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Abstract—Accompanied with the increasing requirements of 

probing micro/nanoscopic structures of biological samples, a 

variety of image processing algorithms have been developed for 

visualization or to facilitate data analysis. However, it remains 

challenging to enhance both the signal-to-noise ratio and image 

resolution using a single algorithm. In this investigation, we 

propose an approach utilizing discrete wavelet transform (DWT) 

in combination with Lucy-Richardson (LR) deconvolution 

(DWDC). Our results demonstrate that the signal-to-noise ratio 

and resolution of live cell’s microtubule network are considerably 

improved, allowing recognition of features as small as 120 nm. 

Notably, the approach is independent of imaging system and shows 

robustness in processing fibrous structures, e.g. the cytoskeleton 

networks. 

 

Index Terms—super-resolution image processing, discrete 

wavelet transform, deconvolution, structure extraction. 

 

I. INTRODUCTION 

A. Research Background 

OWADAYS, facing the explosion of biomedical data, 

automatic image processing using machine learning and 

artificial intelligence is of growing importance [1-5]. The 

development of such vision machine is, however, hindered by 

the varied image quantities obtained in different microscopic 

setups.  

Many algorithms have been developed to improve the 

spatial resolution and signal-to-noise ratio (SNR) of biological 

images, including degenerate-model-based algorithms (e.g. 

deconvolution [6-11]), mathematical transformation-based 

algorithms (e.g. spectrum analysis [12, 13], DWT analysis [14-

18]), and machine-learning-based algorithms (e.g. deep 

learning [19, 20]), etc. While, most of these algorithms are 

capable of fulfilling only a single task, e.g., inhibiting noise, 

identifying structure contours, or improving resolution, which 

requires the target images to be clear with minor contribution 

of noise or aberrations.  

Nevertheless, the representative features in biological 

samples are often small, irregular and influenced by strong 
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noise background. For example, the microtubule of fibroblast 

forms densely packed network [21]. It is difficult to distinguish 

a single microtubule filament and track its dynamics during 

various biological processes. For the isotropic or quasi-

isotropic features, e.g., the round-shaped and nanometer-sized 

exosomes, deconvolution-based algorithm can effectively 

improve the structural resolution [22, 23]. While, for densely 

packed networks (e.g., the microtubule), fluorescence signal 

due to emitted background light and autofluorescence 

originating from areas above and below the focal plane can 

decrease the signal-to-noise ratio. To the best of our knowledge, 

there is currently no effective approach to distinguish filament-

like or branch-like structures, and simultaneously achieve 

super-resolution and high signal-to-noise ratio [24]. 

A. Previous Works 

Most algorithms are developed based on deconvolution 

methods, e.g. Lucy-Richardson (LR) algorithm [25-29], the 

Fast Thresholded Landweber (FTL) algorithm, the Generalized 

Expectation Maximization (GEM) algorithm, etc. In 2006, 

Bioucas-Dias et al. advanced the GEM algorithm to process 

macroscopic image [30]. Although he found that the GEM 

method could improve image quality, the algorithm only 

compares the SNR before and after processing, which cannot 

ensure the original image intensity distribution before and after 

image processing. FTL algorithm is a fast variational 

deconvolution algorithm, that minimizes a quadratic data term. 

Vonesch et al. used FTL to process confocal images of a neuron 

cell [31, 32]. They found that FTL algorithm could achieve an 

8 dB improvement in 10 iterations with an insignificant increase 

in the image SNR, however, deconvolution methods by 

themself may lead to over-processing and spurious images.  

Wavelet method was primarily applied for denoising, e.g., 

the Expectation Maximization (EM) algorithm [33, 34]. EM 

algorithm utilizes both wavelet transform and fast Fourier 

transform to improve the SNR of the image. It can increase the 

SNR of macroscopic image from 3 dB to ~ 7 dB after 8 to 10 

iterations. Nevertheless, to the best of our knowledge, wavelet 

method has never been applied to improve image resolution. 
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II. METHOD PRINCIPLE AND PROCESS 

A. Target of Image Process 

In this investigation, we demonstrate that by combining 

DWT and Lucy-Richardson deconvolution methods (DWDC), 

the spatial resolution of a typical biological image (high noise, 

blurred and unclear) can be increased to super-resolution level 

with improved SNR.  

