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Abstract 

Reconstructing microbial genomes from metagenomic short-read data can be challenging due to 

the unknown and uneven complexity of microbial communities. This complexity encompasses 

highly diverse populations which often includes strain variants. Reconstructing high-quality 

genomes is a crucial part of the metagenomic workflow as subsequent ecological and metabolic 

inferences depend on their accuracy, quality, and completeness. In contrast to microbial 

communities in other ecosystems, there has been no systematic assessment of genome-centric 

metagenomic workflows for drinking water microbiomes. In this study, we assessed the 

performance of a combination of assembly and binning strategies for time-series drinking water 

metagenomes that were collected over a period of 6 months. The goal of this study was to identify 

the combination of assembly and binning approaches that results in high quality and quantity 

metagenome-assembled genomes (MAGs), representing most of the sequenced metagenome. Our 

findings suggest that the metaSPAdes co-assembly strategies had the best performance as they 

resulted in larger and less fragmented assemblies with at least 85% of the sequence data mapping 

to contigs greater than 1kbp. Furthermore, a combination of metaSPAdes co-assembly strategies 

and MetaBAT2 produced the highest number of medium-quality MAGs while capturing at least 

70% of the metagenomes based on read recruitment. Utilizing different assembly/binning 

approaches also assist in the reconstruction of unique MAGs from closely related species that 

would have otherwise collapsed into a single MAG using a single workflow. Overall, our study 

suggests that leveraging multiple binning approaches with different metaSPAdes co-assembly 

strategies may be required to maximize the recovery of good-quality MAGs, which more 

accurately capture the microbial diversity of drinking water samples.  
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Introduction 

Advances in high-throughput sequencing technologies have enabled characterization of microbial 

communities without the need for cultivation (1). This has greatly facilitated our understanding of 

microbial communities that inhabit a range of natural and engineered ecosystems. Two high-

throughput sequencing technologies commonly used to characterize microbial communities 

includes gene-targeted assays that uses universal genes/regions (i.e., 16S rRNA, 18S rRNA and 

internal transcribe spacer region for bacteria/archaea, eukaryotes, and fungi, respectively) and 

short read shotgun DNA sequencing (i.e., metagenomics) (1–4). Other emerging sequencing 

approaches includes synthetic- and single-molecule long-read sequencing for both gene-targeted 

and metagenomic assays (5, 6). Gene-targeted assays provide valuable insights into the 

compositional and structural profiles of microbial communities in a fast and cost-effective manner; 

however, this approach is limited by challenges related to primer selection and amplification bias 

(7). Furthermore, taxonomic classification in gene-targeted assays is based on a fragment of a 

singular conserved universal marker gene that permits little resolution beyond the genus level and 

does not allow for the direct analysis of a microbial community’s metabolic capabilities (8). In 

some instances, putative functional assignment is possible when using gene-targeted assays; 

however, this requires the availability of a curated taxonomic databases and classification beyond 

the genus level (9). Limitations of gene-targeted assays can be overcome by utilizing genome-

resolved metagenomics (10, 11). Genome-resolved metagenomics encompasses de novo assembly 

of short high-throughput paired-end reads into longer contiguous sequences (contigs) and 

subsequent reconstruction of metagenome-assembled genomes (MAGs) through clustering (or 

binning) of contigs based on nucleotide composition and differential coverage (12, 13). This 

approach offers improved taxonomic and functional potential analysis, as well as the 

characterization of novel microorganisms using phylogenetic analysis (14).  

 

De novo assembly and reconstruction of MAGs from short-read metagenomic data can be 

challenging due to sequencing errors, repeats, depth of sequencing coverage, and the presence of 

strain variants (15, 16). These challenges influence the performance of assemblers as it creates 

unresolved ambiguities in the reconstructed contigs, leading to erroneous and/or fragmented 

assemblies. Reconstructing high-quality MAGs is a crucial part of the genome-centric 

metagenomic workflow as subsequent taxonomic, metabolic, and ecological inferences depend on 
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the accuracy, quality, and completeness of genomes. Studies have attempted to optimize the 

recovery of high-quality assemblies and MAGs by benchmarking metagenomic software for 

assembly, binning, and taxonomic classification (16–19). However, owing to the unknown 

complexity of varying environmental sample types, systematic evaluation of metagenomic 

workflows is required as tool selection depends on the complexity of the biological sample and 

the availability of computational recourses (18). 

 

Genomes are often reconstructed by assembling all the samples together (co-assembly) or creating 

individual assemblies. Co-assembly is a computationally intensive approach that involves the 

pooling of multiple metagenomes, which allow for greater sequence depth and coverage as well 

as leveraging differential coverage of microorganisms across genomes for genome binning. While 

this assembly approach can facilitate the identification of populations that are present at lower 

abundances, it can also result in ambiguous and/or fragmented assemblies when strain level 

variability is high (20, 21). In contrast, single sample assemblies are computationally less intensive 

and are often used to reconstruct genomes of larger datasets and to preserve strain variation 

between different samples (22). It has also been shown that single sample assembly produce more 

non-redundant high-quality MAGs and enables the reconstructions of genomes with similar 

phylogenetic placement compared to co-assembled genomes (14). However, lower sequence depth 

and thus lower coverage resulting from single-sample assembly in addition to the lack of 

differential coverage information, makes genome reconstructions difficult when using this 

assembly approach as coverage heuristics that are used to accurately disentangle repetitive 

sequences and differentiate between strain variants cannot be properly applied.   

 

Advances in our understanding of the drinking water microbiome have been greatly facilitated by 

the application of genome-resolve metagenomics (23–26). Despite this progress, inferences of 

microbial community dynamics in drinking water systems (DWS) have been restrained by the 

limited availability of longitudinal metagenomic datasets as most previous work was done 

utalizing gene-targeted assays in studies that were short (i.e., few time points), gapped (i.e., 

missing time points) and/or implemented over multiple spatio-temporal scales (27–29). 

Longitudinal datasets are preferred over cross-sectional studies (1) as they offer unique insights 

into the stability and dynamics of microbial communities. This is because information leveraged 
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from these datasets can reveal periodic patterns that can be used in predictive modeling, describe 

irregularities in response to abrupt environmental perturbations, and capture temporal variation of 

microbial interactions (30). Currently, there is little work on how to best leverage the unique 

properties of time-series metagenomic data for DWS. Thus, the overall objective of this study was 

to evaluate the performance of a combination of de novo assembly and binning algorithms for 

time-series metagenomic data for drinking water microbial communities. Our goal was to identify 

an ideal combination of assembly and binning strategies that can allow for high quality 

metagenomic assemblies and MAGs that maximally capture the sequenced metagenomes. 

 

Materials and Methods 

Sample Collection 

Samples (n = 12) were collected over a period of 6 months from a tap in a commercial building 

located in Boston, MA (United States) (Table S1). Prior to sample collection, the system was 

flushed for at least 30 min at a flow rate ranging between 3.0 and 3.3 l.min-1 and then 

approximately 1,500 ml of tap water was collected for microbial community analysis in a sterile 

(by autoclaving) 2 L DURAN® GLS 80® wide mouth borosilicated glass bottle (DURAN®, Cat. 

No.: 1112715). An additional 500 ml sample was collected in parallel in sterile 2 x 250 ml 

DURAN® GLS 80® wide mouth borosilicated glass bottles (DURAN®, Cat. No.: 218603656) 

for chemical analysis. Samples for microbial community analysis were filtered immediately 

through Sterivex-GP Pressure Filter Units (EMD Millipore, Cat. No.: SVGP01050) containing a 

0.22μm polyethersulfone (PES) filter membrane, using the Geotech Geopump™ Series II 

peristaltic pump (Geotech Environmental Equipment, Inc., Cat. No.: 91350113) and sterile SZ 15 

Geotech silicone tubing (Geotech Environmental Equipment, Inc., Cat. No.: 77050000). Following 

filtration, the exterior of the filter unit was cleaned with an 70% ethanol (Fisher Scientific, Cat. 

No.: A962F) soaked Kimwipe (Kimberly-Clark Professional™, Cat. No.: 34120) and then 

transferred to a 50 ml Falcon tube (Corning, Cat. No.: 362070) and stored at -80°C until further 

analysis.  
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Water chemistry characterization 

Water quality parameters (i.e., temperature, pH, conductivity, and dissolved oxygen) were 

measured using the Orion Star™ A325 pH/Conductivity Portable Multiparameter Meter (Thermo 

Scientific™, Cat. No.: STARA3250). Total chlorine was measured using USEPA approved 

HACH Method 8167 with DPD Total Chlorine Reagent Powder Pillows (HACH, Cat. No.: 

2105669). Reactive orthophosphate was measured using USEPA approved HACH Method 8048 

with PhosVer®3 Phosphate Reagent Powder Pillows (HACH, Cat. No.: 2106028). Nitrogen 

species, including ammonium, nitrate and nitrate were measured using the Nitrogen-Ammonia 

Reagent Set (Method 10023, HACH, Cat. No.: 2604545), NitraVer X Nitrogen-Nitrate Reagent 

Set (Method 10020 HACH, Cat. No.: 2605345), and NitriVer 3 TNT Reagent Set (Method 10019, 

Cat. No.: 2608345), respectively. All HACH measurements were performed in triplicate on the 

DR1900 Portable Spectrophotometer (HACH, Cat. No.: DR190001H) (Table S1). 

 

Flow cytometric analysis 

Standard flow cytometric measurements (FCM) were performed as described previously (31, 32). 

Briefly, samples were quenched with 10mM sodium thiosulfate (1% (v/v)) (Alfa Aesar™, Cat. 

No.: AA35645K2) and then pre-heated at 37°C for 3 min, stained with SYBR Green I (SG) 

(Invitrogen™, Cat. No.: S7585) (1:100 diluted in 10 mM Tris-HCl (pH 8.5, Bioworld, Cat. No: 

NC1213695)) at 10 μl.ml-1 or SG combined with propidium iodide (PI) (Molecular Probes™, Cat. 

No.: P3566) (3uM final concentration) at 12 μl.ml-1 and incubated in the dark at 37°C for 10 min. 

Five negative controls consisting of (i) unstained UltraPure™ DNase/RNase-Free Distilled Water 

(Thermo Fisher Scientific, Cat. No.: 10977015), (ii) SG stained UltraPure™ DNase/RNase-Free 

Distilled Water, (iii) SGPI stained UltraPure™ DNase/RNase-Free Distilled Water, (iv) SG 

stained 0.22μm filtered tap water sample, and (v) SGPI stained 0.22μm filtered tap water sample 

were processed identically and in parallel with the samples. FCM were performed on 50 μl sample 

in triplicate at a pre-set flow rate of 66 μl.min-1 using a BD Accuri® C6 flow cytometer (BD 

Accuri® cytometers, Belgium) which is equipped with a 50mW solid state laser emitting light at 

a fixed wavelength of 488 nm. Green and red fluorescent intensity was collected at FL1 = 533 ± 

30 nm and FL3 > 670 nm, respectively, along with sideward and forward scatter light intensities. 

Data were processed with the BD Accuri CFlow® software that permits electronic gating to 

separate the positive signals from instrumental and sample background noise on a two-parameter 
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density plot (33). A trigger/threshold of 1,000 was applied on the green fluorescence channel 

(FL1). No compensation was used. 

 

Sample Processing and DNA Extraction 

Prior to extraction, the bead constituents (i.e., ceramic and silica spheres, and glass bed) contained 

within the 2 ml Lysing Matrix E tubes (MP Biomedicals, Cat. No.: 116914100) were aseptically 

transferred into sterile 1.5 ml microcentrifuge tubes (Eppendorf, Cat. No.: 022431021) (34). 

