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Abstract

The ability to predict the dynamics of objects, linking applied force to motion, underlies our capacity to
perform many of the tasks we carry out on a daily basis. Thus, a fundamental question is how the
dynamics of the myriad objects we interact with are organized in memory. Using a custom-built
three-dimensional robotic interface that allowed us to simulate objects of varying appearance and weight,
we examined how participants learned the weights of sets of objects that they repeatedly lifted. We find
strong support for the novel hypothesis that motor memories of object dynamics are organized
categorically, in terms of families, based on covariation in their visual and mechanical properties. A
striking prediction of this hypothesis, supported by our findings and not predicted by standard associative
map models, is that outlier objects with weights that deviate from the family-predicted weight will never
be learned despite causing repeated lifting errors.

Introduction

Many theories about how objects are encoded in memory have been proposed ''°. These include theories
concerned with the semantic, perceptual, and functional properties of objects. For example, a hammer
may be semantically labeled as a tool, represented perceptually in terms of its shape, or evaluated
functionally in the context of a particular task. However, the mechanical properties of objects, which are
fundamentally important to human motor control, have received little attention in theories of object
memory.

The majority of tasks we perform involve physical objects, and skilled interaction with these objects
depends critically on our ability to predict their mechanical properties. For many of the objects that we
interact with, dexterous performance requires accurate predictions of weight '**?. For example, when
lifting an object from a surface, weight prediction allows us to produce the vertical forces required to raise
the object smoothly. When lifting an object for the first time, people will estimate its weight based on
visual information about its size and material properties >, However, once an object has been lifted, a
memory is formed of its actual (i.e., directly sensed) weight, and this memory can be used to guide
subsequent lifts of the object > *°. Thus, in addition to intact sensory and motor function, skilled
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35 manipulation—and thus the ability to perform most daily tasks—requires the capacity to form, and
36 quickly access, representations of object weights in memory.

37 Here we investigated how the mechanical properties of the myriad objects we interact with are organized
38 in memory. To answer this question, we used a new three-dimensional robotic interface (Fig. 1a) that, in
39 combination with a stereoscopic virtual reality system, allowed us to simulate objects of varying size,

40 weight, and appearance (Fig. 1b). Objects were presented on a carousel and, on each trial, the participant
41 ‘lifted’ the nearest object by first applying an upward force to the object, which was fixed to the surface
42 of the carousel and therefore could not move. When ready, the participant pressed a button with their

43 other hand, which caused the portion of the carousel below the object to open, releasing the object so that
44 it was free to move. The aim was to match the upward force to the weight of the object so that it would
45 not move up or down when released. Therefore, by measuring the force just prior to release, we could

46 precisely measure the participant’s weight prediction on every trial. Because the robot simulated the

47 mechanics of the object, the participant received direct haptic and visual feedback about both the object’s
48 weight and their motor error (Fig. 1c). At the end of the trial, the open portion of the carousel closed, and
49 the participant replaced the object.

50 Using this task, we developed a novel motor learning paradigm in which participants repeatedly lifted a
51 set of five similar-looking objects of varying size and weight (Fig. 1d-f; filled circles correspond to the
52 objects in Fig. 1b). In our key experiment (Fig. 1d), these objects included four training objects (the two
53 smallest and two largest) presented in an initial training phase, and an outlier object (the middle size)

54 introduced later in a test phase. The training objects had a common density, and therefore had a linear
55 relationship between size and weight. Although the size of the outlier was in the middle of the training
56 objects, its weight was greater than would be expected under the assumption that it had the same density
57 as the training objects. Using this lifting task, we could distinguish between two high-level hypotheses
58 about memory organization.

59 First, the ‘object families’ hypothesis asserts that multiple objects are represented in memory by

60 clustering them into categories, or families. This hypothesis posits that the training objects and the outlier
61 will be represented as a single family (Fig. 1d; green line), provided that the weight of the outlier falls

62 within the family boundary (shaded green region). As a consequence, this hypothesis predicts that

63 participants will fail to learn the actual weight of an outlier that falls within the family boundary, and will
64 instead estimate the weight based on the family structure (open green circle). We refer to this predicted
65 effect as the ‘family effect’. However, if the weight of the outlier is extreme and falls beyond the family
66 boundary (Fig. le), a separate memory will be formed for the outlier object. Thus, this model predicts an
67 all-or-nothing pattern of learning whereby, depending on their family boundary, a participant will either
68 fully learn the outlier weight or completely fail to learn it.


https://doi.org/10.1101/2021.07.13.452183
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.13.452183; this version posted July 14, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a z
@
o
o
Lo
B Anticipatory Force
o
- /
€ 4
L
S
s 2F
"
o
o
T 0
0 1000 2000
Time (ms)
b
Carousel rotates Apply upward force to Release and Raise and
object fixed to surface support object replace object
d Heavy outlier (Linear+) € Extra-heavy outlier (Linear++) f Uncorrelated objects (Uncorr+)
| Associative map — L L
5 | Object families — | o |
2 12t I ) : - o
(7] L 0‘)“(\ L Lo
g \Q)‘(\\\\l £
S o9 - g
0.6 P A r 2
400 500 600 700 800 400 500 600 700 800 400 500 600 700 800
Volume (cm?) Volume (cm?®) Volume (cm?®)

69 Figure 1. Object families and associative maps make different predictions for an outlier lifting
70 task. (a) Participants grasped the handle of a three-dimensional robotic interface (3BOT) with their right
71 hand and viewed stereoscopic scenes (Oculus Rift). The 3BOT could track movement and simulate the
72 haptic experience of manipulating objects. (b) Screenshots of the key stages of the lifting task. See text
73 for details. (c) Load force and vertical position traces from an example trial, color-coded to match the
74 numbers in (b). In this example, the anticipatory force was less than the weight of the object (dotted line),
75 causing a downward movement of the hand and object. (d-f) Tasks used to examine family
76 representations. In these tasks there were five visually similar objects of varying volume and mass. In the
77 Linear+ condition (d), four of the objects had a linear relation between size and weight. A fifth object of
78 intermediate size had a higher density (hence the + notation) and therefore was an outlier. Under the
79 object families hypothesis, the four objects induce learning of the family structure (green line). Visually
80 similar objects that fall within the category boundary for the family (shaded green region) are treated as
81 family members. Because the outlier falls within the category boundary, its weight should be persistently
82 misestimated based on the family structure (green circle). Under the associative map hypothesis,
83 exposure to the outlier leads to partial learning of its actual weight (purple circle). In the Linear++
84 condition (e), the object families hypothesis predicts that when the outlier becomes sufficiently extreme,
85 and crosses the family boundary, it will be categorized as an individual and its weight fully learned. The
86 associative map hypothesis still predicts partial learning of this outlier. In the Uncorr+ condition (f), when
87 size and weight are uncorrelated, the object families hypothesis predicts that the object weights will each
88 be learned individually. Under the associative map hypothesis, there is no fundamental difference
89 between this scenario and those depicted in (d, e).
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An alternative hypothesis is that object properties are encoded in an ‘associative map’. This idea comes
from a well-known theoretical framework that has been successful in explaining how sensorimotor
transformations for reaching, grasping, and saccades are encoded in memory . In associative map
models (Fig. 1d, e; purple curve), experience with individual objects causes the visual and mechanical
properties sensed during each interaction to become gradually associated. Additionally, memories of
individual objects influence one another only through local generalization, producing smoothly varying
mappings between visual size and expected weight. In associative map models, the predicted weight of
the outlier (open purple circle) will become increasingly accurate with experience, such that an outlier of
any weight will be at least partially learned.

These two hypotheses also make different predictions regarding how lifting the outlier will affect the four
training objects during the test phase. Again, the object families hypothesis predicts an all-or-nothing
pattern, depending on how the outlier is encoded. When encoded as a family member, the unexpectedly
heavy weight of the outlier updates the family representation, causing the predicted weight to increase on
a subsequent lift of a training object. However, once the outlier is classified as a separate individual, this
outlier-to-family updating should be greatly suppressed. The associative map hypothesis, on the other
hand, predicts that lifting the outlier will always update the estimated weights of similar-looking training
objects.

Finally, the two hypotheses also make different predictions when there is no structured relationship
between size and weight (Fig. 1f). Under the object families hypothesis, each of these objects is learned as
an individual (Fig. 1f; separate green lines) and, as a consequence, they will be learned more slowly and
there will be minimal single-trial generalization from the ‘outlier’ to the training objects. In contrast, in an
associative map model, this scenario does not fundamentally differ from those depicted in Fig. 1d, e.

Consistent with the object families hypothesis, we show that participants encode objects that covary in
size and weight as a family, and that this representation exerts a powerful family effect on outlier objects,
whose weights can differ markedly from the weights predicted by the family. In particular, we show that
participants can completely fail to learn the weight of an outlier object, despite experiencing large,
repeated movement errors; errors that, in the absence of the family, quickly drive learning. These findings
address, for the first time, how motor-relevant properties of multiple objects are represented in memory.

