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Abstract

Reconstructing microbial genomes from metagenomic short-read data can be challenging due to
the unknown and uneven complexity of microbial communities. This complexity encompasses
highly diverse populations which often includes strain variants. Reconstructing high-quality
genomes is a crucial part of the metagenomic workflow as subsequent ecological and metabolic
inferences depend on their accuracy, quality, and completeness. In contrast to microbial
communities in other ecosystems, there has been no systematic assessment of genome-centric
metagenomic workflows for drinking water microbiomes. In this study, we assessed the
performance of a combination of assembly and binning strategies for time-series drinking water
metagenomes that were collected over a period of 6 months. The goal of this study was to identify
the combination of assembly and binning approaches that results in high quality and quantity
metagenome-assembled genomes (MAGs), representing most of the sequenced metagenome. Our
findings suggest that the metaSPAdes co-assembly strategies had the best performance as they
resulted in larger and less fragmented assemblies with at least 85% of the sequence data mapping
to contigs greater than 1kbp. Furthermore, a combination of metaSPAdes co-assembly strategies
and MetaBAT2 produced the highest number of medium-quality MAGs while capturing at least
70% of the metagenomes based on read recruitment. Utilizing different assembly/binning
approaches also assist in the reconstruction of unique MAGs from closely related species that
would have otherwise collapsed into a single MAG using a single workflow. Overall, our study
suggests that leveraging multiple binning approaches with different metaSPAdes co-assembly
strategies may be required to maximize the recovery of good-quality MAGs, which more

accurately capture the microbial diversity of drinking water samples.
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Introduction

Advances in high-throughput sequencing technologies have enabled characterization of microbial
communities without the need for cultivation (1). This has greatly facilitated our understanding of
microbial communities that inhabit a range of natural and engineered ecosystems. Two high-
throughput sequencing technologies commonly used to characterize microbial communities
includes gene-targeted assays that uses universal genes/regions (i.e., 16S rRNA, 18S rRNA and
internal transcribe spacer region for bacteria/archaea, eukaryotes, and fungi, respectively) and
short read shotgun DNA sequencing (i.e., metagenomics) (1-4). Other emerging sequencing
approaches includes synthetic- and single-molecule long-read sequencing for both gene-targeted
and metagenomic assays (5, 6). Gene-targeted assays provide valuable insights into the
compositional and structural profiles of microbial communities in a fast and cost-effective manner;
however, this approach is limited by challenges related to primer selection and amplification bias
(7). Furthermore, taxonomic classification in gene-targeted assays is based on a fragment of a
singular conserved universal marker gene that permits little resolution beyond the genus level and
does not allow for the direct analysis of a microbial community’s metabolic capabilities (8). In
some instances, putative functional assignment is possible when using gene-targeted assays;
however, this requires the availability of a curated taxonomic databases and classification beyond
the genus level (9). Limitations of gene-targeted assays can be overcome by utilizing genome-
resolved metagenomics (10, 11). Genome-resolved metagenomics encompasses de novo assembly
of short high-throughput paired-end reads into longer contiguous sequences (contigs) and
subsequent reconstruction of metagenome-assembled genomes (MAGs) through clustering (or
binning) of contigs based on nucleotide composition and differential coverage (12, 13). This
approach offers improved taxonomic and functional potential analysis, as well as the

characterization of novel microorganisms using phylogenetic analysis (14).

De novo assembly and reconstruction of MAGs from short-read metagenomic data can be
challenging due to sequencing errors, repeats, depth of sequencing coverage, and the presence of
strain variants (15, 16). These challenges influence the performance of assemblers as it creates
unresolved ambiguities in the reconstructed contigs, leading to erroneous and/or fragmented
assemblies. Reconstructing high-quality MAGs is a crucial part of the genome-centric

metagenomic workflow as subsequent taxonomic, metabolic, and ecological inferences depend on
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the accuracy, quality, and completeness of genomes. Studies have attempted to optimize the
recovery of high-quality assemblies and MAGs by benchmarking metagenomic software for
assembly, binning, and taxonomic classification (16—19). However, owing to the unknown
complexity of varying environmental sample types, systematic evaluation of metagenomic
workflows is required as tool selection depends on the complexity of the biological sample and

the availability of computational recourses (18).

Genomes are often reconstructed by assembling all the samples together (co-assembly) or creating
individual assemblies. Co-assembly is a computationally intensive approach that involves the
pooling of multiple metagenomes, which allow for greater sequence depth and coverage as well
as leveraging differential coverage of microorganisms across genomes for genome binning. While
this assembly approach can facilitate the identification of populations that are present at lower
abundances, it can also result in ambiguous and/or fragmented assemblies when strain level
variability is high (20, 21). In contrast, single sample assemblies are computationally less intensive
and are often used to reconstruct genomes of larger datasets and to preserve strain variation
between different samples (22). It has also been shown that single sample assembly produce more
non-redundant high-quality MAGs and enables the reconstructions of genomes with similar
phylogenetic placement compared to co-assembled genomes (14). However, lower sequence depth
and thus lower coverage resulting from single-sample assembly in addition to the lack of
differential coverage information, makes genome reconstructions difficult when using this
assembly approach as coverage heuristics that are used to accurately disentangle repetitive

sequences and differentiate between strain variants cannot be properly applied.

Advances in our understanding of the drinking water microbiome have been greatly facilitated by
the application of genome-resolve metagenomics (23—-26). Despite this progress, inferences of
microbial community dynamics in drinking water systems (DWS) have been restrained by the
limited availability of longitudinal metagenomic datasets as most previous work was done
utalizing gene-targeted assays in studies that were short (i.e., few time points), gapped (i.e.,
missing time points) and/or implemented over multiple spatio-temporal scales (27-29).
Longitudinal datasets are preferred over cross-sectional studies (1) as they offer unique insights

into the stability and dynamics of microbial communities. This is because information leveraged
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from these datasets can reveal periodic patterns that can be used in predictive modeling, describe
irregularities in response to abrupt environmental perturbations, and capture temporal variation of
microbial interactions (30). Currently, there is little work on how to best leverage the unique
properties of time-series metagenomic data for DWS. Thus, the overall objective of this study was
to evaluate the performance of a combination of de novo assembly and binning algorithms for
time-series metagenomic data for drinking water microbial communities. Our goal was to identify
an ideal combination of assembly and binning strategies that can allow for high quality

metagenomic assemblies and MAGs that maximally capture the sequenced metagenomes.

