
‌ 

1 Motor‌ ‌memories‌ ‌of‌ ‌object‌ ‌dynamics‌ ‌are‌ ‌categorically‌ ‌organized‌ ‌ 
‌ 

2 Evan‌ ‌Cesanek‌1*‌,‌ ‌Zhaoran‌ ‌Zhang‌1‌,‌ ‌James‌ ‌N.‌ ‌Ingram‌1‌,‌ ‌Daniel‌ ‌M.‌ ‌Wolpert‌1†‌,‌ ‌J.‌ ‌Randall‌ ‌Flanagan‌2†‌ ‌ 

‌ 
3 1‌Mortimer‌ ‌B.‌ ‌Zuckerman‌ ‌Mind‌ ‌Brain‌ ‌Behavior‌ ‌Institute,‌ ‌Columbia‌ ‌University,‌ ‌New‌ ‌York,‌ ‌NY,‌ ‌10027,‌‌ 
4 USA‌ ‌ 

‌ 
5 2‌Department‌ ‌of‌ ‌Psychology‌ ‌and‌ ‌Centre‌ ‌for‌ ‌Neuroscience‌ ‌Studies,‌ ‌Queen’s‌ ‌University,‌ ‌Kingston,‌ ‌ON,‌‌ 
6 K7L‌ ‌3N6,‌ ‌Canada‌ ‌ 

‌ 
7 *‌corresponding‌ ‌author:‌ ‌evan.cesanek@gmail.com‌ ‌ 
8 †‌equal‌ ‌contribution‌ ‌ 

‌ 
9 Abstract‌ ‌ 

10 The‌ ‌ability‌ ‌to‌ ‌predict‌ ‌the‌ ‌dynamics‌ ‌of‌ ‌objects,‌ ‌linking‌ ‌applied‌ ‌force‌ ‌to‌ ‌motion,‌ ‌underlies‌ ‌our‌ ‌capacity‌ ‌to‌‌ 
11 perform‌ ‌many‌ ‌of‌ ‌the‌ ‌tasks‌ ‌we‌ ‌carry‌ ‌out‌ ‌on‌ ‌a‌ ‌daily‌ ‌basis.‌ ‌Thus,‌ ‌a‌ ‌fundamental‌ ‌question‌ ‌is‌ ‌how‌ ‌the‌‌ 
12 dynamics‌ ‌of‌ ‌the‌ ‌myriad‌ ‌objects‌ ‌we‌ ‌interact‌ ‌with‌ ‌are‌ ‌organized‌ ‌in‌ ‌memory.‌ ‌Using‌ ‌a‌ ‌custom-built‌‌ 
13 three-dimensional‌ ‌robotic‌ ‌interface‌ ‌that‌ ‌allowed‌ ‌us‌ ‌to‌ ‌simulate‌ ‌objects‌ ‌of‌ ‌varying‌ ‌appearance‌ ‌and‌ ‌weight,‌‌ 
14 we‌ ‌examined‌ ‌how‌ ‌participants‌ ‌learned‌ ‌the‌ ‌weights‌ ‌of‌ ‌sets‌ ‌of‌ ‌objects‌ ‌that‌ ‌they‌ ‌repeatedly‌ ‌lifted.‌ ‌We‌ ‌find‌‌ 
15 strong‌ ‌support‌ ‌for‌ ‌the‌ ‌novel‌ ‌hypothesis‌ ‌that‌ ‌motor‌ ‌memories‌ ‌of‌ ‌object‌ ‌dynamics‌ ‌are‌ ‌organized‌‌ 
16 categorically,‌ ‌in‌ ‌terms‌ ‌of‌ ‌families,‌ ‌based‌ ‌on‌ ‌covariation‌ ‌in‌ ‌their‌ ‌visual‌ ‌and‌ ‌mechanical‌ ‌properties.‌ ‌A‌‌ 
17 striking‌ ‌prediction‌ ‌of‌ ‌this‌ ‌hypothesis,‌ ‌supported‌ ‌by‌ ‌our‌ ‌findings‌ ‌and‌ ‌not‌ ‌predicted‌ ‌by‌ ‌standard‌ ‌associative‌‌ 
18 map‌ ‌models,‌ ‌is‌ ‌that‌ ‌outlier‌ ‌objects‌ ‌with‌ ‌weights‌ ‌that‌ ‌deviate‌ ‌from‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌will‌ ‌never‌‌ 
19 be‌ ‌learned‌ ‌despite‌ ‌causing‌ ‌repeated‌ ‌lifting‌ ‌errors.‌ ‌ 

20 Introduction‌ ‌ 

21 Many‌ ‌theories‌ ‌about‌ ‌how‌ ‌objects‌ ‌are‌ ‌encoded‌ ‌in‌ ‌memory‌ ‌have‌ ‌been‌ ‌proposed‌ ‌‌1–15‌.‌ ‌These‌ ‌include‌ ‌theories‌‌ 
22 concerned‌ ‌with‌ ‌the‌ ‌semantic,‌ ‌perceptual,‌ ‌and‌ ‌functional‌ ‌properties‌ ‌of‌ ‌objects.‌ ‌For‌ ‌example,‌ ‌a‌ ‌hammer‌‌ 
23 may‌ ‌be‌ ‌semantically‌ ‌labeled‌ ‌as‌ ‌a‌ ‌tool,‌ ‌represented‌ ‌perceptually‌ ‌in‌ ‌terms‌ ‌of‌ ‌its‌ ‌shape,‌ ‌or‌ ‌evaluated‌‌ 
24 functionally‌ ‌in‌ ‌the‌ ‌context‌ ‌of‌ ‌a‌ ‌particular‌ ‌task.‌ ‌However,‌ ‌the‌ ‌mechanical‌ ‌properties‌ ‌of‌ ‌objects,‌ ‌which‌ ‌are‌‌ 
25 fundamentally‌ ‌important‌ ‌to‌ ‌human‌ ‌motor‌ ‌control,‌ ‌have‌ ‌received‌ ‌little‌ ‌attention‌ ‌in‌ ‌theories‌ ‌of‌ ‌object‌‌ 
26 memory.‌ ‌ 

‌ 
27 The‌ ‌majority‌ ‌of‌ ‌tasks‌ ‌we‌ ‌perform‌ ‌involve‌ ‌physical‌ ‌objects,‌ ‌and‌ ‌skilled‌ ‌interaction‌ ‌with‌ ‌these‌ ‌objects‌‌ 
28 depends‌ ‌critically‌ ‌on‌ ‌our‌ ‌ability‌ ‌to‌ ‌predict‌ ‌their‌ ‌mechanical‌ ‌properties.‌ ‌For‌ ‌many‌ ‌of‌ ‌the‌ ‌objects‌ ‌that‌ ‌we‌‌ 
29 interact‌ ‌with,‌ ‌dexterous‌ ‌performance‌ ‌requires‌ ‌accurate‌ ‌predictions‌ ‌of‌ ‌weight‌ ‌‌16–19‌.‌ ‌For‌ ‌example,‌ ‌when‌‌ 
30 lifting‌ ‌an‌ ‌object‌ ‌from‌ ‌a‌ ‌surface,‌ ‌weight‌ ‌prediction‌ ‌allows‌ ‌us‌ ‌to‌ ‌produce‌ ‌the‌ ‌vertical‌ ‌forces‌ ‌required‌ ‌to‌ ‌raise‌‌ 
31 the‌ ‌object‌ ‌smoothly.‌ ‌When‌ ‌lifting‌ ‌an‌ ‌object‌ ‌for‌ ‌the‌ ‌first‌ ‌time,‌ ‌people‌ ‌will‌ ‌estimate‌ ‌its‌ ‌weight‌ ‌based‌ ‌on‌‌ 
32 visual‌ ‌information‌ ‌about‌ ‌its‌ ‌size‌ ‌and‌ ‌material‌ ‌properties‌ ‌‌20–23‌.‌ ‌However,‌ ‌once‌ ‌an‌ ‌object‌ ‌has‌ ‌been‌ ‌lifted,‌ ‌a‌‌ 
33 memory‌ ‌is‌ ‌formed‌ ‌of‌ ‌its‌ ‌actual‌ ‌(‌i.e.‌,‌ ‌directly‌ ‌sensed)‌ ‌weight,‌ ‌and‌ ‌this‌ ‌memory‌ ‌can‌ ‌be‌ ‌used‌ ‌to‌ ‌guide‌‌ 
34 subsequent‌ ‌lifts‌ ‌of‌ ‌the‌ ‌object‌ ‌‌22–26‌.‌ ‌Thus,‌ ‌in‌ ‌addition‌ ‌to‌ ‌intact‌ ‌sensory‌ ‌and‌ ‌motor‌ ‌function,‌ ‌skilled‌‌ 
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‌ 

35 manipulation—and‌ ‌thus‌ ‌the‌ ‌ability‌ ‌to‌ ‌perform‌ ‌most‌ ‌daily‌ ‌tasks—requires‌ ‌the‌ ‌capacity‌ ‌to‌ ‌form,‌ ‌and‌‌ 
36 quickly‌ ‌access,‌ ‌representations‌ ‌of‌ ‌object‌ ‌weights‌ ‌in‌ ‌memory.‌ ‌ 

‌ 
37 Here‌ ‌we‌ ‌investigated‌ ‌how‌ ‌the‌ ‌mechanical‌ ‌properties‌ ‌of‌ ‌the‌ ‌myriad‌ ‌objects‌ ‌we‌ ‌interact‌ ‌with‌ ‌are‌ ‌organized‌‌ 
38 in‌ ‌memory.‌ ‌To‌ ‌answer‌ ‌this‌ ‌question,‌ ‌we‌ ‌used‌ ‌a‌ ‌new‌ ‌three-dimensional‌ ‌robotic‌ ‌interface‌ ‌(Fig.‌ ‌1a)‌ ‌that,‌ ‌in‌‌ 
39 combination‌ ‌with‌ ‌a‌ ‌stereoscopic‌ ‌virtual‌ ‌reality‌ ‌system,‌ ‌allowed‌ ‌us‌ ‌to‌ ‌simulate‌ ‌objects‌ ‌of‌ ‌varying‌ ‌size,‌‌ 
40 weight,‌ ‌and‌ ‌appearance‌ ‌(Fig.‌ ‌1b).‌ ‌Objects‌ ‌were‌ ‌presented‌ ‌on‌ ‌a‌ ‌carousel‌ ‌and,‌ ‌on‌ ‌each‌ ‌trial,‌ ‌the‌ ‌participant‌‌ 
41 ‘lifted’‌ ‌the‌ ‌nearest‌ ‌object‌ ‌by‌ ‌first‌ ‌applying‌ ‌an‌ ‌upward‌ ‌force‌ ‌to‌ ‌the‌ ‌object,‌ ‌which‌ ‌was‌ ‌fixed‌ ‌to‌ ‌the‌ ‌surface‌‌ 
42 of‌ ‌the‌ ‌carousel‌ ‌and‌ ‌therefore‌ ‌could‌ ‌not‌ ‌move.‌ ‌When‌ ‌ready,‌ ‌the‌ ‌participant‌ ‌pressed‌ ‌a‌ ‌button‌ ‌with‌ ‌their‌‌ 
43 other‌ ‌hand,‌ ‌which‌ ‌caused‌ ‌the‌ ‌portion‌ ‌of‌ ‌the‌ ‌carousel‌ ‌below‌ ‌the‌ ‌object‌ ‌to‌ ‌open,‌ ‌releasing‌ ‌the‌ ‌object‌ ‌so‌ ‌that‌‌ 
44 it‌ ‌was‌ ‌free‌ ‌to‌ ‌move.‌ ‌The‌ ‌aim‌ ‌was‌ ‌to‌ ‌match‌ ‌the‌ ‌upward‌ ‌force‌ ‌to‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌object‌ ‌so‌ ‌that‌ ‌it‌ ‌would‌‌ 
45 not‌ ‌move‌ ‌up‌ ‌or‌ ‌down‌ ‌when‌ ‌released.‌ ‌Therefore,‌ ‌by‌ ‌measuring‌ ‌the‌ ‌force‌ ‌just‌ ‌prior‌ ‌to‌ ‌release,‌ ‌we‌ ‌could‌‌ 
46 precisely‌ ‌measure‌ ‌the‌ ‌participant’s‌ ‌weight‌ ‌prediction‌ ‌on‌ ‌every‌ ‌trial.‌ ‌Because‌ ‌the‌ ‌robot‌ ‌simulated‌ ‌the‌‌ 
47 mechanics‌ ‌of‌ ‌the‌ ‌object,‌ ‌the‌ ‌participant‌ ‌received‌ ‌direct‌ ‌haptic‌ ‌and‌ ‌visual‌ ‌feedback‌ ‌about‌ ‌both‌ ‌the‌ ‌object’s‌‌ 
48 weight‌ ‌and‌ ‌their‌ ‌motor‌ ‌error‌ ‌(Fig.‌ ‌1c).‌ ‌At‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌trial,‌ ‌the‌ ‌open‌ ‌portion‌ ‌of‌ ‌the‌ ‌carousel‌ ‌closed,‌ ‌and‌‌ 
49 the‌ ‌participant‌ ‌replaced‌ ‌the‌ ‌object.‌ ‌ 

‌ 
50 Using‌ ‌this‌ ‌task,‌ ‌we‌ ‌developed‌ ‌a‌ ‌novel‌ ‌motor‌ ‌learning‌ ‌paradigm‌ ‌in‌ ‌which‌ ‌participants‌ ‌repeatedly‌ ‌lifted‌ ‌a‌‌ 
51 set‌ ‌of‌ ‌five‌ ‌similar-looking‌ ‌objects‌ ‌of‌ ‌varying‌ ‌size‌ ‌and‌ ‌weight‌ ‌(Fig.‌ ‌1d-f;‌ ‌filled‌ ‌circles‌ ‌correspond‌ ‌to‌ ‌the‌‌ 
52 objects‌ ‌in‌ ‌Fig.‌ ‌1b).‌ ‌In‌ ‌our‌ ‌key‌ ‌experiment‌ ‌(Fig.‌ ‌1d),‌ ‌these‌ ‌objects‌ ‌included‌ ‌four‌ ‌training‌ ‌objects‌ ‌(the‌ ‌two‌‌ 
53 smallest‌ ‌and‌ ‌two‌ ‌largest)‌ ‌presented‌ ‌in‌ ‌an‌ ‌initial‌ ‌training‌ ‌phase,‌ ‌and‌ ‌an‌ ‌outlier‌ ‌object‌ ‌(the‌ ‌middle‌ ‌size)‌‌ 
54 introduced‌ ‌later‌ ‌in‌ ‌a‌ ‌test‌ ‌phase.‌ ‌The‌ ‌training‌ ‌objects‌ ‌had‌ ‌a‌ ‌common‌ ‌density,‌ ‌and‌ ‌therefore‌ ‌had‌ ‌a‌ ‌linear‌‌ 
55 relationship‌ ‌between‌ ‌size‌ ‌and‌ ‌weight.‌ ‌Although‌ ‌the‌ ‌size‌ ‌of‌ ‌the‌ ‌outlier‌ ‌was‌ ‌in‌ ‌the‌ ‌middle‌ ‌of‌ ‌the‌ ‌training‌‌ 
56 objects,‌ ‌its‌ ‌weight‌ ‌was‌ ‌greater‌ ‌than‌ ‌would‌ ‌be‌ ‌expected‌ ‌under‌ ‌the‌ ‌assumption‌ ‌that‌ ‌it‌ ‌had‌ ‌the‌ ‌same‌ ‌density‌‌ 
57 as‌ ‌the‌ ‌training‌ ‌objects.‌ ‌Using‌ ‌this‌ ‌lifting‌ ‌task,‌ ‌we‌ ‌could‌ ‌distinguish‌ ‌between‌ ‌two‌ ‌high-level‌ ‌hypotheses‌‌ 
58 about‌ ‌memory‌ ‌organization.‌ ‌ 

‌ 
59 First,‌ ‌the‌ ‌‘object‌ ‌families’‌ ‌hypothesis‌ ‌asserts‌ ‌that‌ ‌multiple‌ ‌objects‌ ‌are‌ ‌represented‌ ‌in‌ ‌memory‌ ‌by‌‌ 
60 clustering‌ ‌them‌ ‌into‌ ‌categories,‌ ‌or‌ ‌families.‌ ‌This‌ ‌hypothesis‌ ‌posits‌ ‌that‌ ‌the‌ ‌training‌ ‌objects‌ ‌and‌ ‌the‌ ‌outlier‌‌ 
61 will‌ ‌be‌ ‌represented‌ ‌as‌ ‌a‌ ‌single‌ ‌family‌ ‌(Fig.‌ ‌1d;‌ ‌green‌ ‌line),‌ ‌provided‌ ‌that‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌ ‌falls‌‌ 
62 within‌ ‌the‌ ‌family‌ ‌boundary‌ ‌(shaded‌ ‌green‌ ‌region).‌ ‌As‌ ‌a‌ ‌consequence,‌ ‌this‌ ‌hypothesis‌ ‌predicts‌ ‌that‌‌ 
63 participants‌ ‌will‌ ‌fail‌ ‌to‌ ‌learn‌ ‌the‌ ‌actual‌ ‌weight‌ ‌of‌ ‌an‌ ‌outlier‌ ‌that‌ ‌falls‌ ‌within‌ ‌the‌ ‌family‌ ‌boundary,‌ ‌and‌ ‌will‌‌ 
64 instead‌ ‌estimate‌ ‌the‌ ‌weight‌ ‌based‌ ‌on‌ ‌the‌ ‌family‌ ‌structure‌ ‌(open‌ ‌green‌ ‌circle).‌ ‌We‌ ‌refer‌ ‌to‌ ‌this‌ ‌predicted‌‌ 
65 effect‌ ‌as‌ ‌the‌ ‌‘family‌ ‌effect’.‌ ‌However,‌ ‌if‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌ ‌is‌ ‌extreme‌ ‌and‌ ‌falls‌ ‌beyond‌ ‌the‌ ‌family‌‌ 
66 boundary‌ ‌(Fig.‌ ‌1e),‌ ‌a‌ ‌separate‌ ‌memory‌ ‌will‌ ‌be‌ ‌formed‌ ‌for‌ ‌the‌ ‌outlier‌ ‌object.‌ ‌Thus,‌ ‌this‌ ‌model‌ ‌predicts‌ ‌an‌‌ 
67 all-or-nothing‌ ‌pattern‌ ‌of‌ ‌learning‌ ‌whereby,‌ ‌depending‌ ‌on‌ ‌their‌ ‌family‌ ‌boundary,‌ ‌a‌ ‌participant‌ ‌will‌ ‌either‌‌ 
68 fully‌ ‌learn‌ ‌the‌ ‌outlier‌ ‌weight‌ ‌or‌ ‌completely‌ ‌fail‌ ‌to‌ ‌learn‌ ‌it.‌ ‌ 
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‌ 

69 Figure‌ ‌1.‌ ‌Object‌ ‌families‌ ‌and‌ ‌associative‌ ‌maps‌ ‌make‌ ‌different‌ ‌predictions‌ ‌for‌ ‌an‌ ‌outlier‌ ‌lifting‌‌                           
70 task.‌‌‌(a)‌‌Participants‌‌grasped‌‌the‌‌handle‌‌of‌‌a‌‌three-dimensional‌‌robotic‌‌interface‌‌(3BOT)‌‌with‌‌their‌‌right‌‌                             
71 hand‌ ‌and‌ ‌viewed‌‌stereoscopic‌‌scenes‌‌(Oculus‌‌Rift).‌‌The‌‌3BOT‌‌could‌‌track‌‌movement‌‌and‌‌simulate‌‌the‌‌                             
72 haptic‌‌experience‌‌of‌‌manipulating‌‌objects.‌‌(b)‌‌Screenshots‌‌of‌‌the‌‌key‌‌stages‌‌of‌‌the‌‌lifting‌‌task.‌‌See‌‌text‌‌                                 
73 for‌ ‌details.‌ ‌(c)‌ ‌Load‌ ‌force‌ ‌and‌ ‌vertical‌ ‌position‌ ‌traces‌ ‌from‌ ‌an‌ ‌example‌ ‌trial,‌ ‌color-coded‌ ‌to‌ ‌match‌ ‌the‌‌                                 
74 numbers‌‌in‌‌(b).‌‌In‌‌this‌‌example,‌‌the‌‌anticipatory‌‌force‌‌was‌‌less‌‌than‌‌the‌‌weight‌‌of‌‌the‌‌object‌‌(dotted‌‌line),‌‌                                     
75 causing‌ ‌a‌ ‌downward‌ ‌movement‌ ‌of‌ ‌the‌ ‌hand‌ ‌and‌ ‌object.‌ ‌‌(d-f)‌ ‌Tasks‌ ‌used‌ ‌to‌ ‌examine‌ ‌family‌‌                             
76 representations.‌‌In‌‌these‌‌tasks‌‌there‌‌were‌‌five‌‌visually‌‌similar‌‌objects‌‌of‌‌varying‌‌volume‌‌and‌‌mass.‌‌In‌‌the‌‌                                 
77 Linear+‌ ‌condition‌ ‌(d),‌ ‌four‌ ‌of‌‌the‌‌objects‌‌had‌‌a‌‌linear‌‌relation‌‌between‌‌size‌‌and‌‌weight.‌‌A‌‌fifth‌‌object‌‌of‌‌                                     
78 intermediate‌ ‌size‌ ‌had‌ ‌a‌ ‌higher‌ ‌density‌ ‌(hence‌ ‌the‌ ‌+‌ ‌notation)‌ ‌and‌ ‌therefore‌ ‌was‌ ‌an‌ ‌outlier.‌ ‌Under‌‌the‌‌                                 
79 object‌ ‌families‌ ‌hypothesis,‌ ‌the‌ ‌four‌ ‌objects‌ ‌induce‌ ‌learning‌ ‌of‌ ‌the‌‌family‌‌structure‌‌(green‌‌line).‌‌Visually‌‌                             
80 similar‌ ‌objects‌‌that‌‌fall‌‌within‌‌the‌‌category‌‌boundary‌‌for‌‌the‌‌family‌‌(shaded‌‌green‌‌region)‌‌are‌‌treated‌‌as‌‌                                 
81 family‌‌members.‌‌Because‌‌the‌‌outlier‌‌falls‌‌within‌‌the‌‌category‌‌boundary,‌‌its‌‌weight‌‌should‌‌be‌‌persistently‌‌                             
82 misestimated‌ ‌based‌ ‌on‌ ‌the‌ ‌family‌ ‌structure‌ ‌(green‌ ‌circle).‌ ‌Under‌ ‌the‌ ‌associative‌ ‌map‌ ‌hypothesis,‌                         
83 exposure‌ ‌to‌ ‌the‌ ‌outlier‌ ‌leads‌ ‌to‌ ‌partial‌ ‌learning‌ ‌of‌ ‌its‌ ‌actual‌ ‌weight‌ ‌(purple‌ ‌circle).‌ ‌In‌ ‌the‌ ‌Linear++‌‌                                 
84 condition‌ ‌(e),‌ ‌the‌‌object‌‌families‌‌hypothesis‌‌predicts‌‌that‌‌when‌‌the‌‌outlier‌‌becomes‌‌sufficiently‌‌extreme,‌‌                           
85 and‌ ‌crosses‌‌the‌‌family‌‌boundary,‌‌it‌‌will‌‌be‌‌categorized‌‌as‌‌an‌‌individual‌‌and‌‌its‌‌weight‌‌fully‌‌learned.‌‌The‌‌                                   
86 associative‌‌map‌‌hypothesis‌‌still‌‌predicts‌‌partial‌‌learning‌‌of‌‌this‌‌outlier.‌‌In‌‌the‌‌Uncorr+‌‌condition‌‌(f),‌‌when‌‌                               
87 size‌‌and‌‌weight‌‌are‌‌uncorrelated,‌‌the‌‌object‌‌families‌‌hypothesis‌‌predicts‌‌that‌‌the‌‌object‌‌weights‌‌will‌‌each‌‌                               
88 be‌ ‌learned‌ ‌individually.‌ ‌Under‌ ‌the‌ ‌associative‌ ‌map‌ ‌hypothesis,‌ ‌there‌ ‌is‌ ‌no‌ ‌fundamental‌ ‌difference‌‌                         
89 between‌ ‌this‌ ‌scenario‌ ‌and‌ ‌those‌ ‌depicted‌ ‌in‌ ‌(d,‌ ‌e).‌ ‌ 
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‌ 

90 An‌ ‌alternative‌ ‌hypothesis‌ ‌is‌ ‌that‌ ‌object‌ ‌properties‌ ‌are‌ ‌encoded‌ ‌in‌ ‌an‌ ‌‘associative‌ ‌map’.‌ ‌This‌ ‌idea‌ ‌comes‌‌ 
91 from‌ ‌a‌ ‌well-known‌ ‌theoretical‌ ‌framework‌ ‌that‌ ‌has‌ ‌been‌ ‌successful‌ ‌in‌ ‌explaining‌ ‌how‌ ‌sensorimotor‌‌ 
92 transformations‌ ‌for‌ ‌reaching,‌ ‌grasping,‌ ‌and‌ ‌saccades‌ ‌are‌ ‌encoded‌ ‌in‌ ‌memory‌ ‌‌27–29‌.‌ ‌In‌ ‌associative‌ ‌map‌‌ 
93 models‌ ‌(Fig.‌ ‌1d,‌ ‌e;‌ ‌purple‌ ‌curve),‌ ‌experience‌ ‌with‌ ‌individual‌ ‌objects‌ ‌causes‌ ‌the‌ ‌visual‌ ‌and‌ ‌mechanical‌‌ 
94 properties‌ ‌sensed‌ ‌during‌ ‌each‌ ‌interaction‌ ‌to‌ ‌become‌ ‌gradually‌ ‌associated.‌ ‌Additionally,‌ ‌memories‌ ‌of‌‌ 
95 individual‌ ‌objects‌ ‌influence‌ ‌one‌ ‌another‌ ‌only‌ ‌through‌ ‌local‌ ‌generalization,‌ ‌producing‌ ‌smoothly‌ ‌varying‌‌ 
96 mappings‌ ‌between‌ ‌visual‌ ‌size‌ ‌and‌ ‌expected‌ ‌weight.‌ ‌In‌ ‌associative‌ ‌map‌ ‌models,‌ ‌the‌ ‌predicted‌ ‌weight‌ ‌of‌‌ 
97 the‌ ‌outlier‌ ‌(open‌ ‌purple‌ ‌circle)‌ ‌will‌ ‌become‌ ‌increasingly‌ ‌accurate‌ ‌with‌ ‌experience,‌ ‌such‌ ‌that‌ ‌an‌ ‌outlier‌ ‌of‌‌ 
98 any‌ ‌weight‌ ‌will‌ ‌be‌ ‌at‌ ‌least‌ ‌partially‌ ‌learned.‌ ‌ 

‌ 
99 These‌ ‌two‌ ‌hypotheses‌ ‌also‌ ‌make‌ ‌different‌ ‌predictions‌ ‌regarding‌ ‌how‌ ‌lifting‌ ‌the‌ ‌outlier‌ ‌will‌ ‌affect‌ ‌the‌ ‌four‌‌ 

100 training‌ ‌objects‌ ‌during‌ ‌the‌ ‌test‌ ‌phase.‌ ‌Again,‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis‌ ‌predicts‌ ‌an‌ ‌all-or-nothing‌‌ 
101 pattern,‌ ‌depending‌ ‌on‌ ‌how‌ ‌the‌ ‌outlier‌ ‌is‌ ‌encoded.‌ ‌When‌ ‌encoded‌ ‌as‌ ‌a‌ ‌family‌ ‌member,‌ ‌the‌ ‌unexpectedly‌‌ 
102 heavy‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌ ‌updates‌ ‌the‌ ‌family‌ ‌representation,‌ ‌causing‌ ‌the‌ ‌predicted‌ ‌weight‌ ‌to‌ ‌increase‌ ‌on‌‌ 
103 a‌ ‌subsequent‌ ‌lift‌ ‌of‌ ‌a‌ ‌training‌ ‌object.‌ ‌However,‌ ‌once‌ ‌the‌ ‌outlier‌ ‌is‌ ‌classified‌ ‌as‌ ‌a‌ ‌separate‌ ‌individual,‌ ‌this‌‌ 
104 outlier-to-family‌ ‌updating‌ ‌should‌ ‌be‌ ‌greatly‌ ‌suppressed.‌ ‌The‌ ‌associative‌ ‌map‌ ‌hypothesis,‌ ‌on‌ ‌the‌ ‌other‌‌ 
105 hand,‌ ‌predicts‌ ‌that‌ ‌lifting‌ ‌the‌ ‌outlier‌ ‌will‌ ‌always‌ ‌update‌ ‌the‌ ‌estimated‌ ‌weights‌ ‌of‌ ‌similar-looking‌ ‌training‌‌ 
106 objects.‌ ‌ 

‌ 
107 Finally,‌ ‌the‌ ‌two‌ ‌hypotheses‌ ‌also‌ ‌make‌ ‌different‌ ‌predictions‌ ‌when‌ ‌there‌ ‌is‌ ‌no‌ ‌structured‌ ‌relationship‌‌ 
108 between‌ ‌size‌ ‌and‌ ‌weight‌ ‌(Fig.‌ ‌1f).‌ ‌Under‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis,‌ ‌each‌ ‌of‌ ‌these‌ ‌objects‌ ‌is‌ ‌learned‌ ‌as‌‌ 
109 an‌ ‌individual‌ ‌(Fig.‌ ‌1f;‌ ‌separate‌ ‌green‌ ‌lines)‌ ‌and,‌ ‌as‌ ‌a‌ ‌consequence,‌ ‌they‌ ‌will‌ ‌be‌ ‌learned‌ ‌more‌ ‌slowly‌ ‌and‌‌ 
110 there‌ ‌will‌ ‌be‌ ‌minimal‌ ‌single-trial‌ ‌generalization‌ ‌from‌ ‌the‌ ‌‘outlier’‌ ‌to‌ ‌the‌ ‌training‌ ‌objects.‌ ‌In‌ ‌contrast,‌ ‌in‌ ‌an‌‌ 
111 associative‌ ‌map‌ ‌model,‌ ‌this‌ ‌scenario‌ ‌does‌ ‌not‌ ‌fundamentally‌ ‌differ‌ ‌from‌ ‌those‌ ‌depicted‌ ‌in‌ ‌Fig.‌ ‌1d,‌ ‌e.‌ ‌ 

‌ 
112 Consistent‌ ‌with‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis,‌ ‌we‌ ‌show‌ ‌that‌ ‌participants‌ ‌encode‌ ‌objects‌ ‌that‌ ‌covary‌ ‌in‌ 
113 size‌ ‌and‌ ‌weight‌ ‌as‌ ‌a‌ ‌family,‌ ‌and‌ ‌that‌ ‌this‌ ‌representation‌ ‌exerts‌ ‌a‌ ‌powerful‌ ‌family‌ ‌effect‌ ‌on‌ ‌outlier‌ ‌objects,‌‌ 
114 whose‌ ‌weights‌ ‌can‌ ‌differ‌ ‌markedly‌ ‌from‌ ‌the‌ ‌weights‌ ‌predicted‌ ‌by‌ ‌the‌ ‌family.‌ ‌In‌ ‌particular,‌ ‌we‌ ‌show‌ ‌that‌‌ 
115 participants‌ ‌can‌ ‌completely‌ ‌fail‌ ‌to‌ ‌learn‌ ‌the‌ ‌weight‌ ‌of‌ ‌an‌ ‌outlier‌ ‌object,‌ ‌despite‌ ‌experiencing‌ ‌large,‌‌ 
116 repeated‌ ‌movement‌ ‌errors;‌ ‌errors‌ ‌that,‌ ‌in‌ ‌the‌ ‌absence‌ ‌of‌ ‌the‌ ‌family,‌ ‌quickly‌ ‌drive‌ ‌learning.‌ ‌These‌ ‌findings‌‌ 
117 address,‌ ‌for‌ ‌the‌ ‌first‌ ‌time,‌ ‌how‌ ‌motor-relevant‌ ‌properties‌ ‌of‌ ‌multiple‌ ‌objects‌ ‌are‌ ‌represented‌ ‌in‌ ‌memory.‌ ‌ 