Results

Participants performed a lifting task in which they were required to predict the weights of five objects
positioned around a carousel. Fig. 1c¢ shows the load force and vertical hand position in a single trial. The
traces are color-coded to match the four trial phases depicted in Fig. 1b and described above. We focused
our analyses on the anticipatory force participants produced just prior to releasing the object by pressing a
button with the non-lifting hand. This anticipatory force provides a precise and accurate measure of the
participant’s motor memory of the object weight. In the trial shown in Fig. lc, the participant
underestimated the weight of the object, and as a consequence when the participant pressed the button to
release the object, the right hand and the object moved downward. (Note that the motion of the hand after
the release of the object does not provide a robust measure of participants’ weight prediction because this
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motion depends on co-contraction and reflex responses in addition to the mismatch between vertical force
and weight.)

Motor memories of objects are organized categorically

Our initial experiment was designed to critically evaluate the object families and associative map
hypotheses by examining how participants learned the weight of a heavier-than-expected outlier object.
We tested separate groups of participants in the three experimental designs depicted in Fig. 1d-f.
Participants completed a training phase, in which they interacted with the four training objects, followed
by a test phase, in which the fifth test object was added. All objects were visually similar—cylinders of
fixed diameter with varying heights.

In the Linear+ group (Fig. 1d), the weights of the training objects were linearly related to their sizes and
the test object was heavier (as denoted by the + sign) than expected based on the training objects. The
weights and sizes of the training objects ranged from 0.6 to 1.2 kg and 400 to 800 cm®, respectively, and
all had a density of 1.5 g/cm’ (Fig. 1d). The size of the test object was 600 cm’, which was in the middle
of the range of training object sizes. However, the weight of the test object, 1.2 kg, was equal to the
heaviest training object, making it 0.3 kg greater than the weight that would be expected if it had the same
density as the training objects.

The traces in Fig. 2a show the anticipatory force generated for each object as a function of trial cycle (one
lift of each object) across the training and test phases. The dotted horizontal lines (color-matched to the
force traces) show the weights of the objects, and therefore the ideal anticipatory forces that would be
generated with perfect learning. Participants in the Linear+ group very quickly learned the weights of the
training objects. The scaling of forces to object weight observed in the first trial cycle suggests that
participants rapidly learned the density (a family-level parameter) based on the first few objects lifted and
then used this information, in conjunction with size, to predict the weights of the other objects. At the end
of the training phase (final 8 cycles), anticipatory force was strongly correlated with object weight (r =
0.76, 95% CI = [0.66, 0.83]).

The thicker trace and dashed horizontal line, starting at trial cycle 31, show the anticipatory force and
actual weight of the test object introduced in the test phase. On the first lift of the test object, the average
anticipatory force was 9.00 N (95% CI =[7.68, 10.32]). This suggests that participants initially estimated
that the test object would have the same density as the training objects and, therefore, that its weight
would be close to the middle of the training object weights (8.83 N). Consequently, they experienced an
error of approximately 300 g (~3 N), which is close to the weight of a full can of soda and represents fully
a third of the anticipated weight. Remarkably, despite this large error, participants never learned the test
object weight over the 40 cycles in the test phase (40 lifts of the test object interspersed with 40 lifts of
each training object). That is, the average anticipatory force did not increase—remaining at the level
predicted by the family—and, therefore, participants did not adapt to the actual weight of this pronounced
outlier.
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164 Figure 2. Objects are encoded according to the object families hypothesis.

165 (a) Trial-by-trial anticipatory forces for the five objects over the course of the Linear+ condition (mean +
166 SEM). The training objects (thin lines) are experienced from the first trial cycle and the test object (thick
167 line) is introduced on trial cycle 31 as the first trial of each cycle. Traces are color-coded with darker
168 shades indicating larger objects and the dashed lines indicate the associated actual object weights (thick
169 dashed line shows outlier weight). Rest breaks are indicated by gaps in the traces. (b) Anticipatory forces
170 at the end of the test phase for the Linear+ condition (mean + SEM). The abscissa shows the weights of
171 the training objects and, for the outlier, the expected weight based on the family density. The weights of
172 the training objects lie on the dotted unity line. Dashed horizontal line shows the weight of the outlier.
173 Regression line shows the average of the participants’ linear regressions + SEM. (c, d) Same as (a, b) for
174 the Linear++ condition. (e, f) Same as (a, b) for the Uncorr+ condition. Note that for each participant, the
175 uncorrelated mapping of size and weight for the training objects was randomly selected; the shading in
176 (e) and (f) depicts one mapping. In (f) the outlier is plotted at the expected weight based on the family
177 density in the Linear conditions. (g) Single-trial generalization in the first four cycles (Early) and last
178 sixteen cycles (End) of the test phase of the Linear+ condition (mean + SEM, see Materials and Methods
179 for details). (h, i) Same as (g) for the Linear++ and Uncorr+ conditions. (j) Response times averaged over
180 objects in each trial cycle (mean + SEM). The Linear+ and Linear++ groups are combined in the red
181 trace, as they did not differ on this measure. All SEM are across participants.

182 We calculated the anticipatory forces at the end of the test phase (final 16 cycles) as a function of mass for
183 the four training objects, and as a function of expected mass based on the density of the training objects
184 for the test object (Fig. 2b). To assess learning at the end of the test phase, we compared the average

185 anticipatory force produced for the test object (9.15 N, 95% CI = [8.27, 10.03]) with the ‘family-predicted
186 weight’ of the test object (9.09 N, 95% CI = [8.64, 9.54]), defined as the weight of the test object

187 predicted from the best-fitting regression line through the training objects (thereby adjusting for any

188 prediction error on the training objects). We found that the anticipatory force was not significantly greater
189 than the family-predicted weight (#(13) =0.17, p = 0.43).
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The above results support the object families hypothesis by showing that even when the weight of an
outlier object deviates markedly from its family-predicted weight, it continues to be encoded as a family
member despite sensory evidence to the contrary. Next, we investigated whether there is a threshold to the
family effect. We hypothesized that when the discrepancy between actual and family-predicted weight
exceeds some threshold, the object will be encoded as an individual, separate from the family, despite its
family-like appearance. To probe this threshold, we tested a Linear++ group, who completed the same
task as the Linear+ group but with an even heavier outlier (hence the ++). Specifically, for the Linear++
group, the test object weighed 1.5 kg, making it 600 g heavier than if it had the same density as the
training objects, and 300 g heavier than the heaviest training object (Fig. 1¢).

Fig. 2¢ shows the average anticipatory force timelines for the Linear++ group. As expected, at the end of
the training phase, anticipatory force was strongly correlated with object weight (r = 0.85, 95% CI =
[0.72, 0.92]). On the first lift of the test object, participants generated an average anticipatory force of
8.13 N (95% CI =[7.19, 9.08]), consistent with the density of the training objects. However, in contrast to
the Linear+ group, over the following 5 to 10 cycles, participants increased their anticipatory force for the
test object, reaching an asymptote just below the actual object weight (14.72 N). At the end of the test
phase (Fig. 2d), the anticipatory force for the test object (13.15 N, 95% CI =[11.56, 14.74]) was
significantly greater (#(8) = 3.34, p = 0.0051) than the family-predicted weight (9.65 N, 95% CI = [8.62,
10.68)).

The results of the Linear++ group demonstrate that there is a limit to how deviant an outlier object can be,
with respect to a known family, before it is ‘kicked out’ of that family and learned as a unique individual.
That is, when the error signals received from a particular object are sufficiently large, they promote the
formation of a separate memory. Note that the adaptation to the test object in the Linear++ group
demonstrates that participants could visually distinguish the test object from the neighboring training
objects. Thus, we can conclude that the striking failure to learn the test object in the Linear+ group is not
due to an inability to visually identify the test object amongst the similar-looking training objects.

Lastly, we designed a third variant of the task, in which the test object was the same size and weight as in
the Linear+ group but the training objects were not related by any family structure (Fig. 1f). Specifically,
in the Uncorr+ group, the sizes and weights were remapped (separately for each participant), such that
size and weight of the training objects were either completely or close to completely uncorrelated (|r| <
0.3). The object families hypothesis makes two key predictions for this condition. First, in the absence of
structured covariation between visual and mechanical properties within the training set (i.e., when the
training objects do not share a constant density), participants should be forced to form a separate memory
for each training object, with no family-level representation. This, in turn, should result in slower initial
learning of the training objects in comparison to the Linear groups, where all four training objects could
be encoded as a family with a common density. Second, in the absence of a family representation,
participants in the Uncorr+ group should be able to learn the weight of the 1.2-kg test object, unlike
participants in the Linear+ group. In contrast, under the associative map hypothesis, the results of the
Uncorr+ group should not fundamentally differ from the Linear+ group.
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Fig. 2e shows the anticipatory force timelines for the Uncorr+ group. In the earliest trial cycles, there was
poor differentiation of the object weights, showing that uncorrelated mappings are more difficult to learn
than linear mappings. Nevertheless, by the end of the training phase the Uncorr+ group achieved accuracy
comparable to the Linear groups, with anticipatory force being strongly correlated with object weight (r =
0.72, 95% CI =[0.62, 0.80]). On the first lift of the test object, participants produced 8.85 N (95% CI =
[7.62, 10.08]) of anticipatory lift force, which is similar to the mean of the training object weights (8.83
N). Moreover, it is similar to the force generated by participants in the Linear+ group on their first lift of
the test object (9.00 N). Thus, the initial weight estimation error for the test object was similar in the
Linear+ and Uncorr+ groups. However, as can be seen in Fig. 2e, during the test phase participants in the
Uncorr+ group succeeded in adapting their anticipatory force for the test object. Unlike the Linear groups,
the training objects in the Uncorr+ group did not have a common density, and therefore we compared the
anticipatory force for the test object to the average weight of the training objects (as the test object was of
intermediate volume). At the end of the test phase (Fig. 2f), participants’ anticipatory force for the test
object (10.48 N, 95% CI = [9.50, 11.46]) was significantly greater (t(11) = 4.06, p = 0.00094) than the
average force for the training objects (8.68 N, 95% CI = [8.44, 8.92]). The learning of the test object
observed in the Uncorr+ group confirms that the failure to learn the test object in the Linear+ group is due
to the structured object family, rather than the lack of a sufficient error signal.