Materials and Methods
Sample Collection

Samples (n = 12) were collected over a period of 6 months from a tap in a commercial building
located in Boston, MA (United States) (Table S1). Prior to sample collection, the system was
flushed for at least 30 min at a flow rate ranging between 3.0 and 3.3 Lmin! and then
approximately 1,500 ml of tap water was collected for microbial community analysis in a sterile
(by autoclaving) 2 L DURAN® GLS 80® wide mouth borosilicated glass bottle (DURAN®, Cat.
No.: 1112715). An additional 500 ml sample was collected in parallel in sterile 2 x 250 ml
DURAN® GLS 80® wide mouth borosilicated glass bottles (DURAN®, Cat. No.: 218603656)
for chemical analysis. Samples for microbial community analysis were filtered immediately
through Sterivex-GP Pressure Filter Units (EMD Millipore, Cat. No.: SVGP01050) containing a
0.22um polyethersulfone (PES) filter membrane, using the Geotech Geopump™ Series II
peristaltic pump (Geotech Environmental Equipment, Inc., Cat. No.: 91350113) and sterile SZ 15
Geotech silicone tubing (Geotech Environmental Equipment, Inc., Cat. No.: 77050000). Following
filtration, the exterior of the filter unit was cleaned with an 70% ethanol (Fisher Scientific, Cat.
No.: A962F) soaked Kimwipe (Kimberly-Clark Professional™, Cat. No.: 34120) and then
transferred to a 50 ml Falcon tube (Corning, Cat. No.: 362070) and stored at -80°C until further

analysis.
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Water chemistry characterization

Water quality parameters (i.e., temperature, pH, conductivity, and dissolved oxygen) were
measured using the Orion Star™ A325 pH/Conductivity Portable Multiparameter Meter (Thermo
Scientific™, Cat. No.: STARA3250). Total chlorine was measured using USEPA approved
HACH Method 8167 with DPD Total Chlorine Reagent Powder Pillows (HACH, Cat. No.:
2105669). Reactive orthophosphate was measured using USEPA approved HACH Method 8048
with PhosVer®3 Phosphate Reagent Powder Pillows (HACH, Cat. No.: 2106028). Nitrogen
species, including ammonium, nitrate and nitrate were measured using the Nitrogen-Ammonia
Reagent Set (Method 10023, HACH, Cat. No.: 2604545), NitraVer X Nitrogen-Nitrate Reagent
Set (Method 10020 HACH, Cat. No.: 2605345), and NitriVer 3 TNT Reagent Set (Method 10019,
Cat. No.: 2608345), respectively. All HACH measurements were performed in triplicate on the
DR1900 Portable Spectrophotometer (HACH, Cat. No.: DR190001H) (Table S1).

Flow cytometric analysis

Standard flow cytometric measurements (FCM) were performed as described previously (31, 32).
Briefly, samples were quenched with 10mM sodium thiosulfate (1% (v/v)) (Alfa Aesar™, Cat.
No.: AA35645K2) and then pre-heated at 37°C for 3 min, stained with SYBR Green I (SG)
(Invitrogen™, Cat. No.: S7585) (1:100 diluted in 10 mM Tris-HCI (pH 8.5, Bioworld, Cat. No:
NC1213695)) at 10 ul.ml! or SG combined with propidium iodide (PI) (Molecular Probes™, Cat.
No.: P3566) (3uM final concentration) at 12 ul.ml"! and incubated in the dark at 37°C for 10 min.
Five negative controls consisting of (i) unstained UltraPure™ DNase/RNase-Free Distilled Water
(Thermo Fisher Scientific, Cat. No.: 10977015), (ii) SG stained UltraPure™ DNase/RNase-Free
Distilled Water, (iii)) SGPI stained UltraPure™ DNase/RNase-Free Distilled Water, (iv) SG
stained 0.22um filtered tap water sample, and (v) SGPI stained 0.22um filtered tap water sample
were processed identically and in parallel with the samples. FCM were performed on 50 pl sample
in triplicate at a pre-set flow rate of 66 pl.min"! using a BD Accuri® C6 flow cytometer (BD
Accuri® cytometers, Belgium) which is equipped with a 50mW solid state laser emitting light at
a fixed wavelength of 488 nm. Green and red fluorescent intensity was collected at FL1 = 533 +
30 nm and FL3 > 670 nm, respectively, along with sideward and forward scatter light intensities.
Data were processed with the BD Accuri CFlow® software that permits electronic gating to

separate the positive signals from instrumental and sample background noise on a two-parameter
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density plot (33). A trigger/threshold of 1,000 was applied on the green fluorescence channel

(FL1). No compensation was used.

Sample Processing and DNA Extraction

Prior to extraction, the bead constituents (i.e., ceramic and silica spheres, and glass bed) contained
within the 2 ml Lysing Matrix E tubes (MP Biomedicals, Cat. No.: 116914100) were aseptically
transferred into sterile 1.5 ml microcentrifuge tubes (Eppendorf, Cat. No.: 022431021) (34).
Removal of these components was necessary to ensure that the processed PES filter membranes
from the Sterivex-GP Pressure Filter Units are fully immersed in solution during the enzymatic
and chemical treatment steps of the DNA extraction protocol. The PES filter membrane with
harvested microbial biomass was aseptically removed from the Sterivex-GP Pressure Filter Unit
and cut into smaller pieces on the surface of a petri dish (Fisher Scientific, Cat. No.: FB0875712)
using a sterile scalpel (Fisher Scientific, Cat. No.: 08-920B) and then transferred into the emptied
2 ml Lysing Matrix E tubes using a sterile tweezer (Fisher Scientific, Cat. No: 22327379). DNA
extractions were performed using a modified version of the DNeasy PowerWater Kit® (QIAGEN,
Cat. No.: 14900-50-NF or 14900-100-NF) protocol that utilizes enzymatic, chemical, and
mechanical lysis strategies to enhance recovery of DNA from drinking water samples (34). Briefly,
filter cuttings contained in the 2 ml Lysing Matrix E tubes were submerged in 294 pl 10X Tris-
EDTA (100 mM Tris, 10 mM EDTA, pH 8.0, G-Biosciences, Cat. No: 501035446) and 6 pl
lysozyme solution (50 mg.ml', Thermo Fisher Scientific, Cat. No.: 90082) and incubated
for 60 min at 37°C with light mixing at 300 rpm using the Eppendorf ThermoMixer® C
(Eppendorf, Cat. No.: 2231000680). Subsequently, the tubes were supplemented with 300 pl pre-
warmed (55°C) PW1 solution, provided with the DNeasy PowerWater Kit®, and 30 pl Proteinase
K (20 mg.ml"', Thermo Fisher Scientific, Cat. No.: AM2546), vortexed and incubated for 30 min
at 56°C with light mixing at 300 rpm using the Eppendorf ThermoMixer® C. After incubation, the
bead constituents initially transferred to the sterile 1.5 ml microcentrifuge tubes were aseptically
transferred back to the Lysing Matrix E tubes. The tubes were then supplemented with 630 pl
chloroform/isoamyl alcohol (24:1, pH 8, Acros Organics, Cat. No.: 327155000) and bead beat at
setting 6 for 40 sec using the FastPrep-24™ Classic Instrument (MP Biomedicals, Cat. No.:
116004500). The resulting homogenized mixture was then subjected to centrifugation at 14 000 x
g for 10 min at 4°C using the Eppendorf® Centrifuge 5424R (Cat. No.: 5404000332). After
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centrifugation, the aqueous phase (600 - 650 ul) was transferred to a sterile 1.5 ml microcentrifuge
tube. Exactly 600 pl of the aqueous phase was used as starting material on the QIACube System
(QIAGEN, Cat. No.: 9001882) to purify DNA according to the manufacture instructions using the
DNeasy PowerWater Kit® protocol. Three negative controls consisting of a reagent blank (CO1)
and two filter blanks (i.e., unused PES membrane filters (C02) and PES membrane filters treated
with autoclave deionized water (C03)) were processed identically and in parallel with the samples.
The extracted DNA was quantified in duplicate using the Qubit™ dsDNA High Sensitivity (HS)
Assay Kit (Thermo Fisher Scientific, Cat. No.: Q32851) with the Qubit™ 4 Fluorometer (Thermo
Fisher Scientific, Cat. No.: Q33238) (Table S2). All DNA extracts (50 pl) were stored at -80°C

until further analysis.

