sites, there are several more general approaches for drug-target residence times via 

simulations, including e.g. τRAMD 60 which may in principle be adaptable to protein-lipid 

interactions. 

What can PyLipID teach us about protein lipid interactions? 

We have described a couple of applications of PyLipID. There is a considerable literature on 

identifying and characterizing GPCR/cholesterol interactions by MD simulations (e.g. 61-63) 

and it is not our aim to review these here (for recent reviews see e.g. 12, 64). There have also 

been a number of GPCR structural studies e.g. combined with docking of cholesterol 65 to 

generate a database of predicted binding sites for cholesterol on membrane proteins, or via 

analysis of crystal structures of GPCRs with bound cholesterol molecules  49. PyLipID provides 

some new insights into GPCR/cholesterol interactions. In particular, the analysis of residence 

times has allowed us to separate interactions/sites in annular and specific cholesterol binding 

sites, the latter showing longer residence times and with enriched interactions with Leu, Gly 

and Ala residues. Extending this approach to a couple of anionic phospholipids suggests that 

long residence time binding sites correlate with those observed experimentally in cryo-EM 

structures, indicating how PyLipID may be used to aid the assignment and analysis of lipid-

like density in newly determined structures 66. 
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FIGURE LEGENDS 

Figure 1. PyLipID package design: api module structure. api is the outer layer module 

and its main class LipidInteraction handles the analysis workflow. The class object 

LipidInteraction loads the trajectory data, and the methods of this class object carries 

out the analysis for protein residues (yellow boxes) and for binding sites (red boxes). This class 

object also has an attribute dataset, which is a spreadsheet object storing interaction data 

and allows for further manipulation. PyLipID has another 3 modules, func, plot and util, 

which provides functions for doing the computationally intensive analysis, as used by 

LipidInteraction (SI Fig S1). 
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Figure 2. Illustration of PyLipID analysis outputs, using simulations of the β2AdR in the 

presence of cholesterol as an example. PyLipID can save interaction data in the B-factor 
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column of a PDB file of the protein coordinates using save_coordinate(). Such a 

coordinate file can be loaded into a visualization software and colored based on B-factor to 

show the interaction hotspot (A). PyLipID can generate a python script that maps the binding 

site information to receptor structure in a PyMOL session, in which residues from the same 

binding site are shown in spheres in the same color and the sphere scales correspond to their 

interaction with the lipid. This is accomplished by save_pymol_script() (B). The 

method of analyze_bound_pose() can find the representative bound pose for a binding 

site (C), and cluster all the bound poses in a binding site (D). This method can also calculate 

the RMSDs of the bound poses for a binding site and provide a convenient plot of the RMSDs 

(E). The method compute_surface_area() calculates binding site surface area as a 

function of time and plots the surface area data (F). PyLipID calculates interaction residence 

times for residues using compute_residue_koff() and for binding sites using 

compute_site_koff(). Both methods generate koff plots, in which the durations of the 

collected contacts are plotted in a sorted order in the left panel and the normalized survival 

function together with the fitted data are plotted in the right panel (G). The plot() method 

can draw the interaction data as a function of residue index (H).  
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Figure 3. Cholesterol binding sites on GPCRs. (A) The representative cholesterol bound 

poses of all the binding sites on the 10 GPCRs. The binding sites are aligned to the B2AR 

structure. (B) Binding site residence times and (C) binding site occupancy calculated from the 

10 GPCRs. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.14.452312doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452312
http://creativecommons.org/licenses/by/4.0/


PyLipID_text_v15 figs.docx 14-Jul-21 

29

Figure 4. Geometry of cholesterol binding sites on GPCRs. (A) Binding site surface area 

and (B) the buried surface area of the cholesterol bound in the binding sites on GPCRs. The 3 

µs residence time cutoff used to separate non-specific/annular from specific/tight binding 

interactions is shown as a grey broken line, and the latter two classes are indicated by the green 

and red ellipses respectively in B. 
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Figure 5. Amino acid composition of cholesterol binding site on GPCRs. (A) Violin plot of 

the amino acid composition of 8 specific binding sites that showed cholesterol residence times 

longer than 3 µs. (B) Violin plot of the amino acid composition of the 145 binding sites that 

showed shorter duration cholesterol interactions. (C) Comparison of the binding site amino 

acid compositions between the bootstrapping values from the 145 nonspecific binding sites 

(box plot) and the averages from the 8 specific binding sites (yellow dot). Data for amino acid 

compositions are color-coded based on the amino acid chemical property: data for non-polar 

amino acids are colored in brown, for polar amino acids in yellow, for acidic amino acids in 

red and for basic amino acids in blue. The red asterisks indicate residues where there is a clear 

difference in composition between the non-specific and specific site amino acid compositions. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.14.452312doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.452312
http://creativecommons.org/licenses/by/4.0/


PyLipID_text_v15 figs.docx 14-Jul-21 

31

Figure 6. Representative cholesterol bound poses in the 8 specific binding sites. (A) 

Cholesterol bound poses with charge/polar interaction with the hydroxyl group. (B) Cholesterol 

bound poses without charge/polar interactions. Cholesterols are shown in sticks and colored 

based on the receptors they bound to. Protein residues within 0.5 nm of bound cholesterols are 

shown in green sticks. Text below each bound pose show the receptor name, the binding site 

(BS) id, and the calculated binding site residence time.  
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Figure 7. Application of PyLipID to phospholipids and non-lipid molecules. (A) 

Cardiolipin binding site with the longest residence time on formate dehydrogenase-N. The 

protein and lipid are described by the Martini CG model. The protein backbone beads are 

shown in white surface. The lipid beads are shown in cyan spheres connected by orange sticks. 

(B) A zoomed-in view of the cardiolipin binding site of formate dehydrogenase-N. The 

cardiolipin lipid is in the same representation as in panel A. Protein residues that showed the 

longest residence times in the binding site are shown in sticks. (C) The PyLipID calculated 
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PIP2 binding site on the TRP channel PC2 overlaps well with the cryo-EM density. The PC2 

cryo-EM structure is shown in white cartoon. The PIP2 density in the cryo-EM map is shown 

in blue mesh. The PIP2 bound pose calculated by PyLipID is shown in sticks in magenta. The 

binding site residues calculated by PyLipID are shown in sticks in green. This binding site 

showed the longest residence time in the Martini CG simulations, as calculated by PyLipID. D 

Ethanol binding sites on McpB. The main ethanol binding sites and an ethanol representative 

bound pose are shown. McpB is shown in white cartoon and ethanol in spheres. Key sidechains 

are in green. 
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ToC Graphic 
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