Removal of these components was necessary to ensure that the processed PES filter membranes 

from the Sterivex-GP Pressure Filter Units are fully immersed in solution during the enzymatic 

and chemical treatment steps of the DNA extraction protocol. The PES filter membrane with 

harvested microbial biomass was aseptically removed from the Sterivex-GP Pressure Filter Unit 

and cut into smaller pieces on the surface of a petri dish (Fisher Scientific, Cat. No.: FB0875712) 

using a sterile scalpel (Fisher Scientific, Cat. No.: 08-920B) and then transferred into the emptied 

2 ml Lysing Matrix E tubes using a sterile tweezer (Fisher Scientific, Cat. No: 22327379). DNA 

extractions were performed using a modified version of the DNeasy PowerWater Kit® (QIAGEN, 

Cat. No.: 14900-50-NF or 14900-100-NF) protocol that utilizes enzymatic, chemical, and 

mechanical lysis strategies to enhance recovery of DNA from drinking water samples (34). Briefly, 

filter cuttings contained in the 2 ml Lysing Matrix E tubes were submerged in 294 µl 10X Tris-

EDTA (100 mM Tris, 10 mM EDTA, pH 8.0, G-Biosciences, Cat. No: 501035446) and 6 μl 

lysozyme solution (50 mg.ml-1, Thermo Fisher Scientific, Cat. No.: 90082) and incubated 

for 60 min at 37°C with light mixing at 300 rpm using the Eppendorf ThermoMixer® C 

(Eppendorf, Cat. No.: 2231000680). Subsequently, the tubes were supplemented with 300 μl pre-

warmed (55°C) PW1 solution, provided with the DNeasy PowerWater Kit®, and 30 μl Proteinase 

K (20 mg.ml-1, Thermo Fisher Scientific, Cat. No.: AM2546), vortexed and incubated for 30 min 

at 56°C with light mixing at 300 rpm using the Eppendorf ThermoMixer® C. After incubation, the 

bead constituents initially transferred to the sterile 1.5 ml microcentrifuge tubes were aseptically 

transferred back to the Lysing Matrix E tubes. The tubes were then supplemented with 630 μl 

chloroform/isoamyl alcohol (24:1, pH 8, Acros Organics, Cat. No.: 327155000) and bead beat at 

setting 6 for 40 sec using the FastPrep-24™ Classic Instrument (MP Biomedicals, Cat. No.: 

116004500). The resulting homogenized mixture was then subjected to centrifugation at 14 000 x 

g for 10 min at 4°C using the Eppendorf® Centrifuge 5424R (Cat. No.: 5404000332). After 
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centrifugation, the aqueous phase (600 - 650 μl) was transferred to a sterile 1.5 ml microcentrifuge 

tube. Exactly 600 μl of the aqueous phase was used as starting material on the QIACube System 

(QIAGEN, Cat. No.: 9001882) to purify DNA according to the manufacture instructions using the 

DNeasy PowerWater Kit® protocol. Three negative controls consisting of a reagent blank (C01) 

and two filter blanks (i.e., unused PES membrane filters (C02) and PES membrane filters treated 

with autoclave deionized water (C03)) were processed identically and in parallel with the samples. 

The extracted DNA was quantified in duplicate using the Qubit™ dsDNA High Sensitivity (HS) 

Assay Kit (Thermo Fisher Scientific, Cat. No.: Q32851) with the Qubit™ 4 Fluorometer (Thermo 

Fisher Scientific, Cat. No.: Q33238) (Table S2). All DNA extracts (50 μl) were stored at -80°C 

until further analysis. 

 

Quantitative PCR 

The quantitative PCR (qPCR) assay was performed on a QuantStudio™ 3 Real-Time PCR System 

(ThermoFisher Scientific Cat. no. A28567) in a 20 μl reaction mixture consisting of Luna® 

Universal qPCR Master Mix (New England Biolabs, Inc., Cat. No.: NC1276266), forward and 

reverse primer pairs (F515-GTGCCAGCMGCCGCGGTAA and R806-

GGACTACHVGGGTWTCTAAT, respectively) (35), UltraPure™ DNase/RNase-Free Distilled 

Water (Thermo Fisher Scientific, Cat. No.: 10977015) and 1:10 diluted DNA template. Reactions 

were prepared in triplicate in a 96-well optical plate using the epMOTION® M5073 automated 

liquid handling system (Eppendorf, Cat. no. 5073000205D). qPCR conditions were as follow: 1 

min at 95°C, and then 40 cycles consisting of 15 sec at 95°C, 15 sec at 50°C and 1 min at 72°C. A 

calibration curve with standards ranging from 102 - 108 copies of 16S rRNA gene of Nitrosomonas 

europaea for total bacteria assay were generated. The calibration curve for 16S rRNA copies was 

linear (R2 = 0.997) over 7 orders of magnitude with a high PCR efficiency (100%). 

 

Metagenomic Sequencing  

Sequencing libraries were prepared using the Ovation® Ultralow DNA-Seq Library Preparation 

Kit (NuGEN, Cat. No.: 0344NB). Metagenomic sequencing was performed on one SP lane of the 

NovaSeq 6000 sequencing system (Illumina) at the Roy J. Carver Biotechnology Centre at the 
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University of Illinois Urbana-Champaign (UIUC) Sequencing Core (Champaign, IL, United 

States).  

 

Sequence Processing 

Pre-processing 

Processing of sequencing data was done using the workflow outlined in Figure S1. Initial quality 

control of FASTQ files were performed using fastp v0.20.0 (36) with parameters: --trim_poly_x, 

--qualified_quality_phred 20, --length_required 20. The UniVec_Core database from NCBI 

(ftp://ftp.ncbi.nih.gov/pub/UniVec/) was subsequently used to screen for contaminant sequences 

(e.g., phix sequencing control used as sequencing control and sequencing adapters) by mapping 

the reads from each sample against the UniVec_Core database using BWA-MEM v0.7.17 (37) and 

then filtering reads in proper pair and supplementary alignments using samtools v1.9 (38) with 

parameters: -hbS -F2 -F2048. BAM files were subsequently sorted using the sort function of 

samtools v1.9 and then quality filtered forward and reverse FASTQ files were extracted from 

sequence alignments in sorted BAM format using the bamtofastq function of bedtools v2.29.2 

(https://bedtools.readthedocs.io/en/latest/). The quality filtered FASTQ files were analyzed using 

Nonpareil v3.303 (39) in kmer mode to estimate the coverage and to predict the number of 

sequences required to achieve “near complete” coverage. Nonpareil curves were generated in R 

(40) using the function Nonpareil.set of Nonpareil v3.3.4.  

 

MASH distance and k-means clustering 

MASH v2.2.2 (41) was used to estimate read-based dissimilarity between samples using the 

quality filtered FASTQ files. For this, forward and reverse quality filtered FASTQ files of each 

sample were interleaved using interleafq v1.0 (https://github.com/quadram-

institutebioscience/interleafq) and then the sketch function was used to convert the interleaved 

quality filtered FASTQ files of each sample into a MinHash sketch with parameters: s = 100,000 

and k = 21. The dist function was subsequently used for pairwise comparisons between samples 

based on Jaccard indices; thereby comparing the fraction shared k-mers between samples. K-

means clustering on MASH distances was performed to partition samples into clusters with the 

nearest mean (Figure S2). For this, the MASH-distance matrix was imported into R and the 
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function fviz_nbclust of factoextra v1.0.7 (https://www.rdocumentation.org/packages/factoextra) 

was used to determine and visualize the optimal number of clusters (or k groups) using the average 

silhouette method with 999 Monte Carlo iterations. The MASH-distance matrix was subsequently 

clustered by the k-means method using kmeans of the stats package v3.6.2 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans) and then 

visualized using fviz_cluster of factoextra v1.0.7.  

 

Metagenomic assembly and binning 

The performance of a combination of assembly (metaSPAdes v.3.13.1(42) and MEGAHIT v.1.2.9 

(43)), binning (CONCOCT v.1.1.1 (13), MetaBAT v.2.12.1 (12), MaxBin v.2.2.4 (44)) and bin 

aggregating software (DAS Tool v.1.1.0 (45)) were evaluated using four assembly strategies, 

including individual assembly and three co-assembly approaches, i.e., co-assembly with all 

samples, MASH distance-based assembly, and time-discrete assembly. This resulted in 32 

combinations of assembler, assembly strategy, and binning approaches (Table S2). For MASH 

distance-based assemblies, three co-assemblies consisting of pooled samples that were identified 

using pair-wise MASH dissimilarity indices and kmeans clustering were identified: (i) BW003 + 

BW015 + BW030 + BW060, (ii) BW075 + BW090 + BW105, and (iii) BW120 + BW135 + 

BW150 + BW165 (Table S2). Samples pooled and co-assembled for time-discrete assembly 

consisted of eleven combinations representing paired samples of successive sampling points: (i) 

BW003 + BW015, (ii) BW015 + BW030, (iii) BW030 + BW045, (iv) BW045 + BW060, (v) 

BW060 + BW075, (vi) BW075 + BW090, (vii) BW090 + BW105, (viii) BW105 + BW120, (ix) 

BW120 + BW135, (x) BW135 + BW150, and (xi) BW150 + BW165. Control samples (i.e., C01, 

C02, and C03) were pooled and assembled independently in both MASH distance-based - and 

time-discrete assembly strategies.  

 

Quality filtered forward and reverse FASTQ files of samples for the individual - and three co- 

assembly strategies were assembled using metaSPAdes v.3.13.1 and MEGAHIT v.1.2.9 with k-

mere sizes 21, 33, 55, and 77. Following assembly and prior to binning, contigs of the MASH 

distance-based co-assemblies (n = 4), time-discrete co-assemblies (n = 12), and individual 

assemblies (n = 15) were pooled within each strategy, resulting in 6 pooled assemblies and 8 

assemblies in total (6 pooled assemblies and two co-assemblies) that were used in downstream 
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processing (Table S2). Contigs < 1kbp were filtered from all assemblies using seqtk 

(https://github.com/lh3/seqtk). This was followed by the removal of redundant contigs, i.e. 

duplicate and contained contigs, using the dedupe function of BBTools v38.76 

(https://github.com/BioInfoTools/BBMap/blob/master/sh/dedupe.sh) for the pooled assemblies. 

QUAST v.5.0.2(46) was used to assess the quality of the processed assemblies with default 

parameters. Mapping rates were determined by mapping the quality-trimmed paired end reads to 

each assembly using BWA-MEM v0.7.17 (37) and then filtering unmapped reads using the view 

function of samtools v1.9 (38) with parameters: -hbS -F4. BAM files were subsequently sorted 

using the sort function of samtools v1.9 and then coverM v.0.4.0 

(https://github.com/wwood/CoverM) was used to calculate contig-wise coverage with the method 

flag set to count. Prokka v1.14.6 (47) was used to identify coding DNA sequences (CDSs) in the 

contigs and to translate these CDSs to protein-coding amino acid sequences. Coding density was 

calculated by dividing the total CDS length (in Mbp) by the total assembly length (in Mbp). The 

blastp workflow of DIAMOND v.0.9.36 (48) was used to align the protein-coding amino acid 

sequences against the UniPort Knowledgebase (UniProtKB)/TrEMBL non-redundant (nr) protein 

database (https://www.uniprot.org/downloads) at an expected value (e-value) cutoff of 1 x 10-3 to 

identify high-scoring segment pairs (HSPs). Predicted protein-coding amino acid sequences that 

aligned with reference protein-coding amino acid sequences in the UniPort Knowledgebase 

(UniProtKB)/TrEMBL nr protein database were used to compute query/subject length ratios and 

query/subject length alignment ratios. These query/subject length and query/subject length 

alignment ratios were used as a measure to asses the extent of assembly fragmentation and 

misassembly.  

 

Binning of contigs greater than 1.0kbp and 2.5kbp were performed using the analysis 

and visualization platform for ‘omics data (anvi’o) v6.1 (49). In this workflow, bins were 

generated using binning algorithms that combine tetranucleotide frequencies and coverage 

information across samples, including CONCOCT v.1.1.1 (13), MetaBAT v.2.12.1 (12), MaxBin 

v.2.2.4 (44). Since different binning tools reconstruct genomes at varying levels of completeness, 

a bin aggregation software, i.e., DAS Tool v.1.1.0 (45), was used to integrate the results of bin 

predictions made by CONCOCT, MetaBAT2 and MaxBin2 to optimize the selection on non-

redundant, high-quality bin sets using default parameters. Bin statistics, including total size, 
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number contigs, N50, GC content, etc., were obtained using the anvi-summarize function of 

anvi’o; while estimates of quality (completeness, redundancy, strain heterogeneity, etc.) were 

retrieved using the lineage-specific workflow of CheckM v.1.0.18 (50). Mapping rates were 

determined by mapping the quality-trimmed paired end reads to each bin using BWA-MEM 

v0.7.17 and then filtering unmapped reads using the view function of samtools v1.9 with 

parameters: -hbS -F4. BAM files were subsequently sorted using the sort function of samtools v1.9 

and then coverM v.0.4.0 was used to calculate contig-wise coverage with the method flag set to 

count. 

 

To further improve bin quality, individual bins with ≥ 50% completeness of a selected combination 

of assembler, assembly strategy, and binning approach were identified for reassembly (see results 

section). For this, properly paired quality-trimmed reads associated with individual bins of the 

selected assembly/binning approaches were extracted and stored into their FASTQ files using 

samtools v1.9 functions view and fastq, followed by assembly using metaSPAdes v.3.13.1 with k-

mer sizes 21, 33, 55, and 77. The reassembled contigs were re-binned a second time using the 

appropriate original binning approach and bin statistics and mapping rates were determined as 

described above.  