Fig. 1a shows the confocal fluorescence image of 3T3 

fibroblasts microtubule networks, which were taken using 

Nikon A1 microscope and Olympus 100X oil immersion lens 

(NA 1.4). The excitation light wavelength is 640 nm, and the 

emission peak is around 674 nm for the SiR-Tubulin dye. Each 

fluorescence image has 512×512 pixels, with a dot pitch of 0.25 

µm. For 3D reconstruction, a total of 20 images were captured 

by z-stacking, with 1 µm vertical interval. It is obvious that the 

branch-like microtubule structures are highly contaminated by 

noise and the structures are clearly bold (Fig. 1b and 1c). 

Structural features reflecting cell-cell interactions are 

indistinguishable.  

B. Methods and Process 

An optical image is a convolution of object with the PSF of 

the optical system [35]. If 𝑀 is the matrix of the image, 

𝑀 = 𝑃 ⊗ 𝑆 + 𝑁                                 (1) 

where 𝑃  is the PSF of the optical system, 𝑆  is the light 

distribution according to the object and 𝑁 is the measurement 

noise of the optical system. If the size of the PSF is larger than 

the size of the mesostructure of the actual object, the imaging 

result has an insufficient spatial resolution to reveal the detail 

of the original object. Accordingly, the image after the optical 

system is blurred relative to the actual object.  

The DWDC method advanced in this investigation utilizes 

both LR and DWT, as diagrammed in Fig. 2. Firstly, the image 

was processed using Gaussian interpolation and threshold 

analysis. DWT was then applied to suppress noise level and 

extracts characteristic microtubule structures on the basis of 

scale analysis. Subsequently, outline of the representative 

structures is distinguished by binarization with threshold 

processing, i.e. logical matrix 1. Application of deconvolution 

method shrinks the outline, and further enhances the spatial 

resolution. The image is then processed with repeated 

binarization, threshold analysis and Gaussian interpolation 

before finalization.  

1) Expansion of Image by Gaussian Interpolation 

To increase resolution of the image, we first reduce the dot 

pitch. 3D Gaussian interpolation [36] was applied to expand the 

size of the image with reduced pitch. The original 20 images of 

512×512 pixels were expanded twice to 80 expansion images 

(𝑀𝑒) of 2048×2048 pixels. The Gaussian function is: 

𝑔 = 𝑔0 exp [−
(𝑥−𝑥𝑐)2+(𝑦−𝑦𝑐)2

2𝑟⊥
2 −

(𝑧−𝑧𝑐)2

2𝑟∥
2 ]              (2) 

where 𝑟⊥ = (0.61𝜆𝑒) ⁄  𝑁𝐴  and 𝑟∥ = (4𝑛𝜆𝑒) ⁄ (2𝑁𝐴
2 ) are the 

lateral and axial Gaussian radius respectively [37-39], 𝑁𝐴  is 

numerical aperture of lens, 𝜆𝑒  is the wavelength of the 

excitation beam. After the expansion, the dot pitch is reduced 

to 63 nm. 

2) Extraction of Microtubule Structures by DWT 

The expanded image matrix need to extract microtubule 

structures by DWT [40], When performing wavelet 

decomposition, the information corresponding to the scale 

function is usually filtered by a low-pass filter, and the 

information corresponding to the wavelet function is filtered by 

a high-pass filter. At the same time, the scale information 

obtained by the low-pass filter can be used as the generating 

function of the wavelet function and the scale function of the 

next stage. The information corresponding to the scale function 

represents the low-frequency component in the original signal, 

which represents the coarse information of the original signal; 

the information corresponding to the wavelet function 

represents the high-frequency component in the original signal, 

which represents the detailed information component of the 

 
Fig. 1.  Original confocal image of 3t3 cell microtubule. (a) Image has 

512×512 pixels, with a dot pitch of 250 nm. (b) The image in white box. (c) 
The three-dimensional (3D) reconstruction of (b). The white scale bar 

represents 10 µm. 

