

1 Motor memories of object dynamics are categorically organized

2 Evan Cesanek^{1*}, Zhaoran Zhang¹, James N. Ingram¹, Daniel M. Wolpert^{1†}, J. Randall Flanagan^{2‡}

3 ¹Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027,
4 USA

5 ²Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON,
6 K7L 3N6, Canada

7 *corresponding author: evan.cesanek@gmail.com

8 †equal contribution

9 Abstract

10 The ability to predict the dynamics of objects, linking applied force to motion, underlies our capacity to
11 perform many of the tasks we carry out on a daily basis. Thus, a fundamental question is how the
12 dynamics of the myriad objects we interact with are organized in memory. Using a custom-built
13 three-dimensional robotic interface that allowed us to simulate objects of varying appearance and weight,
14 we examined how participants learned the weights of sets of objects that they repeatedly lifted. We find
15 strong support for the novel hypothesis that motor memories of object dynamics are organized
16 categorically, in terms of families, based on covariation in their visual and mechanical properties. A
17 striking prediction of this hypothesis, supported by our findings and not predicted by standard associative
18 map models, is that outlier objects with weights that deviate from the family-predicted weight will never
19 be learned despite causing repeated lifting errors.

20 Introduction

21 Many theories about how objects are encoded in memory have been proposed ^{1–15}. These include theories
22 concerned with the semantic, perceptual, and functional properties of objects. For example, a hammer
23 may be semantically labeled as a tool, represented perceptually in terms of its shape, or evaluated
24 functionally in the context of a particular task. However, the mechanical properties of objects, which are
25 fundamentally important to human motor control, have received little attention in theories of object
26 memory.

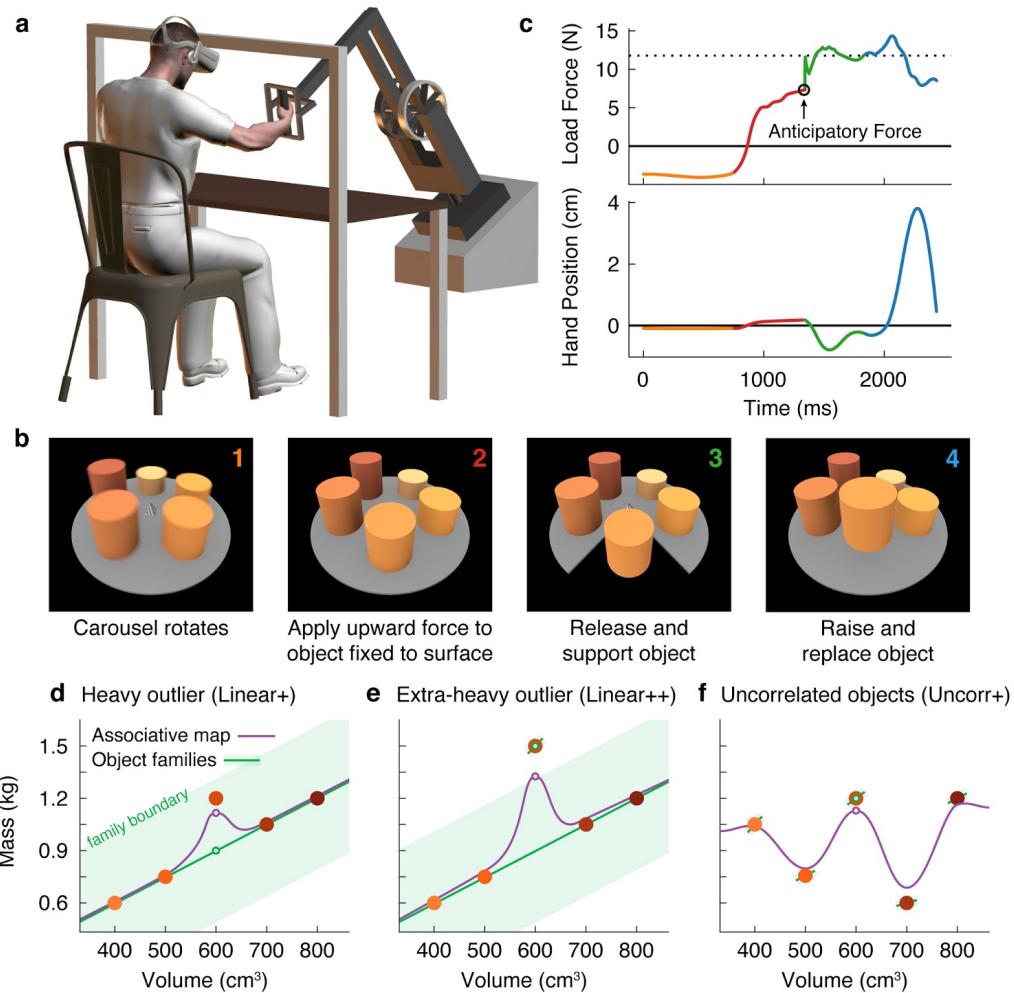
27 The majority of tasks we perform involve physical objects, and skilled interaction with these objects
28 depends critically on our ability to predict their mechanical properties. For many of the objects that we
29 interact with, dexterous performance requires accurate predictions of weight ^{16–19}. For example, when
30 lifting an object from a surface, weight prediction allows us to produce the vertical forces required to raise
31 the object smoothly. When lifting an object for the first time, people will estimate its weight based on
32 visual information about its size and material properties ^{20–23}. However, once an object has been lifted, a
33 memory is formed of its actual (*i.e.*, directly sensed) weight, and this memory can be used to guide
34 subsequent lifts of the object ^{22–26}. Thus, in addition to intact sensory and motor function, skilled

35 manipulation—and thus the ability to perform most daily tasks—requires the capacity to form, and
36 quickly access, representations of object weights in memory.

37 Here we investigated how the mechanical properties of the myriad objects we interact with are organized
38 in memory. To answer this question, we used a new three-dimensional robotic interface (Fig. 1a) that, in
39 combination with a stereoscopic virtual reality system, allowed us to simulate objects of varying size,
40 weight, and appearance (Fig. 1b). Objects were presented on a carousel and, on each trial, the participant
41 ‘lifted’ the nearest object by first applying an upward force to the object, which was fixed to the surface
42 of the carousel and therefore could not move. When ready, the participant pressed a button with their
43 other hand, which caused the portion of the carousel below the object to open, releasing the object so that
44 it was free to move. The aim was to match the upward force to the weight of the object so that it would
45 not move up or down when released. Therefore, by measuring the force just prior to release, we could
46 precisely measure the participant’s weight prediction on every trial. Because the robot simulated the
47 mechanics of the object, the participant received direct haptic and visual feedback about both the object’s
48 weight and their motor error (Fig. 1c). At the end of the trial, the open portion of the carousel closed, and
49 the participant replaced the object.

50 Using this task, we developed a novel motor learning paradigm in which participants repeatedly lifted a
51 set of five similar-looking objects of varying size and weight (Fig. 1d-f; filled circles correspond to the
52 objects in Fig. 1b). In our key experiment (Fig. 1d), these objects included four training objects (the two
53 smallest and two largest) presented in an initial training phase, and an outlier object (the middle size)
54 introduced later in a test phase. The training objects had a common density, and therefore had a linear
55 relationship between size and weight. Although the size of the outlier was in the middle of the training
56 objects, its weight was greater than would be expected under the assumption that it had the same density
57 as the training objects. Using this lifting task, we could distinguish between two high-level hypotheses
58 about memory organization.

59 First, the ‘object families’ hypothesis asserts that multiple objects are represented in memory by
60 clustering them into categories, or families. This hypothesis posits that the training objects and the outlier
61 will be represented as a single family (Fig. 1d; green line), provided that the weight of the outlier falls
62 within the family boundary (shaded green region). As a consequence, this hypothesis predicts that
63 participants will fail to learn the actual weight of an outlier that falls within the family boundary, and will
64 instead estimate the weight based on the family structure (open green circle). We refer to this predicted
65 effect as the ‘family effect’. However, if the weight of the outlier is extreme and falls beyond the family
66 boundary (Fig. 1e), a separate memory will be formed for the outlier object. Thus, this model predicts an
67 all-or-nothing pattern of learning whereby, depending on their family boundary, a participant will either
68 fully learn the outlier weight or completely fail to learn it.



69 **Figure 1. Object families and associative maps make different predictions for an outlier lifting**
70 **task.** (a) Participants grasped the handle of a three-dimensional robotic interface (3BOT) with their right
71 hand and viewed stereoscopic scenes (Oculus Rift). The 3BOT could track movement and simulate the
72 haptic experience of manipulating objects. (b) Screenshots of the key stages of the lifting task. See text
73 for details. (c) Load force and vertical position traces from an example trial, color-coded to match the
74 numbers in (b). In this example, the anticipatory force was less than the weight of the object (dotted line),
75 causing a downward movement of the hand and object. (d-f) Tasks used to examine family
76 representations. In these tasks there were five visually similar objects of varying volume and mass. In the
77 Linear+ condition (d), four of the objects had a linear relation between size and weight. A fifth object of
78 intermediate size had a higher density (hence the + notation) and therefore was an outlier. Under the
79 object families hypothesis, the four objects induce learning of the family structure (green line). Visually
80 similar objects that fall within the category boundary for the family (shaded green region) are treated as
81 family members. Because the outlier falls within the category boundary, its weight should be persistently
82 misestimated based on the family structure (green circle). Under the associative map hypothesis,
83 exposure to the outlier leads to partial learning of its actual weight (purple circle). In the Linear++
84 condition (e), the object families hypothesis predicts that when the outlier becomes sufficiently extreme,
85 and crosses the family boundary, it will be categorized as an individual and its weight fully learned. The
86 associative map hypothesis still predicts partial learning of this outlier. In the Uncorr+ condition (f), when
87 size and weight are uncorrelated, the object families hypothesis predicts that the object weights will each
88 be learned individually. Under the associative map hypothesis, there is no fundamental difference
89 between this scenario and those depicted in (d, e).

90 An alternative hypothesis is that object properties are encoded in an ‘associative map’. This idea comes
91 from a well-known theoretical framework that has been successful in explaining how sensorimotor
92 transformations for reaching, grasping, and saccades are encoded in memory²⁷⁻²⁹. In associative map
93 models (Fig. 1d, e; purple curve), experience with individual objects causes the visual and mechanical
94 properties sensed during each interaction to become gradually associated. Additionally, memories of
95 individual objects influence one another only through local generalization, producing smoothly varying
96 mappings between visual size and expected weight. In associative map models, the predicted weight of
97 the outlier (open purple circle) will become increasingly accurate with experience, such that an outlier of
98 any weight will be at least partially learned.

99 These two hypotheses also make different predictions regarding how lifting the outlier will affect the four
100 training objects during the test phase. Again, the object families hypothesis predicts an all-or-nothing
101 pattern, depending on how the outlier is encoded. When encoded as a family member, the unexpectedly
102 heavy weight of the outlier updates the family representation, causing the predicted weight to increase on
103 a subsequent lift of a training object. However, once the outlier is classified as a separate individual, this
104 outlier-to-family updating should be greatly suppressed. The associative map hypothesis, on the other
105 hand, predicts that lifting the outlier will always update the estimated weights of similar-looking training
106 objects.

107 Finally, the two hypotheses also make different predictions when there is no structured relationship
108 between size and weight (Fig. 1f). Under the object families hypothesis, each of these objects is learned as
109 an individual (Fig. 1f; separate green lines) and, as a consequence, they will be learned more slowly and
110 there will be minimal single-trial generalization from the ‘outlier’ to the training objects. In contrast, in an
111 associative map model, this scenario does not fundamentally differ from those depicted in Fig. 1d, e.

112 Consistent with the object families hypothesis, we show that participants encode objects that covary in
113 size and weight as a family, and that this representation exerts a powerful family effect on outlier objects,
114 whose weights can differ markedly from the weights predicted by the family. In particular, we show that
115 participants can completely fail to learn the weight of an outlier object, despite experiencing large,
116 repeated movement errors; errors that, in the absence of the family, quickly drive learning. These findings
117 address, for the first time, how motor-relevant properties of multiple objects are represented in memory.

118 Results

119 Participants performed a lifting task in which they were required to predict the weights of five objects
120 positioned around a carousel. Fig. 1c shows the load force and vertical hand position in a single trial. The
121 traces are color-coded to match the four trial phases depicted in Fig. 1b and described above. We focused
122 our analyses on the anticipatory force participants produced just prior to releasing the object by pressing a
123 button with the non-lifting hand. This anticipatory force provides a precise and accurate measure of the
124 participant’s motor memory of the object weight. In the trial shown in Fig. 1c, the participant
125 underestimated the weight of the object, and as a consequence when the participant pressed the button to
126 release the object, the right hand and the object moved downward. (Note that the motion of the hand after
127 the release of the object does not provide a robust measure of participants’ weight prediction because this

128 motion depends on co-contraction and reflex responses in addition to the mismatch between vertical force
129 and weight.)

