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ABSTRACT

Pseudotime analysis with single-cell RNA-sequencing (scRNA-seq) data has been widely used to study dynamic gene
regulatory programs along continuous biological processes. While many computational methods have been developed to
infer the pseudo-temporal trajectories of cells within a biological sample, methods that compare pseudo-temporal patterns
with multiple samples (or replicates) across different experimental conditions are lacking. Lamian is a comprehensive and
statistically-rigorous computational framework for differential multi-sample pseudotime analysis. It can be used to identify
changes in a biological process associated with sample covariates, such as different biological conditions, and also to detect
changes in gene expression, cell density, and topology of a pseudotemporal trajectory. Unlike existing methods that ignore
sample variability, Lamian draws statistical inference after accounting for cross-sample variability and hence substantially
reduces sample-specific false discoveries that are not generalizable to new samples. Using both simulations and real scRNA-
seq data, including an analysis of differential immune response programs between COVID-19 patients with different disease
severity levels, we demonstrate the advantages of Lamian in decoding cellular gene expression programs in continuous
biological processes.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) enables dissection of complex cellular programs at single-cell resolution in biological
samples with heterogeneous cell compositions. When the cells in a sample come from a continuous biological process, such as
a temporal or spatial process, computationally placing cells along a pseudotemporal trajectory based on their progressively
changing transcriptomes is a powerful approach to reconstructing the dynamic gene expression programs of the underlying
biological process. This approach, also known as pseudotime analysis' =, is now widely used to study cell differentiation*-6,
immune responses’-®, disease development®~'?> and many other biological systems with temporal or spatial dynamics. A
systematic review and comparison of these methods can be found in a recent benchmark study?, but the majority of the methods
were designed to infer gene expression changes along the reconstructed trajectory within one biological sample. However,
scRNA-seq experiments today standardly generate data with multiple biological samples across multiple conditions. For
example, a number of COVID-19 studies generated scRNA-seq data from multiple patients with differential disease severity
levels'3~1°. Therefore, there is an increasing demand for methods that can simultaneously (i) take into account sample-to-sample
variation and (ii) identify changes in pseudotemporal trajectories across conditions. To meet this demand, several challenges
need to be addressed.

First, changes in pseudotemporal trajectories across conditions can occur in multiple ways, including (i) topological
differences, such as a cell lineage along differentiation is lost (or added) in one sample group compared to another group,
(i1) changes in the proportion (or density or abundance) of cells along a cell lineage across conditions, and (iii) changes in
the gene expression itself along pseudotime across conditions. An ideal solution would address all three types of changes in
one comprehensive statistical framework. While there currently exist pseudotime analysis methods to detect changes in gene
expression along pseudotime (e.g. Monocle???2, TSCAN??, Slingshot?*), in cell abundance along pseudotime (e.g. milo>,
DAseq?®), and in trajectory lineages (e.g. t radeSeq?’), none of these methods investigate changes across conditions.

A second important challenge is to incorporate sample-to-sample variation in the framework described above. Almost
all existing methods ignore this variation by either only analyzing cells from a single sample or treating cells from multiple
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samples as if they were from a single sample. It is important to consider the variation across samples, because ignoring
sample-to-sample variation can lead to identifying false discoveries that are not generalizable or replicable in independent
studies with new samples.

To the best of our knowledge, there currently does not exist a comprehensive framework that provides an integrative
solution to identify the three types of changes in pseudotemporal trajectories (topology, cell density, and gene expression)
across experimental conditions with multiple samples per condition. To address this gap, we introduce a comprehensive and
integrative statistical framework, referred to as Lamian, for differential multi-sample pseudotime analysis. Given scRNA-seq
data from multiple biological samples with known covariates, such as age, sex, sample type, disease status, Lamian can be used
to (1) construct pseudotemporal trajectories and evaluate the uncertainty of the topologies, (2) evaluate differential changes in
the topological structure associated with sample covariates, (3) describe how gene expression and cell density change along
the pseudotime, and (4) characterize how sample covariates modifies the pseudotemporal dynamics of gene expression and
cell density. Importantly, when identifying gene expression or cell density changes, Lamian accounts for variability across
biological samples. As a result, Lamian is able to more appropriately control the false discovery rate (FDR)*® when analyzing
multi-sample data, a property not offered by other existing methods.

2 Results

2.1 Lamian: a statistical framework for differential pseudotemporal trajectory analysis in multiple samples
Lamian consists of four modules tackling different aspects of multi-sample pseudotime analysis (Fig. 1). The input for
Lamian includes (1) low-dimensional space representation, such as principal components analysis (PCA) or uniform manifold
approximation and projection (UMAP)?, of the scRNA-seq data from multiple samples that have been harmonized and
embedded into a common space using methods such as Seurat®? or Harmony?!, (2) the normalized scRNA-seq gene expression
matrices, and (3) sample-level metadata, such as covariate information corresponding to samples’ characteristics or biological
groups information. Advantages of Lamain compared to existing methods (Table S1) include evaluating tree topology uncertainty
and differential topology, and identifying gene expression and cell density changes associated with sample covariates while
accounting for sample-level variability.

