

1 **Artemisinin acts by inhibiting *Plasmodium falciparum* Ddi1, a retropepsin,**
2 **resulting into the accumulation of ubiquitinated proteins**

3
4
5 Noah Machuki Onchieku^{1,2}, Sonam Kumari³, Rajan Pandey⁴, Vaibhav Sharma¹, Mohit Kumar³, Arunaditya
6 Deshmukh¹, Inderjeet Kaur¹, Asif Mohammed⁵, Dinesh Gupta⁴, Daniel Kiboi², Naseem Gaur³, Pawan
7 Malhotra^{1*}

8
9 ¹Malaria Biology Group, International Centre for Genetic Engineering, and Biotechnology, Aruna Asaf
10 Ali Marg, New Delhi, India

11 ²Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

12 ³Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali
13 Marg, New Delhi, India

14 ⁴Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, Aruna
15 Asaf Ali Marg, New Delhi, India

16 ⁵Parasite Cell Biology Group, International Centre for Genetic Engineering, and Biotechnology, Aruna
17 Asaf Ali Marg, New Delhi, India

18

19

20 *Corresponding author: Pawan Malhotra

21 E-Mail: pawanmal@gmail.com

22

23

24

25

26

27

28

29

30 **Running title:** Artemisinin inhibits the activity of *Plasmodium* Ddi1

31

32 Keywords: Artemisinin, *Plasmodium falciparum*, DNA Damage, Ddi1, Ubiquitin-Proteasome Pathway

33

34 **Abstract**

35 Reduced sensitivity of the human malaria parasite, *Plasmodium falciparum*, to
36 Artemisinin and its derivatives (ARTs) threatens the global efforts towards eliminating malaria.
37 ARTs have been shown to cause ubiquitous cellular and genetic insults, which results in the
38 activation of the unfolded protein response (UPR) pathways. The UPR restores protein
39 homeostasis, which otherwise would be toxic to cellular survival. Here, we interrogated the role
40 of DNA-damage inducible protein 1 (*PfDdi1*), a unique proteasome-interacting retropepsin in
41 mediating the actions of the ARTs. We demonstrate that *PfDdi1* is an active A₂ family protease
42 that hydrolyzes ubiquitinated substrates. We further show that treatment with ARTs lead to the
43 accumulation of ubiquitinated proteins in the parasites and blocks the destruction of the
44 ubiquitinated substrates by *PfDdi1*. Besides, whereas the *PfDdi1* is predominantly localised in
45 the cytoplasm, exposure of the parasites to ARTs leads to DNA fragmentation and increased
46 recruitment of the *PfDdi1* into the nucleus. Furthermore, Ddi1 knock-out *Saccharomyces*
47 *cerevisiae* cells are more susceptible to ARTs and the *PfDdi1* protein robustly restores the
48 corresponding functions in the knock-out cells. Together, these results show that ARTs act by
49 inducing DNA and protein damage, and impairing the damage recovery by inhibiting the activity
50 of *PfDdi1*, an essential ubiquitin-proteasome retropepsin.

51
52
53
54
55
56
57

58 **Introduction**

59 Artemisinin and its derivatives (ARTs) are components of mainstay drugs for the
60 treatment of malaria caused by the *Plasmodium falciparum* parasite¹. However, the emergence
61 and spread of resistance towards the artemisinins poses an imminent danger towards the global
62 efforts to eliminate malaria². Historically, the spread of malaria drug resistance mechanisms from
63 South East (SE) Asia to India is a crucial “stepping stone” to the eventual introduction in
64 Africa^{3,4}. Regrettably, recent evidence has shown the presence of Artemisinin resistant *P.*
65 *falciparum* in India⁵. This situation does not only pose a grave danger to public health in these
66 countries but also in sub-Saharan Africa, a continent most affected by malaria¹. Whereas there is
67 the most reliable evidence linking mutations in the Kelch domain protein (K13-propeller;
68 PF3D7_1343700) with parasite tolerance to artemisinin⁶, insufficient knowledge on the
69 molecular mechanisms of artemisinin action hampers definitive conclusion. Understanding the
70 mechanisms of action and resistance of artemisinin, therefore, would not only provide a basis for
71 identifying new targets but also be useful to the development of new alternative compounds that
72 thwart and antagonize the emergence of resistance.

73 Recent reports have demonstrated the promiscuous nature of artemisinin-mediated
74 cellular damages⁷⁻¹¹. For instance, besides the ubiquitous protein insults¹², Artemisinin has been
75 attributed to DNA damage mediated by reactive oxygen species (ROS)⁹. Consequently, the
76 damage would be expected to trigger stress response or unfolded protein response (UPR)
77 pathways^{13,14}, such as the ubiquitin-proteasome system (UPS)¹². The UPS degrades
78 unfolded/damaged proteins that would otherwise be toxic to cells. Interestingly, evidence has
79 associated the K13-propeller protein with ubiquitination^{8,15}, and inhibitors of the UPS have been
80 shown to enhance the action of artemisinin against *P. falciparum* parasites¹⁶⁻¹⁸. Artemisinin

81 inhibits the UPS and the changes to this system mediate parasite tolerance to artemisinin
82 pressure^{12,16,19}. However, molecular data on the role of the UPS in mediating the
83 action/resistance of artemisinin in *P. falciparum* parasites remains scanty.

84 *PfDdi1*, an essential retropepsin in the UPS^{20,21}, has been shown to compensate for
85 proteasome dysfunction and its knock out leads to polyubiquitination of proteins in both yeast
86 and *Toxoplasma gondii* cells²²⁻²⁴. It is feasible, therefore, to speculate that artemisinin might be
87 compromising the activity of *PfDdi1* in restoring protein homeostasis following the damage.

88 Here, we identify the *PfDdi1*, commonly referred to as the proteasome shuttle protein, and
89 investigate its role in mediating the actions of artemisinin. Binding and enzymatic assays
90 demonstrate that *PfDdi1* is an active proteasome reprotopepsin that cleaves ubiquitinated
91 substrates. We show that artemisinin enhances polyubiquitination of parasite proteins and
92 inhibits the activity of *PfDdi1* in digesting the ubiquitinated proteins. In addition, the parasites'
93 exposure to artemisinin induces DNA fragmentation and increases recruitment of the *PfDdi1*
94 protein into the nucleus. Besides, using yeast complementation studies, we show that whereas
95 *PfDdi1* is dispensable in yeast, *PfDdi1* deficient *S. cerevisiae* cells display more susceptibility to
96 artemisinin pressure. The expression of *PfDdi1* restores the functions in the corresponding
97 *Ddi1*-knock out yeast cells. Our work thus gives insights into the role of the *PfDdi1* and validates
98 it as a vulnerable protein that could be the basis for the development of new chemotherapies
99 against the *P. falciparum* malaria.

100

101

102

103

104

105 **Results**

106 ***PfDdI1* is an active A₂ family protease that hydrolyzes polyubiquitin**

107 **substrates**

108 Whereas *P. falciparum* parasites express three proteasome interacting proteins (PIPs);
109 *PfDdi1*, Rad23 and Dsk2, deletion of only *PfDdi1* has been proven to be toxic to the cells, thus
110 indespensable^{20,21,25}. Compared to the other *PfPIPs*, *PfDdi1* harbors a unique retroviral-protease
111 like (RVP) domain besides the conventional ubiquitin-like (UBL) domain. Despite being
112 characterized in other organisms, Ddi1 remains poorly understood in *Plasmodium* spp. To
113 functionally characterize the role of the *PfDdi1* if any, we cloned, and expressed a histidine-
114 tagged full length *PfDdi1* gene (PF3D7_1409300) in Rosetta (DE3) cells. The expressed
115 recombinant *PfDdi1* protein was analyzed by both Coomassie staining and Western blotting with
116 α-His antibodies. The *PfDdi1* protein was then purified under non-denaturing conditions, and it
117 showed two discrete bands of ~44kDa and ~34 kDa sizes on SDS PAGE, suggesting that the ~34
118 kDa band is probably a processed fragment of the *PfDdi1* protein (Fig. 1a and Supplementary
119 Fig. 1). To confirm whether the ~34kDa band is indeed a processed product of the intact *PfDdi1*
120 protein, we analysed both bands by LC-MS/MS. The proteome analysis showed that the peptides
121 identified in the LC-MS/MS analysis for each of the fragments corresponded to the *PfDdi1*
122 protein and interestingly, they both had the aspartic catalytic signature motif (DSG)
123 (Supplementary Fig. 2). The purified recombinant *PfDdi1* protein was then used to raise
124 antibodies in mice and rabbits. The specificity of the antibodies to detect native *PfDdi1* was
125 assessed by Western blot using trophozoite-rich *P. falciparum* blood stage parasite lysate. The
126 mice or rabbit anti-*PfDdi1* antibodies stained a band of the size expected for *PfDdi1* in *P.*

127 *falciparum* (Fig. 1b). Since *PfDdi1* possesses a retroviral-like protease (RVP) domain, we next
128 assessed the pepsin/cathepsin D, retropepsin or proteasome activity of the purified recombinant
129 *PfDdi1* protein using the Bz-RGFFP-MNA, DABCYL-Gaba-SQNYPIVQ-EDANS or Suc-
130 LLVY-AMC substrates, respectively. Unlike the cathepsin D substrate, 2.0 μ M of the enzyme
131 hydrolyzed DABCYL-Gaba-SQNYPIVQ-EDANS or Suc-LLVY-AMC at pH 5.0. The enzyme
132 was more active on the retropepsin substrate, with a catalytic efficiency of $\sim 3.8 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$
133 ($K_m = 4.135 \pm 0.280 \mu\text{M}$), compared to the proteasome specific substrate, with an efficiency of
134 $\sim 8.0 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ ($K_m = 21.85 \pm 4.135 \mu\text{M}$) (Fig. 1c). Due to its ability to hydrolyze proteasome
135 substrates, coupled with previous evidence that Ddi1 compensates for proteasome dysfunction²²,
136 we hypothesized that the *PfDdi1* might harbor the ability to degrade polyubiquitinated
137 proteins substrates. Polyubiquitination serves as a recognition signal for the proteasome. Our
138 data showed that, incubation of K⁴⁸-linked polyubiquitin substrate with 2.0 μ M *PfDdi1* enzyme
139 led to significant cleavage of the substrate (Fig. 1d). Together, these findings demonstrate that
140 *PfDdi1* is an active retroviral protease that hydrolyzes polyubiquitin/proteasome substrates.

141 ***PfDdi1* enzyme degrades Bovine serum albumin, BSA**

142 Having demonstrated the ability of the recombinant *PfDdi1* protein to hydrolyze peptide
143 substrates, we assessed the capacity of the enzyme to degrade macromolecules. Compared with
144 the control (BSA alone), incubation of BSA with the *PfDdi1* protein resulted in the degradation
145 of BSA, at pH 5.0. SDS-PAGE analysis of the test assay showed a significantly reduced BSA
146 band intensity ($\sim 66\text{kDa}$) (Fig. 1e and f). On the other hand, the *PfDdi1* could not hydrolyze BSA
147 at pH 7.0 (Supplementary Fig. 3). In *Leishmania major*, an acidic pH has been shown to be more
148 favourable to the Ddi1 activity.²⁶

149 **Artemisinin increases polyubiquitination in *P. falciparum* and blocks the**
150 **activity of *PfDdI1* in degrading the polyubiquitinated substrates**

151 Artemisinin has been shown to cause widespread damages to parasite proteins^{7,8,11}. The
152 damage invokes the unfolded protein response pathways as a means of tidying up. Here, we
153 assessed the impact of artemisinin on global protein ubiquitination as well as on the activities of
154 the *PfDdi1* enzyme. Exposure of trophozoite-rich 3D7 *P. falciparum* parasites to 1.0 μ M of
155 artemisinin (a physiologically relevant dose²⁷) for 2 hours resulted into accumulation of
156 polyubiquitinated proteins. Similarly, Dihydroartemisinin (DHA; 1.0 μ M, a biologically active
157 ART metabolite) and MMS (0.05%) led to enhanced polyubiquitination, but not Lopinavir (50
158 μ M) (Fig. 2a). The rapid protein polyubiquitination under artemisinin pressure invoked thoughts
159 about its potential inhibition ability against the *PfDdi1* enzyme activities. Indeed, artemisinin and
160 its derivative, DHA, significantly inhibited the ability of *PfDdi1* to degrade the polyubiquitinated
161 substrate. Besides, artemisinin significantly inhibited the activity of *PfDdi1* with both the
162 retropepsin (71.4%) and proteasome (65.9%) specific substrates, as well as with BSA (Fig. 2b-
163 f). Lopinavir (50 μ M), a known HIV protease inhibitor, produced about 23% inhibition.
164 Surprisingly, whereas MMS (0.05%) led to increased polyubiquitination, it enhanced the
165 activities of *PfDdi1* proteins against all the substrates (Fig. 2b-f). These data demonstrates the
166 dual mechanisms of action of the artemisinins; by causing protein damage in the parasite and
167 blocking tidying up by inhibiting the activities of *PfDdi1* enzyme.