118 Results‌ ‌ 

119 Participants‌ ‌performed‌ ‌a‌ ‌lifting‌ ‌task‌ ‌in‌ ‌which‌ ‌they‌ ‌were‌ ‌required‌ ‌to‌ ‌predict‌ ‌the‌ ‌weights‌ ‌of‌ ‌five‌ ‌objects‌‌ 
120 positioned‌ ‌around‌ ‌a‌ ‌carousel.‌ ‌Fig.‌ ‌1c‌ ‌shows‌ ‌the‌ ‌load‌ ‌force‌ ‌and‌ ‌vertical‌ ‌hand‌ ‌position‌ ‌in‌ ‌a‌ ‌single‌ ‌trial.‌ ‌The‌‌ 
121 traces‌ ‌are‌ ‌color-coded‌ ‌to‌ ‌match‌ ‌the‌ ‌four‌ ‌trial‌ ‌phases‌ ‌depicted‌ ‌in‌ ‌Fig. 1b‌ ‌and‌ ‌described‌ ‌above.‌ ‌We‌ ‌focused‌‌ 
122 our‌ ‌analyses‌ ‌on‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌participants‌ ‌produced‌ ‌just‌ ‌prior‌ ‌to‌ ‌releasing‌ ‌the‌ ‌object‌ ‌by‌ ‌pressing‌ ‌a‌‌ 
123 button‌ ‌with‌ ‌the‌ ‌non-lifting‌ ‌hand.‌ ‌This‌ ‌anticipatory‌ ‌force‌ ‌provides‌ ‌a‌ ‌precise‌ ‌and‌ ‌accurate‌ ‌measure‌ ‌of‌ ‌the‌‌ 
124 participant’s‌ ‌motor‌ ‌memory‌ ‌of‌ ‌the‌ ‌object‌ ‌weight.‌ ‌In‌ ‌the‌ ‌trial‌ ‌shown‌ ‌in‌ ‌Fig.‌ ‌1c,‌ ‌the‌ ‌participant‌‌ 
125 underestimated‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌object,‌ ‌and‌ ‌as‌ ‌a‌ ‌consequence‌ ‌when‌ ‌the‌ ‌participant‌ ‌pressed‌ ‌the‌ ‌button‌ ‌to‌‌ 
126 release‌ ‌the‌ ‌object,‌ ‌the‌ ‌right‌ ‌hand‌ ‌and‌ ‌the‌ ‌object‌ ‌moved‌ ‌downward.‌ ‌(Note‌ ‌that‌ ‌the‌ ‌motion‌ ‌of‌ ‌the‌ ‌hand‌ ‌after‌‌ 
127 the‌ ‌release‌ ‌of‌ ‌the‌ ‌object‌ ‌does‌ ‌not‌ ‌provide‌ ‌a‌ ‌robust‌ ‌measure‌ ‌of‌ ‌participants’‌ ‌weight‌ ‌prediction‌ ‌because‌ ‌this‌‌ 
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‌ 

128 motion‌ ‌depends‌ ‌on‌ ‌co-contraction‌ ‌and‌ ‌reflex‌ ‌responses‌ ‌in‌ ‌addition‌ ‌to‌ ‌the‌ ‌mismatch‌ ‌between‌ ‌vertical‌ ‌force‌‌ 
129 and‌ ‌weight.)‌ ‌ 

130 Motor‌ ‌memories‌ ‌of‌ ‌objects‌ ‌are‌ ‌organized‌ ‌categorically‌ ‌ 

131 Our‌ ‌initial‌ ‌experiment‌ ‌was‌ ‌designed‌ ‌to‌ ‌critically‌ ‌evaluate‌ ‌the‌ ‌object‌ ‌families‌ ‌and‌ ‌associative‌ ‌map‌‌ 
132 hypotheses‌ ‌by‌ ‌examining‌ ‌how‌ ‌participants‌ ‌learned‌ ‌the‌ ‌weight‌ ‌of‌ ‌a‌ ‌heavier-than-expected‌ ‌outlier‌ ‌object.‌‌ 
133 We‌ ‌tested‌ ‌separate‌ ‌groups‌ ‌of‌ ‌participants‌ ‌in‌ ‌the‌ ‌three‌ ‌experimental‌ ‌designs‌ ‌depicted‌ ‌in‌ ‌Fig.‌ ‌1d-f.‌‌ 
134 Participants‌ ‌completed‌ ‌a‌ ‌training‌ ‌phase,‌ ‌in‌ ‌which‌ ‌they‌ ‌interacted‌ ‌with‌ ‌the‌ ‌four‌ ‌training‌ ‌objects,‌ ‌followed‌‌ 
135 by‌ ‌a‌ ‌test‌ ‌phase,‌ ‌in‌ ‌which‌ ‌the‌ ‌fifth‌ ‌test‌ ‌object‌ ‌was‌ ‌added.‌ ‌All‌ ‌objects‌ ‌were‌ ‌visually‌ ‌similar—cylinders‌ ‌of‌‌ 
136 fixed‌ ‌diameter‌ ‌with‌ ‌varying‌ ‌heights.‌ ‌ 

‌ 
137 In‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌(Fig.‌ ‌1d),‌ ‌the‌ ‌weights‌ ‌of‌ ‌the‌ ‌training‌ ‌objects‌ ‌were‌ ‌‌linearly‌‌ ‌related‌ ‌to‌ ‌their‌ ‌sizes‌ ‌and‌‌ 
138 the‌ ‌test‌ ‌object‌ ‌was‌ ‌‌heavier‌‌ ‌(as‌ ‌denoted‌ ‌by‌ ‌the‌ ‌+‌ ‌sign)‌ ‌than‌ ‌expected‌ ‌based‌ ‌on‌ ‌the‌ ‌training‌ ‌objects.‌ ‌The‌‌ 
139 weights‌ ‌and‌ ‌sizes‌ ‌of‌ ‌the‌ ‌training‌ ‌objects‌ ‌ranged‌ ‌from‌ ‌0.6‌ ‌to‌ ‌1.2 kg‌ ‌and‌ ‌400‌ ‌to‌ ‌800 cm‌3‌,‌ ‌respectively,‌ ‌and‌‌ 
140 all‌ ‌had‌ ‌a‌ ‌density‌ ‌of‌ ‌1.5‌ ‌g/cm‌3‌‌ ‌(Fig.‌ ‌1d).‌ ‌The‌ ‌size‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌600‌ ‌cm‌3‌,‌ ‌which‌ ‌was‌ ‌in‌ ‌the‌ ‌middle‌‌ 
141 of‌ ‌the‌ ‌range‌ ‌of‌ ‌training‌ ‌object‌ ‌sizes.‌ ‌However,‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌test‌ ‌object,‌ ‌1.2‌ ‌kg,‌ ‌was‌ ‌equal‌ ‌to‌ ‌the‌‌ 
142 heaviest‌ ‌training‌ ‌object,‌ ‌making‌ ‌it‌ ‌0.3‌ ‌kg‌ ‌greater‌ ‌than‌ ‌the‌ ‌weight‌ ‌that‌ ‌would‌ ‌be‌ ‌expected‌ ‌if‌ ‌it‌ ‌had‌ ‌the‌ ‌same‌‌ 
143 density‌ ‌as‌ ‌the‌ ‌training‌ ‌objects.‌ ‌ 

‌ 
144 The‌ ‌traces‌ ‌in‌ ‌Fig.‌ ‌2a‌ ‌show‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌generated‌ ‌for‌ ‌each‌ ‌object‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌trial‌ ‌cycle‌ ‌(one‌‌ 
145 lift‌ ‌of‌ ‌each‌ ‌object)‌ ‌across‌ ‌the‌ ‌training‌ ‌and‌ ‌test‌ ‌phases.‌ ‌The‌ ‌dotted‌ ‌horizontal‌ ‌lines‌ ‌(color-matched‌ ‌to‌ ‌the‌‌ 
146 force‌ ‌traces)‌ ‌show‌ ‌the‌ ‌weights‌ ‌of‌ ‌the‌ ‌objects,‌ ‌and‌ ‌therefore‌ ‌the‌ ‌ideal‌ ‌anticipatory‌ ‌forces‌ ‌that‌ ‌would‌ ‌be‌‌ 
147 generated‌ ‌with‌ ‌perfect‌ ‌learning.‌ ‌Participants‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌very‌ ‌quickly‌ ‌learned‌ ‌the‌ ‌weights‌ ‌of‌ ‌the‌‌ 
148 training‌ ‌objects.‌ ‌The‌ ‌scaling‌ ‌of‌ ‌forces‌ ‌to‌ ‌object‌ ‌weight‌ ‌observed‌ ‌in‌ ‌the‌ ‌first‌ ‌trial‌ ‌cycle‌ ‌suggests‌ ‌that‌‌ 
149 participants‌ ‌rapidly‌ ‌learned‌ ‌the‌ ‌density‌ ‌(a‌ ‌family-level‌ ‌parameter)‌ ‌based‌ ‌on‌ ‌the‌ ‌first‌ ‌few‌ ‌objects‌ ‌lifted‌ ‌and‌‌ 
150 then‌ ‌used‌ ‌this‌ ‌information,‌ ‌in‌ ‌conjunction‌ ‌with‌ ‌size,‌ ‌to‌ ‌predict‌ ‌the‌ ‌weights‌ ‌of‌ ‌the‌ ‌other‌ ‌objects.‌ ‌At‌ ‌the‌ ‌end‌‌ 
151 of‌ ‌the‌ ‌training‌ ‌phase‌ ‌(final‌ ‌8‌ ‌cycles),‌ ‌anticipatory‌ ‌force‌ ‌was‌ ‌strongly‌ ‌correlated‌ ‌with‌ ‌object‌ ‌weight‌ ‌(r‌ ‌=‌‌ 
152 0.76,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[0.66,‌ ‌0.83]).‌‌ ‌  

‌ 
153 The‌ ‌thicker‌ ‌trace‌ ‌and‌ ‌dashed‌ ‌horizontal‌ ‌line,‌ ‌starting‌ ‌at‌ ‌trial‌ ‌cycle‌ ‌31,‌ ‌show‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌and‌‌ 
154 actual‌ ‌weight‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌introduced‌ ‌in‌ ‌the‌ ‌test‌ ‌phase.‌ ‌On‌ ‌the‌ ‌first‌ ‌lift‌ ‌of‌ ‌the‌ ‌test‌ ‌object,‌ ‌the‌ ‌average‌‌ 
155 anticipatory‌ ‌force‌ ‌was‌ ‌9.00‌ ‌N‌ ‌(95%‌ ‌CI‌ ‌=‌ ‌[7.68,‌ ‌10.32]).‌ ‌This‌ ‌suggests‌ ‌that‌ ‌participants‌ ‌initially‌ ‌estimated‌ 
156 that‌ ‌the‌ ‌test‌ ‌object‌ ‌would‌ ‌have‌ ‌the‌ ‌same‌ ‌density‌ ‌as‌ ‌the‌ ‌training‌ ‌objects‌ ‌and,‌ ‌therefore,‌ ‌that‌ ‌its‌ ‌weight‌‌ 
157 would‌ ‌be‌ ‌close‌ ‌to‌ ‌the‌ ‌middle‌ ‌of‌ ‌the‌ ‌training‌ ‌object‌ ‌weights‌ ‌(8.83‌ ‌N).‌ ‌Consequently,‌ ‌they‌ ‌experienced‌ ‌an‌‌ 
158 error‌ ‌of‌ ‌approximately‌ ‌300‌ ‌g‌ ‌(~3‌ ‌N),‌ ‌which‌ ‌is‌ ‌close‌ ‌to‌ ‌the‌ ‌weight‌ ‌of‌ ‌a‌ ‌full‌ ‌can‌ ‌of‌ ‌soda‌ ‌and‌ ‌represents‌ ‌fully‌‌ 
159 a‌ ‌third‌ ‌of‌ ‌the‌ ‌anticipated‌ ‌weight.‌ ‌Remarkably,‌ ‌despite‌ ‌this‌ ‌large‌ ‌error,‌ ‌participants‌ ‌never‌ ‌learned‌ ‌the‌ ‌test‌‌ 
160 object‌ ‌weight‌ ‌over‌ ‌the‌ ‌40‌ ‌cycles‌ ‌in‌ ‌the‌ ‌test‌ ‌phase‌ ‌(40‌ ‌lifts‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌interspersed‌ ‌with‌ ‌40‌ ‌lifts‌ ‌of‌‌ 
161 each‌ ‌training‌ ‌object).‌ ‌That‌ ‌is,‌ ‌the‌ ‌average‌ ‌anticipatory‌ ‌force‌ ‌did‌ ‌not‌ ‌increase—remaining‌ ‌at‌ ‌the‌ ‌level‌‌ 
162 predicted‌ ‌by‌ ‌the‌ ‌family—and,‌ ‌therefore,‌ ‌participants‌ ‌did‌ ‌not‌ ‌adapt‌ ‌to‌ ‌the‌ ‌actual‌ ‌weight‌ ‌of‌ ‌this‌ ‌pronounced‌‌ 
163 outlier.‌ ‌ 
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‌ 

164 Figure‌ ‌2.‌ ‌Objects‌ ‌are‌ ‌encoded‌ ‌according‌ ‌to‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis.‌ ‌ 
165 (a)‌ ‌Trial-by-trial‌ ‌anticipatory‌ ‌forces‌‌for‌‌the‌‌five‌‌objects‌‌over‌‌the‌‌course‌‌of‌‌the‌‌Linear+‌‌condition‌‌(mean‌‌±‌‌                                 
166 SEM).‌‌The‌‌training‌‌objects‌‌(thin‌‌lines)‌‌are‌‌experienced‌‌from‌‌the‌‌first‌‌trial‌‌cycle‌‌and‌‌the‌‌test‌‌object‌‌(thick‌‌                                   
167 line)‌ ‌is‌ ‌introduced‌ ‌on‌ ‌trial‌ ‌cycle‌ ‌31‌ ‌as‌ ‌the‌ ‌first‌ ‌trial‌ ‌of‌ ‌each‌ ‌cycle.‌ ‌Traces‌ ‌are‌ ‌color-coded‌ ‌with‌ ‌darker‌‌                                     
168 shades‌‌indicating‌‌larger‌‌objects‌‌and‌‌the‌‌dashed‌‌lines‌‌indicate‌‌the‌‌associated‌‌actual‌‌object‌‌weights‌‌(thick‌‌                             
169 dashed‌‌line‌‌shows‌‌outlier‌‌weight).‌‌Rest‌‌breaks‌‌are‌‌indicated‌‌by‌‌gaps‌‌in‌‌the‌‌traces.‌‌(b)‌‌Anticipatory‌‌forces‌‌                                 
170 at‌‌the‌‌end‌‌of‌‌the‌‌test‌‌phase‌‌for‌‌the‌‌Linear+‌‌condition‌‌(mean‌‌±‌‌SEM).‌‌The‌‌abscissa‌‌shows‌‌the‌‌weights‌‌of‌‌                                       
171 the‌‌training‌‌objects‌‌and,‌‌for‌‌the‌‌outlier,‌‌the‌‌expected‌‌weight‌‌based‌‌on‌‌the‌‌family‌‌density.‌‌The‌‌weights‌‌of‌‌                                   
172 the‌ ‌training‌ ‌objects‌ ‌lie‌ ‌on‌ ‌the‌ ‌dotted‌ ‌unity‌ ‌line.‌ ‌Dashed‌ ‌horizontal‌ ‌line‌ ‌shows‌ ‌the‌ ‌weight‌‌of‌‌the‌‌outlier.‌‌                                   
173 Regression‌‌line‌‌shows‌‌the‌‌average‌‌of‌‌the‌‌participants’‌‌linear‌‌regressions‌‌±‌‌SEM.‌‌(c,‌‌d)‌‌Same‌‌as‌‌(a,‌‌b)‌‌for‌‌                                     
174 the‌‌Linear++‌‌condition.‌‌(e,‌‌f)‌‌Same‌‌as‌‌(a,‌‌b)‌‌for‌‌the‌‌Uncorr+‌‌condition.‌‌Note‌‌that‌‌for‌‌each‌‌participant,‌‌the‌‌                                     
175 uncorrelated‌ ‌mapping‌ ‌of‌ ‌size‌ ‌and‌‌weight‌‌for‌‌the‌‌training‌‌objects‌‌was‌‌randomly‌‌selected;‌‌the‌‌shading‌‌in‌‌                               
176 (e)‌ ‌and‌ ‌(f)‌ ‌depicts‌ ‌one‌ ‌mapping.‌ ‌In‌ ‌(f)‌ ‌the‌‌outlier‌‌is‌‌plotted‌‌at‌‌the‌‌expected‌‌weight‌‌based‌‌on‌‌the‌‌family‌‌                                       
177 density‌ ‌in‌ ‌the‌ ‌Linear‌ ‌conditions.‌ ‌(g)‌ ‌Single-trial‌ ‌generalization‌ ‌in‌ ‌the‌ ‌first‌ ‌four‌ ‌cycles‌ ‌(Early)‌ ‌and‌ ‌last‌‌                               
178 sixteen‌‌cycles‌‌(End)‌‌of‌‌the‌‌test‌‌phase‌‌of‌‌the‌‌Linear+‌‌condition‌‌(mean‌‌±‌‌SEM,‌‌see‌‌Materials‌‌and‌‌Methods‌‌                                   
179 for‌‌details).‌‌(h,‌‌i)‌‌Same‌‌as‌‌(g)‌‌for‌‌the‌‌Linear++‌‌and‌‌Uncorr+‌‌conditions.‌‌(j)‌‌Response‌‌times‌‌averaged‌‌over‌‌                                   
180 objects‌ ‌in‌ ‌each‌ ‌trial‌ ‌cycle‌ ‌(mean‌ ‌±‌ ‌SEM).‌ ‌The‌ ‌Linear+‌ ‌and‌ ‌Linear++‌ ‌groups‌ ‌are‌ ‌combined‌ ‌in‌ ‌the‌ ‌red‌‌                                   
181 trace,‌ ‌as‌ ‌they‌ ‌did‌ ‌not‌ ‌differ‌ ‌on‌ ‌this‌ ‌measure.‌ ‌All‌ ‌SEM‌ ‌are‌ ‌across‌ ‌participants.‌ ‌ 

‌ 
182 We‌ ‌calculated‌ ‌the‌ ‌anticipatory‌ ‌forces‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(final‌ ‌16‌ ‌cycles)‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌mass‌ ‌for‌‌ 
183 the‌ ‌four‌ ‌training‌ ‌objects,‌ ‌and‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌expected‌ ‌mass‌ ‌based‌ ‌on‌ ‌the‌ ‌density‌ ‌of‌ ‌the‌ ‌training‌ ‌objects‌‌ 
184 for‌ ‌the‌ ‌test‌ ‌object‌ ‌(Fig.‌ ‌2b).‌ ‌To‌ ‌assess‌ ‌learning‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase,‌ ‌we‌ ‌compared‌ ‌the‌ ‌average‌‌ 
185 anticipatory‌ ‌force‌ ‌produced‌ ‌for‌ ‌the‌ ‌test‌ ‌object‌ ‌(9.15‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[8.27,‌ ‌10.03])‌ ‌with‌ ‌the‌ ‌‘family-predicted‌‌ 
186 weight’‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌(9.09‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[8.64,‌ ‌9.54]),‌ ‌defined‌ ‌as‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌‌ 
187 predicted‌ ‌from‌ ‌the‌ ‌best-fitting‌ ‌regression‌ ‌line‌ ‌through‌ ‌the‌ ‌training‌ ‌objects‌ ‌(thereby‌ ‌adjusting‌ ‌for‌ ‌any‌‌ 
188 prediction‌ ‌error‌ ‌on‌ ‌the‌ ‌training‌ ‌objects).‌ ‌We‌ ‌found‌ ‌that‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌was‌ ‌not‌ ‌significantly‌ ‌greater‌‌ 
189 than‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌(‌t‌(13)‌ ‌=‌ ‌0.17,‌ ‌p‌ ‌=‌ ‌0.43).‌ ‌ 
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‌ 
190 The‌ ‌above‌ ‌results‌ ‌support‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis‌ ‌by‌ ‌showing‌ ‌that‌ ‌even‌ ‌when‌ ‌the‌ ‌weight‌ ‌of‌ ‌an‌‌ 
191 outlier‌ ‌object‌ ‌deviates‌ ‌markedly‌ ‌from‌ ‌its‌ ‌family-predicted‌ ‌weight,‌ ‌it‌ ‌continues‌ ‌to‌ ‌be‌ ‌encoded‌ ‌as‌ ‌a‌ ‌family‌‌ 
192 member‌ ‌despite‌ ‌sensory‌ ‌evidence‌ ‌to‌ ‌the‌ ‌contrary.‌ ‌Next,‌ ‌we‌ ‌investigated‌ ‌whether‌ ‌there‌ ‌is‌ ‌a‌ ‌threshold‌ ‌to‌ ‌the‌‌ 
193 family‌ ‌effect.‌ ‌We‌ ‌hypothesized‌ ‌that‌ ‌when‌ ‌the‌ ‌discrepancy‌ ‌between‌ ‌actual‌ ‌and‌ ‌family-predicted‌ ‌weight‌‌ 
194 exceeds‌ ‌some‌ ‌threshold,‌ ‌the‌ ‌object‌ ‌will‌ ‌be‌ ‌encoded‌ ‌as‌ ‌an‌ ‌individual,‌ ‌separate‌ ‌from‌ ‌the‌ ‌family,‌ ‌despite‌ ‌its‌‌ 
195 family-like‌ ‌appearance.‌ ‌To‌ ‌probe‌ ‌this‌ ‌threshold,‌ ‌we‌ ‌tested‌ ‌a‌ ‌Linear++‌ ‌group,‌ ‌who‌ ‌completed‌ ‌the‌ ‌same‌‌ 
196 task‌ ‌as‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌but‌ ‌with‌ ‌an‌ ‌‌even‌ ‌heavier‌‌ ‌outlier‌ ‌(hence‌ ‌the‌ ‌++).‌ ‌Specifically,‌ ‌for‌ ‌the‌ ‌Linear++‌‌ 
197 group,‌ ‌the‌ ‌test‌ ‌object‌ ‌weighed‌ ‌1.5‌ ‌kg,‌ ‌making‌ ‌it‌ ‌600‌ ‌g‌ ‌heavier‌ ‌than‌ ‌if‌ ‌it‌ ‌had‌ ‌the‌ ‌same‌ ‌density‌ ‌as‌ ‌the‌‌ 
198 training‌ ‌objects,‌ ‌and‌ ‌300‌ ‌g‌ ‌heavier‌ ‌than‌ ‌the‌ ‌heaviest‌ ‌training‌ ‌object‌ ‌(Fig.‌ ‌1e).‌‌ ‌  

‌ 
199 Fig.‌ ‌2c‌ ‌shows‌ ‌the‌ ‌average‌ ‌anticipatory‌ ‌force‌ ‌timelines‌ ‌for‌ ‌the‌ ‌Linear++‌ ‌group.‌ ‌As‌ ‌expected,‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌‌ 
200 the‌ ‌training‌ ‌phase,‌ ‌anticipatory‌ ‌force‌ ‌was‌ ‌strongly‌ ‌correlated‌ ‌with‌ ‌object‌ ‌weight‌ ‌(r‌ ‌=‌ ‌0.85,‌ ‌95%‌ ‌CI‌ ‌=‌‌ 
201 [0.72,‌ ‌0.92]).‌ ‌On‌ ‌the‌ ‌first‌ ‌lift‌ ‌of‌ ‌the‌ ‌test‌ ‌object,‌ ‌participants‌ ‌generated‌ ‌an‌ ‌average‌ ‌anticipatory‌ ‌force‌ ‌of‌‌ 
202 8.13‌ ‌N‌ ‌(95%‌ ‌CI‌ ‌=‌ ‌[7.19,‌ ‌9.08]),‌ ‌consistent‌ ‌with‌ ‌the‌ ‌density‌ ‌of‌ ‌the‌ ‌training‌ ‌objects.‌ ‌However,‌ ‌in‌ ‌contrast‌ ‌to‌‌ 
203 the‌ ‌Linear+‌ ‌group,‌ ‌over‌ ‌the‌ ‌following‌ ‌5‌ ‌to‌ ‌10‌ ‌cycles,‌ ‌participants‌ ‌increased‌ ‌their‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌‌ 
204 test‌ ‌object,‌ ‌reaching‌ ‌an‌ ‌asymptote‌ ‌just‌ ‌below‌ ‌the‌ ‌actual‌ ‌object‌ ‌weight‌ ‌(14.72‌ ‌N).‌ ‌At‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌‌ 
205 phase‌ ‌(Fig.‌ ‌2d),‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌test‌ ‌object‌ ‌(13.15‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[11.56,‌ ‌14.74])‌ ‌was‌‌ 
206 significantly‌ ‌greater‌ ‌(‌t‌(8)‌ ‌=‌ ‌3.34,‌ ‌p‌ ‌=‌ ‌0.0051)‌ ‌than‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌(9.65‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[8.62,‌‌ 
207 10.68]).‌ ‌ 

‌ 
208 The‌ ‌results‌ ‌of‌ ‌the‌ ‌Linear++‌ ‌group‌ ‌demonstrate‌ ‌that‌ ‌there‌ ‌is‌ ‌a‌ ‌limit‌ ‌to‌ ‌how‌ ‌deviant‌ ‌an‌ ‌outlier‌ ‌object‌ ‌can‌ ‌be,‌‌ 
209 with‌ ‌respect‌ ‌to‌ ‌a‌ ‌known‌ ‌family,‌ ‌before‌ ‌it‌ ‌is‌ ‌‘kicked‌ ‌out’‌ ‌of‌ ‌that‌ ‌family‌ ‌and‌ ‌learned‌ ‌as‌ ‌a‌ ‌unique‌ ‌individual.‌‌ 
210 That‌ ‌is,‌ ‌when‌ ‌the‌ ‌error‌ ‌signals‌ ‌received‌ ‌from‌ ‌a‌ ‌particular‌ ‌object‌ ‌are‌ ‌sufficiently‌ ‌large,‌ ‌they‌ ‌promote‌ ‌the‌‌ 
211 formation‌ ‌of‌ ‌a‌ ‌separate‌ ‌memory.‌ ‌Note‌ ‌that‌ ‌the‌ ‌adaptation‌ ‌to‌ ‌the‌ ‌test‌ ‌object‌ ‌in‌ ‌the‌ ‌Linear++‌ ‌group‌‌ 
212 demonstrates‌ ‌that‌ ‌participants‌ ‌could‌ ‌visually‌ ‌distinguish‌ ‌the‌ ‌test‌ ‌object‌ ‌from‌ ‌the‌ ‌neighboring‌ ‌training‌‌ 
213 objects.‌ ‌Thus,‌ ‌we‌ ‌can‌ ‌conclude‌ ‌that‌ ‌the‌ ‌striking‌ ‌failure‌ ‌to‌ ‌learn‌ ‌the‌ ‌test‌ ‌object‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌is‌ ‌not‌‌ 
214 due‌ ‌to‌ ‌an‌ ‌inability‌ ‌to‌ ‌visually‌ ‌identify‌ ‌the‌ ‌test‌ ‌object‌ ‌amongst‌ ‌the‌ ‌similar-looking‌ ‌training‌ ‌objects.‌ ‌ 

‌ 
215 Lastly,‌ ‌we‌ ‌designed‌ ‌a‌ ‌third‌ ‌variant‌ ‌of‌ ‌the‌ ‌task,‌ ‌in‌ ‌which‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌the‌ ‌same‌ ‌size‌ ‌and‌ ‌weight‌ ‌as‌ ‌in‌‌ 
216 the‌ ‌Linear+‌ ‌group‌ ‌but‌ ‌the‌ ‌training‌ ‌objects‌ ‌were‌ ‌not‌ ‌related‌ ‌by‌ ‌any‌ ‌family‌ ‌structure‌ ‌(Fig.‌ ‌1f).‌ ‌Specifically,‌‌ 
217 in‌ ‌the‌ ‌Uncorr+‌ ‌group,‌ ‌the‌ ‌sizes‌ ‌and‌ ‌weights‌ ‌were‌ ‌remapped‌ ‌(separately‌ ‌for‌ ‌each‌ ‌participant),‌ ‌such‌ ‌that‌‌ 
218 size‌ ‌and‌ ‌weight‌ ‌of‌ ‌the‌ ‌training‌ ‌objects‌ ‌were‌ ‌either‌ ‌completely‌ ‌or‌ ‌close‌ ‌to‌ ‌completely‌ ‌uncorrelated‌ ‌(|r|‌ ‌<‌‌ 
219 0.3).‌ ‌The‌ ‌object‌ ‌families‌ ‌hypothesis‌ ‌makes‌ ‌two‌ ‌key‌ ‌predictions‌ ‌for‌ ‌this‌ ‌condition.‌ ‌First,‌ ‌in‌ ‌the‌ ‌absence‌ ‌of‌‌ 
220 structured‌ ‌covariation‌ ‌between‌ ‌visual‌ ‌and‌ ‌mechanical‌ ‌properties‌ ‌within‌ ‌the‌ ‌training‌ ‌set‌ ‌(‌i.e.‌,‌ ‌when‌ ‌the‌‌ 
221 training‌ ‌objects‌ ‌do‌ ‌not‌ ‌share‌ ‌a‌ ‌constant‌ ‌density),‌ ‌participants‌ ‌should‌ ‌be‌ ‌forced‌ ‌to‌ ‌form‌ ‌a‌ ‌separate‌ ‌memory‌‌ 
222 for‌ ‌each‌ ‌training‌ ‌object,‌ ‌with‌ ‌no‌ ‌family-level‌ ‌representation.‌ ‌This,‌ ‌in‌ ‌turn,‌ ‌should‌ ‌result‌ ‌in‌ ‌slower‌ ‌initial‌‌ 
223 learning‌ ‌of‌ ‌the‌ ‌training‌ ‌objects‌ ‌in‌ ‌comparison‌ ‌to‌ ‌the‌ ‌Linear‌ ‌groups,‌ ‌where‌ ‌all‌ ‌four‌ ‌training‌ ‌objects‌ ‌could‌‌ 
224 be‌ ‌encoded‌ ‌as‌ ‌a‌ ‌family‌ ‌with‌ ‌a‌ ‌common‌ ‌density.‌ ‌Second,‌ ‌in‌ ‌the‌ ‌absence‌ ‌of‌ ‌a‌ ‌family‌ ‌representation,‌‌ 
225 participants‌ ‌in‌ ‌the‌ ‌Uncorr+‌ ‌group‌ ‌should‌ ‌be‌ ‌able‌ ‌to‌ ‌learn‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌1.2-kg‌ ‌test‌ ‌object,‌ ‌unlike‌ 
226 participants‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌group.‌ ‌In‌ ‌contrast,‌ ‌under‌ ‌the‌ ‌associative‌ ‌map‌ ‌hypothesis,‌ ‌the‌ ‌results‌ ‌of‌ ‌the‌‌ 
227 Uncorr+‌ ‌group‌ ‌should‌ ‌not‌ ‌fundamentally‌ ‌differ‌ ‌from‌ ‌the‌ ‌Linear+‌ ‌group.‌ ‌ 
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‌ 
228 Fig.‌ ‌2e‌ ‌shows‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌timelines‌ ‌for‌ ‌the‌ ‌Uncorr+‌ ‌group.‌ ‌In‌ ‌the‌ ‌earliest‌ ‌trial‌ ‌cycles,‌ ‌there‌ ‌was‌‌ 
229 poor‌ ‌differentiation‌ ‌of‌ ‌the‌ ‌object‌ ‌weights,‌ ‌showing‌ ‌that‌ ‌uncorrelated‌ ‌mappings‌ ‌are‌ ‌more‌ ‌difficult‌ ‌to‌ ‌learn‌‌ 
230 than‌ ‌linear‌ ‌mappings.‌ ‌Nevertheless,‌ ‌by‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌training‌ ‌phase‌ ‌the‌ ‌Uncorr+‌ ‌group‌ ‌achieved‌ ‌accuracy‌‌ 
231 comparable‌ ‌to‌ ‌the‌ ‌Linear‌ ‌groups,‌ ‌with‌ ‌anticipatory‌ ‌force‌ ‌being‌ ‌strongly‌ ‌correlated‌ ‌with‌ ‌object‌ ‌weight‌ ‌(r‌ ‌=‌‌ 
232 0.72,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[0.62,‌ ‌0.80]).‌ ‌On‌ ‌the‌ ‌first‌ ‌lift‌ ‌of‌ ‌the‌ ‌test‌ ‌object,‌ ‌participants‌ ‌produced‌ ‌8.85‌ ‌N‌ ‌(95%‌ ‌CI‌ ‌=‌‌ 
233 [7.62,‌ ‌10.08])‌ ‌of‌ ‌anticipatory‌ ‌lift‌ ‌force,‌ ‌which‌ ‌is‌ ‌similar‌ ‌to‌ ‌the‌ ‌mean‌ ‌of‌ ‌the‌ ‌training‌ ‌object‌ ‌weights‌ ‌(8.83‌‌ 
234 N).‌ ‌Moreover,‌ ‌it‌ ‌is‌ ‌similar‌ ‌to‌ ‌the‌ ‌force‌ ‌generated‌ ‌by‌ ‌participants‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌on‌ ‌their‌ ‌first‌ ‌lift‌ ‌of‌‌ 
235 the‌ ‌test‌ ‌object‌ ‌(9.00‌ ‌N).‌ ‌Thus,‌ ‌the‌ ‌initial‌ ‌weight‌ ‌estimation‌ ‌error‌ ‌for‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌similar‌ ‌in‌ ‌the‌‌ 
236 Linear+‌ ‌and‌ ‌Uncorr+‌ ‌groups.‌ ‌However,‌ ‌as‌ ‌can‌ ‌be‌ ‌seen‌ ‌in‌ ‌Fig.‌ ‌2e,‌ ‌during‌ ‌the‌ ‌test‌ ‌phase‌ ‌participants‌ ‌in‌ ‌the‌‌ 
237 Uncorr+‌ ‌group‌ ‌succeeded‌ ‌in‌ ‌adapting‌ ‌their‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌test‌ ‌object.‌ ‌Unlike‌ ‌the‌ ‌Linear‌ ‌groups,‌‌ 
238 the‌ ‌training‌ ‌objects‌ ‌in‌ ‌the‌ ‌Uncorr+‌ ‌group‌ ‌did‌ ‌not‌ ‌have‌ ‌a‌ ‌common‌ ‌density,‌ ‌and‌ ‌therefore‌ ‌we‌ ‌compared‌ ‌the‌‌ 
239 anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌test‌ ‌object‌ ‌to‌ ‌the‌ ‌average‌ ‌weight‌ ‌of‌ ‌the‌ ‌training‌ ‌objects‌ ‌(as‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌of‌‌ 
240 intermediate‌ ‌volume).‌ ‌At‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(Fig.‌ ‌2f),‌ ‌participants’‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌test‌‌ 
241 object‌ ‌(10.48‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[9.50,‌ ‌11.46])‌ ‌was‌ ‌significantly‌ ‌greater‌ ‌(t(11)‌ ‌=‌ ‌4.06,‌ ‌p‌ ‌=‌ ‌0.00094)‌ ‌than‌ ‌the‌‌ 
242 average‌ ‌force‌ ‌for‌ ‌the‌ ‌training‌ ‌objects‌ ‌(8.68‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[8.44,‌ ‌8.92]).‌ ‌The‌ ‌learning‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌‌ 
243 observed‌ ‌in‌ ‌the‌ ‌Uncorr+‌ ‌group‌ ‌confirms‌ ‌that‌ ‌the‌ ‌failure‌ ‌to‌ ‌learn‌ ‌the‌ ‌test‌ ‌object‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌is‌ ‌due‌‌ 
244 to‌ ‌the‌ ‌structured‌ ‌object‌ ‌family,‌ ‌rather‌ ‌than‌ ‌the‌ ‌lack‌ ‌of‌ ‌a‌ ‌sufficient‌ ‌error‌ ‌signal.‌ ‌ 

