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Bioimage postprocessing based on discrete
wavelet transform and Lucy-Richardson
deconvolution methods

Haoxin Bai'*, Bingchen Chel#, Tianyun Zhao? Wei Zhao!, Kaige Wang?, Ce Zhang?, and Jintao Bai*

Abstract—Accompanied with the increasing requirements of
probing micro/nanoscopic structures of biological samples, a
variety of image processing algorithms have been developed for
visualization or to facilitate data analysis. However, it remains
challenging to enhance both the signal-to-noise ratio and image
resolution using a single algorithm. In this investigation, we
propose an approach utilizing discrete wavelet transform (DWT)
in combination with Lucy-Richardson (LR) deconvolution
(DWDC). Our results demonstrate that the signal-to-noise ratio
and resolution of live cell’s microtubule network are considerably
improved, allowing recognition of features as small as 120 nm.
Notably, the approach is independent of imaging system and shows
robustness in processing fibrous structures, e.g. the cytoskeleton
networks.

Index Terms—super-resolution image processing, discrete
wavelet transform, deconvolution, structure extraction.

I. INTRODUCTION

A. Research Background

NOWADAYS, facing the explosion of biomedical data,
automatic image processing using machine learning and
artificial intelligence is of growing importance [1-5]. The
development of such vision machine is, however, hindered by
the varied image quantities obtained in different microscopic
setups.

Many algorithms have been developed to improve the
spatial resolution and signal-to-noise ratio (SNR) of biological
images, including degenerate-model-based algorithms (e.g.
deconvolution [6-11]), mathematical transformation-based
algorithms (e.g. spectrum analysis [12, 13], DWT analysis [14-
18]), and machine-learning-based algorithms (e.g. deep
learning [19, 20]), etc. While, most of these algorithms are
capable of fulfilling only a single task, e.g., inhibiting noise,
identifying structure contours, or improving resolution, which
requires the target images to be clear with minor contribution
of noise or aberrations.

Nevertheless, the representative features in biological
samples are often small, irregular and influenced by strong
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noise background. For example, the microtubule of fibroblast
forms densely packed network [21]. It is difficult to distinguish
a single microtubule filament and track its dynamics during
various biological processes. For the isotropic or quasi-
isotropic features, e.g., the round-shaped and nanometer-sized
exosomes, deconvolution-based algorithm can effectively
improve the structural resolution [22, 23]. While, for densely
packed networks (e.g., the microtubule), fluorescence signal
due to emitted background light and autofluorescence
originating from areas above and below the focal plane can
decrease the signal-to-noise ratio. To the best of our knowledge,
there is currently no effective approach to distinguish filament-
like or branch-like structures, and simultaneously achieve
super-resolution and high signal-to-noise ratio [24].

A. Previous Works

Most algorithms are developed based on deconvolution
methods, e.g. Lucy-Richardson (LR) algorithm [25-29], the
Fast Thresholded Landweber (FTL) algorithm, the Generalized
Expectation Maximization (GEM) algorithm, etc. In 2006,
Bioucas-Dias et al. advanced the GEM algorithm to process
macroscopic image [30]. Although he found that the GEM
method could improve image quality, the algorithm only
compares the SNR before and after processing, which cannot
ensure the original image intensity distribution before and after
image processing. FTL algorithm is a fast variational
deconvolution algorithm, that minimizes a quadratic data term.
Vonesch et al. used FTL to process confocal images of a neuron
cell [31, 32]. They found that FTL algorithm could achieve an
8 dB improvement in 10 iterations with an insignificant increase
in the image SNR, however, deconvolution methods by
themself may lead to over-processing and spurious images.