168

169 **Artemisinin treatment leads to increased recruitment of *PfDdi1* into the**
170 **nucleus following DNA damage**

171 Artemisinin has been shown to induce DNA damage in malaria parasites as demonstrated by
172 comet assays⁹. However, data on the nature of the DNA damage remains elusive. Using the *in*
173 *situ* DNA fragmentation (TUNEL) assay, we observed DNA fragmentation (direct TdT-mediated
174 dUTP nick end labeling) in more than 90% of the *P. falciparum* parasites following a two-hour
175 exposure to artemisinin (Fig 3a). To gain insights into the possible molecular events
176 accompanying the artemisinin-specific DNA fragmentation, we employed immunofluorescence
177 assays (IFA), using anti-*PfDdi1* antibodies, to evaluate the expression profile of the *PfDdi1*
178 protein, under drug pressure. Previously, Ddi1 was shown to repair DNA-protein crosslinks
179 (DPCs) in yeast cells²⁸. Our data showed that, whereas *PfDdi1* is predominantly expressed in the
180 cytoplasm, artemisinin and DHA treatment led to increased recruitment of the protein into the *P.*
181 *falciparum* nucleus (Fig. 3b and c). Thus, whereas we have not shown the exact DNA repair
182 mechanism, the shift in expression is likely to be a causal relation between the DNA
183 fragmentation and *PfDdi1* repair strategies.

184 **Artemisinin binds and stably interacts with the highly conserved aspartic**
185 **protease motif “DSG” in *PfDdi1* protein**

186 Having established the effect of artemisinin on the *PfDdi1* protease activity, we carried out
187 surface plasmon resonance (SPR) and Bio-Layer Interferometry (BLI) based binding assays, as
188 well as computational analysis to delineate the exact interaction between *PfDdi1* and artemisinin.
189 Briefly, over 8500 response units (RU) or up to a maximum of 0.8nm shift of the recombinant

190 *PfDdi1* was immobilized via the amine coupling chemistry (CM5 chip) or streptavidin-biotin
191 capture (Octet biosensors), respectively. Depending on the buffer in which the compounds were
192 dissolved, we used either HBS-EP or DMSO as running buffer. Both artemisinin and MMS
193 showed high affinity interactions with *PfDdi1* in both bindig assays with k_D values of $1.06 \times 10^{-6}/1.56 \times 10^{-6}$, and $1.70 \times 10^{-6}/2.51 \times 10^{-5}$ respectively, while lopinavir showed lower binding
194 affinities with a k_D value $2.22 \times 10^{-4}/5.62 \times 10^{-4}$, in SPRand BLI assays (Fig. 4a-c). This binding
195 was specific as none of the compounds showed interaction with the heme detoxification protein
196 (HDP) (Supplementary fig. 5). On the other hand, PFAM and INTERPROSCAN search revealed
197 the presence of two conserved domains in the *PfDdi1* sequence: N-terminal Ubiquitin-like
198 domain (4-74aa) and a retroviral-like protease domain (RVP; 222-345aa) (Supplementary Fig. 1a
199 and 5). Further, to know conservation among different species, we performed multiple sequence
200 alignment of Ddi1 sequences from *P. falciparum*, *L. major*, yeast and human. The alignment
201 analysis showed that *PfDdi1* had 95% query coverage and ~29% identity with human Ddi1
202 (hDdi1). In addition, all the aligned Ddi1 protein sequences showed higher conservation in the
203 central RVP domain region as compared to the N- or C- terminal regions, with the presence of
204 superimposed highly conserved aspartyl protease signature motif “D(S/T)G” (Supplementary
205 Fig. 6).

207 As no crystal structure for *PfDdi1* protein is available so far, we generated a homology-
208 based 3D model for *PfDdi1*. All attempts to generate complete stable 3D structure for *PfDdi1*
209 (382aa) were futile. We then generated a partial 3D model for the *PfDdi1* RVP domain (243-
210 366aa) using 4RGH, a human Ddi1 Homolog 2 protein, having 37% query coverage and 48.61%
211 identity with the *PfDdi1*, as a template (Fig. 4b). The Ramachandran plot for the predicted model
212 showed no residues in the disallowed region, confirming the good quality of the model. To assess

213 whether an artemisinin molecule binds to the protease domain region, we performed *in silico*
214 docking using AutoDocktools. Here, site specific docking was performed using the predicted
215 *PfDdi1* as a receptor and an artemisinin molecule as a ligand. Grid box was generated using
216 nitrogen of Asp262 as the center (grid points xyz coordinates as 40, 40, 40 and spacing of 0.4Å),
217 and the other default parameters were used for the screening. The docking analysis revealed
218 *PfDdi1* protein binding with artemisinin in the active catalytic protease signature motif (DSG)
219 (Fig. 4d). The free binding energy for the reaction was -5.81 kcal/mol. Hydrogen bonds were
220 formed between artemisinin and Ser263 (in the catalytic DSG motif), with all the three active-site
221 residues of the aspartyl proteases present within 4Å of artemisinin. Taken together, the binding
222 and docking results suggest stable interaction between the *PfDdi1* protein and artemisinin, and
223 possible inhibition of the *PfDdi1* protease activity by artemisinin.

224 ***PfDdi1* restores the protein secretion phenotype in yeast cells**

225 To know whether the *PfDdi1* is a true orthologue of yeast *Ddi1*, we performed
226 complementation studies in *S. cerevisiae* yeast cells. We singly disrupted the *ScDdi1* gene, by
227 homologous recombination, and assayed whether the *PfDdi1* ortholog could complement the
228 phenotypes in the knockout yeast cells. Cells bearing a *Ddi1* gene disruption were seen to grow
229 normally. However, as has been shown previously²⁹, our data showed that *Ddi1*Δ yeast cells
230 secreted significantly higher protein levels into the media (Fig. 5a). On average, *Ddi1*Δ yeast
231 cells secreted more than ~30% of proteins into the media, compared with the wild type strain. To
232 test whether *PfDdi1* restores the wild-type proteins secretion phenotype, we cloned a gene
233 encoding the full-length *PfDdi1* into a yeast expression vector pGPD2. The ligated construct was
234 transformed into the *Ddi1*Δ yeast cells. The *PfDdi1* construct was able to revert the protein

235 secretion phenotype to WT level, i.e the level of protein secretion decreased in comparison to the
236 knock-out strain (Fig. 5a).

237 **Ddi1 deficient yeast cells are more susceptible to Artemisinin pressure**

238 It had been previously shown that mutations in some DNA repair genes confer resistance
239 to Artemisinin³⁰. Moreover, DNA damaging agents have been shown to perturb and induce
240 transcriptional changes in 21% of the *P. falciparum* genome¹⁰. These changes involve up-
241 regulation of the genes of the DNA repair machinery. Similarly, yeast studies demonstrated that
242 DNA damaging agents trigger differential expression in one third of the entire *S. cerevisiae*'s
243 gene pool³¹. We reasoned that since the proteasome is central to the repair or disposal of
244 damaged cellular components, the yeast cells lacking the Ddi1 might be more susceptible to
245 DNA damaging agents. We, therefore, incubated equal amounts of yeast cells with different
246 drugs and DNA Damaging agents such as artemisinin, chloroquine, lopinavir, hydroxyurea,
247 MMS, and camptothecin and measured sensitivity using both OD (growth curves) and spotting
248 tests. Our results demonstrated that Ddi1 Δ yeast cells were more susceptible to artemisinin
249 (12 μ M). These Ddi1 Δ cells were also hypersensitive to DNA damage drugs; hydroxyurea, MMS,
250 and camptothecin (Fig.5b and c). Together, these results augments our observations in *P.*
251 *falciparum* and demonstrate that *PfDdi1* reduces the sensitivity of the cells to artemisinin insults,
252 and artemisinin works similar to the known DNA dmaging agents.

253

254

255

256 Discussion

257 The spectrum of drugs to which the human malaria parasite, *Plasmodium falciparum* has
258 not evolved tolerance is rapidly diminishing. Reports on decreased sensitivity of the parasites
259 towards the recommended first-line treatment for *P. falciparum* malaria, artemisinin, threatens
260 the global efforts to combat the disease. To circumvent the resistance, improve the efficacy or
261 generate new drugs, it's critical to understand the mechanisms of action/resistance of the
262 artemisinin. Since it has been shown that artemisinin causes indiscriminate damage to parasite
263 cellular proteins⁷⁻¹¹, recruitment of the parasite protein repair machinery might be pivotal in
264 assuring parasite growth fitness. Besides, artemisinin compromises the functions of the parasite
265 proteasome and synergizes with proteasome inhibitors in the killing of artemisinin resistant
266 parasites^{12,18}. Here, we investigate the mode of action of artemisinin on the parasite proteasome
267 machinery. Expression and activity analysis of *PfDdi1*, a proteasome shuttle protein with an
268 unusual RVP domain, show that *PfDdi1* is an active A₂ aspartyl protease that hydrolyzes
269 proteasome substrates, including polyubiquitin proteins. However, the enzyme could not catalyze
270 the hydrolysis of Bz-RGFFP-MNA, a cathepsin D substrate. This activity is in line with earlier
271 reports that showed *L. major* Ddi1 as an active aspartyl proteinase²⁶, as well as *ScDdi1* as a
272 ubiquitin-dependent protease that acts on polyubiquitinated substrates²³. The ability of *PfDdi1* to
273 cleave polyubiquitinated substrates suggests that the *PfDdi1* enzyme might not only be a shuttle
274 protein but could inherently degrade damaged proteins. Thus, the *PfDdi1* protein might be acting
275 synergistically with the proteasome machinery to degrade the ubiquitinated proteins. Indeed,
276 previous reports have demonstrated that Ddi1 compensates for proteasome dysfunction in
277 *Caenorhabditis elegans*²². In addition, deletion of Ddi1 (ΔDdi1) in *T. gondii* results into
278 accumulation of ubiquitinated proteins, a phenomenon enhanced by double deletion (ΔDdi1 and

279 Δ Rad23)²⁴. Therefore, the essentiality of the *PfDdi1* advocates its multiple roles in parasite life
280 cycle and negates any redundancy in its functions. On the other hand, *in silico* data reveals that
281 unlike most of the Ddi1 analogs, *PfDdi1* lacks the UBA domain, thus suggesting that the UBA
282 domain does not contribute to the protease activity of the Ddi1 protein. These results are
283 consistent with the observation made earlier for *ScDdi1*, which shows that the deletion of UBA
284 domain had no effect on the activity of *ScDdi1*²³.

285 To further show that *PfDdi1* is a functional homolog of the *ScDdi1*, which is one of the
286 best characterized Ddi1 protein, complementation studies were carried out in *S. cerevisiae* cells.
287 Functional expression of the *PfDdi1* in *S. cerevisiae* cells showed its ability to restore disrupted
288 phenotypes. We show that, unlike in *P.falciparum* where functional disruption of Ddi1 gene is
289 deleterious, *ScDdi1* gene is not refractory to deletion in yeast cells. However, as previously
290 reported²⁹, deletion of *ScDdi1* increased secretion of proteins to the growth media. Interestingly,
291 despite the differences in the domain structure, the *PfDdi1* gene robustly complemented the yeast
292 secretion phenotype. This observation might infer that the C-terminal UBA domain lacks crucial
293 sequences associated with the suppression of protein secretion.

294 Since artemisinin has been shown to promiscuously target parasite proteins and induce
295 DNA damage (Comet assay), we sought to define whether it also inhibits the activity of *PfDdi1*.
296 We first demonstrate that, indeed, artemisinin causes protein damage which leads to piling up of
297 polyubiquitinated proteins. This is in agreement with previous data which showed that the
298 artemisinins induce polyubiquitination in the malaria parasite^{12,16}. On the other hand, we
299 demonstrate that artemisinin causes DNA damage by directly inducing DNA fragmentation in
300 the *P. falciparum* parasites. Interestingly, the exposure of the parasites to genotoxic artemisinin

301 insults causes increased recruitment of *PfDdi1* into the nucleus. This suggests that *PfDdi1*
302 might be involved in the regulation of DNA damage response to artemisinin. Indeed, previous
303 reports have implicated Ddi1 in the repair of DNA-protein crosslinks²⁸. The exact mechanism
304 adopted by the *PfDdi1* in the DNA damage repair in the parasites remains of utmost interest.
305 Enzyme inhibition assays showed that artemisinin blocked 71.4% or 65.9% of the activity of
306 *PfDdi1* against the retropepsin or proteasome substrates, respectively. Besides, artemisinin
307 significantly inhibited the degradation of polyubiquitinated substrates, a finding that
308 unequivocally fortifies the inhibitory effect of artemisinin on the *PfDdi1*activities. However,
309 lopinavir (50 μ M), a known HIV protease inhibitor, could only yield marginal inhibition
310 (~23.5%) of the activity of *PfDdi1*, a retropepsin protease. In addition, interaction sensograms
311 from binding assays and *in silico* modeling and docking studies showed high affinity binding
312 between artemisinin and *PfDdi1*. To provide additional evidence on the role of Ddi1 in the
313 mediation of artemisinin activities, we studied the growth fitness of Ddi1 deficient *S. cerevisiae*
314 (*ScDdi1* Δ) cells. This transgenic line showed differential susceptibilities to an array of DNA
315 damage compounds as well as to artemisinin, the mainstay anti-malarial drug. *ScDdi1* Δ cells
316 were more susceptible to artemisinin pressure, compared to the wild type cells. Therefore, the
317 observed increased susceptibility might be as a result of the *ScDdi1* Δ cells' inefficiency to
318 invoke DNA and protein repair upon artemisinin-induced damage. In fact, artemisinin has been
319 shown to increase the generation of free radicals that chokes the yeast cell homeostasis³².
320 Besides, artemisinin has been shown to elicit DNA damaging effect comparable to MMS, an
321 alkylating agent¹⁰. Restoration of the WT growth fitness by the *PfDdi1* infers that the UBA
322 domain plays an insignificant role in responding to artemisinin genotoxic insults.

