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Analysis of allele-specific gene expression (ASE) is a powerful approach for studying gene 
regulation. However, detection of ASE events relies on accurate alignment of RNA-
sequencing reads, where challenges still remain. We have developed PAC, a method that 
combines multiple steps to improve the quantification of allelic reads, including 
personalised (i.e. diploid) read alignment with improved allocation of multi-mapping reads. 
We show that PAC outperforms standard alignment approaches for ASE detection in both 
accuracy and in the number of sites it can reliably quantify. 
 
Allele-specific expression (ASE) is the imbalanced expression of the two alleles of a gene. While 

many genes are expressed equally from both alleles, gene regulatory differences driven by 

genetic changes (i.e. regulatory variants) frequently cause the two alleles to be expressed at 

different levels, resulting in allele-specific expression patterns. With RNA-sequencing (RNA-seq) 

data, the expression from the two alleles can be distinguished and quantified, but this analysis 

remains susceptible to many technical challenges, despite improved analytical methods1,2. To 

date, ASE analysis has largely been performed in the context of expression quantitative trait loci 

(eQTL) studies, as an alternative method to identify and characterise effects of regulatory variants 
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on gene expression 3,4. In these studies, large sample sizes help mitigate the effects of technical 

biases5. However, the power of ASE analysis lies in its applicability to individual samples, 

particularly in the context of rare diseases and other cases where looking at combined haplotypic 

effects of multiple variants is necessary. Numerous studies have now leveraged the power of ASE 

in detecting genetic effects on gene regulation6,7 and identifying regulatory dysfunction in rare 

disease samples8,9. In order to draw conclusions about individual samples and loci, the accuracy 

of ASE calling becomes paramount. 

 

One of the main sources of bias in ASE analysis is the alignment of sequencing reads. When 

short reads are aligned to the reference genome, reads carrying alleles that match to the 

reference sequence frequently map better than those carrying alternative alleles, leading to false 

ASE effects (‘reference allele bias’). Similarly, other factors such as reads that align to multiple 

locations in the genome can also influence the accuracy of allele counts at heterozygous sites. In 

the absence of better approaches, such difficult to map reads are typically discarded from the 

analysis1. Diploid genome mapping (i.e. use of personalised genome references) has been 

proposed as a solution to alignment-related artifacts in ASE analysis10,11, but these approaches 

do not deal with all potential causes of bias and they have not been widely adopted, likely due to 

the lack of a comprehensive pipeline to handle personalised genome coordinates in downstream 

analysis. Here, we address some of the remaining challenges in ASE analysis and describe the 

‘Personalised ASE Caller’ (PAC) pipeline that integrates a series of existing and novel tools to 

improve the detection of genuine ASE events in short read RNA-seq data.  

 

PAC implements a series of steps to align RNA-seq reads to a diploid reference genome and 

therefore more accurately detects and quantifies ASE events (Figure 1A). First, PAC uses 

phASER12 with read aware mode to improve variant phasing, particularly for rare variants, before 

creating parental genomes for the individual with the AlleleSeq software10. RNAseq reads are 

aligned to each genome individually with STAR11, retaining only properly paired and uniquely 

mapped reads, followed by a re-alignment step with RSEM13, which allows for the retention of 

multi-mapped reads through the implementation of an expectation-maximisation algorithm. For 

each pair of reads, PAC then selects the best location across the two parental genomes with 

custom scripts, before site-level and gene-level (phASER) allele counts are extracted genome-

wide (see Methods). Throughout the development of PAC, we tested the effects of different read 

trimming and alignment parameters before arriving at the final optimised pipeline (see 

Supplementary Materials). 
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To compare the performance of PAC with other approaches to quantify allelic expression, we 

generated simulated RNA-seq data where we knew the exact allele counts at each heterozygous 

site of a single individual (NA12877). To do this, we used high-quality genotype data from the 

Platinum Genomes Project14. First, whole-genome sequencing data were simulated using these 

variants, which was subsequently aligned to the reference genome before variant calling was 

performed with GATK15, followed by phasing with SHAPEIT216 (see Materials and Methods). In 

this way, we generated a realistic set of variant calls that could be used for ASE analysis. Second, 

we generated simulated RNA-seq data for the individual using RSEM. To do this, we simulated 

RNA-seq data for each parental haplotype inherited by the offspring, before merging and 

calculating the ‘ground truth’ allele count for each allele at each heterozygous variant position 

identified in the GATK output (Suppl. Figure 1). This ground truth data was used as the baseline 

to which the accuracy of ASE calls obtained using different parameters and methods was 

compared. In total, the simulated RNA-seq data had a coverage of at least 20X at 13,211 unique 

heterozygous sites, 1,359 of which (10.3%) showed ASE under a standard binomial test (P < 

0.05, corrected for 13,211 tests, Suppl. Figure 2).  