The object families hypothesis predicts that when lifting an object that is encoded as a family member, the
experienced density will update the density estimate for the family, thereby biasing the anticipatory force
on a subsequent lift of a training (i.e., family) object. Conversely, when lifting a test object that is encoded
as an individual, the experienced density will not update the family estimate and the anticipatory force on
a subsequent lift of a training object will be unaffected. Thus, at the end of the test phase, the object
families hypothesis predicts strong generalization for the 1.2-kg outlier, but no generalization for the
1.5-kg outlier. In contrast, the associative map model predicts strong generalization for the 1.2-kg outlier,
and even stronger generalization for the 1.5-kg outlier. To compare these predictions, we analyzed
single-trial generalization at the start and end of the test phase (Fig. 2g-1). Note that the associative map
model predicts that generalization will be strongest for training objects closest in appearance to the test
object. Therefore, to best test between the contrasting predictions of the two models, we focused our
analysis on the 500- and 700-cm’ objects (i.e., the closest objects in size to the 600-cm’ test object).
Specifically, we examined how the anticipatory force applied to these training objects changed when they
were lifted immediately after the test object, compared to when they were lifted after one of the other
training objects (factoring out any baseline previous-weight effects estimated with the training objects;
see Materials and Methods for details). For the Linear+ group (Fig. 2g), we found significant
generalization both at the start (#(13) = 3.41, p = 0.0046) and the end of the test phase (#(13) =3.78, p =
0.0023), with no significant change (#(13) = 1.43, p = 0.18). That is, at both time points, there was an
increase in anticipatory force on the trial after the test object, consistent with encoding the test object as a
family member. For the Linear++ group (Fig. 2h), there was significant generalization at the start (#8) =
2.41, p = 0.043), but not at the end of the test phase (#(8) = 0.11, p =0.91), and this change was significant
(#(8) = 2.48, p = 0.038). This shows that participants initially encoded the extreme outlier as a family
member, but then formed a separate memory of this object. For the Uncorr+ group (Fig. 2i), we found no
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evidence of generalization at the start (#(11) = 0.83, p = 0.43) or the end of the test phase (#(11) =—1.15, p
= (0.28), and no change over time (#(11) = 1.10, p = 0.30), consistent with encoding each object
individually (Fig. 2i).

We also analyzed the response time, defined as the time from object presentation to the button press that
released the object, which is presumably linked to the time required to estimate the weight of the object.
For this analysis, we combined the two Linear groups. As shown in Fig. 2j, response times decreased
during the training phase for both the linear and the uncorrelated size-weight mappings, but there was a
consistent temporal cost associated with movement preparation when size and weight were uncorrelated
as compared to linearly related. To assess these effects, we defined four epochs by splitting both the
training and test phases into two equal parts. A two-way repeated-measures ANOVA on log-transformed
response times revealed significant main effects of Group (F(1, 33) =5.79, p = 0.022) and Epoch (F(3,
99) = 13.039, p = 0.30e—7), but no interaction (F(3, 99) = 0.80, p = 0.49). Separate ¢-tests on each epoch
all showed significant Group effects (p < 0.048 in all four epochs). These results suggest that, even at the
end of the test phase, encoding each object individually resulted in a temporal cost compared to encoding
the objects as a family.

Re-organization of motor memories of objects

In the experiment described above, for the Linear groups we first introduced a set of objects with a
common density, before adding in a test object, or outlier, with a higher density. We found a strong family
effect such that participants never learned the weight of a test object that was 300 g heavier than expected.
A key question is whether exposure to an object family can lead to the reorganization of an existing
memory of an individual object. To address this question, we tested two new groups of participants on
conditions in which the test object was experienced before the four common-density ‘family’ objects.
Note that we used the same family and test objects as in our first experiment. We refer to these groups as
the +Linear and ++Linear groups to denote the reversed order in which participants encountered the test
object and the family objects. In the initial training phase, participants in the +Linear group lifted the
1.2-kg test object, and the ++Linear group lifted the 1.5-kg test object. For both groups, the four family
objects were then introduced in the test phase.

As expected, both groups quickly and accurately learned the weight of the test object when it was
presented individually during the training phase (Fig. 3a, ¢). However, at the start of the test phase
(beginning at trial cycle 31), it is evident that participants in both groups began to treat the outlier and the
four family objects as a single family. Specifically, the estimated weight of the test object (i.e., the
anticipatory force) decreased towards the family-predicted weight. At the same time, the estimated
weights of the family members were initially overestimated. These results show that even brief exposure
to an object family can reorganize the memory of a previously learned individual object, such that it is
assimilated into the family.
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303 Figure 3. A memory of an individual is reorganized when an object family is introduced.

304 (a, c¢) Trial-by-trial anticipatory forces, as in Fig. 2a, ¢, in a ‘reverse’ condition in which the outlier object
305 was learned during the initial training phase, and the family objects were only introduced from trial cycle
306 31. Hence we refer to these as +Linear and ++Linear. As the training phase trial cycles contained only
307 one trial (the outlier), for clarity, the abscissa scale is compressed. After the test phase, in a “1:1’ phase
308 the test object was presented four times in each trial cycle (rather than once as in the test phase), with
309 each family member presented once (8 trials per cycle) such that the participant experienced the test
310 object as often as a family member. For the 1:1 phase, we excluded trials from analysis in which the
311 outlier object followed itself. (b, d) Average anticipatory forces at the end of the test phase, as in Fig. 2b,
312 d, but here plotted by volume.

313 Following this assimilation of the test object, or outlier, into the family, the pattern of results are strikingly
314 similar to that observed in our first experiment. Specifically, participants in the +Linear group never fully
315 re-learned the actual weight of the outlier, whereas participants in the ++Linear group adapted their

316 anticipatory force to the actual weight. At the end of the test phase (Fig. 3b), the anticipatory force for the
317 outlier in the +Linear group (10.01 N, 95% CI =[9.18, 10.84]) was not significantly greater (#(10) = 1.23,
318 p=0.12) than the family-predicted weight (9.49 N, 95% CI = [9.11, 9.86]). Thus, participants in the

319 +Linear group did not re-learn the actual weight of the outlier after it was assimilated into the family.

320 Therefore, the +Linear group, like the Linear+ group, exhibited a strong family effect. In the ++Linear
321 group, the anticipatory force for the outlier at the end of the test phase (12.76 N, 95% CI =[11.14, 14.39])
322 was significantly greater (t(10) =4.19, p = 0.00093) than the family-predicted weight (9.76 N, 95% CI =
323 [9.47, 10.04]). Thus, as was the case for the Linear++ group, the ++Linear group exhibited learning (or
324 re-learning) of the more extreme outlier.

325 The failure to learn the weight of the outlier in the Linear+ and +Linear groups could be due to the fact
326 that the higher-density outlier was lifted only once for every four lifts of the family objects. Thus, after
327 the test phase we included a 1:1’° phase where the relative frequency with which the outlier and family
328 objects were experienced was equivalent. Specifically, this phase consisted of ten cycles in which the
329 outlier object was lifted 4 times per cycle and each family member was lifted only once, for a total of 8
330 lifts per cycle with the outlier and family members randomly interleaved. As shown in Fig. 3a, in the
331 +Linear group there was minimal impact on learning in the 1:1 phase. In the ++Linear group, increasing
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the relative frequency of outlier lifts in the 1:1 phase did not further improve the separation between the
anticipatory force for the outlier and its family-predicted weight. These findings demonstrate that the
family effect cannot be accounted for by the greater relative frequency of the family objects.

Category boundaries are flexible

In the first two experiments, we showed that participants failed to learn the weight of a test object, or
outlier, that was 300 g (or 33%) greater than the weight predicted by the density of the family, but did
learn the weight when the test object exceeded this weight by 600 g (or 67%). This suggests that there is a
boundary, between these two weights, that determines whether the object is encoded as a family member
or as a separate individual. A fundamental question is whether such boundaries are fixed or flexible.
Research on both perceptual and conceptual categorization has shown that category boundaries may

depend on within-category variability **

, and that category labeling can exhibit hysteresis whereby the
point at which the perceived category changes depends on the direction of change ***°. To examine this
issue in relation to object categorization, we recruited two new groups of participants who initially
experienced the same conditions as the Linear+ and Linear++ groups from our first experiment. That is,
both groups completed a training phase in which they lifted the four family objects, followed by a test
phase in which the test object was initially either 1.2 or 1.5 kg for 20 trial cycles. However, we then
gradually changed the test object’s weight by steps of 50 g every 8 trial cycles. In the Linear” group the
weight was gradually increased from 1.2 to 1.5 kg and in the Linear group the weight was gradually

decreased from 1.5 to 1.2 kg.