 

To obtain MAGs, bins were manually curated using the interactive interface of anvi’o v6.1. MAG 

characteristics and mapping rates were determined as described above. To assist in the 

identification of high- and medium-quality draft MAGs as define under the Minimum Information 

about a Metagenome-Assembled Genome (MIMAG) standards (51), ribosomal RNAs (rRNAs) 

and transfer RNAs (tRNAs) were detected with Prokka v. 1.14.6 (47). Pooled MAGs were 

dereplicated with dRep v2.6.2 (52) and clustered into species-level representative genomes (SRGs) 

at 95% average nucleotide identity (ANI). SRGs were classified using the classify workflow of 

the Genome Taxonomy Dataset Toolkit (GTDTk) v0.3.2 (53), which provides automated 

classification of bacterial genomes by placing them into domain-specific, concatenated protein 

reference trees. The phylogenomic workflow of anvi’o v6.1 was reproduced to construct a 

phylogenomic tree using a concatenated alignment of 37 single-copy ribosomal bacterial core 

genes. 
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Statistical analysis 

Statistical analysis was performed in R (40). Descriptive statistics and statistics on central tendency 

were performed using one-way analysis of variance (ANOVA) provided in the stats package.  

Significant ANOVA findings were further investigated by performing a post-hoc Tukey-Kramer 

test using the function Tukey.HSD with Bonferroni correction. Non-multidimensional scaling 

(NMDS) using Bray-Curtis and Jaccard dissimilarity indices were performed using metaMDS 

provided in the vegan package and permutational analysis of variance (PERMANOVA) were 

conducted using the function adonis of the vegan package. All plots were generated in R using 

ggplot2 (54).  

 

Results and discussion 

Summary of metagenomic sequencing of drinking water samples 

On average 23.03 ± 9.57 ng DNA were extracted from the 1,500 ml filtered tap water samples 

harboring between 21.8 and 85.8 million cells (Table S1). A total of 1.05 billion (M ± SD = 87.67 

± 4.34 million reads) raw 150-nucleotide (nt) paired-end reads, ranging between 81.37 and 94.15 

million reads per sample were generated from the DNA extracts of 12 samples, which had average 

16S rRNA gene counts of 3.8x105 ± 1.9x105 copies/µl (Table S3). Control samples with average 

16S rRNA gene counts of 4.1x101 ± 8x100 copies/µl had at least 3 x 102-fold less raw paired-ended 

reads compared to samples (0.27 ± 0.12 million reads) (Table S3). Processing of the raw paired 

end reads following quality filtering and contaminant exclusion, removed on average 1.02 ± 0.23% 

of the reads per sample. The final sequence dataset consisted of 1.04 billion (86.75 ± 0.42 million) 

high-quality, processed reads with a lower and upper range of 80.51and 93.08 million reads per 

sample, respectively (Table S3). Nonpareil (39), was used to assess the coverage of sequencing 

effort (Table S4). The average coverage estimates across samples were 89.00 ± 3.00%, with a 

lower and upper range of 84.00 and 94.00%, respectively. This suggests that a sequencing depth 

of ~81-94 million reads was sufficient to capture most of the microbial diversity in each sample. 
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Evaluation of metagenome assembly quality for variable assembly strategy and metagenome 

assembler combinations 

The performance of two de Bruijn graph-based assemblers, metaSPAdes and MEGAHIT that 

utilize iterative multiple k-mer approaches to improve assembly quality (43, 55) were assessed for 

three co-assembly strategies (i.e., co-assembly of all samples, MASH distance-based assembly and 

time-discrete assembly) and assembly of individual samples (Table S2). Inclusion of various 

assembly strategies allow for the assessment of assembly performance in terms of computational 

requirements (i.e., RAM usage, assembly runtime per processing core, etc.) and assembly quality 

at varying levels of diversity as well as sequence depth and coverage. The metaSPAdes assemblies 

required more computing recourses, i.e., demanded higher memory limits and threads, and had 

runtimes that were up to 6-fold longer when compared to the MEGAHIT assemblies (Table S5), 

which confirms previous findings (18, 19, 56). As expected, co-assembly strategies (i.e., co-

assembly of all samples, MASH distance-based assembly and time-discrete assembly) for both 

metaSPAdes and MEGAHIT were associated with longer runtimes (Table S5). Amongst the 

metaSPAdes assemblies, time-discrete assembly had the longest runtime (195 hours summed 

across all assemblies), followed by co-assembly (100 hours) and MASH-distance based assembly 

(28 hours summed across all assemblies). Similar observations were made for the MEGAHIT 

assemblies (Table S5).   

 

Evaluating de novo assembly quality for environmental samples is challenging due the lack of a 

ground truth reference assembly for comparison (57). As a result, we used measures of contiguity 

(i.e., total assembly size, maximum contig length, N50, L50, etc.), gene calling and quality (i.e., 

coding DNA sequence (CDS), coding density), mapping rate, and rate of gene fragmentation and 

misassembly to assess the quality of the assemblies (Table S5). In total, between 9,959,586 and 

114,386,414 contigs were generated across the metaSPAdes and MEGAHIT assemblies. Most of 

the assembled contigs ~98.39% had lengths below 1kbp and were not used in downstream analysis. 

Duplicate and contained contigs that accounted for between 10 and 42% of the filtered contigs 

(>1kbp) were found amongst the MASH distance-based - and time-discrete co-assemblies, and 

individual assemblies of metaSPAdes and MEGAHIT and removed (Table S5). Duplicate contigs 

were define as contigs sharing 100% sequence similarity over the entire length, while contained 

contigs included shorter contigs that were 100% similar to a longer contig over their length. The 
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average total number contigs per assembly strategy kept after removing contigs shorter than 1kbp 

and redundant contigs were 506,898 (SD = 164,157). For each assembly strategy, the metaSPAdes 

assemblies produced between 10 and 20% more contigs greater than 1kbp compared to the number 

of contigs that were generated from the MEGAHIT assemblies (Table S5). Differences between 

assemblies were more apparent when metrics related to assembly contiguity were compared. 

Irrespective of the assembly strategy, the total assembly length of the metaSPAdes assemblies 

were greater when compared to the assemblies of MEGAHIT (Figure 1A). MetaSPAdes time-

discrete assembly had the greatest assembly length (2,940.15 Mbp), followed by individual 

assembly (2,037.97 Mbp), co-assembly (1,488.27 Mbp), and MASH distance-based assembly 

(1,147.06 Mbp).  Since larger assembly lengths are not always indicative of better assembly quality 

(56), N50 estimates representing a weighted medium contig size were considered. The 

metaSPAdes assemblies generated contigs with higher N50 estimates when compared to the 

MEGAHIT assemblies (Figure 1B). Time-discrete assembly of metaSPAdes had the highest N50 

estimates (6.77 kbp), followed by individual assembly (5.67 kbp), MASH distance-based assembly 

(5.65 kbp), and co-assembly (5.32 kbp). The higher N50 estimates of the metaSPAdes assemblies 

indicate that these assemblies contain a lower proportion of small contigs and therefore are less 

fragmented assemblies (1, 56, 58, 59).  
 

Although the metaSPAdes assemblies were associated with 10-30% more CDSs compared to the 

MEGAHIT assemblies, the coding densities were similar across the assemblies of metaSPAdes 

and MEGAHIT, and range between 0.77 and 0.80 (Table S5). CDSs were blasted against the 

UniProtKB/TrEMBL nr protein database to identify HSPs, i.e., sequence pairs sharing high 

alignment scores, at an expected value (e-value) cutoff of 1 x 10-3. Across the assembly strategies, 

between 71 and 76% of the CDSs shared a high degree of similarity against the reference amino 

acid sequences in the UniProtKB/TrEMBL nr protein database and had average e-values and bit 

scores of 3.09 x 10-6 ± 3.91 x 10-5 and 387.00 ± 305.65, respectively (Table S5). Assembly 

fragmentation was assessed by analyzing the ratio between the lengths of CDSs (query length 

(qlen)) and their top hits in the UniProtKB/TrEMBL nr protein database (subject length (slen)), 

with lower qlen:slen ratios indicating less gene fragmentation and thus lower assembly 

fragmentation. Similar distributions in qlen:slen ratios were observed across the assemblies of 

metaSPAdes and MEGAHIT, with only between 30 and 36% of the CDSs having qlen:slen ratios 
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ranging between 0.95 and 1 (Figure S3A, Table S6.1). This suggests that the vast majority of CDSs 

across both assemblers and all assembly strategies were likely fragmented.   

 

The CDSs of the metaSPAdes assemblies were less fragmented than those from the MEGAHIT 

assemblies; hence had higher mean qlen:slen ratios (Table S6.1, Figure S3B). Post-hoc 

comparisons using the Tukey HSD test indicated statistically significant differences between all 

metaSPAdes and MEGAHIT assemblies (Tukey HSD test, all p < 0.05) (Tables S6.2, S6.3). 

metaSPAdes time-discrete assembly had the greatest mean qlen:slen ratio (0.901 ± 0.307), 

followed by MASH distance-based assembly (0.895 ± 0.315), individual assembly (0.895 ± 

0.306), and co-assembly (0.892 ± 0.320). Similar observations were made for the MEGAHIT 

assembly strategies (Table S6.1). Though significant differences were found, the effect sizes of 

these differences was small (effect size (η²) = 1.15E-04 and 2.39E-04 for metaSPAdes and 

MEGAHIT, respectively), suggesting that only 0.01 and 0.02% of the change in qlen:slen ratios 

can be accounted for by the assembly strategy for metaSPAdes and MEGAHIT, respectivly. 

Statistically significant differences in the variation around the mean qlen:slen ratios were observed 

for the assemblies of metaSPAdes (coefficient of variation (Cv) = 0.35 ± 0.01) and MEGAHIT (Cv 

= 0.36 ± 0.01) (signed-likelihood ratio test (SLRT) and asymptomatic test, all p < 0.05) (Table 

S6.4). Associations between the mean qlen:slen ratios and Cv estimates indicated that the 

metaSPAdes assembly strategies were associated with higher qlen:slen ratios and lower Cv 

estimates compared to the assemblies of MEGAHIT (Figure S3B). The ratio between the 

alignment lengths of CDSs (query alignment length (qalignlen)) and their top hits in the 

UniProtKB/TrEMBL nr protein database (subject alignment length (salignlen)) were used to 

evaluate potential misassembly due to the presence of insertion-deletion (indels) in genes (Table 

S7.1). Similar distributions in qalignlen:salignlen ratios were observed across the assemblies of 

metaSPAdes and MEGAHIT, with between 59 and 66% of the CDSs having qalignlen:salignlen 

ratios that ranged between 0.95 and 1 (Figure S3C, Table S7.1). Though statistically significant 

differences in the mean qalignlen:salignlen ratios were observed for the assemblies of metaSPAdes 

and MEGAHIT (ANOVA, all p < 0.05) (Table S7.2, S7.3), the effect size of the differences were 

small (η² = 6.22 x 10-5 and 3.74 x 10-5 for metaSPAdes and MEGAHIT, respectively). Similarly, 

small but statistically significant differences in the variation around the mean qalignlen:salignlen 

ratios of the metaSPAdes and MEGAHIT assembly strategies were observed (Cv range = 0.02 – 
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0.03 for metaSPAdes and MEGAHIT assemblies) (SLRT and asymptomatic test, all p < 0.05) 

(Table S7.4). Overall, these results suggests that while metaSPAdes results in significantly less 

fragmented assemblies with lower rates of genes fragmentation, the effect size of this difference 

on CDS quality is small. 

 

The proportion of sequencing information retained following assembly was determined by 

mapping the quality-trimmed paired end reads of each sample to the non-redundant, filtered 

metaSPAdes and MEGAHIT assemblies. Although no statistically significant differences between 

the mean read mapping rates of corresponding metaSPAdes and MEGAHIT assembly strategies 

were observed (Tukey HSD, all p < 0.05) (Table S8), the metaSPAdes assemblies had mean 

mapping rates that were higher when compared to the MEGAHIT assemblies (Figure 1C, Table 

S5). Amongst the metaSPAdes assemblies, co-assembly of all samples had the highest mapping 

rate (90.61 ± 3.28%), followed by time-discrete assembly (88.45 ± 3.64%), MASH distance-based 

assembly (86.91 ± 3.39%) and individual assembly (85.47 ± 4.45%). Similar observations were 

made for the MEGAHIT assemblies. Overall, the metaSPAdes assemblies had larger and more 

contiguous assemblies with read mapping rates > 85%. This confirms previous findings (1, 19, 59, 

60).  
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Figure 1 Comparison of assembly characteristics associated with 4 different assembly strategies (co-

assembly (grey), MASH distance-based assembly (blue), time-discrete assembly (green) and individual 

assembly (orange)) that were assembled with metaSPAdes and MEGAHIT. Assembly characteristics were 

determined using non-redundant contigs larger than 1kbp of co-assemblies and pooled MASH distance-

based, time-discrete, and individual assemblies. Assembly characteristics included: A) Total assembly 

length; B) N50 estimates; and C) Proportion reads of 12 drinking water samples (●) that were mapped 

against the non-redundant, filtered assemblies. For a complete list of estimates, please refer to Tables S5. 

 

Evaluation of binning results for combination of assembly strategies, assemblers, and 

binning approaches. 