 

 
Fig. 2.  Schematic of DWDC method. Here, we perform Gaussian 

interpolation and quarter average of image (𝑀𝑒 ) threshold filtering on the 

original image. In DWT wavelet processing, 𝐿𝐿𝑛 is the approximate wavelet 

decomposition term, 𝐿𝐻𝑛 are the detail wavelet decomposition terms in the x-

direction and y-direction, 𝐻𝐻𝑛 are the detail wavelet decomposition terms in 

the diagonal direction. The subscripts of the terms represent the order of 
wavelet decomposition. During inverse DWT, only 4-6 order terms are 

included in this investigation. Next, 𝑀𝑒,𝐿𝑅𝐿 is obtained from 𝑀𝑒,𝑑 after a series 

of binarization and deconvolution processes. Finally, the overall processed 

image 𝑀𝐹 can be obtained by 𝑀𝑒,𝐿𝑅𝐿 ∙ 𝑀𝑒,𝐿𝑅𝐿. 

 

 
Fig. 3.  Wavelet decomposition process, where 𝑔[𝑘] is low pass filter, and 

ℎ[𝑘] is high pass filter. 
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original signal. 

For two-dimensional image matrix, wavelet decomposition 

will be processed in three directions, i.e. horizontal, vertical and 

diagonal directions, as: 

𝑀𝑒(𝑥, 𝑦) = 𝑐𝑛𝑚𝑛,𝐿𝐿(𝑥, 𝑦) + 𝑑𝑛,𝑥𝑚𝑛,𝐿𝐻(𝑥, 𝑦) +

                      𝑑𝑛,𝑦𝑚𝑛,𝐻𝐿(𝑥, 𝑦) + 𝑑𝑛,𝐷𝑚𝑛,𝐻𝐻(𝑥, 𝑦) + ⋯ +

                      𝑑2,𝑥𝑚2,𝐿𝐻(𝑥, 𝑦) + 𝑑2,𝑦𝑚2,𝐻𝐿(𝑥, 𝑦) +

                      𝑑2,𝐷𝑚2,𝐻𝐻(𝑥, 𝑦) + 𝑑1,𝑥𝑚1,𝐿𝐻(𝑥, 𝑦) +

                      𝑑1,𝑦𝑚1,𝐻𝐿(𝑥, 𝑦) + 𝑑1,𝐷𝑚1,𝐿𝐻(𝑥, 𝑦)                        (3) 

where 𝑐𝑛  is the approximate wavelet coefficient after n^th-

order discrete wavelet decomposition, 𝑑𝑛,𝑥 , 𝑑𝑛,𝑦  and 𝑑𝑛,𝐷  are 

the detail wavelet coefficients of level n in horizontal, vertical 

and diagonal directions respectively, as shown in Fig. 4. 𝑚𝑛,𝐿𝐿 

is the approximate information. 𝑚𝑛,𝐿𝐻  is the detailed 

information in the x-direction. 𝑚𝑛,𝐻𝐿 is the detailed information 

in the y-direction, and 𝑚𝑛,𝐻𝐻  is the detail information in the 

diagonal direction.  

They are obtained from the image 𝑀𝑒  by the n-order DWT. 

𝑚𝑛,𝐿𝐿, 𝑚𝑛,𝐿𝐻, 𝑚𝑛,𝐻𝐿 and 𝑚𝑛,𝐻𝐻 have the formats as follows: 