Quantitative PCR

The quantitative PCR (qPCR) assay was performed on a QuantStudio™ 3 Real-Time PCR System
(ThermoFisher Scientific Cat. no. A28567) in a 20 pl reaction mixture consisting of Luna®
Universal qPCR Master Mix (New England Biolabs, Inc., Cat. No.: NC1276266), forward and
reverse primer pairs (F515-GTGCCAGCMGCCGCGGTAA and R806-
GGACTACHVGGGTWTCTAAT, respectively) (35), UltraPure™ DNase/RNase-Free Distilled
Water (Thermo Fisher Scientific, Cat. No.: 10977015) and 1:10 diluted DNA template. Reactions
were prepared in triplicate in a 96-well optical plate using the epMOTION® M5073 automated
liquid handling system (Eppendorf, Cat. no. 5073000205D). qPCR conditions were as follow: 1
min at 95°C, and then 40 cycles consisting of 15 sec at 95°C, 15 sec at 50°C and 1 min at 72°C. A
calibration curve with standards ranging from 102 - 10® copies of 16S rRNA gene of Nitrosomonas
europaea for total bacteria assay were generated. The calibration curve for 16S rRNA copies was

linear (R? = 0.997) over 7 orders of magnitude with a high PCR efficiency (100%).

Metagenomic Sequencing

Sequencing libraries were prepared using the Ovation® Ultralow DNA-Seq Library Preparation
Kit (NuGEN, Cat. No.: 0344NB). Metagenomic sequencing was performed on one SP lane of the
NovaSeq 6000 sequencing system (Illumina) at the Roy J. Carver Biotechnology Centre at the
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University of Illinois Urbana-Champaign (UIUC) Sequencing Core (Champaign, IL, United
States).

Sequence Processing
Pre-processing

Processing of sequencing data was done using the workflow outlined in Figure S1. Initial quality
control of FASTQ files were performed using fastp v0.20.0 (36) with parameters: --trim_poly X,
--qualified quality phred 20, --length required 20. The UniVec Core database from NCBI

(ftp://ftp.ncbi.nih.gov/pub/UniVec/) was subsequently used to screen for contaminant sequences

(e.g., phix sequencing control used as sequencing control and sequencing adapters) by mapping
the reads from each sample against the UniVec Core database using BWA-MEM v0.7.17 (37) and
then filtering reads in proper pair and supplementary alignments using samtools v1.9 (38) with
parameters: -hbS -F2 -F2048. BAM files were subsequently sorted using the sort function of
samtools v1.9 and then quality filtered forward and reverse FASTQ files were extracted from
sequence alignments in sorted BAM format using the bamtofastq function of bedtools v2.29.2

(https://bedtools.readthedocs.io/en/latest/). The quality filtered FASTQ files were analyzed using

Nonpareil v3.303 (39) in kmer mode to estimate the coverage and to predict the number of
sequences required to achieve “near complete” coverage. Nonpareil curves were generated in R

(40) using the function Nonpareil.set of Nonpareil v3.3.4.

MASH distance and k-means clustering

MASH v2.2.2 (41) was used to estimate read-based dissimilarity between samples using the
quality filtered FASTQ files. For this, forward and reverse quality filtered FASTQ files of each

sample  were interleaved  using interleafq = v1.0  (https:/github.com/quadram-

institutebioscience/interleafq) and then the sketch function was used to convert the interleaved

quality filtered FASTQ files of each sample into a MinHash sketch with parameters: s = 100,000
and k = 21. The dist function was subsequently used for pairwise comparisons between samples
based on Jaccard indices; thereby comparing the fraction shared k-mers between samples. K-
means clustering on MASH distances was performed to partition samples into clusters with the

nearest mean (Figure S2). For this, the MASH-distance matrix was imported into R and the
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function fviz_nbclust of factoextra v1.0.7 (https://www.rdocumentation.org/packages/factoextra)

was used to determine and visualize the optimal number of clusters (or k groups) using the average
silhouette method with 999 Monte Carlo iterations. The MASH-distance matrix was subsequently
clustered by the k-means method using kmeans of the stats package v3.6.2

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans) and then

visualized using fviz_cluster of factoextra v1.0.7.

Metagenomic assembly and binning

The performance of a combination of assembly (metaSPAdes v.3.13.1(42) and MEGAHIT v.1.2.9
(43)), binning (CONCOCT v.1.1.1 (13), MetaBAT v.2.12.1 (12), MaxBin v.2.2.4 (44)) and bin
aggregating software (DAS Tool v.1.1.0 (45)) were evaluated using four assembly strategies,
including individual assembly and three co-assembly approaches, i.e., co-assembly with all
samples, MASH distance-based assembly, and time-discrete assembly. This resulted in 32
combinations of assembler, assembly strategy, and binning approaches (Table S2). For MASH
distance-based assemblies, three co-assemblies consisting of pooled samples that were identified
using pair-wise MASH dissimilarity indices and kmeans clustering were identified: (i) BW003 +
BWO015 + BW030 + BWO060, (ii)) BW075 + BW090 + BW105, and (iii) BW120 + BW135 +
BWI150 + BW165 (Table S2). Samples pooled and co-assembled for time-discrete assembly
consisted of eleven combinations representing paired samples of successive sampling points: (i)
BWO003 + BWO015, (ii)) BWO015 + BW030, (iii) BW030 + BW045, (iv) BW045 + BW060, (v)
BWO060 + BW075, (vi) BW075 + BW090, (vii) BW090 + BW105, (viii) BW105 + BW120, (ix)
BWI120 + BW135, (x) BW135 + BW150, and (xi) BW150 + BW165. Control samples (i.e., CO1,
C02, and C03) were pooled and assembled independently in both MASH distance-based - and

time-discrete assembly strategies.

Quality filtered forward and reverse FASTQ files of samples for the individual - and three co-
assembly strategies were assembled using metaSPAdes v.3.13.1 and MEGAHIT v.1.2.9 with k-
mere sizes 21, 33, 55, and 77. Following assembly and prior to binning, contigs of the MASH
distance-based co-assemblies (n = 4), time-discrete co-assemblies (n = 12), and individual
assemblies (n = 15) were pooled within each strategy, resulting in 6 pooled assemblies and 8

assemblies in total (6 pooled assemblies and two co-assemblies) that were used in downstream

10
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processing (Table S2). Contigs < 1lkbp were filtered from all assemblies using seqtk
(https://github.com/lh3/seqtk). This was followed by the removal of redundant contigs, i.e.

duplicate and contained contigs, using the dedupe function of BBTools v38.76

(https://github.com/BiolnfoTools/BBMap/blob/master/sh/dedupe.sh) for the pooled assemblies.