Wavelet method was primarily applied for denoising, e.g.,
the Expectation Maximization (EM) algorithm [33, 34]. EM
algorithm utilizes both wavelet transform and fast Fourier
transform to improve the SNR of the image. It can increase the
SNR of macroscopic image from 3 dB to ~ 7 dB after 8 to 10
iterations. Nevertheless, to the best of our knowledge, wavelet
method has never been applied to improve image resolution.
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Il. METHOD PRINCIPLE AND PROCESS

A. Target of Image Process

In this investigation, we demonstrate that by combining
DWT and Lucy-Richardson deconvolution methods (DWDC),
the spatial resolution of a typical biological image (high noise,
blurred and unclear) can be increased to super-resolution level
with improved SNR.

Fig. 1.
512>512 pixels, with a dot pitch of 250 nm. (b) The image in white box. (c)
The three-dimensional (3D) reconstruction of (b). The white scale bar
represents 10 pm.

Original confocal image of 3t3 cell microtubule. (a) Image has

Fig. la shows the confocal fluorescence image of 3T3
fibroblasts microtubule networks, which were taken using
Nikon Al microscope and Olympus 100X oil immersion lens
(NA 1.4). The excitation light wavelength is 640 nm, and the
emission peak is around 674 nm for the SiR-Tubulin dye. Each
fluorescence image has 512>612 pixels, with a dot pitch of 0.25
pm. For 3D reconstruction, a total of 20 images were captured
by z-stacking, with 1 m vertical interval. It is obvious that the
branch-like microtubule structures are highly contaminated by
noise and the structures are clearly bold (Fig. 1b and 1c).
Structural features reflecting cell-cell interactions are
indistinguishable.

B. Methods and Process

An optical image is a convolution of object with the PSF of
the optical system [35]. If M is the matrix of the image,
M=P®S+N 1)
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Fig. 2. Schematic of DWDC method. Here, we perform Gaussian
interpolation and quarter average of image (M,) threshold filtering on the
original image. In DWT wavelet processing, LL,, is the approximate wavelet
decomposition term, LH,, are the detail wavelet decomposition terms in the x-
direction and y-direction, HH,, are the detail wavelet decomposition terms in
the diagonal direction. The subscripts of the terms represent the order of
wavelet decomposition. During inverse DWT, only 4-6 order terms are
included in this investigation. Next, M, , , is obtained from M, , after a series
of binarization and deconvolution processes. Finally, the overall processed
image My can be obtained by M, ;z; - M, ;.-

where P is the PSF of the optical system, S is the light
distribution according to the object and N is the measurement
noise of the optical system. If the size of the PSF is larger than
the size of the mesostructure of the actual object, the imaging
result has an insufficient spatial resolution to reveal the detail
of the original object. Accordingly, the image after the optical
system is blurred relative to the actual object.
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Fig. 3. Wavelet decomposition process, where g[k] is low pass filter, and
h[k] is high pass filter.

The DWDC method advanced in this investigation utilizes
both LR and DWT, as diagrammed in Fig. 2. Firstly, the image
was processed using Gaussian interpolation and threshold
analysis. DWT was then applied to suppress noise level and
extracts characteristic microtubule structures on the basis of
scale analysis. Subsequently, outline of the representative
structures is distinguished by binarization with threshold
processing, i.e. logical matrix 1. Application of deconvolution
method shrinks the outline, and further enhances the spatial
resolution. The image is then processed with repeated
binarization, threshold analysis and Gaussian interpolation
before finalization.

1) Expansion of Image by Gaussian Interpolation

To increase resolution of the image, we first reduce the dot
pitch. 3D Gaussian interpolation [36] was applied to expand the
size of the image with reduced pitch. The original 20 images of
512>612 pixels were expanded twice to 80 expansion images
(M,) of 2048>2048 pixels. The Gaussian function is:

(x=x)*+-y)*  (z-20)?

9 = goexp|— = i )
where 7, = (0.614,) / N, and 1y = (4nl,) / (2N,*) are the
lateral and axial Gaussian radius respectively [37-39], N, is
numerical aperture of lens, A, is the wavelength of the
excitation beam. After the expansion, the dot pitch is reduced
to 63 nm.