323 These results thus enhance the evidence on the mode of action of artemisinin that has been
324 earlier shown to kill the parasites via a two-step mechanism; causing ubiquitous protein damage
325 and compromising parasite proteasome functions¹². Therefore, based on our data coupled with
326 the previous observations, we propose that artemisinin exerts its pressure on the parasite by
327 compromising the *PfDdi1* protein, an important player in the parasite protein homeostasis. The
328 compromised *PfDdi1* does not only lose its ability to degrade the damaged proteins but also
329 curtail its shuttling capacity, thus leading to accumulation of the damaged proteins and eventual
330 death of the malaria parasite (Fig. 6).

331 In conclusion, here we show that *PfDdi1*, an essential *P. falciparum* protein, is an active
332 A₂ family aspartic protease, with inherent abilities to degrade polyubiquitinated proteins. *PfDdi1*
333 is a true orthologue of *ScDdi1* and could be involved in DNA damage repair strategies by the
334 parasites. We further show that artemisinin, a first line drug against *P. falciparum* malaria, kills
335 the parasites by inducing protein damage and inhibiting tidying up by blocking the activity of
336 *PfDdi1*, a unique ubiquitin-proteasome retropepsin, that results in piling up of the damaged
337 proteins. These results thus provide insight into the mode of action of artemisinin and pave the
338 way for development of new antimalarial drugs targeting *PfDdi1*.

339

340

341

342

343 Methods

344 Ethics statement

345 All protocols were conducted in accordance with prior approvals obtained from the International
346 Centre for Genetic Engineering and Biotechnology (ICGEB)'s Scientific Ethical Review Unit
347 and the Institutional Animal Ethics Committee (IAEC; ICGEB/IAEC/02042019/MB-7).

348 Cloning, expression, and purification of recombinant *PfDdi1*

349 The *PfDdi1* gene (PF3D7_1409300) was amplified from genomic DNA using specific
350 primers; Ddi1 forward 5'-GCGGATCCATGGATATGGTTTTATTACAATATCAGACG-3',
351 reverse 5' GCGTCGACCTCGAGTAAATCATTGTTGCATCAATG-3'. The PCR product was
352 first cloned into pJET vector (Thermo Scientific) and then sub-cloned into pET-28b expression
353 vector using NcoI and XhoI restriction sites (Thermo Scientific). The pET-28b clone was
354 expressed in Rosetta (DE3) *Escherichia coli* cells (Invitrogen). The cells were grown to mid log
355 phase, and then induced with isopropyl-1-thio-β-D galactopyranoside (IPTG, 1 mM) for 14 h at
356 16°C. The bacterial culture was harvested by centrifugation at 4000xg for 20 min. The cell pellet
357 was re-suspended in lysis buffer (50 mM Tris·HCl at pH 8.0, 200 mM NaCl, 1.0% Triton X-100 and
358 1.0% PMSF) and then sonicated. The supernatant was collected by centrifugation at 9,000 rpm for
359 50 min, at 4°C. The soluble recombinant protein was purified using the Nickel-Nitrilotriacetic acid
360 (Ni-NTA⁺; Qiagen) resin. Briefly, the protein was allowed to bind in 20 mM imidazole-containing
361 binding buffer (50 mM Tris:HCl at pH 8.0 and 200 mM NaCl) for 3 h at 4 °C. The resin with bound
362 protein was washed in 30 mM imidazole-containing binding buffer and then the bound protein was
363 eluted in varying concentrations of the imidazole (50, 75, 100, 150, 200, 300 and 500 mM) in 50
364 mM Tris:HCl at pH 8.0 and 200 mM NaCl. The purified fractions were checked on SDS-PAGE and

365 Western blot analysis using α -His antibodies. All the pure fractions were pooled and dialyzed in
366 the Tris-NaCl buffer (50 mMTris-Hcl pH 8, 200 mMNaCl), and then concentrated.

367

368 **Generation of antibodies against *PfDdi1***

369 All animal protocols were conducted in accordance with prior approvals obtained from
370 the International Centre for Genetic Engineering and Biotechnology (ICGEB)'s scientific review
371 committee and the institutional animal ethics committee (ICGEB/IAEC/02042019/MB-7).

372 We used BALB/c inbred mice and female NZW rabbits to raise anti-bodies against the
373 recombinant *PfDdi1*. The mice were immunized with 20 μ g of the protein while the rabbits were
374 immunized with 200 μ g protein in the presence of complete/incomplete Freund's adjuvant, using
375 the i.p. and s.c. modes of injection, respectively. After the third bleed, the antibody titers were
376 quantified by ELISA. The specificity of the raised antibodies was analyzed on the recombinant
377 *PfDdi1* protein and the *P. falciparum* parasite lysate.

378 ***PfDdi1* enzymatic assays**

379 The aspartyl proteinase activity of the purified recombinant *PfDdi1* was probed against
380 three substrates; Bz-RGFFP-4M β NA, DABCYL-Gaba-SQNYPIVQ-EDANS orSuc-LLVY-
381 AMC (Bachem, Bubendorf, Switzerland), following the protocol described earlier²⁶. Briefly, 2.0
382 μ Mof the recombinant *PfDdi1*was incubated with decreasing concentration (80 μ M-1.25 μ M) of
383 each of the substrates in 100 mM sodium acetate buffer, at pH 5.0. Triplicate assays were carried
384 out in a total volume of 200 μ l in 96 well opaque plates, for 4 h at 37 °C. Assays with Heme
385 Detoxification Protein (*PfHDP*) were used as the control. Both the DABCYL-Gaba-
386 SQNYPIVQ-EDANSand Suc-LLVY-AMC cleavage signals were measured at an excitation
387 wavelength of 355nm and an emission wavelength of 460nm. On the other hand, an excitation

388 and emission wavelength of 340 and 425 nm, respectively, was used to monitor the hydrolysis of
389 Bz-RGFFP- 4M β NA. The fluorescence signals were captured at 15-minute intervals with the
390 VICTOR Multilabel plate reader (VICTOR X3). Due to the intrinsic reduction of fluorescence
391 associated with fluorescence resonance energy transfer (FRET)-based cleavage assays,
392 fluorescence from varied concentrations of free Edans (from 0.625 to 40 μ M) in the assay buffer
393 was used to generate a standard calibration curve and for correction of the inner filter effect^{33,34}.
394 The obtained relative fluorescence units were converted into velocity { μ g (cleaved substrate)/s}
395 and then used to derive the kinetic and catalytic constants in GraphPad Prism v6.0. The
396 enzyme's overall ability to cleave the substrate was represented as k_{cat}/K_M ($M^{-1} s^{-1}$).

397 **Proteolytic assays on polyubiquitin substrates and macromolecules**

398 We incubated 20 μ g of polyubiquitin substrate (K⁴⁸-linked) or 0.25mg/mL of bovine
399 serum albumin with 2.0 μ M of freshly purified recombinant *PfDdi1* in the 50 mM sodium acetate
400 buffer (as described previously), pH 5.0, in a final volume of 100 μ l. Triplicate assays and the
401 control (substrate alone) mixture were incubated at 37°C for 2h. The mixtures were centrifuged
402 and then resolved in a 12% SDS-PAGE. Cleavage of the polyubiquitin substrate was probed
403 using rabbit anti-ubiquitin antibodies and then detected by enhanced chemiluminescence (ECL)
404 using the Bio-Rad ChemiDocTM MP imaging. On the other hand, cleavage of the BSA substrate
405 was stained by coomassie brilliant blue. The arbitrary band intensity values were presented as
406 means \pm standard error (SE).

407 **In vitro culture of *Plasmodium falciparum* and drug treatment**

408 *P. falciparum* parasites (3D7 strain) were cultured and maintained in purified human red blood
409 cells at 4% hematocrit, in RPMI 1640 medium (Gibco) supplemented with 0.25% Albumax I

410 (Gibco), 2 g/L Sodium bicarbonate (Sigma), 0.1 mM hypoxanthine (Sigma), and gentamicin
411 (Gibco). Parasite cultures were kept at 37°C with 5% CO₂, 3% O₂, and 92% N₂. The parasites
412 (ring stage; 2-4 hpi) were tightly synchronized with 5% (v/v) D-sorbitol (Sigma) and then
413 monitored by Giemsa staining of methanol-fixed blood smears. Tightly synchronized mid-
414 trophozoites were diluted to 5% parasitaemia and then subjected to the drug treatment
415 (artemisinin; 1µM, DHA; 1µM, MMS; 0.05% or LPV; 50µM, for 4hr. DMSO was used as a
416 vehicle treatment for all the assays. The parasite cell pellets were washed with ice-cold PBS and
417 then lysed with 0.15% (w/v) saponin and radioimmunoprecipitation assay buffer (RIPA buffer)
418 as described previously. The protein content was normalized with BCA assay and then resolved
419 by a 10% SDS PAGE. The gel was transferred to a nitrocellulose membrane blocked with 5%
420 (w/v) skim milk for 1 h at room temperature and probed with primary rabbit anti-ubiquitin
421 antibody (1:100) overnight at 4 °C, followed by HRP-conjugated secondary antibody for 1 h at
422 room temperature. The blots were processed by ECL reagents and then detected using the Bio-
423 Rad ChemiDocTM MP imaging.

424 **Enzyme inhibition assays**

425 For the enzyme inhibition assays, we preincubated 2.0µM of the enzyme with drug
426 compounds { artemisinin (1µM), DHA (1µM) MMS (0.05%) or LPV (50µM), in sodium acetate
427 buffer, pH 5.0 for 10 minutes, at ~24°C. We then added 10 µM of the fluorescence substrates or
428 20µg of polyubiquitin protein and the inhibition experiments were carried out at 37°C. The
429 fluorescence signals and the protein degradation were processed as early described. The
430 experiments were carried out in triplicates and fluorescence inhibition was expressed as a
431 percentage of the control.

432 **Protein-drug interaction assays (optical methods; SPR and BLI)**

433 All the SPR or BLI experiments were performed using a T200 instrument (Biacore) or
434 the Bio-Layer Interferometry (BLI) Octet RED96e platform (FortéBio). Freshly prepared
435 HEPES buffered saline (HBS)-EP (0.01 M HEPES; pH 7.4, 0.15 M NaCl, 0.003 M EDTA,
436 0.05% vol/vol P20 surfactant) or DMSO was used as running buffer for the experiments. For the
437 SPR interaction assay, over 8500 response units (RU) of the recombinant *PfDdi1* in sodium
438 acetate buffer (pH 4.5) was immobilized on a SPR CM5 sensor via amine coupling³⁵. A blank
439 flow cell was used for reference corrections. Heme detoxification protein (HDP) was also
440 immobilized on the CM5 sensor and used as the control protein. For the BLI interaction assay,
441 biotinylated *PfDdi1*, diluted to a concentration of 25 µg/mL in kinetics buffer (HBS-EP with
442 0.1 mg/ml BSA) was immobilized on streptavidin-coated (SA) biosensors (FortéBio). The ligand
443 was immobilized up to a maximum of 0.8 nm shift. Reference biosensors loaded with the ligand
444 but dipped into wells containing only the buffer were run in parallel to control for possible drifts
445 and establishment of baseline. Serial two-fold dilutions of the compounds; artemisinin (1µM),
446 lopinavir (50µM) or MMS (0.05%), diluted in the running buffer, were used and the kinetics
447 performed at 25°C. In the SPR experiments, a total of 0.2mL of the sample was injected while in
448 BLI, each biosensor was stirred in 0.2 mL of the sample at 1000 rpm. The kinetics data was
449 analyzed using the Biacore T200 evaluation software v3.1 or the Octet Software v10.0. The
450 affinity between the immobilized protein and the compounds was expressed as dissociation
451 constant (K_D).

452 ***PfDdi 3D model generation and in silico docking***

453 PlasmoDB(<https://plasmodb.org/plasmo/>) and UniProt(<https://www.uniprot.org/>) were used to
454 retrieve sequences for Ddi1 proteins³⁶. Artemisinin chemical structure was retrieved from
455 PubChem database (<https://pubchem.ncbi.nlm.nih.gov/>). To identify conserved domains in the

456 *PfDdi1* protein, we performed PFAM and INTERPROSCAN search^{37,38}. We then used
457 CLUSTAL-Omega version 1.2.4 to perform multiple sequence alignment³⁹. SWISS-model was
458 used to generate three dimensional (3D) model for *PfDdi1*⁴⁰, and then Rampage tool was used for
459 quality check analysis for the predicted model⁴¹. AutoDock tools were used to perform docking
460 analysis⁴² and the generated images of the molecular models were visualized using PyMol
461 (<https://pymol.org/2/>).

462 **Immunofluorescence assay**

463 Immunofluorescence assay (IFA) was performed with *Plasmodium* parasite cells in suspension.
464 Briefly, parasite pellet was washed in 1×PBS and fixed in 4% v/v formaldehyde supplemented
465 with 0.0075% v/v glutaraldehyde in PBS for 30 min at RT. The cells were then permeabilized in
466 0.1% Triton X-100 in PBS for 20 min and then washed in 1×PBS. We then blocked with 5%
467 BSA for 1h at room temperature, and then incubated with primary antibodies (anti-Ddi1)
468 overnight at 4°C, followed by incubation with fluorophore-conjugated secondary antibodies
469 (1:100,000 in 3% BSA). DAPI was added and incubated for 20 min. Thin blood smears of the
470 stained cells were made on microscope slides and mounted with cover slips. The slides
471 were imaged using a Nikon Eclipse Ti-E microscope. Images were processed using the NIS-
472 Elements AR (4.40 version) software. For 3D reconstruction, we used Imaris x64
473 version 6.7 (Bitplane).