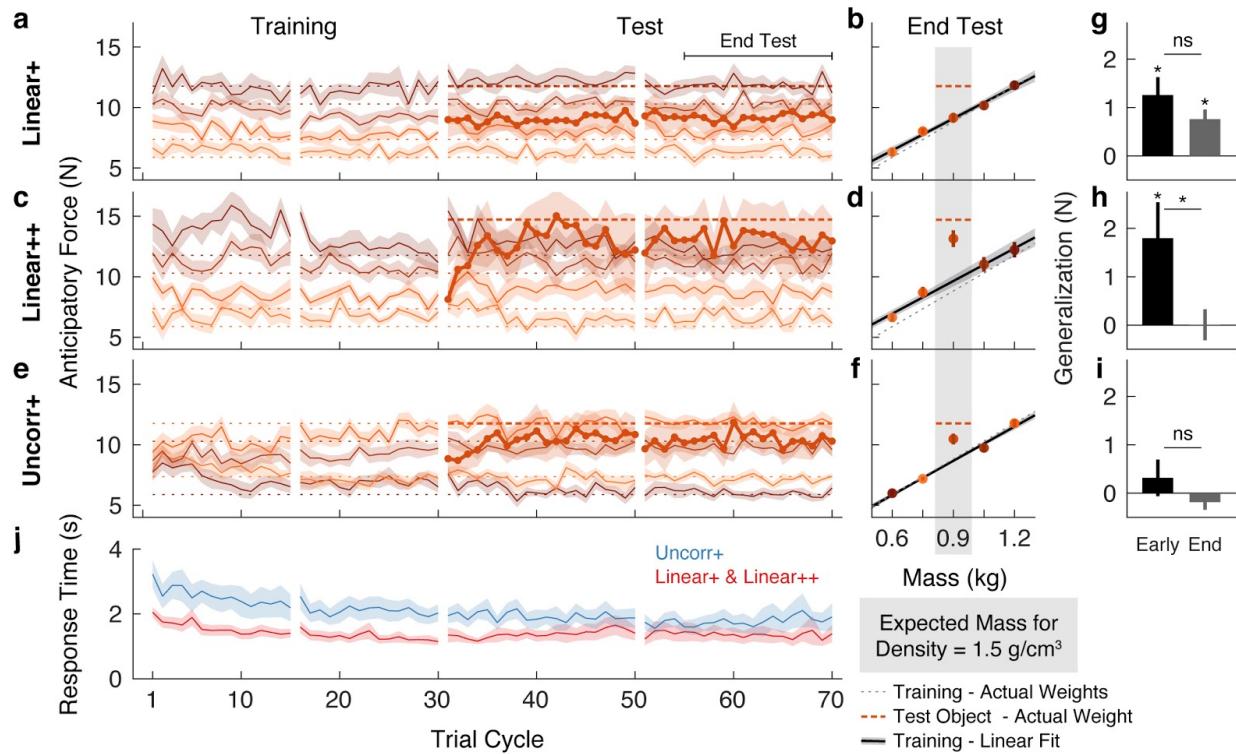
130 Motor memories of objects are organized categorically

131 Our initial experiment was designed to critically evaluate the object families and associative map
132 hypotheses by examining how participants learned the weight of a heavier-than-expected outlier object.
133 We tested separate groups of participants in the three experimental designs depicted in Fig. 1d-f.
134 Participants completed a training phase, in which they interacted with the four training objects, followed
135 by a test phase, in which the fifth test object was added. All objects were visually similar—cylinders of
136 fixed diameter with varying heights.

137 In the Linear+ group (Fig. 1d), the weights of the training objects were *linearly* related to their sizes and
138 the test object was *heavier* (as denoted by the + sign) than expected based on the training objects. The
139 weights and sizes of the training objects ranged from 0.6 to 1.2 kg and 400 to 800 cm³, respectively, and
140 all had a density of 1.5 g/cm³ (Fig. 1d). The size of the test object was 600 cm³, which was in the middle
141 of the range of training object sizes. However, the weight of the test object, 1.2 kg, was equal to the
142 heaviest training object, making it 0.3 kg greater than the weight that would be expected if it had the same
143 density as the training objects.

144 The traces in Fig. 2a show the anticipatory force generated for each object as a function of trial cycle (one
145 lift of each object) across the training and test phases. The dotted horizontal lines (color-matched to the
146 force traces) show the weights of the objects, and therefore the ideal anticipatory forces that would be
147 generated with perfect learning. Participants in the Linear+ group very quickly learned the weights of the
148 training objects. The scaling of forces to object weight observed in the first trial cycle suggests that
149 participants rapidly learned the density (a family-level parameter) based on the first few objects lifted and
150 then used this information, in conjunction with size, to predict the weights of the other objects. At the end
151 of the training phase (final 8 cycles), anticipatory force was strongly correlated with object weight ($r =$
152 0.76, 95% CI = [0.66, 0.83]).

153 The thicker trace and dashed horizontal line, starting at trial cycle 31, show the anticipatory force and
154 actual weight of the test object introduced in the test phase. On the first lift of the test object, the average
155 anticipatory force was 9.00 N (95% CI = [7.68, 10.32]). This suggests that participants initially estimated
156 that the test object would have the same density as the training objects and, therefore, that its weight
157 would be close to the middle of the training object weights (8.83 N). Consequently, they experienced an
158 error of approximately 300 g (~3 N), which is close to the weight of a full can of soda and represents fully
159 a third of the anticipated weight. Remarkably, despite this large error, participants never learned the test
160 object weight over the 40 cycles in the test phase (40 lifts of the test object interspersed with 40 lifts of
161 each training object). That is, the average anticipatory force did not increase—remaining at the level
162 predicted by the family—and, therefore, participants did not adapt to the actual weight of this pronounced
163 outlier.



164 **Figure 2. Objects are encoded according to the object families hypothesis.**

165 (a) Trial-by-trial anticipatory forces for the five objects over the course of the Linear+ condition (mean \pm
166 SEM). The training objects (thin lines) are experienced from the first trial cycle and the test object (thick
167 line) is introduced on trial cycle 31 as the first trial of each cycle. Traces are color-coded with darker
168 shades indicating larger objects and the dashed lines indicate the associated actual object weights (thick
169 dashed line shows outlier weight). Rest breaks are indicated by gaps in the traces. (b) Anticipatory forces
170 at the end of the test phase for the Linear+ condition (mean \pm SEM). The abscissa shows the weights of
171 the training objects and, for the outlier, the expected weight based on the family density. The weights of
172 the training objects lie on the dotted unity line. Dashed horizontal line shows the weight of the outlier.
173 Regression line shows the average of the participants' linear regressions \pm SEM. (c, d) Same as (a, b) for
174 the Linear++ condition. (e, f) Same as (a, b) for the Uncorr+ condition. Note that for each participant, the
175 uncorrelated mapping of size and weight for the training objects was randomly selected; the shading in
176 (e) and (f) depicts one mapping. In (f) the outlier is plotted at the expected weight based on the family
177 density in the Linear conditions. (g) Single-trial generalization in the first four cycles (Early) and last
178 sixteen cycles (End) of the test phase of the Linear+ condition (mean \pm SEM, see Materials and Methods
179 for details). (h, i) Same as (g) for the Linear++ and Uncorr+ conditions. (j) Response times averaged over
180 objects in each trial cycle (mean \pm SEM). The Linear+ and Linear++ groups are combined in the red
181 trace, as they did not differ on this measure. All SEM are across participants.

182 We calculated the anticipatory forces at the end of the test phase (final 16 cycles) as a function of mass for
183 the four training objects, and as a function of expected mass based on the density of the training objects
184 for the test object (Fig. 2b). To assess learning at the end of the test phase, we compared the average
185 anticipatory force produced for the test object (9.15 N, 95% CI = [8.27, 10.03]) with the 'family-predicted
186 weight' of the test object (9.09 N, 95% CI = [8.64, 9.54]), defined as the weight of the test object
187 predicted from the best-fitting regression line through the training objects (thereby adjusting for any
188 prediction error on the training objects). We found that the anticipatory force was not significantly greater
189 than the family-predicted weight ($t(13) = 0.17, p = 0.43$).

190 The above results support the object families hypothesis by showing that even when the weight of an
191 outlier object deviates markedly from its family-predicted weight, it continues to be encoded as a family
192 member despite sensory evidence to the contrary. Next, we investigated whether there is a threshold to the
193 family effect. We hypothesized that when the discrepancy between actual and family-predicted weight
194 exceeds some threshold, the object will be encoded as an individual, separate from the family, despite its
195 family-like appearance. To probe this threshold, we tested a Linear++ group, who completed the same
196 task as the Linear+ group but with an *even heavier* outlier (hence the ++). Specifically, for the Linear++
197 group, the test object weighed 1.5 kg, making it 600 g heavier than if it had the same density as the
198 training objects, and 300 g heavier than the heaviest training object (Fig. 1e).

199 Fig. 2c shows the average anticipatory force timelines for the Linear++ group. As expected, at the end of
200 the training phase, anticipatory force was strongly correlated with object weight ($r = 0.85$, 95% CI =
201 $[0.72, 0.92]$). On the first lift of the test object, participants generated an average anticipatory force of
202 8.13 N (95% CI = $[7.19, 9.08]$), consistent with the density of the training objects. However, in contrast to
203 the Linear+ group, over the following 5 to 10 cycles, participants increased their anticipatory force for the
204 test object, reaching an asymptote just below the actual object weight (14.72 N). At the end of the test
205 phase (Fig. 2d), the anticipatory force for the test object (13.15 N, 95% CI = $[11.56, 14.74]$) was
206 significantly greater ($t(8) = 3.34$, $p = 0.0051$) than the family-predicted weight (9.65 N, 95% CI = $[8.62,$
207 $10.68]$).

208 The results of the Linear++ group demonstrate that there is a limit to how deviant an outlier object can be,
209 with respect to a known family, before it is ‘kicked out’ of that family and learned as a unique individual.
210 That is, when the error signals received from a particular object are sufficiently large, they promote the
211 formation of a separate memory. Note that the adaptation to the test object in the Linear++ group
212 demonstrates that participants could visually distinguish the test object from the neighboring training
213 objects. Thus, we can conclude that the striking failure to learn the test object in the Linear+ group is not
214 due to an inability to visually identify the test object amongst the similar-looking training objects.

215 Lastly, we designed a third variant of the task, in which the test object was the same size and weight as in
216 the Linear+ group but the training objects were not related by any family structure (Fig. 1f). Specifically,
217 in the Uncorr+ group, the sizes and weights were remapped (separately for each participant), such that
218 size and weight of the training objects were either completely or close to completely uncorrelated ($|r| <$
219 0.3). The object families hypothesis makes two key predictions for this condition. First, in the absence of
220 structured covariation between visual and mechanical properties within the training set (*i.e.*, when the
221 training objects do not share a constant density), participants should be forced to form a separate memory
222 for each training object, with no family-level representation. This, in turn, should result in slower initial
223 learning of the training objects in comparison to the Linear groups, where all four training objects could
224 be encoded as a family with a common density. Second, in the absence of a family representation,
225 participants in the Uncorr+ group should be able to learn the weight of the 1.2-kg test object, unlike
226 participants in the Linear+ group. In contrast, under the associative map hypothesis, the results of the
227 Uncorr+ group should not fundamentally differ from the Linear+ group.

228 Fig. 2e shows the anticipatory force timelines for the Uncorr+ group. In the earliest trial cycles, there was
229 poor differentiation of the object weights, showing that uncorrelated mappings are more difficult to learn
230 than linear mappings. Nevertheless, by the end of the training phase the Uncorr+ group achieved accuracy
231 comparable to the Linear groups, with anticipatory force being strongly correlated with object weight ($r =$
232 0.72, 95% CI = [0.62, 0.80]). On the first lift of the test object, participants produced 8.85 N (95% CI =
233 [7.62, 10.08]) of anticipatory lift force, which is similar to the mean of the training object weights (8.83
234 N). Moreover, it is similar to the force generated by participants in the Linear+ group on their first lift of
235 the test object (9.00 N). Thus, the initial weight estimation error for the test object was similar in the
236 Linear+ and Uncorr+ groups. However, as can be seen in Fig. 2e, during the test phase participants in the
237 Uncorr+ group succeeded in adapting their anticipatory force for the test object. Unlike the Linear groups,
238 the training objects in the Uncorr+ group did not have a common density, and therefore we compared the
239 anticipatory force for the test object to the average weight of the training objects (as the test object was of
240 intermediate volume). At the end of the test phase (Fig. 2f), participants' anticipatory force for the test
241 object (10.48 N, 95% CI = [9.50, 11.46]) was significantly greater ($t(11) = 4.06, p = 0.00094$) than the
242 average force for the training objects (8.68 N, 95% CI = [8.44, 8.92]). The learning of the test object
243 observed in the Uncorr+ group confirms that the failure to learn the test object in the Linear+ group is due
244 to the structured object family, rather than the lack of a sufficient error signal.

245 The object families hypothesis predicts that when lifting an object that is encoded as a family member, the
246 experienced density will update the density estimate for the family, thereby biasing the anticipatory force
247 on a subsequent lift of a training (*i.e.*, family) object. Conversely, when lifting a test object that is encoded
248 as an individual, the experienced density will not update the family estimate and the anticipatory force on
249 a subsequent lift of a training object will be unaffected. Thus, at the end of the test phase, the object
250 families hypothesis predicts strong generalization for the 1.2-kg outlier, but no generalization for the
251 1.5-kg outlier. In contrast, the associative map model predicts strong generalization for the 1.2-kg outlier,
252 and even stronger generalization for the 1.5-kg outlier. To compare these predictions, we analyzed
253 single-trial generalization at the start and end of the test phase (Fig. 2g-i). Note that the associative map
254 model predicts that generalization will be strongest for training objects closest in appearance to the test
255 object. Therefore, to best test between the contrasting predictions of the two models, we focused our
256 analysis on the 500- and 700-cm³ objects (*i.e.*, the closest objects in size to the 600-cm³ test object).
257 Specifically, we examined how the anticipatory force applied to these training objects changed when they
258 were lifted immediately after the test object, compared to when they were lifted after one of the other
259 training objects (factoring out any baseline previous-weight effects estimated with the training objects;
260 see Materials and Methods for details). For the Linear+ group (Fig. 2g), we found significant
261 generalization both at the start ($t(13) = 3.41, p = 0.0046$) and the end of the test phase ($t(13) = 3.78, p =$
262 0.0023), with no significant change ($t(13) = 1.43, p = 0.18$). That is, at both time points, there was an
263 increase in anticipatory force on the trial after the test object, consistent with encoding the test object as a
264 family member. For the Linear++ group (Fig. 2h), there was significant generalization at the start ($t(8) =$
265 2.41, $p = 0.043$), but not at the end of the test phase ($t(8) = 0.11, p = 0.91$), and this change was significant
266 ($t(8) = 2.48, p = 0.038$). This shows that participants initially encoded the extreme outlier as a family
267 member, but then formed a separate memory of this object. For the Uncorr+ group (Fig. 2i), we found no

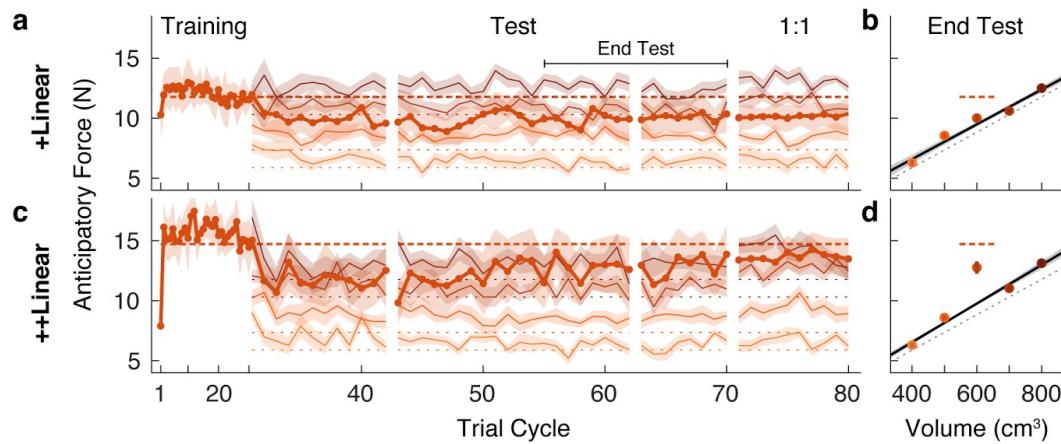
268 evidence of generalization at the start ($t(11) = 0.83$, $p = 0.43$) or the end of the test phase ($t(11) = -1.15$, $p = 0.28$), and no change over time ($t(11) = 1.10$, $p = 0.30$), consistent with encoding each object
269 individually (Fig. 2i).