The anticipatory force data for the Linear~ and Linearss groups (Fig. 4a, ¢) contain several features that
replicate the key findings from our first experiment. First, both groups quickly and accurately learned the
weights of the training objects, with anticipatory forces that were strongly correlated with actual object
weights by the end of the training phase (r = 0.81, 95% CI =[0.73, 0.87] in Linear~; r = 0.84, 95% CI =
[0.77, 0.89] in Linears). Second, in both groups the anticipatory force generated on the first lift of the test
object was close to the middle of the weights of the family objects (9.40 N, 95% CI =[8.10 10.70] in
Linear~; 8.07 N, 95% CI =[5.93, 10.22] in Linear). Third, at the end of the initial 20 cycles of the test
phase, during which the test object weight remained at its initial value, learning of the 1.2-kg test object
was not significant (Linear: #(8) = —0.58, p = 0.71), whereas learning of the 1.5-kg test object was
significant (Linears: #(8) = 2.15, p = 0.032).

For the Linear group, the anticipatory force for the test object does appear to have slightly increased as
its weight increased. However, the anticipatory force at the end of the test phase (11.02 N, 95% CI =
[9.44, 12.60]) was not significantly greater (#8) = 1.81, p = 0.054) than the family-predicted weight (9.72
N, 95% CI=19.43 10.01]), and was still substantially less than the actual weight (14.72 N; Fig. 4b). Thus,
despite the fact that the test object weighed 1.5 kg at the end of the test phase, it was not ‘kicked out’ of
the family, in contrast to the equally heavy test object experienced by the Linear++ group in our first
experiment. A direct comparison between the Linear~ and Linear++ groups showed a significant
difference in the anticipatory force for the outlier object at the end of the test phase (#(16) =2.20, p =
0.043).
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370 Figure 4. Family boundary depends on history of sensorimotor experience.

371 (a) Trial-by-trial anticipatory forces (same format as Fig. 2a) in an ‘increasing’ condition (Linear~) in which
372 the outlier starts at the weight of the Linear+ group on trial cycle 31 and increases gradually to the weight
373 of the Linear++ condition. (b) Anticipatory forces at the end of the test phase (same format as Fig. 2b).
374 (c,d) Same as (a,b) for a ‘decreasing’ condition (Linears) in which the outlier starts at the weight of the
375 Linear++ condition and decreases gradually to the weight of the Linear+ condition.

376 As noted above, and as expected based on the Linear++ group, participants in the Linearss group

377 increased their anticipatory force for the 1.5-kg test object from the start of the test phase, before its

378 weight began decreasing. Then, as the anticipatory force increased and the actual weight of the test object
379 gradually decreased, these two forces became closely matched, and remained so until the end of the test
380 phase (Fig. 4c). At the end of the test phase, the anticipatory force (11.69 N, 95% CI =[10.35, 13.03])
381 was significantly greater (#(8) = 4.35, p = 0.0012) than the family-predicted weight (9.20 N, 95% CI =
382 [8.65,9.75]) and indistinguishable from the actual weight (11.77 N; Fig. 4d). Thus, once a separate

383 memory was formed for the test object, it continued to be encoded as an individual even when its weight
384 deviation decreased to the level (+300 g, or 33%) that the Linear+ group failed to learn. A direct

385 comparison between the Linears and Linear+ groups showed a significant difference in the anticipatory
386 force for the outlier object at the end of the test phase (#(21) = —3.68, p = 0.0014). Overall, the results
387 from both groups demonstrate that the threshold for categorizing an object as either a family member or
388 an individual object is flexible and depends on past sensorimotor experience. Mechanisms that could
389 potentially give rise to these effects are discussed below.

390 All-or-nothing learning of outlier weight

391 According to the object families hypothesis, an outlier object is encoded categorically as either a family
392 member or an individual. As a consequence, a given participant should either fully learn the weight of an
393 outlier object or not learn at all, depending on their particular threshold for ‘kicking out” an object from a
394 family. Assuming that the threshold weight at which an outlier is kicked out of a family varies across
395 participants, the object families hypothesis predicts that for certain outliers, there will be a bimodal

396 distribution of estimated weights across participants (separating learners from non-learners). In contrast,
397 the associative map hypothesis predicts that partial learning will be observed and that, assuming learning
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rates across participants are normally distributed, there will be a unimodal distribution in the amount of
learning, regardless of the weight of the outlier.

With the aim of examining distributions across participants, we performed a web-based experiment in
which we recruited a large number of participants (N = 196), divided into four groups that varied in how
the outlier deviated from a linear family. As in our first experiment, we tested groups who were presented
with an outlier object that was heavier (Linear+) or much heavier (Linear++) than the weight predicted by
the density of the training objects. In addition, to assess the generality of our findings, we tested groups
who were presented with an outlier that was lighter (Linear-) or much lighter (Linear--) than the weight
predicted by the density of the training objects.

Based on the object families hypothesis, we expected that the participants in the groups with less deviant
outliers (Linear+ and Linear-) would form a single distribution of non-learners, with anticipatory forces
centered on the family-predicted weight. In contrast, we predicted that participants in the more deviant
outlier groups (Linear++ and Linear--) would cluster into distinct distributions of learners and
non-learners, with anticipatory forces centered on the actual and family-predicted weights of the outlier,
respectively.

The web-based task was designed to closely mirror the laboratory task. The visual scene consisted of five
cylindrical objects each with a spring attached to its top (Fig. 5a). The objects were clamped in place by a
ring that rotated before each trial to bring one of the objects to the foremost position. Participants used
their mouse or trackpad to stretch the spring upwards in an attempt to generate a lifting force on the object
that matched its weight (trial phase 1). Then, they pressed a key with their other hand to release the clamp
(trial phase 2). From this point on, the object’s motion was simulated as a mass-spring-damper system,
thus providing visual feedback about the participant’s performance. If the spring was stretched too much
(or too little), the object would rise (or fall) and then oscillate until coming to rest (Fig. Sa, rightmost
panel). The oscillation time depended on the mismatch between the estimated and actual object weight,
creating a natural time penalty.

The results for the Linear+ and Linear++ groups in the web-based experiment (Fig. 5b, ¢) were very
similar to those observed for the corresponding groups in our first experiment. This indicates that similar
learning processes were engaged despite the use of visual dynamics without haptic feedback **. On
average, the Linear+ group did not learn the outlier, whereas the Linear++ group exhibited substantial, but
not complete, learning. Our analysis, however, focused on the distributions of anticipatory forces for the
outlier object at the end of the test phase (final 5 cycles) across participants in each group (Fig. 5S¢, f). For
each distribution, we fit a single-Gaussian and a two-Gaussian mixture model (blue and green curves,
respectively). To compare these models, we computed the difference in the Akaike Information Criteria
(AAIC), with positive values in favor of the two-Gaussian mixture, and we report the relative likelihood
for the favored model. As expected, for the Linear+ group, in which learning of the weight of the outlier
was not observed, the single-Gaussian model was favored (AAIC = —4.6; relative likelihood = 10.0). In
contrast, for the Linear++ group, the distribution was clearly bimodal, separating participants who either
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435 Figure 5. Individual differences show that outliers are either fully learned or not learned at all.

436 (a) Web-based lifting experiment. (1) Five visually similar objects were clamped onto a ring, which rotated
437 to bring the target object to the front. Participants clicked and dragged upward using their mouse or
438 trackpad to stretch a spring, thereby applying a lifting force to the object. (2) When ready, they pressed a
439 key on the keyboard with their other hand to release the object from the ring. The object and spring were
440 simulated as a mass-spring-damper providing visual feedback about performance, with greater errors
4471 giving rise to larger oscillations, which also took longer to decay. As in the laboratory experiments, the
442 goal was to prevent the object from moving after the key press. Right column shows the spring length
443 (i.e., lift force, gray) and object position (orange) traces for an example trial in which the anticipatory force
444 was less than the object weight. (b, e, h, k) Trial-by-trial anticipatory forces (formatted as in Fig. 2a) for
445 four conditions: two with a heavy outlier (Linear+ and Linear++, as in Fig. 2) and the others with a lighter
446 (Linear-) or much lighter (Linear--) outlier. (c, f, i, I) Histograms show the distribution across participants of
447 the average anticipatory force for the outlier object at the end of the test phase. Blue and green curves
448 show the fits of a single-Gaussian and a two-Gaussian mixture model, respectively. (d, g, j, m)
449 Anticipatory forces at the end of the test phase (as in Fig. 2b). The mean of each Gaussian component of
450 the two-Gaussian mixture model is plotted as a green square, with standard error estimated via
451 parametric bootstrap.
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452 did or did not learn the outlier weight. This bimodal distribution was better captured by the two-Gaussian
453 model (AAIC =7.0, relative likelihood = 33.1).