QUAST v.5.0.2(46) was used to assess the quality of the processed assemblies with default
parameters. Mapping rates were determined by mapping the quality-trimmed paired end reads to
each assembly using BWA-MEM v0.7.17 (37) and then filtering unmapped reads using the view
function of samtools v1.9 (38) with parameters: -hbS -F4. BAM files were subsequently sorted
using the sort function of samtools v1.9 and then coverM @ v.0.4.0

(https://github.com/wwood/CoverM) was used to calculate contig-wise coverage with the method

flag set to count. Prokka v1.14.6 (47) was used to identify coding DNA sequences (CDSs) in the
contigs and to translate these CDSs to protein-coding amino acid sequences. Coding density was
calculated by dividing the total CDS length (in Mbp) by the total assembly length (in Mbp). The
blastp workflow of DIAMOND v.0.9.36 (48) was used to align the protein-coding amino acid
sequences against the UniPort Knowledgebase (UniProtKB)/TrEMBL non-redundant (nr) protein

database (https://www.uniprot.org/downloads) at an expected value (e-value) cutoff of 1 x 10 to

identify high-scoring segment pairs (HSPs). Predicted protein-coding amino acid sequences that
aligned with reference protein-coding amino acid sequences in the UniPort Knowledgebase
(UniProtKB)/TrEMBL nr protein database were used to compute query/subject length ratios and
query/subject length alignment ratios. These query/subject length and query/subject length
alignment ratios were used as a measure to asses the extent of assembly fragmentation and

misassembly.

Binning of contigs greater than 1.0kbp and 2.5kbp were performed using the analysis
and visualization platform for ‘omics data (anvi’o) v6.1 (49). In this workflow, bins were
generated using binning algorithms that combine tetranucleotide frequencies and coverage
information across samples, including CONCOCT v.1.1.1 (13), MetaBAT v.2.12.1 (12), MaxBin
v.2.2.4 (44). Since different binning tools reconstruct genomes at varying levels of completeness,
a bin aggregation software, i.e., DAS Tool v.1.1.0 (45), was used to integrate the results of bin
predictions made by CONCOCT, MetaBAT2 and MaxBin2 to optimize the selection on non-

redundant, high-quality bin sets using default parameters. Bin statistics, including total size,

11
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number contigs, N50, GC content, etc., were obtained using the anvi-summarize function of
anvi’o; while estimates of quality (completeness, redundancy, strain heterogeneity, etc.) were
retrieved using the lineage-specific workflow of CheckM v.1.0.18 (50). Mapping rates were
determined by mapping the quality-trimmed paired end reads to each bin using BWA-MEM
v0.7.17 and then filtering unmapped reads using the view function of samtools v1.9 with
parameters: -hbS -F4. BAM files were subsequently sorted using the sort function of samtools v1.9
and then coverM v.0.4.0 was used to calculate contig-wise coverage with the method flag set to

count.

To further improve bin quality, individual bins with > 50% completeness of a selected combination
of assembler, assembly strategy, and binning approach were identified for reassembly (see results
section). For this, properly paired quality-trimmed reads associated with individual bins of the
selected assembly/binning approaches were extracted and stored into their FASTQ files using
samtools v1.9 functions view and fastq, followed by assembly using metaSPAdes v.3.13.1 with k-
mer sizes 21, 33, 55, and 77. The reassembled contigs were re-binned a second time using the
appropriate original binning approach and bin statistics and mapping rates were determined as

described above.

To obtain MAGs, bins were manually curated using the interactive interface of anvi’o v6.1. MAG
characteristics and mapping rates were determined as described above. To assist in the
identification of high- and medium-quality draft MAGs as define under the Minimum Information
about a Metagenome-Assembled Genome (MIMAG) standards (51), ribosomal RNAs (rRNAs)
and transfer RNAs (tRNAs) were detected with Prokka v. 1.14.6 (47). Pooled MAGs were
dereplicated with dRep v2.6.2 (52) and clustered into species-level representative genomes (SRGs)
at 95% average nucleotide identity (ANI). SRGs were classified using the classify workflow of
the Genome Taxonomy Dataset Toolkit (GTDTk) v0.3.2 (53), which provides automated
classification of bacterial genomes by placing them into domain-specific, concatenated protein
reference trees. The phylogenomic workflow of anvi’o v6.1 was reproduced to construct a
phylogenomic tree using a concatenated alignment of 37 single-copy ribosomal bacterial core

genes.
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Statistical analysis

Statistical analysis was performed in R (40). Descriptive statistics and statistics on central tendency
were performed using one-way analysis of variance (ANOVA) provided in the stats package.
Significant ANOVA findings were further investigated by performing a post-hoc Tukey-Kramer
test using the function Tukey.HSD with Bonferroni correction. Non-multidimensional scaling
(NMDS) using Bray-Curtis and Jaccard dissimilarity indices were performed using metaMDS
provided in the vegan package and permutational analysis of variance (PERMANOVA) were

conducted using the function adonis of the vegan package. All plots were generated in R using

ggplot2 (54).

Results and discussion
Summary of metagenomic sequencing of drinking water samples

On average 23.03 + 9.57 ng DNA were extracted from the 1,500 ml filtered tap water samples
harboring between 21.8 and 85.8 million cells (Table S1). A total of 1.05 billion (M £+ SD = 87.67
+ 4.34 million reads) raw 150-nucleotide (nt) paired-end reads, ranging between 81.37 and 94.15
million reads per sample were generated from the DNA extracts of 12 samples, which had average
16S rRNA gene counts of 3.8x10° + 1.9x10° copies/ul (Table S3). Control samples with average
16S rRNA gene counts of 4.1x10! = 8x10° copies/ul had at least 3 x 102-fold less raw paired-ended
reads compared to samples (0.27 = 0.12 million reads) (Table S3). Processing of the raw paired
end reads following quality filtering and contaminant exclusion, removed on average 1.02 +0.23%
of the reads per sample. The final sequence dataset consisted of 1.04 billion (86.75 £ 0.42 million)
high-quality, processed reads with a lower and upper range of 80.51and 93.08 million reads per
sample, respectively (Table S3). Nonpareil (39), was used to assess the coverage of sequencing
effort (Table S4). The average coverage estimates across samples were 89.00 £+ 3.00%, with a
lower and upper range of 84.00 and 94.00%, respectively. This suggests that a sequencing depth

of ~81-94 million reads was sufficient to capture most of the microbial diversity in each sample.
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Evaluation of metagenome assembly quality for variable assembly strategy and metagenome

assembler combinations

The performance of two de Bruijn graph-based assemblers, metaSPAdes and MEGAHIT that
utilize iterative multiple k-mer approaches to improve assembly quality (43, 55) were assessed for
three co-assembly strategies (i.e., co-assembly of all samples, MASH distance-based assembly and
time-discrete assembly) and assembly of individual samples (Table S2). Inclusion of various
assembly strategies allow for the assessment of assembly performance in terms of computational
requirements (i.e., RAM usage, assembly runtime per processing core, etc.) and assembly quality
at varying levels of diversity as well as sequence depth and coverage. The metaSPAdes assemblies
required more computing recourses, i.e., demanded higher memory limits and threads, and had
runtimes that were up to 6-fold longer when compared to the MEGAHIT assemblies (Table S5),
which confirms previous findings (18, 19, 56). As expected, co-assembly strategies (i.e., co-
assembly of all samples, MASH distance-based assembly and time-discrete assembly) for both
metaSPAdes and MEGAHIT were associated with longer runtimes (Table S5). Amongst the
metaSPAdes assemblies, time-discrete assembly had the longest runtime (195 hours summed
across all assemblies), followed by co-assembly (100 hours) and MASH-distance based assembly
(28 hours summed across all assemblies). Similar observations were made for the MEGAHIT

assemblies (Table S5).