 

Simulated RNA-seq reads were then aligned to the reference genome using three approaches: 

1) standard alignment using STAR (to obtain a baseline set of ASE calls when using  one of the 

most commonly used haploid alignment methods), 2) PAC (diploid alignment) and 3) WASP 1, a 

commonly used tool to correct for reference bias in ASE analysis. WASP incorporates a number 

of features to identify sites under ASE and whilst we cannot directly compare these with the other 

approaches, we can test the impact of read removal within the WASP pipeline. After applying 

each of the three approaches, we counted reads containing the two alleles at each heterozygous 

site and compared these data to the ground truth (Figure 1C). We focused on sites that had at 

least 20X coverage in both the ground truth data and all three alignment approaches (11,602 

heterozygous sites) to make results directly comparable (Figure 1B). 

 

First, with standard alignment, ~91.7% of sites that had at least 20X coverage in the ground truth 

data also met this coverage threshold (12,109/13,211), with the average coverage at these sites 

dropping from ~175X in ground truth data to ~144X with standard alignment, highlighting the loss 

of many reads when using the standard approach. We find that reference allele ratios (RAR) 

showed a high correlation between standard alignment and the ground truth data at heterozygous 

sites (R2=0.960) (Figure 1C). However, 305 sites show an absolute difference in RAR of greater 
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than 10% and 55 sites a difference greater than 20%, The absolute mean difference shows a 

3.21% bias across all heterozygous sites (Figure 1B). 

 

Second, when we applied the PAC pipeline to the simulated data we find that the number of reads 

and the accuracy of allelic assignment is significantly improved compared to standard alignment. 

First, the number of sites that have at least 20X coverage in both ground truth and PAC-aligned 

data increased to 12,448 (339 additional sites compared to standard alignment), with an average 

coverage of ~150X at these sites. Second, the correlation of RAR in PAC compared to the ground 

truth data increased to R2=0.976 (Figure 1C). The number of outlier sites also dramatically 

decreased to 62 and 13 sites showing an absolute difference in reference allele ratio of >10% 

and >20%, respectively. The mean difference from ground truth RAR is 2.33% (Figure 1B), which 

is significantly lower than that found for standard alignment at the same sites (one-sided t-test, 

P=2.6x10-125).  

 

Third, we compared WASP-filtered1 data to the ground truth and found that the number of sites 

that have at least 20X coverage in both ground truth and WASP-corrected data dropped to 11,612 

(836 fewer than when using PAC), with an average coverage of 135X. Both of these results are 

likely a consequence of the approach used in WASP to remove difficult-to-align reads from the 

analysis. While the number of extreme outliers reduced to 32 (absolute difference of >20%) using 

WASP-filtered data, the number of sites with an absolute difference in RAR of >10% increased to 

387 compared to standard alignment, and the R2 value decreased to 0.946 (Figure 1C). 

Furthermore, the mean absolute difference between WASP-filtered data and the ground truth 

(3.61%) is significantly higher than both standard alignment (P=4.5x10-21, one-sided t-test) and 

PAC (P=8.9x10-272, one-sided t-test) (Figure 1B).  

 

Compared to both standard and WASP-filtered alignment, applying PAC results in an additional 

350 heterozygous sites that have coverage of at least 20X that do not meet this threshold in both 

of the other two approaches. Allele count quantification at these sites is also highly accurate with 

PAC (R2=0.844, compared to the ground truth). Similarly, for sites detected in standard alignment 

and PAC (but not WASP-filtered data), PAC quantification is highly significant (496 sites, 

R2=0.956, P=2.6x10-266, Figure 2A), showing that PAC performs well at sites with lower coverage 

that may be missed by other approaches. At least part of the improvement in accuracy when using 

PAC appears to occur in regions of the genome where accurate alignment is known to be more 

difficult. For example, the difference in RAR from the ground truth is significantly higher in 
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standard aligment and WASP-filtered data than PAC at sites where there is an indel (>6bp) within 

500bp of the heterozygous site (Figure 2B). The trend is similar when another heterozygous site 

or a rare variant (MAF <1%) is close by (Figure 2B).  

 

Finally, to characterise the performance of PAC on population level data, we aligned 670 whole 

blood RNA-seq samples from the GTEx project (v8)4 using PAC, obtained gene-level counts for 

each gene and individual, and then compared the allelic fold change (aFC)17 for each gene 

generated from the count data with those obtained from eQTL mapping. We also compared these 

results to those generated through standard and WASP-filtered alignments using gene-level count 

data from Castel et al18. Using genes with a significant eQTL (q-value < 5%) and where the aFC 

could be calculated from ASE data in all three methods (8913 genes, see Materials and 
Methods), PAC shows the strongest correlation between ASE and eQTL aFC (R2=0.842, Figure 
2C), followed by WASP-filtered data (R2=0.829) and then standard alignment (R2=0.820). 