454 For the Linear+ and Linear++ groups, the average anticipatory forces applied to the five objects at the end
455 of the test phase are shown by the filled circles in Fig. 5d-g. The mean of each Gaussian component of the
456 two-Gaussian mixture is shown as a green square. In the Linear++ group, the greater of these two means
457 (8.48 N, 95% CI =[7.98, 8.89])—representing the learners—Ilies almost perfectly on the actual outlier
458 weight (dashed line, 8.83 N), whereas the lesser of the two means (5.43 N, 95% CI =[4.91,

459 6.08])—representing the non-learners—is very close to the family-predicted weight (4.91 N, 95% CI =
460 [4.79, 5.03]). Surprisingly, although the single-Gaussian model was favored for the Linear+ group, one
467 can nevertheless see two peaks in the two-Gaussian model (6.59 N, 95% CI = [5.58, 7.18] and 4.93 N,
462 95% CI =[3.66, 5.28]) that, respectively, closely match the actual weight (6.87 N) and family-predicted
463 weight (4.93 N, 95% CI = [4.72, 5.13]) of the outlier. Thus, while most participants in the Linear+ group
464 did not learn the outlier weight at all, there was a small subgroup who fully learned this weight.

465 The same pattern of results was observed for the Linear- and Linear-- groups (Fig. 5i-j, I-m). For the

466 Linear- group, the distribution of anticipatory forces for the outlier object at the end of the test phase were
467 best fit by the single-Gaussian model (AAIC = —3.7, relative likelihood = 6.4), whereas the two-Gaussian
468 model was preferred for the Linear-- group (AAIC = 29.3, relative likelihood = 2.3e+6). For the Linear--
469 group, the means of the two components of the two-Gaussian model (1.05 N, 95% CI =[0.91, 1.22] and
470 4.10 N, 95% CI =[3.47, 4.68]) were, respectively, very close to the actual weight (0.98 N) and

471 family-predicted weight (4.58 N, 95% CI =[4.36 4.79]) of the outlier. As was the case for the Linear+
472 group, the two-Gaussian mixture model fit to the Linear- group picked out a cluster of non-learners and a
473 smaller cluster of learners, whose means (3.08 N, 95% CI =[2.75, 3.77] and 4.26 N, 95% CI = [4.07,

474 4.73]) respectively correspond to the actual weight (2.94 N) and family-predicted weight (4.66 N, 95% CI
475 =[4.52, 4.79]) of the outlier.

476 Overall, the results of this large-sample web-based experiment clearly support the object families

477 hypothesis over the associative map hypothesis. At the level of single participants, the outlier was either
478 encoded as a family member, in which case lift errors were ignored, or it was identified as a distinct
479 individual, in which case lift errors drove complete learning of the outlier’s weight.

480 Discussion

481 We have examined how the mechanical properties of objects we interact with are represented in memory.
482 1In a series of experiments, we provide evidence that ‘motor memories’ of objects are organized in terms
483 of families. More specifically, we show that when encountering a set of new objects whose size and

484 weight covary, participants have a strong propensity to encode the objects as a family. The consequence
485 of this encoding is that an object that appears to be part of a previously learned family, but is an outlier in
486 terms of weight, may nevertheless be classified as a family member. In this case, participants predict the
487 outlier’s weight based on the family and never learn its actual weight. This ‘family effect’ on the outlier
488 can be anterograde, such that the family interferes with learning the weight of a newly introduced outlier,
489 or retrograde, such that an already-learned outlier weight will be forgotten when the family is introduced.
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We also show that there is a weight threshold at which a sufficiently deviant outlier will ‘escape’ the
family and be learned as an individual object. Moreover, we show that the error experienced when lifting
an outlier that is encoded as a family member updates the estimated weights of the other family members.
However, if the outlier has been learned as an individual, such updating is not observed. Additionally, we
show that the threshold that determines whether an outlier is classified as an individual or a family
member depends on recent sensorimotor experience.

Two broad approaches have been used in motor control to examine how dynamics, experienced during
arm and hand movements, are represented in memory. The first approach involves applying novel
dynamics, or ‘force fields’, to the hand. Typically this has been done by asking participants to move a
handle, which is attached to a robotic manipulandum and visually represented as a cursor, between visual
targets located in a horizontal plane. This work has focused on the reference frame in which individual
force fields are represented **', and on contextual factors that enable people to learn two different force
fields that apply forces in opposite directions *****°, Although force fields may, arguably, be viewed as
objects (at least in some contexts) **’, this previous work has not examined how memories of multiple
objects might be organized. The second approach to investigating how dynamics are represented in
memory focuses on weight prediction when lifting objects, which is critical for dexterous manipulation.
This work has shown that people can exploit learned associations, or ‘priors’, between size and weight,
and between material and weight, to estimate the weight of an object '¢2°?2*¢! ' Although such priors are
often useful, for many objects that we interact with they do not provide accurate weight predictions.
Importantly, once an object has been lifted, people can form a long-lasting ‘object-specific’ memory of
the object’s actual weight '****>**2¢ However, the question of how motor memories of the myriad objects
we interact with are represented and organized has not been addressed.

Where in the brain might motor memories of objects be stored? According to a well-known
neuroanatomical framework for understanding visual processing in the primate brain, the dorsal visual
pathway, in parietofrontal cortex, supports visual processing for action, whereas the ventral visual
pathway, in ventrotemporal cortex, supports visual processing for perception . This framework arose
primarily from studies examining reaching and grasping movements directed towards objects, where the
relevant object properties (e.g., size, shape, location) can be directly appreciated through vision. The
control of these actions involves mapping these visual features onto motor commands to move and shape
the hand **% % and there is abundant evidence that parietofrontal cortex is engaged in such computations
6670 However, as emphasized above, skilled object manipulation requires knowledge of mechanical
properties, which cannot be directly appreciated through vision and must instead be estimated based on
object memories linking visual and mechanical properties. Some evidence suggests that such memories
could involve parietal and premotor regions of the dorsal pathway ""°>. However, the maintenance of
durable memory representations of objects is more commonly associated with the ventral visual pathway
6% Given that category selectivity is a well-established organizational feature of ventrotemporal cortex
1281 ' it seems plausible that the ventral pathway also plays a role in categorizing the mechanical properties
of objects. Consistent with this view, it has been shown that, in the context of lifting, object weight is
represented in the lateral occipital complex (LOC) ®, an object-selective ventral region also known to be
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529 active during reaching and grasping ***. On the other hand, LOC does not appear to represent object mass
530 that can be inferred when simply viewing objects interacting *°.

531 Beyond the dorsal and ventral visual pathways, several other candidate brain regions may be involved in
532 learning object families in the service of dexterous manipulation. For instance, predictive encoding of

533 object weight has also been demonstrated in single-cell recordings of Purkinje neurons **’

, which may
534 arise from cerebellar internal models of the dynamics of different types of objects '"***_ Likewise, there
535 1is considerable evidence from human imaging studies and non-human primate neurophysiological studies
536 for the role of prefrontal cortex and the striatum in perceptual category learning *'***%, but it remains
537 unknown whether these areas are also recruited in organizing objects based on their learned motor

538 properties.

539 Current theories of motor learning often focus on graded generalization of learning across various

540 stimulus and motor parameters as a revealing feature of the underlying computations ***""*°. In particular,
541 graded patterns of generalization have been taken as evidence that motor learning fundamentally involves
542 associating contextual features of a movement with the target motor parameters in a continuous

543 multi-dimensional space, often termed an associative map. The theoretical significance of our study is that
544 it provides multiple, converging pieces of evidence for a fundamentally different type of

545 organization—motor memories of objects are organized categorically, into families. Our key result is the
546 family effect itself, wherein an outlier object is persistently encoded as a family member, despite greatly
547 deviating from its expected weight. In contrast, the prediction of an associative map account is that these
548 outliers would eventually be learned, since they are visually and haptically discriminable from the family
549 (as shown by the accurate learning in the Uncorr+ condition).

550 In our experiments, we generally observed incomplete learning of the outlier when averaging anticipatory
551 forces across participants. At first glance, partial learning could be explained by an associative map model
552 where the neighboring objects reduce the estimated weight of the outlier by local generalization.

553 However, seemingly partial learning is also consistent with the object families hypothesis. In particular,
554 partial learning in the group averages could result from averaging together a subgroup of highly accurate
555 learners with a separate subgroup of complete non-learners, who differ in their threshold for reclassifying
556 the outlier as an individual. This latter interpretation was confirmed by our large-sample, web-based

557 experiment, which revealed that individual differences in outlier learning followed an all-or-nothing

558 pattern. At the end of the experiment, participants had either learned to classify the outlier as a unique
559 individual and accurately estimated its weight, or they still encoded it as a family member and incorrectly
560 estimated its weight based on the family representation.