270
271 We also analyzed the response time, defined as the time from object presentation to the button press that
272 released the object, which is presumably linked to the time required to estimate the weight of the object.
273 For this analysis, we combined the two Linear groups. As shown in Fig. 2j, response times decreased
274 during the training phase for both the linear and the uncorrelated size-weight mappings, but there was a
275 consistent temporal cost associated with movement preparation when size and weight were uncorrelated
276 as compared to linearly related. To assess these effects, we defined four epochs by splitting both the
277 training and test phases into two equal parts. A two-way repeated-measures ANOVA on log-transformed
278 response times revealed significant main effects of Group ($F(1, 33) = 5.79$, $p = 0.022$) and Epoch ($F(3, 99) = 13.039$, $p = 0.30e-7$), but no interaction ($F(3, 99) = 0.80$, $p = 0.49$). Separate t -tests on each epoch
279 all showed significant Group effects ($p < 0.048$ in all four epochs). These results suggest that, even at the
280 end of the test phase, encoding each object individually resulted in a temporal cost compared to encoding
281 the objects as a family.
282

283 **Re-organization of motor memories of objects**

284 In the experiment described above, for the Linear groups we first introduced a set of objects with a
285 common density, before adding in a test object, or outlier, with a higher density. We found a strong family
286 effect such that participants never learned the weight of a test object that was 300 g heavier than expected.
287 A key question is whether exposure to an object family can lead to the reorganization of an existing
288 memory of an individual object. To address this question, we tested two new groups of participants on
289 conditions in which the test object was experienced *before* the four common-density ‘family’ objects.
290 Note that we used the same family and test objects as in our first experiment. We refer to these groups as
291 the +Linear and ++Linear groups to denote the reversed order in which participants encountered the test
292 object and the family objects. In the initial training phase, participants in the +Linear group lifted the
293 1.2-kg test object, and the ++Linear group lifted the 1.5-kg test object. For both groups, the four family
294 objects were then introduced in the test phase.

295 As expected, both groups quickly and accurately learned the weight of the test object when it was
296 presented individually during the training phase (Fig. 3a, c). However, at the start of the test phase
297 (beginning at trial cycle 31), it is evident that participants in both groups began to treat the outlier and the
298 four family objects as a single family. Specifically, the estimated weight of the test object (*i.e.*, the
299 anticipatory force) decreased towards the family-predicted weight. At the same time, the estimated
300 weights of the family members were initially overestimated. These results show that even brief exposure
301 to an object family can reorganize the memory of a previously learned individual object, such that it is
302 assimilated into the family.



303 **Figure 3. A memory of an individual is reorganized when an object family is introduced.**
304 (a, c) Trial-by-trial anticipatory forces, as in Fig. 2a, c, in a 'reverse' condition in which the outlier object
305 was learned during the initial training phase, and the family objects were only introduced from trial cycle
306 31. Hence we refer to these as +Linear and ++Linear. As the training phase trial cycles contained only
307 one trial (the outlier), for clarity, the abscissa scale is compressed. After the test phase, in a '1:1' phase
308 the test object was presented four times in each trial cycle (rather than once as in the test phase), with
309 each family member presented once (8 trials per cycle) such that the participant experienced the test
310 object as often as a family member. For the 1:1 phase, we excluded trials from analysis in which the
311 outlier object followed itself. (b, d) Average anticipatory forces at the end of the test phase, as in Fig. 2b,
312 d, but here plotted by volume.

313 Following this assimilation of the test object, or outlier, into the family, the pattern of results are strikingly
314 similar to that observed in our first experiment. Specifically, participants in the +Linear group never fully
315 re-learned the actual weight of the outlier, whereas participants in the ++Linear group adapted their
316 anticipatory force to the actual weight. At the end of the test phase (Fig. 3b), the anticipatory force for the
317 outlier in the +Linear group (10.01 N, 95% CI = [9.18, 10.84]) was not significantly greater ($t(10) = 1.23$,
318 $p = 0.12$) than the family-predicted weight (9.49 N, 95% CI = [9.11, 9.86]). Thus, participants in the
319 +Linear group did not re-learn the actual weight of the outlier after it was assimilated into the family.
320 Therefore, the +Linear group, like the Linear+ group, exhibited a strong family effect. In the ++Linear
321 group, the anticipatory force for the outlier at the end of the test phase (12.76 N, 95% CI = [11.14, 14.39])
322 was significantly greater ($t(10) = 4.19$, $p = 0.00093$) than the family-predicted weight (9.76 N, 95% CI =
323 [9.47, 10.04]). Thus, as was the case for the Linear++ group, the ++Linear group exhibited learning (or
324 re-learning) of the more extreme outlier.

325 The failure to learn the weight of the outlier in the Linear+ and +Linear groups could be due to the fact
326 that the higher-density outlier was lifted only once for every four lifts of the family objects. Thus, after
327 the test phase we included a '1:1' phase where the relative frequency with which the outlier and family
328 objects were experienced was equivalent. Specifically, this phase consisted of ten cycles in which the
329 outlier object was lifted 4 times per cycle and each family member was lifted only once, for a total of 8
330 lifts per cycle with the outlier and family members randomly interleaved. As shown in Fig. 3a, in the
331 +Linear group there was minimal impact on learning in the 1:1 phase. In the ++Linear group, increasing

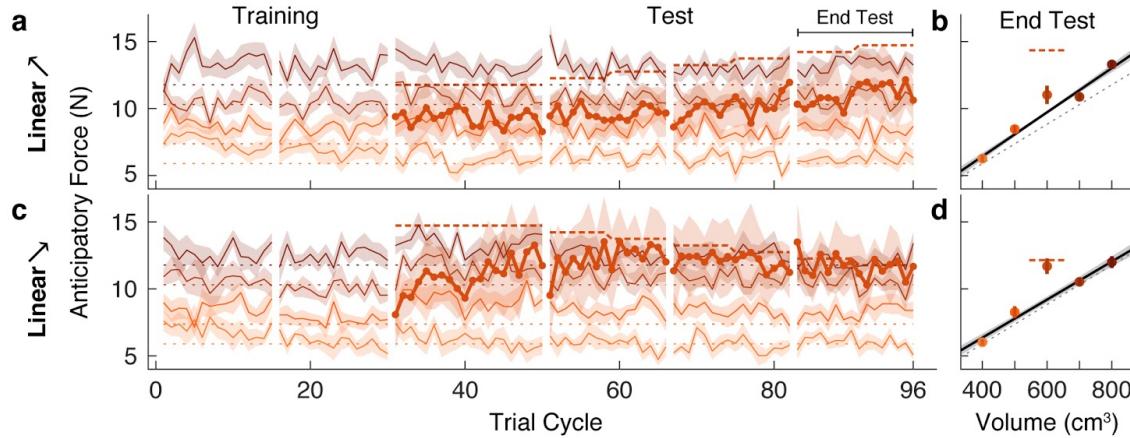
332 the relative frequency of outlier lifts in the 1:1 phase did not further improve the separation between the
333 anticipatory force for the outlier and its family-predicted weight. These findings demonstrate that the
334 family effect cannot be accounted for by the greater relative frequency of the family objects.

335 Category boundaries are flexible

336 In the first two experiments, we showed that participants failed to learn the weight of a test object, or
337 outlier, that was 300 g (or 33%) greater than the weight predicted by the density of the family, but did
338 learn the weight when the test object exceeded this weight by 600 g (or 67%). This suggests that there is a
339 boundary, between these two weights, that determines whether the object is encoded as a family member
340 or as a separate individual. A fundamental question is whether such boundaries are fixed or flexible.
341 Research on both perceptual and conceptual categorization has shown that category boundaries may
342 depend on within-category variability^{30–32}, and that category labeling can exhibit hysteresis whereby the
343 point at which the perceived category changes depends on the direction of change^{33–35}. To examine this
344 issue in relation to object categorization, we recruited two new groups of participants who initially
345 experienced the same conditions as the Linear+ and Linear++ groups from our first experiment. That is,
346 both groups completed a training phase in which they lifted the four family objects, followed by a test
347 phase in which the test object was initially either 1.2 or 1.5 kg for 20 trial cycles. However, we then
348 gradually changed the test object's weight by steps of 50 g every 8 trial cycles. In the Linear↗ group the
349 weight was gradually increased from 1.2 to 1.5 kg and in the Linear↘ group the weight was gradually
350 decreased from 1.5 to 1.2 kg.

351 The anticipatory force data for the Linear↗ and Linear↘ groups (Fig. 4a, c) contain several features that
352 replicate the key findings from our first experiment. First, both groups quickly and accurately learned the
353 weights of the training objects, with anticipatory forces that were strongly correlated with actual object
354 weights by the end of the training phase ($r = 0.81$, 95% CI = [0.73, 0.87] in Linear↗; $r = 0.84$, 95% CI =
355 [0.77, 0.89] in Linear↘). Second, in both groups the anticipatory force generated on the first lift of the test
356 object was close to the middle of the weights of the family objects (9.40 N, 95% CI = [8.10 10.70] in
357 Linear↗; 8.07 N, 95% CI = [5.93, 10.22] in Linear↘). Third, at the end of the initial 20 cycles of the test
358 phase, during which the test object weight remained at its initial value, learning of the 1.2-kg test object
359 was not significant (Linear↗: $t(8) = -0.58$, $p = 0.71$), whereas learning of the 1.5-kg test object was
360 significant (Linear↘: $t(8) = 2.15$, $p = 0.032$).

361 For the Linear↗ group, the anticipatory force for the test object does appear to have slightly increased as
362 its weight increased. However, the anticipatory force at the end of the test phase (11.02 N, 95% CI =
363 [9.44, 12.60]) was not significantly greater ($t(8) = 1.81$, $p = 0.054$) than the family-predicted weight (9.72
364 N, 95% CI = [9.43 10.01]), and was still substantially less than the actual weight (14.72 N; Fig. 4b). Thus,
365 despite the fact that the test object weighed 1.5 kg at the end of the test phase, it was not 'kicked out' of
366 the family, in contrast to the equally heavy test object experienced by the Linear++ group in our first
367 experiment. A direct comparison between the Linear↗ and Linear++ groups showed a significant
368 difference in the anticipatory force for the outlier object at the end of the test phase ($t(16) = 2.20$, $p =$
369 0.043).



370 **Figure 4. Family boundary depends on history of sensorimotor experience.**

371 (a) Trial-by-trial anticipatory forces (same format as Fig. 2a) in an 'increasing' condition (Linear↗) in which
372 the outlier starts at the weight of the Linear+ group on trial cycle 31 and increases gradually to the weight
373 of the Linear++ condition. (b) Anticipatory forces at the end of the test phase (same format as Fig. 2b).
374 (c,d) Same as (a,b) for a 'decreasing' condition (Linear↘) in which the outlier starts at the weight of the
375 Linear++ condition and decreases gradually to the weight of the Linear+ condition.

376 As noted above, and as expected based on the Linear++ group, participants in the Linear↘ group
377 increased their anticipatory force for the 1.5-kg test object from the start of the test phase, before its
378 weight began decreasing. Then, as the anticipatory force increased and the actual weight of the test object
379 gradually decreased, these two forces became closely matched, and remained so until the end of the test
380 phase (Fig. 4c). At the end of the test phase, the anticipatory force (11.69 N, 95% CI = [10.35, 13.03])
381 was significantly greater ($t(8) = 4.35$, $p = 0.0012$) than the family-predicted weight (9.20 N, 95% CI =
382 [8.65, 9.75]) and indistinguishable from the actual weight (11.77 N; Fig. 4d). Thus, once a separate
383 memory was formed for the test object, it continued to be encoded as an individual even when its weight
384 deviation decreased to the level (+300 g, or 33%) that the Linear+ group failed to learn. A direct
385 comparison between the Linear↘ and Linear+ groups showed a significant difference in the anticipatory
386 force for the outlier object at the end of the test phase ($t(21) = -3.68$, $p = 0.0014$). Overall, the results
387 from both groups demonstrate that the threshold for categorizing an object as either a family member or
388 an individual object is flexible and depends on past sensorimotor experience. Mechanisms that could
389 potentially give rise to these effects are discussed below.