2) Extraction of Microtubule Structures by DWT

The expanded image matrix need to extract microtubule
structures by DWT [40], When performing wavelet
decomposition, the information corresponding to the scale
function is usually filtered by a low-pass filter, and the
information corresponding to the wavelet function is filtered by
a high-pass filter. At the same time, the scale information
obtained by the low-pass filter can be used as the generating
function of the wavelet function and the scale function of the
next stage. The information corresponding to the scale function
represents the low-frequency component in the original signal,
which represents the coarse information of the original signal;
the information corresponding to the wavelet function
represents the high-frequency component in the original signal,
which represents the detailed information component of the
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original signal.

For two-dimensional image matrix, wavelet decomposition
will be processed in three directions, i.e. horizontal, vertical and
diagonal directions, as:

Me(x: y) = Cnmn,LL(xr y) + dn,xmn,LH(xv Y) +

dn,ymn,HL (x' y) + dn,Dmn,HH (x: y) + et

dyxMy 1 (x,y) + dZ,ymZ,HL(xf y)+

dZ,DmZ,HH(x' y)+ dy My n (x,y) +

diymyp,(x,y) +dypmy 1y (x,y) (3)
where c,, is the approximate wavelet coefficient after n”th-
order discrete wavelet decomposition, d,, ., d,,, and d,, , are
the detail wavelet coefficients of level n in horizontal, vertical
and diagonal directions respectively, as shown in Fig. 4. m, ;;
is the approximate information. m,,, is the detailed
information in the x-direction. m,, ;;; is the detailed information
in the y-direction, and m,, y is the detail information in the
diagonal direction.

Mae Maiy
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N =N N=*N

Fig. 4. Diagram of second order wavelet decomposition on M,. The left one
is the image matrix for decomposition, and the right one shows the
decomposed matrices. N is the size of the image matrix. N = 2048 in this
investigation.

They are obtained from the image M, by the n-order DWT.
My 1L, My Ly, My g aNd my, gy have the formats as follows:

M (63) = D Moy (2 = ke 2y = K)glklglkl ke € 2
M (y) = ) Mamy11(2x— ko 2y ~ )glilhlk] Kk € 2
Mo (6) = ) mamyu(2— ki, 2y ~ Ohlklglkl k € 2

M (53) = ) Mac100/2 =k, 2y ~ IOALkIR(K] s € Z

where mg ;. (x,y) = M, (x,y). After DWT, Eq. 1 can be
expressed as:
Mgy =P ®S)a+ Ny 4)

The image information can be further divided into two parts
on scale spaces, i.e., the scales related to the demanded
structures (denoted as M, 4(x,y)) and the scales related to
undesired structures (denoted as M, ,,4 (x, y)) which can also be
considered as noise structures. Thus,

M, (x,y) = Me,d(x'y) +Me,ud(x:Y) (5)
where
Me,d (x, Y) = 22;2? [dn,xmn,LH (x, Y) + dn,ymn,HL (x, y) +
dn,Dmn,HH (x, y)] (6)

where n; and n;, correspond to the lower and higher bounds of
DWT orders of the demanded structures. For instance, if the
demanded structures have a characteristic size between 16 and
64 pixels, we have n; = 4 and n, = 6. According to DWT

decomposition, the image structures within demanded scale
ranges (or frequency ranges) can be retained on each local
positions. While the image structures that undesired, e.g. noise
(which normally has high-frequency components) and image
distortions due to nonuniform illumination (which has low-
frequency components), can be removed from the images
without the requirement of knowing their detailed distribution.
3) Binarization of Image

When we get the demanded structures extracted by DWT,
logic processing was carried out. The threshold value (y) is
selected according to the probability density distribution of
image intensity. The binarization image is thus obtained as a
logical matrix shown below:

0 My, ) <)

MG ={] o' > ™

After the processing, the image noise is further inhibited and
the outline of demanded structure is highlighted.