474 ***In Situ* DNA Fragmentation (TUNEL) Assay:**

475 Treated or solvent alone cells (trophozoite-rich) were fixed and permeabilized as described
476 above. DNA fragmentation was assessed by TUNEL using *In Situ* Cell Death Detection Kit,
477 TMR Red (Roche Applied Science, Mannheim, Germany), following the manufacturer's

478 instructions. Briefly, the permeabilized cells were incubated with TdT enzyme and fluorescein-
479 12-dUTP for 1 h at 37°C, followed by DAPI for 20 min and then washed in 1 × PBS. Thin blood
480 smears of the labeled parasite cells were made on microscope slides and then imaged as
481 described above. The percentage of TUNEL-positive cells was estimated.

482 **Generation of transgenic yeast cells**

483 To know whether the *PfDdi1* is a true yeast orthologue, we performed complementation
484 studies in *S. cerevisiae* yeast cells. We amplified deletion constructs using primers bearing the
485 nourseothricin (NAT) selection marker (Supplementary Table 1). The genes were deleted by
486 homologous recombination and the integration confirmed by PCR-based genotype analysis. On
487 the other hand, the genes encoding full-length *PfDdi1* were amplified from gDNA using primers
488 as shown in supplementary Table 1. The PCR products were cloned into pGPD2 yeast
489 expression vector at SpeI/XhoI site. The constructs were then transformed into the the *S.*
490 *cerevisiae* strain BY4741 by the lithium acetate method⁴³.Selection of transformants were
491 performed by plating over synthetic complete (SC) medium lacking uracil. Deletions were
492 confirmed by genomic DNA PCR with appropriate set of primers (Supplementary Table 1).

493 **Phenotypic characterization**

494 **Protein secretion assay and growth rate**

495 The secretion assay was performed following the protocol described by²⁹. Briefly, we
496 inoculated a single colony from each strain into 5mL synthetic complete (SC) medium (0.67%
497 YNB with all amino acids but not uracil) in conical centrifuge tubes. The culture was incubated
498 for 48h at 30°C in an orbital shaking incubator.We then pipetted 1 ml ofculture into pre-weighed
499 microcentrifuge tubes and separated the supernatantfrom pellet by centrifugation for 5 min at 13

500 000 rpm. The protein content in the supernatant was estimated using the Pierce BCA Protein
501 Assay Kit (Thermo Scientific) with BSA as a standard. The cell pellet was dried at 100°C and
502 weighed. The assays were done in triplicates and the concentration was expressed as milligrams
503 of protein secreted per milligram of dry cell weight.

504 **Treatment with (genotoxic) compounds**

505 Yeast cells were grown to mid log phase and adjusted to 0.1 OD₆₀₀. Serial dilutions were
506 prepared and spotted on SC-based agar plates supplemented with hydroxyurea (50μM),
507 methylmethanesulfonate (0.05%), camptothecin (6μg/ml), artemisinin (12μM), chloroquine
508 (3mM), or lopinavir (50μM). The plates were incubated at 30°C for 48 h. For yeast growth curve
509 assays, we followed the protocol as described by⁴⁴, with few modifications, in a liquid handling
510 system (Tecan, Austria). Briefly, we inoculated a 96-well microplate with 5μL of fresh midlog-
511 phase cell cultures. Each well contained SC media supplemented with either of the compounds in
512 a total volume of 0.2 mL. The cells were incubated for 24 hours at 30°C and the cell population
513 was recorded at an interval of 30 min. All the samples were prepared in triplicates.

514 **Statistical analyses**

515 We exported the data to Excel (Microsoft) and carried out statistical analyses and data
516 representation using SPSS Statistics v16 or GraphPad Prism v6.0. Nonlinear regression analysis
517 was used to determine the enzyme kinetic constants (K_m and V_{max}). The drug binding affinities
518 (K_D values) were calculated after analysis of the association and dissociation from a 1:1 binding
519 model. The results (bars) represent means ± standard error. The authors declare that they have no
520 conflicts of interest with the contents of this article.

522 **Acknowledgement**

523 I thank the International Centre for Genetic Engineering and Biotechnology (ICGEB) for
524 awarding me the Arturo Falaschi ICGEB Predoctoral fellowship (F/KEN18-10) and providing
525 the state-of-the-art facility at the ICGEB, New Delhi component, for the execution of my
526 experiments. This work has been funded by JC Bose fellowship (DST/21/015) conferred to Dr
527 Pawan Malhotra by SIBRI (Department of Science and Technology, India) and Flagship Grant
528 given to ICGEB (DBT/10/026). I am grateful to Dr. Dinakar Salunke for critically reviewing the
529 manuscript. I also thank Prof. Goldberg, Daniel (Washington University) for his enormous
530 contribution and criticism in the development of this manuscript.

531

532 **Conflict of interest**

533 The authors declare that they have no conflict of interest.
534

535

536

537

538

539

540

541 References

542 1. WHO. *World malaria report*. (2019).

543 2. Ashley, E. A. *et al.* Spread of Artemisinin Resistance in *Plasmodium falciparum* Malaria.

544 3. Phyo, A. P. *et al.* Emergence of artemisinin-resistant malaria on the western border of

545 Thailand: A longitudinal study. *Lancet* **379**, 1960–1966 (2012).

546 4. Roper, C., Pearce, R., Nair, S., Sharp, B. & Nosten, F. Intercontinental Spread of

547 Pyrimethamine-Resistant Malaria. *Science* (80-.). **305**, 1124 (2016).

548 5. Das, S., Saha, B., Hati, A. K. & Roy, S. Evidence of Artemisinin-Resistant *Plasmodium*

549 *falciparum* Malaria in Eastern India. *N. Engl. J. Med.* **379**, 2018–2020 (2018).

550 6. Ariey, F. *et al.* A molecular marker of artemisinin-resistant *Plasmodium falciparum*

551 malaria. *Nature* **505**, 50–55 (2014).

552 7. Wang, J. *et al.* Haem-activated promiscuous targeting of artemisinin in *Plasmodium*

553 *falciparum*. *Nat. Commun.* **6**, 1–11 (2015).

554 8. Tilley, L., Straimer, J., Gnädig, N. F., Ralph, S. A. & Fidock, D. A. Artemisinin action

555 and resistance in *Plasmodium falciparum*. *Trends Parasitol* **32**, 682–696 (2016).

556 9. Gopalakrishnan, A. M. & Kumar, N. Antimalarial Action of Artesunate Involves DNA

557 Damage Mediated by. *Antimicrob. Agents Chemother.* **59**, 317–325 (2015).

558 10. Gupta, D. K., Patra, A. T., Zhu, L., Gupta, A. P. & Bozdech, Z. DNA damage regulation

559 and its role in drug-related phenotypes in the malaria parasites. *Sci. Rep.* 1–15 (2016)

560 doi:10.1038/srep23603.

561 11. Ismail, H. M., Barton, V., Phanchana, M., Charoensutthivarakul, S. & Wong, M. H. L.

562 Artemisinin activity-based probes identify multiple molecular targets within the asexual

563

564 stage of the malaria parasites *Plasmodium falciparum* 3D7. *PNAS* **113**, (2016).

565 12. Bridgford, J. L. *et al.* Artemisinin kills malaria parasites by damaging proteins and
566 inhibiting the proteasome. *Nat. Commun.* **3801**, 1–9 (2018).

567 13. Rocamora, F. *et al.* Oxidative stress and protein damage responses mediate artemisinin
568 resistance in malaria parasites. (2018) doi:10.1371/journal.ppat.1006930.

569 14. Meuwissen, J. H. *et al.* Population transcriptomics of human malaria parasites reveals the
570 mechanism of artemisinin resistance. *Science (80-.).* **347**, 431–436 (2015).

571 15. Mbengue, A. *et al.* A molecular mechanism of artemisinin resistance in *Plasmodium*
572 *falciparum* malaria. *Nat. Rev. Microbiol.* **520**, 683–687 (2015).

573 16. Dogovski, C. *et al.* Targeting the Cell Stress Response of *Plasmodium falciparum* to
574 Overcome Artemisinin Resistance. *PLoS Biol.* **13**, 1–26 (2015).

575 17. Li, H. *et al.* Structure- and function-based design of *Plasmodium*-selective proteasome
576 inhibitors. *Nature* **530**, 233–236 (2016).

577 18. Kirkman, L. A. *et al.* Antimalarial proteasome inhibitor reveals collateral sensitivity from
578 intersubunit interactions and fitness cost of resistance. *PNAS* **115**, 6863–6870 (2018).

579 19. Hunt, P. *et al.* Gene encoding a deubiquitinating enzyme is mutated in artesunate- and
580 chloroquine-resistant rodent malaria. *Mol. Microbiol.* **65**, 27–40 (2007).

581 20. Zhang, M. *et al.* Uncovering the essential genes of the human malaria parasite
582 *Plasmodium falciparum* by saturation mutagenesis. *Science (80-.).* **506**, 6388 (2018).

583 21. Onchieku, N. M. *et al.* Deciphering the targets of retroviral protease inhibitors in
584 *Plasmodium berghei*. *PLoS One* **13**, 1–16 (2018).

585 22. Lehrbach, N. J. & Ruvkun, G. Proteasome dysfunction triggers activation of SKN-1A /
586 Nrf1 by the aspartic protease DDI-1. *Elife* **5**, 1–19 (2016).

587 23. Yip, M. C. J., Bodnar, N. O. & Rapoport, T. A. Ddi1 is a ubiquitin-dependent protease.

588 *PNAS* **117**, 7776–7781 (2020).

589 24. Zhang, H. *et al.* *Toxoplasma gondii* UBL-UBA shuttle proteins contribute to the

590 degradation of ubiquitinated proteins and are important for synchronous cell division

591 and virulence. *FASEB J.* **34**, 13711–13725 (2020).

592 25. Bushell, E. *et al.* Functional Profiling of a Plasmodium Genome Reveals an Abundance of

593 Essential Genes Article Functional Profiling of a Plasmodium Genome Reveals an

594 Abundance of Essential Genes. *Cell* **170**, 260-272.e8 (2017).

595 26. Perteguer, M. J. *et al.* Ddi1-like protein from *Leishmania major* is an active aspartyl

596 proteinase. *Cell Stress Chaperones* **18**, 171–181 (2013).

597 27. Hien, T. T. *et al.* Comparative pharmacokinetics of intramuscular artesunate and

598 artemether in patients with severe falciparum malaria. *Antimicrob. Agents Chemother.* **48**,

599 4234–4239 (2004).

600 28. Serbyn, N., Noireterre, A., Bagdiul, I., Loewith, R. & Δ, Δ. The Aspartic Protease Ddi1

601 Contributes to DNA- Protein Crosslink Repair in Yeast Article The Aspartic Protease

602 Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast. *Mol. Cell* **77**, 1066–1079

603 (2020).

604 29. White, R. E., Dickinson, J. R., Semple, C. A. M., Powell, D. J. & Berry, C. The retroviral

605 proteinase active site and the N-terminus of Ddi1 are required for repression of protein

606 secretion. *FEBS Lett.* **585**, 139–142 (2011).

607 30. Miotto, O. *et al.* Multiple populations of artemisinin-resistant *Plasmodium falciparum* in

608 Cambodia. *Nat. Genet.* **45**, 1–26 (2013).

609 31. Jelinsky, S. A., Estep, P., Church, G. M. & Samson, L. D. Regulatory Networks Revealed

610 by Transcriptional Profiling of Damaged *Saccharomyces cerevisiae* Cells : Rpn4 Links.

611 *Mol. Cell. Biol.* **20**, 8157–8167 (2000).

612 32. Li, W. *et al.* Yeast Model Uncovers Dual Roles of Mitochondria in the Action of

613 Artemisinin. *PLoS Pathog.* **1**, (2005).

614 33. Zhang, L., Lin, D., Sun, X., Curth, U. & Drosten, C. Crystal structure of SARS-CoV-2

615 main protease provides a basis for design of improved α -ketoamide inhibitors. *Science*

616 (80-.). **412**, 409–412 (2020).

617 34. Liu, Y. *et al.* Use of a Fluorescence Plate Reader for Measuring Kinetic Parameters with

618 Inner Filter Effect Correction. *Anal. Biochem.* **335**, 331–335 (1999).

619 35. Kamat, V. & Ra, A. Exploring sensitivity & throughput of a parallel flow SPRi biosensor

620 for characterization of antibody-antigen interaction. *Anal. Biochem.* **525**, 8–22 (2017).

621 36. Bahl, A. *et al.* PlasmoDB : The Plasmodium genome resource . An integrated database

622 providing tools for accessing , analyzing and mapping expression and sequence data (both

623 finished and unfinished). *Nucleic Acids Res.* **30**, 87–90 (2002).

624 37. Finn, R. D. *et al.* The Pfam protein families database. *Nucleic Acids Res.* **36**, 281–288

625 (2008).

626 38. Jones, P. *et al.* Sequence analysis InterProScan 5 : genome-scale protein function

627 classification. *Bioinformatics* **30**, 1236–1240 (2014).

628 39. Park, Y. *et al.* The EMBL-EBI search and sequence analysis tools APIs in 2019 F abio.

629 *Nucleic Acids Res.* **47**, 636–641 (2019).

630 40. Kiefer, F., Arnold, K. & Ku, M. The SWISS-MODEL Repository and associated

631 resources. *Nucleic Acids Res.* **37**, 387–392 (2009).