390 All-or-nothing learning of outlier weight

391 According to the object families hypothesis, an outlier object is encoded categorically as either a family
392 member or an individual. As a consequence, a given participant should either fully learn the weight of an
393 outlier object or not learn at all, depending on their particular threshold for 'kicking out' an object from a
394 family. Assuming that the threshold weight at which an outlier is kicked out of a family varies across
395 participants, the object families hypothesis predicts that for certain outliers, there will be a bimodal
396 distribution of estimated weights across participants (separating learners from non-learners). In contrast,
397 the associative map hypothesis predicts that partial learning will be observed and that, assuming learning

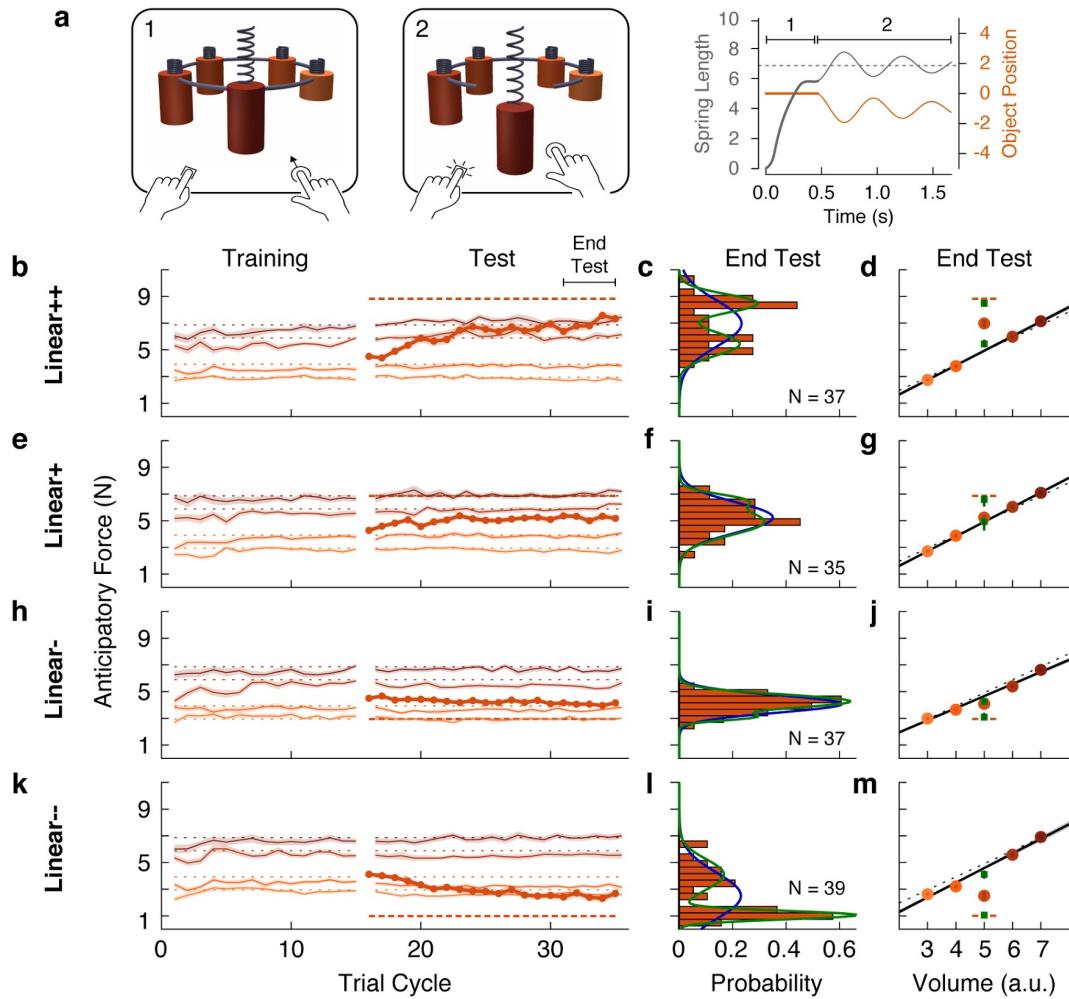
398 rates across participants are normally distributed, there will be a unimodal distribution in the amount of
399 learning, regardless of the weight of the outlier.

400 With the aim of examining distributions across participants, we performed a web-based experiment in
401 which we recruited a large number of participants ($N = 196$), divided into four groups that varied in how
402 the outlier deviated from a linear family. As in our first experiment, we tested groups who were presented
403 with an outlier object that was heavier (Linear+) or much heavier (Linear++) than the weight predicted by
404 the density of the training objects. In addition, to assess the generality of our findings, we tested groups
405 who were presented with an outlier that was lighter (Linear-) or much lighter (Linear--) than the weight
406 predicted by the density of the training objects.

407 Based on the object families hypothesis, we expected that the participants in the groups with less deviant
408 outliers (Linear+ and Linear-) would form a single distribution of non-learners, with anticipatory forces
409 centered on the family-predicted weight. In contrast, we predicted that participants in the more deviant
410 outlier groups (Linear++ and Linear--) would cluster into distinct distributions of learners and
411 non-learners, with anticipatory forces centered on the actual and family-predicted weights of the outlier,
412 respectively.

413 The web-based task was designed to closely mirror the laboratory task. The visual scene consisted of five
414 cylindrical objects each with a spring attached to its top (Fig. 5a). The objects were clamped in place by a
415 ring that rotated before each trial to bring one of the objects to the foremost position. Participants used
416 their mouse or trackpad to stretch the spring upwards in an attempt to generate a lifting force on the object
417 that matched its weight (trial phase 1). Then, they pressed a key with their other hand to release the clamp
418 (trial phase 2). From this point on, the object's motion was simulated as a mass-spring-damper system,
419 thus providing visual feedback about the participant's performance. If the spring was stretched too much
420 (or too little), the object would rise (or fall) and then oscillate until coming to rest (Fig. 5a, rightmost
421 panel). The oscillation time depended on the mismatch between the estimated and actual object weight,
422 creating a natural time penalty.

423 The results for the Linear+ and Linear++ groups in the web-based experiment (Fig. 5b, e) were very
424 similar to those observed for the corresponding groups in our first experiment. This indicates that similar
425 learning processes were engaged despite the use of visual dynamics without haptic feedback ³⁶. On
426 average, the Linear+ group did not learn the outlier, whereas the Linear++ group exhibited substantial, but
427 not complete, learning. Our analysis, however, focused on the distributions of anticipatory forces for the
428 outlier object at the end of the test phase (final 5 cycles) across participants in each group (Fig. 5c, f). For
429 each distribution, we fit a single-Gaussian and a two-Gaussian mixture model (blue and green curves,
430 respectively). To compare these models, we computed the difference in the Akaike Information Criteria
431 (ΔAIC), with positive values in favor of the two-Gaussian mixture, and we report the relative likelihood
432 for the favored model. As expected, for the Linear+ group, in which learning of the weight of the outlier
433 was not observed, the single-Gaussian model was favored ($\Delta\text{AIC} = -4.6$; relative likelihood = 10.0). In
434 contrast, for the Linear++ group, the distribution was clearly bimodal, separating participants who either



435 **Figure 5. Individual differences show that outliers are either fully learned or not learned at all.**

436 (a) Web-based lifting experiment. (1) Five visually similar objects were clamped onto a ring, which rotated
 437 to bring the target object to the front. Participants clicked and dragged upward using their mouse or
 438 trackpad to stretch a spring, thereby applying a lifting force to the object. (2) When ready, they pressed a
 439 key on the keyboard with their other hand to release the object from the ring. The object and spring were
 440 simulated as a mass-spring-damper providing visual feedback about performance, with greater errors
 441 giving rise to larger oscillations, which also took longer to decay. As in the laboratory experiments, the
 442 goal was to prevent the object from moving after the key press. Right column shows the spring length
 443 (*i.e.*, lift force, gray) and object position (orange) traces for an example trial in which the anticipatory force
 444 was less than the object weight. (b, e, h, k) Trial-by-trial anticipatory forces (formatted as in Fig. 2a) for
 445 four conditions: two with a heavy outlier (Linear+ and Linear++, as in Fig. 2) and the others with a lighter
 446 (Linear-) or much lighter (Linear--) outlier. (c, f, i, l) Histograms show the distribution across participants of
 447 the average anticipatory force for the outlier object at the end of the test phase. Blue and green curves
 448 show the fits of a single-Gaussian and a two-Gaussian mixture model, respectively. (d, g, j, m)
 449 Anticipatory forces at the end of the test phase (as in Fig. 2b). The mean of each Gaussian component of
 450 the two-Gaussian mixture model is plotted as a green square, with standard error estimated via
 451 parametric bootstrap.

452 did or did not learn the outlier weight. This bimodal distribution was better captured by the two-Gaussian
453 model ($\Delta\text{AIC} = 7.0$, relative likelihood = 33.1).

454 For the Linear+ and Linear++ groups, the average anticipatory forces applied to the five objects at the end
455 of the test phase are shown by the filled circles in Fig. 5d-g. The mean of each Gaussian component of the
456 two-Gaussian mixture is shown as a green square. In the Linear++ group, the greater of these two means
457 (8.48 N, 95% CI = [7.98, 8.89])—representing the learners—lies almost perfectly on the actual outlier
458 weight (dashed line, 8.83 N), whereas the lesser of the two means (5.43 N, 95% CI = [4.91,
459 6.08])—representing the non-learners—is very close to the family-predicted weight (4.91 N, 95% CI =
460 [4.79, 5.03]). Surprisingly, although the single-Gaussian model was favored for the Linear+ group, one
461 can nevertheless see two peaks in the two-Gaussian model (6.59 N, 95% CI = [5.58, 7.18] and 4.93 N,
462 95% CI = [3.66, 5.28]) that, respectively, closely match the actual weight (6.87 N) and family-predicted
463 weight (4.93 N, 95% CI = [4.72, 5.13]) of the outlier. Thus, while most participants in the Linear+ group
464 did not learn the outlier weight at all, there was a small subgroup who fully learned this weight.

465 The same pattern of results was observed for the Linear- and Linear-- groups (Fig. 5i-j, l-m). For the
466 Linear- group, the distribution of anticipatory forces for the outlier object at the end of the test phase were
467 best fit by the single-Gaussian model ($\Delta\text{AIC} = -3.7$, relative likelihood = 6.4), whereas the two-Gaussian
468 model was preferred for the Linear-- group ($\Delta\text{AIC} = 29.3$, relative likelihood = 2.3e+6). For the Linear--
469 group, the means of the two components of the two-Gaussian model (1.05 N, 95% CI = [0.91, 1.22] and
470 4.10 N, 95% CI = [3.47, 4.68]) were, respectively, very close to the actual weight (0.98 N) and
471 family-predicted weight (4.58 N, 95% CI = [4.36 4.79]) of the outlier. As was the case for the Linear+
472 group, the two-Gaussian mixture model fit to the Linear- group picked out a cluster of non-learners and a
473 smaller cluster of learners, whose means (3.08 N, 95% CI = [2.75, 3.77] and 4.26 N, 95% CI = [4.07,
474 4.73]) respectively correspond to the actual weight (2.94 N) and family-predicted weight (4.66 N, 95% CI
475 = [4.52, 4.79]) of the outlier.

476 Overall, the results of this large-sample web-based experiment clearly support the object families
477 hypothesis over the associative map hypothesis. At the level of single participants, the outlier was either
478 encoded as a family member, in which case lift errors were ignored, or it was identified as a distinct
479 individual, in which case lift errors drove complete learning of the outlier's weight.

480 Discussion

481 We have examined how the mechanical properties of objects we interact with are represented in memory.
482 In a series of experiments, we provide evidence that ‘motor memories’ of objects are organized in terms
483 of families. More specifically, we show that when encountering a set of new objects whose size and
484 weight covary, participants have a strong propensity to encode the objects as a family. The consequence
485 of this encoding is that an object that appears to be part of a previously learned family, but is an outlier in
486 terms of weight, may nevertheless be classified as a family member. In this case, participants predict the
487 outlier’s weight based on the family and never learn its actual weight. This ‘family effect’ on the outlier
488 can be anterograde, such that the family interferes with learning the weight of a newly introduced outlier,
489 or retrograde, such that an already-learned outlier weight will be forgotten when the family is introduced.

490 We also show that there is a weight threshold at which a sufficiently deviant outlier will ‘escape’ the
491 family and be learned as an individual object. Moreover, we show that the error experienced when lifting
492 an outlier that is encoded as a family member updates the estimated weights of the other family members.
493 However, if the outlier has been learned as an individual, such updating is not observed. Additionally, we
494 show that the threshold that determines whether an outlier is classified as an individual or a family
495 member depends on recent sensorimotor experience.

496 Two broad approaches have been used in motor control to examine how dynamics, experienced during
497 arm and hand movements, are represented in memory. The first approach involves applying novel
498 dynamics, or ‘force fields’, to the hand. Typically this has been done by asking participants to move a
499 handle, which is attached to a robotic manipulandum and visually represented as a cursor, between visual
500 targets located in a horizontal plane. This work has focused on the reference frame in which individual
501 force fields are represented³⁷⁻⁴¹, and on contextual factors that enable people to learn two different force
502 fields that apply forces in opposite directions^{40,42-56}. Although force fields may, arguably, be viewed as
503 objects (at least in some contexts)⁵⁷⁻⁵⁹, this previous work has not examined how memories of multiple
504 objects might be organized. The second approach to investigating how dynamics are represented in
505 memory focuses on weight prediction when lifting objects, which is critical for dexterous manipulation.
506 This work has shown that people can exploit learned associations, or ‘priors’, between size and weight,
507 and between material and weight, to estimate the weight of an object^{16,20,22,60,61}. Although such priors are
508 often useful, for many objects that we interact with they do not provide accurate weight predictions.
509 Importantly, once an object has been lifted, people can form a long-lasting ‘object-specific’ memory of
510 the object’s actual weight^{16,20,22,24-26}. However, the question of how motor memories of the myriad objects
511 we interact with are represented and organized has not been addressed.

512 Where in the brain might motor memories of objects be stored? According to a well-known
513 neuroanatomical framework for understanding visual processing in the primate brain, the dorsal visual
514 pathway, in parietofrontal cortex, supports visual processing for action, whereas the ventral visual
515 pathway, in ventrot temporal cortex, supports visual processing for perception⁶². This framework arose
516 primarily from studies examining reaching and grasping movements directed towards objects, where the
517 relevant object properties (e.g., size, shape, location) can be directly appreciated through vision. The
518 control of these actions involves mapping these visual features onto motor commands to move and shape
519 the hand^{28,63-65}, and there is abundant evidence that parietofrontal cortex is engaged in such computations
520⁶⁶⁻⁷⁰. However, as emphasized above, skilled object manipulation requires knowledge of mechanical
521 properties, which cannot be directly appreciated through vision and must instead be estimated based on
522 object memories linking visual and mechanical properties. Some evidence suggests that such memories
523 could involve parietal and premotor regions of the dorsal pathway⁷¹⁻⁷⁵. However, the maintenance of
524 durable memory representations of objects is more commonly associated with the ventral visual pathway
525⁷⁶⁻⁸⁰. Given that category selectivity is a well-established organizational feature of ventrot temporal cortex
526^{12,81}, it seems plausible that the ventral pathway also plays a role in categorizing the mechanical properties
527 of objects. Consistent with this view, it has been shown that, in the context of lifting, object weight is
528 represented in the lateral occipital complex (LOC)⁸², an object-selective ventral region also known to be

529 active during reaching and grasping^{83,84}. On the other hand, LOC does not appear to represent object mass
530 that can be inferred when simply viewing objects interacting⁸⁵.

531 Beyond the dorsal and ventral visual pathways, several other candidate brain regions may be involved in
532 learning object families in the service of dexterous manipulation. For instance, predictive encoding of
533 object weight has also been demonstrated in single-cell recordings of Purkinje neurons^{86,87}, which may
534 arise from cerebellar internal models of the dynamics of different types of objects^{17,88,89}. Likewise, there
535 is considerable evidence from human imaging studies and non-human primate neurophysiological studies
536 for the role of prefrontal cortex and the striatum in perceptual category learning^{9,10,90-96}, but it remains
537 unknown whether these areas are also recruited in organizing objects based on their learned motor
538 properties.