Unrefined bin sets were generated from the metaSPAdes and MEGAHIT assemblies of each 

assembly strategy using original binning algorithms that combine tetranucleotide frequencies and 

coverage information across samples (12, 13, 44), i.e., CONCOCT v.1.1.1, MetaBAT v.2.12.1 and 

MaxBin v.2.2.4 as well as DAS Tool v.1.1.0 that integrates results of bin predictions made by 

original binning algorithms to optimize the selection on non-redundant, high-quality bin sets (45). 

This resulted in 64 assembly/binning combinations (n = 32 assembly/binning combinations for bin 

sets that were constructed using larger than 1kbp and 2.5kbp contigs, respectively) (Table S9). 
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MASH distance based NMDS clustering of the unrefined bin sets indicated that the bin sets 

clustered based on assembly/binning approach rather than contig size cutoff used for binning 

(Figure S4). The importance of assembly/binning approach as compared to contig size cutoff was 

further confirmed by PERMANOVA analyses (Table S10). The minimum contig threshold (1kbp 

or 2.5kbp) that were selected for binning, explained a smaller proportion of the variation ~2% 

(PERMANOVA, F(1) = 36.16, R2 = 0.02, p < 0.05) as compared to 96% of the variation that was 

explained by the assembly/binning approach choice (PERMANOVA, F(31) = 46.24, R2 = 0.96,  p 

< 0.05). However, the unrefined bin sets that were generated using contigs > 1kbp produced about 

20% more unrefined bins with ≥ 50% completeness, when compared to the unrefined bin sets that 

were generated using contigs > 2.5kbp (Figure 2, Table S9). These unrefined bins were 

furthermore associated with mapping rates that were between 5 and 20% higher when compared 

to the unrefined bins that were generated using contigs > 2.5kbp (Figure 2, Table S9). These 

finding suggest that binning with contigs > 1kbp allows for a more accurate representation of the 

microbial diversity. 

 

 
Figure 2 Association between total number bins and mean read mapping rates of sample reads mapped 

against the unrefined bins with completeness ≥ 50% that were assembled with different assembly 

CONCOCT MetaBAT MaxBin DAS Tool

1kbp
2.5kbp

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

0

50

100

150

200

0

50

100

150

200

Mean read mapping rate (%)

To
ta

l n
um

be
r u

nr
ef

in
ed

 b
in

s Assembler
metaSPAdes
MEGAHIT

Assembly Approach
Co−assembly
MASH distance−based assembly
Time−discrete assembly
Individual assembly

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.11.451960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.11.451960
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

approaches (co-assembly (grey), MASH distance-based assembly (blue), time-discrete assembly (green) 

and individual assembly (orange)) using metaSPAdes (▲) and MEGAHIT (■) and binned with 

CONCOCT, MetaBAT2, MaxBin2 and DAS Tool. Error bars indicate standard errors of read mapping 

rates. 

 

Marked improvements in bin qualities following re-assembly and curation. 

Across the 64 assembly/binning combinations, greater than 1kbp and 2.5kbp contig size bin sets 

of 4 assembly/binning approaches; hence, 8 assembly/binning combinations in total, consistently 

produced the highest number bins (completeness ≥ 50%) and mapping rates greater than 50%. 

These assembly/binning approaches included co-assembly strategies of metaSPAdes: (i) 

metaSPAdes co-assembly + CONCOCT, (ii) metaSPAdes time-discrete assembly + CONCOCT, 

(iii) metaSPAdes co-assembly + MetaBAT2, and (iv) metaSPAdes co-assembly + DAS Tool 

(Figure 2). The unrefined CONCOCT bin sets of the co-assembled metaSPAdes assemblies (i.e., 

metaSPAdes co-assembly + CONCOCT and metaSPAdes time-discrete-assembly + CONCOCT), 

consisted of fewer bins and bins that were significantly greater in size (Table S11). In particular, 

for metaSPAdes co-assembly + CONCOCT the average bin size were 8.15 ± 8.12 Mbp and 6.41 

± 5.26 Mbp for 1kbp and 2.5kbp constructed bins, while metaSPAdes time-discrete-assembly + 

CONCOCT had average bin sizes of 14.05 ± 15.06 Mbp (contigs > 1kbp) and 15.01 ± 12.59 Mbp 

(contigs > 2.5kbp). These bins were also associated with large redundancy estimates that averaged 

above 60% and average strain heterogeneity estimates greater than 20% (Figure 3). These findings 

suggest that the unrefined CONCOCT bin sets likely consist of multi-genome or chimeric bins and 

highlighted the need for reassembly of individual bins and/or bin curation (61). The remaining co-

assembly strategies of metaSPAdes, i.e., metaSPAdes co-assembly + MetaBAT2 and metaSPAdes 

co-assembly + DAS Tool, generated more bins and bins with lower redundancy estimates that 

average below 15% (Figure 3). To improve the quality of the unrefined bin sets, bins with greater 

than 50% completeness of the 8 assembly/binning combinations were independently subjected to 

reassembly. Proper paired quality-trimmed reads associated with the bins were extracted, 

converted to FASTQ format, and then reassembled using metaSPAdes and re-binned using the 

appropriate original binning approach. Following reassembly, the reassembled unrefined bin sets 

of metaSPAdes co-assembly + CONCOCT and metaSPAdes time-discrete assembly + CONCOCT 

consisted of bins that were notably smaller in size (Table 11). Specifically, the metaSPAdes time-
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discrete + CONCOCT reassembled average unrefined bin sizes of the 1kbp and 2.5kbp bins (4.21 

± 2.75 Mbp and 3.97 ± 1.66 Mbp, respectivly) where at least 4-fold lower when compared to the 

original unrefined bin sizes. Similar observations were made for metaSPAdes co-assembly + 

CONCOCT that had an average 2-fold reduction in bin size (Table 11). Furthermore, reductions 

in bin size across the co-assembled CONCOCT bins were accompanied by improvements in bin 

quality (Figure 3). These improvements were associated with reduced redundancy estimates across 

the 1kbp and 2.5kbp reassembled unrefined bin sets of metaSPAdes co-assembly + CONCOCT 

(26.91 ± 47.05% and 23.86 ± 42.87%) and metaSPAdes time-discrete assembly + CONCOCT 

(21.52 ± 41.98% and 11.08 ± 27.92%). These findings suggest that the unrefined CONCOCT bins 

set consisted of chimeric bins that were resolved with reassembly. This improvement in bin quality 

after reassembly is consistent with previous findings (61). In contrast, no improvements in bin 

quality were observed in the reassembled bin sets of MetaBAT2 and DAS Tool (Figure 3). 

Specifically, the reassembled unrefined 1kbp and 2.5kbp bin sets of metaSPAdes co-assembly + 

MetaBAT2 maintained smaller bin sizes (4.16 ± 3.04% and 3.42 ± 2.42%) as well as average 

redundancy estimates below approximately 10% (11.05 ± 29.38% and 4.41 ± 11.71%) follow 

reassembly. Similar observations were made for metaSPAdes co-assembly + DAS Tool. This was 

expected as higher quality bins were associated with both MetaBAT and DAS Tool bin sets prior 

to reassembly.  
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Figure 3 Bubble plot showing the total number of bins (depicted by size) with mean completeness and 

redundancy estimates of unrefined bin sets (completeness estimates > 50%) that were generated using 4 

assembly/binning approaches (metaSPAdes co-assembly + CONCOCT (orange), metaSPAdes co-

assembly + DAS Tool (grey), metaSPAdes co-assembly + MetaBAT2 (blue) and metaSPAdes time-discrete 

assembly + CONCOCT (green)) and binning of  contigs greater than 1kbp and 2.5kbp.  

 

Metagenome assembled genomes shared across assembly/binning approaches 

The reassembled CONCOCT bin sets (i.e., metaSPAdes co-assembly + CONCOCT and 

metaSPAdes time-discrete assembly + CONCOCT) and original assembled MetaBAT and DAS 

Tool bin sets were manually curated using the interactive interface of anvi’o v6.1 (49) to obtain 

final MAGs (completeness ≥ 50% and redundancy < 10%). In total 1,279 MAGs were generated 

across the 4 assembly/binning approaches that were constructed using contigs > 1kbp (n = 673) 

and contigs > 2.5kbp (n = 606). Approximately 98% (n = 1,259) of the MAGs that were identified 

met the MIMAG strandard (51) for medium-quality draft genomes, while only 20 MAGs were 

classified as high-quality draft genomes (Table S12.1). The limited number high-quality MAGs 

were mainly due to the absence of full complement of rRNA genes. Depending on the 
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between 10 and 16% of the MAGs consisted of fragmented 16S rRNA gene(s) (Table S12.1). 

MAGs often lack 16S rRNA genes due to their conserved and repetitive nature, which results in 

fragmented assemblies (22, 62, 63). Overall, none of the assembly/binning strategies produced 

sufficient high-quality MAGs as define under MIMAG standards. Alternative sequencing 

technologies (e.g., long-read) may be able to successfully reconstruct full complement rRNA genes 

to increase the number high-quality MAGs (5).  

 

The MAGs across the 4 assembly/binning approaches shared similar characteristics in terms of 

contiguity (i.e., total length and N50) and quality (i.e., completeness, redundancy, and strain 

heterogeneity) (Figure 4A and Table S12.1). Overall, the curated MAG sets of the 

assembly/binning approaches retained more than 66% of the sequencing information (Table 

S12.1). The curated MAG sets of DAS Tool and MetaBAT had higher mapping rates ~70%, when 

compared to the curated MAG sets of CONCOCT. As shown in Figure 4B, MAGs that were 

reconstructed using a minimum contig length of 1kbp had slightly higher mapping rates, when 

compared to the mapping rates of the MAGs that were reconstructed using a minimum contig 

length of 2.5kbp. These differences in read mapping rates were not statistically significantly 

different between corresponding assembly/binning strategies that used minimum contig threshold 

of 1kbp and 2.5kbp for MAG reconstruction, respectively (Tukey HSD test, all p > 0.05) (Table 

S12.2). 

 

The curated MAG sets clustered by assembly/binning approach based on MASH distance 

estimates that explained approximately 91% of the variation in the nucleotide composition 

(PERMANOVA, F(3) = 16.80, R2 = 0.91,  p < 0.05) (Figure 4C, Table S13). Though the minimum 

contig threshold (1kbp or 2.5kbp) that were selected for binning explained a smaller proportion of 

the variation ~3% this was not significant (PERMANOVA, F(1) = 1.73, R2 = 0.03,  p > 0.05) 

(Table S13). Based on MASH distance estimates, the differences in nucleotide composition of the 

curated MAGs between assembly/binning approaches were small, ranging between 0.005 and 

0.08. metaSPAdes time-discrete assembly clustered separately from the other assembly/binning 

strategies, suggesting differences in the nucleotide composition of these curated MAGs. 
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Figure 4 Summary statistics and characteristics of 1,279 curated MAGs that were generated across the 4 

assembly/binning approaches (metaSPAdes co-assembly + CONCOCT (grey), metaSPAdes co-assembly 

+ DAS Tool (orange), metaSPAdes co-assembly + MetaBAT2 (blue) and metaSPAdes time-discrete 

assembly + CONCOCT (green)) using contigs larger than 1kbp (n = 673) and 2.5kbp (n = 606), 

respectively. A) Bubble plot showing total MAG size (depicted by size) and completeness (x-axis) and 

redundancy (y-axis) estimates 1279 curated MAGs that were generated for each of the 4 assembly/binning 

approaches. B) Proportion reads of 12 drinking water samples (●) that were mapped against the curated 

MAGs of each assembly/binning approach. C) Comparison of the curated MAGs nucleotide composition 

across the different assembly/binning approaches according to MASH distance. The heatmap are colored 

according to MASH distance; white denotes a distance of 0. Labels on the x- and y-axis are colored 

according to assembly/binning approach and clustering is done using Euclidean distance. For a complete 

list of continuity and quality estimates, please refer to Table S12. 

 

Similarities in the nucleotide composition of the curated MAG sets and comparable MAG 

characteristics (i.e., continuity and quality) suggests the presence of overlapping MAGs across the 

assembly/binning approaches that likely represents the same species. The presence of overlapping 

MAGs across the assembly/binning approaches were investigated by aggregating all the MAGs 

and then clustering them using a 95% ANI threshold to identify species-level representative 
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genomes (SRGs). Although the species concept for prokaryotes is controversial, this operational 

definition is commonly used and considered a golden standard (64, 65). A total of 233 SRGs with 

average dRep quality scores (calculated as: A*Completeness - B*Contamination + 

C*(Contamination * (strain_heterogeneity/100)) + D*log(N50) + E*log(size) + F*(centrality - 

S_ani)) (52) of 74.40 ± 21.80% were identified across the assembly/binning approaches (Table 

S14). These SRGs had average sizes of 3.46 ± 1.72% and were near complete (81.98 ± 16.39%) 

with redundancy estimates less than 10%. Taxonomic classification of the SRGs using GTDB-Tk 

classified 33 SRGs to species level, 178 to genus level, 217 to family level, and 233 to order, class, 

and phylum level (Figure 5A and Table S14).  