561 Our single-trial generalization results, obtained from a separate analysis, also favor a categorical

562 organization of motor memory over a continuous, associative map. We found that the way that the outlier
563 object was classified—either as a family member or an individual—had a dramatic effect on

564 outlier-to-family generalization. When the outlier object was classified as a family member, strong

565 generalization was observed, whereas when it was classified as an individual, negligible generalization
566 was observed. This qualitative change in generalization was observed across participants in different
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567 conditions, as well as within the same participants who, during learning, reclassified the outlier from a
568 family member to an individual. These results strongly support the idea that motor memories of objects
569 are organized categorically, rather than continuously, which would predict graded generalization as a

570 function of error magnitude and sensory similarity. By eliciting separate visual classification of the outlier
571 and the family objects, we were able to suddenly ‘shut off” inter-object error generalization.

572 We also found that when the weight of the outlier was gradually increased from 1.2 to 1.5 kg, participants
573 generally failed to learn its weight, even though it reached the same weight as the outlier that, when

574 introduced abruptly, was learned. One interpretation of this finding is that first experiencing the 1.2-kg
575 outlier, and then experiencing incrementally increasing weights, broadened the category by increasing the
576 within-category variability, as shown in perceptual and conceptual categorization ***2. Another possible
577 account for this finding is that category labels are ‘sticky’, and that once the test object was labeled as a
578 family member, there was resistance to relabeling it as an individual, similar to the hysteretic effects

579 reported in perceptual categorization ** . However, it seems plausible that the 1.5-kg outlier was initially
580 labeled as a family member as participants’ anticipatory forces on the first lift of this object were based on
581 the density of the family. If so, then relabeling occurred when this extreme outlier was learned, arguing
582 against the ‘stickiness’ account. On the other hand, the stickiness hypothesis could account for the results
583 we observed when the outlier weight was initially set to 1.5 kg and then gradually decreased to 1.2 kg. In
584 this case, participants initially learned the extreme outlier and continued to accurately predict its

585 weight—and hence to categorize it as an individual—even as its weight decreased to a level that, when
586 introduced abruptly, was not learned. Alternatively, it is possible that learning the extreme 1.5-kg outlier
587 as a distinct individual object caused the category boundary for the training objects to contract, such that a
588 1.2-kg outlier remained outside the learned family, perhaps because the individuated outlier effectively
589 forms a competing category. Note that work on sensorimotor adaptation has shown that participants do
590 not become aware of visual or force perturbations that are introduced gradually '%'*. Since participants
591 adapt to these gradually increasing perturbations, they never see large errors, which presumably explains
592 why they do not become aware of the perturbation. In contrast, in our experiment with a gradually

593 increasing outlier weight, participants did not adapt (i.e., they continued to predict the outlier weight

594 based on the family density). Thus, they experienced larger and larger errors, ultimately experiencing the
595 same error that drove learning when the 1.5-kg outlier was introduced abruptly. The reason that

596 participants learned the 1.5-kg outlier when introduced abruptly, but not when introduced gradually, may
597 be that they are sensitive to the change in error, as opposed to error per se.

598 Although the formation of motor memories has historically been viewed as a largely implicit process,
599 recent research on motor learning and adaptation has emphasized the role of explicit processes. For
600 example, when reaching under a visuomotor rotation, participants often learn to use an explicit re-aiming

607 strategy to reduce movement errors '°*'%

, and can quickly recall and implement this strategy when

602 re-exposed to the rotation at a later time '*''°, However, the use of explicit, or declarative, knowledge in
603 the control of action is perhaps most evident in object manipulation tasks. First, it is clear that people
604 often have explicit knowledge of the weights of objects they interact with. That is, if asked, they can
605 typically report the expected weight of an object before lifting it. In general, weight prediction in the

606 context of action (i.e., for controlling lift forces) does not appear to require significant working memory
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resources. However, working memory resources are required when lifting unusually weighted objects
(e.g., objects whose weights vary inversely with size) *%°. In the context of the current study, we suggest
that working memory load is substantially reduced when lifting objects that are classified as family
members as opposed to individuals. This idea is supported by our finding that response times were
significantly greater when lifting a set of objects that were not classified as a family (i.e., when weight
was uncorrelated with size).

By showing that dexterous object manipulation relies on learned representations of categories (and
individuals), our findings open the door for future work that connects theories of human category
learning, developed in the context of perception and cognition, with theories of motor control. The vast
literature on category learning has identified and debated a variety of key issues, including why certain

10,111

categorizations are harder to learn than others , whether category knowledge is encoded using

prototype, exemplar, or decision-bound representations ">

, and how the relative contributions of
explicit ‘rule-based’ and implicit ‘information-integration’ processes are modulated by the relevant
perceptual dimensions and category structure of a stimulus domain '“!"'>!'6, A detailed review of how the
pertinent findings from this literature might inform our understanding of dexterous object manipulation
(and vice versa) is well beyond the scope of this article, but it is nonetheless clear that there is a pressing
need for greater attention to these connections. However, focusing more narrowly on accounting for the
present findings, it is notable that many existing process-level (i.e., trial-by-trial) models of category
learning posit a mechanism that allows for the creation of a new category in memory when an observation
deviates sufficiently from previously learned categories '!"""'*%. These various treatments can all be
viewed as instances of non-parametric Bayesian models that leverage the hierarchical Dirichlet process, a
statistically principled approach to clustering data into a theoretically infinite number of components
123124 Tmportantly, this approach has recently been applied to successfully account for an unprecedented
range of phenomena in motor learning '**, suggesting that similar computations could also underlie the
(in)ability to learn the weight of an outlier object in our lifting task.

In general, learning a family of objects based on covarying size and weight, as in this study, is presumably
just one example of a more general tendency to compactly encode the covariability of observable sensory
features and latent mechanical properties. Previous work has shown that people can learn more complex
‘structures’ in motor control tasks (e.g., visuomotor rotations and skews), but has not distinguished
between categorical and associative representations '**'*’. Categorical encoding amounts to carving the
sparse, high-dimensional space of sensorimotor information into circumscribed, lower-dimensional object
categories, providing a number of benefits. First, it allows for more robust interpolation and extrapolation
from past sensorimotor experience by shoehorning ambiguous new items into predictable categories.
Second, it reduces the temporal costs associated with specifically identifying objects, which would
involve deeper traversal into object memory. Third, when working with multiple objects from the same
family, this strategy conserves working memory resources that would otherwise be expended on object
individuation. Lastly, categorical organization also conserves long-term memory resources by maintaining
only abstract descriptions of relevant family structure, rather than a detailed map of all sensorimotor
properties, helping to address the curse of dimensionality. In contrast, although learning about individual
objects may increase accuracy in some circumstances, this would come at the cost of significantly
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increased demands on attention (for visual recognition), cognitive control (for switching between
memories), and memory (for storage). Therefore, in combination with context-sensitive reflexes and other
rapid corrective mechanisms, a categorical memory of object properties affords tradeoffs between
accuracy and memory that can be balanced as needed to support our unmatched ability to skillfully
manipulate many different kinds of objects.

Materials and Methods

We first describe the in-laboratory experiments before describing the web-based experiments.
Laboratory experiments

Participants

A total of 80 participants (42 males, 38 females) aged 18 to 45 years old (median 24) were recruited for
the laboratory experiments. Participants were right-handed according to the Edinburgh handedness
questionnaire, and reported that they had normal or corrected-to-normal vision and no prior diagnosis of a
movement disorder. They were compensated at a rate of $17 per hour. All experiments were conducted in
accordance with the 1964 Declaration of Helsinki, following protocol approved by the Columbia
University Institutional Review Board. Written informed consent was obtained from all participants prior
to their participation.

Apparatus

Experiments were performed using a 3BOT three-dimensional robotic manipulandum and an Oculus Rift
DK2 (Menlo Park, CA) virtual reality headset, as well as a 2-button USB response pad (The Black Box
ToolKit Ltd., Sheffield, UK). The position of the 3BOT handle was measured using optical encoders
sampled at 5 kHz, and torque motors allowed forces (also updated at 5 kHz) to be generated on the
handle. Participants sat on a height-adjustable stool in front of a tabletop workspace and grasped the
3BOT handle with their right hand (Fig. 1a). The virtual reality headset was rigidly fixed to an aluminum
crossbeam and angled downwards by 30°. Stereoscopic visual stimuli were rendered on the headset using
custom OpenGL routines and the Psychophysics Toolbox '*

Sennheiser HD201 (Old Lyme, CT) over-ear headphones.

. Auditory cues were provided through

Task

In our object ‘lifting’ task, the participant generates an upward force on an object that is initially fixed to
the surface beneath it, such that the object cannot move. The participant then presses a button, at which
time the surface disappears, releasing the object so that it is then free to move. The goal for the participant
is to match the upward force to the weight of the object so that the object does not move when it is
released. Participants performed this lifting task with five cylinders of equal radius (4.61 cm), but of
different heights (6, 7.5, 9, 10.5, and 12 cm), leading to five equally spaced volumes (400, 500, 600, 700,
and 800 cm’). Each cylinder was shaded, from smallest to largest, between orange and red according to
the Munsell color system (Hue: 10R, Value/Chroma: 3/10, 4/12, 5/14, 6/16, and 7/16). All objects were
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682 visible throughout the task, except during rest breaks. The objects were positioned evenly around the edge
683 of a gray, semi-transparent carousel with a radius of 20 cm (Fig. 1b). The weight of each object varied
684 across the experimental conditions (see below).