632 41. Lovell, S. C. *et al.* Structure Validation by Phi,psi and Cbeta Deviation. *Proteins* **450**,

633 437–450 (2003).

634 42. Morris, G. M. *et al.* AutoDock4 and AutoDockTools4: Automated Docking with Selective
635 Receptor Flexibility. *J Comput Chem* **30**, 2785–2791 (2010).

636 43. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. Transformation of Intact Yeast Cells
637 Treated with Alkali Cations. *J. Bacteriol.* **153**, 163–168 (1983).

638 44. Toussaint, M. & Conconi, A. High-throughput and sensitive assay to measure yeast cell
639 growth : a bench protocol for testing genotoxic agents. *Nat. Protoc.* **4**, (2006).

640

641

642

643

644

645

646

647

648

649

650

651 **Figure Legends**

652 **Fig. 1: *PfDdi1* hydrolyzes both peptide substrates and proteins.** (a) Coomassie stained SDS-PAGE
653 and Western blot analysis using α -His antibodies to detect the purified recombinant *PfDdi1* (~44 kDa)
654 and its processed fragment (~34 kDa). The soluble, recombinant protein was purified using the Ni-NTA
655 resin. (b) Mice or rabbit ant-Ddi1 antibodies detected a band of ~49 kDa from a parasite lysate. (c)
656 Kinetics of substrate hydrolysis. The enzyme was more active on the retropepsin (DABCYL-Gaba-
657 SQNYPIVQ-EDANS) substrate compared to the proteasome (Suc-LLVY-AMC) substrate. (d) Western
658 blot analysis showing the cleavage of polyubiquitin substrate by the *PfDdi1* enzyme. The reaction was
659 incubated for 1 hr at 37°C (e) Coomassie stained SDS-PAGE showing degradation of BSA by the
660 recombinant *PfDdi1*. The samples were resolved in a 12% SDS-PAGE. (f) Quantification of the control
661 and the degraded BSA band intensities (~66 kDa). The units are arbitrary (AU) and the bars show the
662 mean \pm standard error for three independent reactions.

663

664

665 **Fig. 2: Artemisinin exposure enhances protein ubiquitination and blocks the *PfDdi1* activity.** (a)
666 Western blot analysis showing increased ubiquitination in drug-treated *P. falciparum* parasites compared
667 to the control. (b) Artemisinin (1 μ M) blocked the cleavage of the polyubiquitin substrates. The parasite
668 lysates were probed with rabbit anti-ubiquitin antibodies and the blots are a representative of three
669 independent assays. (c, d) Percentage inhibition of the *PfDdi1* enzyme activity against the retropepsin (c)
670 and proteasome (d) substrate, determined at 3 hours (e) Coomassie stained SDS-PAGE showing
671 inhibition of BSA degradation by *PfDdi1*. (f) Band intensity values of the inhibition of *PfDdi1*-catalyzed
672 BSA degradation by the compounds. The intensity values are represented as arbitrary units (AU). The
673 bars show means \pm standard error for three independent reactions.

674

675 **Fig. 3: Causal relation between artemisinin-specific DNA fragmentation and *PfDdi1* subcellular
676 localization.** (a) Representative IFA images showing artemisinin induces DNA fragmentation in *P.*
677 *falciparum* parasites. The parasites were subjected to drug pressure for 1hr and then assayed using TdT-
678 mediated dUTP nick end labelling. Fragmentation was observed in more than 95% of the infected RBCs.
679 (b) Increased recruitment of *PfDdi1* into the nucleus following artemisinin pressure compared with
680 control (DMSO). The IFA staining was performed using mice anti-*PfDdi1* antibodies and then underwent

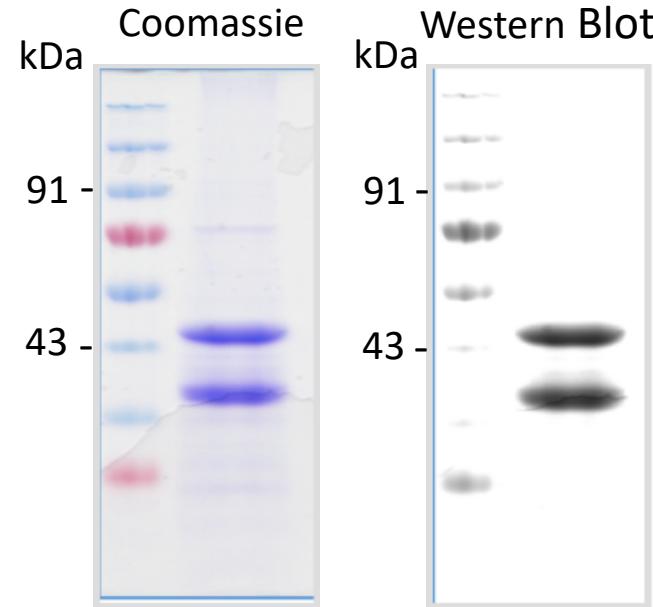
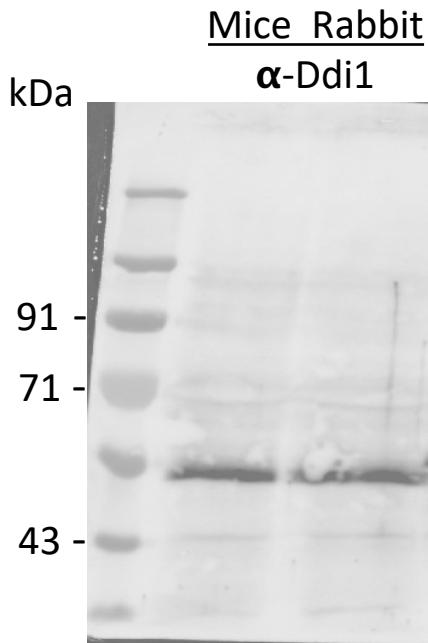
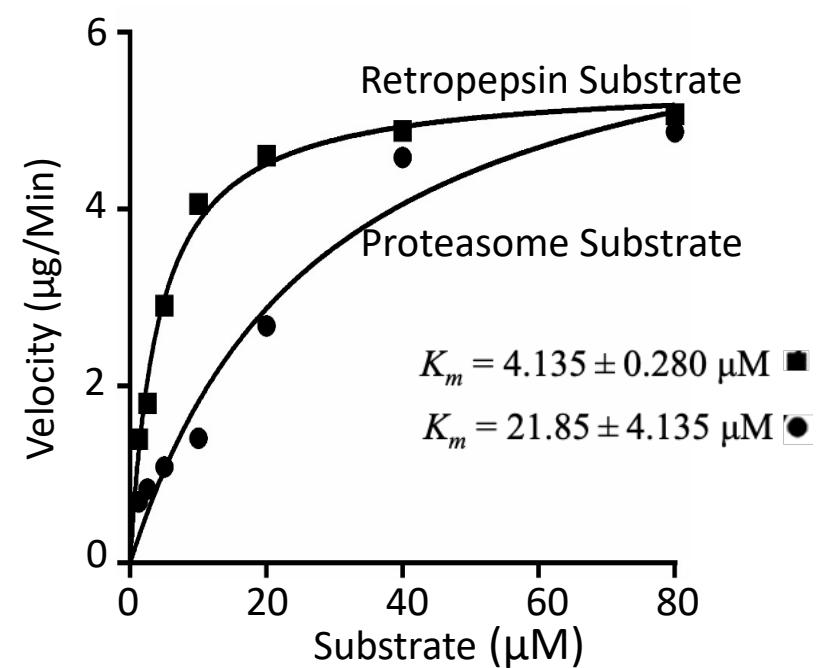
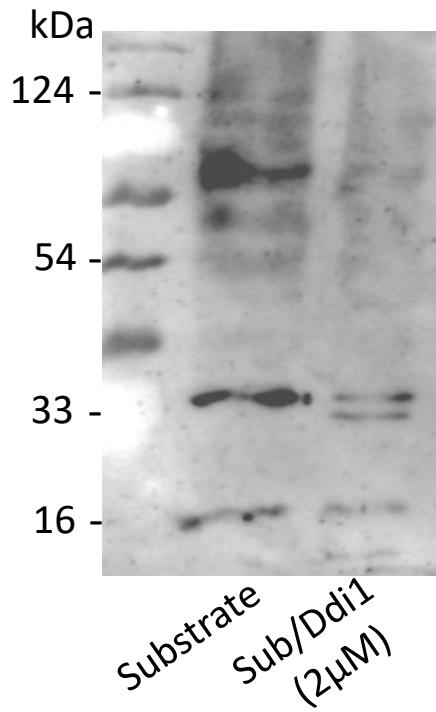
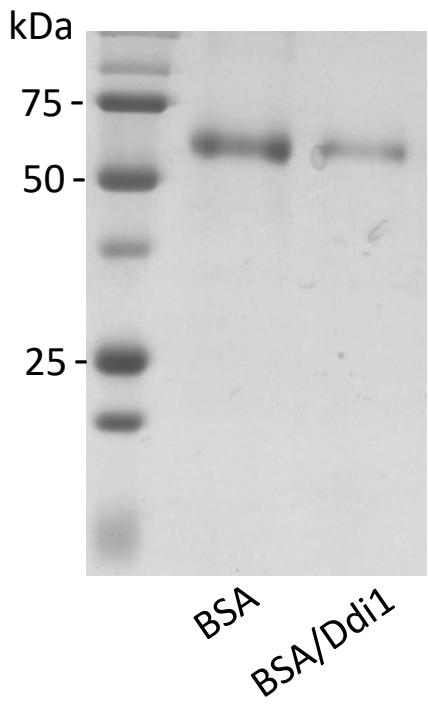
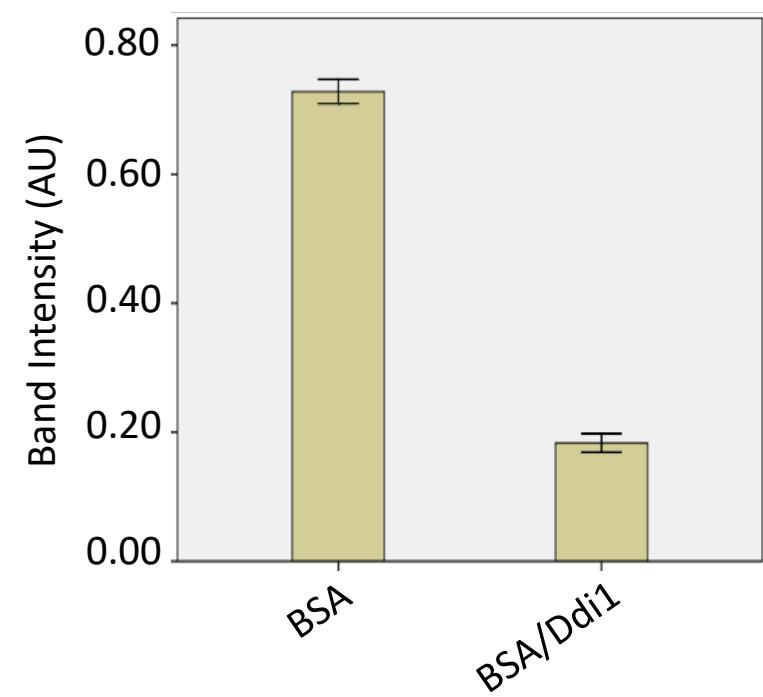
681 3D reconstruction in IMARIS software. (c) IFA staining of *P. falciparum* blood stage parasites with
682 rabbit anti-*PfDdi1* antibody showing constant expression and localization of Ddi1 in the cytoplasm. The
683 individual stains, merged images, and bright field are shown. Scale bars: 2 μ m. The experiments were
684 performed on 2–4 independent occasions with technical duplicates.