 

Approximately 34% (n = 79) of the SRG were shared across the assembly/binning approaches 

where they accounted for between 39 and 48% of the sequencing data (Figure 5B and Table S15). 

These SRG had better quality with average completeness and redundancy estimates of 94.03 ± 

8.3% and 1.3 ± 1.17%, respectively. Unique SRGs represented 10% (n = 29) of the total SRGs, 

while the largest proportion of the SRGs ~ 43% (n = 125) where shared between two or more 

assembly/binning approaches (but not all) (Figure 5B). The latter shared similar quality 

characteristics, compared to the SRG that were shared across all the assembly/binning approaches 

and accounted for between 18 and 32% of the sequencing data. Overall, metaSPAdes co-assembly 

+ MetaBAT2 (with contigs > 1kbp) retained more SRGs (n > 200) and where able to reconstruct 

MAGs that where not detected in the other assembly/binning approaches (Figure 5A). Though 

metaSPAdes time-discrete assembly + CONCOCT where associated low number SRGs (n < 120), 

12 duplicate SRGs sharing > 95% ANI were identified within the 1kbp and 2.5kbp approaches, 

respectively. These SRGs were likely sub-species, suggesting that the metaSPAdes time-discrete 

assembly + CONCOCT assembly/binning approach can differentiate between closely related 

species that were, otherwise collapsed or considered a singular strain using the other 

assembly/binning approaches. This highlights the potential for utilizing multiple approaches for 

not just binning, but also assembly strategies as this can assist in the recovery of a greater 

proportion of populations in metagenomes. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.07.11.451960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.11.451960
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 
Figure 5 A) Phylogenomic analysis of 233 near-complete SRGs inferred from 37 single-copy ribosomal 

bacterial core genes. The two inner panels represent taxonomic classification of 16 bacterial phyla and 

class-level classification of dominating bacterial phyla, Proteobacteria representing Alphaproteobacteria 

(red) and Gammaproteobacteria (blue). The outer panel represents a presence/absence summary plot 

showing the frequency distribution of MAGs that were constructed using contigs greater than 1kbp and 

2.5kbp across 4 assembly/binning approaches. Grey denotes absence, while black and red denotes the 

presence of a singular MAG or duplicate MAGs that demonstrated ≥ 95% ANI, respectively. B) UpSetR 

plot showing the distribution of species-level representative genomes (SRGs) that demonstrated ≥ 95% ANI 

between the 4 assembly/binning approaches in which MAGs were constructed using contigs greater than 

1kbp and 2.5kbp. For the assembly/binning approaches: A = metaSPAdes co-assembly + MetaBAT2 

(1kbp), B = metaSPAdes co-assembly + MetaBAT2 (2.5kbp), C = metaSPAdes co-assembly + DAS Tool 

(1kbp), D = metaSPAdes co-assembly + DAS Tool (2.5kbp), E = metaSPAdes co-assembly + CONCOCT 

(1kbp), F = metaSPAdes co-assembly + CONCOCT (2.5kbp), G = metaSPAdes time-discrete assembly + 

CONCOCT (1kbp), and H = metaSPAdes time-discrete assembly + CONCOCT (2.5kbp)).   

 

Reads from all samples were mapped to the 233 SRGs and their relative abundance in each sample 

for all assembly/binning and contig size strategy was estimated based on the presence/absence of 

the bin in the respective strategy. Variability in the microbial community structure and 

membership between the assembly/binning approaches was visualized by ordinating the samples 

in multidimensional space. As shown in Figure 6, the samples cluster by time point which 
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co.spades.METABAT.2.5kb_008
co.spades.CONCOCT.1kb_142

time.spades.CONCOCT.1kb_023
co.spades.METABAT.1kb_030

co.spades.DASTOOL.2.5kb_149
co.spades.DASTOOL.2.5kb_122
co.spades.METABAT.1kb_096
co.spades.METABAT.1kb_095
co.spades.METABAT.1kb_105

time.spades.CONCOCT.1kb_020
time.spades.CONCOCT.1kb_017

time.spades.CONCOCT.2.5kb_087
co.spades.DASTOOL.2.5kb_016
co.spades.METABAT.1kb_056

co.spades.DASTOOL.2.5kb_125
co.spades.DASTOOL.1kb_121
co.spades.CONCOCT.1kb_130
co.spades.DASTOOL.1kb_042

co.spades.CONCOCT.2.5kb_148
co.spades.METABAT.2.5kb_124
co.spades.METABAT.1kb_110
co.spades.DASTOOL.1kb_059
co.spades.DASTOOL.1kb_013

time.spades.CONCOCT.1kb_117
co.spades.DASTOOL.1kb_178
co.spades.METABAT.1kb_050
co.spades.DASTOOL.1kb_062

time.spades.CONCOCT.2.5kb_039
co.spades.METABAT.1kb_212

co.spades.CONCOCT.2.5kb_032
co.spades.CONCOCT.1kb_108

co.spades.CONCOCT.2.5kb_130
co.spades.DASTOOL.1kb_031
co.spades.METABAT.1kb_183
co.spades.DASTOOL.1kb_039

time.spades.CONCOCT.2.5kb_017
co.spades.DASTOOL.2.5kb_124
co.spades.METABAT.1kb_028

co.spades.CONCOCT.2.5kb_055
co.spades.DASTOOL.2.5kb_010
time.spades.CONCOCT.1kb_059
co.spades.CONCOCT.2.5kb_093
co.spades.DASTOOL.2.5kb_151
co.spades.CONCOCT.2.5kb_009

time.spades.CONCOCT.2.5kb_082
co.spades.CONCOCT.2.5kb_070
time.spades.CONCOCT.1kb_032
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Class

Alphaproteobacteria

Gammaproteobacteria

Other

time.spades.CONCOCT.1kb_002
co.spades.DASTOOL.1kb_088
co.spades.DASTOOL.1kb_091
co.spades.DASTOOL.1kb_152
co.spades.METABAT.1kb_156

time.spades.CONCOCT.1kb_050
co.spades.CONCOCT.1kb_013
co.spades.METABAT.2.5kb_082
co.spades.METABAT.1kb_041
co.spades.METABAT.1kb_086
co.spades.METABAT.1kb_209
co.spades.DASTOOL.1kb_069

co.spades.DASTOOL.2.5kb_020
co.spades.METABAT.2.5kb_009
co.spades.METABAT.1kb_191

co.spades.METABAT.2.5kb_069
co.spades.CONCOCT.1kb_128
co.spades.METABAT.2.5kb_085
co.spades.DASTOOL.2.5kb_003
co.spades.DASTOOL.2.5kb_083
co.spades.CONCOCT.1kb_066
co.spades.DASTOOL.2.5kb_064
co.spades.CONCOCT.2.5kb_134

time.spades.CONCOCT.2.5kb_061
co.spades.METABAT.2.5kb_172
co.spades.DASTOOL.2.5kb_131
co.spades.METABAT.1kb_021
co.spades.CONCOCT.1kb_043
co.spades.CONCOCT.1kb_044
co.spades.METABAT.1kb_126
co.spades.DASTOOL.1kb_012
co.spades.METABAT.2.5kb_024
co.spades.DASTOOL.2.5kb_091
co.spades.METABAT.1kb_079

co.spades.DASTOOL.2.5kb_105
co.spades.DASTOOL.1kb_033
co.spades.DASTOOL.1kb_103
co.spades.DASTOOL.1kb_155
co.spades.METABAT.1kb_062

co.spades.CONCOCT.2.5kb_018
time.spades.CONCOCT.2.5kb_086

co.spades.DASTOOL.1kb_159
co.spades.CONCOCT.1kb_007
co.spades.METABAT.1kb_203
co.spades.METABAT.1kb_127

co.spades.METABAT.2.5kb_033
co.spades.DASTOOL.1kb_136

co.spades.DASTOOL.2.5kb_017
co.spades.DASTOOL.1kb_046

co.spades.DASTOOL.2.5kb_025
time.spades.CONCOCT.2.5kb_019

co.spades.DASTOOL.1kb_104
co.spades.CONCOCT.1kb_029
co.spades.METABAT.1kb_032
co.spades.DASTOOL.1kb_161

co.spades.DASTOOL.2.5kb_092
co.spades.METABAT.2.5kb_013
co.spades.CONCOCT.2.5kb_016
co.spades.DASTOOL.1kb_154
co.spades.DASTOOL.1kb_063
co.spades.METABAT.1kb_084

co.spades.CONCOCT.2.5kb_113
co.spades.DASTOOL.1kb_160
co.spades.METABAT.2.5kb_076
co.spades.METABAT.1kb_205
co.spades.METABAT.1kb_048
co.spades.DASTOOL.1kb_109
co.spades.METABAT.1kb_097
co.spades.DASTOOL.1kb_113

co.spades.DASTOOL.2.5kb_112
co.spades.DASTOOL.1kb_149
co.spades.METABAT.2.5kb_153
co.spades.METABAT.1kb_107
co.spades.DASTOOL.1kb_032

co.spades.CONCOCT.2.5kb_034
co.spades.METABAT.1kb_038

co.spades.DASTOOL.2.5kb_001
co.spades.DASTOOL.1kb_036
co.spades.CONCOCT.1kb_119
co.spades.CONCOCT.1kb_040
co.spades.DASTOOL.1kb_024
co.spades.METABAT.1kb_009

co.spades.METABAT.2.5kb_140
co.spades.METABAT.1kb_146

co.spades.CONCOCT.2.5kb_117
co.spades.DASTOOL.1kb_035
co.spades.METABAT.1kb_188
co.spades.METABAT.1kb_187

co.spades.METABAT.2.5kb_115
co.spades.METABAT.1kb_144

co.spades.DASTOOL.2.5kb_108
co.spades.DASTOOL.1kb_001
co.spades.METABAT.2.5kb_053
co.spades.METABAT.1kb_058

co.spades.CONCOCT.2.5kb_056
co.spades.DASTOOL.1kb_093
co.spades.DASTOOL.1kb_034

time.spades.CONCOCT.2.5kb_003
co.spades.METABAT.1kb_122
co.spades.CONCOCT.1kb_053
co.spades.CONCOCT.1kb_051
co.spades.DASTOOL.1kb_009
co.spades.CONCOCT.1kb_078
co.spades.METABAT.2.5kb_041
co.spades.DASTOOL.1kb_100
co.spades.METABAT.1kb_169
co.spades.DASTOOL.1kb_167

time.spades.CONCOCT.2.5kb_015
co.spades.DASTOOL.1kb_049
co.spades.METABAT.2.5kb_011
co.spades.METABAT.2.5kb_110
co.spades.DASTOOL.2.5kb_123
co.spades.DASTOOL.1kb_028

co.spades.CONCOCT.2.5kb_021
co.spades.CONCOCT.2.5kb_090
co.spades.CONCOCT.2.5kb_026
co.spades.METABAT.2.5kb_161
co.spades.DASTOOL.2.5kb_018
time.spades.CONCOCT.1kb_041
co.spades.CONCOCT.1kb_039
co.spades.CONCOCT.1kb_034
co.spades.DASTOOL.2.5kb_044

time.spades.CONCOCT.2.5kb_054
co.spades.DASTOOL.2.5kb_079
co.spades.DASTOOL.1kb_071
co.spades.DASTOOL.1kb_101
co.spades.DASTOOL.1kb_023

time.spades.CONCOCT.1kb_038
co.spades.METABAT.1kb_066
co.spades.METABAT.1kb_078

co.spades.METABAT.2.5kb_091
co.spades.DASTOOL.1kb_047

co.spades.DASTOOL.2.5kb_072
co.spades.DASTOOL.2.5kb_146
co.spades.CONCOCT.1kb_091
co.spades.METABAT.1kb_077
co.spades.DASTOOL.1kb_075
co.spades.METABAT.1kb_160
co.spades.DASTOOL.1kb_177

time.spades.CONCOCT.2.5kb_067
co.spades.METABAT.1kb_185
co.spades.METABAT.1kb_094
co.spades.CONCOCT.1kb_120
co.spades.DASTOOL.1kb_134
co.spades.DASTOOL.1kb_078
co.spades.CONCOCT.1kb_080
co.spades.DASTOOL.1kb_008
co.spades.METABAT.1kb_018
co.spades.DASTOOL.1kb_043

co.spades.CONCOCT.2.5kb_010
co.spades.CONCOCT.2.5kb_126
co.spades.DASTOOL.1kb_089

co.spades.CONCOCT.2.5kb_038
co.spades.DASTOOL.1kb_086

co.spades.DASTOOL.2.5kb_066
co.spades.CONCOCT.2.5kb_103
co.spades.DASTOOL.1kb_087

co.spades.DASTOOL.2.5kb_052
co.spades.DASTOOL.2.5kb_007
co.spades.DASTOOL.1kb_045
co.spades.DASTOOL.1kb_125
co.spades.DASTOOL.1kb_030