Evaluating de novo assembly quality for environmental samples is challenging due the lack of a
ground truth reference assembly for comparison (57). As a result, we used measures of contiguity
(i.e., total assembly size, maximum contig length, N50, L50, etc.), gene calling and quality (i.e.,
coding DNA sequence (CDS), coding density), mapping rate, and rate of gene fragmentation and
misassembly to assess the quality of the assemblies (Table S5). In total, between 9,959,586 and
114,386,414 contigs were generated across the metaSPAdes and MEGAHIT assemblies. Most of
the assembled contigs ~98.39% had lengths below 1kbp and were not used in downstream analysis.
Duplicate and contained contigs that accounted for between 10 and 42% of the filtered contigs
(>1kbp) were found amongst the MASH distance-based - and time-discrete co-assemblies, and
individual assemblies of metaSPAdes and MEGAHIT and removed (Table S5). Duplicate contigs
were define as contigs sharing 100% sequence similarity over the entire length, while contained

contigs included shorter contigs that were 100% similar to a longer contig over their length. The
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average total number contigs per assembly strategy kept after removing contigs shorter than 1kbp
and redundant contigs were 506,898 (SD = 164,157). For each assembly strategy, the metaSPAdes
assemblies produced between 10 and 20% more contigs greater than 1kbp compared to the number
of contigs that were generated from the MEGAHIT assemblies (Table S5). Differences between
assemblies were more apparent when metrics related to assembly contiguity were compared.
Irrespective of the assembly strategy, the total assembly length of the metaSPAdes assemblies
were greater when compared to the assemblies of MEGAHIT (Figure 1A). MetaSPAdes time-
discrete assembly had the greatest assembly length (2,940.15 Mbp), followed by individual
assembly (2,037.97 Mbp), co-assembly (1,488.27 Mbp), and MASH distance-based assembly
(1,147.06 Mbp). Since larger assembly lengths are not always indicative of better assembly quality
(56), N50 estimates representing a weighted medium contig size were considered. The
metaSPAdes assemblies generated contigs with higher N50 estimates when compared to the
MEGAHIT assemblies (Figure 1B). Time-discrete assembly of metaSPAdes had the highest N50
estimates (6.77 kbp), followed by individual assembly (5.67 kbp), MASH distance-based assembly
(5.65 kbp), and co-assembly (5.32 kbp). The higher N50 estimates of the metaSPAdes assemblies
indicate that these assemblies contain a lower proportion of small contigs and therefore are less

fragmented assemblies (1, 56, 58, 59).

Although the metaSPAdes assemblies were associated with 10-30% more CDSs compared to the
MEGAHIT assemblies, the coding densities were similar across the assemblies of metaSPAdes
and MEGAHIT, and range between 0.77 and 0.80 (Table S5). CDSs were blasted against the
UniProtKB/TrEMBL nr protein database to identify HSPs, i.e., sequence pairs sharing high
alignment scores, at an expected value (e-value) cutoff of 1 x 10, Across the assembly strategies,
between 71 and 76% of the CDSs shared a high degree of similarity against the reference amino
acid sequences in the UniProtKB/TrEMBL nr protein database and had average e-values and bit
scores of 3.09 x 10° + 3.91 x 10 and 387.00 + 305.65, respectively (Table S5). Assembly
fragmentation was assessed by analyzing the ratio between the lengths of CDSs (query length
(glen)) and their top hits in the UniProtKB/TrEMBL nr protein database (subject length (slen)),
with lower qlen:slen ratios indicating less gene fragmentation and thus lower assembly
fragmentation. Similar distributions in glen:slen ratios were observed across the assemblies of

metaSPAdes and MEGAHIT, with only between 30 and 36% of the CDSs having qlen:slen ratios
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ranging between 0.95 and 1 (Figure S3A, Table S6.1). This suggests that the vast majority of CDSs

across both assemblers and all assembly strategies were likely fragmented.

The CDSs of the metaSPAdes assemblies were less fragmented than those from the MEGAHIT
assemblies; hence had higher mean qlen:slen ratios (Table S6.1, Figure S3B). Post-hoc
comparisons using the Tukey HSD test indicated statistically significant differences between all
metaSPAdes and MEGAHIT assemblies (Tukey HSD test, all p < 0.05) (Tables S6.2, S6.3).
metaSPAdes time-discrete assembly had the greatest mean qlen:slen ratio (0.901 + 0.307),
followed by MASH distance-based assembly (0.895 + 0.315), individual assembly (0.895 =+
0.306), and co-assembly (0.892 + 0.320). Similar observations were made for the MEGAHIT
assembly strategies (Table S6.1). Though significant differences were found, the effect sizes of
these differences was small (effect size (n?) = 1.15E-04 and 2.39E-04 for metaSPAdes and
MEGAHIT, respectively), suggesting that only 0.01 and 0.02% of the change in glen:slen ratios
can be accounted for by the assembly strategy for metaSPAdes and MEGAHIT, respectivly.
Statistically significant differences in the variation around the mean qlen:slen ratios were observed
for the assemblies of metaSPAdes (coefficient of variation (Cy) =0.35+0.01) and MEGAHIT (C,
=0.36 = 0.01) (signed-likelihood ratio test (SLRT) and asymptomatic test, all p < 0.05) (Table
S6.4). Associations between the mean qlen:slen ratios and C, estimates indicated that the
metaSPAdes assembly strategies were associated with higher glen:slen ratios and lower Cy
estimates compared to the assemblies of MEGAHIT (Figure S3B). The ratio between the
alignment lengths of CDSs (query alignment length (qalignlen)) and their top hits in the
UniProtKB/TrEMBL nr protein database (subject alignment length (salignlen)) were used to
evaluate potential misassembly due to the presence of insertion-deletion (indels) in genes (Table
S7.1). Similar distributions in qalignlen:salignlen ratios were observed across the assemblies of
metaSPAdes and MEGAHIT, with between 59 and 66% of the CDSs having qalignlen:salignlen
ratios that ranged between 0.95 and 1 (Figure S3C, Table S7.1). Though statistically significant
differences in the mean qalignlen:salignlen ratios were observed for the assemblies of metaSPAdes
and MEGAHIT (ANOVA, all p <0.05) (Table S7.2, S7.3), the effect size of the differences were
small (1> = 6.22 x 107 and 3.74 x 10 for metaSPAdes and MEGAHIT, respectively). Similarly,
small but statistically significant differences in the variation around the mean qalignlen:salignlen

ratios of the metaSPAdes and MEGAHIT assembly strategies were observed (Cy range = 0.02 —
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0.03 for metaSPAdes and MEGAHIT assemblies) (SLRT and asymptomatic test, all p < 0.05)
(Table S7.4). Overall, these results suggests that while metaSPAdes results in significantly less
fragmented assemblies with lower rates of genes fragmentation, the effect size of this difference

on CDS quality is small.