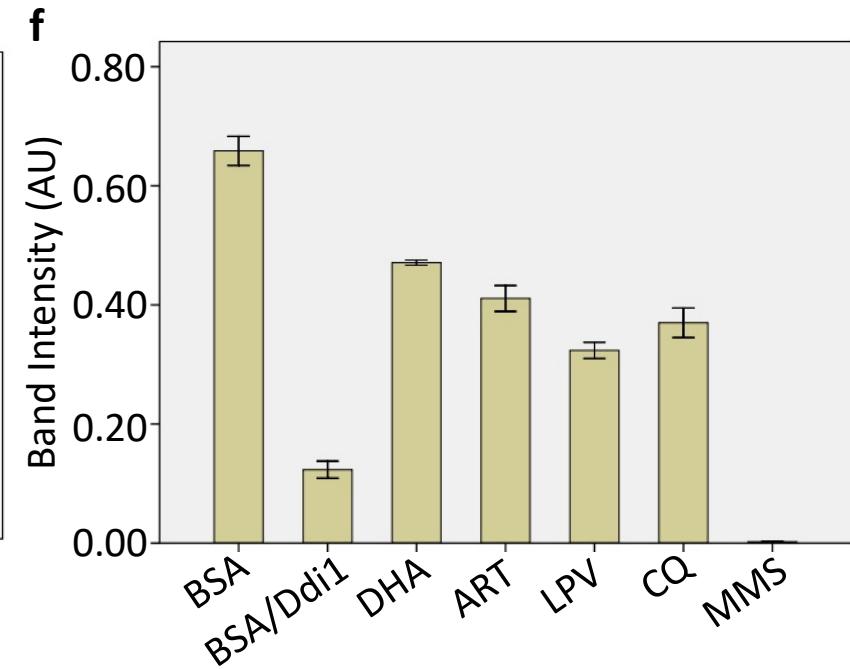
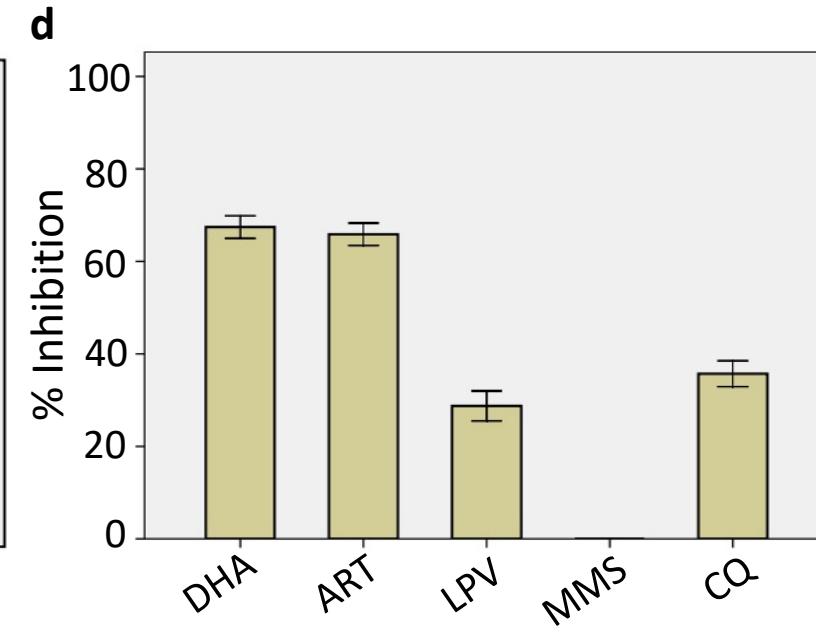
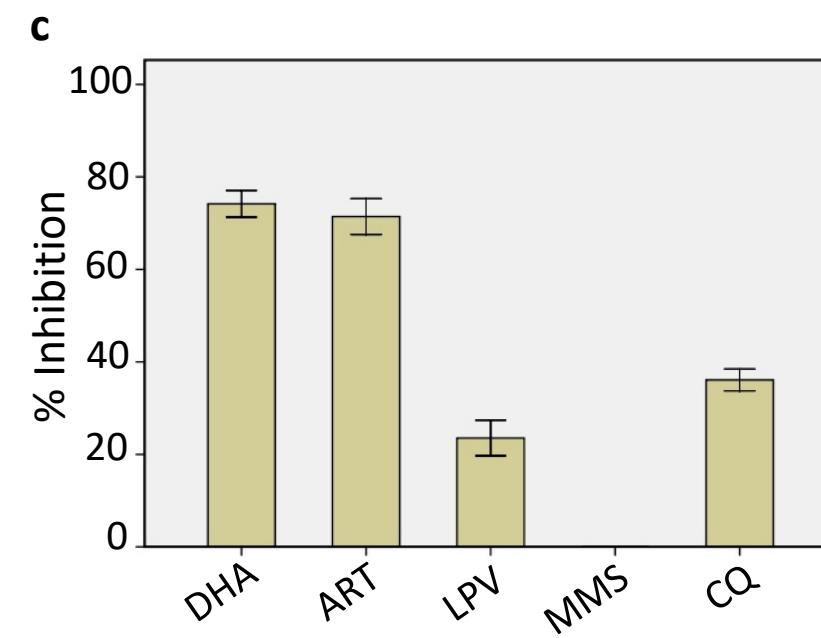
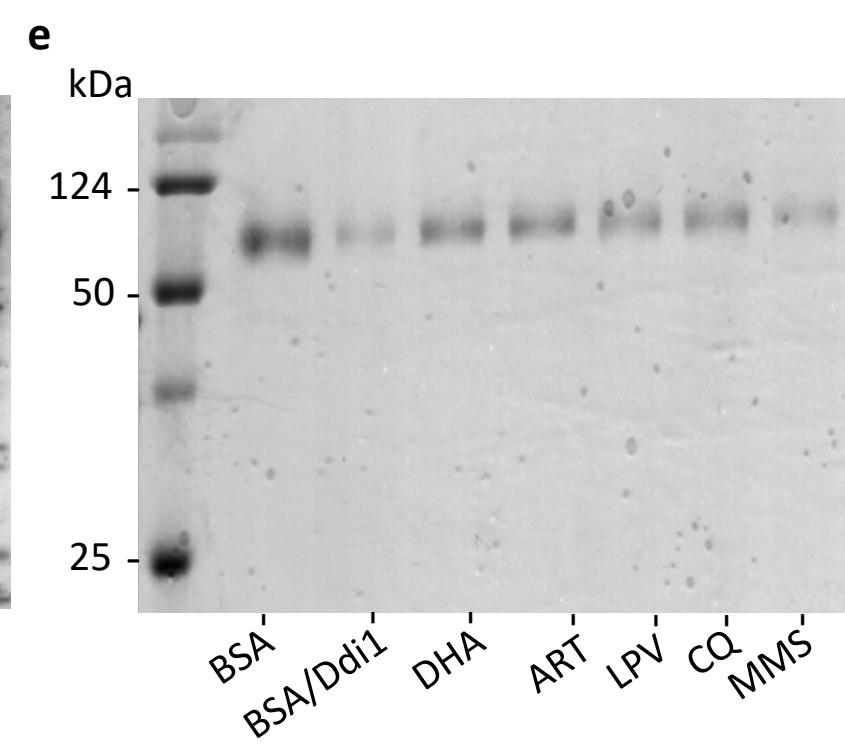
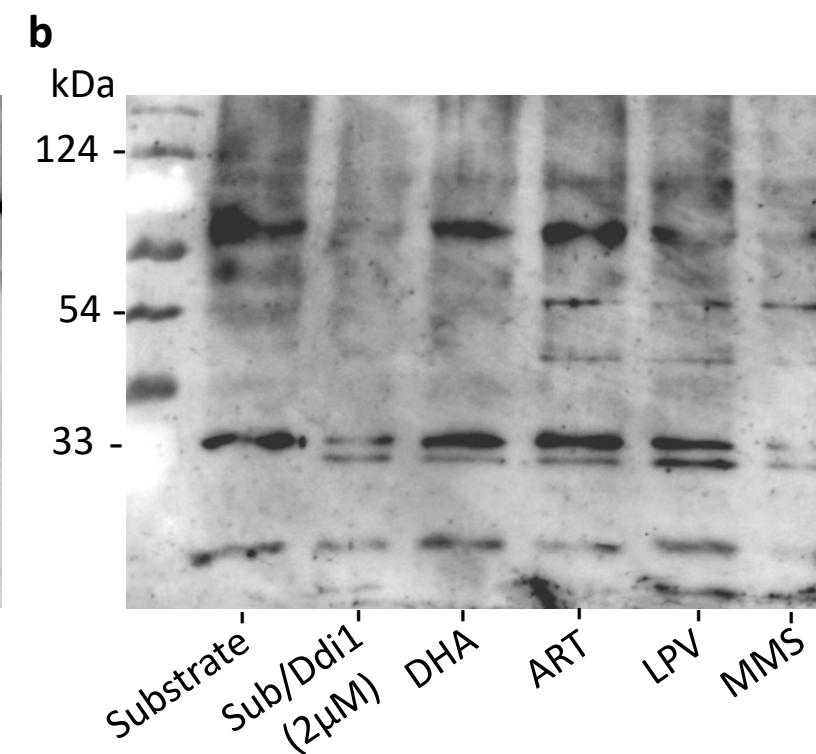
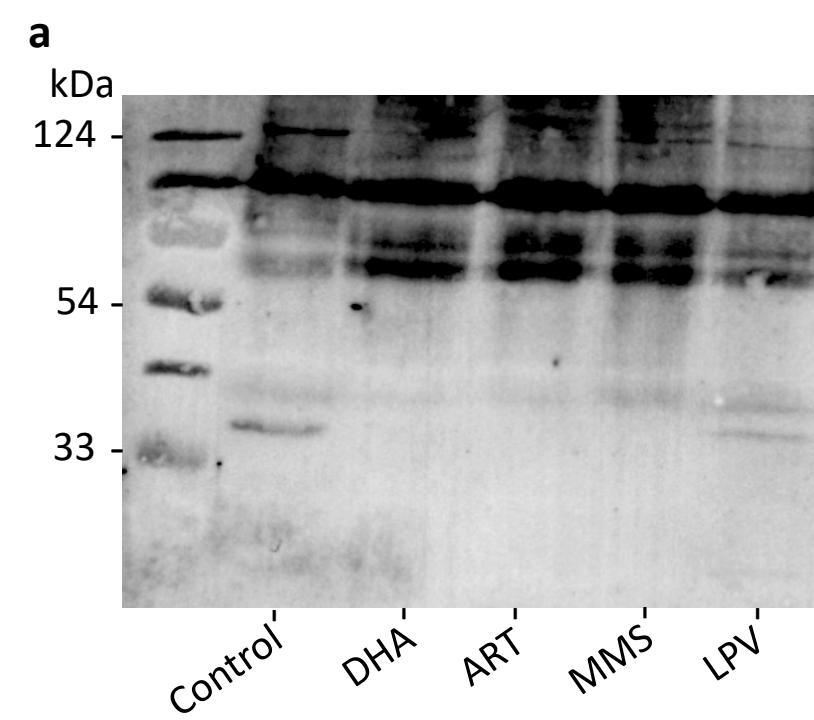
685