co.spades.DASTOOL.2.5kb_055
co.spades.CONCOCT.2.5kb_030
co.spades.CONCOCT.2.5kb_029
co.spades.DASTOOL.1kb_007
co.spades.METABAT.1kb_005
co.spades.METABAT.1kb_006

co.spades.METABAT.2.5kb_062
co.spades.CONCOCT.1kb_032
co.spades.DASTOOL.2.5kb_060
co.spades.DASTOOL.1kb_150
co.spades.DASTOOL.1kb_044

time.spades.CONCOCT.2.5kb_106
co.spades.DASTOOL.1kb_151
co.spades.METABAT.1kb_015
co.spades.CONCOCT.1kb_121
co.spades.METABAT.2.5kb_060

time.spades.CONCOCT.2.5kb_081
co.spades.CONCOCT.1kb_083
co.spades.DASTOOL.1kb_143

time.spades.CONCOCT.1kb_028
co.spades.DASTOOL.1kb_156

co.spades.CONCOCT.2.5kb_058
co.spades.DASTOOL.1kb_105
co.spades.DASTOOL.1kb_072
co.spades.METABAT.2.5kb_008
co.spades.CONCOCT.1kb_142

time.spades.CONCOCT.1kb_023
co.spades.METABAT.1kb_030

co.spades.DASTOOL.2.5kb_149
co.spades.DASTOOL.2.5kb_122
co.spades.METABAT.1kb_096
co.spades.METABAT.1kb_095
co.spades.METABAT.1kb_105

time.spades.CONCOCT.1kb_020
time.spades.CONCOCT.1kb_017

time.spades.CONCOCT.2.5kb_087
co.spades.DASTOOL.2.5kb_016
co.spades.METABAT.1kb_056

co.spades.DASTOOL.2.5kb_125
co.spades.DASTOOL.1kb_121
co.spades.CONCOCT.1kb_130
co.spades.DASTOOL.1kb_042

co.spades.CONCOCT.2.5kb_148
co.spades.METABAT.2.5kb_124
co.spades.METABAT.1kb_110
co.spades.DASTOOL.1kb_059
co.spades.DASTOOL.1kb_013

time.spades.CONCOCT.1kb_117
co.spades.DASTOOL.1kb_178
co.spades.METABAT.1kb_050
co.spades.DASTOOL.1kb_062

time.spades.CONCOCT.2.5kb_039
co.spades.METABAT.1kb_212

co.spades.CONCOCT.2.5kb_032
co.spades.CONCOCT.1kb_108

co.spades.CONCOCT.2.5kb_130
co.spades.DASTOOL.1kb_031
co.spades.METABAT.1kb_183
co.spades.DASTOOL.1kb_039

time.spades.CONCOCT.2.5kb_017
co.spades.DASTOOL.2.5kb_124
co.spades.METABAT.1kb_028

co.spades.CONCOCT.2.5kb_055
co.spades.DASTOOL.2.5kb_010
time.spades.CONCOCT.1kb_059
co.spades.CONCOCT.2.5kb_093
co.spades.DASTOOL.2.5kb_151
co.spades.CONCOCT.2.5kb_009

time.spades.CONCOCT.2.5kb_082
co.spades.CONCOCT.2.5kb_070
time.spades.CONCOCT.1kb_032

Phyla.class.groups
Phyla.groups

B
i
n
.
I
d

alpha

0.7

Phyla

Acidobacteriota

Actinobacteriota

Bacteroidota

Bdellovibrionota

Campylobacterota

Chlamydiota

Cyanobacteria

Dependentiae

Desulfobacterota_B

Gemmatimonadota

Myxococcota

Nitrospirota
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Class Phyla

time.spades.CONCOCT.1kb_002
co.spades.DASTOOL.1kb_088
co.spades.DASTOOL.1kb_091
co.spades.DASTOOL.1kb_152
co.spades.METABAT.1kb_156

time.spades.CONCOCT.1kb_050
co.spades.CONCOCT.1kb_013
co.spades.METABAT.2.5kb_082
co.spades.METABAT.1kb_041
co.spades.METABAT.1kb_086
co.spades.METABAT.1kb_209
co.spades.DASTOOL.1kb_069

co.spades.DASTOOL.2.5kb_020
co.spades.METABAT.2.5kb_009
co.spades.METABAT.1kb_191

co.spades.METABAT.2.5kb_069
co.spades.CONCOCT.1kb_128
co.spades.METABAT.2.5kb_085
co.spades.DASTOOL.2.5kb_003
co.spades.DASTOOL.2.5kb_083
co.spades.CONCOCT.1kb_066
co.spades.DASTOOL.2.5kb_064
co.spades.CONCOCT.2.5kb_134

time.spades.CONCOCT.2.5kb_061
co.spades.METABAT.2.5kb_172
co.spades.DASTOOL.2.5kb_131
co.spades.METABAT.1kb_021
co.spades.CONCOCT.1kb_043
co.spades.CONCOCT.1kb_044
co.spades.METABAT.1kb_126
co.spades.DASTOOL.1kb_012
co.spades.METABAT.2.5kb_024
co.spades.DASTOOL.2.5kb_091
co.spades.METABAT.1kb_079

co.spades.DASTOOL.2.5kb_105
co.spades.DASTOOL.1kb_033
co.spades.DASTOOL.1kb_103
co.spades.DASTOOL.1kb_155
co.spades.METABAT.1kb_062

co.spades.CONCOCT.2.5kb_018
time.spades.CONCOCT.2.5kb_086

co.spades.DASTOOL.1kb_159
co.spades.CONCOCT.1kb_007
co.spades.METABAT.1kb_203
co.spades.METABAT.1kb_127

co.spades.METABAT.2.5kb_033
co.spades.DASTOOL.1kb_136

co.spades.DASTOOL.2.5kb_017
co.spades.DASTOOL.1kb_046

co.spades.DASTOOL.2.5kb_025
time.spades.CONCOCT.2.5kb_019

co.spades.DASTOOL.1kb_104
co.spades.CONCOCT.1kb_029
co.spades.METABAT.1kb_032
co.spades.DASTOOL.1kb_161

co.spades.DASTOOL.2.5kb_092
co.spades.METABAT.2.5kb_013
co.spades.CONCOCT.2.5kb_016
co.spades.DASTOOL.1kb_154
co.spades.DASTOOL.1kb_063
co.spades.METABAT.1kb_084

co.spades.CONCOCT.2.5kb_113
co.spades.DASTOOL.1kb_160
co.spades.METABAT.2.5kb_076
co.spades.METABAT.1kb_205
co.spades.METABAT.1kb_048
co.spades.DASTOOL.1kb_109
co.spades.METABAT.1kb_097
co.spades.DASTOOL.1kb_113

co.spades.DASTOOL.2.5kb_112
co.spades.DASTOOL.1kb_149
co.spades.METABAT.2.5kb_153
co.spades.METABAT.1kb_107
co.spades.DASTOOL.1kb_032

co.spades.CONCOCT.2.5kb_034
co.spades.METABAT.1kb_038

co.spades.DASTOOL.2.5kb_001
co.spades.DASTOOL.1kb_036
co.spades.CONCOCT.1kb_119
co.spades.CONCOCT.1kb_040
co.spades.DASTOOL.1kb_024
co.spades.METABAT.1kb_009

co.spades.METABAT.2.5kb_140
co.spades.METABAT.1kb_146

co.spades.CONCOCT.2.5kb_117
co.spades.DASTOOL.1kb_035
co.spades.METABAT.1kb_188
co.spades.METABAT.1kb_187

co.spades.METABAT.2.5kb_115
co.spades.METABAT.1kb_144

co.spades.DASTOOL.2.5kb_108
co.spades.DASTOOL.1kb_001
co.spades.METABAT.2.5kb_053
co.spades.METABAT.1kb_058

co.spades.CONCOCT.2.5kb_056
co.spades.DASTOOL.1kb_093
co.spades.DASTOOL.1kb_034

time.spades.CONCOCT.2.5kb_003
co.spades.METABAT.1kb_122
co.spades.CONCOCT.1kb_053
co.spades.CONCOCT.1kb_051
co.spades.DASTOOL.1kb_009
co.spades.CONCOCT.1kb_078
co.spades.METABAT.2.5kb_041
co.spades.DASTOOL.1kb_100
co.spades.METABAT.1kb_169
co.spades.DASTOOL.1kb_167

time.spades.CONCOCT.2.5kb_015
co.spades.DASTOOL.1kb_049
co.spades.METABAT.2.5kb_011
co.spades.METABAT.2.5kb_110
co.spades.DASTOOL.2.5kb_123
co.spades.DASTOOL.1kb_028

co.spades.CONCOCT.2.5kb_021
co.spades.CONCOCT.2.5kb_090
co.spades.CONCOCT.2.5kb_026
co.spades.METABAT.2.5kb_161
co.spades.DASTOOL.2.5kb_018
time.spades.CONCOCT.1kb_041
co.spades.CONCOCT.1kb_039
co.spades.CONCOCT.1kb_034
co.spades.DASTOOL.2.5kb_044

time.spades.CONCOCT.2.5kb_054
co.spades.DASTOOL.2.5kb_079
co.spades.DASTOOL.1kb_071
co.spades.DASTOOL.1kb_101
co.spades.DASTOOL.1kb_023

time.spades.CONCOCT.1kb_038
co.spades.METABAT.1kb_066
co.spades.METABAT.1kb_078

co.spades.METABAT.2.5kb_091
co.spades.DASTOOL.1kb_047

co.spades.DASTOOL.2.5kb_072
co.spades.DASTOOL.2.5kb_146
co.spades.CONCOCT.1kb_091
co.spades.METABAT.1kb_077
co.spades.DASTOOL.1kb_075
co.spades.METABAT.1kb_160
co.spades.DASTOOL.1kb_177

time.spades.CONCOCT.2.5kb_067
co.spades.METABAT.1kb_185
co.spades.METABAT.1kb_094
co.spades.CONCOCT.1kb_120
co.spades.DASTOOL.1kb_134
co.spades.DASTOOL.1kb_078
co.spades.CONCOCT.1kb_080
co.spades.DASTOOL.1kb_008
co.spades.METABAT.1kb_018
co.spades.DASTOOL.1kb_043

co.spades.CONCOCT.2.5kb_010
co.spades.CONCOCT.2.5kb_126
co.spades.DASTOOL.1kb_089

co.spades.CONCOCT.2.5kb_038
co.spades.DASTOOL.1kb_086

co.spades.DASTOOL.2.5kb_066
co.spades.CONCOCT.2.5kb_103
co.spades.DASTOOL.1kb_087

co.spades.DASTOOL.2.5kb_052
co.spades.DASTOOL.2.5kb_007
co.spades.DASTOOL.1kb_045
co.spades.DASTOOL.1kb_125
co.spades.DASTOOL.1kb_030

co.spades.DASTOOL.2.5kb_055
co.spades.CONCOCT.2.5kb_030
co.spades.CONCOCT.2.5kb_029
co.spades.DASTOOL.1kb_007
co.spades.METABAT.1kb_005
co.spades.METABAT.1kb_006

co.spades.METABAT.2.5kb_062
co.spades.CONCOCT.1kb_032
co.spades.DASTOOL.2.5kb_060
co.spades.DASTOOL.1kb_150
co.spades.DASTOOL.1kb_044

time.spades.CONCOCT.2.5kb_106
co.spades.DASTOOL.1kb_151
co.spades.METABAT.1kb_015
co.spades.CONCOCT.1kb_121
co.spades.METABAT.2.5kb_060

time.spades.CONCOCT.2.5kb_081
co.spades.CONCOCT.1kb_083
co.spades.DASTOOL.1kb_143

time.spades.CONCOCT.1kb_028
co.spades.DASTOOL.1kb_156

co.spades.CONCOCT.2.5kb_058
co.spades.DASTOOL.1kb_105
co.spades.DASTOOL.1kb_072
co.spades.METABAT.2.5kb_008
co.spades.CONCOCT.1kb_142

time.spades.CONCOCT.1kb_023
co.spades.METABAT.1kb_030

co.spades.DASTOOL.2.5kb_149
co.spades.DASTOOL.2.5kb_122
co.spades.METABAT.1kb_096
co.spades.METABAT.1kb_095
co.spades.METABAT.1kb_105

time.spades.CONCOCT.1kb_020
time.spades.CONCOCT.1kb_017

time.spades.CONCOCT.2.5kb_087
co.spades.DASTOOL.2.5kb_016
co.spades.METABAT.1kb_056

co.spades.DASTOOL.2.5kb_125
co.spades.DASTOOL.1kb_121
co.spades.CONCOCT.1kb_130
co.spades.DASTOOL.1kb_042

co.spades.CONCOCT.2.5kb_148
co.spades.METABAT.2.5kb_124
co.spades.METABAT.1kb_110
co.spades.DASTOOL.1kb_059
co.spades.DASTOOL.1kb_013

time.spades.CONCOCT.1kb_117
co.spades.DASTOOL.1kb_178
co.spades.METABAT.1kb_050
co.spades.DASTOOL.1kb_062

time.spades.CONCOCT.2.5kb_039
co.spades.METABAT.1kb_212

co.spades.CONCOCT.2.5kb_032
co.spades.CONCOCT.1kb_108

co.spades.CONCOCT.2.5kb_130
co.spades.DASTOOL.1kb_031
co.spades.METABAT.1kb_183
co.spades.DASTOOL.1kb_039

time.spades.CONCOCT.2.5kb_017
co.spades.DASTOOL.2.5kb_124
co.spades.METABAT.1kb_028

co.spades.CONCOCT.2.5kb_055
co.spades.DASTOOL.2.5kb_010
time.spades.CONCOCT.1kb_059
co.spades.CONCOCT.2.5kb_093
co.spades.DASTOOL.2.5kb_151
co.spades.CONCOCT.2.5kb_009

time.spades.CONCOCT.2.5kb_082
co.spades.CONCOCT.2.5kb_070
time.spades.CONCOCT.1kb_032
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Class