The proportion of sequencing information retained following assembly was determined by
mapping the quality-trimmed paired end reads of each sample to the non-redundant, filtered
metaSPAdes and MEGAHIT assemblies. Although no statistically significant differences between
the mean read mapping rates of corresponding metaSPAdes and MEGAHIT assembly strategies
were observed (Tukey HSD, all p < 0.05) (Table S8), the metaSPAdes assemblies had mean
mapping rates that were higher when compared to the MEGAHIT assemblies (Figure 1C, Table
S5). Amongst the metaSPAdes assemblies, co-assembly of all samples had the highest mapping
rate (90.61 + 3.28%)), followed by time-discrete assembly (88.45 + 3.64%), MASH distance-based
assembly (86.91 + 3.39%) and individual assembly (85.47 + 4.45%). Similar observations were
made for the MEGAHIT assemblies. Overall, the metaSPAdes assemblies had larger and more
contiguous assemblies with read mapping rates > 85%. This confirms previous findings (1, 19, 59,

60).
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Figure 1 Comparison of assembly characteristics associated with 4 different assembly strategies (co-
assembly (grey), MASH distance-based assembly (blue), time-discrete assembly (green) and individual
assembly (orange)) that were assembled with metaSPAdes and MEGAHIT. Assembly characteristics were
determined using non-redundant contigs larger than 1kbp of co-assemblies and pooled MASH distance-
based, time-discrete, and individual assemblies. Assembly characteristics included: A) Total assembly
length; B) N50 estimates; and C) Proportion reads of 12 drinking water samples (®) that were mapped

against the non-redundant, filtered assemblies. For a complete list of estimates, please refer to Tables S5.

Evaluation of binning results for combination of assembly strategies, assemblers, and

binning approaches.

Unrefined bin sets were generated from the metaSPAdes and MEGAHIT assemblies of each
assembly strategy using original binning algorithms that combine tetranucleotide frequencies and
coverage information across samples (12, 13, 44), i.e., CONCOCT v.1.1.1, MetaBAT v.2.12.1 and
MaxBin v.2.2.4 as well as DAS Tool v.1.1.0 that integrates results of bin predictions made by
original binning algorithms to optimize the selection on non-redundant, high-quality bin sets (45).
This resulted in 64 assembly/binning combinations (n = 32 assembly/binning combinations for bin

sets that were constructed using larger than lkbp and 2.5kbp contigs, respectively) (Table S9).
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MASH distance based NMDS clustering of the unrefined bin sets indicated that the bin sets
clustered based on assembly/binning approach rather than contig size cutoff used for binning
(Figure S4). The importance of assembly/binning approach as compared to contig size cutoff was
further confirmed by PERMANOVA analyses (Table S10). The minimum contig threshold (1kbp
or 2.5kbp) that were selected for binning, explained a smaller proportion of the variation ~2%
(PERMANOVA, F(1) =36.16, R* = 0.02, p < 0.05) as compared to 96% of the variation that was
explained by the assembly/binning approach choice (PERMANOVA, F(31) =46.24, R*=0.96, p
< 0.05). However, the unrefined bin sets that were generated using contigs > 1kbp produced about
20% more unrefined bins with > 50% completeness, when compared to the unrefined bin sets that
were generated using contigs > 2.5kbp (Figure 2, Table S9). These unrefined bins were
furthermore associated with mapping rates that were between 5 and 20% higher when compared
to the unrefined bins that were generated using contigs > 2.5kbp (Figure 2, Table S9). These
finding suggest that binning with contigs > 1kbp allows for a more accurate representation of the

microbial diversity.
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Figure 2 Association between total number bins and mean read mapping rates of sample reads mapped

against the unrefined bins with completeness > 50% that were assembled with different assembly
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approaches (co-assembly (grey), MASH distance-based assembly (blue), time-discrete assembly (green)
and individual assembly (orange)) using metaSPAdes (A) and MEGAHIT (m) and binned with
CONCOCT, MetaBAT2, MaxBin2 and DAS Tool. Error bars indicate standard errors of read mapping

rates.

Marked improvements in bin qualities following re-assembly and curation.

Across the 64 assembly/binning combinations, greater than 1kbp and 2.5kbp contig size bin sets
of 4 assembly/binning approaches; hence, 8 assembly/binning combinations in total, consistently
produced the highest number bins (completeness > 50%) and mapping rates greater than 50%.
These assembly/binning approaches included co-assembly strategies of metaSPAdes: (i)
metaSPAdes co-assembly + CONCOCT, (ii) metaSPAdes time-discrete assembly + CONCOCT,
(ii1)) metaSPAdes co-assembly + MetaBAT2, and (iv) metaSPAdes co-assembly + DAS Tool
(Figure 2). The unrefined CONCOCT bin sets of the co-assembled metaSPAdes assemblies (i.e.,
metaSPAdes co-assembly + CONCOCT and metaSPAdes time-discrete-assembly + CONCOCT),
consisted of fewer bins and bins that were significantly greater in size (Table S11). In particular,
for metaSPAdes co-assembly + CONCOCT the average bin size were 8.15 £+ 8.12 Mbp and 6.41
+ 5.26 Mbp for 1kbp and 2.5kbp constructed bins, while metaSPAdes time-discrete-assembly +
CONCOCT had average bin sizes of 14.05 + 15.06 Mbp (contigs > 1kbp) and 15.01 + 12.59 Mbp
(contigs > 2.5kbp). These bins were also associated with large redundancy estimates that averaged
above 60% and average strain heterogeneity estimates greater than 20% (Figure 3). These findings
suggest that the unrefined CONCOCT bin sets likely consist of multi-genome or chimeric bins and
highlighted the need for reassembly of individual bins and/or bin curation (61). The remaining co-
assembly strategies of metaSPAdes, i.e., metaSPAdes co-assembly + MetaBAT2 and metaSPAdes
co-assembly + DAS Tool, generated more bins and bins with lower redundancy estimates that
average below 15% (Figure 3). To improve the quality of the unrefined bin sets, bins with greater
than 50% completeness of the 8 assembly/binning combinations were independently subjected to
reassembly. Proper paired quality-trimmed reads associated with the bins were extracted,
converted to FASTQ format, and then reassembled using metaSPAdes and re-binned using the
appropriate original binning approach. Following reassembly, the reassembled unrefined bin sets
of metaSPAdes co-assembly + CONCOCT and metaSPAdes time-discrete assembly + CONCOCT

consisted of bins that were notably smaller in size (Table 11). Specifically, the metaSPAdes time-
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discrete + CONCOCT reassembled average unrefined bin sizes of the 1kbp and 2.5kbp bins (4.21
+ 2.75 Mbp and 3.97 + 1.66 Mbp, respectivly) where at least 4-fold lower when compared to the
original unrefined bin sizes. Similar observations were made for metaSPAdes co-assembly +
CONCOCT that had an average 2-fold reduction in bin size (Table 11). Furthermore, reductions
in bin size across the co-assembled CONCOCT bins were accompanied by improvements in bin
quality (Figure 3). These improvements were associated with reduced redundancy estimates across
the 1kbp and 2.5kbp reassembled unrefined bin sets of metaSPAdes co-assembly + CONCOCT
(26.91 + 47.05% and 23.86 + 42.87%) and metaSPAdes time-discrete assembly + CONCOCT
(21.52 +41.98% and 11.08 +27.92%). These findings suggest that the unrefined CONCOCT bins
set consisted of chimeric bins that were resolved with reassembly. This improvement in bin quality
after reassembly is consistent with previous findings (61). In contrast, no improvements in bin
quality were observed in the reassembled bin sets of MetaBAT2 and DAS Tool (Figure 3).
Specifically, the reassembled unrefined 1kbp and 2.5kbp bin sets of metaSPAdes co-assembly +
MetaBAT2 maintained smaller bin sizes (4.16 = 3.04% and 3.42 + 2.42%) as well as average
redundancy estimates below approximately 10% (11.05 = 29.38% and 4.41 £+ 11.71%) follow
reassembly. Similar observations were made for metaSPAdes co-assembly + DAS Tool. This was
expected as higher quality bins were associated with both MetaBAT and DAS Tool bin sets prior

to reassembly.
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Figure 3 Bubble plot showing the total number of bins (depicted by size) with mean completeness and
redundancy estimates of unrefined bin sets (completeness estimates > 50%) that were generated using 4
assembly/binning approaches (metaSPAdes co-assembly + CONCOCT (orange), metaSPAdes co-
assembly + DAS Tool (grey), metaSPAdes co-assembly + MetaBAT2 (blue) and metaSPAdes time-discrete
assembly + CONCOCT (green)) and binning of contigs greater than 1kbp and 2.5kbp.