‌ 
245 The‌ ‌object‌ ‌families‌ ‌hypothesis‌ ‌predicts‌ ‌that‌ ‌when‌ ‌lifting‌ ‌an‌ ‌object‌ ‌that‌ ‌is‌ ‌encoded‌ ‌as‌ ‌a‌ ‌family‌ ‌member,‌ ‌the‌‌ 
246 experienced‌ ‌density‌ ‌will‌ ‌update‌ ‌the‌ ‌density‌ ‌estimate‌ ‌for‌ ‌the‌ ‌family,‌ ‌thereby‌ ‌biasing‌ ‌the‌ ‌anticipatory‌ ‌force‌‌ 
247 on‌ ‌a‌ ‌subsequent‌ ‌lift‌ ‌of‌ ‌a‌ ‌training‌ ‌(‌i.e.‌,‌ ‌family)‌ ‌object.‌ ‌Conversely,‌ ‌when‌ ‌lifting‌ ‌a‌ ‌test‌ ‌object‌ ‌that‌ ‌is‌ ‌encoded‌‌ 
248 as‌ ‌an‌ ‌individual,‌ ‌the‌ ‌experienced‌ ‌density‌ ‌will‌ ‌not‌ ‌update‌ ‌the‌ ‌family‌ ‌estimate‌ ‌and‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌on‌‌ 
249 a‌ ‌subsequent‌ ‌lift‌ ‌of‌ ‌a‌ ‌training‌ ‌object‌ ‌will‌ ‌be‌ ‌unaffected.‌ ‌Thus,‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase,‌ ‌the‌ ‌object‌‌ 
250 families‌ ‌hypothesis‌ ‌predicts‌ ‌strong‌ ‌generalization‌ ‌for‌ ‌the‌ ‌1.2-kg‌ ‌outlier,‌ ‌but‌ ‌no‌ ‌generalization‌ ‌for‌ ‌the‌‌ 
251 1.5-kg‌ ‌outlier.‌ ‌In‌ ‌contrast,‌ ‌the‌ ‌associative‌ ‌map‌ ‌model‌ ‌predicts‌ ‌strong‌ ‌generalization‌ ‌for‌ ‌the‌ ‌1.2-kg‌ ‌outlier,‌‌ 
252 and‌ ‌even‌ ‌stronger‌ ‌generalization‌ ‌for‌ ‌the‌ ‌1.5-kg‌ ‌outlier.‌ ‌To‌ ‌compare‌ ‌these‌ ‌predictions,‌ ‌we‌ ‌analyzed‌‌ 
253 single-trial‌ ‌generalization‌ ‌at‌ ‌the‌ ‌start‌ ‌and‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(Fig.‌ ‌2g-i).‌ ‌Note‌ ‌that‌ ‌the‌ ‌associative‌ ‌map‌‌ 
254 model‌ ‌predicts‌ ‌that‌ ‌generalization‌ ‌will‌ ‌be‌ ‌strongest‌ ‌for‌ ‌training‌ ‌objects‌ ‌closest‌ ‌in‌ ‌appearance‌ ‌to‌ ‌the‌ ‌test‌‌ 
255 object.‌ ‌Therefore,‌ ‌to‌ ‌best‌ ‌test‌ ‌between‌ ‌the‌ ‌contrasting‌ ‌predictions‌ ‌of‌ ‌the‌ ‌two‌ ‌models,‌ ‌we‌ ‌focused‌ ‌our‌‌ 
256 analysis‌ ‌on‌ ‌the‌ ‌500-‌ ‌and‌ ‌700-cm‌3‌‌ ‌objects‌ ‌(‌i.e.‌,‌ ‌the‌ ‌closest‌ ‌objects‌ ‌in‌ ‌size‌ ‌to‌ ‌the‌ ‌600-cm‌3‌‌ ‌test‌ ‌object).‌‌ 
257 Specifically,‌ ‌we‌ ‌examined‌ ‌how‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌applied‌ ‌to‌ ‌these‌ ‌training‌ ‌objects‌ ‌changed‌ ‌when‌ ‌they‌‌ 
258 were‌ ‌lifted‌ ‌immediately‌ ‌after‌ ‌the‌ ‌test‌ ‌object,‌ ‌compared‌ ‌to‌ ‌when‌ ‌they‌ ‌were‌ ‌lifted‌ ‌after‌ ‌one‌ ‌of‌ ‌the‌ ‌other‌‌ 
259 training‌ ‌objects‌ ‌(factoring‌ ‌out‌ ‌any‌ ‌baseline‌ ‌previous-weight‌ ‌effects‌ ‌estimated‌ ‌with‌ ‌the‌ ‌training‌ ‌objects;‌‌ 
260 see‌ ‌Materials‌ ‌and‌ ‌Methods‌ ‌for‌ ‌details).‌ ‌For‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌(Fig.‌ ‌2g),‌ ‌we‌ ‌found‌ ‌significant‌‌ 
261 generalization‌ ‌both‌ ‌at‌ ‌the‌ ‌start‌ ‌(‌t‌(13)‌ ‌=‌ ‌3.41,‌ ‌p‌ ‌=‌ ‌0.0046)‌ ‌and‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(‌t‌(13)‌ ‌=‌ ‌3.78,‌ ‌p‌ ‌=‌‌ 
262 0.0023),‌ ‌with‌ ‌no‌ ‌significant‌ ‌change‌ ‌(‌t‌(13)‌ ‌=‌ ‌1.43,‌ ‌p‌ ‌=‌ ‌0.18).‌ ‌That‌ ‌is,‌ ‌at‌ ‌both‌ ‌time‌ ‌points,‌ ‌there‌ ‌was‌ ‌an‌‌ 
263 increase‌ ‌in‌ ‌anticipatory‌ ‌force‌ ‌on‌ ‌the‌ ‌trial‌ ‌after‌ ‌the‌ ‌test‌ ‌object,‌ ‌consistent‌ ‌with‌ ‌encoding‌ ‌the‌ ‌test‌ ‌object‌ ‌as‌ ‌a‌‌ 
264 family‌ ‌member.‌ ‌For‌ ‌the‌ ‌Linear++‌ ‌group‌ ‌(Fig.‌ ‌2h),‌ ‌there‌ ‌was‌ ‌significant‌ ‌generalization‌ ‌at‌ ‌the‌ ‌start‌ ‌(‌t‌(8)‌ ‌=‌‌ 
265 2.41,‌ ‌p‌ ‌=‌ ‌0.043),‌ ‌but‌ ‌not‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(‌t‌(8)‌ ‌=‌ ‌0.11,‌ ‌p‌ ‌=‌ ‌0.91),‌ ‌and‌ ‌this‌ ‌change‌ ‌was‌ ‌significant‌‌ 
266 (‌t‌(8)‌ ‌=‌ ‌2.48,‌ ‌p‌ ‌=‌ ‌0.038).‌ ‌This‌ ‌shows‌ ‌that‌ ‌participants‌ ‌initially‌ ‌encoded‌ ‌the‌ ‌extreme‌ ‌outlier‌ ‌as‌ ‌a‌ ‌family‌‌ 
267 member,‌ ‌but‌ ‌then‌ ‌formed‌ ‌a‌ ‌separate‌ ‌memory‌ ‌of‌ ‌this‌ ‌object.‌ ‌For‌ ‌the‌ ‌Uncorr+‌ ‌group‌ ‌(Fig.‌ ‌2i),‌ ‌we‌ ‌found‌ ‌no‌‌ 
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‌ 

268 evidence‌ ‌of‌ ‌generalization‌ ‌at‌ ‌the‌ ‌start‌ ‌(‌t‌(11)‌ ‌=‌ ‌0.83,‌ ‌p‌ ‌=‌ ‌0.43)‌ ‌or‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(‌t‌(11)‌ ‌=‌ ‌−1.15,‌ ‌p‌‌ 
269 =‌ ‌0.28),‌ ‌and‌ ‌no‌ ‌change‌ ‌over‌ ‌time‌ ‌(‌t‌(11)‌ ‌=‌ ‌1.10,‌ ‌p‌ ‌=‌ ‌0.30),‌ ‌consistent‌ ‌with‌ ‌encoding‌ ‌each‌ ‌object‌‌ 
270 individually‌ ‌(Fig.‌ ‌2i).‌ ‌ 

‌ 
271 We‌ ‌also‌ ‌analyzed‌ ‌the‌ ‌response‌ ‌time,‌ ‌defined‌ ‌as‌ ‌the‌ ‌time‌ ‌from‌ ‌object‌ ‌presentation‌ ‌to‌ ‌the‌ ‌button‌ ‌press‌ ‌that‌‌ 
272 released‌ ‌the‌ ‌object,‌ ‌which‌ ‌is‌ ‌presumably‌ ‌linked‌ ‌to‌ ‌the‌ ‌time‌ ‌required‌ ‌to‌ ‌estimate‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌object.‌‌ 
273 For‌ ‌this‌ ‌analysis,‌ ‌we‌ ‌combined‌ ‌the‌ ‌two‌ ‌Linear‌ ‌groups.‌ ‌As‌ ‌shown‌ ‌in‌ ‌Fig.‌ ‌2j,‌ ‌response‌ ‌times‌ ‌decreased‌‌ 
274 during‌ ‌the‌ ‌training‌ ‌phase‌ ‌for‌ ‌both‌ ‌the‌ ‌linear‌ ‌and‌ ‌the‌ ‌uncorrelated‌ ‌size-weight‌ ‌mappings,‌ ‌but‌ ‌there‌ ‌was‌ ‌a‌‌ 
275 consistent‌ ‌temporal‌ ‌cost‌ ‌associated‌ ‌with‌ ‌movement‌ ‌preparation‌ ‌when‌ ‌size‌ ‌and‌ ‌weight‌ ‌were‌ ‌uncorrelated‌‌ 
276 as‌ ‌compared‌ ‌to‌ ‌linearly‌ ‌related.‌ ‌To‌ ‌assess‌ ‌these‌ ‌effects,‌ ‌we‌ ‌defined‌ ‌four‌ ‌epochs‌ ‌by‌ ‌splitting‌ ‌both‌ ‌the‌‌ 
277 training‌ ‌and‌ ‌test‌ ‌phases‌ ‌into‌ ‌two‌ ‌equal‌ ‌parts.‌ ‌A‌ ‌two-way‌ ‌repeated-measures‌ ‌ANOVA‌ ‌on‌ ‌log-transformed‌‌ 
278 response‌ ‌times‌ ‌revealed‌ ‌significant‌ ‌main‌ ‌effects‌ ‌of‌ ‌Group‌ ‌(‌F‌(1,‌ ‌33)‌ ‌=‌ ‌5.79,‌ ‌p‌ ‌=‌ ‌0.022)‌ ‌and‌ ‌Epoch‌ ‌(‌F‌(3,‌‌ 
279 99)‌ ‌=‌ ‌13.039,‌ ‌p‌ ‌=‌ ‌0.30e−7),‌ ‌but‌ ‌no‌ ‌interaction‌ ‌(‌F‌(3,‌ ‌99)‌ ‌=‌ ‌0.80,‌ ‌p‌ ‌=‌ ‌0.49).‌ ‌Separate‌ ‌‌t‌-tests‌ ‌on‌ ‌each‌ ‌epoch‌‌ 
280 all‌ ‌showed‌ ‌significant‌ ‌Group‌ ‌effects‌ ‌(p‌ ‌<‌ ‌0.048‌ ‌in‌ ‌all‌ ‌four‌ ‌epochs).‌ ‌These‌ ‌results‌ ‌suggest‌ ‌that,‌ ‌even‌ ‌at‌ ‌the‌‌ 
281 end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase,‌ ‌encoding‌ ‌each‌ ‌object‌ ‌individually‌ ‌resulted‌ ‌in‌ ‌a‌ ‌temporal‌ ‌cost‌ ‌compared‌ ‌to‌ ‌encoding‌‌ 
282 the‌ ‌objects‌ ‌as‌ ‌a‌ ‌family.‌ ‌ 

283 Re-organization‌ ‌of‌ ‌motor‌ ‌memories‌ ‌of‌ ‌objects‌ ‌ 

284 In‌ ‌the‌ ‌experiment‌ ‌described‌ ‌above,‌ ‌for‌ ‌the‌ ‌Linear‌ ‌groups‌ ‌we‌ ‌first‌ ‌introduced‌ ‌a‌ ‌set‌ ‌of‌ ‌objects‌ ‌with‌ ‌a‌‌ 
285 common‌ ‌density,‌ ‌before‌ ‌adding‌ ‌in‌ ‌a‌ ‌test‌ ‌object,‌ ‌or‌ ‌outlier,‌ ‌with‌ ‌a‌ ‌higher‌ ‌density.‌ ‌We‌ ‌found‌ ‌a‌ ‌strong‌ ‌family‌‌ 
286 effect‌ ‌such‌ ‌that‌ ‌participants‌ ‌never‌ ‌learned‌ ‌the‌ ‌weight‌ ‌of‌ ‌a‌ ‌test‌ ‌object‌ ‌that‌ ‌was‌ ‌300‌ ‌g‌ ‌heavier‌ ‌than‌ ‌expected.‌‌ 
287 A‌ ‌key‌ ‌question‌ ‌is‌ ‌whether‌ ‌exposure‌ ‌to‌ ‌an‌ ‌object‌ ‌family‌ ‌can‌ ‌lead‌ ‌to‌ ‌the‌ ‌reorganization‌ ‌of‌ ‌an‌ ‌existing‌‌ 
288 memory‌ ‌of‌ ‌an‌ ‌individual‌ ‌object.‌ ‌To‌ ‌address‌ ‌this‌ ‌question,‌ ‌we‌ ‌tested‌ ‌two‌ ‌new‌ ‌groups‌ ‌of‌ ‌participants‌ ‌on‌‌ 
289 conditions‌ ‌in‌ ‌which‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌experienced‌ ‌‌before‌‌ ‌the‌ ‌four‌ ‌common-density‌ ‌‘family’‌ ‌objects.‌‌ 
290 Note‌ ‌that‌ ‌we‌ ‌used‌ ‌the‌ ‌same‌ ‌family‌ ‌and‌ ‌test‌ ‌objects‌ ‌as‌ ‌in‌ ‌our‌ ‌first‌ ‌experiment.‌ ‌We‌ ‌refer‌ ‌to‌ ‌these‌ ‌groups‌ ‌as‌‌ 
291 the‌ ‌+Linear‌ ‌and‌ ‌++Linear‌ ‌groups‌ ‌to‌ ‌denote‌ ‌the‌ ‌reversed‌ ‌order‌ ‌in‌ ‌which‌ ‌participants‌ ‌encountered‌ ‌the‌ ‌test‌‌ 
292 object‌ ‌and‌ ‌the‌ ‌family‌ ‌objects.‌ ‌In‌ ‌the‌ ‌initial‌ ‌training‌ ‌phase,‌ ‌participants‌ ‌in‌ ‌the‌ ‌+Linear‌ ‌group‌ ‌lifted‌ ‌the‌‌ 
293 1.2-kg‌ ‌test‌ ‌object,‌ ‌and‌ ‌the‌ ‌++Linear‌ ‌group‌ ‌lifted‌ ‌the‌ ‌1.5-kg‌ ‌test‌ ‌object.‌ ‌For‌ ‌both‌ ‌groups,‌ ‌the‌ ‌four‌ ‌family‌‌ 
294 objects‌ ‌were‌ ‌then‌ ‌introduced‌ ‌in‌ ‌the‌ ‌test‌ ‌phase.‌ ‌ 

‌ 
295 As‌ ‌expected,‌ ‌both‌ ‌groups‌ ‌quickly‌ ‌and‌ ‌accurately‌ ‌learned‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌when‌ ‌it‌ ‌was‌‌ 
296 presented‌ ‌individually‌ ‌during‌ ‌the‌ ‌training‌ ‌phase‌ ‌(Fig.‌ ‌3a,‌ ‌c).‌ ‌However,‌ ‌at‌ ‌the‌ ‌start‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌‌ 
297 (beginning‌ ‌at‌ ‌trial‌ ‌cycle‌ ‌31),‌ ‌it‌ ‌is‌ ‌evident‌ ‌that‌ ‌participants‌ ‌in‌ ‌both‌ ‌groups‌ ‌began‌ ‌to‌ ‌treat‌ ‌the‌ ‌outlier‌ ‌and‌ ‌the‌‌ 
298 four‌ ‌family‌ ‌objects‌ ‌as‌ ‌a‌ ‌single‌ ‌family.‌ ‌Specifically,‌ ‌the‌ ‌estimated‌ ‌weight‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌(‌i.e.‌,‌ ‌the‌‌ 
299 anticipatory‌ ‌force)‌ ‌decreased‌ ‌towards‌ ‌the‌ ‌family-predicted‌ ‌weight.‌ ‌At‌ ‌the‌ ‌same‌ ‌time,‌ ‌the‌ ‌estimated‌‌ 
300 weights‌ ‌of‌ ‌the‌ ‌family‌ ‌members‌ ‌were‌ ‌initially‌ ‌overestimated.‌ ‌These‌ ‌results‌ ‌show‌ ‌that‌ ‌even‌ ‌brief‌ ‌exposure‌‌ 
301 to‌ ‌an‌ ‌object‌ ‌family‌ ‌can‌ ‌reorganize‌ ‌the‌ ‌memory‌ ‌of‌ ‌a‌ ‌previously‌ ‌learned‌ ‌individual‌ ‌object,‌ ‌such‌ ‌that‌ ‌it‌ ‌is‌‌ 
302 assimilated‌ ‌into‌ ‌the‌ ‌family.‌ ‌ 
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‌ 

‌ 
303 Figure‌ ‌3.‌ ‌A‌ ‌memory‌ ‌of‌ ‌an‌ ‌individual‌ ‌is‌ ‌reorganized‌ ‌when‌ ‌an‌ ‌object‌ ‌family‌ ‌is‌ ‌introduced.‌ ‌ 
304 (a,‌ ‌c)‌ ‌Trial-by-trial‌‌anticipatory‌‌forces,‌‌as‌‌in‌‌Fig.‌‌2a,‌‌c,‌‌in‌‌a‌‌‘reverse’‌‌condition‌‌in‌‌which‌‌the‌‌outlier‌‌object‌‌                                     
305 was‌‌learned‌‌during‌‌the‌‌initial‌‌training‌‌phase,‌‌and‌‌the‌‌family‌‌objects‌‌were‌‌only‌‌introduced‌‌from‌‌trial‌‌cycle‌‌                                 
306 31.‌ ‌Hence‌ ‌we‌ ‌refer‌ ‌to‌ ‌these‌ ‌as‌‌+Linear‌‌and‌‌++Linear.‌‌As‌‌the‌‌training‌‌phase‌‌trial‌‌cycles‌‌contained‌‌only‌‌                                   
307 one‌‌trial‌‌(the‌‌outlier),‌‌for‌‌clarity,‌‌the‌‌abscissa‌‌scale‌‌is‌‌compressed.‌‌After‌‌the‌‌test‌‌phase,‌‌in‌‌a‌‌‘1:1’‌‌phase‌‌                                     
308 the‌ ‌test‌ ‌object‌‌was‌‌presented‌‌four‌‌times‌‌in‌‌each‌‌trial‌‌cycle‌‌(rather‌‌than‌‌once‌‌as‌‌in‌‌the‌‌test‌‌phase),‌‌with‌‌                                       
309 each‌ ‌family‌ ‌member‌ ‌presented‌ ‌once‌ ‌(8‌ ‌trials‌ ‌per‌ ‌cycle)‌ ‌such‌ ‌that‌ ‌the‌ ‌participant‌ ‌experienced‌ ‌the‌ ‌test‌‌                               
310 object‌ ‌as‌ ‌often‌ ‌as‌ ‌a‌ ‌family‌ ‌member.‌ ‌For‌ ‌the‌ ‌1:1‌ ‌phase,‌ ‌we‌ ‌excluded‌ ‌trials‌ ‌from‌ ‌analysis‌ ‌in‌ ‌which‌ ‌the‌‌                                     
311 outlier‌‌object‌‌followed‌‌itself.‌‌(b,‌‌d)‌‌Average‌‌anticipatory‌‌forces‌‌at‌‌the‌‌end‌‌of‌‌the‌‌test‌‌phase,‌‌as‌‌in‌‌Fig.‌‌2b,‌‌                                       
312 d,‌ ‌but‌ ‌here‌ ‌plotted‌ ‌by‌ ‌volume.‌ ‌ 

‌ 
313 Following‌ ‌this‌ ‌assimilation‌ ‌of‌ ‌the‌ ‌test‌ ‌object,‌ ‌or‌ ‌outlier,‌ ‌into‌ ‌the‌ ‌family,‌ ‌the‌ ‌pattern‌ ‌of‌ ‌results‌ ‌are‌ ‌strikingly‌‌ 
314 similar‌ ‌to‌ ‌that‌ ‌observed‌ ‌in‌ ‌our‌ ‌first‌ ‌experiment.‌ ‌Specifically,‌ ‌participants‌ ‌in‌ ‌the‌ ‌+Linear‌ ‌group‌ ‌never‌ ‌fully‌‌ 
315 re-learned‌ ‌the‌ ‌actual‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier,‌ ‌whereas‌ ‌participants‌ ‌in‌ ‌the‌ ‌++Linear‌ ‌group‌ ‌adapted‌ ‌their‌‌ 
316 anticipatory‌ ‌force‌ ‌to‌ ‌the‌ ‌actual‌ ‌weight.‌ ‌At‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(Fig.‌ ‌3b),‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌‌ 
317 outlier‌ ‌in‌ ‌the‌ ‌+Linear‌ ‌group‌ ‌(10.01‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[9.18,‌ ‌10.84])‌ ‌was‌ ‌not‌ ‌significantly‌ ‌greater‌ ‌(‌t‌(10)‌ ‌=‌ ‌1.23,‌‌ 
318 p‌ ‌=‌ ‌0.12)‌ ‌than‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌(9.49 N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[9.11,‌ ‌9.86]).‌ ‌Thus,‌ ‌participants‌ ‌in‌ ‌the‌‌ 
319 +Linear‌ ‌group‌ ‌did‌ ‌not‌ ‌re-learn‌ ‌the‌ ‌actual‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌ ‌after‌ ‌it‌ ‌was‌ ‌assimilated‌ ‌into‌ ‌the‌ ‌family.‌‌ 
320 Therefore,‌ ‌the‌ ‌+Linear‌ ‌group,‌ ‌like‌ ‌the‌ ‌Linear+‌ ‌group,‌ ‌exhibited‌ ‌a‌ ‌strong‌ ‌family‌ ‌effect.‌ ‌In‌ ‌the‌ ‌++Linear‌‌ 
321 group,‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌outlier‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(12.76‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[11.14,‌ ‌14.39])‌‌ 
322 was‌ ‌significantly‌ ‌greater‌ ‌(t(10)‌ ‌=‌ ‌4.19,‌ ‌p‌ ‌=‌ ‌0.00093)‌ ‌than‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌(9.76‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌‌ 
323 [9.47,‌ ‌10.04]).‌ ‌Thus,‌ ‌as‌ ‌was‌ ‌the‌ ‌case‌ ‌for‌ ‌the‌ ‌Linear++‌ ‌group,‌ ‌the‌ ‌++Linear‌ ‌group‌ ‌exhibited‌ ‌learning‌ ‌(or‌‌ 
324 re-learning)‌ ‌of‌ ‌the‌ ‌more‌ ‌extreme‌ ‌outlier.‌ ‌ 

‌ 
325 The‌ ‌failure‌ ‌to‌ ‌learn‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌and‌ ‌+Linear‌ ‌groups‌ ‌could‌ ‌be‌ ‌due‌ ‌to‌ ‌the‌ ‌fact‌‌ 
326 that‌ ‌the‌ ‌higher-density‌ ‌outlier‌ ‌was‌ ‌lifted‌ ‌only‌ ‌once‌ ‌for‌ ‌every‌ ‌four‌ ‌lifts‌ ‌of‌ ‌the‌ ‌family‌ ‌objects.‌ ‌Thus,‌ ‌after‌‌ 
327 the‌ ‌test‌ ‌phase‌ ‌we‌ ‌included‌ ‌a‌ ‌‘1:1’‌ ‌phase‌ ‌where‌ ‌the‌ ‌relative‌ ‌frequency‌ ‌with‌ ‌which‌ ‌the‌ ‌outlier‌ ‌and‌ ‌family‌‌ 
328 objects‌ ‌were‌ ‌experienced‌ ‌was‌ ‌equivalent.‌ ‌Specifically,‌ ‌this‌ ‌phase‌ ‌consisted‌ ‌of‌ ‌ten‌ ‌cycles‌ ‌in‌ ‌which‌ ‌the‌‌ 
329 outlier‌ ‌object‌ ‌was‌ ‌lifted‌ ‌4‌ ‌times‌ ‌per‌ ‌cycle‌ ‌and‌ ‌each‌ ‌family‌ ‌member‌ ‌was‌ ‌lifted‌ ‌only‌ ‌once,‌ ‌for‌ ‌a‌ ‌total‌ ‌of‌ ‌8‌‌ 
330 lifts‌ ‌per‌ ‌cycle‌ ‌with‌ ‌the‌ ‌outlier‌ ‌and‌ ‌family‌ ‌members‌ ‌randomly‌ ‌interleaved.‌ ‌As‌ ‌shown‌ ‌in‌ ‌Fig.‌ ‌3a,‌ ‌in‌ ‌the‌‌ 
331 +Linear‌ ‌group‌ ‌there‌ ‌was‌ ‌minimal‌ ‌impact‌ ‌on‌ ‌learning‌ ‌in‌ ‌the‌ ‌1:1‌ ‌phase.‌ ‌In‌ ‌the‌ ‌++Linear‌ ‌group,‌ ‌increasing‌‌ 
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‌ 

332 the‌ ‌relative‌ ‌frequency‌ ‌of‌ ‌outlier‌ ‌lifts‌ ‌in‌ ‌the‌ ‌1:1‌ ‌phase‌ ‌did‌ ‌not‌ ‌further‌ ‌improve‌ ‌the‌ ‌separation‌ ‌between‌ ‌the‌‌ 
333 anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌outlier‌ ‌and‌ ‌its‌ ‌family-predicted‌ ‌weight.‌ ‌These‌ ‌findings‌ ‌demonstrate‌ ‌that‌ ‌the‌‌ 
334 family‌ ‌effect‌ ‌cannot‌ ‌be‌ ‌accounted‌ ‌for‌ ‌by‌ ‌the‌ ‌greater‌ ‌relative‌ ‌frequency‌ ‌of‌ ‌the‌ ‌family‌ ‌objects.‌ ‌ 

335 Category‌ ‌boundaries‌ ‌are‌ ‌flexible‌‌ ‌  

336 In‌ ‌the‌ ‌first‌ ‌two‌ ‌experiments,‌ ‌we‌ ‌showed‌ ‌that‌ ‌participants‌ ‌failed‌ ‌to‌ ‌learn‌ ‌the‌ ‌weight‌ ‌of‌ ‌a‌ ‌test‌ ‌object,‌ ‌or‌‌ 
337 outlier,‌ ‌that‌ ‌was‌ ‌300‌ ‌g‌ ‌(or‌ ‌33%)‌ ‌greater‌ ‌than‌ ‌the‌ ‌weight‌ ‌predicted‌ ‌by‌ ‌the‌ ‌density‌ ‌of‌ ‌the‌ ‌family,‌ ‌but‌ ‌did‌‌ 
338 learn‌ ‌the‌ ‌weight‌ ‌when‌ ‌the‌ ‌test‌ ‌object‌ ‌exceeded‌ ‌this‌ ‌weight‌ ‌by‌ ‌600‌ ‌g‌ ‌(or‌ ‌67%).‌ ‌This‌ ‌suggests‌ ‌that‌ ‌there‌ ‌is‌ ‌a‌‌ 
339 boundary,‌ ‌between‌ ‌these‌ ‌two‌ ‌weights,‌ ‌that‌ ‌determines‌ ‌whether‌ ‌the‌ ‌object‌ ‌is‌ ‌encoded‌ ‌as‌ ‌a‌ ‌family‌ ‌member‌‌ 
340 or‌ ‌as‌ ‌a‌ ‌separate‌ ‌individual.‌ ‌A‌ ‌fundamental‌ ‌question‌ ‌is‌ ‌whether‌ ‌such‌ ‌boundaries‌ ‌are‌ ‌fixed‌ ‌or‌ ‌flexible.‌‌ 
341 Research‌ ‌on‌ ‌both‌ ‌perceptual‌ ‌and‌ ‌conceptual‌ ‌categorization‌ ‌has‌ ‌shown‌ ‌that‌ ‌category‌ ‌boundaries‌ ‌may‌‌ 
342 depend‌ ‌on‌ ‌within-category‌ ‌variability‌ ‌‌30–32‌,‌ ‌and‌ ‌that‌ ‌category‌ ‌labeling‌ ‌can‌ ‌exhibit‌ ‌hysteresis‌ ‌whereby‌ ‌the‌‌ 
343 point‌ ‌at‌ ‌which‌ ‌the‌ ‌perceived‌ ‌category‌ ‌changes‌ ‌depends‌ ‌on‌ ‌the‌ ‌direction‌ ‌of‌ ‌change‌ ‌‌33–35‌.‌ ‌To‌ ‌examine‌ ‌this‌‌ 
344 issue‌ ‌in‌ ‌relation‌ ‌to‌ ‌object‌ ‌categorization,‌ ‌we‌ ‌recruited‌ ‌two‌ ‌new‌ ‌groups‌ ‌of‌ ‌participants‌ ‌who‌ ‌initially‌‌ 
345 experienced‌ ‌the‌ ‌same‌ ‌conditions‌ ‌as‌ ‌the‌ ‌Linear+‌ ‌and‌ ‌Linear++‌ ‌groups‌ ‌from‌ ‌our‌ ‌first‌ ‌experiment.‌ ‌That‌ ‌is,‌‌ 
346 both‌ ‌groups‌ ‌completed‌ ‌a‌ ‌training‌ ‌phase‌ ‌in‌ ‌which‌ ‌they‌ ‌lifted‌ ‌the‌ ‌four‌ ‌family‌ ‌objects,‌ ‌followed‌ ‌by‌ ‌a‌ ‌test‌‌ 
347 phase‌ ‌in‌ ‌which‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌initially‌ ‌either‌ ‌1.2‌ ‌or‌ ‌1.5‌ ‌kg‌ ‌for‌ ‌20‌ ‌trial‌ ‌cycles.‌ ‌However,‌ ‌we‌ ‌then‌‌ 
348 gradually‌ ‌changed‌ ‌the‌ ‌test‌ ‌object’s‌ ‌weight‌ ‌by‌ ‌steps‌ ‌of‌ ‌50‌ ‌g‌ ‌every‌ ‌8‌ ‌trial‌ ‌cycles.‌ ‌In‌ ‌the‌ ‌Linear➚‌ ‌group‌ ‌the‌‌ 
349 weight‌ ‌was‌ ‌gradually‌ ‌increased‌ ‌from‌ ‌1.2‌ ‌to‌ ‌1.5‌ ‌kg‌ ‌and‌ ‌in‌ ‌the‌ ‌Linear➘‌ ‌group‌ ‌the‌ ‌weight‌ ‌was‌ ‌gradually‌‌ 
350 decreased‌ ‌from‌ ‌1.5‌ ‌to‌ ‌1.2‌ ‌kg.‌ ‌ 