539 Current theories of motor learning often focus on graded generalization of learning across various
540 stimulus and motor parameters as a revealing feature of the underlying computations^{38,97-99}. In particular,
541 graded patterns of generalization have been taken as evidence that motor learning fundamentally involves
542 associating contextual features of a movement with the target motor parameters in a continuous
543 multi-dimensional space, often termed an associative map. The theoretical significance of our study is that
544 it provides multiple, converging pieces of evidence for a fundamentally different type of
545 organization—motor memories of objects are organized categorically, into families. Our key result is the
546 family effect itself, wherein an outlier object is persistently encoded as a family member, despite greatly
547 deviating from its expected weight. In contrast, the prediction of an associative map account is that these
548 outliers would eventually be learned, since they are visually and haptically discriminable from the family
549 (as shown by the accurate learning in the Uncorr+ condition).

550 In our experiments, we generally observed incomplete learning of the outlier when averaging anticipatory
551 forces across participants. At first glance, partial learning could be explained by an associative map model
552 where the neighboring objects reduce the estimated weight of the outlier by local generalization.
553 However, seemingly partial learning is also consistent with the object families hypothesis. In particular,
554 partial learning in the group averages could result from averaging together a subgroup of highly accurate
555 learners with a separate subgroup of complete non-learners, who differ in their threshold for reclassifying
556 the outlier as an individual. This latter interpretation was confirmed by our large-sample, web-based
557 experiment, which revealed that individual differences in outlier learning followed an all-or-nothing
558 pattern. At the end of the experiment, participants had either learned to classify the outlier as a unique
559 individual and accurately estimated its weight, or they still encoded it as a family member and incorrectly
560 estimated its weight based on the family representation.

561 Our single-trial generalization results, obtained from a separate analysis, also favor a categorical
562 organization of motor memory over a continuous, associative map. We found that the way that the outlier
563 object was classified—either as a family member or an individual—had a dramatic effect on
564 outlier-to-family generalization. When the outlier object was classified as a family member, strong
565 generalization was observed, whereas when it was classified as an individual, negligible generalization
566 was observed. This qualitative change in generalization was observed across participants in different

567 conditions, as well as within the same participants who, during learning, reclassified the outlier from a
568 family member to an individual. These results strongly support the idea that motor memories of objects
569 are organized categorically, rather than continuously, which would predict graded generalization as a
570 function of error magnitude and sensory similarity. By eliciting separate visual classification of the outlier
571 and the family objects, we were able to suddenly ‘shut off’ inter-object error generalization.

572 We also found that when the weight of the outlier was gradually increased from 1.2 to 1.5 kg, participants
573 generally failed to learn its weight, even though it reached the same weight as the outlier that, when
574 introduced abruptly, was learned. One interpretation of this finding is that first experiencing the 1.2-kg
575 outlier, and then experiencing incrementally increasing weights, broadened the category by increasing the
576 within-category variability, as shown in perceptual and conceptual categorization^{30–32}. Another possible
577 account for this finding is that category labels are ‘sticky’, and that once the test object was labeled as a
578 family member, there was resistance to relabeling it as an individual, similar to the hysteretic effects
579 reported in perceptual categorization^{33–35}. However, it seems plausible that the 1.5-kg outlier was initially
580 labeled as a family member as participants’ anticipatory forces on the first lift of this object were based on
581 the density of the family. If so, then relabeling occurred when this extreme outlier was learned, arguing
582 against the ‘stickiness’ account. On the other hand, the stickiness hypothesis could account for the results
583 we observed when the outlier weight was initially set to 1.5 kg and then gradually decreased to 1.2 kg. In
584 this case, participants initially learned the extreme outlier and continued to accurately predict its
585 weight—and hence to categorize it as an individual—even as its weight decreased to a level that, when
586 introduced abruptly, was not learned. Alternatively, it is possible that learning the extreme 1.5-kg outlier
587 as a distinct individual object caused the category boundary for the training objects to contract, such that a
588 1.2-kg outlier remained outside the learned family, perhaps because the individuated outlier effectively
589 forms a competing category. Note that work on sensorimotor adaptation has shown that participants do
590 not become aware of visual or force perturbations that are introduced gradually^{100–105}. Since participants
591 adapt to these gradually increasing perturbations, they never see large errors, which presumably explains
592 why they do not become aware of the perturbation. In contrast, in our experiment with a gradually
593 increasing outlier weight, participants did not adapt (*i.e.*, they continued to predict the outlier weight
594 based on the family density). Thus, they experienced larger and larger errors, ultimately experiencing the
595 same error that drove learning when the 1.5-kg outlier was introduced abruptly. The reason that
596 participants learned the 1.5-kg outlier when introduced abruptly, but not when introduced gradually, may
597 be that they are sensitive to the change in error, as opposed to error *per se*.

598 Although the formation of motor memories has historically been viewed as a largely implicit process,
599 recent research on motor learning and adaptation has emphasized the role of explicit processes. For
600 example, when reaching under a visuomotor rotation, participants often learn to use an explicit re-aiming
601 strategy to reduce movement errors^{106–108}, and can quickly recall and implement this strategy when
602 re-exposed to the rotation at a later time^{109,110}. However, the use of explicit, or declarative, knowledge in
603 the control of action is perhaps most evident in object manipulation tasks. First, it is clear that people
604 often have explicit knowledge of the weights of objects they interact with. That is, if asked, they can
605 typically report the expected weight of an object before lifting it. In general, weight prediction in the
606 context of action (*i.e.*, for controlling lift forces) does not appear to require significant working memory

607 resources. However, working memory resources *are* required when lifting unusually weighted objects
608 (e.g., objects whose weights vary inversely with size)^{23,26}. In the context of the current study, we suggest
609 that working memory load is substantially reduced when lifting objects that are classified as family
610 members as opposed to individuals. This idea is supported by our finding that response times were
611 significantly greater when lifting a set of objects that were not classified as a family (*i.e.*, when weight
612 was uncorrelated with size).

613 By showing that dexterous object manipulation relies on learned representations of categories (and
614 individuals), our findings open the door for future work that connects theories of human category
615 learning, developed in the context of perception and cognition, with theories of motor control. The vast
616 literature on category learning has identified and debated a variety of key issues, including why certain
617 categorizations are harder to learn than others^{10,111}, whether category knowledge is encoded using
618 prototype, exemplar, or decision-bound representations^{112–114}, and how the relative contributions of
619 explicit ‘rule-based’ and implicit ‘information-integration’ processes are modulated by the relevant
620 perceptual dimensions and category structure of a stimulus domain^{10,115,116}. A detailed review of how the
621 pertinent findings from this literature might inform our understanding of dexterous object manipulation
622 (and vice versa) is well beyond the scope of this article, but it is nonetheless clear that there is a pressing
623 need for greater attention to these connections. However, focusing more narrowly on accounting for the
624 present findings, it is notable that many existing process-level (*i.e.*, trial-by-trial) models of category
625 learning posit a mechanism that allows for the creation of a new category in memory when an observation
626 deviates sufficiently from previously learned categories^{10,117–122}. These various treatments can all be
627 viewed as instances of non-parametric Bayesian models that leverage the hierarchical Dirichlet process, a
628 statistically principled approach to clustering data into a theoretically infinite number of components
629^{123,124}. Importantly, this approach has recently been applied to successfully account for an unprecedented
630 range of phenomena in motor learning¹²⁵, suggesting that similar computations could also underlie the
631 (in)ability to learn the weight of an outlier object in our lifting task.

632 In general, learning a family of objects based on covarying size and weight, as in this study, is presumably
633 just one example of a more general tendency to compactly encode the covariability of observable sensory
634 features and latent mechanical properties. Previous work has shown that people can learn more complex
635 ‘structures’ in motor control tasks (e.g., visuomotor rotations and skews), but has not distinguished
636 between categorical and associative representations^{126,127}. Categorical encoding amounts to carving the
637 sparse, high-dimensional space of sensorimotor information into circumscribed, lower-dimensional object
638 categories, providing a number of benefits. First, it allows for more robust interpolation and extrapolation
639 from past sensorimotor experience by shoehorning ambiguous new items into predictable categories.
640 Second, it reduces the temporal costs associated with specifically identifying objects, which would
641 involve deeper traversal into object memory. Third, when working with multiple objects from the same
642 family, this strategy conserves working memory resources that would otherwise be expended on object
643 individuation. Lastly, categorical organization also conserves long-term memory resources by maintaining
644 only abstract descriptions of relevant family structure, rather than a detailed map of all sensorimotor
645 properties, helping to address the curse of dimensionality. In contrast, although learning about individual
646 objects may increase accuracy in some circumstances, this would come at the cost of significantly

647 increased demands on attention (for visual recognition), cognitive control (for switching between
648 memories), and memory (for storage). Therefore, in combination with context-sensitive reflexes and other
649 rapid corrective mechanisms, a categorical memory of object properties affords tradeoffs between
650 accuracy and memory that can be balanced as needed to support our unmatched ability to skillfully
651 manipulate many different kinds of objects.

652 **Materials and Methods**

653 We first describe the in-laboratory experiments before describing the web-based experiments.

654 **Laboratory experiments**

655 **Participants**

656 A total of 80 participants (42 males, 38 females) aged 18 to 45 years old (median 24) were recruited for
657 the laboratory experiments. Participants were right-handed according to the Edinburgh handedness
658 questionnaire, and reported that they had normal or corrected-to-normal vision and no prior diagnosis of a
659 movement disorder. They were compensated at a rate of \$17 per hour. All experiments were conducted in
660 accordance with the 1964 Declaration of Helsinki, following protocol approved by the Columbia
661 University Institutional Review Board. Written informed consent was obtained from all participants prior
662 to their participation.

663 **Apparatus**

664 Experiments were performed using a 3BOT three-dimensional robotic manipulandum and an Oculus Rift
665 DK2 (Menlo Park, CA) virtual reality headset, as well as a 2-button USB response pad (The Black Box
666 ToolKit Ltd., Sheffield, UK). The position of the 3BOT handle was measured using optical encoders
667 sampled at 5 kHz, and torque motors allowed forces (also updated at 5 kHz) to be generated on the
668 handle. Participants sat on a height-adjustable stool in front of a tabletop workspace and grasped the
669 3BOT handle with their right hand (Fig. 1a). The virtual reality headset was rigidly fixed to an aluminum
670 crossbeam and angled downwards by 30°. Stereoscopic visual stimuli were rendered on the headset using
671 custom OpenGL routines and the Psychophysics Toolbox¹²⁸. Auditory cues were provided through
672 Sennheiser HD201 (Old Lyme, CT) over-ear headphones.

673 **Task**

674 In our object ‘lifting’ task, the participant generates an upward force on an object that is initially fixed to
675 the surface beneath it, such that the object cannot move. The participant then presses a button, at which
676 time the surface disappears, releasing the object so that it is then free to move. The goal for the participant
677 is to match the upward force to the weight of the object so that the object does not move when it is
678 released. Participants performed this lifting task with five cylinders of equal radius (4.61 cm), but of
679 different heights (6, 7.5, 9, 10.5, and 12 cm), leading to five equally spaced volumes (400, 500, 600, 700,
680 and 800 cm³). Each cylinder was shaded, from smallest to largest, between orange and red according to
681 the Munsell color system (Hue: 10R, Value/Chroma: 3/10, 4/12, 5/14, 6/16, and 7/16). All objects were

682 visible throughout the task, except during rest breaks. The objects were positioned evenly around the edge
683 of a gray, semi-transparent carousel with a radius of 20 cm (Fig. 1b). The weight of each object varied
684 across the experimental conditions (see below).

685 Before each trial, the 3BOT moved the participant's hand passively to a start position 11 cm in front of
686 and 19 cm below the cyclopean eye (in gravity-oriented space) and clamped it there by a simulated stiff
687 spring (spring constant: 4000 N m^{-1} , damping coefficient: 2 N m s^{-1} , both acting in all directions). The
688 participant saw a stereoscopically rendered view of the five objects and the circular carousel (Fig. 1b).
689 The carousel rotated smoothly (750 ms) to bring a target object to the front and a 500-ms tone then
690 signaled the start of the trial. Note that at this point, the hand (*i.e.*, the center of the 3BOT handle) was
691 located at the center of the base of the target object. The participant then generated an upward lifting force
692 on the object (*i.e.*, against the simulated stiff spring) attempting to match its weight. When ready, the
693 participant pressed a button with their left hand that caused a portion of the carousel below the object to
694 open, thus releasing the object so that it was free to move. The physical interaction between the hand and
695 the object was then simulated haptically using the 3BOT. We simulated the object as a point-mass acted
696 upon by gravity and attached by a stiff, damped spring (acting in all three dimensions) to the center of the
697 handle. The spring constant was $4,000 \text{ N m}^{-1}$ and the damping coefficient was 2 N m s^{-1} with gravity set
698 at -9.81 m s^{-2} . We updated the location of the object both haptically and visually and generated the
699 appropriate forces on the hand. This method produces a stable, compelling haptic percept of a handheld
700 inertial mass. If the anticipatory force was more or less than the weight of the object, then the handle
701 would move upward or downward, respectively, until corrective motor commands re-stabilized the arm
702 posture. To encourage accurate performance, thin horizontal gray bars (2-mm radius, purely visual and
703 not haptic) were visible just above and below the target object from the start of the trial (not depicted in
704 Fig. 1b). If the object remained between the horizontal bars for 500 ms, the bars disappeared, and the
705 participant completed the trial by raising the object at least 3 cm above the start position and replacing it
706 on the carousel, where a virtual haptic surface was now simulated to allow full unloading of lift forces
707 prior to the next trial. However, if the object crossed one of the bars, it turned red and a white-noise audio
708 burst was played. The object had to be brought back within the bars before they would disappear, and
709 only then could the participant complete the trial by raising and replacing the object on the carousel. The
710 distance of the bars from the top and bottom edges of the object (*i.e.*, the amount of tolerated object
711 movement) varied according to the participant's performance: the demarcated region became 1 mm larger
712 following a trial where the object crossed a bar, up to a maximum tolerated deviation of $\pm 13 \text{ mm}$ (this
713 was also the initial width), and became 1 mm smaller after five consecutive trials where the object stayed
714 within the bars, down to a minimum tolerated deviation of $\pm 2 \text{ mm}$.