Alphaproteobacteria

Gammaproteobacteria

Other

time.spades.CONCOCT.1kb_002
co.spades.DASTOOL.1kb_088
co.spades.DASTOOL.1kb_091
co.spades.DASTOOL.1kb_152
co.spades.METABAT.1kb_156

time.spades.CONCOCT.1kb_050
co.spades.CONCOCT.1kb_013
co.spades.METABAT.2.5kb_082
co.spades.METABAT.1kb_041
co.spades.METABAT.1kb_086
co.spades.METABAT.1kb_209
co.spades.DASTOOL.1kb_069

co.spades.DASTOOL.2.5kb_020
co.spades.METABAT.2.5kb_009
co.spades.METABAT.1kb_191

co.spades.METABAT.2.5kb_069
co.spades.CONCOCT.1kb_128
co.spades.METABAT.2.5kb_085
co.spades.DASTOOL.2.5kb_003
co.spades.DASTOOL.2.5kb_083
co.spades.CONCOCT.1kb_066
co.spades.DASTOOL.2.5kb_064
co.spades.CONCOCT.2.5kb_134

time.spades.CONCOCT.2.5kb_061
co.spades.METABAT.2.5kb_172
co.spades.DASTOOL.2.5kb_131
co.spades.METABAT.1kb_021
co.spades.CONCOCT.1kb_043
co.spades.CONCOCT.1kb_044
co.spades.METABAT.1kb_126
co.spades.DASTOOL.1kb_012
co.spades.METABAT.2.5kb_024
co.spades.DASTOOL.2.5kb_091
co.spades.METABAT.1kb_079

co.spades.DASTOOL.2.5kb_105
co.spades.DASTOOL.1kb_033
co.spades.DASTOOL.1kb_103
co.spades.DASTOOL.1kb_155
co.spades.METABAT.1kb_062

co.spades.CONCOCT.2.5kb_018
time.spades.CONCOCT.2.5kb_086

co.spades.DASTOOL.1kb_159
co.spades.CONCOCT.1kb_007
co.spades.METABAT.1kb_203
co.spades.METABAT.1kb_127

co.spades.METABAT.2.5kb_033
co.spades.DASTOOL.1kb_136

co.spades.DASTOOL.2.5kb_017
co.spades.DASTOOL.1kb_046

co.spades.DASTOOL.2.5kb_025
time.spades.CONCOCT.2.5kb_019

co.spades.DASTOOL.1kb_104
co.spades.CONCOCT.1kb_029
co.spades.METABAT.1kb_032
co.spades.DASTOOL.1kb_161

co.spades.DASTOOL.2.5kb_092
co.spades.METABAT.2.5kb_013
co.spades.CONCOCT.2.5kb_016
co.spades.DASTOOL.1kb_154
co.spades.DASTOOL.1kb_063
co.spades.METABAT.1kb_084

co.spades.CONCOCT.2.5kb_113
co.spades.DASTOOL.1kb_160
co.spades.METABAT.2.5kb_076
co.spades.METABAT.1kb_205
co.spades.METABAT.1kb_048
co.spades.DASTOOL.1kb_109
co.spades.METABAT.1kb_097
co.spades.DASTOOL.1kb_113

co.spades.DASTOOL.2.5kb_112
co.spades.DASTOOL.1kb_149
co.spades.METABAT.2.5kb_153
co.spades.METABAT.1kb_107
co.spades.DASTOOL.1kb_032

co.spades.CONCOCT.2.5kb_034
co.spades.METABAT.1kb_038

co.spades.DASTOOL.2.5kb_001
co.spades.DASTOOL.1kb_036
co.spades.CONCOCT.1kb_119
co.spades.CONCOCT.1kb_040
co.spades.DASTOOL.1kb_024
co.spades.METABAT.1kb_009

co.spades.METABAT.2.5kb_140
co.spades.METABAT.1kb_146

co.spades.CONCOCT.2.5kb_117
co.spades.DASTOOL.1kb_035
co.spades.METABAT.1kb_188
co.spades.METABAT.1kb_187

co.spades.METABAT.2.5kb_115
co.spades.METABAT.1kb_144

co.spades.DASTOOL.2.5kb_108
co.spades.DASTOOL.1kb_001
co.spades.METABAT.2.5kb_053
co.spades.METABAT.1kb_058

co.spades.CONCOCT.2.5kb_056
co.spades.DASTOOL.1kb_093
co.spades.DASTOOL.1kb_034

time.spades.CONCOCT.2.5kb_003
co.spades.METABAT.1kb_122
co.spades.CONCOCT.1kb_053
co.spades.CONCOCT.1kb_051
co.spades.DASTOOL.1kb_009
co.spades.CONCOCT.1kb_078
co.spades.METABAT.2.5kb_041
co.spades.DASTOOL.1kb_100
co.spades.METABAT.1kb_169
co.spades.DASTOOL.1kb_167

time.spades.CONCOCT.2.5kb_015
co.spades.DASTOOL.1kb_049
co.spades.METABAT.2.5kb_011
co.spades.METABAT.2.5kb_110
co.spades.DASTOOL.2.5kb_123
co.spades.DASTOOL.1kb_028

co.spades.CONCOCT.2.5kb_021
co.spades.CONCOCT.2.5kb_090
co.spades.CONCOCT.2.5kb_026
co.spades.METABAT.2.5kb_161
co.spades.DASTOOL.2.5kb_018
time.spades.CONCOCT.1kb_041
co.spades.CONCOCT.1kb_039
co.spades.CONCOCT.1kb_034
co.spades.DASTOOL.2.5kb_044

time.spades.CONCOCT.2.5kb_054
co.spades.DASTOOL.2.5kb_079
co.spades.DASTOOL.1kb_071
co.spades.DASTOOL.1kb_101
co.spades.DASTOOL.1kb_023

time.spades.CONCOCT.1kb_038
co.spades.METABAT.1kb_066
co.spades.METABAT.1kb_078

co.spades.METABAT.2.5kb_091
co.spades.DASTOOL.1kb_047

co.spades.DASTOOL.2.5kb_072
co.spades.DASTOOL.2.5kb_146
co.spades.CONCOCT.1kb_091
co.spades.METABAT.1kb_077
co.spades.DASTOOL.1kb_075
co.spades.METABAT.1kb_160
co.spades.DASTOOL.1kb_177

time.spades.CONCOCT.2.5kb_067
co.spades.METABAT.1kb_185
co.spades.METABAT.1kb_094
co.spades.CONCOCT.1kb_120
co.spades.DASTOOL.1kb_134
co.spades.DASTOOL.1kb_078
co.spades.CONCOCT.1kb_080
co.spades.DASTOOL.1kb_008
co.spades.METABAT.1kb_018
co.spades.DASTOOL.1kb_043

co.spades.CONCOCT.2.5kb_010
co.spades.CONCOCT.2.5kb_126
co.spades.DASTOOL.1kb_089

co.spades.CONCOCT.2.5kb_038
co.spades.DASTOOL.1kb_086

co.spades.DASTOOL.2.5kb_066
co.spades.CONCOCT.2.5kb_103
co.spades.DASTOOL.1kb_087

co.spades.DASTOOL.2.5kb_052
co.spades.DASTOOL.2.5kb_007
co.spades.DASTOOL.1kb_045
co.spades.DASTOOL.1kb_125
co.spades.DASTOOL.1kb_030

co.spades.DASTOOL.2.5kb_055
co.spades.CONCOCT.2.5kb_030
co.spades.CONCOCT.2.5kb_029
co.spades.DASTOOL.1kb_007
co.spades.METABAT.1kb_005
co.spades.METABAT.1kb_006

co.spades.METABAT.2.5kb_062
co.spades.CONCOCT.1kb_032
co.spades.DASTOOL.2.5kb_060
co.spades.DASTOOL.1kb_150
co.spades.DASTOOL.1kb_044

time.spades.CONCOCT.2.5kb_106
co.spades.DASTOOL.1kb_151
co.spades.METABAT.1kb_015
co.spades.CONCOCT.1kb_121
co.spades.METABAT.2.5kb_060

time.spades.CONCOCT.2.5kb_081
co.spades.CONCOCT.1kb_083
co.spades.DASTOOL.1kb_143

time.spades.CONCOCT.1kb_028
co.spades.DASTOOL.1kb_156

co.spades.CONCOCT.2.5kb_058
co.spades.DASTOOL.1kb_105
co.spades.DASTOOL.1kb_072
co.spades.METABAT.2.5kb_008
co.spades.CONCOCT.1kb_142

time.spades.CONCOCT.1kb_023
co.spades.METABAT.1kb_030

co.spades.DASTOOL.2.5kb_149
co.spades.DASTOOL.2.5kb_122
co.spades.METABAT.1kb_096
co.spades.METABAT.1kb_095
co.spades.METABAT.1kb_105

time.spades.CONCOCT.1kb_020
time.spades.CONCOCT.1kb_017

time.spades.CONCOCT.2.5kb_087
co.spades.DASTOOL.2.5kb_016
co.spades.METABAT.1kb_056

co.spades.DASTOOL.2.5kb_125
co.spades.DASTOOL.1kb_121
co.spades.CONCOCT.1kb_130
co.spades.DASTOOL.1kb_042

co.spades.CONCOCT.2.5kb_148
co.spades.METABAT.2.5kb_124
co.spades.METABAT.1kb_110
co.spades.DASTOOL.1kb_059
co.spades.DASTOOL.1kb_013

time.spades.CONCOCT.1kb_117
co.spades.DASTOOL.1kb_178
co.spades.METABAT.1kb_050
co.spades.DASTOOL.1kb_062

time.spades.CONCOCT.2.5kb_039
co.spades.METABAT.1kb_212

co.spades.CONCOCT.2.5kb_032
co.spades.CONCOCT.1kb_108

co.spades.CONCOCT.2.5kb_130
co.spades.DASTOOL.1kb_031
co.spades.METABAT.1kb_183
co.spades.DASTOOL.1kb_039

time.spades.CONCOCT.2.5kb_017
co.spades.DASTOOL.2.5kb_124
co.spades.METABAT.1kb_028

co.spades.CONCOCT.2.5kb_055
co.spades.DASTOOL.2.5kb_010
time.spades.CONCOCT.1kb_059
co.spades.CONCOCT.2.5kb_093
co.spades.DASTOOL.2.5kb_151
co.spades.CONCOCT.2.5kb_009

time.spades.CONCOCT.2.5kb_082
co.spades.CONCOCT.2.5kb_070
time.spades.CONCOCT.1kb_032
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Acidobacteriota

Actinobacteriota

Bacteroidota

Bdellovibrionota

Campylobacterota

Chlamydiota

Cyanobacteria
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Desulfobacterota_B