685 Before each trial, the 3BOT moved the participant’s hand passively to a start position 11 cm in front of
686 and 19 cm below the cyclopean eye (in gravity-oriented space) and clamped it there by a simulated stiff
687 spring (spring constant: 4000 N m™', damping coefficient: 2 N m s, both acting in all directions). The
688 participant saw a stereoscopically rendered view of the five objects and the circular carousel (Fig. 1b).
689 The carousel rotated smoothly (750 ms) to bring a target object to the front and a 500-ms tone then

690 signaled the start of the trial. Note that at this point, the hand (i.e., the center of the 3BOT handle) was
691 located at the center of the base of the target object. The participant then generated an upward lifting force
692 on the object (i.e., against the simulated stiff spring) attempting to match its weight. When ready, the

693 participant pressed a button with their left hand that caused a portion of the carousel below the object to
694 open, thus releasing the object so that it was free to move. The physical interaction between the hand and
695 the object was then simulated haptically using the 3BOT. We simulated the object as a point-mass acted
696 upon by gravity and attached by a stiff, damped spring (acting in all three dimensions) to the center of the
697 handle. The spring constant was 4,000 N m™ and the damping coefficient was 2 N m s™' with gravity set
698 at —9.81 m s™. We updated the location of the object both haptically and visually and generated the

699 appropriate forces on the hand. This method produces a stable, compelling haptic percept of a handheld
700 inertial mass. If the anticipatory force was more or less than the weight of the object, then the handle

701 would move upward or downward, respectively, until corrective motor commands re-stabilized the arm
702 posture. To encourage accurate performance, thin horizontal gray bars (2-mm radius, purely visual and
703 not haptic) were visible just above and below the target object from the start of the trial (not depicted in
704 Fig. 1b). If the object remained between the horizontal bars for 500 ms, the bars disappeared, and the

705 participant completed the trial by raising the object at least 3 cm above the start position and replacing it
706 on the carousel, where a virtual haptic surface was now simulated to allow full unloading of lift forces
707 prior to the next trial. However, if the object crossed one of the bars, it turned red and a white-noise audio
708 burst was played. The object had to be brought back within the bars before they would disappear, and
709 only then could the participant complete the trial by raising and replacing the object on the carousel. The
710 distance of the bars from the top and bottom edges of the object (i.e., the amount of tolerated object

711 movement) varied according to the participant’s performance: the demarcated region became 1 mm larger
712 following an trial where the object crossed a bar, up to a maximum tolerated deviation of £13 mm (this
713 was also the initial width), and became 1 mm smaller after five consecutive trials where the object stayed
714 within the bars, down to a minimum tolerated deviation of £2 mm.

715 Feedback was also provided in the form of a per-trial score that depended on the absolute error between
716 the anticipatory force at the moment of the button press and the required force to support the object, with
717 score = max(0, 100—13*|error|). The participant’s cumulative score was displayed throughout the

718 experiment. The five highest-scoring previous participants’ scores from the same condition were

719 displayed in a leaderboard beside their own score. This leaderboard was initially seeded based on the
720 score of a pilot run, which was multiplied by 1, 0.9, 0.8, 0.75, and 0.7 to produce five scores. These seed
721 scores were erased one by one as data were collected from the first five participants in each condition.
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Paradigm
Linear+ condition

Fifteen participants (of an initial sample of 30) were randomly assigned to the Linear+ condition; the
other fifteen were assigned to the Uncorr+ condition (see below). The training objects (the two smallest
and two largest objects by volume) weighed 600, 750, 1050, and 1200 g, respectively, corresponding to a
constant density of 1.5 g cm™ (Fig. 1d). The test object (or ‘outlier’) was the mid-size cylinder and
weighed 1200 g, corresponding to a density of 2.0 g cm™.

All participants were informed that the purpose of the experiment was to test their ability to learn and
recall the weights of a novel set of objects. The Linear+ condition began with a 120-trial training phase in
which the participant interacted only with the four training objects. The order of presentation was
pseudo-randomized in cycles where each object was presented once before any object was repeated, and
subject to the additional constraint that the first object presented in one cycle could not be the same as the
last object presented on the previous cycle. Following training, the test object (also called the outlier
object when introduced amongst a linear object family) was introduced for a 200-trial test phase. During
the test phase, in each five-trial cycle, the test object was always presented first, followed by the four
training objects in pseudo-random order, but subject to the additional constraint that for every four cycles,
each of the four training objects would be presented immediately after the test object (i.e., on the second
trial of the cycle) exactly once.

To reduce the effects of fatigue, participants were required to take occasional 30-second breaks. During
these breaks, participants stopped holding the 3BOT handle, came out of the virtual reality headset, and
were encouraged to stretch their right arm and hand. These breaks occurred after trials 60, 120, and 200.
The experiment had a total of 320 trials and lasted approximately 45 minutes.

Prior to the experiment, the experimenter demonstrated the task by performing 10 or 15 trials of a
familiarization condition while the participant watched. The visual scene was displayed on a nearby
monitor so the participant could follow along. The participant then completed 30 trials of task
familiarization, where the object stimuli were three spheres (5-cm radius) that were blue, red, and green
(7.5B 6/8, 7.5R 6/18, 7.5GY 6/10) and weighed 500, 900, and 1300 g, respectively. During task
familiarization, the experimenter could choose to display or hide a bar graph that showed the real-time
load force on the handle. This visual aid helped participants calibrate to the range of forces they would be
asked to produce in the experiment, and prevented them from producing unnecessarily large forces.
Approximately ten familiarization trials were performed with full view of this visual feedback, followed
by approximately ten trials with short glimpses of the feedback prior to the button press, followed by
approximately ten trials without the visual feedback as in the actual experiment.

Uncorr+ condition

Fifteen participants were randomly assigned to the Uncorr+ condition. The Uncorr+ condition was similar
to the Linear+ condition, except the four training object weights (600, 750, 1050, and 1200 g) were
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assigned randomly to the four training objects (Fig. 1f), subject to the constraint that the absolute value of
the Pearson correlation coefficient between volume and mass could not exceed 0.3. The test object had
the same weight as in the Linear+ condition.

Linear++ condition

In the Linear++ condition, we recruited participants until we obtained a sample size of 9 after excluding
non-learners. The Linear++ condition was identical to the Linear+ condition, except the outlier object
weighed 1500 g (rather than 1200 g; Fig. 1e).

+Linear condition

In the +Linear condition, we recruited participants until we obtained a sample size of 11 after excluding
non-learners. In the +Linear condition, the experiment began with a 30-trial training phase where
participants interacted only with the test object which weighed 1200 g. This was followed by a 200-trial
test phase identical to the Linear+ condition in which all 5 objects were lifted in each cycle. This was
followed by the 1:1 phase, which was a block of 10 cycles where, in each cycle, the test object was
presented four times and each of the four family objects was lifted once, for a total of § trials per cycle.
To limit the number of consecutive presentations of the test object in the 1:1 phase, we pseudorandomized
the trial sequence such that consecutive presentations of the test object occurred exactly 13 times, while
presentations of the test object with one, two, or three intervening trials from the last presentation of the
test object occurred exactly 15, 8, and 3 times, respectively. The +Linear condition had a total of 310
trials and rest breaks occurred after trials 90 and 190.

++Linear condition

The ++Linear condition was identical to the +Linear condition except the outlier object weighed 1500 g
(rather than 1200 g).

Linear#” condition

In the Linear~” condition, we recruited participants until we obtained a sample size of 9 after excluding
non-learners. The Linear” condition was identical to the Linear+ condition except that the outlier object’s
weight (initially 1200 g) was iteratively increased by 50 g on trials 221, 261, 301, 341, 381, and 421, up
to a maximum of 1500 g. The length of the test phase was also increased to 340 trials, leading to a total of
480 trials. Rest breaks occurred after trials 60, 120, 220, 300, and 380.

Linear condition

The Linear™s condition was identical to the Linear~ condition except that the outlier initially weighed
1500 g and its weight was iteratively decreased by 50 g to 1200 g.
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Analysis
Data preprocessing

The anticipatory force was taken as the average force applied in the upward direction over the final ten
samples (10 ms) of the clamp phase (Fig. 1c, trial phase 2). Response times were measured as the
duration from trial onset (defined as the beginning of trial phase 2, when the object carousel stopped
rotating) to the button press.

We excluded 322 anticipatory forces (1.15%) that were less than or equal to 1 N (typically due to an
accidental button press) or more than 3.5 scaled median absolute deviations away from the median
anticipatory force applied by a given participant for a given object. Similarly, we excluded 392 response
times (1.40%) that, following a log transformation, were more than 3.5 scaled median absolute deviations
from the median log-transformed response time. We then imputed the mean anticipatory force or reaction
time produced on non-outlying trials by other participants for the same object, cycle, and condition.

We also excluded participants (and hence recruited additional participants) who failed to learn the weights
of the training objects, as the goal of the experiment was to observe how learning of a new object is
affected by existing knowledge of object weights. Non-learners were defined as those whose anticipatory
forces during the final 15 cycles of the training phase did not show a highly significant (o = 0.01) positive
correlation with the weights of the objects. In the Uncorr+ group, three participants were excluded by this
criterion. In the Linear+ and Linear~ groups, one participant from each group was excluded by this
criterion. This criterion was not applied in the +Linear and ++Linear groups because the training phase
involved only the test object.