715 Feedback was also provided in the form of a per-trial score that depended on the absolute error between
716 the anticipatory force at the moment of the button press and the required force to support the object, with
717 $\text{score} = \max(0, 100 - 13 * |\text{error}|)$. The participant's cumulative score was displayed throughout the
718 experiment. The five highest-scoring previous participants' scores from the same condition were
719 displayed in a leaderboard beside their own score. This leaderboard was initially seeded based on the
720 score of a pilot run, which was multiplied by 1, 0.9, 0.8, 0.75, and 0.7 to produce five scores. These seed
721 scores were erased one by one as data were collected from the first five participants in each condition.

722 **Paradigm**

723 **Linear+ condition**

724 Fifteen participants (of an initial sample of 30) were randomly assigned to the Linear+ condition; the
725 other fifteen were assigned to the Uncorr+ condition (see below). The training objects (the two smallest
726 and two largest objects by volume) weighed 600, 750, 1050, and 1200 g, respectively, corresponding to a
727 constant density of 1.5 g cm^{-3} (Fig. 1d). The test object (or ‘outlier’) was the mid-size cylinder and
728 weighed 1200 g, corresponding to a density of 2.0 g cm^{-3} .

729 All participants were informed that the purpose of the experiment was to test their ability to learn and
730 recall the weights of a novel set of objects. The Linear+ condition began with a 120-trial training phase in
731 which the participant interacted only with the four training objects. The order of presentation was
732 pseudo-randomized in cycles where each object was presented once before any object was repeated, and
733 subject to the additional constraint that the first object presented in one cycle could not be the same as the
734 last object presented on the previous cycle. Following training, the test object (also called the outlier
735 object when introduced amongst a linear object family) was introduced for a 200-trial test phase. During
736 the test phase, in each five-trial cycle, the test object was always presented first, followed by the four
737 training objects in pseudo-random order, but subject to the additional constraint that for every four cycles,
738 each of the four training objects would be presented immediately after the test object (*i.e.*, on the second
739 trial of the cycle) exactly once.

740 To reduce the effects of fatigue, participants were required to take occasional 30-second breaks. During
741 these breaks, participants stopped holding the 3BOT handle, came out of the virtual reality headset, and
742 were encouraged to stretch their right arm and hand. These breaks occurred after trials 60, 120, and 200.
743 The experiment had a total of 320 trials and lasted approximately 45 minutes.

744 Prior to the experiment, the experimenter demonstrated the task by performing 10 or 15 trials of a
745 familiarization condition while the participant watched. The visual scene was displayed on a nearby
746 monitor so the participant could follow along. The participant then completed 30 trials of task
747 familiarization, where the object stimuli were three spheres (5-cm radius) that were blue, red, and green
748 (7.5B 6/8, 7.5R 6/18, 7.5GY 6/10) and weighed 500, 900, and 1300 g, respectively. During task
749 familiarization, the experimenter could choose to display or hide a bar graph that showed the real-time
750 load force on the handle. This visual aid helped participants calibrate to the range of forces they would be
751 asked to produce in the experiment, and prevented them from producing unnecessarily large forces.
752 Approximately ten familiarization trials were performed with full view of this visual feedback, followed
753 by approximately ten trials with short glimpses of the feedback prior to the button press, followed by
754 approximately ten trials without the visual feedback as in the actual experiment.

755 **Uncorr+ condition**

756 Fifteen participants were randomly assigned to the Uncorr+ condition. The Uncorr+ condition was similar
757 to the Linear+ condition, except the four training object weights (600, 750, 1050, and 1200 g) were

758 assigned randomly to the four training objects (Fig. 1f), subject to the constraint that the absolute value of
759 the Pearson correlation coefficient between volume and mass could not exceed 0.3. The test object had
760 the same weight as in the Linear+ condition.

761 ***Linear++ condition***

762 In the Linear++ condition, we recruited participants until we obtained a sample size of 9 after excluding
763 non-learners. The Linear++ condition was identical to the Linear+ condition, except the outlier object
764 weighed 1500 g (rather than 1200 g; Fig. 1e).

765 ***+Linear condition***

766 In the +Linear condition, we recruited participants until we obtained a sample size of 11 after excluding
767 non-learners. In the +Linear condition, the experiment began with a 30-trial training phase where
768 participants interacted only with the test object which weighed 1200 g. This was followed by a 200-trial
769 test phase identical to the Linear+ condition in which all 5 objects were lifted in each cycle. This was
770 followed by the 1:1 phase, which was a block of 10 cycles where, in each cycle, the test object was
771 presented four times and each of the four family objects was lifted once, for a total of 8 trials per cycle.
772 To limit the number of consecutive presentations of the test object in the 1:1 phase, we pseudorandomized
773 the trial sequence such that consecutive presentations of the test object occurred exactly 13 times, while
774 presentations of the test object with one, two, or three intervening trials from the last presentation of the
775 test object occurred exactly 15, 8, and 3 times, respectively. The +Linear condition had a total of 310
776 trials and rest breaks occurred after trials 90 and 190.

777 ***++Linear condition***

778 The ++Linear condition was identical to the +Linear condition except the outlier object weighed 1500 g
779 (rather than 1200 g).

780 ***Linear↗ condition***

781 In the Linear↗ condition, we recruited participants until we obtained a sample size of 9 after excluding
782 non-learners. The Linear↗ condition was identical to the Linear+ condition except that the outlier object's
783 weight (initially 1200 g) was iteratively increased by 50 g on trials 221, 261, 301, 341, 381, and 421, up
784 to a maximum of 1500 g. The length of the test phase was also increased to 340 trials, leading to a total of
785 480 trials. Rest breaks occurred after trials 60, 120, 220, 300, and 380.

786 ***Linear↘ condition***

787 The Linear↘ condition was identical to the Linear↗ condition except that the outlier initially weighed
788 1500 g and its weight was iteratively decreased by 50 g to 1200 g.

789 **Analysis**

790 **Data preprocessing**

791 The anticipatory force was taken as the average force applied in the upward direction over the final ten
792 samples (10 ms) of the clamp phase (Fig. 1c, trial phase 2). Response times were measured as the
793 duration from trial onset (defined as the beginning of trial phase 2, when the object carousel stopped
794 rotating) to the button press.

795 We excluded 322 anticipatory forces (1.15%) that were less than or equal to 1 N (typically due to an
796 accidental button press) or more than 3.5 scaled median absolute deviations away from the median
797 anticipatory force applied by a given participant for a given object. Similarly, we excluded 392 response
798 times (1.40%) that, following a log transformation, were more than 3.5 scaled median absolute deviations
799 from the median log-transformed response time. We then imputed the mean anticipatory force or reaction
800 time produced on non-outlying trials by other participants for the same object, cycle, and condition.

801 We also excluded participants (and hence recruited additional participants) who failed to learn the weights
802 of the training objects, as the goal of the experiment was to observe how learning of a new object is
803 affected by existing knowledge of object weights. Non-learners were defined as those whose anticipatory
804 forces during the final 15 cycles of the training phase did not show a highly significant ($\alpha = 0.01$) positive
805 correlation with the weights of the objects. In the Uncorr+ group, three participants were excluded by this
806 criterion. In the Linear+ and Linear \nwarrow groups, one participant from each group was excluded by this
807 criterion. This criterion was not applied in the +Linear and ++Linear groups because the training phase
808 involved only the test object.

809 **Statistical analysis**

810 In most motor learning experiments, there are between eight and twelve participants per experimental
811 group. This sample size provides sufficient power to detect the large effects typical of motor learning
812 experiments, where the effect of interest is observed in most if not all participants. As this was a new
813 experimental paradigm, in the first two experimental groups (Linear+ and Uncorr+) we recruited a sample
814 size of fifteen. In the Uncorr+ group, we observed significant learning of the outlier object with a large
815 effect size (Cohen's $d = 1.17$). Based on this value, we adopted a sample size of nine for the Linear++,
816 Linear \nwarrow , and Linear \nwarrow groups, aiming to achieve a statistical power exceeding 0.90 in our one-tailed
817 t -tests of outlier learning. In the +Linear and ++Linear conditions, we could not exclude individual
818 participants as non-learners as in the other conditions (see above). We therefore estimated a slightly
819 reduced effect size for sample size estimation (Cohen's $d = 1.00$), leading us to adopt a sample size of
820 eleven in order to achieve at least 0.90 power in these groups. Post-hoc power analyses of groups with
821 significant outlier learning confirmed that we achieved the desired power (Uncorr+: 0.98, Linear++: 0.92,
822 ++Linear: 0.96, Linear \nwarrow : 0.99).

823 In the Linear+, Linear++, Uncorr+, Linear \nwarrow , and Linear \nwarrow groups, learning of the training set at the end of
824 the training phase was measured using the Pearson correlation between actual object weight and

825 anticipatory force on trials between trial cycles 23 and 30. The Fisher z -transformation was used to
826 compute 95% confidence intervals.

827 To assess learning of the test object relative to the training objects, we compared the anticipatory force for
828 the test object to the force that would be expected based on the anticipatory forces for the four training
829 objects (*i.e.*, the ‘family-predicted’ weight). To do this, we fit a linear regression to the anticipatory forces
830 for the training objects as a function of volume in the final 16 trial cycles of the test phase. We calculated
831 the family-predicted weight of the test object based on the regression and the test object’s volume. Note
832 that because the test object’s volume was always in the middle of the training objects, the
833 family-predicted weight is equivalent to the mean anticipatory force produced for the four training
834 objects, hence the logic is also appropriate for the Uncorr+ condition. We used one-tailed t -tests to
835 evaluate the null hypothesis that the test object weight would not be learned. One-tailed tests are justified
836 because failure to learn the test object weight is a directional hypothesis, which includes the case where
837 the anticipatory force for the test object does not differ from the family-predicted weight, as well as the
838 case where it is less than the family-predicted weight. In the Linear↗ and Linear↖ groups, we also
839 conducted this analysis for the final four trial cycles of the initial portion of the test phase during which
840 the test object weight did not change.

841 In the first experiment, we conducted a two-way repeated-measures ANOVA on log-transformed response
842 times, with factors Group (two levels: Linear+ combined with Linear+ versus Uncorr+) and Epoch (four
843 levels: trial cycles 1-15, 16-30, 31-50, 51-70), and performed four follow-up one-tailed t -tests to examine
844 whether the main effect of Group was present in all four Epochs individually. In each of these groups, we
845 also tested for single-trial generalization at the start (first four cycles) and the end (final sixteen cycles) of
846 the test phase, as well as the change from start to end, using two-tailed t -tests.

847 We also directly compared the Linear↗ with the Linear++ group, and the Linear↖ with the Linear+
848 group, using two-tailed, two-sample t -tests on the anticipatory force for the test object in the final 16 trial
849 cycles of the test phase, when the outlier weight was similar for each pair of groups.

850 **Generalization analysis**

851 We analyzed how an interaction with the test object generalized to the ‘neighboring’ training objects (*i.e.*,
852 the 500- and 700- cm^3 objects) in the subsequent trial (Fig. 2g-i). During the test phase, the trial order in
853 each trial cycle was as follows: the test object came first, followed by a generalization trial with one of the
854 training objects, followed by the other three training objects (non-generalization trials). We measured
855 single-trial generalization γ_i for each training object i as the difference between the anticipatory force in
856 generalization trials y_i^G and the force \hat{y}_i^{NG} predicted by a model fit to non-generalization trials:
857

$$\gamma_i = y_i^G - \hat{y}_i^{NG}$$

858 The predicted force \hat{y}_i^{NG} was obtained from a linear model fit to all non-generalization trials in the test
859 phase, including a categorical main effect of training object indicated by the one-hot variable δ_i^j (one
860 when i equals j , zero otherwise), as well as a continuous main effect of object weight in the previous lift
861 x_{i-1} , and the interactions between these main effects:

862
$$\hat{y}_i^{NG} = \beta_0 + \sum_{j=2}^4 (\beta_{1(j)} \delta_i^j) + \beta_2 x_{t-1} + \sum_{j=2}^4 (\beta_{3(j)} \delta_i^j x_{t-1})$$

863 Web-based experiment

864 For the web-based experiments, we obtained complete data associated with 196 unique Amazon
865 Mechanical Turk Worker IDs (135 males, 60 females, 1 non-binary) aged 19 to 70 years old (median
866 31.5). These workers were paid \$1.50 upon successful submission of a complete dataset, and received an
867 additional bonus payment determined by dividing their final score by 100 (max bonus = \$0.01/trial =
868 \$1.60). Of these participants, 185 individuals reported using their right hand to control their input device
869 and 11 reported using their left hand. They were not screened for visual impairment or prior diagnosis of
870 movement disorder.

871 The web-based experiments were designed so that they could only be completed by individuals using the
872 Google Chrome web browser, in full-screen mode and with pointer lock enabled, on a computer with
873 graphics hardware that supports WebGL 2.0, and with a mouse (172 participants) or trackpad (24
874 participants). Dimensions of the full-screen window displaying the task ranged from (1093, 576) to (2560,
875 1410) pixels; actual monitor sizes were not collected.

876 The objects in the web-based experiments had radii of 2 cm and heights of 3, 4, 5, 6, and 7 cm. They were
877 arranged around a gray metallic ring, had springs attached to their tops, and were rendered via perspective
878 projection to a camera 40 cm behind and 10 cm above the top-center of the foremost object. Since there
879 was no haptic interface, feedback about object weight was provided through vision of the simulated
880 dynamics of a spring-mass-damper system (Fig. 5a). In the web-based Linear++, Linear+, Linear-, and
881 Linear-- conditions, the training objects always weighed 300, 400, 600, and 700 g, while the test object
882 weighed 900, 700, 300, or 100 g, respectively.

883 Trials of the web-based experiments were similar to the laboratory experiment, but simplified. There were
884 no auditory cues, haptic feedback, bars above and below the object, or a leaderboard. Each trial consisted
885 of two main phases (Fig. 5a): the clamp phase (trial phase 1), in which the participant clicked and dragged
886 to stretch the spring on top of the object, and the release phase, which was triggered by pressing the Shift
887 key with the spring stretched to a certain distance, and portrayed a simulation of the spring-mass-damper
888 dynamics that would result from the initial conditions created by the spring length (spring constant: 1,
889 damping coefficient: 0.01). The per-trial score y was related to the spring-length error in centimeters e by
890 $y = \max(0, 1 - e^2 / 2.25) * 100$. The duration of the release phase in seconds t (i.e., the inter-trial interval,
891 which serves as a time penalty) was modulated according to the spring-length error: $t = \min(0.4 * e^2, 12)$.
892 This time penalty was correlated with, but not exactly equal to, the decay time of the oscillations in the
893 visual feedback of the spring.