‌ 
351 The‌ ‌anticipatory‌ ‌force‌ ‌data‌ ‌for‌ ‌the‌ ‌Linear➚‌ ‌and‌ ‌Linear➘‌ ‌groups‌ ‌(Fig.‌ ‌4a,‌ ‌c)‌ ‌contain‌ ‌several‌ ‌features‌ ‌that‌‌ 
352 replicate‌ ‌the‌ ‌key‌ ‌findings‌ ‌from‌ ‌our‌ ‌first‌ ‌experiment.‌ ‌First,‌ ‌both‌ ‌groups‌ ‌quickly‌ ‌and‌ ‌accurately‌ ‌learned‌ ‌the‌‌ 
353 weights‌ ‌of‌ ‌the‌ ‌training‌ ‌objects,‌ ‌with‌ ‌anticipatory‌ ‌forces‌ ‌that‌ ‌were‌ ‌strongly‌ ‌correlated‌ ‌with‌ ‌actual‌ ‌object‌‌ 
354 weights‌ ‌by‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌training‌ ‌phase‌ ‌(r‌ ‌=‌ ‌0.81,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[0.73,‌ ‌0.87]‌ ‌in‌ ‌Linear➚;‌ ‌r‌ ‌=‌ ‌0.84,‌ ‌95%‌ ‌CI‌ ‌=‌‌ 
355 [0.77,‌ ‌0.89]‌ ‌in‌ ‌Linear➘).‌ ‌Second,‌ ‌in‌ ‌both‌ ‌groups‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌generated‌ ‌on‌ ‌the‌ ‌first‌ ‌lift‌ ‌of‌ ‌the‌ ‌test‌‌ 
356 object‌ ‌was‌ ‌close‌ ‌to‌ ‌the‌ ‌middle‌ ‌of‌ ‌the‌ ‌weights‌ ‌of‌ ‌the‌ ‌family‌ ‌objects‌ ‌(9.40‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[8.10‌ ‌10.70]‌ ‌in‌‌ 
357 Linear➚;‌ ‌8.07‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[5.93,‌ ‌10.22]‌ ‌in‌ ‌Linear➘).‌ ‌Third,‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌initial‌ ‌20‌ ‌cycles‌ ‌of‌ ‌the‌ ‌test‌‌ 
358 phase,‌ ‌during‌ ‌which‌ ‌the‌ ‌test‌ ‌object‌ ‌weight‌ ‌remained‌ ‌at‌ ‌its‌ ‌initial‌ ‌value,‌ ‌learning‌ ‌of‌ ‌the‌ ‌1.2-kg‌ ‌test‌ ‌object‌‌ 
359 was‌ ‌not‌ ‌significant‌ ‌(Linear➚:‌ ‌‌t‌(8)‌ ‌=‌ ‌−0.58,‌ ‌p‌ ‌=‌ ‌0.71),‌ ‌whereas‌ ‌learning‌ ‌of‌ ‌the‌ ‌1.5-kg‌ ‌test‌ ‌object‌ ‌was‌‌ 
360 significant‌ ‌(Linear➘:‌ ‌‌t‌(8)‌ ‌=‌ ‌2.15,‌ ‌p‌ ‌=‌ ‌0.032).‌ ‌ 

‌ 
361 For‌ ‌the‌ ‌Linear➚‌ ‌group,‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌test‌ ‌object‌ ‌does‌ ‌appear‌ ‌to‌ ‌have‌ ‌slightly‌ ‌increased‌ ‌as‌‌ 
362 its‌ ‌weight‌ ‌increased.‌ ‌However,‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(11.02‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌‌ 
363 [9.44,‌ ‌12.60])‌ ‌was‌ ‌not‌ ‌significantly‌ ‌greater‌ ‌(‌t‌(8)‌ ‌=‌ ‌1.81,‌ ‌p‌ ‌=‌ ‌0.054)‌ ‌than‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌(9.72‌‌ 
364 N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[9.43‌ ‌10.01]),‌ ‌and‌ ‌was‌ ‌still‌ ‌substantially‌ ‌less‌ ‌than‌ ‌the‌ ‌actual‌ ‌weight‌ ‌(14.72 N;‌ ‌Fig.‌ ‌4b).‌ ‌Thus,‌‌ 
365 despite‌ ‌the‌ ‌fact‌ ‌that‌ ‌the‌ ‌test‌ ‌object‌ ‌weighed‌ ‌1.5‌ ‌kg‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase,‌ ‌it‌ ‌was‌ ‌not‌ ‌‘kicked‌ ‌out’‌ ‌of‌‌ 
366 the‌ ‌family,‌ ‌in‌ ‌contrast‌ ‌to‌ ‌the‌ ‌equally‌ ‌heavy‌ ‌test‌ ‌object‌ ‌experienced‌ ‌by‌ ‌the‌ ‌Linear++‌ ‌group‌ ‌in‌ ‌our‌ ‌first‌‌ 
367 experiment.‌ ‌A‌ ‌direct‌ ‌comparison‌ ‌between‌ ‌the‌ ‌Linear➚‌ ‌and‌ ‌Linear++‌ ‌groups‌ ‌showed‌ ‌a‌ ‌significant‌‌ 
368 difference‌ ‌in‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌outlier‌ ‌object‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(‌t‌(16)‌ ‌=‌ ‌2.20,‌ ‌p‌ ‌=‌‌ 
369 0.043).‌ ‌ 
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‌ 

‌ 
370 Figure‌ ‌4.‌ ‌Family‌ ‌boundary‌ ‌depends‌ ‌on‌ ‌history‌ ‌of‌ ‌sensorimotor‌ ‌experience.‌ ‌ 
371 (a)‌‌Trial-by-trial‌‌anticipatory‌‌forces‌‌(same‌‌format‌‌as‌‌Fig.‌‌2a)‌‌in‌‌an‌‌‘increasing’‌‌condition‌‌(Linear➚)‌‌in‌‌which‌‌                               
372 the‌‌outlier‌‌starts‌‌at‌‌the‌‌weight‌‌of‌‌the‌‌Linear+‌‌group‌‌on‌‌trial‌‌cycle‌‌31‌‌and‌‌increases‌‌gradually‌‌to‌‌the‌‌weight‌‌                                       
373 of‌ ‌the‌ ‌Linear++‌ ‌condition.‌‌(b)‌‌Anticipatory‌‌forces‌‌at‌‌the‌‌end‌‌of‌‌the‌‌test‌‌phase‌‌(same‌‌format‌‌as‌‌Fig.‌‌2b).‌‌                                     
374 (c,d)‌ ‌Same‌ ‌as‌‌(a,b)‌‌for‌‌a‌‌‘decreasing’‌‌condition‌‌(Linear➘)‌‌in‌‌which‌‌the‌‌outlier‌‌starts‌‌at‌‌the‌‌weight‌‌of‌‌the‌‌                                     
375 Linear++‌ ‌condition‌ ‌and‌ ‌decreases‌ ‌gradually‌ ‌to‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌Linear+‌ ‌condition.‌ ‌ 

‌ 
376 As‌ ‌noted‌ ‌above,‌ ‌and‌ ‌as‌ ‌expected‌ ‌based‌ ‌on‌ ‌the‌ ‌Linear++‌ ‌group,‌ ‌participants‌ ‌in‌ ‌the‌ ‌Linear➘‌ ‌group‌‌ 
377 increased‌ ‌their‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌1.5-kg‌ ‌test‌ ‌object‌ ‌from‌ ‌the‌ ‌start‌ ‌of‌ ‌the‌ ‌test‌ ‌phase,‌ ‌before‌ ‌its‌‌ 
378 weight‌ ‌began‌ ‌decreasing.‌ ‌Then,‌ ‌as‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌increased‌ ‌and‌ ‌the‌ ‌actual‌ ‌weight‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌‌ 
379 gradually‌ ‌decreased,‌ ‌these‌ ‌two‌ ‌forces‌ ‌became‌ ‌closely‌ ‌matched,‌ ‌and‌ ‌remained‌ ‌so‌ ‌until‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌‌ 
380 phase‌ ‌(Fig.‌ ‌4c).‌ ‌At‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase,‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌(11.69‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[10.35,‌ ‌13.03])‌‌ 
381 was‌ ‌significantly‌ ‌greater‌ ‌(‌t‌(8)‌ ‌=‌ ‌4.35,‌ ‌p‌ ‌=‌ ‌0.0012)‌ ‌than‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌(9.20‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌‌ 
382 [8.65,‌ ‌9.75])‌ ‌and‌ ‌indistinguishable‌ ‌from‌ ‌the‌ ‌actual‌ ‌weight‌ ‌(11.77‌ ‌N;‌ ‌Fig.‌ ‌4d).‌ ‌Thus,‌ ‌once‌ ‌a‌ ‌separate‌‌ 
383 memory‌ ‌was‌ ‌formed‌ ‌for‌ ‌the‌ ‌test‌ ‌object,‌ ‌it‌ ‌continued‌ ‌to‌ ‌be‌ ‌encoded‌ ‌as‌ ‌an‌ ‌individual‌ ‌even‌ ‌when‌ ‌its‌ ‌weight‌‌ 
384 deviation‌ ‌decreased‌ ‌to‌ ‌the‌ ‌level‌ ‌(+300‌ ‌g,‌ ‌or‌ ‌33%)‌ ‌that‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌failed‌ ‌to‌ ‌learn.‌ ‌A‌ ‌direct‌‌ 
385 comparison‌ ‌between‌ ‌the‌ ‌Linear➘‌ ‌and‌ ‌Linear+‌ ‌groups‌ ‌showed‌ ‌a‌ ‌significant‌ ‌difference‌ ‌in‌ ‌the‌ ‌anticipatory‌‌ 
386 force‌ ‌for‌ ‌the‌ ‌outlier‌ ‌object‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(‌t‌(21)‌ ‌=‌ ‌−3.68,‌ ‌p‌ ‌=‌ ‌0.0014).‌ ‌Overall,‌ ‌the‌ ‌results‌‌ 
387 from‌ ‌both‌ ‌groups‌ ‌demonstrate‌ ‌that‌ ‌the‌ ‌threshold‌ ‌for‌ ‌categorizing‌ ‌an‌ ‌object‌ ‌as‌ ‌either‌ ‌a‌ ‌family‌ ‌member‌ ‌or‌‌ 
388 an‌ ‌individual‌ ‌object‌ ‌is‌ ‌flexible‌ ‌and‌ ‌depends‌ ‌on‌ ‌past‌ ‌sensorimotor‌ ‌experience.‌ ‌Mechanisms‌ ‌that‌ ‌could‌‌ 
389 potentially‌ ‌give‌ ‌rise‌ ‌to‌ ‌these‌ ‌effects‌ ‌are‌ ‌discussed‌ ‌below.‌ ‌ 

390 All-or-nothing‌ ‌learning‌ ‌of‌ ‌outlier‌ ‌weight‌ ‌ 

391 According‌ ‌to‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis,‌ ‌an‌ ‌outlier‌ ‌object‌ ‌is‌ ‌encoded‌ ‌categorically‌ ‌as‌ ‌either‌ ‌a‌ ‌family‌‌ 
392 member‌ ‌or‌ ‌an‌ ‌individual.‌ ‌As‌ ‌a‌ ‌consequence,‌ ‌a‌ ‌given‌ ‌participant‌ ‌should‌ ‌either‌ ‌fully‌ ‌learn‌ ‌the‌ ‌weight‌ ‌of‌ ‌an‌‌ 
393 outlier‌ ‌object‌ ‌or‌ ‌not‌ ‌learn‌ ‌at‌ ‌all,‌ ‌depending‌ ‌on‌ ‌their‌ ‌particular‌ ‌threshold‌ ‌for‌ ‌‘kicking‌ ‌out’‌ ‌an‌ ‌object‌ ‌from‌ ‌a‌‌ 
394 family.‌ ‌Assuming‌ ‌that‌ ‌the‌ ‌threshold‌ ‌weight‌ ‌at‌ ‌which‌ ‌an‌ ‌outlier‌ ‌is‌ ‌kicked‌ ‌out‌ ‌of‌ ‌a‌ ‌family‌ ‌varies‌ ‌across‌‌ 
395 participants,‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis‌ ‌predicts‌ ‌that‌ ‌for‌ ‌certain‌ ‌outliers,‌ ‌there‌ ‌will‌ ‌be‌ ‌a‌ ‌bimodal‌‌ 
396 distribution‌ ‌of‌ ‌estimated‌ ‌weights‌ ‌across‌ ‌participants‌ ‌(separating‌ ‌learners‌ ‌from‌ ‌non-learners).‌ ‌In‌ ‌contrast,‌‌ 
397 the‌ ‌associative‌ ‌map‌ ‌hypothesis‌ ‌predicts‌ ‌that‌ ‌partial‌ ‌learning‌ ‌will‌ ‌be‌ ‌observed‌ ‌and‌ ‌that,‌ ‌assuming‌ ‌learning‌‌ 
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‌ 

398 rates‌ ‌across‌ ‌participants‌ ‌are‌ ‌normally‌ ‌distributed,‌ ‌there‌ ‌will‌ ‌be‌ ‌a‌ ‌unimodal‌ ‌distribution‌ ‌in‌ ‌the‌ ‌amount‌ ‌of‌‌ 
399 learning,‌ ‌regardless‌ ‌of‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier.‌ ‌ 

‌ 
400 With‌ ‌the‌ ‌aim‌ ‌of‌ ‌examining‌ ‌distributions‌ ‌across‌ ‌participants,‌ ‌we‌ ‌performed‌ ‌a‌ ‌web-based‌ ‌experiment‌ ‌in‌‌ 
401 which‌ ‌we‌ ‌recruited‌ ‌a‌ ‌large‌ ‌number‌ ‌of‌ ‌participants‌ ‌(N = 196),‌ ‌divided‌ ‌into‌ ‌four‌ ‌groups‌ ‌that‌ ‌varied‌ ‌in‌ ‌how‌‌ 
402 the‌ ‌outlier‌ ‌deviated‌ ‌from‌ ‌a‌ ‌linear‌ ‌family.‌ ‌As‌ ‌in‌ ‌our‌ ‌first‌ ‌experiment,‌ ‌we‌ ‌tested‌ ‌groups‌ ‌who‌ ‌were‌ ‌presented‌‌ 
403 with‌ ‌an‌ ‌outlier‌ ‌object‌ ‌that‌ ‌was‌ ‌heavier‌ ‌(Linear+)‌ ‌or‌ ‌much‌ ‌heavier‌ ‌(Linear++)‌ ‌than‌ ‌the‌ ‌weight‌ ‌predicted‌ ‌by‌‌ 
404 the‌ ‌density‌ ‌of‌ ‌the‌ ‌training‌ ‌objects.‌ ‌In‌ ‌addition,‌ ‌to‌ ‌assess‌ ‌the‌ ‌generality‌ ‌of‌ ‌our‌ ‌findings,‌ ‌we‌ ‌tested‌ ‌groups‌‌ 
405 who‌ ‌were‌ ‌presented‌ ‌with‌ ‌an‌ ‌outlier‌ ‌that‌ ‌was‌ ‌lighter‌ ‌(Linear-)‌ ‌or‌ ‌much‌ ‌lighter‌ ‌(Linear--)‌ ‌than‌ ‌the‌ ‌weight‌‌ 
406 predicted‌ ‌by‌ ‌the‌ ‌density‌ ‌of‌ ‌the‌ ‌training‌ ‌objects.‌ ‌ 

‌ 
407 Based‌ ‌on‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis,‌ ‌we‌ ‌expected‌ ‌that‌ ‌the‌ ‌participants‌ ‌in‌ ‌the‌ ‌groups‌ ‌with‌ ‌less‌ ‌deviant‌‌ 
408 outliers‌ ‌(Linear+‌ ‌and‌ ‌Linear-)‌ ‌would‌ ‌form‌ ‌a‌ ‌single‌ ‌distribution‌ ‌of‌ ‌non-learners,‌ ‌with‌ ‌anticipatory‌ ‌forces‌‌ 
409 centered‌ ‌on‌ ‌the‌ ‌family-predicted‌ ‌weight.‌ ‌In‌ ‌contrast,‌ ‌we‌ ‌predicted‌ ‌that‌ ‌participants‌ ‌in‌ ‌the‌ ‌more‌ ‌deviant‌‌ 
410 outlier‌ ‌groups‌ ‌(Linear++‌ ‌and‌ ‌Linear--)‌ ‌would‌ ‌cluster‌ ‌into‌ ‌distinct‌ ‌distributions‌ ‌of‌ ‌learners‌ ‌and‌‌ 
411 non-learners,‌ ‌with‌ ‌anticipatory‌ ‌forces‌ ‌centered‌ ‌on‌ ‌the‌ ‌actual‌ ‌and‌ ‌family-predicted‌ ‌weights‌ ‌of‌ ‌the‌ ‌outlier,‌‌ 
412 respectively.‌ ‌ 

‌ 
413 The‌ ‌web-based‌ ‌task‌ ‌was‌ ‌designed‌ ‌to‌ ‌closely‌ ‌mirror‌ ‌the‌ ‌laboratory‌ ‌task.‌ ‌The‌ ‌visual‌ ‌scene‌ ‌consisted‌ ‌of‌ ‌five‌‌ 
414 cylindrical‌ ‌objects‌ ‌each‌ ‌with‌ ‌a‌ ‌spring‌ ‌attached‌ ‌to‌ ‌its‌ ‌top‌ ‌(Fig.‌ ‌5a).‌ ‌The‌ ‌objects‌ ‌were‌ ‌clamped‌ ‌in‌ ‌place‌ ‌by‌ ‌a‌‌ 
415 ring‌ ‌that‌ ‌rotated‌ ‌before‌ ‌each‌ ‌trial‌ ‌to‌ ‌bring‌ ‌one‌ ‌of‌ ‌the‌ ‌objects‌ ‌to‌ ‌the‌ ‌foremost‌ ‌position.‌ ‌Participants‌ ‌used‌‌ 
416 their‌ ‌mouse‌ ‌or‌ ‌trackpad‌ ‌to‌ ‌stretch‌ ‌the‌ ‌spring‌ ‌upwards‌ ‌in‌ ‌an‌ ‌attempt‌ ‌to‌ ‌generate‌ ‌a‌ ‌lifting‌ ‌force‌ ‌on‌ ‌the‌ ‌object‌‌ 
417 that‌ ‌matched‌ ‌its‌ ‌weight‌ ‌(trial‌ ‌phase‌ ‌1).‌ ‌Then,‌ ‌they‌ ‌pressed‌ ‌a‌ ‌key‌ ‌with‌ ‌their‌ ‌other‌ ‌hand‌ ‌to‌ ‌release‌ ‌the‌ ‌clamp‌‌ 
418 (trial‌ ‌phase‌ ‌2).‌ ‌From‌ ‌this‌ ‌point‌ ‌on,‌ ‌the‌ ‌object’s‌ ‌motion‌ ‌was‌ ‌simulated‌ ‌as‌ ‌a‌ ‌mass-spring-damper‌ ‌system,‌‌ 
419 thus‌ ‌providing‌ ‌visual‌ ‌feedback‌ ‌about‌ ‌the‌ ‌participant’s‌ ‌performance.‌ ‌If‌ ‌the‌ ‌spring‌ ‌was‌ ‌stretched‌ ‌too‌ ‌much‌‌ 
420 (or‌ ‌too‌ ‌little),‌ ‌the‌ ‌object‌ ‌would‌ ‌rise‌ ‌(or‌ ‌fall)‌ ‌and‌ ‌then‌ ‌oscillate‌ ‌until‌ ‌coming‌ ‌to‌ ‌rest‌ ‌(Fig.‌ ‌5a,‌ ‌rightmost‌‌ 
421 panel).‌ ‌The‌ ‌oscillation‌ ‌time‌ ‌depended‌ ‌on‌ ‌the‌ ‌mismatch‌ ‌between‌ ‌the‌ ‌estimated‌ ‌and‌ ‌actual‌ ‌object‌ ‌weight,‌‌ 
422 creating‌ ‌a‌ ‌natural‌ ‌time‌ ‌penalty.‌ ‌ 

‌ 
423 The‌ ‌results‌ ‌for‌ ‌the‌ ‌Linear+‌ ‌and‌ ‌Linear++‌ ‌groups‌ ‌in‌ ‌the‌ ‌web-based‌ ‌experiment‌ ‌(Fig.‌ ‌5b,‌ ‌e)‌ ‌were‌ ‌very‌‌ 
424 similar‌ ‌to‌ ‌those‌ ‌observed‌ ‌for‌ ‌the‌ ‌corresponding‌ ‌groups‌ ‌in‌ ‌our‌ ‌first‌ ‌experiment.‌ ‌This‌ ‌indicates‌ ‌that‌ ‌similar‌‌ 
425 learning‌ ‌processes‌ ‌were‌ ‌engaged‌ ‌despite‌ ‌the‌ ‌use‌ ‌of‌ ‌visual‌ ‌dynamics‌ ‌without‌ ‌haptic‌ ‌feedback‌ ‌‌36‌.‌ ‌On‌‌ 
426 average,‌ ‌the‌ ‌Linear+‌ ‌group‌ ‌did‌ ‌not‌ ‌learn‌ ‌the‌ ‌outlier,‌ ‌whereas‌ ‌the‌ ‌Linear++‌ ‌group‌ ‌exhibited‌ ‌substantial,‌ ‌but‌‌ 
427 not‌ ‌complete,‌ ‌learning.‌ ‌Our‌ ‌analysis,‌ ‌however,‌ ‌focused‌ ‌on‌ ‌the‌ ‌distributions‌ ‌of‌ ‌anticipatory‌ ‌forces‌ ‌for‌ ‌the‌‌ 
428 outlier‌ ‌object‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌(final‌ ‌5‌ ‌cycles)‌ ‌across‌ ‌participants‌ ‌in‌ ‌each‌ ‌group‌ ‌(Fig.‌ ‌5c,‌ ‌f).‌ ‌For‌‌ 
429 each‌ ‌distribution,‌ ‌we‌ ‌fit‌ ‌a‌ ‌single-Gaussian‌ ‌and‌ ‌a‌ ‌two-Gaussian‌ ‌mixture‌ ‌model‌ ‌(blue‌ ‌and‌ ‌green‌ ‌curves,‌‌ 
430 respectively).‌ ‌To‌ ‌compare‌ ‌these‌ ‌models,‌ ‌we‌ ‌computed‌ ‌the‌ ‌difference‌ ‌in‌ ‌the‌ ‌Akaike‌ ‌Information‌ ‌Criteria‌‌ 
431 (ΔAIC),‌ ‌with‌ ‌positive‌ ‌values‌ ‌in‌ ‌favor‌ ‌of‌ ‌the‌ ‌two-Gaussian‌ ‌mixture,‌ ‌and‌ ‌we‌ ‌report‌ ‌the‌ ‌relative‌ ‌likelihood‌‌ 
432 for‌ ‌the‌ ‌favored‌ ‌model.‌ ‌As‌ ‌expected,‌ ‌for‌ ‌the‌ ‌Linear+‌ ‌group,‌ ‌in‌ ‌which‌ ‌learning‌ ‌of‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌‌ 
433 was‌ ‌not‌ ‌observed,‌ ‌the‌ ‌single-Gaussian‌ ‌model‌ ‌was‌ ‌favored‌ ‌(ΔAIC‌ ‌=‌ ‌−4.6;‌ ‌relative‌ ‌likelihood‌ ‌=‌ ‌10.0).‌ ‌In‌‌ 
434 contrast,‌ ‌for‌ ‌the‌ ‌Linear++‌ ‌group,‌ ‌the‌ ‌distribution‌ ‌was‌ ‌clearly‌ ‌bimodal,‌ ‌separating‌ ‌participants‌ ‌who‌ ‌either‌‌ ‌  
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‌ 

‌ 
435 Figure‌ ‌5.‌ ‌Individual‌ ‌differences‌ ‌show‌ ‌that‌ ‌outliers‌ ‌are‌ ‌either‌ ‌fully‌ ‌learned‌ ‌or‌ ‌not‌ ‌learned‌ ‌at‌ ‌all.‌ ‌ 
436 (a)‌‌Web-based‌‌lifting‌‌experiment.‌‌(1)‌‌Five‌‌visually‌‌similar‌‌objects‌‌were‌‌clamped‌‌onto‌‌a‌‌ring,‌‌which‌‌rotated‌‌                               
437 to‌ ‌bring‌ ‌the‌ ‌target‌ ‌object‌ ‌to‌ ‌the‌ ‌front.‌ ‌Participants‌ ‌clicked‌ ‌and‌ ‌dragged‌ ‌upward‌ ‌using‌ ‌their‌ ‌mouse‌ ‌or‌‌                                 
438 trackpad‌‌to‌‌stretch‌‌a‌‌spring,‌‌thereby‌‌applying‌‌a‌‌lifting‌‌force‌‌to‌‌the‌‌object.‌‌(2)‌‌When‌‌ready,‌‌they‌‌pressed‌‌a‌‌                                     
439 key‌‌on‌‌the‌‌keyboard‌‌with‌‌their‌‌other‌‌hand‌‌to‌‌release‌‌the‌‌object‌‌from‌‌the‌‌ring.‌‌The‌‌object‌‌and‌‌spring‌‌were‌‌                                       
440 simulated‌ ‌as‌ ‌a‌ ‌mass-spring-damper‌ ‌providing‌ ‌visual‌ ‌feedback‌ ‌about‌ ‌performance,‌ ‌with‌ ‌greater‌ ‌errors‌‌                       
441 giving‌ ‌rise‌ ‌to‌ ‌larger‌ ‌oscillations,‌ ‌which‌ ‌also‌ ‌took‌ ‌longer‌ ‌to‌‌decay.‌‌As‌‌in‌‌the‌‌laboratory‌‌experiments,‌‌the‌‌                                 
442 goal‌ ‌was‌ ‌to‌ ‌prevent‌ ‌the‌ ‌object‌ ‌from‌ ‌moving‌ ‌after‌ ‌the‌ ‌key‌‌press.‌‌Right‌‌column‌‌shows‌‌the‌‌spring‌‌length‌‌                                   
443 (‌i.e.‌,‌‌lift‌‌force,‌‌gray)‌‌and‌‌object‌‌position‌‌(orange)‌‌traces‌‌for‌‌an‌‌example‌‌trial‌‌in‌‌which‌‌the‌‌anticipatory‌‌force‌‌                                   
444 was‌ ‌less‌ ‌than‌ ‌the‌‌object‌‌weight.‌‌(b,‌‌e,‌‌h,‌‌k)‌‌Trial-by-trial‌‌anticipatory‌‌forces‌‌(formatted‌‌as‌‌in‌‌Fig.‌‌2a)‌‌for‌‌                                     
445 four‌‌conditions:‌‌two‌‌with‌‌a‌‌heavy‌‌outlier‌‌(Linear+‌‌and‌‌Linear++,‌‌as‌‌in‌‌Fig.‌‌2)‌‌and‌‌the‌‌others‌‌with‌‌a‌‌lighter‌‌                                       
446 (Linear-)‌‌or‌‌much‌‌lighter‌‌(Linear--)‌‌outlier.‌‌(c,‌‌f,‌‌i,‌‌l)‌‌Histograms‌‌show‌‌the‌‌distribution‌‌across‌‌participants‌‌of‌‌                                 
447 the‌ ‌average‌ ‌anticipatory‌ ‌force‌‌for‌‌the‌‌outlier‌‌object‌‌at‌‌the‌‌end‌‌of‌‌the‌‌test‌‌phase.‌‌Blue‌‌and‌‌green‌‌curves‌‌                                     
448 show‌ ‌the‌ ‌fits‌ ‌of‌ ‌a‌ ‌single-Gaussian‌ ‌and‌ ‌a‌ ‌two-Gaussian‌ ‌mixture‌ ‌model,‌ ‌respectively.‌ ‌(d,‌ ‌g,‌ ‌j,‌ ‌m)‌‌                               
449 Anticipatory‌‌forces‌‌at‌‌the‌‌end‌‌of‌‌the‌‌test‌‌phase‌‌(as‌‌in‌‌Fig.‌‌2b).‌‌The‌‌mean‌‌of‌‌each‌‌Gaussian‌‌component‌‌of‌‌                                       
450 the‌ ‌two-Gaussian‌ ‌mixture‌ ‌model‌ ‌is‌ ‌plotted‌ ‌as‌ ‌a‌ ‌green‌ ‌square,‌ ‌with‌ ‌standard‌ ‌error‌ ‌estimated‌ ‌via‌‌                             
451 parametric‌ ‌bootstrap.‌ ‌ 
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‌ 

452 did‌ ‌or‌ ‌did‌ ‌not‌ ‌learn‌ ‌the‌ ‌outlier‌ ‌weight.‌ ‌This‌ ‌bimodal‌ ‌distribution‌ ‌was‌ ‌better‌ ‌captured‌ ‌by‌ ‌the‌ ‌two-Gaussian‌‌ 
453 model‌ ‌(ΔAIC‌ ‌=‌ ‌7.0‌ ‌,‌ ‌relative‌ ‌likelihood‌ ‌=‌ ‌33.1).‌ ‌ 

‌ 
454 For‌ ‌the‌ ‌Linear+‌ ‌and‌ ‌Linear++‌ ‌groups,‌ ‌the‌ ‌average‌ ‌anticipatory‌ ‌forces‌ ‌applied‌ ‌to‌ ‌the‌ ‌five‌ ‌objects‌ ‌at‌ ‌the‌ ‌end‌‌ 
455 of‌ ‌the‌ ‌test‌ ‌phase‌ ‌are‌ ‌shown‌ ‌by‌ ‌the‌ ‌filled‌ ‌circles‌ ‌in‌ ‌Fig.‌ ‌5d-g.‌ ‌The‌ ‌mean‌ ‌of‌ ‌each‌ ‌Gaussian‌ ‌component‌ ‌of‌ ‌the‌‌ 
456 two-Gaussian‌ ‌mixture‌ ‌is‌ ‌shown‌ ‌as‌ ‌a‌ ‌green‌ ‌square.‌ ‌In‌ ‌the‌ ‌Linear++‌ ‌group,‌ ‌the‌ ‌greater‌ ‌of‌ ‌these‌ ‌two‌ ‌means‌‌ 
457 (8.48‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[7.98,‌ ‌8.89])—representing‌ ‌the‌ ‌learners—lies‌ ‌almost‌ ‌perfectly‌ ‌on‌ ‌the‌ ‌actual‌ ‌outlier‌‌ 
458 weight‌ ‌(dashed‌ ‌line,‌ ‌8.83‌ ‌N),‌ ‌whereas‌ ‌the‌ ‌lesser‌ ‌of‌ ‌the‌ ‌two‌ ‌means‌ ‌(5.43‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[4.91,‌‌ 
459 6.08])—representing‌ ‌the‌ ‌non-learners—is‌ ‌very‌ ‌close‌ ‌to‌ ‌the‌ ‌family-predicted‌ ‌weight‌ ‌(4.91‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌‌ 
460 [4.79,‌ ‌5.03]).‌ ‌Surprisingly,‌ ‌although‌ ‌the‌ ‌single-Gaussian‌ ‌model‌ ‌was‌ ‌favored‌ ‌for‌ ‌the‌ ‌Linear+‌ ‌group,‌ ‌one‌‌ 
461 can‌ ‌nevertheless‌ ‌see‌ ‌two‌ ‌peaks‌ ‌in‌ ‌the‌ ‌two-Gaussian‌ ‌model‌ ‌(6.59‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[5.58,‌ ‌7.18]‌ ‌and‌ ‌4.93‌ ‌N,‌‌ 
462 95%‌ ‌CI‌ ‌=‌ ‌[3.66,‌ ‌5.28])‌ ‌that,‌ ‌respectively,‌ ‌closely‌ ‌match‌ ‌the‌ ‌actual‌ ‌weight‌ ‌(6.87‌ ‌N)‌ ‌and‌ ‌family-predicted‌‌ 
463 weight‌ ‌(4.93‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[4.72,‌ ‌5.13])‌ ‌of‌ ‌the‌ ‌outlier.‌ ‌Thus,‌ ‌while‌ ‌most‌ ‌participants‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌group‌‌ 
464 did‌ ‌not‌ ‌learn‌ ‌the‌ ‌outlier‌ ‌weight‌ ‌at‌ ‌all,‌ ‌there‌ ‌was‌ ‌a‌ ‌small‌ ‌subgroup‌ ‌who‌ ‌fully‌ ‌learned‌ ‌this‌ ‌weight.‌ ‌ 