Metagenome assembled genomes shared across assembly/binning approaches

The reassembled CONCOCT bin sets (i.e., metaSPAdes co-assembly + CONCOCT and
metaSPAdes time-discrete assembly + CONCOCT) and original assembled MetaBAT and DAS
Tool bin sets were manually curated using the interactive interface of anvi’o v6.1 (49) to obtain
final MAGs (completeness > 50% and redundancy < 10%). In total 1,279 MAGs were generated
across the 4 assembly/binning approaches that were constructed using contigs > lkbp (n = 673)
and contigs > 2.5kbp (n = 606). Approximately 98% (n = 1,259) of the MAGs that were identified
met the MIMAG strandard (51) for medium-quality draft genomes, while only 20 MAGs were
classified as high-quality draft genomes (Table S12.1). The limited number high-quality MAGs
were mainly due to the absence of full complement of rRNA genes. Depending on the

assembly/binning approach, between 75 and 83% of the MAGs lacked 16S rRNA genes, while
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between 10 and 16% of the MAGs consisted of fragmented 16S rRNA gene(s) (Table S12.1).
MAGs often lack 16S rRNA genes due to their conserved and repetitive nature, which results in
fragmented assemblies (22, 62, 63). Overall, none of the assembly/binning strategies produced
sufficient high-quality MAGs as define under MIMAG standards. Alternative sequencing
technologies (e.g., long-read) may be able to successfully reconstruct full complement rRNA genes

to increase the number high-quality MAGs (5).

The MAGs across the 4 assembly/binning approaches shared similar characteristics in terms of
contiguity (i.e., total length and N50) and quality (i.e., completeness, redundancy, and strain
heterogeneity) (Figure 4A and Table S12.1). Overall, the curated MAG sets of the
assembly/binning approaches retained more than 66% of the sequencing information (Table
S12.1). The curated MAG sets of DAS Tool and MetaBAT had higher mapping rates ~70%, when
compared to the curated MAG sets of CONCOCT. As shown in Figure 4B, MAGs that were
reconstructed using a minimum contig length of 1kbp had slightly higher mapping rates, when
compared to the mapping rates of the MAGs that were reconstructed using a minimum contig
length of 2.5kbp. These differences in read mapping rates were not statistically significantly
different between corresponding assembly/binning strategies that used minimum contig threshold
of 1kbp and 2.5kbp for MAG reconstruction, respectively (Tukey HSD test, all p > 0.05) (Table
S12.2).

The curated MAG sets clustered by assembly/binning approach based on MASH distance
estimates that explained approximately 91% of the variation in the nucleotide composition
(PERMANOVA, F(3)=16.80, R°=0.91, p <0.05) (Figure 4C, Table S13). Though the minimum
contig threshold (1kbp or 2.5kbp) that were selected for binning explained a smaller proportion of
the variation ~3% this was not significant (PERMANOVA, F(1) = 1.73, R? = 0.03, p > 0.05)
(Table S13). Based on MASH distance estimates, the differences in nucleotide composition of the
curated MAGs between assembly/binning approaches were small, ranging between 0.005 and
0.08. metaSPAdes time-discrete assembly clustered separately from the other assembly/binning

strategies, suggesting differences in the nucleotide composition of these curated MAGs.
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Figure 4 Summary statistics and characteristics of 1,279 curated MAGs that were generated across the 4
assembly/binning approaches (metaSPAdes co-assembly + CONCOCT (grey), metaSPAdes co-assembly
+ DAS Tool (orange), metaSPAdes co-assembly + MetaBAT2 (blue) and metaSPAdes time-discrete
assembly + CONCOCT (green)) using contigs larger than lkbp (rn = 673) and 2.5kbp (n = 606),
respectively. A) Bubble plot showing total MAG size (depicted by size) and completeness (x-axis) and
redundancy (y-axis) estimates 1279 curated MAGs that were generated for each of the 4 assembly/binning
approaches. B) Proportion reads of 12 drinking water samples (®) that were mapped against the curated
MAGs of each assembly/binning approach. C) Comparison of the curated MAGs nucleotide composition
across the different assembly/binning approaches according to MASH distance. The heatmap are colored
according to MASH distance; white denotes a distance of 0. Labels on the x- and y-axis are colored
according to assembly/binning approach and clustering is done using Euclidean distance. For a complete

list of continuity and quality estimates, please refer to Table S12.

Similarities in the nucleotide composition of the curated MAG sets and comparable MAG
characteristics (i.e., continuity and quality) suggests the presence of overlapping MAGs across the
assembly/binning approaches that likely represents the same species. The presence of overlapping
MAGs across the assembly/binning approaches were investigated by aggregating all the MAGs

and then clustering them using a 95% ANI threshold to identify species-level representative
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genomes (SRGs). Although the species concept for prokaryotes is controversial, this operational
definition is commonly used and considered a golden standard (64, 65). A total of 233 SRGs with
average dRep quality scores (calculated as: A*Completeness - B*Contamination +
C*(Contamination * (strain_heterogeneity/100)) + D*log(N50) + E*log(size) + F*(centrality -
S_ani)) (52) of 74.40 + 21.80% were identified across the assembly/binning approaches (Table
S14). These SRGs had average sizes of 3.46 = 1.72% and were near complete (81.98 £ 16.39%)
with redundancy estimates less than 10%. Taxonomic classification of the SRGs using GTDB-Tk
classified 33 SRGs to species level, 178 to genus level, 217 to family level, and 233 to order, class,
and phylum level (Figure 5A and Table S14).