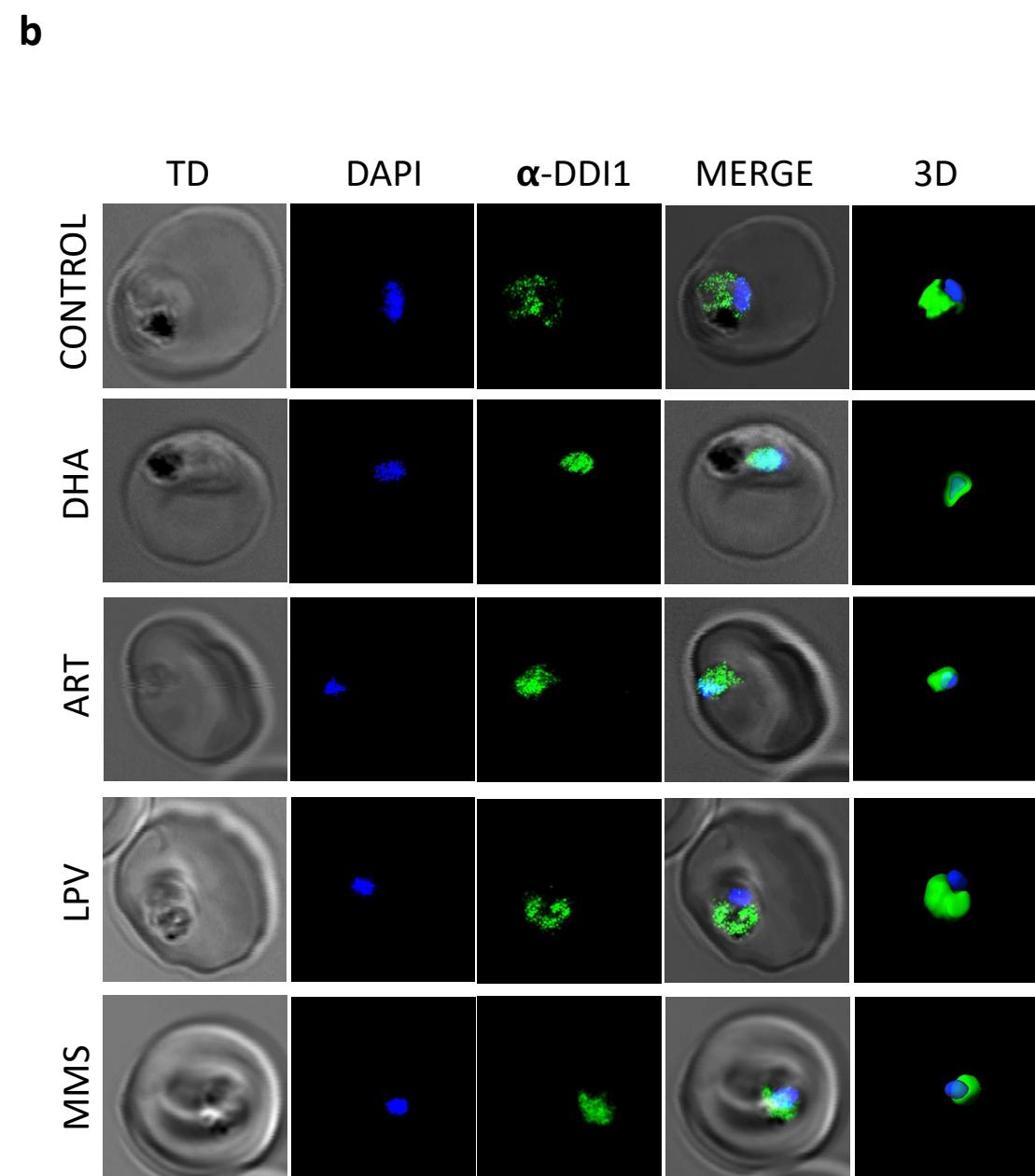
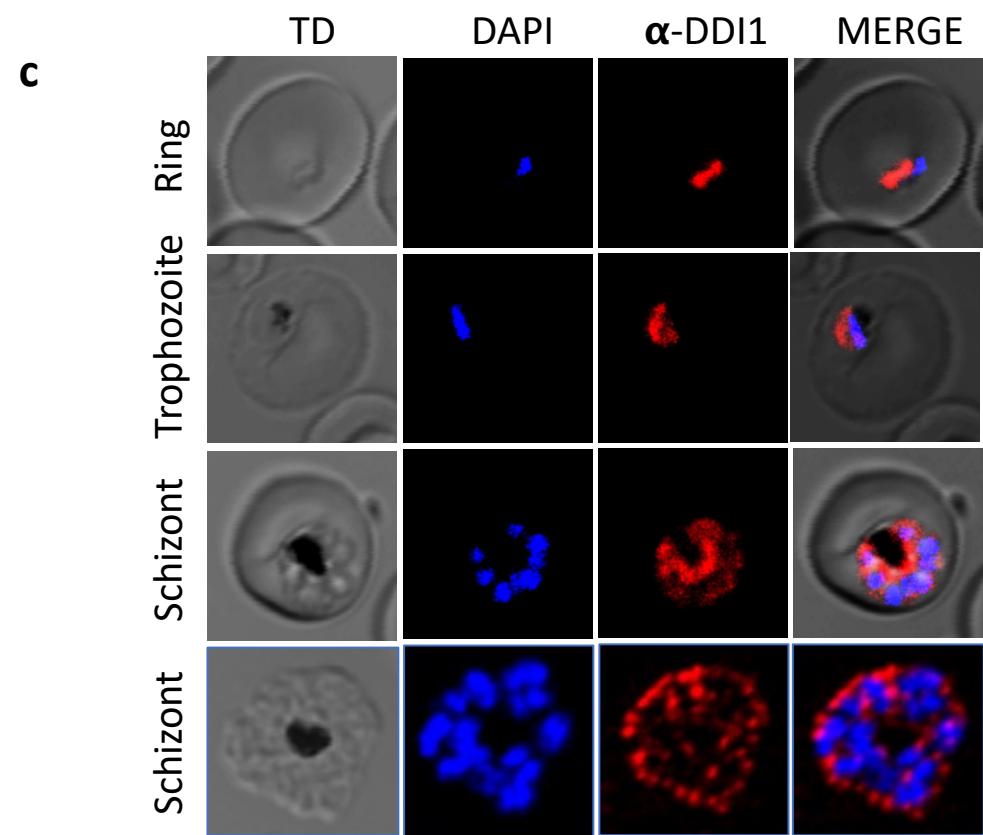
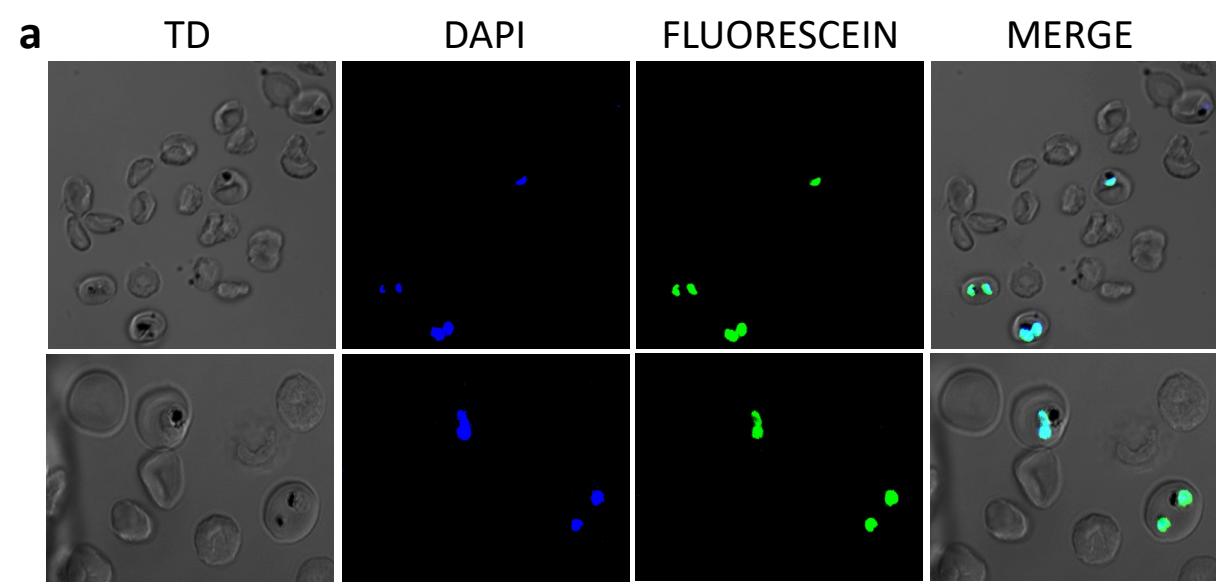
686 **Fig. 4: Artemisinin binds to the recombinant *PfDdi1* protein: SPR, BLI and *In silico* assays.** Binding
687 of artemisinin (ART; a) and Methylmethanesulfonate (MMS; b) showed high affinity interactions with
688 *PfDdi1*, compared to Lopinavir (LPV; c), as shown by the K_D values. Two independent SPR or BLI
689 experiments were performed and representative binding sensorgrams are presented. Both the real time
690 binding curves and the global 1:1 fits are shown. The binding kinetics data was analyzed using the
691 Biacore T200 evaluation software v3.1 or the Octet Software v10.0. (c): Artemisinin shows stable
692 interaction with the highly conserved aspartic protease motif “DSG” in *PfDdi1* protein. *PfDdi1* residues
693 present within 4 \AA of artemisinin and is involved in direct interaction. Homology based 3D model of the
694 *PfDdi1* RVP domain as generated by SWISSMODEL. The conserved Aspartic protease motif DSG is
695 present in the coil region. Red – helix, green – coil, yellow – sheet and blue – conserved active motif.

696

697 **Fig 5: Ddi1 deficient yeast cells are more susceptible to artemisinin pressure.** (a) Ddi1 deficient yeast
698 cells secret high levels of proteins into the media and *PfDdi1* reverts the protein secretion phenotype to
699 wild type, as did the *ScDdi1* construct. The protein content in the supernatant was estimated using the
700 Pierce BCA Protein Assay Kit and the protein concentration expressed as milligrams of protein secreted
701 per milligram of dry cell weight. Triplicate assays were conducted, and the bars represent means \pm
702 standard error. Spot test images (b) and growth curve assays (c) showing the effect of the compounds on
703 the different yeast lines. Whereas deletion of Ddi1 did not affect the growth fitness of the yeast cells,
704 Ddi1 deficient cells were more susceptible to artemisinin.







705

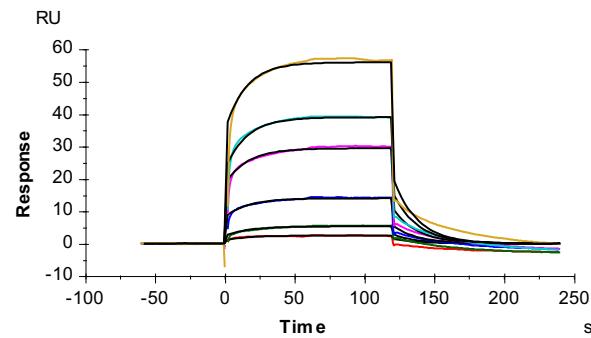






706 **Fig. 6: Model demonstrating ART-induced killing of *Plasmodium* parasites.** ART has been shown to
707 target several parasite proteins and processes. Here, we focus on the role of the *PfDdi1* in mediating the
708 actions of ART. The ART’s ubiquitous damage of parasite proteins leads to the need for tidying up via
709 the *PfDdi1* or proteasome machinery. Besides causing the protein damage, artemisinin binds to *PfDdi1*
710 and blocks the degradation of the damaged proteins. Besides, ART might be preventing the trafficking of




711 the damaged proteins to the proteasome for degradation. The blockage leads to accumulation of the
712 damaged proteins, choking the parasites thus leading to the ultimate death.

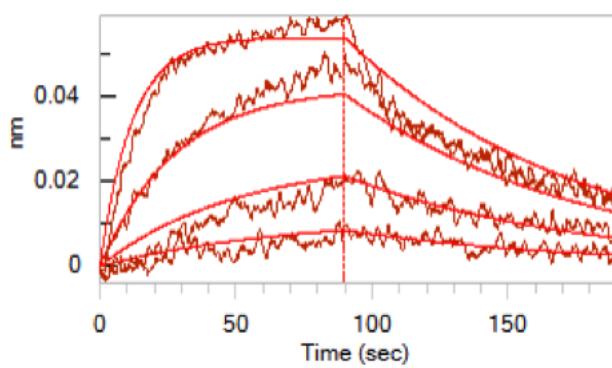
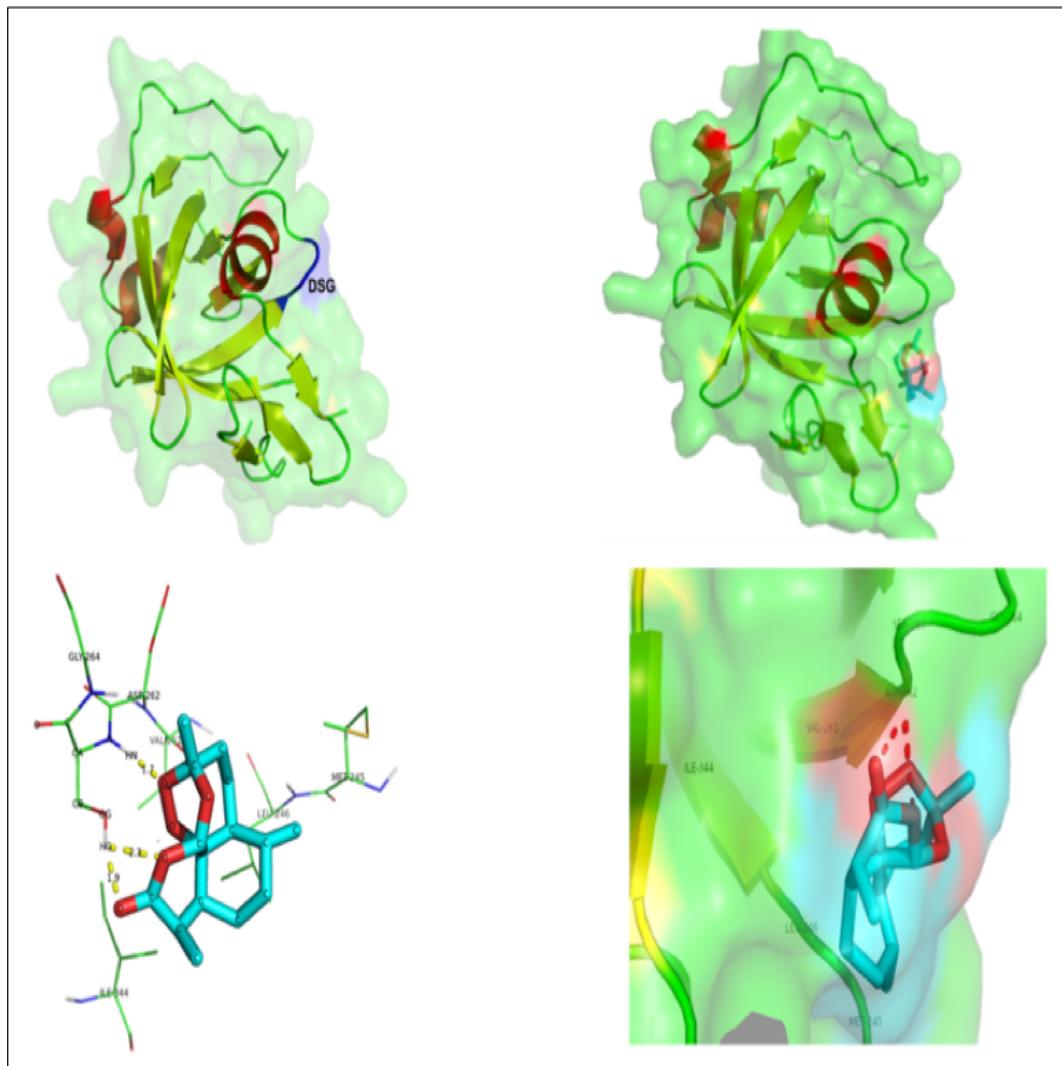
713