‌ 
465 The‌ ‌same‌ ‌pattern‌ ‌of‌ ‌results‌ ‌was‌ ‌observed‌ ‌for‌ ‌the‌ ‌Linear-‌ ‌and‌ ‌Linear--‌ ‌groups‌ ‌(Fig.‌ ‌5i-j,‌ ‌l-m).‌ ‌For‌ ‌the‌‌ 
466 Linear-‌ ‌group,‌ ‌the‌ ‌distribution‌ ‌of‌ ‌anticipatory‌ ‌forces‌ ‌for‌ ‌the‌ ‌outlier‌ ‌object‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌were‌‌ 
467 best‌ ‌fit‌ ‌by‌ ‌the‌ ‌single-Gaussian‌ ‌model‌ ‌(ΔAIC‌ ‌=‌ ‌−3.7,‌ ‌relative‌ ‌likelihood‌ ‌=‌ ‌6.4),‌ ‌whereas‌ ‌the‌ ‌two-Gaussian‌‌ 
468 model‌ ‌was‌ ‌preferred‌ ‌for‌ ‌the‌ ‌Linear--‌ ‌group‌ ‌(ΔAIC‌ ‌=‌ ‌29.3,‌ ‌relative‌ ‌likelihood‌ ‌=‌ ‌2.3e+6).‌ ‌For‌ ‌the‌ ‌Linear--‌‌ 
469 group,‌ ‌the‌ ‌means‌ ‌of‌ ‌the‌ ‌two‌ ‌components‌ ‌of‌ ‌the‌ ‌two-Gaussian‌ ‌model‌ ‌(1.05‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[0.91,‌ ‌1.22]‌ ‌and‌‌ 
470 4.10‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[3.47,‌ ‌4.68])‌ ‌were,‌ ‌respectively,‌ ‌very‌ ‌close‌ ‌to‌ ‌the‌ ‌actual‌ ‌weight‌ ‌(0.98‌ ‌N)‌ ‌and‌‌ 
471 family-predicted‌ ‌weight‌ ‌(4.58‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[4.36‌ ‌4.79])‌ ‌of‌ ‌the‌ ‌outlier.‌ ‌As‌ ‌was‌ ‌the‌ ‌case‌ ‌for‌ ‌the‌ ‌Linear+‌‌ 
472 group,‌ ‌the‌ ‌two-Gaussian‌ ‌mixture‌ ‌model‌ ‌fit‌ ‌to‌ ‌the‌ ‌Linear-‌ ‌group‌ ‌picked‌ ‌out‌ ‌a‌ ‌cluster‌ ‌of‌ ‌non-learners‌ ‌and‌ ‌a‌‌ 
473 smaller‌ ‌cluster‌ ‌of‌ ‌learners,‌ ‌whose‌ ‌means‌ ‌(3.08‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[2.75,‌ ‌3.77]‌ ‌and‌ ‌4.26‌ ‌N,‌ ‌95%‌ ‌CI‌ ‌=‌ ‌[4.07,‌‌ 
474 4.73])‌ ‌respectively‌ ‌correspond‌ ‌to‌ ‌the‌ ‌actual‌ ‌weight‌ ‌(2.94‌ ‌N)‌ ‌and‌ ‌family-predicted‌ ‌weight‌ ‌(4.66‌ ‌N,‌ ‌95%‌ ‌CI‌‌ 
475 =‌ ‌[4.52,‌ ‌4.79])‌ ‌of‌ ‌the‌ ‌outlier.‌ ‌ 

‌ 
476 Overall,‌ ‌the‌ ‌results‌ ‌of‌ ‌this‌ ‌large-sample‌ ‌web-based‌ ‌experiment‌ ‌clearly‌ ‌support‌ ‌the‌ ‌object‌ ‌families‌‌ 
477 hypothesis‌ ‌over‌ ‌the‌ ‌associative‌ ‌map‌ ‌hypothesis.‌ ‌At‌ ‌the‌ ‌level‌ ‌of‌ ‌single‌ ‌participants,‌ ‌the‌ ‌outlier‌ ‌was‌ ‌either‌‌ 
478 encoded‌ ‌as‌ ‌a‌ ‌family‌ ‌member,‌ ‌in‌ ‌which‌ ‌case‌ ‌lift‌ ‌errors‌ ‌were‌ ‌ignored,‌ ‌or‌ ‌it‌ ‌was‌ ‌identified‌ ‌as‌ ‌a‌ ‌distinct‌‌ 
479 individual,‌ ‌in‌ ‌which‌ ‌case‌ ‌lift‌ ‌errors‌ ‌drove‌ ‌complete‌ ‌learning‌ ‌of‌ ‌the‌ ‌outlier’s‌ ‌weight.‌ ‌ 

480 Discussion‌ ‌ 

481 We‌ ‌have‌ ‌examined‌ ‌how‌ ‌the‌ ‌mechanical‌ ‌properties‌ ‌of‌ ‌objects‌ ‌we‌ ‌interact‌ ‌with‌ ‌are‌ ‌represented‌ ‌in‌ ‌memory.‌‌ 
482 In‌ ‌a‌ ‌series‌ ‌of‌ ‌experiments,‌ ‌we‌ ‌provide‌ ‌evidence‌ ‌that‌ ‌‘motor‌ ‌memories’‌ ‌of‌ ‌objects‌ ‌are‌ ‌organized‌ ‌in‌ ‌terms‌‌ 
483 of‌ ‌families.‌ ‌More‌ ‌specifically,‌ ‌we‌ ‌show‌ ‌that‌ ‌when‌ ‌encountering‌ ‌a‌ ‌set‌ ‌of‌ ‌new‌ ‌objects‌ ‌whose‌ ‌size‌ ‌and‌‌ 
484 weight‌ ‌covary,‌ ‌participants‌ ‌have‌ ‌a‌ ‌strong‌ ‌propensity‌ ‌to‌ ‌encode‌ ‌the‌ ‌objects‌ ‌as‌ ‌a‌ ‌family.‌ ‌The‌ ‌consequence‌‌ 
485 of‌ ‌this‌ ‌encoding‌ ‌is‌ ‌that‌ ‌an‌ ‌object‌ ‌that‌ ‌appears‌ ‌to‌ ‌be‌ ‌part‌ ‌of‌ ‌a‌ ‌previously‌ ‌learned‌ ‌family,‌ ‌but‌ ‌is‌ ‌an‌ ‌outlier‌ ‌in‌‌ 
486 terms‌ ‌of‌ ‌weight,‌ ‌may‌ ‌nevertheless‌ ‌be‌ ‌classified‌ ‌as‌ ‌a‌ ‌family‌ ‌member.‌ ‌In‌ ‌this‌ ‌case,‌ ‌participants‌ ‌predict‌ ‌the‌‌ 
487 outlier’s‌ ‌weight‌ ‌based‌ ‌on‌ ‌the‌ ‌family‌ ‌and‌ ‌never‌ ‌learn‌ ‌its‌ ‌actual‌ ‌weight.‌ ‌This‌ ‌‘family‌ ‌effect’‌ ‌on‌ ‌the‌ ‌outlier‌‌ 
488 can‌ ‌be‌ ‌anterograde,‌ ‌such‌ ‌that‌ ‌the‌ ‌family‌ ‌interferes‌ ‌with‌ ‌learning‌ ‌the‌ ‌weight‌ ‌of‌ ‌a‌ ‌newly‌ ‌introduced‌ ‌outlier,‌‌ 
489 or‌ ‌retrograde,‌ ‌such‌ ‌that‌ ‌an‌ ‌already-learned‌ ‌outlier‌ ‌weight‌ ‌will‌ ‌be‌ ‌forgotten‌ ‌when‌ ‌the‌ ‌family‌ ‌is‌ ‌introduced.‌‌ 
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‌ 

490 We‌ ‌also‌ ‌show‌ ‌that‌ ‌there‌ ‌is‌ ‌a‌ ‌weight‌ ‌threshold‌ ‌at‌ ‌which‌ ‌a‌ ‌sufficiently‌ ‌deviant‌ ‌outlier‌ ‌will‌ ‌‘escape’‌ ‌the‌‌ 
491 family‌ ‌and‌ ‌be‌ ‌learned‌ ‌as‌ ‌an‌ ‌individual‌ ‌object.‌ ‌Moreover,‌ ‌we‌ ‌show‌ ‌that‌ ‌the‌ ‌error‌ ‌experienced‌ ‌when‌ ‌lifting‌‌ 
492 an‌ ‌outlier‌ ‌that‌ ‌is‌ ‌encoded‌ ‌as‌ ‌a‌ ‌family‌ ‌member‌ ‌updates‌ ‌the‌ ‌estimated‌ ‌weights‌ ‌of‌ ‌the‌ ‌other‌ ‌family‌ ‌members.‌‌ 
493 However,‌ ‌if‌ ‌the‌ ‌outlier‌ ‌has‌ ‌been‌ ‌learned‌ ‌as‌ ‌an‌ ‌individual,‌ ‌such‌ ‌updating‌ ‌is‌ ‌not‌ ‌observed.‌ ‌Additionally,‌ ‌we‌‌ 
494 show‌ ‌that‌ ‌the‌ ‌threshold‌ ‌that‌ ‌determines‌ ‌whether‌ ‌an‌ ‌outlier‌ ‌is‌ ‌classified‌ ‌as‌ ‌an‌ ‌individual‌ ‌or‌ ‌a‌ ‌family‌‌ 
495 member‌ ‌depends‌ ‌on‌ ‌recent‌ ‌sensorimotor‌ ‌experience.‌ ‌ 

‌ 
496 Two‌ ‌broad‌ ‌approaches‌ ‌have‌ ‌been‌ ‌used‌ ‌in‌ ‌motor‌ ‌control‌ ‌to‌ ‌examine‌ ‌how‌ ‌dynamics,‌ ‌experienced‌ ‌during‌‌ 
497 arm‌ ‌and‌ ‌hand‌ ‌movements,‌ ‌are‌ ‌represented‌ ‌in‌ ‌memory.‌ ‌The‌ ‌first‌ ‌approach‌ ‌involves‌ ‌applying‌ ‌novel‌‌ 
498 dynamics,‌ ‌or‌ ‌‘force‌ ‌fields’,‌ ‌to‌ ‌the‌ ‌hand.‌ ‌Typically‌ ‌this‌ ‌has‌ ‌been‌ ‌done‌ ‌by‌ ‌asking‌ ‌participants‌ ‌to‌ ‌move‌ ‌a‌‌ 
499 handle,‌ ‌which‌ ‌is‌ ‌attached‌ ‌to‌ ‌a‌ ‌robotic‌ ‌manipulandum‌ ‌and‌ ‌visually‌ ‌represented‌ ‌as‌ ‌a‌ ‌cursor,‌ ‌between‌ ‌visual‌‌ 
500 targets‌ ‌located‌ ‌in‌ ‌a‌ ‌horizontal‌ ‌plane.‌ ‌This‌ ‌work‌ ‌has‌ ‌focused‌ ‌on‌ ‌the‌ ‌reference‌ ‌frame‌ ‌in‌ ‌which‌ ‌individual‌‌ 
501 force‌ ‌fields‌ ‌are‌ ‌represented‌ ‌‌37–41‌,‌ ‌and‌ ‌on‌ ‌contextual‌ ‌factors‌ ‌that‌ ‌enable‌ ‌people‌ ‌to‌ ‌learn‌ ‌two‌ ‌different‌ ‌force‌‌ 
502 fields‌ ‌that‌ ‌apply‌ ‌forces‌ ‌in‌ ‌opposite‌ ‌directions‌ ‌‌40,42–56‌.‌ ‌Although‌ ‌force‌ ‌fields‌ ‌may,‌ ‌arguably,‌ ‌be‌ ‌viewed‌ ‌as‌‌ 
503 objects‌ ‌(at‌ ‌least‌ ‌in‌ ‌some‌ ‌contexts)‌ ‌‌57–59‌,‌ ‌this‌ ‌previous‌ ‌work‌ ‌has‌ ‌not‌ ‌examined‌ ‌how‌ ‌memories‌ ‌of‌ ‌multiple‌‌ 
504 objects‌ ‌might‌ ‌be‌ ‌organized.‌ ‌The‌ ‌second‌ ‌approach‌ ‌to‌ ‌investigating‌ ‌how‌ ‌dynamics‌ ‌are‌ ‌represented‌ ‌in‌‌ 
505 memory‌ ‌focuses‌ ‌on‌ ‌weight‌ ‌prediction‌ ‌when‌ ‌lifting‌ ‌objects,‌ ‌which‌ ‌is‌ ‌critical‌ ‌for‌ ‌dexterous‌ ‌manipulation.‌‌ 
506 This‌ ‌work‌ ‌has‌ ‌shown‌ ‌that‌ ‌people‌ ‌can‌ ‌exploit‌ ‌learned‌ ‌associations,‌ ‌or‌ ‌‘priors’,‌ ‌between‌ ‌size‌ ‌and‌ ‌weight,‌‌ 
507 and‌ ‌between‌ ‌material‌ ‌and‌ ‌weight,‌ ‌to‌ ‌estimate‌ ‌the‌ ‌weight‌ ‌of‌ ‌an‌ ‌object‌ ‌‌16,20,22,60,61‌.‌ ‌Although‌ ‌such‌ ‌priors‌ ‌are‌‌ 
508 often‌ ‌useful,‌ ‌for‌ ‌many‌ ‌objects‌ ‌that‌ ‌we‌ ‌interact‌ ‌with‌ ‌they‌ ‌do‌ ‌not‌ ‌provide‌ ‌accurate‌ ‌weight‌ ‌predictions.‌‌ 
509 Importantly,‌ ‌once‌ ‌an‌ ‌object‌ ‌has‌ ‌been‌ ‌lifted,‌ ‌people‌ ‌can‌ ‌form‌ ‌a‌ ‌long-lasting‌ ‌‘object-specific’‌ ‌memory‌ ‌of‌‌ 
510 the‌ ‌object’s‌ ‌actual‌ ‌weight‌ ‌‌16,20,22,24–26‌.‌ ‌However,‌ ‌the‌ ‌question‌ ‌of‌ ‌how‌ ‌motor‌ ‌memories‌ ‌of‌ ‌the‌ ‌myriad‌ ‌objects‌‌ 
511 we‌ ‌interact‌ ‌with‌ ‌are‌ ‌represented‌ ‌and‌ ‌organized‌ ‌has‌ ‌not‌ ‌been‌ ‌addressed.‌ ‌ 

‌ 
512 Where‌ ‌in‌ ‌the‌ ‌brain‌ ‌might‌ ‌motor‌ ‌memories‌ ‌of‌ ‌objects‌ ‌be‌ ‌stored?‌ ‌According‌ ‌to‌ ‌a‌ ‌well-known‌‌ 
513 neuroanatomical‌ ‌framework‌ ‌for‌ ‌understanding‌ ‌visual‌ ‌processing‌ ‌in‌ ‌the‌ ‌primate‌ ‌brain,‌ ‌the‌ ‌dorsal‌ ‌visual‌‌ 
514 pathway,‌ ‌in‌ ‌parietofrontal‌ ‌cortex,‌ ‌supports‌ ‌visual‌ ‌processing‌ ‌for‌ ‌action,‌ ‌whereas‌ ‌the‌ ‌ventral‌ ‌visual‌‌ 
515 pathway,‌ ‌in‌ ‌ventrotemporal‌ ‌cortex,‌ ‌supports‌ ‌visual‌ ‌processing‌ ‌for‌ ‌perception‌ ‌‌62‌.‌ ‌This‌ ‌framework‌ ‌arose‌‌ 
516 primarily‌ ‌from‌ ‌studies‌ ‌examining‌ ‌reaching‌ ‌and‌ ‌grasping‌ ‌movements‌ ‌directed‌ ‌towards‌ ‌objects,‌ ‌where‌ ‌the‌‌ 
517 relevant‌ ‌object‌ ‌properties‌ ‌(‌e.g.‌,‌ ‌size,‌ ‌shape,‌ ‌location)‌ ‌can‌ ‌be‌ ‌directly‌ ‌appreciated‌ ‌through‌ ‌vision.‌ ‌The‌‌ 
518 control‌ ‌of‌ ‌these‌ ‌actions‌ ‌involves‌ ‌mapping‌ ‌these‌ ‌visual‌ ‌features‌ ‌onto‌ ‌motor‌ ‌commands‌ ‌to‌ ‌move‌ ‌and‌ ‌shape‌‌ 
519 the‌ ‌hand‌ ‌‌28,63–65‌,‌ ‌and‌ ‌there‌ ‌is‌ ‌abundant‌ ‌evidence‌ ‌that‌ ‌parietofrontal‌ ‌cortex‌ ‌is‌ ‌engaged‌ ‌in‌ ‌such‌ ‌computations‌‌ 
520 66–70‌.‌ ‌However,‌ ‌as‌ ‌emphasized‌ ‌above,‌ ‌skilled‌ ‌object‌ ‌manipulation‌ ‌requires‌ ‌knowledge‌ ‌of‌ ‌mechanical‌‌ 
521 properties,‌ ‌which‌ ‌cannot‌ ‌be‌ ‌directly‌ ‌appreciated‌ ‌through‌ ‌vision‌ ‌and‌ ‌must‌ ‌instead‌ ‌be‌ ‌estimated‌ ‌based‌ ‌on‌‌ 
522 object‌ ‌memories‌ ‌linking‌ ‌visual‌ ‌and‌ ‌mechanical‌ ‌properties.‌ ‌Some‌ ‌evidence‌ ‌suggests‌ ‌that‌ ‌such‌ ‌memories‌‌ 
523 could‌ ‌involve‌ ‌parietal‌ ‌and‌ ‌premotor‌ ‌regions‌ ‌of‌ ‌the‌ ‌dorsal‌ ‌pathway‌ ‌‌71–75‌.‌ ‌However,‌ ‌the‌ ‌maintenance‌ ‌of‌‌ 
524 durable‌ ‌memory‌ ‌representations‌ ‌of‌ ‌objects‌ ‌is‌ ‌more‌ ‌commonly‌ ‌associated‌ ‌with‌ ‌the‌ ‌ventral‌ ‌visual‌ ‌pathway‌‌ 
525 76–80‌.‌ ‌Given‌ ‌that‌ ‌category‌ ‌selectivity‌ ‌is‌ ‌a‌ ‌well-established‌ ‌organizational‌ ‌feature‌ ‌of‌ ‌ventrotemporal‌ ‌cortex‌‌ 
526 12,81‌,‌ ‌it‌ ‌seems‌ ‌plausible‌ ‌that‌ ‌the‌ ‌ventral‌ ‌pathway‌ ‌also‌ ‌plays‌ ‌a‌ ‌role‌ ‌in‌ ‌categorizing‌ ‌the‌ ‌mechanical‌ ‌properties‌‌ 
527 of‌ ‌objects.‌ ‌Consistent‌ ‌with‌ ‌this‌ ‌view,‌ ‌it‌ ‌has‌ ‌been‌ ‌shown‌ ‌that,‌ ‌in‌ ‌the‌ ‌context‌ ‌of‌ ‌lifting,‌ ‌object‌ ‌weight‌ ‌is‌‌ 
528 represented‌ ‌in‌ ‌the‌ ‌lateral‌ ‌occipital‌ ‌complex‌ ‌(LOC)‌ ‌‌82‌,‌ ‌an‌ ‌object-selective‌ ‌ventral‌ ‌region‌ ‌also‌ ‌known‌ ‌to‌ ‌be‌‌ 
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529 active‌ ‌during‌ ‌reaching‌ ‌and‌ ‌grasping‌ ‌‌83,84‌.‌ ‌On‌ ‌the‌ ‌other‌ ‌hand,‌ ‌LOC‌ ‌does‌ ‌not‌ ‌appear‌ ‌to‌ ‌represent‌ ‌object‌ ‌mass‌‌ 
530 that‌ ‌can‌ ‌be‌ ‌inferred‌ ‌when‌ ‌simply‌ ‌viewing‌ ‌objects‌ ‌interacting‌ ‌‌85‌.‌ ‌ 

‌ 
531 Beyond‌ ‌the‌ ‌dorsal‌ ‌and‌ ‌ventral‌ ‌visual‌ ‌pathways,‌ ‌several‌ ‌other‌ ‌candidate‌ ‌brain‌ ‌regions‌ ‌may‌ ‌be‌ ‌involved‌ ‌in‌‌ 
532 learning‌ ‌object‌ ‌families‌ ‌in‌ ‌the‌ ‌service‌ ‌of‌ ‌dexterous‌ ‌manipulation.‌ ‌For‌ ‌instance,‌ ‌predictive‌ ‌encoding‌ ‌of‌‌ 
533 object‌ ‌weight‌ ‌has‌ ‌also‌ ‌been‌ ‌demonstrated‌ ‌in‌ ‌single-cell‌ ‌recordings‌ ‌of‌ ‌Purkinje‌ ‌neurons‌ ‌‌86,87‌,‌ ‌which‌ ‌may‌‌ 
534 arise‌ ‌from‌ ‌cerebellar‌ ‌internal‌ ‌models‌ ‌of‌ ‌the‌ ‌dynamics‌ ‌of‌ ‌different‌ ‌types‌ ‌of‌ ‌objects‌ ‌‌17,88,89‌.‌ ‌Likewise,‌ ‌there‌‌ 
535 is‌ ‌considerable‌ ‌evidence‌ ‌from‌ ‌human‌ ‌imaging‌ ‌studies‌ ‌and‌ ‌non-human‌ ‌primate‌ ‌neurophysiological‌ ‌studies‌‌ 
536 for‌ ‌the‌ ‌role‌ ‌of‌ ‌prefrontal‌ ‌cortex‌ ‌and‌ ‌the‌ ‌striatum‌ ‌in‌ ‌perceptual‌ ‌category‌ ‌learning‌ ‌‌9,10,90–96‌,‌ ‌but‌ ‌it‌ ‌remains‌‌ 
537 unknown‌ ‌whether‌ ‌these‌ ‌areas‌ ‌are‌ ‌also‌ ‌recruited‌ ‌in‌ ‌organizing‌ ‌objects‌ ‌based‌ ‌on‌ ‌their‌ ‌learned‌ ‌motor‌ 
538 properties.‌‌ ‌  

‌ 
539 Current‌ ‌theories‌ ‌of‌ ‌motor‌ ‌learning‌ ‌often‌ ‌focus‌ ‌on‌ ‌graded‌ ‌generalization‌ ‌of‌ ‌learning‌ ‌across‌ ‌various‌‌ 
540 stimulus‌ ‌and‌ ‌motor‌ ‌parameters‌ ‌as‌ ‌a‌ ‌revealing‌ ‌feature‌ ‌of‌ ‌the‌ ‌underlying‌ ‌computations‌ ‌‌38,97–99‌.‌ ‌In‌ ‌particular,‌‌ 
541 graded‌ ‌patterns‌ ‌of‌ ‌generalization‌ ‌have‌ ‌been‌ ‌taken‌ ‌as‌ ‌evidence‌ ‌that‌ ‌motor‌ ‌learning‌ ‌fundamentally‌ ‌involves‌‌ 
542 associating‌ ‌contextual‌ ‌features‌ ‌of‌ ‌a‌ ‌movement‌ ‌with‌ ‌the‌ ‌target‌ ‌motor‌ ‌parameters‌ ‌in‌ ‌a‌ ‌continuous‌‌ 
543 multi-dimensional‌ ‌space,‌ ‌often‌ ‌termed‌ ‌an‌ ‌associative‌ ‌map.‌ ‌The‌ ‌theoretical‌ ‌significance‌ ‌of‌ ‌our‌ ‌study‌ ‌is‌ ‌that‌‌ 
544 it‌ ‌provides‌ ‌multiple,‌ ‌converging‌ ‌pieces‌ ‌of‌ ‌evidence‌ ‌for‌ ‌a‌ ‌fundamentally‌ ‌different‌ ‌type‌ ‌of‌‌ 
545 organization—motor‌ ‌memories‌ ‌of‌ ‌objects‌ ‌are‌ ‌organized‌ ‌categorically,‌ ‌into‌ ‌families.‌ ‌Our‌ ‌key‌ ‌result‌ ‌is‌ ‌the‌‌ 
546 family‌ ‌effect‌ ‌itself,‌ ‌wherein‌ ‌an‌ ‌outlier‌ ‌object‌ ‌is‌ ‌persistently‌ ‌encoded‌ ‌as‌ ‌a‌ ‌family‌ ‌member,‌ ‌despite‌ ‌greatly‌‌ 
547 deviating‌ ‌from‌ ‌its‌ ‌expected‌ ‌weight.‌ ‌In‌ ‌contrast,‌ ‌the‌ ‌prediction‌ ‌of‌ ‌an‌ ‌associative‌ ‌map‌ ‌account‌ ‌is‌ ‌that‌ ‌these‌‌ 
548 outliers‌ ‌would‌ ‌eventually‌ ‌be‌ ‌learned,‌ ‌since‌ ‌they‌ ‌are‌ ‌visually‌ ‌and‌ ‌haptically‌ ‌discriminable‌ ‌from‌ ‌the‌ ‌family‌‌ 
549 (as‌ ‌shown‌ ‌by‌ ‌the‌ ‌accurate‌ ‌learning‌ ‌in‌ ‌the‌ ‌Uncorr+‌ ‌condition).‌ ‌ 

‌ 
550 In‌ ‌our‌ ‌experiments,‌ ‌we‌ ‌generally‌ ‌observed‌ ‌incomplete‌ ‌learning‌ ‌of‌ ‌the‌ ‌outlier‌ ‌when‌ ‌averaging‌ ‌anticipatory‌‌ 
551 forces‌ ‌across‌ ‌participants.‌ ‌At‌ ‌first‌ ‌glance,‌ ‌partial‌ ‌learning‌ ‌could‌ ‌be‌ ‌explained‌ ‌by‌ ‌an‌ ‌associative‌ ‌map‌ ‌model‌‌ 
552 where‌ ‌the‌ ‌neighboring‌ ‌objects‌ ‌reduce‌ ‌the‌ ‌estimated‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌ ‌by‌ ‌local‌ ‌generalization.‌‌ 
553 However,‌ ‌seemingly‌ ‌partial‌ ‌learning‌ ‌is‌ ‌also‌ ‌consistent‌ ‌with‌ ‌the‌ ‌object‌ ‌families‌ ‌hypothesis.‌ ‌In‌ ‌particular,‌‌ 
554 partial‌ ‌learning‌ ‌in‌ ‌the‌ ‌group‌ ‌averages‌ ‌could‌ ‌result‌ ‌from‌ ‌averaging‌ ‌together‌ ‌a‌ ‌subgroup‌ ‌of‌ ‌highly‌ ‌accurate‌‌ 
555 learners‌ ‌with‌ ‌a‌ ‌separate‌ ‌subgroup‌ ‌of‌ ‌complete‌ ‌non-learners,‌ ‌who‌ ‌differ‌ ‌in‌ ‌their‌ ‌threshold‌ ‌for‌ ‌reclassifying‌‌ 
556 the‌ ‌outlier‌ ‌as‌ ‌an‌ ‌individual.‌ ‌This‌ ‌latter‌ ‌interpretation‌ ‌was‌ ‌confirmed‌ ‌by‌ ‌our‌ ‌large-sample,‌ ‌web-based‌‌ 
557 experiment,‌ ‌which‌ ‌revealed‌ ‌that‌ ‌individual‌ ‌differences‌ ‌in‌ ‌outlier‌ ‌learning‌ ‌followed‌ ‌an‌ ‌all-or-nothing‌‌ 
558 pattern.‌ ‌At‌ ‌the‌ ‌end‌ ‌of‌ ‌the‌ ‌experiment,‌ ‌participants‌ ‌had‌ ‌either‌ ‌learned‌ ‌to‌ ‌classify‌ ‌the‌ ‌outlier‌ ‌as‌ ‌a‌ ‌unique‌‌ 
559 individual‌ ‌and‌ ‌accurately‌ ‌estimated‌ ‌its‌ ‌weight,‌ ‌or‌ ‌they‌ ‌still‌ ‌encoded‌ ‌it‌ ‌as‌ ‌a‌ ‌family‌ ‌member‌ ‌and‌ ‌incorrectly‌‌ 
560 estimated‌ ‌its‌ ‌weight‌ ‌based‌ ‌on‌ ‌the‌ ‌family‌ ‌representation.‌ ‌ 

‌ 
561 Our‌ ‌single-trial‌ ‌generalization‌ ‌results,‌ ‌obtained‌ ‌from‌ ‌a‌ ‌separate‌ ‌analysis,‌ ‌also‌ ‌favor‌ ‌a‌ ‌categorical‌‌ 
562 organization‌ ‌of‌ ‌motor‌ ‌memory‌ ‌over‌ ‌a‌ ‌continuous,‌ ‌associative‌ ‌map.‌ ‌We‌ ‌found‌ ‌that‌ ‌the‌ ‌way‌ ‌that‌ ‌the‌ ‌outlier‌‌ 
563 object‌ ‌was‌ ‌classified—either‌ ‌as‌ ‌a‌ ‌family‌ ‌member‌ ‌or‌ ‌an‌ ‌individual—had‌ ‌a‌ ‌dramatic‌ ‌effect‌ ‌on‌‌ 
564 outlier-to-family‌ ‌generalization.‌ ‌When‌ ‌the‌ ‌outlier‌ ‌object‌ ‌was‌ ‌classified‌ ‌as‌ ‌a‌ ‌family‌ ‌member,‌ ‌strong‌‌ 
565 generalization‌ ‌was‌ ‌observed,‌ ‌whereas‌ ‌when‌ ‌it‌ ‌was‌ ‌classified‌ ‌as‌ ‌an‌ ‌individual,‌ ‌negligible‌ ‌generalization‌‌ 
566 was‌ ‌observed.‌ ‌This‌ ‌qualitative‌ ‌change‌ ‌in‌ ‌generalization‌ ‌was‌ ‌observed‌ ‌across‌ ‌participants‌ ‌in‌ ‌different‌‌ 
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567 conditions,‌ ‌as‌ ‌well‌ ‌as‌ ‌within‌ ‌the‌ ‌same‌ ‌participants‌ ‌who,‌ ‌during‌ ‌learning,‌ ‌reclassified‌ ‌the‌ ‌outlier‌ ‌from‌ ‌a‌‌ 
568 family‌ ‌member‌ ‌to‌ ‌an‌ ‌individual.‌ ‌These‌ ‌results‌ ‌strongly‌ ‌support‌ ‌the‌ ‌idea‌ ‌that‌ ‌motor‌ ‌memories‌ ‌of‌ ‌objects‌‌ 
569 are‌ ‌organized‌ ‌categorically,‌ ‌rather‌ ‌than‌ ‌continuously,‌ ‌which‌ ‌would‌ ‌predict‌ ‌graded‌ ‌generalization‌ ‌as‌ ‌a‌‌ 
570 function‌ ‌of‌ ‌error‌ ‌magnitude‌ ‌and‌ ‌sensory‌ ‌similarity.‌ ‌By‌ ‌eliciting‌ ‌separate‌ ‌visual‌ ‌classification‌ ‌of‌ ‌the‌ ‌outlier‌‌ 
571 and‌ ‌the‌ ‌family‌ ‌objects,‌ ‌we‌ ‌were‌ ‌able‌ ‌to‌ ‌suddenly‌ ‌‘shut‌ ‌off’‌ ‌inter-object‌ ‌error‌ ‌generalization.‌ ‌ 