𝑚𝑛,𝐿𝐿(𝑥, 𝑦) = ∑ 𝑚𝑛−1,𝐿𝐿(2𝑥 − 𝑘, 2𝑦 − 𝑘)𝑔[𝑘]𝑔[𝑘]
𝑘

; 𝑘 ∈ 𝑍 

𝑚𝑛,𝐿𝐻(𝑥, 𝑦) = ∑ 𝑚𝑛−1,𝐿𝐿(2𝑥 − 𝑘, 2𝑦 − 𝑘)𝑔[𝑘]ℎ[𝑘]
𝑘

; 𝑘 ∈ 𝑍 

𝑚𝑛,𝐻𝐿(𝑥, 𝑦) = ∑ 𝑚𝑛−1,𝐿𝐿(2𝑥 − 𝑘, 2𝑦 − 𝑘)ℎ[𝑘]𝑔[𝑘]
𝑘

; 𝑘 ∈ 𝑍 

𝑚𝑛,𝐻𝐻(x, y) = ∑ 𝑚𝑛−1,𝐿𝐿(2𝑥 − 𝑘, 2𝑦 − 𝑘)ℎ[𝑘]ℎ[𝑘]
𝑘

; 𝑘 ∈ 𝑍 

where 𝑚0,𝐿𝐿(𝑥, 𝑦) = 𝑀𝑒(𝑥, 𝑦). After DWT, Eq. 1 can be 

expressed as: 

𝑀𝑒,𝑑 = (𝑃 ⊗ 𝑆)𝑑 + 𝑁𝑑                       (4) 
The image information can be further divided into two parts 

on scale spaces, i.e., the scales related to the demanded 

structures (denoted as 𝑀𝑒,𝑑(𝑥, 𝑦) ) and the scales related to 

undesired structures (denoted as 𝑀𝑒,𝑢𝑑(𝑥, 𝑦)) which can also be 

considered as noise structures. Thus, 

𝑀𝑒(𝑥, 𝑦) = 𝑀𝑒,𝑑(𝑥, 𝑦) + 𝑀𝑒,𝑢𝑑(𝑥, 𝑦)                (5) 

where 

𝑀𝑒,𝑑(𝑥, 𝑦) = ∑ [𝑑𝑛,𝑥𝑚𝑛,𝐿𝐻(𝑥, 𝑦) + 𝑑𝑛,𝑦𝑚𝑛,𝐻𝐿(𝑥, 𝑦) +
𝑛=𝑛ℎ
𝑛=𝑛𝑙

                                      𝑑𝑛,𝐷𝑚𝑛,𝐻𝐻(𝑥, 𝑦)]                                    (6) 

where 𝑛𝑙 and 𝑛ℎ correspond to the lower and higher bounds of 

DWT orders of the demanded structures. For instance, if the 

demanded structures have a characteristic size between 16 and 

64 pixels, we have 𝑛𝑙 = 4  and 𝑛ℎ = 6 . According to DWT 

decomposition, the image structures within demanded scale 

ranges (or frequency ranges) can be retained on each local 

positions. While the image structures that undesired, e.g. noise 

(which normally has high-frequency components) and image 

distortions due to nonuniform illumination (which has low-

frequency components), can be removed from the images 

without the requirement of knowing their detailed distribution.  

3) Binarization of Image 

When we get the demanded structures extracted by DWT, 

logic processing was carried out. The threshold value (𝜒) is 

selected according to the probability density distribution of 

image intensity. The binarization image is thus obtained as a 

logical matrix shown below: 

𝑀𝑒,𝑑𝐿(𝑖, 𝑗) = {
0 (𝑀𝑑(𝑖, 𝑗) < 𝜒)

1 (𝑀𝑑(𝑖, 𝑗) ≥ 𝜒)
                      (7) 

After the processing, the image noise is further inhibited and 

the outline of demanded structure is highlighted. 

4) Resolution Improvement by Lucy-Richardson (LR) 

Deconvolution Method 

The logic matrix obtained in this way is not detailed enough 

and the structural resolution has not been apparently improved. 

We then use the Lucy-Richardson deconvolution method to 

further process the image. Instead of directly applying LR on 

the image after DWT analysis, in this investigation, we apply 

LR on the logic matrix (𝑀𝑒,𝑑𝐿 ) to restore the sketch of the 

filament structures. This approach can avoid the spreading of 

high intensity structures that affects the low-intensity structures 

and leads to spurious images or overprocessing.  