4) Resolution Improvement by Lucy-Richardson (LR)
Deconvolution Method

The logic matrix obtained in this way is not detailed enough
and the structural resolution has not been apparently improved.
We then use the Lucy-Richardson deconvolution method to
further process the image. Instead of directly applying LR on
the image after DWT analysis, in this investigation, we apply
LR on the logic matrix (M, ;) to restore the sketch of the
filament structures. This approach can avoid the spreading of
high intensity structures that affects the low-intensity structures
and leads to spurious images or overprocessing.

LR method is developed on the basis of Bayesian theory [41],
Poisson distribution and maximum likelihood estimation. The
overall expression formula of LR deconvolution method
algorithm is as follows:

Me,ar(x,y)
Mpia(x,y) = My () - {[72% 2| @P(—x,~y)] (8)

where M, (x,y) is the k'™ iteration of logic matrix M, 4,
and M,,;4(x,y) is an intermediate result. In each iteration of
optimization, a scale factor f is applied to evaluate the effect of
this processing, according to the image difference before and
after the iteration as:

f= [Mimiq(6y) =M (,3) %[ Mg (,) =M1 (x,9)| )
[M(x,y)=Mp—q e ) 1| M (x,) =M g1 (x,3)]
Thus, the k" iteration of the image can be obtained as:
Mkmax(x' }’) = Mmid(x' }’) + f * [Mmid(x' Y) -
Mkmax—l(x: Y)] (10)

where kmax is the maximum number of iterations.

During the deconvolution, one of the most important
prerequisites is the evaluation of the actual PSF of the optical
system. During LR deconvolution on the image, the PSF of the
confocal imaging system is a two-dimensional (2D) Gaussian

function, which can be expressed as P=
N2 2
P, exp [— %} with Ar = &r, being the actual PSF

for LR deconvolution and ¢ is an experience coefficient which
should be determined by a numerical experiment. Furthermore,
in the iterative process of deconvolution, background noise can
also be gradually amplified, resulting in spurious images or
overprocessing. Therefore, optimize the number of iterations
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(i.e. kmax) and threshold deviation (damping coefficient) is
important in the application of LR deconvolution. The
evaluation of the image after deconvolution is highly arbitrary
depends on the demanded structures of the image. In many
cases, the restoration quality of an image cannot be simply
evaluated by peak signal-to-noise ratio (PSNR) or structural
similarity index measure (SSIM). Therefore, in this
investigation, the deconvolution parameters are also determined
by numerical experiments.
5) Post-Processing
After LR algorithm, the processed logic matrix shows
nonlinear characteristics. Thus, we carried out another
binarization process on M, 4., With the threshold value y = 1.
The secondary logic matrix can be obtained as:
0 (Mkmax(xry) < X)
Moam ) ={) e e = )
At last, the final result (M (x,y)) of DWDC processing can
be obtained by multiplying the expanded image M, with
M, 1 r.., to extract the microtubule structure of the 3T3 cell, i.e.

Mp(x,y) = M (x,y) * Mg g, (x,Y) (12)

(11)

I11. EXPERIMENTAL RESULTS

A. Expansion of Image by Gaussian Interpolation

A direct comparison between the original 512>512 image
(i.e. M matrix) and expanded 2048>2048 image (M,) has been
carried out in Fig. 5. First, visually, the expansion image shows
high consistency as the original one, as shown in Fig. 5(a) and
(b). At the corresponding positions, the intensity distributions
along the selected row and column both show high similarity
(Fig. 5(c, d)), which shows that the details of the original image
have been reserved.
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Fig. 5. Comparison between the original and expanded images, white scale
bars represent 10 pm. (a) Original image; (b) Expanded image; (c-d)
Distributions of normalized fluorescent intensity (NFI) on the corresponding
horizontal and vertical positions before and after expansion.