‌ 
572 We‌ ‌also‌ ‌found‌ ‌that‌ ‌when‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌outlier‌ ‌was‌ ‌gradually‌ ‌increased‌ ‌from‌ ‌1.2‌ ‌to‌ ‌1.5‌ ‌kg,‌ ‌participants‌‌ 
573 generally‌ ‌failed‌ ‌to‌ ‌learn‌ ‌its‌ ‌weight,‌ ‌even‌ ‌though‌ ‌it‌ ‌reached‌ ‌the‌ ‌same‌ ‌weight‌ ‌as‌ ‌the‌ ‌outlier‌ ‌that,‌ ‌when‌‌ 
574 introduced‌ ‌abruptly,‌ ‌was‌ ‌learned.‌ ‌One‌ ‌interpretation‌ ‌of‌ ‌this‌ ‌finding‌ ‌is‌ ‌that‌ ‌first‌ ‌experiencing‌ ‌the‌ ‌1.2-kg‌‌ 
575 outlier,‌ ‌and‌ ‌then‌ ‌experiencing‌ ‌incrementally‌ ‌increasing‌ ‌weights,‌ ‌broadened‌ ‌the‌ ‌category‌ ‌by‌ ‌increasing‌ ‌the‌‌ 
576 within-category‌ ‌variability,‌ ‌as‌ ‌shown‌ ‌in‌ ‌perceptual‌ ‌and‌ ‌conceptual‌ ‌categorization‌ ‌‌30–32‌.‌ ‌Another‌ ‌possible‌‌ 
577 account‌ ‌for‌ ‌this‌ ‌finding‌ ‌is‌ ‌that‌ ‌category‌ ‌labels‌ ‌are‌ ‌‘sticky’,‌ ‌and‌ ‌that‌ ‌once‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌labeled‌ ‌as‌ ‌a‌‌ 
578 family‌ ‌member,‌ ‌there‌ ‌was‌ ‌resistance‌ ‌to‌ ‌relabeling‌ ‌it‌ ‌as‌ ‌an‌ ‌individual,‌ ‌similar‌ ‌to‌ ‌the‌ ‌hysteretic‌ ‌effects‌‌ 
579 reported‌ ‌in‌ ‌perceptual‌ ‌categorization‌ ‌‌33–35‌.‌ ‌However,‌ ‌it‌ ‌seems‌ ‌plausible‌ ‌that‌ ‌the‌ ‌1.5-kg‌ ‌outlier‌ ‌was‌ ‌initially‌‌ 
580 labeled‌ ‌as‌ ‌a‌ ‌family‌ ‌member‌ ‌as‌ ‌participants’‌ ‌anticipatory‌ ‌forces‌ ‌on‌ ‌the‌ ‌first‌ ‌lift‌ ‌of‌ ‌this‌ ‌object‌ ‌were‌ ‌based‌ ‌on‌‌ 
581 the‌ ‌density‌ ‌of‌ ‌the‌ ‌family.‌ ‌If‌ ‌so,‌ ‌then‌ ‌relabeling‌ ‌occurred‌ ‌when‌ ‌this‌ ‌extreme‌ ‌outlier‌ ‌was‌ ‌learned,‌ ‌arguing‌‌ 
582 against‌ ‌the‌ ‌‘stickiness’‌ ‌account.‌ ‌On‌ ‌the‌ ‌other‌ ‌hand,‌ ‌the‌ ‌stickiness‌ ‌hypothesis‌ ‌could‌ ‌account‌ ‌for‌ ‌the‌ ‌results‌‌ 
583 we‌ ‌observed‌ ‌when‌ ‌the‌ ‌outlier‌ ‌weight‌ ‌was‌ ‌initially‌ ‌set‌ ‌to‌ ‌1.5‌ ‌kg‌ ‌and‌ ‌then‌ ‌gradually‌ ‌decreased‌ ‌to‌ ‌1.2‌ ‌kg.‌ ‌In‌‌ 
584 this‌ ‌case,‌ ‌participants‌ ‌initially‌ ‌learned‌ ‌the‌ ‌extreme‌ ‌outlier‌ ‌and‌ ‌continued‌ ‌to‌ ‌accurately‌ ‌predict‌ ‌its‌‌ 
585 weight—and‌ ‌hence‌ ‌to‌ ‌categorize‌ ‌it‌ ‌as‌ ‌an‌ ‌individual—even‌ ‌as‌ ‌its‌ ‌weight‌ ‌decreased‌ ‌to‌ ‌a‌ ‌level‌ ‌that,‌ ‌when‌‌ 
586 introduced‌ ‌abruptly,‌ ‌was‌ ‌not‌ ‌learned.‌ ‌Alternatively,‌ ‌it‌ ‌is‌ ‌possible‌ ‌that‌ ‌learning‌ ‌the‌ ‌extreme‌ ‌1.5-kg‌ ‌outlier‌‌ 
587 as‌ ‌a‌ ‌distinct‌ ‌individual‌ ‌object‌ ‌caused‌ ‌the‌ ‌category‌ ‌boundary‌ ‌for‌ ‌the‌ ‌training‌ ‌objects‌ ‌to‌ ‌contract,‌ ‌such‌ ‌that‌ ‌a‌‌ 
588 1.2-kg‌ ‌outlier‌ ‌remained‌ ‌outside‌ ‌the‌ ‌learned‌ ‌family,‌ ‌perhaps‌ ‌because‌ ‌the‌ ‌individuated‌ ‌outlier‌ ‌effectively‌‌ 
589 forms‌ ‌a‌ ‌competing‌ ‌category.‌ ‌Note‌ ‌that‌ ‌work‌ ‌on‌ ‌sensorimotor‌ ‌adaptation‌ ‌has‌ ‌shown‌ ‌that‌ ‌participants‌ ‌do‌‌ 
590 not‌ ‌become‌ ‌aware‌ ‌of‌ ‌visual‌ ‌or‌ ‌force‌ ‌perturbations‌ ‌that‌ ‌are‌ ‌introduced‌ ‌gradually‌ ‌‌100–105‌.‌ ‌Since‌ ‌participants‌‌ 
591 adapt‌ ‌to‌ ‌these‌ ‌gradually‌ ‌increasing‌ ‌perturbations,‌ ‌they‌ ‌never‌ ‌see‌ ‌large‌ ‌errors,‌ ‌which‌ ‌presumably‌ ‌explains‌‌ 
592 why‌ ‌they‌ ‌do‌ ‌not‌ ‌become‌ ‌aware‌ ‌of‌ ‌the‌ ‌perturbation.‌ ‌In‌ ‌contrast,‌ ‌in‌ ‌our‌ ‌experiment‌ ‌with‌ ‌a‌ ‌gradually‌‌ 
593 increasing‌ ‌outlier‌ ‌weight,‌ ‌participants‌ ‌did‌ ‌not‌ ‌adapt‌ ‌(‌i.e.‌,‌ ‌they‌ ‌continued‌ ‌to‌ ‌predict‌ ‌the‌ ‌outlier‌ ‌weight‌‌ 
594 based‌ ‌on‌ ‌the‌ ‌family‌ ‌density).‌ ‌Thus,‌ ‌they‌ ‌experienced‌ ‌larger‌ ‌and‌ ‌larger‌ ‌errors,‌ ‌ultimately‌ ‌experiencing‌ ‌the‌‌ 
595 same‌ ‌error‌ ‌that‌ ‌drove‌ ‌learning‌ ‌when‌ ‌the‌ ‌1.5-kg‌ ‌outlier‌ ‌was‌ ‌introduced‌ ‌abruptly.‌ ‌The‌ ‌reason‌ ‌that‌‌ 
596 participants‌ ‌learned‌ ‌the‌ ‌1.5-kg‌ ‌outlier‌ ‌when‌ ‌introduced‌ ‌abruptly,‌ ‌but‌ ‌not‌ ‌when‌ ‌introduced‌ ‌gradually,‌ ‌may‌‌ 
597 be‌ ‌that‌ ‌they‌ ‌are‌ ‌sensitive‌ ‌to‌ ‌the‌ ‌change‌ ‌in‌ ‌error,‌ ‌as‌ ‌opposed‌ ‌to‌ ‌error‌ ‌‌per‌ ‌se‌.‌ ‌ 

‌ 
598 Although‌ ‌the‌ ‌formation‌ ‌of‌ ‌motor‌ ‌memories‌ ‌has‌ ‌historically‌ ‌been‌ ‌viewed‌ ‌as‌ ‌a‌ ‌largely‌ ‌implicit‌ ‌process,‌‌ 
599 recent‌ ‌research‌ ‌on‌ ‌motor‌ ‌learning‌ ‌and‌ ‌adaptation‌ ‌has‌ ‌emphasized‌ ‌the‌ ‌role‌ ‌of‌ ‌explicit‌ ‌processes.‌ ‌For‌‌ 
600 example,‌ ‌when‌ ‌reaching‌ ‌under‌ ‌a‌ ‌visuomotor‌ ‌rotation,‌ ‌participants‌ ‌often‌ ‌learn‌ ‌to‌ ‌use‌ ‌an‌ ‌explicit‌ ‌re-aiming‌‌ 
601 strategy‌ ‌to‌ ‌reduce‌ ‌movement‌ ‌errors‌ ‌‌106–108‌,‌ ‌and‌ ‌can‌ ‌quickly‌ ‌recall‌ ‌and‌ ‌implement‌ ‌this‌ ‌strategy‌ ‌when‌‌ 
602 re-exposed‌ ‌to‌ ‌the‌ ‌rotation‌ ‌at‌ ‌a‌ ‌later‌ ‌time‌ ‌‌109,110‌.‌ ‌However,‌ ‌the‌ ‌use‌ ‌of‌ ‌explicit,‌ ‌or‌ ‌declarative,‌ ‌knowledge‌ ‌in‌‌ 
603 the‌ ‌control‌ ‌of‌ ‌action‌ ‌is‌ ‌perhaps‌ ‌most‌ ‌evident‌ ‌in‌ ‌object‌ ‌manipulation‌ ‌tasks.‌ ‌First,‌ ‌it‌ ‌is‌ ‌clear‌ ‌that‌ ‌people‌‌ 
604 often‌ ‌have‌ ‌explicit‌ ‌knowledge‌ ‌of‌ ‌the‌ ‌weights‌ ‌of‌ ‌objects‌ ‌they‌ ‌interact‌ ‌with.‌ ‌That‌ ‌is,‌ ‌if‌ ‌asked,‌ ‌they‌ ‌can‌‌ 
605 typically‌ ‌report‌ ‌the‌ ‌expected‌ ‌weight‌ ‌of‌ ‌an‌ ‌object‌ ‌before‌ ‌lifting‌ ‌it.‌ ‌In‌ ‌general,‌ ‌weight‌ ‌prediction‌ ‌in‌ ‌the‌‌ 
606 context‌ ‌of‌ ‌action‌ ‌(‌i.e.‌,‌ ‌for‌ ‌controlling‌ ‌lift‌ ‌forces)‌ ‌does‌ ‌not‌ ‌appear‌ ‌to‌ ‌require‌ ‌significant‌ ‌working‌ ‌memory‌‌ 
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607 resources.‌ ‌However,‌ ‌working‌ ‌memory‌ ‌resources‌ ‌‌are‌‌ ‌required‌ ‌when‌ ‌lifting‌ ‌unusually‌ ‌weighted‌ ‌objects‌‌ 
608 (‌e.g.‌,‌ ‌objects‌ ‌whose‌ ‌weights‌ ‌vary‌ ‌inversely‌ ‌with‌ ‌size)‌ ‌‌23,26‌.‌ ‌In‌ ‌the‌ ‌context‌ ‌of‌ ‌the‌ ‌current‌ ‌study,‌ ‌we‌ ‌suggest‌‌ 
609 that‌ ‌working‌ ‌memory‌ ‌load‌ ‌is‌ ‌substantially‌ ‌reduced‌ ‌when‌ ‌lifting‌ ‌objects‌ ‌that‌ ‌are‌ ‌classified‌ ‌as‌ ‌family‌‌ 
610 members‌ ‌as‌ ‌opposed‌ ‌to‌ ‌individuals.‌ ‌This‌ ‌idea‌ ‌is‌ ‌supported‌ ‌by‌ ‌our‌ ‌finding‌ ‌that‌ ‌response‌ ‌times‌ ‌were‌‌ 
611 significantly‌ ‌greater‌ ‌when‌ ‌lifting‌ ‌a‌ ‌set‌ ‌of‌ ‌objects‌ ‌that‌ ‌were‌ ‌not‌ ‌classified‌ ‌as‌ ‌a‌ ‌family‌ ‌(‌i.e.‌,‌ ‌when‌ ‌weight‌‌ 
612 was‌ ‌uncorrelated‌ ‌with‌ ‌size).‌ ‌ 

‌ 
613 By‌ ‌showing‌ ‌that‌ ‌dexterous‌ ‌object‌ ‌manipulation‌ ‌relies‌ ‌on‌ ‌learned‌ ‌representations‌ ‌of‌ ‌categories‌ ‌(and‌‌ 
614 individuals),‌ ‌our‌ ‌findings‌ ‌open‌ ‌the‌ ‌door‌ ‌for‌ ‌future‌ ‌work‌ ‌that‌ ‌connects‌ ‌theories‌ ‌of‌ ‌human‌ ‌category‌‌ 
615 learning,‌ ‌developed‌ ‌in‌ ‌the‌ ‌context‌ ‌of‌ ‌perception‌ ‌and‌ ‌cognition,‌ ‌with‌ ‌theories‌ ‌of‌ ‌motor‌ ‌control.‌ ‌The‌ ‌vast‌‌ 
616 literature‌ ‌on‌ ‌category‌ ‌learning‌ ‌has‌ ‌identified‌ ‌and‌ ‌debated‌ ‌a‌ ‌variety‌ ‌of‌ ‌key‌ ‌issues,‌ ‌including‌ ‌why‌ ‌certain‌‌ 
617 categorizations‌ ‌are‌ ‌harder‌ ‌to‌ ‌learn‌ ‌than‌ ‌others‌ ‌‌10,111‌,‌ ‌whether‌ ‌category‌ ‌knowledge‌ ‌is‌ ‌encoded‌ ‌using‌‌ 
618 prototype,‌ ‌exemplar,‌ ‌or‌ ‌decision-bound‌ ‌representations‌ ‌‌112–114‌,‌ ‌and‌ ‌how‌ ‌the‌ ‌relative‌ ‌contributions‌ ‌of‌‌ 
619 explicit‌ ‌‘rule-based’‌ ‌and‌ ‌implicit‌ ‌‘information-integration’‌ ‌processes‌ ‌are‌ ‌modulated‌ ‌by‌ ‌the‌ ‌relevant‌‌ 
620 perceptual‌ ‌dimensions‌ ‌and‌ ‌category‌ ‌structure‌ ‌of‌ ‌a‌ ‌stimulus‌ ‌domain‌ ‌‌10,115,116‌.‌ ‌A‌ ‌detailed‌ ‌review‌ ‌of‌ ‌how‌ ‌the‌‌ 
621 pertinent‌ ‌findings‌ ‌from‌ ‌this‌ ‌literature‌ ‌might‌ ‌inform‌ ‌our‌ ‌understanding‌ ‌of‌ ‌dexterous‌ ‌object‌ ‌manipulation‌‌ 
622 (and‌ ‌vice‌ ‌versa)‌ ‌is‌ ‌well‌ ‌beyond‌ ‌the‌ ‌scope‌ ‌of‌ ‌this‌ ‌article,‌ ‌but‌ ‌it‌ ‌is‌ ‌nonetheless‌ ‌clear‌ ‌that‌ ‌there‌ ‌is‌ ‌a‌ ‌pressing‌‌ 
623 need‌ ‌for‌ ‌greater‌ ‌attention‌ ‌to‌ ‌these‌ ‌connections.‌ ‌However,‌ ‌focusing‌ ‌more‌ ‌narrowly‌ ‌on‌ ‌accounting‌ ‌for‌ ‌the‌‌ 
624 present‌ ‌findings,‌ ‌it‌ ‌is‌ ‌notable‌ ‌that‌ ‌many‌ ‌existing‌ ‌process-level‌ ‌(‌i.e.‌,‌ ‌trial-by-trial)‌ ‌models‌ ‌of‌ ‌category‌‌ 
625 learning‌ ‌posit‌ ‌a‌ ‌mechanism‌ ‌that‌ ‌allows‌ ‌for‌ ‌the‌ ‌creation‌ ‌of‌ ‌a‌ ‌new‌ ‌category‌ ‌in‌ ‌memory‌ ‌when‌ ‌an‌ ‌observation‌‌ 
626 deviates‌ ‌sufficiently‌ ‌from‌ ‌previously‌ ‌learned‌ ‌categories‌ ‌‌10,117–122‌.‌ ‌These‌ ‌various‌ ‌treatments‌ ‌can‌ ‌all‌ ‌be‌‌ 
627 viewed‌ ‌as‌ ‌instances‌ ‌of‌ ‌non-parametric‌ ‌Bayesian‌ ‌models‌ ‌that‌ ‌leverage‌ ‌the‌ ‌hierarchical‌ ‌Dirichlet‌ ‌process,‌ ‌a‌‌ 
628 statistically‌ ‌principled‌ ‌approach‌ ‌to‌ ‌clustering‌ ‌data‌ ‌into‌ ‌a‌ ‌theoretically‌ ‌infinite‌ ‌number‌ ‌of‌ ‌components‌‌ 
629 123,124‌.‌ ‌Importantly,‌ ‌this‌ ‌approach‌ ‌has‌ ‌recently‌ ‌been‌ ‌applied‌ ‌to‌ ‌successfully‌ ‌account‌ ‌for‌ ‌an‌ ‌unprecedented‌‌ 
630 range‌ ‌of‌ ‌phenomena‌ ‌in‌ ‌motor‌ ‌learning‌ ‌‌125‌,‌ ‌suggesting‌ ‌that‌ ‌similar‌ ‌computations‌ ‌could‌ ‌also‌ ‌underlie‌ ‌the‌‌ 
631 (in)ability‌ ‌to‌ ‌learn‌ ‌the‌ ‌weight‌ ‌of‌ ‌an‌ ‌outlier‌ ‌object‌ ‌in‌ ‌our‌ ‌lifting‌ ‌task.‌ ‌ 

‌ 
632 In‌ ‌general,‌ ‌learning‌ ‌a‌ ‌family‌ ‌of‌ ‌objects‌ ‌based‌ ‌on‌ ‌covarying‌ ‌size‌ ‌and‌ ‌weight,‌ ‌as‌ ‌in‌ ‌this‌ ‌study,‌ ‌is‌ ‌presumably‌‌ 
633 just‌ ‌one‌ ‌example‌ ‌of‌ ‌a‌ ‌more‌ ‌general‌ ‌tendency‌ ‌to‌ ‌compactly‌ ‌encode‌ ‌the‌ ‌covariability‌ ‌of‌ ‌observable‌ ‌sensory‌ 
634 features‌ ‌and‌ ‌latent‌ ‌mechanical‌ ‌properties.‌ ‌Previous‌ ‌work‌ ‌has‌ ‌shown‌ ‌that‌ ‌people‌ ‌can‌ ‌learn‌ ‌more‌ ‌complex‌‌ 
635 ‘structures’‌ ‌in‌ ‌motor‌ ‌control‌ ‌tasks‌ ‌(‌e.g.‌,‌ ‌visuomotor‌ ‌rotations‌ ‌and‌ ‌skews),‌ ‌but‌ ‌has‌ ‌not‌ ‌distinguished‌‌ 
636 between‌ ‌categorical‌ ‌and‌ ‌associative‌ ‌representations‌ ‌‌126,127‌.‌ ‌Categorical‌ ‌encoding‌ ‌amounts‌ ‌to‌ ‌carving‌ ‌the‌‌ 
637 sparse,‌ ‌high-dimensional‌ ‌space‌ ‌of‌ ‌sensorimotor‌ ‌information‌ ‌into‌ ‌circumscribed,‌ ‌lower-dimensional‌ ‌object‌‌ 
638 categories,‌ ‌providing‌ ‌a‌ ‌number‌ ‌of‌ ‌benefits.‌ ‌First,‌ ‌it‌ ‌allows‌ ‌for‌ ‌more‌ ‌robust‌ ‌interpolation‌ ‌and‌ ‌extrapolation‌‌ 
639 from‌ ‌past‌ ‌sensorimotor‌ ‌experience‌ ‌by‌ ‌shoehorning‌ ‌ambiguous‌ ‌new‌ ‌items‌ ‌into‌ ‌predictable‌ ‌categories.‌‌ 
640 Second,‌ ‌it‌ ‌reduces‌ ‌the‌ ‌temporal‌ ‌costs‌ ‌associated‌ ‌with‌ ‌specifically‌ ‌identifying‌ ‌objects,‌ ‌which‌ ‌would‌‌ 
641 involve‌ ‌deeper‌ ‌traversal‌ ‌into‌ ‌object‌ ‌memory.‌ ‌Third,‌ ‌when‌ ‌working‌ ‌with‌ ‌multiple‌ ‌objects‌ ‌from‌ ‌the‌ ‌same‌‌ 
642 family,‌ ‌this‌ ‌strategy‌ ‌conserves‌ ‌working‌ ‌memory‌ ‌resources‌ ‌that‌ ‌would‌ ‌otherwise‌ ‌be‌ ‌expended‌ ‌on‌ ‌object‌‌ 
643 individuation.‌ ‌Lastly,‌ ‌categorical‌ ‌organization‌ ‌also‌ ‌conserves‌ ‌long-term‌ ‌memory‌ ‌resources‌ ‌by‌ ‌maintaining‌‌ 
644 only‌ ‌abstract‌ ‌descriptions‌ ‌of‌ ‌relevant‌ ‌family‌ ‌structure,‌ ‌rather‌ ‌than‌ ‌a‌ ‌detailed‌ ‌map‌ ‌of‌ ‌all‌ ‌sensorimotor‌‌ 
645 properties,‌ ‌helping‌ ‌to‌ ‌address‌ ‌the‌ ‌curse‌ ‌of‌ ‌dimensionality.‌ ‌In‌ ‌contrast,‌ ‌although‌ ‌learning‌ ‌about‌ ‌individual‌‌ 
646 objects‌ ‌may‌ ‌increase‌ ‌accuracy‌ ‌in‌ ‌some‌ ‌circumstances,‌ ‌this‌ ‌would‌ ‌come‌ ‌at‌ ‌the‌ ‌cost‌ ‌of‌ ‌significantly‌‌ 
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‌ 

647 increased‌ ‌demands‌ ‌on‌ ‌attention‌ ‌(for‌ ‌visual‌ ‌recognition),‌ ‌cognitive‌ ‌control‌ ‌(for‌ ‌switching‌ ‌between‌‌ 
648 memories),‌ ‌and‌ ‌memory‌ ‌(for‌ ‌storage).‌ ‌Therefore,‌ ‌in‌ ‌combination‌ ‌with‌ ‌context-sensitive‌ ‌reflexes‌ ‌and‌ ‌other‌‌ 
649 rapid‌ ‌corrective‌ ‌mechanisms,‌ ‌a‌ ‌categorical‌ ‌memory‌ ‌of‌ ‌object‌ ‌properties‌ ‌affords‌ ‌tradeoffs‌ ‌between‌‌ 
650 accuracy‌ ‌and‌ ‌memory‌ ‌that‌ ‌can‌ ‌be‌ ‌balanced‌ ‌as‌ ‌needed‌ ‌to‌ ‌support‌ ‌our‌ ‌unmatched‌ ‌ability‌ ‌to‌ ‌skillfully‌‌ 
651 manipulate‌ ‌many‌ ‌different‌ ‌kinds‌ ‌of‌ ‌objects.‌ ‌ 

652 Materials‌ ‌and‌ ‌Methods‌ ‌ 

653 We‌ ‌first‌ ‌describe‌ ‌the‌ ‌in-laboratory‌ ‌experiments‌ ‌before‌ ‌describing‌ ‌the‌ ‌web-based‌ ‌experiments.‌ ‌ 

654 Laboratory‌ ‌experiments‌ ‌ 

655 Participants‌ 

656 A‌ ‌total‌ ‌of‌ ‌80‌ ‌participants‌ ‌(42‌ ‌males,‌ ‌38‌ ‌females)‌ ‌aged‌ ‌18‌ ‌to‌ ‌45‌ ‌years‌ ‌old‌ ‌(median‌ ‌24)‌ ‌were‌ ‌recruited‌ ‌for‌‌ 
657 the‌ ‌laboratory‌ ‌experiments.‌ ‌Participants‌ ‌were‌ ‌right-handed‌ ‌according‌ ‌to‌ ‌the‌ ‌Edinburgh‌ ‌handedness‌‌ 
658 questionnaire,‌ ‌and‌ ‌reported‌ ‌that‌ ‌they‌ ‌had‌ ‌normal‌ ‌or‌ ‌corrected-to-normal‌ ‌vision‌ ‌and‌ ‌no‌ ‌prior‌ ‌diagnosis‌ ‌of‌ ‌a‌‌ 
659 movement‌ ‌disorder.‌ ‌They‌ ‌were‌ ‌compensated‌ ‌at‌ ‌a‌ ‌rate‌ ‌of‌ ‌$17‌ ‌per‌ ‌hour.‌ ‌All‌ ‌experiments‌ ‌were‌ ‌conducted‌ ‌in‌‌ 
660 accordance‌ ‌with‌ ‌the‌ ‌1964‌ ‌Declaration‌ ‌of‌ ‌Helsinki,‌ ‌following‌ ‌protocol‌ ‌approved‌ ‌by‌ ‌the‌ ‌Columbia‌‌ 
661 University‌ ‌Institutional‌ ‌Review‌ ‌Board.‌ ‌Written‌ ‌informed‌ ‌consent‌ ‌was‌ ‌obtained‌ ‌from‌ ‌all‌ ‌participants‌ ‌prior‌‌ 
662 to‌ ‌their‌ ‌participation.‌‌ ‌  

663 Apparatus‌ ‌ 

664 Experiments‌ ‌were‌ ‌performed‌ ‌using‌ ‌a‌ ‌3BOT‌ ‌three-dimensional‌ ‌robotic‌ ‌manipulandum‌ ‌and‌ ‌an‌ ‌Oculus‌ ‌Rift‌‌ 
665 DK2‌ ‌(Menlo‌ ‌Park,‌ ‌CA)‌ ‌virtual‌ ‌reality‌ ‌headset,‌ ‌as‌ ‌well‌ ‌as‌ ‌a‌ ‌2-button‌ ‌USB‌ ‌response‌ ‌pad‌ ‌(The‌ ‌Black‌ ‌Box‌‌ 
666 ToolKit‌ ‌Ltd.,‌ ‌Sheffield,‌ ‌UK).‌ ‌The‌ ‌position‌ ‌of‌ ‌the‌ ‌3BOT‌ ‌handle‌ ‌was‌ ‌measured‌ ‌using‌ ‌optical‌ ‌encoders‌‌ 
667 sampled‌ ‌at‌ ‌5‌ ‌kHz,‌ ‌and‌ ‌torque‌ ‌motors‌ ‌allowed‌ ‌forces‌ ‌(also‌ ‌updated‌ ‌at‌ ‌5‌ ‌kHz)‌ ‌to‌ ‌be‌ ‌generated‌ ‌on‌ ‌the‌‌ 
668 handle.‌ ‌Participants‌ ‌sat‌ ‌on‌ ‌a‌ ‌height-adjustable‌ ‌stool‌ ‌in‌ ‌front‌ ‌of‌ ‌a‌ ‌tabletop‌ ‌workspace‌ ‌and‌ ‌grasped‌ ‌the‌‌ 
669 3BOT‌ ‌handle‌ ‌with‌ ‌their‌ ‌right‌ ‌hand‌ ‌(Fig.‌ ‌1a).‌ ‌The‌ ‌virtual‌ ‌reality‌ ‌headset‌ ‌was‌ ‌rigidly‌ ‌fixed‌ ‌to‌ ‌an‌ ‌aluminum‌‌ 
670 crossbeam‌ ‌and‌ ‌angled‌ ‌downwards‌ ‌by‌ ‌30°.‌ ‌Stereoscopic‌ ‌visual‌ ‌stimuli‌ ‌were‌ ‌rendered‌ ‌on‌ ‌the‌ ‌headset‌ ‌using‌‌ 
671 custom‌ ‌OpenGL‌ ‌routines‌ ‌and‌ ‌the‌ ‌Psychophysics‌ ‌Toolbox‌ ‌‌128‌.‌ ‌Auditory‌ ‌cues‌ ‌were‌ ‌provided‌ ‌through‌‌ 
672 Sennheiser‌ ‌HD201‌ ‌(Old‌ ‌Lyme,‌ ‌CT)‌ ‌over-ear‌ ‌headphones.‌ ‌ 

673 Task‌ ‌ 

674 In‌ ‌our‌ ‌object‌ ‌‘lifting’‌ ‌task,‌ ‌the‌ ‌participant‌ ‌generates‌ ‌an‌ ‌upward‌ ‌force‌ ‌on‌ ‌an‌ ‌object‌ ‌that‌ ‌is‌ ‌initially‌ ‌fixed‌ ‌to‌‌ 
675 the‌ ‌surface‌ ‌beneath‌ ‌it,‌ ‌such‌ ‌that‌ ‌the‌ ‌object‌ ‌cannot‌ ‌move.‌ ‌The‌ ‌participant‌ ‌then‌ ‌presses‌ ‌a‌ ‌button,‌ ‌at‌ ‌which‌‌ 
676 time‌ ‌the‌ ‌surface‌ ‌disappears,‌ ‌releasing‌ ‌the‌ ‌object‌ ‌so‌ ‌that‌ ‌it‌ ‌is‌ ‌then‌ ‌free‌ ‌to‌ ‌move.‌ ‌The‌ ‌goal‌ ‌for‌ ‌the‌ ‌participant‌‌ 
677 is‌ ‌to‌ ‌match‌ ‌the‌ ‌upward‌ ‌force‌ ‌to‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌object‌ ‌so‌ ‌that‌ ‌the‌ ‌object‌ ‌does‌ ‌not‌ ‌move‌ ‌when‌ ‌it‌ ‌is‌‌ 
678 released.‌ ‌Participants‌ ‌performed‌ ‌this‌ ‌lifting‌ ‌task‌ ‌with‌ ‌five‌ ‌cylinders‌ ‌of‌ ‌equal‌ ‌radius‌ ‌(4.61‌ ‌cm),‌ ‌but‌ ‌of‌‌ 
679 different‌ ‌heights‌ ‌(6,‌ ‌7.5,‌ ‌9,‌ ‌10.5,‌ ‌and‌ ‌12‌ ‌cm),‌ ‌leading‌ ‌to‌ ‌five‌ ‌equally‌ ‌spaced‌ ‌volumes‌ ‌(400,‌ ‌500,‌ ‌600,‌ ‌700,‌‌ 
680 and‌ ‌800‌ ‌cm‌3‌).‌ ‌Each‌ ‌cylinder‌ ‌was‌ ‌shaded,‌ ‌from‌ ‌smallest‌ ‌to‌ ‌largest,‌ ‌between‌ ‌orange‌ ‌and‌ ‌red‌ ‌according‌ ‌to‌‌ 
681 the‌ ‌Munsell‌ ‌color‌ ‌system‌ ‌(Hue:‌ ‌10R,‌ ‌Value/Chroma:‌ ‌3/10,‌ ‌4/12,‌ ‌5/14,‌ ‌6/16,‌ ‌and‌ ‌7/16).‌ ‌All‌ ‌objects‌ ‌were‌‌ 
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‌ 

682 visible‌ ‌throughout‌ ‌the‌ ‌task,‌ ‌except‌ ‌during‌ ‌rest‌ ‌breaks.‌ ‌The‌ ‌objects‌ ‌were‌ ‌positioned‌ ‌evenly‌ ‌around‌ ‌the‌ ‌edge‌‌ 
683 of‌ ‌a‌ ‌gray,‌ ‌semi-transparent‌ ‌carousel‌ ‌with‌ ‌a‌ ‌radius‌ ‌of‌ ‌20‌ ‌cm‌ ‌(Fig.‌ ‌1b).‌ ‌The‌ ‌weight‌ ‌of‌ ‌each‌ ‌object‌ ‌varied‌‌ 
684 across‌ ‌the‌ ‌experimental‌ ‌conditions‌ ‌(see‌ ‌below).‌ ‌ 