894 Participants received task familiarization through a single, repeatable demo trial that provided an
895 instructed walkthrough of a single trial with the largest of the four training objects. The total number of

896 trials was reduced by half compared to the in-laboratory Linear+ condition, with 60 training trials and 100
897 test trials. Rest breaks were not required.

898 The anticipatory force was measured as the amount of force exerted on the object by the visually
899 simulated spring on the final frame of the clamp phase (Fig. 5a, trial phase 1). Non-learners were defined
900 as those whose anticipatory forces for the training objects during the final 5 cycles of the training phase *or*
901 the final 5 cycles of the test phase did not show a mild positive correlation with the simulated weights (α
902 = 0.10). Forty-seven participants were excluded from the four groups of the web-based experiment by this
903 criterion, resulting in sample sizes of 37, 36, 37, and 39 individuals, respectively, in the Linear++,
904 Linear+, Linear-, and Linear-- groups. This high rate of exclusion was not due to task difficulty, but to the
905 fact that many participants in the web-based experiment adopted strategies that minimized effort at the
906 expense of time and accuracy. Additionally, we excluded as outliers any anticipatory forces that were
907 more than 4 scaled median absolute deviations from the median anticipatory force applied by a given
908 participant to a given object, resulting in 1398 exclusions (4.46%).

909 To estimate required sample sizes for the web-based experiments, we simulated bimodal distributions of
910 'learners' and 'non-learners' with different sample sizes and calculated the proportion of simulations in
911 which the two-Gaussian mixture model outperformed the single Gaussian model. We estimated that the
912 learner and non-learner group means would be separated by 3.5 standard deviations, and we assumed that
913 learners and non-learners are normally distributed, have equal variance, and occur in equal proportions.
914 We found that a sample size of 36 participants led the two-Gaussian model to be correctly favored by AIC
915 in 85% of our simulations.

916 We analyzed the distributions of anticipatory forces produced for the outlier in the final 5 cycles of the
917 test phase. We fit both a single-Gaussian and a two-Gaussian mixture model using the R package `mclust`
918^{129,130}, and estimated confidence intervals on the fit parameters by parametric bootstrap with 10,000
919 samples. Model comparisons based on AIC and BIC yielded the same pattern of results; we report only
920 AIC in the text.

921 All source data, analysis code, and figure generation code is available in the supplementary files.

922 Competing Interests

923 The authors have no competing interests to disclose.

924 References

- 925 1. Collins, A. M. & Quillian, M. R. Retrieval time from semantic memory. *Journal of Verbal Learning*
926 and *Verbal Behavior* **8**, 240–247 (1969).
- 927 2. Warrington, E. K. & Taylor, A. M. Two categorical stages of object recognition. *Perception* **7**,
928 695–705 (1978).
- 929 3. Mervis, C. B. & Rosch, E. Categorization of natural objects. *Annual Review of Psychology* **32**,
930 89–115 (1981).

931 4. Schacter, D. L. & Cooper, L. A. Implicit and explicit memory for novel visual objects: Structure and
932 function. *Journal of Experimental Psychology: Learning, Memory, and Cognition* **19**, 995–1009
933 (1993).

934 5. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle
935 fusiform ‘face area’ increases with expertise in recognizing novel objects. *Nature Neuroscience* **2**,
936 568–573 (1999).

937 6. Chao, L. L., Haxby, J. V. & Martin, A. Attribute-based neural substrates in temporal cortex for
938 perceiving and knowing about objects. *Nature Neuroscience* **2**, 913–919 (1999).

939 7. Chao, L. L. & Martin, A. Representation of manipulable man-made objects in the dorsal stream.
940 *NeuroImage* **12**, 478–484 (2000).

941 8. Humphreys, G. W. & Forde, E. M. Hierarchies, similarity, and interactivity in object recognition:
942 ‘category-specific’ neuropsychological deficits. *Behavioral and Brain Sciences* **24**, 453–76;
943 discussion 476–509 (2001).

944 9. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual
945 stimuli in the primate prefrontal cortex. *Science* **291**, 312–316 (2001).

946 10. Ashby, F. G. & Maddox, W. T. Human category learning. *Annual Review of Psychology* **56**, 149–178
947 (2005).

948 11. Kemp, C. & Tenenbaum, J. B. The discovery of structural form. *Proceedings of the National
949 Academy of Sciences of the United States of America* **105**, 10687–10692 (2008).

950 12. Kriegeskorte, N. *et al.* Matching categorical object representations in inferior temporal cortex of man
951 and monkey. *Neuron* **60**, 1126–1141 (2008).

952 13. Kourtzi, Z. & Connor, C. E. Neural representations for object perception: structure, category, and
953 adaptive coding. *Annual Review of Neuroscience* **34**, 45–67 (2011).

954 14. Mahon, B. Z. & Caramazza, A. What drives the organization of object knowledge in the brain?
955 *Trends in Cognitive Sciences* **15**, 97–103 (2011).

956 15. Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. A continuous semantic space describes the
957 representation of thousands of object and action categories across the human brain. *Neuron* **76**,
958 1210–1224 (2012).

959 16. Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. Visual size cues in the programming
960 of manipulative forces during precision grip. *Experimental Brain Research* **83**, 477–482 (1991).

961 17. Wolpert, D. M. & Flanagan, J. R. Motor prediction. *Current Biology* **11**, R729–32 (2001).

962 18. Flanagan, J. R., Bowman, M. C. & Johansson, R. S. Control strategies in object manipulation tasks.
963 *Current Opinion in Neurobiology* **16**, 650–659 (2006).

964 19. Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object
965 manipulation tasks. *Nature Reviews Neuroscience* **10**, 345–359 (2009).

966 20. Gordon, A. M., Westling, G., Cole, K. J. & Johansson, R. S. Memory representations underlying
967 motor commands used during manipulation of common and novel objects. *Journal of
968 Neurophysiology* **69**, 1789–1796 (1993).

969 21. Flanagan, J. R. & Beltzner, M. A. Independence of perceptual and sensorimotor predictions in the
970 size-weight illusion. *Nature Neuroscience* **3**, 737–741 (2000).

971 22. Baugh, L. A., Kao, M., Johansson, R. S. & Flanagan, J. R. Material evidence: interaction of
972 well-learned priors and sensorimotor memory when lifting objects. *Journal of Neurophysiology* **108**,

973 1262–1269 (2012).

974 23. Baugh, L. A., Yak, A., Johansson, R. S. & Flanagan, J. R. Representing multiple object weights:
975 competing priors and sensorimotor memories. *Journal of Neurophysiology* **116**, 1615–1625 (2016).

976 24. Johansson, R. S. & Westling, G. Coordinated isometric muscle commands adequately and
977 erroneously programmed for the weight during lifting task with precision grip. *Experimental Brain
978 Research* **71**, 59–71 (1988).

979 25. Flanagan, J. R., King, S., Wolpert, D. M. & Johansson, R. S. Sensorimotor prediction and memory in
980 object manipulation. *Canadian Journal of Experimental Psychology* **55**, 87–95 (2001).

981 26. Flanagan, J. R., Bittner, J. P. & Johansson, R. S. Experience can change distinct size-weight priors
982 engaged in lifting objects and judging their weights. *Current Biology* **18**, 1742–1747 (2008).

983 27. Zipser, D. & Andersen, R. A. A back-propagation programmed network that simulates response
984 properties of a subset of posterior parietal neurons. *Nature* **331**, 679–684 (1988).

985 28. Salinas, E. & Abbott, L. F. Transfer of coded information from sensory to motor networks. *The
986 Journal of Neuroscience* **15**, 6461–6474 (1995).

987 29. Pouget, A. & Sejnowski, T. J. Spatial transformations in the parietal cortex using basis functions.
988 *Journal of Cognitive Neuroscience* **9**, 222–237 (1997).

989 30. Rips, L. J. Similarity, typicality, and categorization. in *Similarity and Analogical Reasoning* (eds.
990 Vosniadou, S. & Ortony, A.) 21–59 (Cambridge University Press, 1989).

991 31. Huttenlocher, J., Hedges, L. V. & Vevea, J. L. Why do categories affect stimulus judgment? *Journal
992 of Experimental Psychology: General* **129**, 220–241 (2000).

993 32. Clayards, M., Tanenhaus, M. K., Aslin, R. N. & Jacobs, R. A. Perception of speech reflects optimal
994 use of probabilistic speech cues. *Cognition* **108**, 804–809 (2008).

995 33. Williams, D., Phillips, G. & Sekuler, R. Hysteresis in the perception of motion direction as evidence
996 for neural cooperativity. *Nature* **324**, 253–255 (1986).

997 34. Hock, H. S., Kelso, J. A. & Schöner, G. Bistability and hysteresis in the organization of apparent
998 motion patterns. *Journal of Experimental Psychology: Human Perception and Performance* **19**,
999 63–80 (1993).

1000 35. Poltoratski, S. & Tong, F. Hysteresis in the dynamic perception of scenes and objects. *Journal of
1001 Experimental Psychology: General* **143**, 1875–1892 (2014).

1002 36. Danion, F., Diamond, J. S. & Flanagan, J. R. The role of haptic feedback when manipulating
1003 nonrigid objects. *Journal of Neurophysiology* **107**, 433–441 (2012).

1004 37. Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor
1005 task. *The Journal of Neuroscience* **14**, 3208–3224 (1994).

1006 38. Krakauer, J. W., Pine, Z. M., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for
1007 vectorial planning of reaching trajectories. *The Journal of Neuroscience* **20**, 8916–8924 (2000).

1008 39. Malfait, N., Shiller, D. M. & Ostry, D. J. Transfer of motor learning across arm configurations. *The
1009 Journal of Neuroscience* **22**, 9656–9660 (2002).

1010 40. Davidson, P. R., Wolpert, D. M., Scott, S. H. & Flanagan, J. R. Common encoding of novel dynamic
1011 loads applied to the hand and arm. *The Journal of Neuroscience* **25**, 5425–5429 (2005).

1012 41. Berniker, M., Franklin, D. W., Flanagan, J. R., Wolpert, D. M. & Kording, K. Motor learning of
1013 novel dynamics is not represented in a single global coordinate system: evaluation of mixed
1014 coordinate representations and local learning. *Journal of Neurophysiology* **111**, 1165–1182 (2014).

1015 42. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. *Nature* **382**,
1016 252–255 (1996).

1017 43. Gandolfo, F., Mussa-Ivaldi, F. A. & Bizzi, E. Motor learning by field approximation. *Proceedings of*
1018 *the National Academy of Sciences of the United States of America* **93**, 3843–3846 (1996).

1019 44. Krakauer, J. W., Ghilardi, M. F. & Ghez, C. Independent learning of internal models for kinematic
1020 and dynamic control of reaching. *Nature Neuroscience* **2**, 1026–1031 (1999).

1021 45. Karniel, A. & Mussa-Ivaldi, F. A. Does the motor control system use multiple models and context
1022 switching to cope with a variable environment? *Experimental Brain Research* **143**, 520–524 (2002).

1023 46. Tong, C., Wolpert, D. M. & Flanagan, J. R. Kinematics and dynamics are not represented
1024 independently in motor working memory: evidence from an interference study. *The Journal of*
1025 *Neuroscience* **22**, 1108–1113 (2002).

1026 47. Caithness, G. *et al.* Failure to consolidate the consolidation theory of learning for sensorimotor
1027 adaptation tasks. *The Journal of Neuroscience* **24**, 8662–8671 (2004).

1028 48. Osu, R., Hirai, S., Yoshioka, T. & Kawato, M. Random presentation enables subjects to adapt to two
1029 opposing forces on the hand. *Nature Neuroscience* **7**, 111–112 (2004).

1030 49. Nozaki, D., Kurtzer, I. & Scott, S. H. Limited transfer of learning between unimanual and bimanual
1031 skills within the same limb. *Nature Neuroscience* **9**, 1364–1366 (2006).

1032 50. Howard, I. S., Ingram, J. N. & Wolpert, D. M. Composition and decomposition in bimanual dynamic
1033 learning. *The Journal of Neuroscience* **28**, 10531–10540 (2008).

1034 51. Addou, T., Krouchev, N. & Kalaska, J. F. Colored context cues can facilitate the ability to learn and
1035 to switch between multiple dynamical force fields. *Journal of Neurophysiology* **106**, 163–183 (2011).

1036 52. Howard, I. S., Ingram, J. N., Franklin, D. W. & Wolpert, D. M. Gone in 0.6 seconds: the encoding of
1037 motor memories depends on recent sensorimotor states. *The Journal of Neuroscience* **32**,
1038 12756–12768 (2012).

1039 53. Howard, I. S., Wolpert, D. M. & Franklin, D. W. The effect of contextual cues on the encoding of
1040 motor memories. *Journal of Neurophysiology* **109**, 2632–2644 (2013).

1041 54. Sheahan, H. R., Franklin, D. W. & Wolpert, D. M. Motor Planning, Not Execution, Separates Motor
1042 Memories. *Neuron* **92**, 773–779 (2016).

1043 55. Heald, J. B., Ingram, J. N., Flanagan, J. R. & Wolpert, D. M. Multiple motor memories are learned to
1044 control different points on a tool. *Nature Human Behaviour* **2**, 300–311 (2018).

1045 56. McGarity-Shipley, M. R. *et al.* Motor memories in manipulation tasks are linked to contact goals
1046 between objects. *Journal of Neurophysiology* **124**, 994–1004 (2020).

1047 57. Cothros, N., Wong, J. D. & Gribble, P. L. Are there distinct neural representations of object and limb
1048 dynamics? *Experimental Brain Research* **173**, 689–697 (2006).

1049 58. Cothros, N., Wong, J. & Gribble, P. L. Visual cues signaling object grasp reduce interference in
1050 motor learning. *Journal of Neurophysiology* **102**, 2112–2120 (2009).

1051 59. Kluzik, J., Diedrichsen, J., Shadmehr, R. & Bastian, A. J. Reach Adaptation: What Determines
1052 Whether We Learn an Internal Model of the Tool or Adapt the Model of Our Arm? *Journal of*
1053 *Neurophysiology* **100**, 1455–1464 (2008).

1054 60. Cole, K. J. Lifting a familiar object: visual size analysis, not memory for object weight, scales lift
1055 force. *Experimental Brain Research* **188**, 551–557 (2008).