LR method is developed on the basis of Bayesian theory [41], 

Poisson distribution and maximum likelihood estimation. The 

overall expression formula of LR deconvolution method 

algorithm is as follows: 

𝑀𝑚𝑖𝑑(𝑥, 𝑦) = 𝑀𝑘(𝑥, 𝑦) ⋅ {[
𝑀𝑒,𝑑𝐿(𝑥,𝑦)

𝑀𝑘(𝑥,𝑦)⨂𝑃(𝑥,𝑦)
] ⨂𝑃(−𝑥, −𝑦)}  (8) 

where 𝑀𝑘(𝑥, 𝑦)  is the 𝑘th  iteration of logic matrix  𝑀𝑒,𝑑𝐿 

and 𝑀𝑚𝑖𝑑(𝑥, 𝑦) is an intermediate result. In each iteration of 

optimization, a scale factor 𝑓 is applied to evaluate the effect of 

this processing, according to the image difference before and 

after the iteration as: 

𝑓 =
|𝑀𝑚𝑖𝑑(𝑥,𝑦)−𝑀𝑘(𝑥,𝑦)|∗|𝑀𝑘(𝑥,𝑦)−𝑀𝑘−1(𝑥,𝑦)|

|𝑀𝑘(𝑥,𝑦)−𝑀𝑘−1(𝑥,𝑦)|∗|𝑀𝑘(𝑥,𝑦)−𝑀𝑘−1(𝑥,𝑦)|
               (9) 

Thus, the 𝑘𝑡ℎ iteration of the image can be obtained as: 

𝑀𝑘𝑚𝑎𝑥(𝑥, 𝑦) = 𝑀𝑚𝑖𝑑(𝑥, 𝑦) + 𝑓 ∗ [𝑀𝑚𝑖𝑑(𝑥, 𝑦) −
                             𝑀𝑘𝑚𝑎𝑥−1(𝑥, 𝑦)]                                           (10) 

where 𝑘𝑚𝑎𝑥 is the maximum number of iterations.  

During the deconvolution, one of the most important 

prerequisites is the evaluation of the actual PSF of the optical 

system. During LR deconvolution on the image, the PSF of the 

confocal imaging system is a two-dimensional (2D) Gaussian 

function, which can be expressed as 𝑃 =

𝑃0 exp [−
(𝑥−𝑥𝑐)2+(𝑦−𝑦𝑐)2

2(∆𝑟)2 ], with ∆𝑟 = 𝜉𝑟⊥ being the actual PSF 

for LR deconvolution and 𝜉 is an experience coefficient which 

should be determined by a numerical experiment. Furthermore, 

in the iterative process of deconvolution, background noise can 

also be gradually amplified, resulting in spurious images or 

overprocessing. Therefore, optimize the number of iterations 

 
Fig. 4.  Diagram of second order wavelet decomposition on 𝑀𝑒. The left one 

is the image matrix for decomposition, and the right one shows the 

decomposed matrices. 𝑁 is the size of the image matrix. 𝑁 = 2048 in this 

investigation. 
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(i.e. 𝑘𝑚𝑎𝑥) and threshold deviation (damping coefficient) is 

important in the application of LR deconvolution. The 

evaluation of the image after deconvolution is highly arbitrary 

depends on the demanded structures of the image. In many 

cases, the restoration quality of an image cannot be simply 

evaluated by peak signal-to-noise ratio (PSNR) or structural 

similarity index measure (SSIM). Therefore, in this 

investigation, the deconvolution parameters are also determined 

by numerical experiments. 

5) Post-Processing 

After LR algorithm, the processed logic matrix shows 

nonlinear characteristics. Thus, we carried out another 

binarization process on 𝑀𝑘𝑚𝑎𝑥 , with the threshold value 𝜒 = 1. 