‌ 
685 Before‌ ‌each‌ ‌trial,‌ ‌the‌ ‌3BOT‌ ‌moved‌ ‌the‌ ‌participant’s‌ ‌hand‌ ‌passively‌ ‌to‌ ‌a‌ ‌start‌ ‌position‌ ‌11‌ ‌cm‌ ‌in‌ ‌front‌ ‌of‌‌ 
686 and‌ ‌19‌ ‌cm‌ ‌below‌ ‌the‌ ‌cyclopean‌ ‌eye‌ ‌(in‌ ‌gravity-oriented‌ ‌space)‌ ‌and‌ ‌clamped‌ ‌it‌ ‌there‌ ‌by‌ ‌a‌ ‌simulated‌ ‌stiff‌‌ 
687 spring‌ ‌(spring‌ ‌constant:‌ ‌4000‌ ‌N‌ ‌m‌−1‌,‌ ‌damping‌ ‌coefficient:‌ ‌2‌ ‌N‌ ‌m‌ ‌s‌−1‌,‌ ‌both‌ ‌acting‌ ‌in‌ ‌all‌ ‌directions).‌ ‌The‌‌ 
688 participant‌ ‌saw‌ ‌a‌ ‌stereoscopically‌ ‌rendered‌ ‌view‌ ‌of‌ ‌the‌ ‌five‌ ‌objects‌ ‌and‌ ‌the‌ ‌circular‌ ‌carousel‌ ‌(Fig.‌ ‌1b).‌‌ 
689 The‌ ‌carousel‌ ‌rotated‌ ‌smoothly‌ ‌(750‌ ‌ms)‌ ‌to‌ ‌bring‌ ‌a‌ ‌target‌ ‌object‌ ‌to‌ ‌the‌ ‌front‌ ‌and‌ ‌a‌ ‌500-ms‌ ‌tone‌ ‌then‌‌ 
690 signaled‌ ‌the‌ ‌start‌ ‌of‌ ‌the‌ ‌trial.‌ ‌Note‌ ‌that‌ ‌at‌ ‌this‌ ‌point,‌ ‌the‌ ‌hand‌ ‌(‌i.e.‌,‌ ‌the‌ ‌center‌ ‌of‌ ‌the‌ ‌3BOT‌ ‌handle)‌ ‌was‌‌ 
691 located‌ ‌at‌ ‌the‌ ‌center‌ ‌of‌ ‌the‌ ‌base‌ ‌of‌ ‌the‌ ‌target‌ ‌object.‌ ‌The‌ ‌participant‌ ‌then‌ ‌generated‌ ‌an‌ ‌upward‌ ‌lifting‌ ‌force‌‌ 
692 on‌ ‌the‌ ‌object‌ ‌(‌i.e.‌,‌ ‌against‌ ‌the‌ ‌simulated‌ ‌stiff‌ ‌spring)‌ ‌attempting‌ ‌to‌ ‌match‌ ‌its‌ ‌weight.‌ ‌When‌ ‌ready,‌ ‌the‌‌ 
693 participant‌ ‌pressed‌ ‌a‌ ‌button‌ ‌with‌ ‌their‌ ‌left‌ ‌hand‌ ‌that‌ ‌caused‌ ‌a‌ ‌portion‌ ‌of‌ ‌the‌ ‌carousel‌ ‌below‌ ‌the‌ ‌object‌ ‌to‌‌ 
694 open,‌ ‌thus‌ ‌releasing‌ ‌the‌ ‌object‌ ‌so‌ ‌that‌ ‌it‌ ‌was‌ ‌free‌ ‌to‌ ‌move.‌ ‌The‌ ‌physical‌ ‌interaction‌ ‌between‌ ‌the‌ ‌hand‌ ‌and‌ 
695 the‌ ‌object‌ ‌was‌ ‌then‌ ‌simulated‌ ‌haptically‌ ‌using‌ ‌the‌ ‌3BOT.‌ ‌We‌ ‌simulated‌ ‌the‌ ‌object‌ ‌as‌ ‌a‌ ‌point-mass‌ ‌acted‌‌ 
696 upon‌ ‌by‌ ‌gravity‌ ‌and‌ ‌attached‌ ‌by‌ ‌a‌ ‌stiff,‌ ‌damped‌ ‌spring‌ ‌(acting‌ ‌in‌ ‌all‌ ‌three‌ ‌dimensions)‌ ‌to‌ ‌the‌ ‌center‌ ‌of‌ ‌the‌ 
697 handle.‌ ‌The‌ ‌spring‌ ‌constant‌ ‌was‌ ‌4,000‌ ‌N‌ ‌m‌-1‌‌ ‌and‌ ‌the‌ ‌damping‌ ‌coefficient‌ ‌was‌ ‌2‌ ‌N‌ ‌m‌ ‌s‌−1‌‌ ‌with‌ ‌gravity‌ ‌set‌‌ 
698 at‌ ‌−9.81‌ ‌m‌ ‌s‌-2‌.‌ ‌We‌ ‌updated‌ ‌the‌ ‌location‌ ‌of‌ ‌the‌ ‌object‌ ‌both‌ ‌haptically‌ ‌and‌ ‌visually‌ ‌and‌ ‌generated‌ ‌the‌‌ 
699 appropriate‌ ‌forces‌ ‌on‌ ‌the‌ ‌hand.‌ ‌This‌ ‌method‌ ‌produces‌ ‌a‌ ‌stable,‌ ‌compelling‌ ‌haptic‌ ‌percept‌ ‌of‌ ‌a‌ ‌handheld‌‌ 
700 inertial‌ ‌mass.‌ ‌If‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌was‌ ‌more‌ ‌or‌ ‌less‌ ‌than‌ ‌the‌ ‌weight‌ ‌of‌ ‌the‌ ‌object,‌ ‌then‌ ‌the‌ ‌handle‌‌ 
701 would‌ ‌move‌ ‌upward‌ ‌or‌ ‌downward,‌ ‌respectively,‌ ‌until‌ ‌corrective‌ ‌motor‌ ‌commands‌ ‌re-stabilized‌ ‌the‌ ‌arm‌‌ 
702 posture.‌ ‌To‌ ‌encourage‌ ‌accurate‌ ‌performance,‌ ‌thin‌ ‌horizontal‌ ‌gray‌ ‌bars‌ ‌(2-mm‌ ‌radius,‌ ‌purely‌ ‌visual‌ ‌and‌‌ 
703 not‌ ‌haptic)‌ ‌were‌ ‌visible‌ ‌just‌ ‌above‌ ‌and‌ ‌below‌ ‌the‌ ‌target‌ ‌object‌ ‌from‌ ‌the‌ ‌start‌ ‌of‌ ‌the‌ ‌trial‌ ‌(not‌ ‌depicted‌ ‌in‌‌ 
704 Fig.‌ ‌1b).‌ ‌If‌ ‌the‌ ‌object‌ ‌remained‌ ‌between‌ ‌the‌ ‌horizontal‌ ‌bars‌ ‌for‌ ‌500‌ ‌ms,‌ ‌the‌ ‌bars‌ ‌disappeared,‌ ‌and‌ ‌the‌‌ 
705 participant‌ ‌completed‌ ‌the‌ ‌trial‌ ‌by‌ ‌raising‌ ‌the‌ ‌object‌ ‌at‌ ‌least‌ ‌3‌ ‌cm‌ ‌above‌ ‌the‌ ‌start‌ ‌position‌ ‌and‌ ‌replacing‌ ‌it‌‌ 
706 on‌ ‌the‌ ‌carousel,‌ ‌where‌ ‌a‌ ‌virtual‌ ‌haptic‌ ‌surface‌ ‌was‌ ‌now‌ ‌simulated‌ ‌to‌ ‌allow‌ ‌full‌ ‌unloading‌ ‌of‌ ‌lift‌ ‌forces‌‌ 
707 prior‌ ‌to‌ ‌the‌ ‌next‌ ‌trial.‌ ‌However,‌ ‌if‌ ‌the‌ ‌object‌ ‌crossed‌ ‌one‌ ‌of‌ ‌the‌ ‌bars,‌ ‌it‌ ‌turned‌ ‌red‌ ‌and‌ ‌a‌ ‌white-noise‌ ‌audio‌‌ 
708 burst‌ ‌was‌ ‌played.‌ ‌The‌ ‌object‌ ‌had‌ ‌to‌ ‌be‌ ‌brought‌ ‌back‌ ‌within‌ ‌the‌ ‌bars‌ ‌before‌ ‌they‌ ‌would‌ ‌disappear,‌ ‌and‌‌ 
709 only‌ ‌then‌ ‌could‌ ‌the‌ ‌participant‌ ‌complete‌ ‌the‌ ‌trial‌ ‌by‌ ‌raising‌ ‌and‌ ‌replacing‌ ‌the‌ ‌object‌ ‌on‌ ‌the‌ ‌carousel.‌ ‌The‌‌ 
710 distance‌ ‌of‌ ‌the‌ ‌bars‌ ‌from‌ ‌the‌ ‌top‌ ‌and‌ ‌bottom‌ ‌edges‌ ‌of‌ ‌the‌ ‌object‌ ‌(‌i.e.‌,‌ ‌the‌ ‌amount‌ ‌of‌ ‌tolerated‌ ‌object‌‌ 
711 movement)‌ ‌varied‌ ‌according‌ ‌to‌ ‌the‌ ‌participant’s‌ ‌performance:‌ ‌the‌ ‌demarcated‌ ‌region‌ ‌became‌ ‌1‌ ‌mm‌ ‌larger‌‌ 
712 following‌ ‌an‌ ‌trial‌ ‌where‌ ‌the‌ ‌object‌ ‌crossed‌ ‌a‌ ‌bar,‌ ‌up‌ ‌to‌ ‌a‌ ‌maximum‌ ‌tolerated‌ ‌deviation‌ ‌of‌ ‌±13‌ ‌mm‌ ‌(this‌‌ 
713 was‌ ‌also‌ ‌the‌ ‌initial‌ ‌width),‌ ‌and‌ ‌became‌ ‌1‌ ‌mm‌ ‌smaller‌ ‌after‌ ‌five‌ ‌consecutive‌ ‌trials‌ ‌where‌ ‌the‌ ‌object‌ ‌stayed‌‌ 
714 within‌ ‌the‌ ‌bars,‌ ‌down‌ ‌to‌ ‌a‌ ‌minimum‌ ‌tolerated‌ ‌deviation‌ ‌of‌ ‌±2‌ ‌mm.‌ ‌ 

‌ 
715 Feedback‌ ‌was‌ ‌also‌ ‌provided‌ ‌in‌ ‌the‌ ‌form‌ ‌of‌ ‌a‌ ‌per-trial‌ ‌score‌ ‌that‌ ‌depended‌ ‌on‌ ‌the‌ ‌absolute‌ ‌error‌ ‌between‌‌ 
716 the‌ ‌anticipatory‌ ‌force‌ ‌at‌ ‌the‌ ‌moment‌ ‌of‌ ‌the‌ ‌button‌ ‌press‌ ‌and‌ ‌the‌ ‌required‌ ‌force‌ ‌to‌ ‌support‌ ‌the‌ ‌object,‌ ‌with‌‌ 
717 score‌ ‌=‌ ‌max(0,‌ ‌100−13*|error|).‌ ‌The‌ ‌participant’s‌ ‌cumulative‌ ‌score‌ ‌was‌ ‌displayed‌ ‌throughout‌ ‌the‌‌ 
718 experiment.‌ ‌The‌ ‌five‌ ‌highest-scoring‌ ‌previous‌ ‌participants’‌ ‌scores‌ ‌from‌ ‌the‌ ‌same‌ ‌condition‌ ‌were‌‌ 
719 displayed‌ ‌in‌ ‌a‌ ‌leaderboard‌ ‌beside‌ ‌their‌ ‌own‌ ‌score.‌ ‌This‌ ‌leaderboard‌ ‌was‌ ‌initially‌ ‌seeded‌ ‌based‌ ‌on‌ ‌the‌‌ 
720 score‌ ‌of‌ ‌a‌ ‌pilot‌ ‌run,‌ ‌which‌ ‌was‌ ‌multiplied‌ ‌by‌ ‌1,‌ ‌0.9,‌ ‌0.8,‌ ‌0.75,‌ ‌and‌ ‌0.7‌ ‌to‌ ‌produce‌ ‌five‌ ‌scores.‌ ‌These‌ ‌seed‌‌ 
721 scores‌ ‌were‌ ‌erased‌ ‌one‌ ‌by‌ ‌one‌ ‌as‌ ‌data‌ ‌were‌ ‌collected‌ ‌from‌ ‌the‌ ‌first‌ ‌five‌ ‌participants‌ ‌in‌ ‌each‌ ‌condition.‌ ‌ 
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‌ 

722 Paradigm‌ ‌ 

723 Linear+‌ ‌condition‌ ‌ 

724 Fifteen‌ ‌participants‌ ‌(of‌ ‌an‌ ‌initial‌ ‌sample‌ ‌of‌ ‌30)‌ ‌were‌ ‌randomly‌ ‌assigned‌ ‌to‌ ‌the‌ ‌Linear+‌ ‌condition;‌ ‌the‌‌ 
725 other‌ ‌fifteen‌ ‌were‌ ‌assigned‌ ‌to‌ ‌the‌ ‌Uncorr+‌ ‌condition‌ ‌(see‌ ‌below).‌ ‌The‌ ‌training‌ ‌objects‌ ‌(the‌ ‌two‌ ‌smallest‌‌ 
726 and‌ ‌two‌ ‌largest‌ ‌objects‌ ‌by‌ ‌volume)‌ ‌weighed‌ ‌600,‌ ‌750,‌ ‌1050,‌ ‌and‌ ‌1200‌ ‌g,‌ ‌respectively,‌ ‌corresponding‌ ‌to‌ ‌a‌‌ 
727 constant‌ ‌density‌ ‌of‌ ‌1.5‌ ‌g‌ ‌cm‌−3‌‌ ‌(Fig.‌ ‌1d).‌ ‌The‌ ‌test‌ ‌object‌ ‌(or‌ ‌‘outlier’)‌ ‌was‌ ‌the‌ ‌mid-size‌ ‌cylinder‌ ‌and‌‌ 
728 weighed‌ ‌1200‌ ‌g,‌ ‌corresponding‌ ‌to‌ ‌a‌ ‌density‌ ‌of‌ ‌2.0‌ ‌g‌ ‌cm‌−3‌.‌ ‌ 

‌ 
729 All‌ ‌participants‌ ‌were‌ ‌informed‌ ‌that‌ ‌the‌ ‌purpose‌ ‌of‌ ‌the‌ ‌experiment‌ ‌was‌ ‌to‌ ‌test‌ ‌their‌ ‌ability‌ ‌to‌ ‌learn‌ ‌and‌‌ 
730 recall‌ ‌the‌ ‌weights‌ ‌of‌ ‌a‌ ‌novel‌ ‌set‌ ‌of‌ ‌objects.‌ ‌The‌ ‌Linear+‌ ‌condition‌ ‌began‌ ‌with‌ ‌a‌ ‌120-trial‌ ‌training‌ ‌phase‌ ‌in‌‌ 
731 which‌ ‌the‌ ‌participant‌ ‌interacted‌ ‌only‌ ‌with‌ ‌the‌ ‌four‌ ‌training‌ ‌objects.‌ ‌The‌ ‌order‌ ‌of‌ ‌presentation‌ ‌was‌‌ 
732 pseudo-randomized‌ ‌in‌ ‌cycles‌ ‌where‌ ‌each‌ ‌object‌ ‌was‌ ‌presented‌ ‌once‌ ‌before‌ ‌any‌ ‌object‌ ‌was‌ ‌repeated,‌ ‌and‌‌ 
733 subject‌ ‌to‌ ‌the‌ ‌additional‌ ‌constraint‌ ‌that‌ ‌the‌ ‌first‌ ‌object‌ ‌presented‌ ‌in‌ ‌one‌ ‌cycle‌ ‌could‌ ‌not‌ ‌be‌ ‌the‌ ‌same‌ ‌as‌ ‌the‌‌ 
734 last‌ ‌object‌ ‌presented‌ ‌on‌ ‌the‌ ‌previous‌ ‌cycle.‌ ‌Following‌ ‌training,‌ ‌the‌ ‌test‌ ‌object‌ ‌(also‌ ‌called‌ ‌the‌ ‌outlier‌‌ 
735 object‌ ‌when‌ ‌introduced‌ ‌amongst‌ ‌a‌ ‌linear‌ ‌object‌ ‌family)‌ ‌was‌ ‌introduced‌ ‌for‌ ‌a‌ ‌200-trial‌ ‌test‌ ‌phase.‌ ‌During‌‌ 
736 the‌ ‌test‌ ‌phase,‌ ‌in‌ ‌each‌ ‌five-trial‌ ‌cycle,‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌ ‌always‌ ‌presented‌ ‌first,‌ ‌followed‌ ‌by‌ ‌the‌ ‌four‌‌ 
737 training‌ ‌objects‌ ‌in‌ ‌pseudo-random‌ ‌order,‌ ‌but‌ ‌subject‌ ‌to‌ ‌the‌ ‌additional‌ ‌constraint‌ ‌that‌ ‌for‌ ‌every‌ ‌four‌ ‌cycles,‌‌ 
738 each‌ ‌of‌ ‌the‌ ‌four‌ ‌training‌ ‌objects‌ ‌would‌ ‌be‌ ‌presented‌ ‌immediately‌ ‌after‌ ‌the‌ ‌test‌ ‌object‌ ‌(‌i.e.‌,‌ ‌on‌ ‌the‌ ‌second‌‌ 
739 trial‌ ‌of‌ ‌the‌ ‌cycle)‌ ‌exactly‌ ‌once.‌ ‌ 

‌ 
740 To‌ ‌reduce‌ ‌the‌ ‌effects‌ ‌of‌ ‌fatigue,‌ ‌participants‌ ‌were‌ ‌required‌ ‌to‌ ‌take‌ ‌occasional‌ ‌30-second‌ ‌breaks.‌ ‌During‌‌ 
741 these‌ ‌breaks,‌ ‌participants‌ ‌stopped‌ ‌holding‌ ‌the‌ ‌3BOT‌ ‌handle,‌ ‌came‌ ‌out‌ ‌of‌ ‌the‌ ‌virtual‌ ‌reality‌ ‌headset,‌ ‌and‌‌ 
742 were‌ ‌encouraged‌ ‌to‌ ‌stretch‌ ‌their‌ ‌right‌ ‌arm‌ ‌and‌ ‌hand.‌ ‌These‌ ‌breaks‌ ‌occurred‌ ‌after‌ ‌trials‌ ‌60,‌ ‌120,‌ ‌and‌ ‌200.‌‌ 
743 The‌ ‌experiment‌ ‌had‌ ‌a‌ ‌total‌ ‌of‌ ‌320‌ ‌trials‌ ‌and‌ ‌lasted‌ ‌approximately‌ ‌45‌ ‌minutes.‌ ‌ 

‌ 
744 Prior‌ ‌to‌ ‌the‌ ‌experiment,‌ ‌the‌ ‌experimenter‌ ‌demonstrated‌ ‌the‌ ‌task‌ ‌by‌ ‌performing‌ ‌10‌ ‌or‌ ‌15‌ ‌trials‌ ‌of‌ ‌a‌‌ 
745 familiarization‌ ‌condition‌ ‌while‌ ‌the‌ ‌participant‌ ‌watched.‌ ‌The‌ ‌visual‌ ‌scene‌ ‌was‌ ‌displayed‌ ‌on‌ ‌a‌ ‌nearby‌‌ 
746 monitor‌ ‌so‌ ‌the‌ ‌participant‌ ‌could‌ ‌follow‌ ‌along.‌ ‌The‌ ‌participant‌ ‌then‌ ‌completed‌ ‌30‌ ‌trials‌ ‌of‌ ‌task‌‌ 
747 familiarization,‌ ‌where‌ ‌the‌ ‌object‌ ‌stimuli‌ ‌were‌ ‌three‌ ‌spheres‌ ‌(5-cm‌ ‌radius)‌ ‌that‌ ‌were‌ ‌blue,‌ ‌red,‌ ‌and‌ ‌green‌‌ 
748 (7.5B‌ ‌6/8,‌ ‌7.5R‌ ‌6/18,‌ ‌7.5GY‌ ‌6/10)‌ ‌and‌ ‌weighed‌ ‌500,‌ ‌900,‌ ‌and‌ ‌1300‌ ‌g,‌ ‌respectively.‌ ‌During‌ ‌task‌‌ 
749 familiarization,‌ ‌the‌ ‌experimenter‌ ‌could‌ ‌choose‌ ‌to‌ ‌display‌ ‌or‌ ‌hide‌ ‌a‌ ‌bar‌ ‌graph‌ ‌that‌ ‌showed‌ ‌the‌ ‌real-time‌‌ 
750 load‌ ‌force‌ ‌on‌ ‌the‌ ‌handle.‌ ‌This‌ ‌visual‌ ‌aid‌ ‌helped‌ ‌participants‌ ‌calibrate‌ ‌to‌ ‌the‌ ‌range‌ ‌of‌ ‌forces‌ ‌they‌ ‌would‌ ‌be‌‌ 
751 asked‌ ‌to‌ ‌produce‌ ‌in‌ ‌the‌ ‌experiment,‌ ‌and‌ ‌prevented‌ ‌them‌ ‌from‌ ‌producing‌ ‌unnecessarily‌ ‌large‌ ‌forces.‌‌ 
752 Approximately‌ ‌ten‌ ‌familiarization‌ ‌trials‌ ‌were‌ ‌performed‌ ‌with‌ ‌full‌ ‌view‌ ‌of‌ ‌this‌ ‌visual‌ ‌feedback,‌ ‌followed‌‌ 
753 by‌ ‌approximately‌ ‌ten‌ ‌trials‌ ‌with‌ ‌short‌ ‌glimpses‌ ‌of‌ ‌the‌ ‌feedback‌ ‌prior‌ ‌to‌ ‌the‌ ‌button‌ ‌press,‌ ‌followed‌ ‌by‌‌ 
754 approximately‌ ‌ten‌ ‌trials‌ ‌without‌ ‌the‌ ‌visual‌ ‌feedback‌ ‌as‌ ‌in‌ ‌the‌ ‌actual‌ ‌experiment.‌ ‌ 

755 Uncorr+‌ ‌condition‌ ‌ 

756 Fifteen‌ ‌participants‌ ‌were‌ ‌randomly‌ ‌assigned‌ ‌to‌ ‌the‌ ‌Uncorr+‌ ‌condition.‌ ‌The‌ ‌Uncorr+‌ ‌condition‌ ‌was‌ ‌similar‌‌ 
757 to‌ ‌the‌ ‌Linear+‌ ‌condition,‌ ‌except‌ ‌the‌ ‌four‌ ‌training‌ ‌object‌ ‌weights‌ ‌(600,‌ ‌750,‌ ‌1050,‌ ‌and‌ ‌1200‌ ‌g)‌ ‌were‌‌ 
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‌ 

758 assigned‌ ‌randomly‌ ‌to‌ ‌the‌ ‌four‌ ‌training‌ ‌objects‌ ‌(Fig.‌ ‌1f),‌ ‌subject‌ ‌to‌ ‌the‌ ‌constraint‌ ‌that‌ ‌the‌ ‌absolute‌ ‌value‌ ‌of‌‌ 
759 the‌ ‌Pearson‌ ‌correlation‌ ‌coefficient‌ ‌between‌ ‌volume‌ ‌and‌ ‌mass‌ ‌could‌ ‌not‌ ‌exceed‌ ‌0.3.‌ ‌The‌ ‌test‌ ‌object‌ ‌had‌‌ 
760 the‌ ‌same‌ ‌weight‌ ‌as‌ ‌in‌ ‌the‌ ‌Linear+‌ ‌condition.‌ ‌ 

761 Linear++‌ ‌condition‌ ‌ 

762 In‌ ‌the‌ ‌Linear++‌ ‌condition,‌ ‌we‌ ‌recruited‌ ‌participants‌ ‌until‌ ‌we‌ ‌obtained‌ ‌a‌ ‌sample‌ ‌size‌ ‌of‌ ‌9‌ ‌after‌ ‌excluding‌‌ 
763 non-learners.‌ ‌The‌ ‌Linear++‌ ‌condition‌ ‌was‌ ‌identical‌ ‌to‌ ‌the‌ ‌Linear+‌ ‌condition,‌ ‌except‌ ‌the‌ ‌outlier‌ ‌object‌‌ 
764 weighed‌ ‌1500‌ ‌g‌ ‌(rather‌ ‌than‌ ‌1200‌ ‌g;‌ ‌Fig.‌ ‌1e).‌ ‌ 

765 +Linear‌ ‌condition‌ ‌ 

766 In‌ ‌the‌ ‌+Linear‌ ‌condition,‌ ‌we‌ ‌recruited‌ ‌participants‌ ‌until‌ ‌we‌ ‌obtained‌ ‌a‌ ‌sample‌ ‌size‌ ‌of‌ ‌11‌ ‌after‌ ‌excluding‌‌ 
767 non-learners.‌ ‌In‌ ‌the‌ ‌+Linear‌ ‌condition,‌ ‌the‌ ‌experiment‌ ‌began‌ ‌with‌ ‌a‌ ‌30-trial‌ ‌training‌ ‌phase‌ ‌where‌‌ 
768 participants‌ ‌interacted‌ ‌only‌ ‌with‌ ‌the‌ ‌test‌ ‌object‌ ‌which‌ ‌weighed‌ ‌1200‌ ‌g.‌ ‌This‌ ‌was‌ ‌followed‌ ‌by‌ ‌a‌ ‌200-trial‌‌ 
769 test‌ ‌phase‌ ‌identical‌ ‌to‌ ‌the‌ ‌Linear+‌ ‌condition‌ ‌in‌ ‌which‌ ‌all‌ ‌5‌ ‌objects‌ ‌were‌ ‌lifted‌ ‌in‌ ‌each‌ ‌cycle.‌ ‌This‌ ‌was‌‌ 
770 followed‌ ‌by‌ ‌the‌ ‌1:1‌ ‌phase,‌ ‌which‌ ‌was‌ ‌a‌ ‌block‌ ‌of‌ ‌10‌ ‌cycles‌ ‌where,‌ ‌in‌ ‌each‌ ‌cycle,‌ ‌the‌ ‌test‌ ‌object‌ ‌was‌‌ 
771 presented‌ ‌four‌ ‌times‌ ‌and‌ ‌each‌ ‌of‌ ‌the‌ ‌four‌ ‌family‌ ‌objects‌ ‌was‌ ‌lifted‌ ‌once,‌ ‌for‌ ‌a‌ ‌total‌ ‌of‌ ‌8‌ ‌trials‌ ‌per‌ ‌cycle.‌‌ 
772 To‌ ‌limit‌ ‌the‌ ‌number‌ ‌of‌ ‌consecutive‌ ‌presentations‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌in‌ ‌the‌ ‌1:1‌ ‌phase,‌ ‌we‌ ‌pseudorandomized‌‌ 
773 the‌ ‌trial‌ ‌sequence‌ ‌such‌ ‌that‌ ‌consecutive‌ ‌presentations‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌occurred‌ ‌exactly‌ ‌13‌ ‌times,‌ ‌while‌‌ 
774 presentations‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌with‌ ‌one,‌ ‌two,‌ ‌or‌ ‌three‌ ‌intervening‌ ‌trials‌ ‌from‌ ‌the‌ ‌last‌ ‌presentation‌ ‌of‌ ‌the‌‌ 
775 test‌ ‌object‌ ‌occurred‌ ‌exactly‌ ‌15,‌ ‌8,‌ ‌and‌ ‌3‌ ‌times,‌ ‌respectively.‌ ‌The‌ ‌+Linear‌ ‌condition‌ ‌had‌ ‌a‌ ‌total‌ ‌of‌ ‌310‌‌ 
776 trials‌ ‌and‌ ‌rest‌ ‌breaks‌ ‌occurred‌ ‌after‌ ‌trials‌ ‌90‌ ‌and‌ ‌190.‌ ‌ 

777 ++Linear‌ ‌condition‌ ‌ 

778 The‌ ‌++Linear‌ ‌condition‌ ‌was‌ ‌identical‌ ‌to‌ ‌the‌ ‌+Linear‌ ‌condition‌ ‌except‌ ‌the‌ ‌outlier‌ ‌object‌ ‌weighed‌ ‌1500‌ ‌g‌‌ 
779 (rather‌ ‌than‌ ‌1200‌ ‌g).‌ ‌ 

780 Linear➚‌ ‌condition‌ ‌ 

781 In‌ ‌the‌ ‌Linear➚‌ ‌condition,‌ ‌we‌ ‌recruited‌ ‌participants‌ ‌until‌ ‌we‌ ‌obtained‌ ‌a‌ ‌sample‌ ‌size‌ ‌of‌ ‌9‌ ‌after‌ ‌excluding‌‌ 
782 non-learners.‌ ‌The‌ ‌Linear➚‌ ‌condition‌ ‌was‌ ‌identical‌ ‌to‌ ‌the‌ ‌Linear+‌ ‌condition‌ ‌except‌ ‌that‌ ‌the‌ ‌outlier‌ ‌object’s‌‌ 
783 weight‌ ‌(initially‌ ‌1200‌ ‌g)‌ ‌was‌ ‌iteratively‌ ‌increased‌ ‌by‌ ‌50‌ ‌g‌ ‌on‌ ‌trials‌ ‌221,‌ ‌261,‌ ‌301,‌ ‌341,‌ ‌381,‌ ‌and‌ ‌421,‌ ‌up‌‌ 
784 to‌ ‌a‌ ‌maximum‌ ‌of‌ ‌1500‌ ‌g.‌ ‌The‌ ‌length‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌was‌ ‌also‌ ‌increased‌ ‌to‌ ‌340‌ ‌trials,‌ ‌leading‌ ‌to‌ ‌a‌ ‌total‌ ‌of‌‌ 
785 480‌ ‌trials.‌ ‌Rest‌ ‌breaks‌ ‌occurred‌ ‌after‌ ‌trials‌ ‌60,‌ ‌120,‌ ‌220,‌ ‌300,‌ ‌and‌ ‌380.‌ ‌ 

786 Linear➘‌ ‌condition‌ ‌ 

787 The‌ ‌Linear➘‌ ‌condition‌ ‌was‌ ‌identical‌ ‌to‌ ‌the‌ ‌Linear➚‌ ‌condition‌ ‌except‌ ‌that‌ ‌the‌ ‌outlier‌ ‌initially‌ ‌weighed‌‌ 
788 1500‌ ‌g‌ ‌and‌ ‌its‌ ‌weight‌ ‌was‌ ‌iteratively‌ ‌decreased‌ ‌by‌ ‌50‌ ‌g‌ ‌to‌ ‌1200‌ ‌g.‌ ‌ 
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‌ 

789 Analysis‌ ‌ 

790 Data‌ ‌preprocessing‌ ‌ 

791 The‌ ‌anticipatory‌ ‌force‌ ‌was‌ ‌taken‌ ‌as‌ ‌the‌ ‌average‌ ‌force‌ ‌applied‌ ‌in‌ ‌the‌ ‌upward‌ ‌direction‌ ‌over‌ ‌the‌ ‌final‌ ‌ten‌‌ 
792 samples‌ ‌(10‌ ‌ms)‌ ‌of‌ ‌the‌ ‌clamp‌ ‌phase‌ ‌(Fig.‌ ‌1c,‌ ‌trial‌ ‌phase‌ ‌2).‌ ‌Response‌ ‌times‌ ‌were‌ ‌measured‌ ‌as‌ ‌the‌‌ 
793 duration‌ ‌from‌ ‌trial‌ ‌onset‌ ‌(defined‌ ‌as‌ ‌the‌ ‌beginning‌ ‌of‌ ‌trial‌ ‌phase‌ ‌2,‌ ‌when‌ ‌the‌ ‌object‌ ‌carousel‌ ‌stopped‌‌ 
794 rotating)‌ ‌to‌ ‌the‌ ‌button‌ ‌press.‌‌ ‌  

‌ 
795 We‌ ‌excluded‌ ‌322‌ ‌anticipatory‌ ‌forces‌ ‌(1.15%)‌ ‌that‌ ‌were‌ ‌less‌ ‌than‌ ‌or‌ ‌equal‌ ‌to‌ ‌1‌ ‌N‌ ‌(typically‌ ‌due‌ ‌to‌ ‌an‌‌ 
796 accidental‌ ‌button‌ ‌press)‌ ‌or‌ ‌more‌ ‌than‌ ‌3.5‌ ‌scaled‌ ‌median‌ ‌absolute‌ ‌deviations‌ ‌away‌ ‌from‌ ‌the‌ ‌median‌‌ 
797 anticipatory‌ ‌force‌ ‌applied‌ ‌by‌ ‌a‌ ‌given‌ ‌participant‌ ‌for‌ ‌a‌ ‌given‌ ‌object.‌ ‌Similarly,‌ ‌we‌ ‌excluded‌ ‌392‌ ‌response‌‌ 
798 times‌ ‌(1.40%)‌ ‌that,‌ ‌following‌ ‌a‌ ‌log‌ ‌transformation,‌ ‌were‌ ‌more‌ ‌than‌ ‌3.5‌ ‌scaled‌ ‌median‌ ‌absolute‌ ‌deviations‌‌ 
799 from‌ ‌the‌ ‌median‌ ‌log-transformed‌ ‌response‌ ‌time.‌ ‌We‌ ‌then‌ ‌imputed‌ ‌the‌ ‌mean‌ ‌anticipatory‌ ‌force‌ ‌or‌ ‌reaction‌‌ 
800 time‌ ‌produced‌ ‌on‌ ‌non-outlying‌ ‌trials‌ ‌by‌ ‌other‌ ‌participants‌ ‌for‌ ‌the‌ ‌same‌ ‌object,‌ ‌cycle,‌ ‌and‌ ‌condition.‌ ‌ 

‌ 
801 We‌ ‌also‌ ‌excluded‌ ‌participants‌ ‌(and‌ ‌hence‌ ‌recruited‌ ‌additional‌ ‌participants)‌ ‌who‌ ‌failed‌ ‌to‌ ‌learn‌ ‌the‌ ‌weights‌‌ 
802 of‌ ‌the‌ ‌training‌ ‌objects,‌ ‌as‌ ‌the‌ ‌goal‌ ‌of‌ ‌the‌ ‌experiment‌ ‌was‌ ‌to‌ ‌observe‌ ‌how‌ ‌learning‌ ‌of‌ ‌a‌ ‌new‌ ‌object‌ ‌is‌‌ 
803 affected‌ ‌by‌ ‌existing‌ ‌knowledge‌ ‌of‌ ‌object‌ ‌weights.‌ ‌Non-learners‌ ‌were‌ ‌defined‌ ‌as‌ ‌those‌ ‌whose‌ ‌anticipatory‌‌ 
804 forces‌ ‌during‌ ‌the‌ ‌final‌ ‌15‌ ‌cycles‌ ‌of‌ ‌the‌ ‌training‌ ‌phase‌ ‌did‌ ‌not‌ ‌show‌ ‌a‌ ‌highly‌ ‌significant‌ ‌(α‌ ‌=‌ ‌0.01)‌ ‌positive‌‌ 
805 correlation‌ ‌with‌ ‌the‌ ‌weights‌ ‌of‌ ‌the‌ ‌objects.‌ ‌In‌ ‌the‌ ‌Uncorr+‌ ‌group,‌ ‌three‌ ‌participants‌ ‌were‌ ‌excluded‌ ‌by‌ ‌this‌‌ 
806 criterion.‌ ‌In‌ ‌the‌ ‌Linear+‌ ‌and‌ ‌Linear➚‌ ‌groups,‌ ‌one‌ ‌participant‌ ‌from‌ ‌each‌ ‌group‌ ‌was‌ ‌excluded‌ ‌by‌ ‌this‌‌ 
807 criterion.‌ ‌This‌ ‌criterion‌ ‌was‌ ‌not‌ ‌applied‌ ‌in‌ ‌the‌ ‌+Linear‌ ‌and‌ ‌++Linear‌ ‌groups‌ ‌because‌ ‌the‌ ‌training‌ ‌phase‌‌ 
808 involved‌ ‌only‌ ‌the‌ ‌test‌ ‌object.‌ ‌ 