Approximately 34% (n = 79) of the SRG were shared across the assembly/binning approaches
where they accounted for between 39 and 48% of the sequencing data (Figure 5B and Table S15).
These SRG had better quality with average completeness and redundancy estimates of 94.03 +
8.3% and 1.3 £ 1.17%, respectively. Unique SRGs represented 10% (n = 29) of the total SRGs,
while the largest proportion of the SRGs ~ 43% (n = 125) where shared between two or more
assembly/binning approaches (but not all) (Figure 5B). The latter shared similar quality
characteristics, compared to the SRG that were shared across all the assembly/binning approaches
and accounted for between 18 and 32% of the sequencing data. Overall, metaSPAdes co-assembly
+ MetaBAT2 (with contigs > 1kbp) retained more SRGs (n > 200) and where able to reconstruct
MAGs that where not detected in the other assembly/binning approaches (Figure 5A). Though
metaSPAdes time-discrete assembly + CONCOCT where associated low number SRGs (n < 120),
12 duplicate SRGs sharing > 95% ANI were identified within the 1kbp and 2.5kbp approaches,
respectively. These SRGs were likely sub-species, suggesting that the metaSPAdes time-discrete
assembly + CONCOCT assembly/binning approach can differentiate between closely related
species that were, otherwise collapsed or considered a singular strain using the other
assembly/binning approaches. This highlights the potential for utilizing multiple approaches for
not just binning, but also assembly strategies as this can assist in the recovery of a greater

proportion of populations in metagenomes.
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Figure 5 A) Phylogenomic analysis of 233 near-complete SRGs inferred from 37 single-copy ribosomal
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bacterial core genes. The two inner panels represent taxonomic classification of 16 bacterial phyla and
class-level classification of dominating bacterial phyla, Proteobacteria representing Alphaproteobacteria
(red) and Gammaproteobacteria (blue). The outer panel represents a presence/absence summary plot
showing the frequency distribution of MAGs that were constructed using contigs greater than 1kbp and
2.5kbp across 4 assembly/binning approaches. Grey denotes absence, while black and red denotes the
presence of a singular MAG or duplicate MAGs that demonstrated > 95% ANI, respectively. B) UpSetR
plot showing the distribution of species-level representative genomes (SRGs) that demonstrated > 95% ANI
between the 4 assembly/binning approaches in which MAGs were constructed using contigs greater than
lkbp and 2.5kbp. For the assembly/binning approaches: A = metaSPAdes co-assembly + MetaBAT2
(1kbp), B = metaSPAdes co-assembly + MetaBAT2 (2.5kbp), C = metaSPAdes co-assembly + DAS Tool
(1kbp), D = metaSPAdes co-assembly + DAS Tool (2.5kbp), E = metaSPAdes co-assembly + CONCOCT
(1kbp), F = metaSPAdes co-assembly + CONCOCT (2.5kbp), G = metaSPAdes time-discrete assembly +
CONCOCT (1kbp), and H = metaSPAdes time-discrete assembly + CONCOCT (2.5kbp)).

Reads from all samples were mapped to the 233 SRGs and their relative abundance in each sample
for all assembly/binning and contig size strategy was estimated based on the presence/absence of
the bin in the respective strategy. Variability in the microbial community structure and
membership between the assembly/binning approaches was visualized by ordinating the samples

in multidimensional space. As shown in Figure 6, the samples cluster by time point which
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explained approximately 64% of the variation in the community membership (PERMANOVA,
F(11) = 108.88, R? = 0.637, p < .05) and 70% of the variation in community structure
(PERMANOVA, F(11) = 50.92, R’ = 0.703, p < .05) (Table S16.1, S16.2). The remaining
variables, i.e., assembly/binning approach and contig size, accounted for smaller but significant
proportion of the variation. In particular, assembly/binning approach explained about 29% of the
variation in community membership (PERMANOVA, F(3) = 182.78, R? = 0.291, p <.05), while
contig size explained 3% (PERMANOVA, F(3) = 55.50, R*=0.03, p <.05). Similar observations
were made for structure-based analysis (Table S16.1). Although no clustering by assembly/binning
approach and contig size were observed, the average dissimilarity in community structure and
membership between time points were about 37 and 53%, respectively (dsc and d; = 0.369 + 0.11
and 0.528 + 0.13). These findings suggest that while temporal dynamics of the drinking water
microbiome are largely retained despite variation in genome-centric metagenomic workflows, the
choice of assembly/binning strategy, in particular, can have a significant impact on the structure

and membership of the drinking water microbiome and should not be overlooked.

1kbp 2.5kbp
0.44
|
L
0.2 o nh s "m ®
| |
- ] ‘ﬁ A o Sample
° %N . - + 8| @ Bwoos
[ ] 4 ok s 5| @ Bwois
0.0 o, “a - H= =
] - 2 ® BW030
u o a t ® Bwods
' ¢ + ® BW060
* SE A
021 A+x ﬁ :L + 2 4 + ® BWO75
+ ® BWO090
o ® BW105
% @® BW120
2 041 1 @® BWi35
| ® BW150
| @® BW165
= = L™ |
0.2 u | ] w . ™
| J: *A Assembly/binning approach
- L/ OA . [ | ‘ék oY N § B metaSPAdes co-assembly + CONCOCT
0.04 + ., i 8 A metaSPAdes co-assembly + DAS Tool
' ™ A“r | | % + < @ metaSPAdes co-assembly + MetaBAT
u ) )
| metaSPAdes time—discrete assembly + CONCOCT
“ - + +
* g
-02 2 + :+ %A A A Jr;
+
-0.4 -0.2 00 0.2 04 -0.2 00 0.2
NMDS1

Abbreviation: BW, Bulk Water

Figure 6 Structure-based non-metric multidimensional scaling (NMDS) of Bray-Curtis dissimilarity
matrices and membership-based Jaccard distances as inferred using the abundance information (in RPKM)

of all MAGs identified across the assembly/binning approaches. Points represents samples (or time points)
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(see supplementary Table S1), and shapes represents the assembly/binning approaches, i.e., metaSPAdes

co-assembly + CONCOCT (m), metaSPAdes co-assembly + DAS Tool (A ), metaSPAdes co-assembly +

and MetaBAT2 (#) and metaSPAdes time-discrete assembly + CONCOCT (+)).

Conclusion

This study evaluated the performance of a combination of de novo assembly strategies and binning
algorithms for time-series metagenomic data for drinking water microbial communities, to identify
an ideal combination of assembly and binning approaches that allows for the generation of high
quality metagenomic assemblies and MAGs. Overall, metaSPAdes co-assembly strategies, i.e.,
co-assembly of all samples and time discrete assembly, produced less fragmented and larger
assemblies that retained the maximum amount of metagenomic information. Re-assembly and
binning followed by manual curation significantly improved MAG qualities in situation with
unresolved multi-genome or chimeric bins. Though none of the assembly/binning strategies were
able to reconstruct high-quality MAGs due the absence of a full complement of rRNA genes,
metaSPAdes co-assembly + MetaBAT2 retained the highest number medium-quality MAGs and
where able to reconstruct MAGs that where not detected with the other assembly/binning
approaches. Moreover, metaSPAdes time-discrete assembly + CONCOCT where able to
differentiate between closely related species that were, otherwise collapsed or considered a
singular strain using the other two assembly/binning approaches. Our study also finds that the
choice of assembly/binning strategy can have a significant impact on the membership and structure
of the microbial community as inferred from presence/absence and relative abundance of MAGs.
This combined with the fact that a significant proportion of SRG’s were not reconstructed using
any single approach, highlights the need to utilize multiple assembly/binning approaches for MAG
recovery. We therefore recommend utilizing multiple assembly, binning and binning aggregating
strategies followed by dereplication to maximize the recovery of non-redundant MAGs that may

more fully represent the microbial populations in drinking water samples.

Data availability

Raw sequence reads and 233 SRGs are available on NCBI at Bioproject number PRINA745168
and PRINA745370, respectivly. The 8 assemblies and 1,279 curated MAGs are available on
datadryad at https://doi.org/10.5061/dryad.ksn02v74q.
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