The secondary logic matrix can be obtained as:  

𝑀𝑒,𝐿𝑅𝐿(𝑥, 𝑦) = {
0   (𝑀𝑘𝑚𝑎𝑥(𝑥, 𝑦) < 𝜒)

1   (𝑀𝑘𝑚𝑎𝑥(𝑥, 𝑦) ≥ 𝜒)
             (11) 

At last, the final result (𝑀𝐹(𝑥, 𝑦)) of DWDC processing can 

be obtained by multiplying the expanded image 𝑀𝑒  with 

𝑀𝑒,𝐿𝑅𝐿 , to extract the microtubule structure of the 3T3 cell, i.e. 

𝑀𝐹(𝑥, 𝑦) = 𝑀𝑒(𝑥, 𝑦) ∗ 𝑀𝑒,𝐿𝑅𝐿(𝑥, 𝑦)                 (12) 

III. EXPERIMENTAL RESULTS 

A. Expansion of Image by Gaussian Interpolation 

A direct comparison between the original 512×512 image 

(i.e. 𝑀 matrix) and expanded 2048×2048 image (𝑀𝑒) has been 

carried out in Fig. 5. First, visually, the expansion image shows 

high consistency as the original one, as shown in Fig. 5(a) and 

(b). At the corresponding positions, the intensity distributions 

along the selected row and column both show high similarity 

(Fig. 5(c, d)), which shows that the details of the original image 

have been reserved. 

B. Extraction of Microtubule Structures by DWT 

In this investigation, we use coif3 wavelet function to 

decompose the image up to the 6th order. Because the 

microtubule structure in the image has a width of 20 to 60 

pixels, in the extraction, we only keep 4-6 order components, 

i.e. 

𝑀𝑒,𝑑(𝑥, 𝑦) = ∑ [𝑑𝑛,𝑥𝑚𝑛,𝐿𝐻(𝑥, 𝑦) + 𝑑𝑛,𝑦𝑚𝑛,𝐻𝐿(𝑥, 𝑦) +𝑛=6
𝑛=4

                                         𝑑𝑛,𝐷𝑚𝑛,𝐻𝐻(𝑥, 𝑦)]                              (13) 

In contrast to the expanded image (Fig. 5(b)), the 

reconstructed image shown in Fig. 6(a) clearly reserves the 

filament-like microtubule structure. While the undesired 

components (Fig. 6(b)), which make the image blur and noisy, 

have been successfully removed. After DWT analysis, a 

binarization process was applied according to the probability 

distribution of 𝑀𝑒,𝑑 , to extract the sketch of the demand 

structures. The probability distribution of 𝑀𝑒,𝑑 is plotted in Fig. 

6(c). Following numerical experiments, we only retain the top 

15% of the image intensity. Thus, the corresponding threshold 

value related to Fig. 6(c) is estimated to be 𝜒 = 61, where we 

can clearly see the sketch of the microtubule (Fig. 6(d)). 

C. Resolution Improvement by LR Deconvolution 

At the current stage, the sketch of the structure is still wide, 

and the spatial resolution of the structures is below our 

expectation (Fig. 6 (d)), i.e. super resolution. Thereafter, we use 

LR deconvolution algorithm to further process the logical 

matrix. During numerical experiments, we tried different 𝜉 , 

maximum iteration 𝑘𝑚𝑎𝑥 and damping coefficient to optimize 

the outcome (i.e., narrow and consistent structural features). 

The representative results are listed in Fig. 7(a-d). Notably, all 

the images in Fig. 7 have been binarized after LR 

deconvolution.  

When 𝜉 = 0.5 , the applied Gaussian radium for 

deconvolution ∆𝑟 is only half of the theoretical value 𝑟⊥. The 

 
Fig. 5.  Comparison between the original and expanded images, white scale 
bars represent 10 µm. (a) Original image; (b) Expanded image; (c-d) 

Distributions of normalized fluorescent intensity (NFI) on the corresponding 

horizontal and vertical positions before and after expansion.  
 