809 Statistical‌ ‌analysis‌ ‌ 

810 In‌ ‌most‌ ‌motor‌ ‌learning‌ ‌experiments,‌ ‌there‌ ‌are‌ ‌between‌ ‌eight‌ ‌and‌ ‌twelve‌ ‌participants‌ ‌per‌ ‌experimental‌‌ 
811 group.‌ ‌This‌ ‌sample‌ ‌size‌ ‌provides‌ ‌sufficient‌ ‌power‌ ‌to‌ ‌detect‌ ‌the‌ ‌large‌ ‌effects‌ ‌typical‌ ‌of‌ ‌motor‌ ‌learning‌‌ 
812 experiments,‌ ‌where‌ ‌the‌ ‌effect‌ ‌of‌ ‌interest‌ ‌is‌ ‌observed‌ ‌in‌ ‌most‌ ‌if‌ ‌not‌ ‌all‌ ‌participants.‌ ‌As‌ ‌this‌ ‌was‌ ‌a‌ ‌new‌‌ 
813 experimental‌ ‌paradigm,‌ ‌in‌ ‌the‌ ‌first‌ ‌two‌ ‌experimental‌ ‌groups‌ ‌(Linear+‌ ‌and‌ ‌Uncorr+)‌ ‌we‌ ‌recruited‌ ‌a‌ ‌sample‌‌ 
814 size‌ ‌of‌ ‌fifteen.‌ ‌In‌ ‌the‌ ‌Uncorr+‌ ‌group,‌ ‌we‌ ‌observed‌ ‌significant‌ ‌learning‌ ‌of‌ ‌the‌ ‌outlier‌ ‌object‌ ‌with‌ ‌a‌ ‌large‌‌ 
815 effect‌ ‌size‌ ‌(Cohen’s‌ ‌‌d‌‌ ‌=‌ ‌1.17).‌ ‌Based‌ ‌on‌ ‌this‌ ‌value,‌ ‌we‌ ‌adopted‌ ‌a‌ ‌sample‌ ‌size‌ ‌of‌ ‌nine‌ ‌for‌ ‌the‌ ‌Linear++,‌‌ 
816 Linear➚,‌ ‌and‌ ‌Linear➘‌ ‌groups,‌ ‌aiming‌ ‌to‌ ‌achieve‌ ‌a‌ ‌statistical‌ ‌power‌ ‌exceeding‌ ‌0.90‌ ‌in‌ ‌our‌ ‌one-tailed‌‌ 
817 t‌-tests‌ ‌of‌ ‌outlier‌ ‌learning.‌ ‌In‌ ‌the‌ ‌+Linear‌ ‌and‌ ‌++Linear‌ ‌conditions,‌ ‌we‌ ‌could‌ ‌not‌ ‌exclude‌ ‌individual‌‌ 
818 participants‌ ‌as‌ ‌non-learners‌ ‌as‌ ‌in‌ ‌the‌ ‌other‌ ‌conditions‌ ‌(see‌ ‌above).‌ ‌We‌ ‌therefore‌ ‌estimated‌ ‌a‌ ‌slightly‌‌ 
819 reduced‌ ‌effect‌ ‌size‌ ‌for‌ ‌sample‌ ‌size‌ ‌estimation‌ ‌(Cohen’s‌ ‌‌d‌‌ ‌=‌ ‌1.00),‌ ‌leading‌ ‌us‌ ‌to‌ ‌adopt‌ ‌a‌ ‌sample‌ ‌size‌ ‌of‌‌ 
820 eleven‌ ‌in‌ ‌order‌ ‌to‌ ‌achieve‌ ‌at‌ ‌least‌ ‌0.90‌ ‌power‌ ‌in‌ ‌these‌ ‌groups.‌ ‌Post-hoc‌ ‌power‌ ‌analyses‌ ‌of‌ ‌groups‌ ‌with‌‌ 
821 significant‌ ‌outlier‌ ‌learning‌ ‌confirmed‌ ‌that‌ ‌we‌ ‌achieved‌ ‌the‌ ‌desired‌ ‌power‌ ‌(Uncorr+:‌ ‌0.98,‌ ‌Linear++:‌ ‌0.92,‌‌ 
822 ++Linear:‌ ‌0.96,‌ ‌Linear➘:‌ ‌0.99).‌ ‌ 

‌ 
823 In‌ ‌the‌ ‌Linear+,‌ ‌Linear++,‌ ‌Uncorr+,‌ ‌Linear➚,‌ ‌and‌ ‌Linear➘‌ ‌groups,‌ ‌learning‌ ‌of‌ ‌the‌ ‌training‌ ‌set‌ ‌at‌ ‌the‌ ‌end‌ ‌of‌‌ 
824 the‌ ‌training‌ ‌phase‌ ‌was‌ ‌measured‌ ‌using‌ ‌the‌ ‌Pearson‌ ‌correlation‌ ‌between‌ ‌actual‌ ‌object‌ ‌weight‌ ‌and‌‌ 
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‌ 

825 anticipatory‌ ‌force‌ ‌on‌ ‌trials‌ ‌between‌ ‌trial‌ ‌cycles‌ ‌23‌ ‌and‌ ‌30.‌ ‌The‌ ‌Fisher‌ ‌‌z‌-transformation‌ ‌was‌ ‌used‌ ‌to‌‌ 
826 compute‌ ‌95%‌ ‌confidence‌ ‌intervals.‌ ‌ 

‌ 
827 To‌ ‌assess‌ ‌learning‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌relative‌ ‌to‌ ‌the‌ ‌training‌ ‌objects,‌ ‌we‌ ‌compared‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌for‌‌ 
828 the‌ ‌test‌ ‌object‌ ‌to‌ ‌the‌ ‌force‌ ‌that‌ ‌would‌ ‌be‌ ‌expected‌ ‌based‌ ‌on‌ ‌the‌ ‌anticipatory‌ ‌forces‌ ‌for‌ ‌the‌ ‌four‌ ‌training‌‌ 
829 objects‌ ‌(‌i.e.‌,‌ ‌the‌ ‌‘family-predicted’‌ ‌weight).‌ ‌To‌ ‌do‌ ‌this,‌ ‌we‌ ‌fit‌ ‌a‌ ‌linear‌ ‌regression‌ ‌to‌ ‌the‌ ‌anticipatory‌ ‌forces‌‌ 
830 for‌ ‌the‌ ‌training‌ ‌objects‌ ‌as‌ ‌a‌ ‌function‌ ‌of‌ ‌volume‌ ‌in‌ ‌the‌ ‌final‌ ‌16‌ ‌trial‌ ‌cycles‌ ‌of‌ ‌the‌ ‌test‌ ‌phase.‌ ‌We‌ ‌calculated‌‌ 
831 the‌ ‌family-predicted‌ ‌weight‌ ‌of‌ ‌the‌ ‌test‌ ‌object‌ ‌based‌ ‌on‌ ‌the‌ ‌regression‌ ‌and‌ ‌the‌ ‌test‌ ‌object’s‌ ‌volume.‌ ‌Note‌‌ 
832 that‌ ‌because‌ ‌the‌ ‌test‌ ‌object’s‌ ‌volume‌ ‌was‌ ‌always‌ ‌in‌ ‌the‌ ‌middle‌ ‌of‌ ‌the‌ ‌training‌ ‌objects,‌ ‌the‌‌ 
833 family-predicted‌ ‌weight‌ ‌is‌ ‌equivalent‌ ‌to‌ ‌the‌ ‌mean‌ ‌anticipatory‌ ‌force‌ ‌produced‌ ‌for‌ ‌the‌ ‌four‌ ‌training‌‌ 
834 objects,‌ ‌hence‌ ‌the‌ ‌logic‌ ‌is‌ ‌also‌ ‌appropriate‌ ‌for‌ ‌the‌ ‌Uncorr+‌ ‌condition.‌ ‌We‌ ‌used‌ ‌one-tailed‌ ‌‌t‌-tests‌ ‌to‌‌ 
835 evaluate‌ ‌the‌ ‌null‌ ‌hypothesis‌ ‌that‌ ‌the‌ ‌test‌ ‌object‌ ‌weight‌ ‌would‌ ‌not‌ ‌be‌ ‌learned.‌ ‌One-tailed‌ ‌tests‌ ‌are‌ ‌justified‌‌ 
836 because‌ ‌failure‌ ‌to‌ ‌learn‌ ‌the‌ ‌test‌ ‌object‌ ‌weight‌ ‌is‌ ‌a‌ ‌directional‌ ‌hypothesis,‌ ‌which‌ ‌includes‌ ‌the‌ ‌case‌ ‌where‌‌ 
837 the‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌test‌ ‌object‌ ‌does‌ ‌not‌ ‌differ‌ ‌from‌ ‌the‌ ‌family-predicted‌ ‌weight,‌ ‌as‌ ‌well‌ ‌as‌ ‌the‌‌ 
838 case‌ ‌where‌ ‌it‌ ‌is‌ ‌less‌ ‌than‌ ‌the‌ ‌family-predicted‌ ‌weight.‌ ‌In‌ ‌the‌ ‌Linear➚‌ ‌and‌ ‌Linear➘‌ ‌groups,‌ ‌we‌ ‌also‌‌ 
839 conducted‌ ‌this‌ ‌analysis‌ ‌for‌ ‌the‌ ‌final‌ ‌four‌ ‌trial‌ ‌cycles‌ ‌of‌ ‌the‌ ‌initial‌ ‌portion‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌during‌ ‌which‌‌ 
840 the‌ ‌test‌ ‌object‌ ‌weight‌ ‌did‌ ‌not‌ ‌change.‌ ‌ 

‌ 
841 In‌ ‌the‌ ‌first‌ ‌experiment,‌ ‌we‌ ‌conducted‌ ‌a‌ ‌two-way‌ ‌repeated-measures‌ ‌ANOVA‌ ‌on‌ ‌log-transformed‌ ‌response‌‌ 
842 times,‌ ‌with‌ ‌factors‌ ‌Group‌ ‌(two‌ ‌levels:‌ ‌Linear+‌ ‌combined‌ ‌with‌ ‌Linear+‌ ‌versus‌ ‌Uncorr+)‌ ‌and‌ ‌Epoch‌ ‌(four‌‌ 
843 levels:‌ ‌trial‌ ‌cycles‌ ‌1-15,‌ ‌16-30,‌ ‌31-50,‌ ‌51-70),‌ ‌and‌ ‌performed‌ ‌four‌ ‌follow-up‌ ‌one-tailed‌ ‌‌t‌-tests‌ ‌to‌ ‌examine‌‌ 
844 whether‌ ‌the‌ ‌main‌ ‌effect‌ ‌of‌ ‌Group‌ ‌was‌ ‌present‌ ‌in‌ ‌all‌ ‌four‌ ‌Epochs‌ ‌individually.‌ ‌In‌ ‌each‌ ‌of‌ ‌these‌ ‌groups,‌ ‌we‌‌ 
845 also‌ ‌tested‌ ‌for‌ ‌single-trial‌ ‌generalization‌ ‌at‌ ‌the‌ ‌start‌ ‌(first‌ ‌four‌ ‌cycles)‌ ‌and‌ ‌the‌ ‌end‌ ‌(final‌ ‌sixteen‌ ‌cycles)‌ ‌of‌‌ 
846 the‌ ‌test‌ ‌phase,‌ ‌as‌ ‌well‌ ‌as‌ ‌the‌ ‌change‌ ‌from‌ ‌start‌ ‌to‌ ‌end,‌ ‌using‌ ‌two-tailed‌ ‌‌t‌-tests.‌ ‌ 

‌ 
847 We‌ ‌also‌ ‌directly‌ ‌compared‌ ‌the‌ ‌Linear➚‌ ‌with‌ ‌the‌ ‌Linear++‌ ‌group,‌ ‌and‌ ‌the‌ ‌Linear➘‌ ‌with‌ ‌the‌ ‌Linear+‌‌ 
848 group,‌ ‌using‌ ‌two-tailed,‌ ‌two-sample‌ ‌‌t‌-tests‌ ‌on‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌for‌ ‌the‌ ‌test‌ ‌object‌ ‌in‌ ‌the‌ ‌final‌ ‌16‌ ‌trial‌‌ 
849 cycles‌ ‌of‌ ‌the‌ ‌test‌ ‌phase,‌ ‌when‌ ‌the‌ ‌outlier‌ ‌weight‌ ‌was‌ ‌similar‌ ‌for‌ ‌each‌ ‌pair‌ ‌of‌ ‌groups.‌ ‌ 

850 Generalization‌ ‌analysis‌ ‌ 

851 We‌ ‌analyzed‌ ‌how‌ ‌an‌ ‌interaction‌ ‌with‌ ‌the‌ ‌test‌ ‌object‌ ‌generalized‌ ‌to‌ ‌the‌ ‌‘neighboring’‌ ‌training‌ ‌objects‌ ‌(‌i.e.‌,‌‌ 
852 the‌ ‌500-‌ ‌and‌ ‌700-cm‌3‌‌ ‌objects)‌ ‌in‌ ‌the‌ ‌subsequent‌ ‌trial‌ ‌(Fig.‌ ‌2g-i).‌ ‌During‌ ‌the‌ ‌test‌ ‌phase,‌ ‌the‌ ‌trial‌ ‌order‌ ‌in‌‌ 
853 each‌ ‌trial‌ ‌cycle‌ ‌was‌ ‌as‌ ‌follows:‌ ‌the‌ ‌test‌ ‌object‌ ‌came‌ ‌first,‌ ‌followed‌ ‌by‌ ‌a‌ ‌generalization‌ ‌trial‌ ‌with‌ ‌one‌ ‌of‌ ‌the‌‌ 
854 training‌ ‌objects,‌ ‌followed‌ ‌by‌ ‌the‌ ‌other‌ ‌three‌ ‌training‌ ‌objects‌ ‌(non-generalization‌ ‌trials).‌ ‌We‌ ‌measured‌‌ 
855 single-trial‌ ‌generalization‌ ‌‌γ‌i‌‌ ‌for‌ ‌each‌ ‌training‌ ‌object‌ ‌‌i‌‌ ‌as‌ ‌the‌ ‌difference‌ ‌between‌ ‌the‌ ‌anticipatory‌ ‌force‌ ‌in‌‌ 
856 generalization‌ ‌trials‌ ‌‌y‌i‌

G‌‌ ‌and‌ ‌the‌ ‌force‌ ‌‌ŷ‌i‌
NG‌‌ ‌predicted‌ ‌by‌ ‌a‌ ‌model‌ ‌fit‌ ‌to‌ ‌non-generalization‌ ‌trials:‌ ‌ 

857 ‌ γi = yi
G − y︿i

NG  

858 The‌ ‌predicted‌ ‌force‌ ‌‌ŷ‌i‌
NG‌‌ ‌‌was‌ ‌obtained‌ ‌from‌ ‌a‌ ‌linear‌ ‌model‌ ‌fit‌ ‌to‌ ‌all‌ ‌non-generalization‌ ‌trials‌ ‌in‌ ‌the‌ ‌test‌‌ 

859 phase,‌ ‌including‌ ‌a‌ ‌categorical‌ ‌main‌ ‌effect‌ ‌of‌ ‌training‌ ‌object‌ ‌indicated‌ ‌by‌ ‌the‌ ‌one-hot‌ ‌variable‌ ‌‌δ‌i‌
j‌‌ ‌(one‌‌ 

860 when‌ ‌‌i‌‌ ‌equals‌ ‌‌j‌,‌ ‌zero‌ ‌otherwise),‌ ‌as‌ ‌well‌ ‌as‌ ‌a‌ ‌continuous‌ ‌main‌ ‌effect‌ ‌of‌ ‌object‌ ‌weight‌ ‌in‌ ‌the‌ ‌previous‌ ‌lift‌‌ 
861 x‌t-1‌,‌ ‌and‌ ‌the‌ ‌interactions‌ ‌between‌ ‌these‌ ‌main‌ ‌effects:‌ ‌ 

‌ 
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862 ‌(β δ ) x (β δ x )y︿i
NG = β0 + ∑

4

j=2
1(j) i

j   + β2 t−1 + ∑
4

j=2
3(j)

j
i t−1  

863 Web-based‌ ‌experiment‌ ‌ 

864 For‌ ‌the‌ ‌web-based‌ ‌experiments,‌ ‌we‌ ‌obtained‌ ‌complete‌ ‌data‌ ‌associated‌ ‌with‌ ‌196‌ ‌unique‌ ‌Amazon‌‌ 
865 Mechanical‌ ‌Turk‌ ‌Worker‌ ‌IDs‌ ‌(135‌ ‌males,‌ ‌60‌ ‌females,‌ ‌1‌ ‌non-binary)‌ ‌aged‌ ‌19‌ ‌to‌ ‌70‌ ‌years‌ ‌old‌ ‌(median‌‌ 
866 31.5).‌ ‌These‌ ‌workers‌ ‌were‌ ‌paid‌ ‌$1.50‌ ‌upon‌ ‌successful‌ ‌submission‌ ‌of‌ ‌a‌ ‌complete‌ ‌dataset,‌ ‌and‌ ‌received‌ ‌an‌‌ 
867 additional‌ ‌bonus‌ ‌payment‌ ‌determined‌ ‌by‌ ‌dividing‌ ‌their‌ ‌final‌ ‌score‌ ‌by‌ ‌100‌ ‌(max‌ ‌bonus‌ ‌=‌ ‌$0.01/trial‌ ‌=‌‌ 
868 $1.60).‌ ‌Of‌ ‌these‌ ‌participants,‌ ‌185‌ ‌individuals‌ ‌reported‌ ‌using‌ ‌their‌ ‌right‌ ‌hand‌ ‌to‌ ‌control‌ ‌their‌ ‌input‌ ‌device‌‌ 
869 and‌ ‌11‌ ‌reported‌ ‌using‌ ‌their‌ ‌left‌ ‌hand.‌ ‌They‌ ‌were‌ ‌not‌ ‌screened‌ ‌for‌ ‌visual‌ ‌impairment‌ ‌or‌ ‌prior‌ ‌diagnosis‌ ‌of‌‌ 
870 movement‌ ‌disorder.‌‌ ‌  

‌ 
871 The‌ ‌web-based‌ ‌experiments‌ ‌were‌ ‌designed‌ ‌so‌ ‌that‌ ‌they‌ ‌could‌ ‌only‌ ‌be‌ ‌completed‌ ‌by‌ ‌individuals‌ ‌using‌ ‌the‌‌ 
872 Google‌ ‌Chrome‌ ‌web‌ ‌browser,‌ ‌in‌ ‌full-screen‌ ‌mode‌ ‌and‌ ‌with‌ ‌pointer‌ ‌lock‌ ‌enabled,‌ ‌on‌ ‌a‌ ‌computer‌ ‌with‌‌ 
873 graphics‌ ‌hardware‌ ‌that‌ ‌supports‌ ‌WebGL‌ ‌2.0,‌ ‌and‌ ‌with‌ ‌a‌ ‌mouse‌ ‌(172‌ ‌participants)‌ ‌or‌ ‌trackpad‌ ‌(24‌‌ 
874 participants).‌ ‌Dimensions‌ ‌of‌ ‌the‌ ‌full-screen‌ ‌window‌ ‌displaying‌ ‌the‌ ‌task‌ ‌ranged‌ ‌from‌‌ ‌‌(1093,‌ ‌576)‌ ‌to‌ ‌(2560,‌‌ 
875 1410)‌ ‌pixels;‌ ‌actual‌ ‌monitor‌ ‌sizes‌ ‌were‌ ‌not‌ ‌collected.‌ ‌ 

‌ 
876 The‌ ‌objects‌ ‌in‌ ‌the‌ ‌web-based‌ ‌experiments‌ ‌had‌ ‌radii‌ ‌of‌ ‌2‌ ‌cm‌ ‌and‌ ‌heights‌ ‌of‌ ‌3,‌ ‌4,‌ ‌5,‌ ‌6,‌ ‌and‌ ‌7‌ ‌cm.‌ ‌They‌ ‌were‌‌ 
877 arranged‌ ‌around‌ ‌a‌ ‌gray‌ ‌metallic‌ ‌ring,‌ ‌had‌ ‌springs‌ ‌attached‌ ‌to‌ ‌their‌ ‌tops,‌ ‌and‌ ‌were‌ ‌rendered‌ ‌via‌ ‌perspective‌‌ 
878 projection‌ ‌to‌ ‌a‌ ‌camera‌ ‌40‌ ‌cm‌ ‌behind‌ ‌and‌ ‌10‌ ‌cm‌ ‌above‌ ‌the‌ ‌top-center‌ ‌of‌ ‌the‌ ‌foremost‌ ‌object.‌ ‌Since‌ ‌there‌‌ 
879 was‌ ‌no‌ ‌haptic‌ ‌interface,‌ ‌feedback‌ ‌about‌ ‌object‌ ‌weight‌ ‌was‌ ‌provided‌ ‌through‌ ‌vision‌ ‌of‌ ‌the‌ ‌simulated‌‌ 
880 dynamics‌ ‌of‌ ‌a‌ ‌spring-mass-damper‌ ‌system‌ ‌(Fig.‌ ‌5a).‌ ‌In‌ ‌the‌ ‌web-based‌ ‌Linear++,‌ ‌Linear+,‌ ‌Linear-,‌ ‌and‌‌ 
881 Linear--‌ ‌conditions,‌ ‌the‌ ‌training‌ ‌objects‌ ‌always‌ ‌weighed‌ ‌300,‌ ‌400,‌ ‌600,‌ ‌and‌ ‌700‌ ‌g,‌ ‌while‌ ‌the‌ ‌test‌ ‌object‌‌ 
882 weighed‌ ‌900,‌ ‌700,‌ ‌300,‌ ‌or‌ ‌100‌ ‌g,‌ ‌respectively.‌ ‌ 

‌ 
883 Trials‌ ‌of‌ ‌the‌ ‌web-based‌ ‌experiments‌ ‌were‌ ‌similar‌ ‌to‌ ‌the‌ ‌laboratory‌ ‌experiment,‌ ‌but‌ ‌simplified.‌ ‌There‌ ‌were‌‌ 
884 no‌ ‌auditory‌ ‌cues,‌ ‌haptic‌ ‌feedback,‌ ‌bars‌ ‌above‌ ‌and‌ ‌below‌ ‌the‌ ‌object,‌ ‌or‌ ‌a‌ ‌leaderboard.‌ ‌Each‌ ‌trial‌ ‌consisted‌‌ 
885 of‌ ‌two‌ ‌main‌ ‌phases‌ ‌(Fig.‌ ‌5a):‌ ‌the‌ ‌clamp‌ ‌phase‌ ‌(trial‌ ‌phase‌ ‌1),‌ ‌in‌ ‌which‌ ‌the‌ ‌participant‌ ‌clicked‌ ‌and‌ ‌dragged‌‌ 
886 to‌ ‌stretch‌ ‌the‌ ‌spring‌ ‌on‌ ‌top‌ ‌of‌ ‌the‌ ‌object,‌ ‌and‌ ‌the‌ ‌release‌ ‌phase,‌ ‌which‌ ‌was‌ ‌triggered‌ ‌by‌ ‌pressing‌ ‌the‌ ‌Shift‌‌ 
887 key‌ ‌with‌ ‌the‌ ‌spring‌ ‌stretched‌ ‌to‌ ‌a‌ ‌certain‌ ‌distance,‌ ‌and‌ ‌portrayed‌ ‌a‌ ‌simulation‌ ‌of‌ ‌the‌ ‌spring-mass-damper‌‌ 
888 dynamics‌ ‌that‌ ‌would‌ ‌result‌ ‌from‌ ‌the‌ ‌initial‌ ‌conditions‌ ‌created‌ ‌by‌ ‌the‌ ‌spring‌ ‌length‌ ‌(spring‌ ‌constant:‌ ‌1,‌‌ 
889 damping‌ ‌coefficient:‌ ‌0.01).‌ ‌The‌ ‌per-trial‌ ‌score‌ ‌‌y‌‌ ‌was‌ ‌related‌ ‌to‌ ‌the‌ ‌spring-length‌ ‌error‌ ‌in‌ ‌centimeters‌ ‌‌e‌ ‌‌by‌‌ 
890 y‌‌ ‌=‌ ‌max(0,‌ ‌1−‌e‌2‌/2.25)*100.‌ ‌The‌ ‌duration‌ ‌of‌ ‌the‌ ‌release‌ ‌phase‌ ‌in‌ ‌seconds‌ ‌‌t‌‌ ‌(‌i.e.‌,‌ ‌the‌ ‌inter-trial‌ ‌interval,‌‌ 
891 which‌ ‌serves‌ ‌as‌ ‌a‌ ‌time‌ ‌penalty)‌ ‌was‌ ‌modulated‌ ‌according‌ ‌to‌ ‌the‌ ‌spring-length‌ ‌error:‌ ‌‌t‌‌ ‌=‌ ‌min(0.4*‌e‌2‌,‌ ‌12).‌‌ 
892 This‌ ‌time‌ ‌penalty‌ ‌was‌ ‌correlated‌ ‌with,‌ ‌but‌ ‌not‌ ‌exactly‌ ‌equal‌ ‌to,‌ ‌the‌ ‌decay‌ ‌time‌ ‌of‌ ‌the‌ ‌oscillations‌ ‌in‌ ‌the‌ 
893 visual‌ ‌feedback‌ ‌of‌ ‌the‌ ‌spring.‌‌ ‌  

‌ 
894 Participants‌ ‌received‌ ‌task‌ ‌familiarization‌ ‌through‌ ‌a‌ ‌single,‌ ‌repeatable‌ ‌demo‌ ‌trial‌ ‌that‌ ‌provided‌ ‌an‌‌ 
895 instructed‌ ‌walkthrough‌ ‌of‌ ‌a‌ ‌single‌ ‌trial‌ ‌with‌ ‌the‌ ‌largest‌ ‌of‌ ‌the‌ ‌four‌ ‌training‌ ‌objects.‌ ‌The‌ ‌total‌ ‌number‌ ‌of‌‌ 
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‌ 

896 trials‌ ‌was‌ ‌reduced‌ ‌by‌ ‌half‌ ‌compared‌ ‌to‌ ‌the‌ ‌in-laboratory‌ ‌Linear+‌ ‌condition,‌ ‌with‌ ‌60‌ ‌training‌ ‌trials‌ ‌and‌ ‌100‌‌ 
897 test‌ ‌trials.‌ ‌Rest‌ ‌breaks‌ ‌were‌ ‌not‌ ‌required.‌ ‌ 

‌ 
898 The‌ ‌anticipatory‌ ‌force‌ ‌was‌ ‌measured‌ ‌as‌ ‌the‌ ‌amount‌ ‌of‌ ‌force‌ ‌exerted‌ ‌on‌ ‌the‌ ‌object‌ ‌by‌ ‌the‌ ‌visually‌‌ 
899 simulated‌ ‌spring‌ ‌on‌ ‌the‌ ‌final‌ ‌frame‌ ‌of‌ ‌the‌ ‌clamp‌ ‌phase‌ ‌(Fig.‌ ‌5a,‌ ‌trial‌ ‌phase‌ ‌1).‌ ‌Non-learners‌ ‌were‌ ‌defined‌‌ 
900 as‌ ‌those‌ ‌whose‌ ‌anticipatory‌ ‌forces‌ ‌for‌ ‌the‌ ‌training‌ ‌objects‌ ‌during‌ ‌the‌ ‌final‌ ‌5‌ ‌cycles‌ ‌of‌ ‌the‌ ‌training‌ ‌phase‌‌ ‌or‌‌ 
901 the‌ ‌final‌ ‌5‌ ‌cycles‌ ‌of‌ ‌the‌ ‌test‌ ‌phase‌ ‌did‌ ‌not‌ ‌show‌ ‌a‌ ‌mild‌ ‌positive‌ ‌correlation‌ ‌with‌ ‌the‌ ‌simulated‌ ‌weights‌ ‌(α‌‌ 
902 =‌ ‌0.10).‌ ‌Forty-seven‌ ‌participants‌ ‌were‌ ‌excluded‌ ‌from‌ ‌the‌ ‌four‌ ‌groups‌ ‌of‌ ‌the‌ ‌web-based‌ ‌experiment‌ ‌by‌ ‌this‌‌ 
903 criterion,‌ ‌resulting‌ ‌in‌ ‌sample‌ ‌sizes‌ ‌of‌ ‌37,‌ ‌36,‌ ‌37,‌ ‌and‌ ‌39‌ ‌individuals,‌ ‌respectively,‌ ‌in‌ ‌the‌ ‌Linear++,‌‌ 
904 Linear+,‌ ‌Linear-,‌ ‌and‌ ‌Linear--‌ ‌groups.‌ ‌This‌ ‌high‌ ‌rate‌ ‌of‌ ‌exclusion‌ ‌was‌ ‌not‌ ‌due‌ ‌to‌ ‌task‌ ‌difficulty,‌ ‌but‌ ‌to‌ ‌the‌‌ 
905 fact‌ ‌that‌ ‌many‌ ‌participants‌ ‌in‌ ‌the‌ ‌web-based‌ ‌experiment‌ ‌adopted‌ ‌strategies‌ ‌that‌ ‌minimized‌ ‌effort‌ ‌at‌ ‌the‌‌ 
906 expense‌ ‌of‌ ‌time‌ ‌and‌ ‌accuracy.‌ ‌Additionally,‌ ‌we‌ ‌excluded‌ ‌as‌ ‌outliers‌ ‌any‌ ‌anticipatory‌ ‌forces‌ ‌that‌ ‌were‌‌ 
907 more‌ ‌than‌ ‌4‌ ‌scaled‌ ‌median‌ ‌absolute‌ ‌deviations‌ ‌from‌ ‌the‌ ‌median‌ ‌anticipatory‌ ‌force‌ ‌applied‌ ‌by‌ ‌a‌ ‌given‌‌ 
908 participant‌ ‌to‌ ‌a‌ ‌given‌ ‌object,‌ ‌resulting‌ ‌in‌ ‌1398‌ ‌exclusions‌ ‌(4.46%).‌ ‌ 

‌ 
909 To‌ ‌estimate‌ ‌required‌ ‌sample‌ ‌sizes‌ ‌for‌ ‌the‌ ‌web-based‌ ‌experiments,‌ ‌we‌ ‌simulated‌ ‌bimodal‌ ‌distributions‌ ‌of‌‌ 
910 ‘learners’‌ ‌and‌ ‌‘non-learners’‌ ‌with‌ ‌different‌ ‌sample‌ ‌sizes‌ ‌and‌ ‌calculated‌ ‌the‌ ‌proportion‌ ‌of‌ ‌simulations‌ ‌in‌‌ 
911 which‌ ‌the‌ ‌two-Gaussian‌ ‌mixture‌ ‌model‌ ‌outperformed‌ ‌the‌ ‌single‌ ‌Gaussian‌ ‌model.‌ ‌We‌ ‌estimated‌ ‌that‌ ‌the‌‌ 
912 learner‌ ‌and‌ ‌non-learner‌ ‌group‌ ‌means‌ ‌would‌ ‌be‌ ‌separated‌ ‌by‌ ‌3.5‌ ‌standard‌ ‌deviations,‌ ‌and‌ ‌we‌ ‌assumed‌ ‌that‌‌ 
913 learners‌ ‌and‌ ‌non-learners‌ ‌are‌ ‌normally‌ ‌distributed,‌ ‌have‌ ‌equal‌ ‌variance,‌ ‌and‌ ‌occur‌ ‌in‌ ‌equal‌ ‌proportions.‌‌ 
914 We‌ ‌found‌ ‌that‌ ‌a‌ ‌sample‌ ‌size‌ ‌of‌ ‌36‌ ‌participants‌ ‌led‌ ‌the‌ ‌two-Gaussian‌ ‌model‌ ‌to‌ ‌be‌ ‌correctly‌ ‌favored‌ ‌by‌ ‌AIC‌‌ 
915 in‌ ‌85%‌ ‌of‌ ‌our‌ ‌simulations.‌ ‌ 

‌ 
916 We‌ ‌analyzed‌ ‌the‌ ‌distributions‌ ‌of‌ ‌anticipatory‌ ‌forces‌ ‌produced‌ ‌for‌ ‌the‌ ‌outlier‌ ‌in‌ ‌the‌ ‌final‌ ‌5‌ ‌cycles‌ ‌of‌ ‌the‌‌ 
917 test‌ ‌phase.‌ ‌We‌ ‌fit‌ ‌both‌ ‌a‌ ‌single-Gaussian‌ ‌and‌ ‌a‌ ‌two-Gaussian‌ ‌mixture‌ ‌model‌ ‌using‌ ‌the‌ ‌R‌ ‌package‌ ‌‌mclust‌‌ 
918 129,130‌,‌ ‌and‌ ‌estimated‌ ‌confidence‌ ‌intervals‌ ‌on‌ ‌the‌ ‌fit‌ ‌parameters‌ ‌by‌ ‌parametric‌ ‌bootstrap‌ ‌with‌ ‌10,000‌‌ 
919 samples.‌ ‌Model‌ ‌comparisons‌ ‌based‌ ‌on‌ ‌AIC‌ ‌and‌ ‌BIC‌ ‌yielded‌ ‌the‌ ‌same‌ ‌pattern‌ ‌of‌ ‌results;‌ ‌we‌ ‌report‌ ‌only‌‌ 
920 AIC‌ ‌in‌ ‌the‌ ‌text.‌ ‌ 

‌ 
921 All‌ ‌source‌ ‌data,‌ ‌analysis‌ ‌code,‌ ‌and‌ ‌figure‌ ‌generation‌ ‌code‌ ‌is‌ ‌available‌ ‌in‌ ‌the‌ ‌supplementary‌ ‌files.‌ ‌ 

‌ 
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