B. Extraction of Microtubule Structures by DWT

In this investigation, we use coif3 wavelet function to
decompose the image up to the 6th order. Because the
microtubule structure in the image has a width of 20 to 60

pixels, in the extraction, we only keep 4-6 order components,
i.e.
Me,d(x' Y) = Zzi[dn,xmn,u-l(x' y) + dn,ymn,HL(x' y) +
dnpMu (. y)]

(13)

PDF of Mgy |
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Fig. 6. Extraction of microtubule structures by DWT. (a) Extracted

components after DWT analysis. (b) Undesired components that should be
abandoned. (c) Probability density function (PDF) of M, ,. (d) Logical matrix
(M, 4;) of the structure after DWT analysis. The white scale bars represent 10

pm.

In contrast to the expanded image (Fig. 5(b)), the
reconstructed image shown in Fig. 6(a) clearly reserves the
filament-like microtubule structure. While the undesired
components (Fig. 6(b)), which make the image blur and noisy,
have been successfully removed. After DWT analysis, a
binarization process was applied according to the probability
distribution of M, ;, to extract the sketch of the demand
structures. The probability distribution of M, 4 is plotted in Fig.
6(c). Following numerical experiments, we only retain the top
15% of the image intensity. Thus, the corresponding threshold
value related to Fig. 6(c) is estimated to be y = 61, where we
can clearly see the sketch of the microtubule (Fig. 6(d)).

C. Resolution Improvement by LR Deconvolution

At the current stage, the sketch of the structure is still wide,
and the spatial resolution of the structures is below our
expectation (Fig. 6 (d)), i.e. super resolution. Thereafter, we use
LR deconvolution algorithm to further process the logical
matrix. During numerical experiments, we tried different &,
maximum iteration kmax and damping coefficient to optimize
the outcome (i.e., narrow and consistent structural features).
The representative results are listed in Fig. 7(a-d). Notably, all

the images in Fig. 7 have been binarized after LR
deconvolution.
When ¢ =0.5 , the applied Gaussian radium for

deconvolution Ar is only half of the theoretical value r,. The
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FAN
Fig. 7.
results, white scale bars represent 10 um. (a) £&=0.25; (b) &=1.25; (c) &=2.25;
(d) &3. (e) The comparison between pre-processing and post-processing of
the logic matrix used to extract the microtubule structure in the original image.
The white scale bars represent 10 pm.

continuous structures of the logical matrix become fragmented
and hollow (Fig. 7(a)). When £ is increased to 1.25, significant
shrinkage of the logical matrix structures was realized with a
compromise of continuous network structures (Fig. 7(b)). The
optimal outcome was obtained, when kmax and damping
coefficient are 10 and 0.01 respectively (Fig. 7(e)).

D. Image After Processing

By extracting the structure of the logical matrix, the
microtubule structure of 3T3 cells was obtained (Eq. 12 and
Fig. 8(a)). The final image renders the clear filament-like mesh
structures of microtubule in 3T3 cells, with ultrahigh contrast

(a) Original

Fig. 8. Compare original image and image processed after DWDC method.
(a) Direct comparison before and after DWDC method. White scale bar
represents 10 pm. (b) Local processing results of DWDC method in the box
of dashed line of (a) for comparison with Fig. 1b.

and ultralow noise, as shown in Fig. 8(b). A more clear
comparison between the original images and processed images
can be found from the 3D microtubule structures of 3t3 cells in
the supplementary videos.

In Fig. 9, we compare the distributions of fluorescence
intensity at the same positions of the original and processed
images, which shows 15 times improvement in spatial
resolution from 1.94 pm to 123.7 nm, as evaluated by the full
width at half maximum (FWHM) of the structure.

Notably, the PSNR, a commonly used criterion for
evaluating the noise level of the images before and after
processing is -48.8. SSIM, which is another widely used
parameter, is only 0.0155. This implies PSNR and SSIM, as the
common judging standards, may not be a golden rule for all the
image processing methods.

After processing, the previously unclear images of
microtubule network structure (Fig. 1(a) and 1(b)) become
considerably more distinguishable (Fig. 10(a)). More biological
information has been revealed. As an example, our results
demonstrate that 2 cells (i.e., the green- and purple-colored
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