Statistical analysis

In most motor learning experiments, there are between eight and twelve participants per experimental
group. This sample size provides sufficient power to detect the large effects typical of motor learning
experiments, where the effect of interest is observed in most if not all participants. As this was a new
experimental paradigm, in the first two experimental groups (Linear+ and Uncorr+) we recruited a sample
size of fifteen. In the Uncorr+ group, we observed significant learning of the outlier object with a large
effect size (Cohen’s d = 1.17). Based on this value, we adopted a sample size of nine for the Linear++,
Linear~, and Linear™s groups, aiming to achieve a statistical power exceeding 0.90 in our one-tailed
t-tests of outlier learning. In the +Linear and ++Linear conditions, we could not exclude individual
participants as non-learners as in the other conditions (see above). We therefore estimated a slightly
reduced effect size for sample size estimation (Cohen’s d = 1.00), leading us to adopt a sample size of
eleven in order to achieve at least 0.90 power in these groups. Post-hoc power analyses of groups with
significant outlier learning confirmed that we achieved the desired power (Uncorr+: 0.98, Linear++: 0.92,
++Linear: 0.96, Linears: 0.99).

In the Linear+, Linear++, Uncorr+, Linear~, and Linearss groups, learning of the training set at the end of
the training phase was measured using the Pearson correlation between actual object weight and
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825 anticipatory force on trials between trial cycles 23 and 30. The Fisher z-transformation was used to
826 compute 95% confidence intervals.

827 To assess learning of the test object relative to the training objects, we compared the anticipatory force for
828 the test object to the force that would be expected based on the anticipatory forces for the four training
829 objects (i.e., the ‘family-predicted’” weight). To do this, we fit a linear regression to the anticipatory forces
830 for the training objects as a function of volume in the final 16 trial cycles of the test phase. We calculated
831 the family-predicted weight of the test object based on the regression and the test object’s volume. Note
832 that because the test object’s volume was always in the middle of the training objects, the

833 family-predicted weight is equivalent to the mean anticipatory force produced for the four training

834 objects, hence the logic is also appropriate for the Uncorr+ condition. We used one-tailed #-tests to

835 evaluate the null hypothesis that the test object weight would not be learned. One-tailed tests are justified
836 because failure to learn the test object weight is a directional hypothesis, which includes the case where
837 the anticipatory force for the test object does not differ from the family-predicted weight, as well as the
838 case where it is less than the family-predicted weight. In the Linear~ and Linears groups, we also

839 conducted this analysis for the final four trial cycles of the initial portion of the test phase during which
840 the test object weight did not change.

847 In the first experiment, we conducted a two-way repeated-measures ANOVA on log-transformed response
842 times, with factors Group (two levels: Linear+ combined with Linear+ versus Uncorr+) and Epoch (four
843 levels: trial cycles 1-15, 16-30, 31-50, 51-70), and performed four follow-up one-tailed #-tests to examine
844 whether the main effect of Group was present in all four Epochs individually. In each of these groups, we
845 also tested for single-trial generalization at the start (first four cycles) and the end (final sixteen cycles) of
846 the test phase, as well as the change from start to end, using two-tailed #-tests.

847 We also directly compared the Linear~ with the Linear++ group, and the Linears with the Linear+
848 group, using two-tailed, two-sample z-tests on the anticipatory force for the test object in the final 16 trial
849 cycles of the test phase, when the outlier weight was similar for each pair of groups.

850 Generalization analysis

851 We analyzed how an interaction with the test object generalized to the ‘neighboring’ training objects (i.e.,
852 the 500- and 700-cm’ objects) in the subsequent trial (Fig. 2g-i). During the test phase, the trial order in
853 each trial cycle was as follows: the test object came first, followed by a generalization trial with one of the
854 training objects, followed by the other three training objects (non-generalization trials). We measured

855 single-trial generalization y, for each training object i as the difference between the anticipatory force in

856 generalization trials y% and the force y,'“ predicted by a model fit to non-generalization trials:
857 GG

Yi=Y, — )i
858 The predicted force ;' was obtained from a linear model fit to all non-generalization trials in the test
859 phase, including a categorical main effect of training object indicated by the one-hot variable J/ (one
860 when i equals j, zero otherwise), as well as a continuous main effect of object weight in the previous lift
861 x,,, and the interactions between these main effects:
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Web-based experiment

For the web-based experiments, we obtained complete data associated with 196 unique Amazon
Mechanical Turk Worker IDs (135 males, 60 females, 1 non-binary) aged 19 to 70 years old (median
31.5). These workers were paid $1.50 upon successful submission of a complete dataset, and received an
additional bonus payment determined by dividing their final score by 100 (max bonus = $0.01/trial =
$1.60). Of these participants, 185 individuals reported using their right hand to control their input device
and 11 reported using their left hand. They were not screened for visual impairment or prior diagnosis of
movement disorder.

The web-based experiments were designed so that they could only be completed by individuals using the
Google Chrome web browser, in full-screen mode and with pointer lock enabled, on a computer with
graphics hardware that supports WebGL 2.0, and with a mouse (172 participants) or trackpad (24
participants). Dimensions of the full-screen window displaying the task ranged from (1093, 576) to (2560,
1410) pixels; actual monitor sizes were not collected.

The objects in the web-based experiments had radii of 2 cm and heights of 3, 4, 5, 6, and 7 cm. They were
arranged around a gray metallic ring, had springs attached to their tops, and were rendered via perspective
projection to a camera 40 cm behind and 10 cm above the top-center of the foremost object. Since there
was no haptic interface, feedback about object weight was provided through vision of the simulated
dynamics of a spring-mass-damper system (Fig. 5a). In the web-based Linear++, Linear+, Linear-, and
Linear-- conditions, the training objects always weighed 300, 400, 600, and 700 g, while the test object
weighed 900, 700, 300, or 100 g, respectively.

Trials of the web-based experiments were similar to the laboratory experiment, but simplified. There were
no auditory cues, haptic feedback, bars above and below the object, or a leaderboard. Each trial consisted
of two main phases (Fig. 5a): the clamp phase (trial phase 1), in which the participant clicked and dragged
to stretch the spring on top of the object, and the release phase, which was triggered by pressing the Shift
key with the spring stretched to a certain distance, and portrayed a simulation of the spring-mass-damper
dynamics that would result from the initial conditions created by the spring length (spring constant: 1,
damping coefficient: 0.01). The per-trial score y was related to the spring-length error in centimeters e by
y =max(0, 1-€%2.25)*100. The duration of the release phase in seconds  (i.e., the inter-trial interval,
which serves as a time penalty) was modulated according to the spring-length error: £ = min(0.4*¢* 12).
This time penalty was correlated with, but not exactly equal to, the decay time of the oscillations in the
visual feedback of the spring.

Participants received task familiarization through a single, repeatable demo trial that provided an
instructed walkthrough of a single trial with the largest of the four training objects. The total number of
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896 trials was reduced by half compared to the in-laboratory Linear+ condition, with 60 training trials and 100
897 test trials. Rest breaks were not required.

898 The anticipatory force was measured as the amount of force exerted on the object by the visually

899 simulated spring on the final frame of the clamp phase (Fig. 5a, trial phase 1). Non-learners were defined
900 as those whose anticipatory forces for the training objects during the final 5 cycles of the training phase or
901 the final 5 cycles of the test phase did not show a mild positive correlation with the simulated weights (a
902 =0.10). Forty-seven participants were excluded from the four groups of the web-based experiment by this
903 criterion, resulting in sample sizes of 37, 36, 37, and 39 individuals, respectively, in the Linear++,

904 Linear+, Linear-, and Linear-- groups. This high rate of exclusion was not due to task difficulty, but to the
905 fact that many participants in the web-based experiment adopted strategies that minimized effort at the
906 expense of time and accuracy. Additionally, we excluded as outliers any anticipatory forces that were

907 more than 4 scaled median absolute deviations from the median anticipatory force applied by a given

908 participant to a given object, resulting in 1398 exclusions (4.46%).

909 To estimate required sample sizes for the web-based experiments, we simulated bimodal distributions of
910 ‘learners’ and ‘non-learners’ with different sample sizes and calculated the proportion of simulations in
911 which the two-Gaussian mixture model outperformed the single Gaussian model. We estimated that the
912 learner and non-learner group means would be separated by 3.5 standard deviations, and we assumed that
913 learners and non-learners are normally distributed, have equal variance, and occur in equal proportions.
914 We found that a sample size of 36 participants led the two-Gaussian model to be correctly favored by AIC
915 in 85% of our simulations.

916 We analyzed the distributions of anticipatory forces produced for the outlier in the final 5 cycles of the
917 test phase. We fit both a single-Gaussian and a two-Gaussian mixture model using the R package mclust
918 12130 and estimated confidence intervals on the fit parameters by parametric bootstrap with 10,000

919 samples. Model comparisons based on AIC and BIC yielded the same pattern of results; we report only
920 AIC in the text.

921 All source data, analysis code, and figure generation code is available in the supplementary files.
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