Gemmatimonadota

Myxococcota

Nitrospirota

Patescibacteria

Planctomycetota

Proteobacteria

Verrucomicrobiota

Class

Phyla
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Acidobacteriota

Actinobacteriota

Bacteroidota

Bdellovibrionota

Campylobacterota

Chlamydiota

Cyanobacteria

Dependentiae

Desulfobacterota_B

Gemmatimonadota

Myxococcota

Nitrospirota

Patescibacteria

Planctomycetota

Proteobacteria

Verrucomicrobiota

Gammaproteobacteria

time.spades.CONCOCT.1kb_002co.spades.DASTOOL.1kb_088co.spades.DASTOOL.1kb_091co.spades.DASTOOL.1kb_152co.spades.METABAT.1kb_156time.spades.CONCOCT.1kb_050co.spades.CONCOCT.1kb_013co.spades.METABAT.2.5kb_082co.spades.METABAT.1kb_041co.spades.METABAT.1kb_086co.spades.METABAT.1kb_209co.spades.DASTOOL.1kb_069co.spades.DASTOOL.2.5kb_020co.spades.METABAT.2.5kb_009co.spades.METABAT.1kb_191co.spades.METABAT.2.5kb_069co.spades.CONCOCT.1kb_128co.spades.METABAT.2.5kb_085co.spades.DASTOOL.2.5kb_003co.spades.DASTOOL.2.5kb_083co.spades.CONCOCT.1kb_066co.spades.DASTOOL.2.5kb_064co.spades.CONCOCT.2.5kb_134time.spades.CONCOCT.2.5kb_061co.spades.METABAT.2.5kb_172co.spades.DASTOOL.2.5kb_131co.spades.METABAT.1kb_021co.spades.CONCOCT.1kb_043co.spades.CONCOCT.1kb_044co.spades.METABAT.1kb_126co.spades.DASTOOL.1kb_012co.spades.METABAT.2.5kb_024co.spades.DASTOOL.2.5kb_091co.spades.METABAT.1kb_079co.spades.DASTOOL.2.5kb_105co.spades.DASTOOL.1kb_033co.spades.DASTOOL.1kb_103co.spades.DASTOOL.1kb_155co.spades.METABAT.1kb_062co.spades.CONCOCT.2.5kb_018time.spades.CONCOCT.2.5kb_086co.spades.DASTOOL.1kb_159co.spades.CONCOCT.1kb_007co.spades.METABAT.1kb_203co.spades.METABAT.1kb_127co.spades.METABAT.2.5kb_033co.spades.DASTOOL.1kb_136co.spades.DASTOOL.2.5kb_017co.spades.DASTOOL.1kb_046co.spades.DASTOOL.2.5kb_025time.spades.CONCOCT.2.5kb_019co.spades.DASTOOL.1kb_104co.spades.CONCOCT.1kb_029co.spades.METABAT.1kb_032co.spades.DASTOOL.1kb_161co.spades.DASTOOL.2.5kb_092co.spades.METABAT.2.5kb_013co.spades.CONCOCT.2.5kb_016co.spades.DASTOOL.1kb_154co.spades.DASTOOL.1kb_063co.spades.METABAT.1kb_084co.spades.CONCOCT.2.5kb_113co.spades.DASTOOL.1kb_160co.spades.METABAT.2.5kb_076co.spades.METABAT.1kb_205co.spades.METABAT.1kb_048co.spades.DASTOOL.1kb_109co.spades.METABAT.1kb_097co.spades.DASTOOL.1kb_113co.spades.DASTOOL.2.5kb_112co.spades.DASTOOL.1kb_149co.spades.METABAT.2.5kb_153co.spades.METABAT.1kb_107co.spades.DASTOOL.1kb_032co.spades.CONCOCT.2.5kb_034co.spades.METABAT.1kb_038co.spades.DASTOOL.2.5kb_001co.spades.DASTOOL.1kb_036co.spades.CONCOCT.1kb_119co.spades.CONCOCT.1kb_040co.spades.DASTOOL.1kb_024co.spades.METABAT.1kb_009co.spades.METABAT.2.5kb_140co.spades.METABAT.1kb_146co.spades.CONCOCT.2.5kb_117co.spades.DASTOOL.1kb_035co.spades.METABAT.1kb_188co.spades.METABAT.1kb_187co.spades.METABAT.2.5kb_115co.spades.METABAT.1kb_144co.spades.DASTOOL.2.5kb_108co.spades.DASTOOL.1kb_001co.spades.METABAT.2.5kb_053co.spades.METABAT.1kb_058co.spades.CONCOCT.2.5kb_056co.spades.DASTOOL.1kb_093co.spades.DASTOOL.1kb_034time.spades.CONCOCT.2.5kb_003co.spades.METABAT.1kb_122co.spades.CONCOCT.1kb_053co.spades.CONCOCT.1kb_051co.spades.DASTOOL.1kb_009co.spades.CONCOCT.1kb_078co.spades.METABAT.2.5kb_041co.spades.DASTOOL.1kb_100co.spades.METABAT.1kb_169co.spades.DASTOOL.1kb_167time.spades.CONCOCT.2.5kb_015co.spades.DASTOOL.1kb_049co.spades.METABAT.2.5kb_011co.spades.METABAT.2.5kb_110co.spades.DASTOOL.2.5kb_123co.spades.DASTOOL.1kb_028co.spades.CONCOCT.2.5kb_021co.spades.CONCOCT.2.5kb_090co.spades.CONCOCT.2.5kb_026co.spades.METABAT.2.5kb_161co.spades.DASTOOL.2.5kb_018time.spades.CONCOCT.1kb_041co.spades.CONCOCT.1kb_039co.spades.CONCOCT.1kb_034co.spades.DASTOOL.2.5kb_044time.spades.CONCOCT.2.5kb_054co.spades.DASTOOL.2.5kb_079co.spades.DASTOOL.1kb_071co.spades.DASTOOL.1kb_101co.spades.DASTOOL.1kb_023time.spades.CONCOCT.1kb_038co.spades.METABAT.1kb_066co.spades.METABAT.1kb_078co.spades.METABAT.2.5kb_091co.spades.DASTOOL.1kb_047co.spades.DASTOOL.2.5kb_072co.spades.DASTOOL.2.5kb_146co.spades.CONCOCT.1kb_091co.spades.METABAT.1kb_077co.spades.DASTOOL.1kb_075co.spades.METABAT.1kb_160co.spades.DASTOOL.1kb_177time.spades.CONCOCT.2.5kb_067co.spades.METABAT.1kb_185co.spades.METABAT.1kb_094co.spades.CONCOCT.1kb_120co.spades.DASTOOL.1kb_134co.spades.DASTOOL.1kb_078co.spades.CONCOCT.1kb_080co.spades.DASTOOL.1kb_008co.spades.METABAT.1kb_018co.spades.DASTOOL.1kb_043co.spades.CONCOCT.2.5kb_010co.spades.CONCOCT.2.5kb_126co.spades.DASTOOL.1kb_089co.spades.CONCOCT.2.5kb_038co.spades.DASTOOL.1kb_086co.spades.DASTOOL.2.5kb_066co.spades.CONCOCT.2.5kb_103co.spades.DASTOOL.1kb_087co.spades.DASTOOL.2.5kb_052co.spades.DASTOOL.2.5kb_007co.spades.DASTOOL.1kb_045co.spades.DASTOOL.1kb_125co.spades.DASTOOL.1kb_030co.spades.DASTOOL.2.5kb_055co.spades.CONCOCT.2.5kb_030co.spades.CONCOCT.2.5kb_029co.spades.DASTOOL.1kb_007co.spades.METABAT.1kb_005co.spades.METABAT.1kb_006co.spades.METABAT.2.5kb_062co.spades.CONCOCT.1kb_032co.spades.DASTOOL.2.5kb_060co.spades.DASTOOL.1kb_150co.spades.DASTOOL.1kb_044time.spades.CONCOCT.2.5kb_106co.spades.DASTOOL.1kb_151co.spades.METABAT.1kb_015co.spades.CONCOCT.1kb_121co.spades.METABAT.2.5kb_060time.spades.CONCOCT.2.5kb_081co.spades.CONCOCT.1kb_083co.spades.DASTOOL.1kb_143time.spades.CONCOCT.1kb_028co.spades.DASTOOL.1kb_156co.spades.CONCOCT.2.5kb_058co.spades.DASTOOL.1kb_105co.spades.DASTOOL.1kb_072co.spades.METABAT.2.5kb_008co.spades.CONCOCT.1kb_142time.spades.CONCOCT.1kb_023co.spades.METABAT.1kb_030co.spades.DASTOOL.2.5kb_149co.spades.DASTOOL.2.5kb_122co.spades.METABAT.1kb_096co.spades.METABAT.1kb_095co.spades.METABAT.1kb_105time.spades.CONCOCT.1kb_020time.spades.CONCOCT.1kb_017time.spades.CONCOCT.2.5kb_087co.spades.DASTOOL.2.5kb_016co.spades.METABAT.1kb_056co.spades.DASTOOL.2.5kb_125co.spades.DASTOOL.1kb_121co.spades.CONCOCT.1kb_130co.spades.DASTOOL.1kb_042co.spades.CONCOCT.2.5kb_148co.spades.METABAT.2.5kb_124co.spades.METABAT.1kb_110co.spades.DASTOOL.1kb_059co.spades.DASTOOL.1kb_013time.spades.CONCOCT.1kb_117co.spades.DASTOOL.1kb_178co.spades.METABAT.1kb_050co.spades.DASTOOL.1kb_062time.spades.CONCOCT.2.5kb_039co.spades.METABAT.1kb_212co.spades.CONCOCT.2.5kb_032co.spades.CONCOCT.1kb_108co.spades.CONCOCT.2.5kb_130co.spades.DASTOOL.1kb_031co.spades.METABAT.1kb_183co.spades.DASTOOL.1kb_039time.spades.CONCOCT.2.5kb_017co.spades.DASTOOL.2.5kb_124co.spades.METABAT.1kb_028co.spades.CONCOCT.2.5kb_055co.spades.DASTOOL.2.5kb_010time.spades.CONCOCT.1kb_059co.spades.CONCOCT.2.5kb_093co.spades.DASTOOL.2.5kb_151co.spades.CONCOCT.2.5kb_009time.spades.CONCOCT.2.5kb_082co.spades.CONCOCT.2.5kb_070time.spades.CONCOCT.1kb_032
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1kbp 2.5kbp

csc csd csm tsc csc csd csm tsc
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explained approximately 64% of the variation in the community membership (PERMANOVA, 

F(11) = 108.88, R2 = 0.637,  p < .05) and 70% of the variation in community structure 

(PERMANOVA, F(11) = 50.92, R2 = 0.703,  p < .05) (Table S16.1, S16.2). The remaining 

variables, i.e., assembly/binning approach and contig size, accounted for smaller but significant 

proportion of the variation. In particular, assembly/binning approach explained about 29% of the 

variation in community membership (PERMANOVA, F(3) = 182.78, R2 = 0.291,  p < .05), while 

contig size explained 3% (PERMANOVA, F(3) = 55.50, R2 = 0.03,  p < .05). Similar observations 

were made for structure-based analysis (Table S16.1). Although no clustering by assembly/binning 

approach and contig size were observed, the average dissimilarity in community structure and 

membership between time points were about 37 and 53%, respectively (dBC and dJ = 0.369 ± 0.11 

and 0.528 ± 0.13). These findings suggest that while temporal dynamics of the drinking water 

microbiome are largely retained despite variation in genome-centric metagenomic workflows, the 

choice of assembly/binning strategy, in particular, can have a significant impact on the structure 

and membership of the drinking water microbiome and should not be overlooked. 

 

 
Figure 6 Structure-based non-metric multidimensional scaling (NMDS) of Bray-Curtis dissimilarity 

matrices and membership-based Jaccard distances as inferred using the abundance information (in RPKM) 

of all MAGs identified across the assembly/binning approaches. Points represents samples (or time points) 
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(see supplementary Table S1), and shapes represents the assembly/binning approaches, i.e., metaSPAdes 

co-assembly + CONCOCT (■), metaSPAdes co-assembly + DAS Tool (▲), metaSPAdes co-assembly + 

and MetaBAT2 (◆) and metaSPAdes time-discrete assembly + CONCOCT (+)). 

 

Conclusion 

This study evaluated the performance of a combination of de novo assembly strategies and binning 

algorithms for time-series metagenomic data for drinking water microbial communities, to identify 

an ideal combination of assembly and binning approaches that allows for the generation of high 

quality metagenomic assemblies and MAGs. Overall, metaSPAdes co-assembly strategies, i.e., 

co-assembly of all samples and time discrete assembly, produced less fragmented and larger 

assemblies that retained the maximum amount of metagenomic information. Re-assembly and 

binning followed by manual curation significantly improved MAG qualities in situation with 

unresolved multi-genome or chimeric bins. Though none of the assembly/binning strategies were 

able to reconstruct high-quality MAGs due the absence of a full complement of rRNA genes, 

metaSPAdes co-assembly + MetaBAT2 retained the highest number medium-quality MAGs and 

where able to reconstruct MAGs that where not detected with the other assembly/binning 

approaches. Moreover, metaSPAdes time-discrete assembly + CONCOCT where able to 

differentiate between closely related species that were, otherwise collapsed or considered a 

singular strain using the other two assembly/binning approaches. Our study also finds that the 

choice of assembly/binning strategy can have a significant impact on the membership and structure 

of the microbial community as inferred from presence/absence and relative abundance of MAGs. 

This combined with the fact that a significant proportion of SRG’s were not reconstructed using 

any single approach, highlights the need to utilize multiple assembly/binning approaches for MAG 

recovery. We therefore recommend utilizing multiple assembly, binning and binning aggregating 

strategies followed by dereplication to maximize the recovery of non-redundant MAGs that may 

more fully represent the microbial populations in drinking water samples. 

 

Data availability 

Raw sequence reads and 233 SRGs are available on NCBI at Bioproject number PRJNA745168 

and PRJNA745370, respectivly. The 8 assemblies and 1,279 curated MAGs are available on 

datadryad at https://doi.org/10.5061/dryad.ksn02v74q. 
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