 
Fig. 6.  Extraction of microtubule structures by DWT. (a) Extracted 

components after DWT analysis. (b) Undesired components that should be 

abandoned. (c) Probability density function (PDF) of 𝑀𝑒,𝑑. (d) Logical matrix 

(𝑀𝑒,𝑑𝐿) of the structure after DWT analysis. The white scale bars represent 10 

µm. 
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continuous structures of the logical matrix become fragmented 

and hollow (Fig. 7(a)). When 𝜉 is increased to 1.25, significant 

shrinkage of the logical matrix structures was realized with a 

compromise of continuous network structures (Fig. 7(b)). The 

optimal outcome was obtained, when 𝑘𝑚𝑎𝑥  and damping 

coefficient are 10 and 0.01 respectively (Fig. 7(e)).  

D. Image After Processing 

By extracting the structure of the logical matrix, the 

microtubule structure of 3T3 cells was obtained (Eq. 12 and 

Fig. 8(a)). The final image renders the clear filament-like mesh 

structures of microtubule in 3T3 cells, with ultrahigh contrast 

and ultralow noise, as shown in Fig. 8(b). A more clear 

comparison between the original images and processed images 

can be found from the 3D microtubule structures of 3t3 cells in 

the supplementary videos.  

In Fig. 9, we compare the distributions of fluorescence 

intensity at the same positions of the original and processed 

images, which shows 15 times improvement in spatial 

resolution from 1.94 μm to 123.7 nm, as evaluated by the full 

width at half maximum (FWHM) of the structure.  

Notably, the PSNR, a commonly used criterion for 

evaluating the noise level of the images before and after 

processing is -48.8. SSIM, which is another widely used 

parameter, is only 0.0155. This implies PSNR and SSIM, as the 

common judging standards, may not be a golden rule for all the 

image processing methods. 

After processing, the previously unclear images of 

microtubule network structure (Fig. 1(a) and 1(b)) become 

considerably more distinguishable (Fig. 10(a)). More biological 

information has been revealed. As an example, our results 

demonstrate that 2 cells (i.e., the green- and purple-colored 

 
Fig. 7.  Different empirical coefficients correspond to the deconvolution 
results, white scale bars represent 10 µm. (a) ξ=0.25; (b) ξ=1.25; (c) ξ=2.25; 

(d) ξ=3. (e) The comparison between pre-processing and post-processing of 

the logic matrix used to extract the microtubule structure in the original image. 
The white scale bars represent 10 µm. 

  

(e) 

(b) 

(c) (d) 

(a) 

 
Fig. 8.  Compare original image and image processed after DWDC method. 
(a) Direct comparison before and after DWDC method. White scale bar 

represents 10 µm. (b) Local processing results of DWDC method in the box 

of dashed line of (a) for comparison with Fig. 1b.  
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ones) form cell-cell connection. When the third cell (yellow) 

passes though the gap in between those 2 cells, remodeling of 

its microtubule network is observed, indicating mechanical 

forces induced by cell-cell collision [42]. Since it is widely 

accepted that propagating mechanical cues during collective 

movement of population cells would activate mechano-

signaling and regulate cellular behavior [43], in which 

remodeling of cytoskeleton networks plays important roles, our 

approach show potential in deciphering the dynamic 

cytoskeleton network reorganization and remodeling at the 

single molecular level, even by a conventional high resolution 

imaging techniques.  

IV. CONCLUSIONS 

In this investigation, we introduce DWDC method which is 

developed based on the discrete wavelet transform and Lucy-

Richardson algorithm to extract the microtubule structure of 3t3 

cells from confocal images. The microtubule structure in the 

original image, which has FWHM of up to 1.94 µm, can be 

reduced to 123.7 nm after processing with DWDC method. The 

improvement of structural resolution is around 15 times. 

Compared with the single use of discrete wavelet transform or 

Lucy-Richardson algorithm for image processing, the 

composite image processing method can effectively remove 

noise, improve the SNR and increase the resolution of the image 

to a super-resolution level simultaneously.  

Theoretically, DWDC method is not limited to a certain 

imaging technique. It identifies the image intensity distribution 

as long as the scale information of the target structure and the 

parameter information of the imaging system are known. Thus, 

this method can become a universal post-processing method for 

wide-field fluorescence microscope, confocal microscope, 

STED microscope and etc.  
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