714

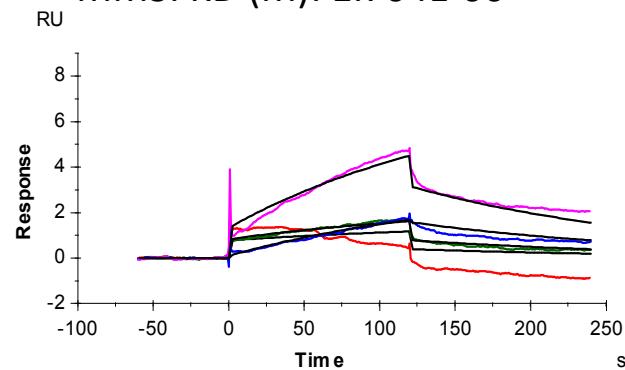
a**b****c****d****e****f**



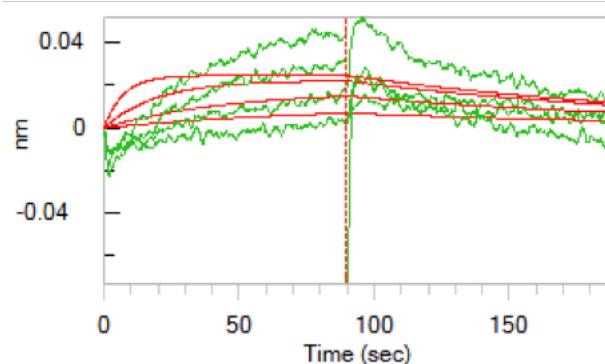
a



SPR

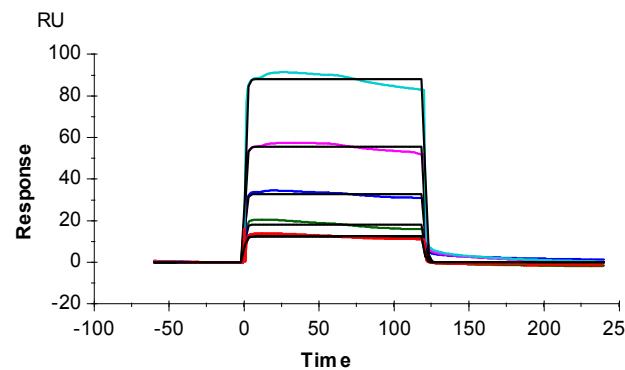
ART: KD (M): 1.062E-06

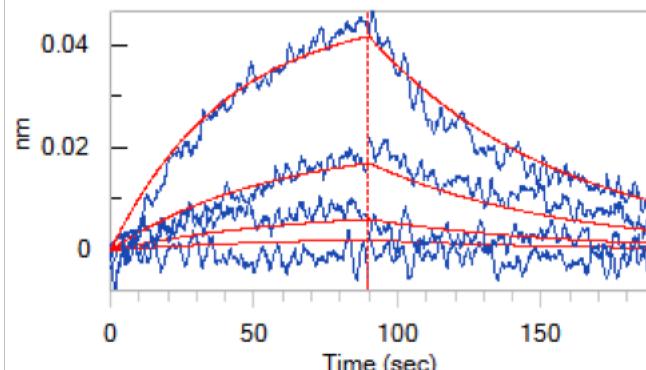


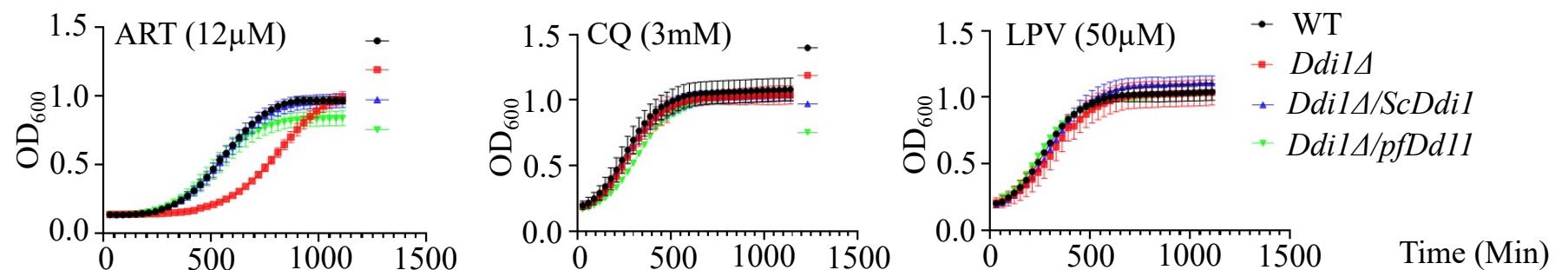
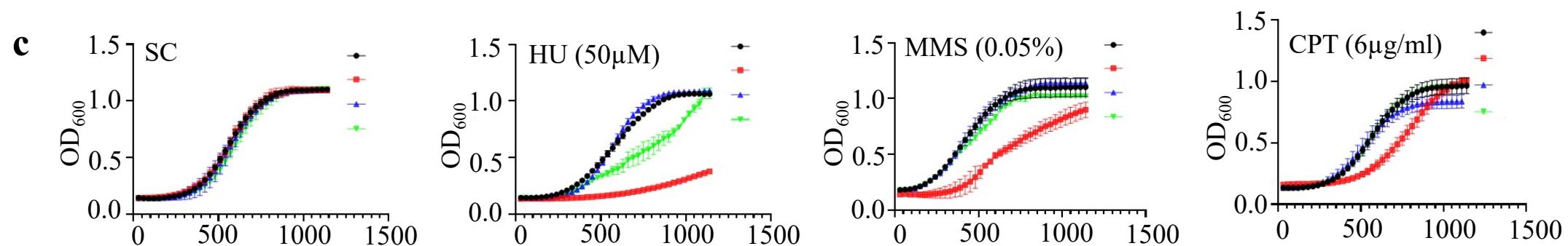
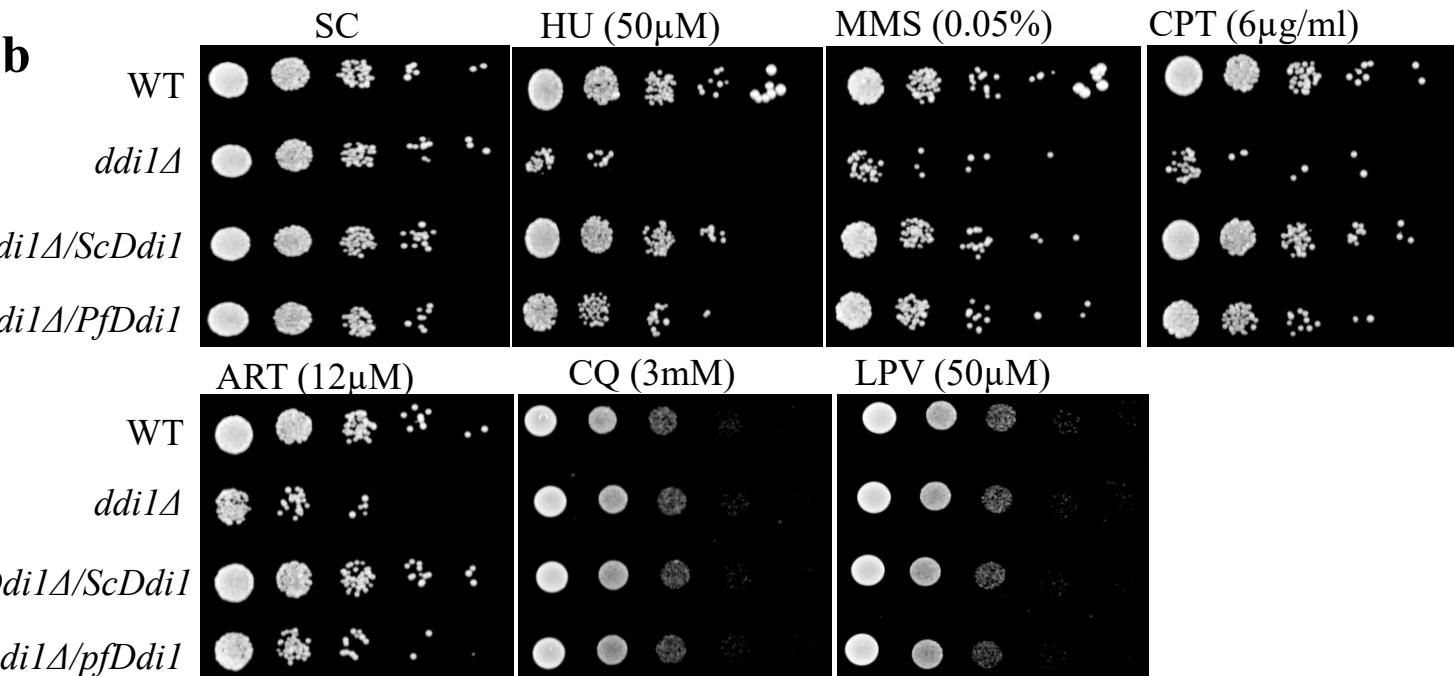
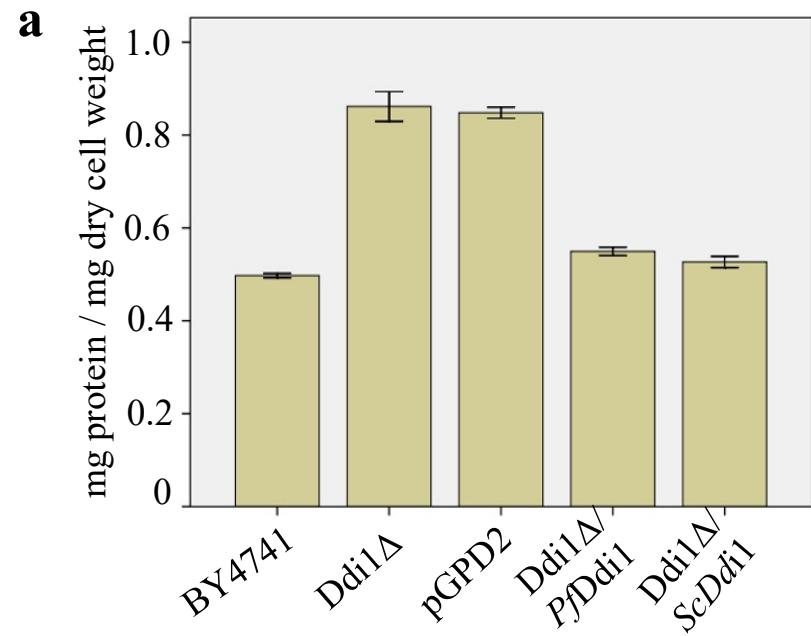
BLI

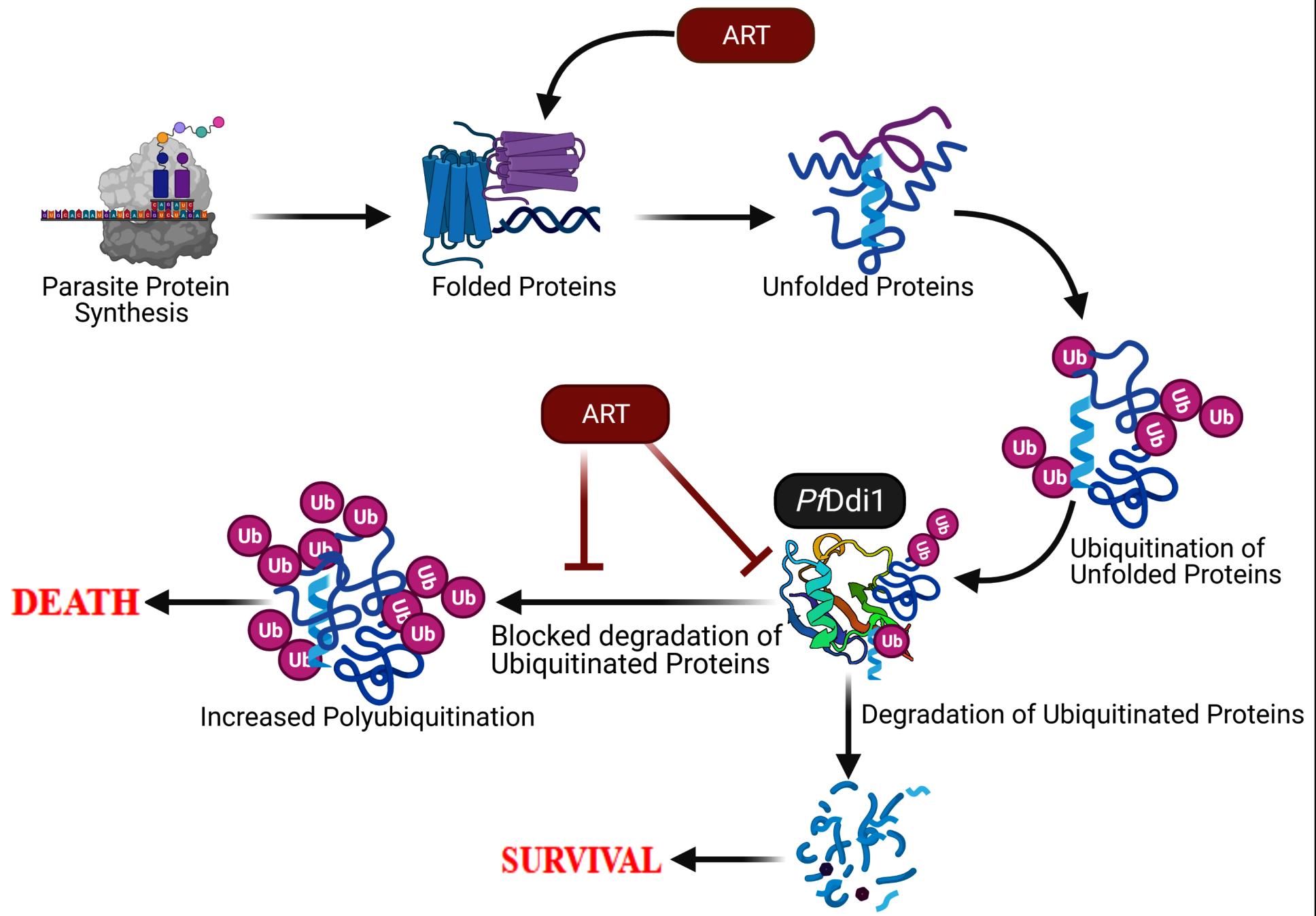

ART: KD (M): 1.556E-06

d**b**


MMS: KD (M): 1.704E-06


MMS: KD (M): 2.507E-04





c


LPV: KD (M): 2.218E-04

LPV: KD (M): 5.619E-04