1056 61. Buckingham, G., Cant, J. S. & Goodale, M. A. Living in a material world: how visual cues to

1057 material properties affect the way that we lift objects and perceive their weight. *Journal of*
1058 *Neurophysiology* **102**, 3111–3118 (2009).

1059 62. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. *Trends in*
1060 *Neurosciences* **15**, 20–25 (1992).

1061 63. Arbib, M. A. Perceptual structures and distributed motor control. in *Handbook of Physiology-The*
1062 *Nervous System II* (ed. Brooks, V. B.) 1449–1480 (American Physiological Society, 1981).

1063 64. Jeannerod, M. Intersegmental coordination during reaching at natural visual objects. in *Attention and*
1064 *performance IX* (eds. Long, J. & Baddeley, A.) 153–169 (Erlbaum, 1981).

1065 65. Pouget, A. & Snyder, L. H. Computational approaches to sensorimotor transformations. *Nature*
1066 *Neuroscience* **3 Suppl**, 1192–1198 (2000).

1067 66. Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms
1068 of visuomotor transformation. *Trends in Neurosciences* **18**, 314–320 (1995).

1069 67. Rizzolatti, G. & Luppino, G. The cortical motor system. *Neuron* **31**, 889–901 (2001).

1070 68. Castiello, U. & Begliomini, C. The Cortical Control of Visually Guided Grasping. *The Neuroscientist*
1071 **14**, 157–170 (2008).

1072 69. Grafton, S. T. The cognitive neuroscience of prehension: recent developments. *Experimental Brain*
1073 *Research* **204**, 475–491 (2010).

1074 70. Battaglia-Mayer, A. & Caminiti, R. Parieto-frontal networks for eye–hand coordination and
1075 movements. in *Handbook of Clinical Neurology-The Parietal Lobe* (eds. Vallar, G. & Coslett, H. B.)
1076 vol. 151 499–524 (2018).

1077 71. Chouinard, P. A., Leonard, G. & Paus, T. Role of the Primary Motor and Dorsal Premotor Cortices in
1078 the Anticipation of Forces during Object Lifting. *The Journal of Neuroscience* **25**, 2277–2284
1079 (2005).

1080 72. Jenmalm, P., Schmitz, C., Forssberg, H. & Ehrsson, H. H. Lighter or Heavier Than Predicted: Neural
1081 Correlates of Corrective Mechanisms during Erroneously Programmed Lifts. *The Journal of*
1082 *Neuroscience* **26**, 9015–9021 (2006).

1083 73. Chouinard, P. A., Large, M.-E., Chang, E. C. & Goodale, M. A. Dissociable neural mechanisms for
1084 determining the perceived heaviness of objects and the predicted weight of objects during lifting: an
1085 fMRI investigation of the size-weight illusion. *Neuroimage* **44**, 200–212 (2009).

1086 74. Freedman, D. J. & Assad, J. A. Distinct Encoding of Spatial and Nonspatial Visual Information in
1087 Parietal Cortex. *The Journal of Neuroscience* **29**, 5671–5680 (2009).

1088 75. van Nuenen, B. F. L., Kuhtz-Buschbeck, J., Schulz, C., Bloem, B. R. & Siebner, H. R.
1089 Weight-Specific Anticipatory Coding of Grip Force in Human Dorsal Premotor Cortex. *The Journal*
1090 *of Neuroscience* **32**, 5272–5283 (2012).

1091 76. Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in
1092 superior temporal sulcus of the macaque. *Journal of Neurophysiology* **46**, 369–384 (1981).

1093 77. Ungerleider, L. G. & Haxby, J. V. ‘What’ and ‘where’ in the human brain. *Current Opinion in*
1094 *Neurobiology* **4**, 157–165 (1994).

1095 78. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. *Nature*
1096 *Neuroscience* **2**, 1019–1025 (1999).

1097 79. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object
1098 recognition. *Vision Research* **41**, 1409–1422 (2001).

1099 80. Erez, J., Cusack, R., Kendall, W. & Barense, M. D. Conjunctive Coding of Complex Object
1100 Features. *Cerebral Cortex* **26**, 2271–2282 (2016).

1101 81. Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its
1102 role in categorization. *Nature Reviews Neuroscience* **15**, 536–548 (2014).

1103 82. Gallivan, J. P., Cant, J. S., Goodale, M. A. & Flanagan, J. R. Representation of Object Weight in
1104 Human Ventral Visual Cortex. *Current Biology* **24**, 1866–1873 (2014).

1105 83. Culham, J. C. *et al.* Visually guided grasping produces fMRI activation in dorsal but not ventral
1106 stream brain areas. *Experimental Brain Research* **153**, 180–189 (2003).

1107 84. Monaco, S. *et al.* Functional Magnetic Resonance Imaging Adaptation Reveals the Cortical
1108 Networks for Processing Grasp-Relevant Object Properties. *Cerebral Cortex* **24**, 1540–1554 (2014).

1109 85. Schwettmann, S., Tenenbaum, J. B. & Kanwisher, N. Invariant representations of mass in the human
1110 brain. *eLife* **8**, (2019).

1111 86. Smith, A. M., Dugas, C., Fortier, P., Kalaska, J. & Picard, N. Comparing Cerebellar and Motor
1112 Cortical Activity in Reaching and Grasping. *Le Journal Canadien des Sciences Neurologiques* **20**,
1113 S53–S61 (1993).

1114 87. Mason, C. R., Hendrix, C. M. & Ebner, T. J. Purkinje Cells Signal Hand Shape and Grasp Force
1115 During Reach-to-Grasp in the Monkey. *Journal of Neurophysiology* **95**, 144–158 (2006).

1116 88. Imamizu, H. *et al.* Human cerebellar activity reflecting an acquired internal model of a new tool.
1117 *Nature* **403**, 192–195 (2000).

1118 89. Burszty, L. L. C. D., Ganesh, G., Imamizu, H., Kawato, M. & Flanagan, J. R. Neural Correlates of
1119 Internal-Model Loading. *Current Biology* **16**, 2440–2445 (2006).

1120 90. Reber, P. J., Stark, C. E. L. & Squire, L. R. Cortical areas supporting category learning identified
1121 using functional MRI. *Proceedings of the National Academy of Sciences* **95**, 747–750 (1998).

1122 91. Vogels, R., Sary, G., Dupont, P. & Orban, G. A. Human Brain Regions Involved in Visual
1123 Categorization. *NeuroImage* **16**, 401–414 (2002).

1124 92. Seger, C. A. & Miller, E. K. Category Learning in the Brain. *Annual Review of Neuroscience* **33**,
1125 203–219 (2010).

1126 93. Antzoulatos, E. G. & Miller, E. K. Differences between Neural Activity in Prefrontal Cortex and
1127 Striatum during Learning of Novel Abstract Categories. *Neuron* **71**, 243–249 (2011).

1128 94. Antzoulatos, E. G. & Miller, E. K. Increases in Functional Connectivity between Prefrontal Cortex
1129 and Striatum during Category Learning. *Neuron* **83**, 216–225 (2014).

1130 95. Bowman, C. R. & Zeithamova, D. Abstract Memory Representations in the Ventromedial Prefrontal
1131 Cortex and Hippocampus Support Concept Generalization. *The Journal of Neuroscience* **38**,
1132 2605–2614 (2018).

1133 96. Raz, G. & Saxe, R. Learning in Infancy Is Active, Endogenously Motivated, and Depends on the
1134 Prefrontal Cortices. *Annual Review of Developmental Psychology* **2**, 247–268 (2020).

1135 97. Thoroughman, K. A. & Shadmehr, R. Learning of action through adaptive combination of motor
1136 primitives. *Nature* **407**, 742–747 (2000).

1137 98. Donchin, O., Francis, J. T. & Shadmehr, R. Quantifying Generalization from Trial-by-Trial Behavior
1138 of Adaptive Systems that Learn with Basis Functions: Theory and Experiments in Human Motor
1139 Control. *The Journal of Neuroscience* **23**, 9032–9045 (2003).

1140 99. Ingram, J. N., Sadeghi, M., Flanagan, J. R. & Wolpert, D. M. An error-tuned model for sensorimotor

1141 learning. *PLoS Computational Biology* **13**, e1005883 (2017).

1142 100. Kagerer, F. A., Contreras-Vidal, J. L. & Stelmach, G. E. Adaptation to gradual as compared with
1143 sudden visuo-motor distortions. *Experimental Brain Research* **115**, 557–561 (1997).

1144 101. Malfait, N. & Ostry, D. J. Is interlimb transfer of force-field adaptation a cognitive response to the
1145 sudden introduction of load? *The Journal of Neuroscience* **24**, 8084–8089 (2004).

1146 102. Klassen, J., Tong, C. & Flanagan, J. R. Learning and recall of incremental kinematic and dynamic
1147 sensorimotor transformations. *Experimental Brain Research* **164**, 250–259 (2005).

1148 103. Saijo, N. & Gomi, H. Multiple Motor Learning Strategies in Visuomotor Rotation. *PLoS ONE* **5**,
1149 e9399 (2010).

1150 104. Criscimagna-Hemminger, S. E., Bastian, A. J. & Shadmehr, R. Size of Error Affects Cerebellar
1151 Contributions to Motor Learning. *Journal of Neurophysiology* **103**, 2275–2284 (2010).

1152 105. Roemmich, R. T. & Bastian, A. J. Two ways to save a newly learned motor pattern. *Journal of
1153 Neurophysiology* **113**, 3519–3530 (2015).

1154 106. Mazzoni, P. & Krakauer, J. W. An Implicit Plan Overrides an Explicit Strategy during Visuomotor
1155 Adaptation. *The Journal of Neuroscience* **26**, 3642–3645 (2006).

1156 107. Anguera, J. A., Reuter-Lorenz, P. A., Willingham, D. T. & Seidler, R. D. Contributions of Spatial
1157 Working Memory to Visuomotor Learning. *Journal of Cognitive Neuroscience* **22**, 1917–1930
1158 (2010).

1159 108. Fernandez-Ruiz, J., Wong, W., Armstrong, I. T. & Flanagan, J. R. Relation between reaction time
1160 and reach errors during visuomotor adaptation. *Behavioural Brain Research* **219**, 8–14 (2011).

1161 109. Taylor, J. A., Krakauer, J. W. & Ivry, R. B. Explicit and Implicit Contributions to Learning in a
1162 Sensorimotor Adaptation Task. *The Journal of Neuroscience* **34**, 3023–3032 (2014).

1163 110. Huberdeau, D. M., Krakauer, J. W. & Haith, A. M. Dual-process decomposition in human
1164 sensorimotor adaptation. *Current Opinion in Neurobiology* **33**, 71–77 (2015).

1165 111. Shepard, R. N., Hovland, C. I. & Jenkins, H. M. Learning and memorization of classifications.
1166 *Psychological Monographs: General and Applied* **75**, 1–42 (1961).

1167 112. Posner, M. I. & Keele, S. W. On the genesis of abstract ideas. *Journal of Experimental Psychology*
1168 **77**, 353–363 (1968).

1169 113. Medin, D. L. & Schaffer, M. M. Context theory of classification learning. *Psychological Review* **85**,
1170 207–238 (1978).

1171 114. Ashby, F. G. & Townsend, J. T. Varieties of perceptual independence. *Psychol. Rev.* **93**, 154–179
1172 (1986).

1173 115. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U. & Waldron, E. M. A neuropsychological theory of
1174 multiple systems in category learning. *Psychological Review* **105**, 442–481 (1998).

1175 116. Ashby, F. G. & Maddox, W. T. Human category learning 2.0. *Annals of the New York Academy of
1176 Sciences* **1224**, 147–161 (2011).

1177 117. Hartigan, J. A. *Clustering Algorithms*. (John Wiley & Sons, Inc., 1975).

1178 118. Carpenter, G. A. & Grossberg, S. ART 2: self-organization of stable category recognition codes for
1179 analog input patterns. *Applied Optics* **26**, 4919–4930 (1987).

1180 119. Clapper, J. P. & Bower, G. H. Learning and applying category knowledge in unsupervised domains.
1181 *The Psychology of Learning and Motivation* **27**, 65–108 (1991).

1182 120. Anderson, J. R. The adaptive nature of human categorization. *Psychological Review* **98**, 409–429

1183 1183 (1991).

1184 121. Love, B. C., Medin, D. L. & Gureckis, T. M. SUSTAIN: a network model of category learning.
1185 *Psychological Review* **111**, 309–332 (2004).

1186 122. Vanpaemel, W., Storms, G. & Ons, B. A varying abstraction model for categorization. in
1187 *Proceedings of the 27th Annual Conference of the Cognitive Science Society* 2277–2282 (Lawrence
1188 Erlbaum Associates; Mahwah, NJ, 2005).

1189 123. Teh, Y. W., Jordan, M. I., Beal, M. J. & Blei, D. M. Sharing Clusters Among Related Groups:
1190 Hierarchical Dirichlet Processes. in *Advances in Neural Information Processing Systems* (eds. Saul,
1191 L., Weiss, Y. & Bottou, L.) vol. 17 (MIT Press, 2005).

1192 124. Griffiths, T. L., Canini, K. R., Sanborn, A. N. & Navarro, D. J. Unifying rational models of
1193 categorization via the hierarchical Dirichlet process. in *Proceedings of the 29th Annual Cognitive
1194 Science Society* 323–328 (Psychology Press, 2007).

1195 125. Heald, J. B., Lengyel, M. & Wolpert, D. M. Contextual inference underlies the learning of
1196 sensorimotor repertoires. *bioRxiv* (2020) doi:10.1101/2020.11.23.394320.

1197 126. Braun, D. A., Aertsen, A., Wolpert, D. M. & Mehring, C. Motor task variation induces structural
1198 learning. *Current Biology* **19**, 352–357 (2009).

1199 127. Braun, D. A., Mehring, C. & Wolpert, D. M. Structure learning in action. *Behavioural Brain
1200 Research* **206**, 157–165 (2010).

1201 128. Kleiner, M., Brainard, D. & Pelli, D. What's new in Psychtoolbox-3? *Perception* **36**, (2007).

1202 129. R Core Team. *R: A language and environment for statistical computing*. (R Foundation for Statistical
1203 Computing, Vienna, Austria, 2020).

1204 130. Fraley, C. & Raftery, A. E. MCLUST: Software for Model-Based Clustering, Density Estimation and
1205 Discriminant Analysis. (2002) doi:10.21236/ada459792.