Furthermore, due to the higher coverage obtained when aligning data with PAC, we were able to 

generate aFC for an additional 740 genes using this approach that did not meet coverage criteria 

in WASP-filtered data, and the aFC generated from ASE and eQTL data was still highly correlated 

amongst these genes (R2=0.653, P=4.0x10-91). Similarly, there were 319 genes present in PAC 

data that were not in either standard or WASP-filtered alignments; again the correlation between 

ASE and eQTL aFC for these genes was significant (R2=0.643, P=1.1x10-38). These results 

indicate that PAC not only has improved accuracy, but also more power to detect the influence of 

regulatory variation on gene expression across a larger number of genes.  
 
In summary, we present PAC, a new tool for ASE analysis that generates highly accurate allele 

counts from RNA-seq data for use in studying the regulation of gene expression. PAC is written 

in Nextflow and is available to use via https://github.com/anna-saukkonen/PAC. Our approach 

incorporates both novel and existing analytical steps to better control for common technical biases 

that occur when aligning short read data, including reference allele bias and reads that align to 

multiple different genomic locations. Additionally, PAC maximises ASE quantification accuracy 

for individual samples by improved phasing of rare variants and subsequent diploid genome 

alignment. Using both simulated and population level RNA-seq data, we show that PAC performs 

better than standard alignment techniques and other commonly used tools that attempt to deal 

with some of the technical issues related to ASE analysis, producing both more accurate allele 

counts and higher coverage at heterozygous sites. We anticipate PAC to be primarily useful in 

the context of rare diseases and other situations where small sample size precludes the use of 
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population level methods to study differences in gene expression and regulation. In such cases, 

accurate quantification of allelic expression changes, in individual samples, is of paramount 

importance in understanding disease biology. However, PAC can also be used on population level 

data, where allelic imbalance information can be used to better infer the impact of genetic variants 

on the expression of nearby genes. In these ways, PAC can be applied to the vast quantity of 

existing RNA-seq datasets to better understand a wide array of fundamental biological and 

disease processes. 

 

Materials and Methods 
The materials and methods are described in full in the Supplementary Material. 
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Data and code availability 
The PAC pipeline is available at https://github.com/anna-saukkonen/PAC. All data and other files 

used in this work are available and documented on Github (https://github.com/anna-

saukkonen/PAC/article_data). 
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Figures and Figure Legends 
 

 
 
 
Figure 1. Overview of the PAC pipeline. (a) A schematic describing the main steps, features, 

and outputs of PAC. (b) Correlation of reference allele ratios (RAR) between the three different 

methods (standard alignment, WASP-filtered alignment, PAC) and the ground truth data. 

Genome-wide Pearson correlation coefficients (R2) are shown (P<0.05 for all comparisons). (c) 
Site-level summary statistics for the different analysis methods. Statistics are reported for sites 

with at least 20X coverage in all three methods. 

 

 

 

 

Difference in reference 
allele ratio

R2 between 
ground truth

Outliers >20% Outliers >10% Gained sites against 
standard alignment

Standard 
alignment

Mean: 0.0321
Median: 0.0258

0.9599 55 305 N/A

WASP Mean: 0.0361
Median: 0.0304

0.9455 32 387 0

PAC Mean: 0.0233
Median: 0.0192

0.9757 13 62 350

A) B)

C)
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Figure 2. Performance of PAC compared to other methods. (a) Genome-wide correlation of 

reference allele ratios (RAR) at heterozygous sites that PAC and standard alignment detects but 

that are discarded by WASP-filtering (Pearson correlation R2=0.956, P=2.6x10-266). Sites with at 

least 20X coverage were considered. (b) The difference in reference allele ratio of sites that are 

within 500bp of at least 6bp indel, within 25bp of another variant or a rare (MAF <1%) variant in 

different analyses against the ground truth. Sites shared between all methods and with at least 

20X coverage were considered. Mann-Whitney test was performed with Bonferroni correction to 

adjust for multiple testing (P<=1e-04 for ****; 1.00e-03 < P <= for 1.00e-02**) and stars above 

each boxplot refer to the comparison against PAC (c) Correlation of allelic fold change (aFC) 

values derived from ASE and eQTL analyses from 670 GTEx whole blood samples. Genes with 

a significant eQTL (q-value < 5%) and gene-level ASE information for at least 10 individuals were 

selected. Pearson correlation coefficients are shown for eQTL versus ASE aFCs derived using 

PAC (see also Supplementary Figure 3). 
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