2.1.1 Constructing a pseudotemporal trajectory and quantifying the uncertainty of the tree branches

Module 1 of Lamian uses the harmonized data to construct a pseudotemporal trajectory and then quantifies the uncertainty of
tree branches using bootstrap resampling. First, cells from all samples are jointly clustered (Fig. 1a), and the cluster-based
minimum spanning tree (cMST) approach described in TSCAN?? is used to construct a pseudotemporal trajectory. The tree can
have multiple branches, allowing one to model multiple lineages of a dynamic process. Next, after users specify a tree node
as the start of pseudotime or marker genes that should highly express at the start of pseudotime, Lamian will automatically
enumerate all pseudotemporal paths and branches. Then, it evaluates the uncertainty of each branch by quantifying a metric
we refer to as the detection rate, which is defined as the probability that a tree branch can be detected in repeated bootstrap
samplings of cells (Fig. 1b).

2.1.2 Differential tree topology across conditions

Module 2 of Lamian first identifies variation in tree topology across samples and then assesses if there are differential topological
changes associated with sample covariates (Fig. 1b). For each sample, Lamian calculates the proportion of cells in each tree
branch, referred to as branch cell proportion. Because a zero or low proportion can reflect absence or depletion of a branch,
changes in tree topology can be described using branch cell proportion changes. With multiple samples, Lamian characterizes
the cross-sample variation of each branch by estimating the variance of the branch cell proportion across samples. Furthermore,
regression models can be fit to test whether the branch cell proportion is associated with sample covariates. This allows one to
identify tree topology changes between different conditions, for example in a case-control cohort.

2.1.3 Differential gene expression analysis along a pseudotemporal trajectory

Given a path or branch along a pseudotemporal trajectory, the scRNA-seq gene expression matrices from multiple samples, and
sample-level covariate information, Module 3 of Lamian identifies differentially expressed (DE) genes (Fig. 1c). There are two
types of DE tests. First, the TDE fest evaluates whether a gene’s activity as a function of pseudotime 7, denoted as f(¢), is a
constant (Hy : f(r) = ¢), with the goal to identify genes whose activities change along pseudotime (H; : f(¢) # ¢). Here, TDE
refers to pseudotime differential expression. In contrast, the XDE test evaluates for each gene whether the pseudotemporal
activity f(r) is associated with a sample-level covariate, such as whether f(¢) is different between healthy and disease samples.
Here, XDE refers to covariate X differential expression. Currently, existing pseudotime methods, such as Monocle, Slingshot
and TSCAN only detect TDE, but not XDE. Lamian is the first integrative framework to provide both TDE and XDE for
multiple sample analyses. For each XDE gene, Lamian further evaluates whether the sample covariate shifts the mean of f(z)
(referred to as a mean shift) or changes the functional form of f(¢) (referred to as a trend difference) or both. Additionally,
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Figure 1. Overview of Lamain: a statistical framework for differential pseudotemporal trajectory analysis with multiple samples.
(a) Using integrated and harmonized scRNA-seq data across multiple samples, Lamian first group cells into clusters. (b) Clustered data is
used to infer a pseudotemporal trajectory followed by automatically enumerating all pseudotemporal paths and branches. The uncertainty of
tree branches are quantified using a detection rate in bootstrap resampling framework (Module 1), followed by quantifying the variability of
branches across samples and identifying differences in branching structure across conditions (Module 2). (¢) For each tree branch or
pseudotemporal path, Lamian can identify two types of differential expression (DE): DE along pseudotime (TDE) and DE associated with a
sample covariate (XDE) (Module 3). Similarly, Lamian can also identify changes in cell density, both along pseudotime (TCD) and
associated with a sample covariate (XCD) (Module 4).
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unsupervised k-means clustering is applied to DE genes to group and summarize major differential gene patterns. In all DE
tests, Lamian accounts for sample-to-sample variation directly into the estimation framework, whereas the other methods
do not. Consequently, Lamian is able to control the false discovery rate (FDR)?® compared to existing methods that ignore
sample-to-sample variation which leads to identifying false discoveries that are not generalizable in new samples.

2.1.4 Differential cell density analysis along a pseudotemporal trajectory

Similar to gene expression, Module 4 of Lamian tests whether cells’ density along pseudotime is uniformly distributed or not
(TCD test), and if it is associated with a sample covariate (XCD test). This may be used to study dynamic processes, such as
cell expansion in immune response or how disease changes the pseudotemporal cell density pattern.

2.2 Lamian estimates tree topology stability and accurately detects differential tree topology
We first illustrate Modules 1 and 2 of Lamian using a Human Cell Atlas (HCA)*>33 10x Genomics scRNA-seq dataset
consisting of bone marrow samples, referred to as HCA-BM, from 8 donors and a total of 32,819 cells.

2.2.1 Estimate tree topology stability using HCA-BM data

First, we assess the tree topology stability (Module 1). Bone marrow contains hematopoietic stem cells (HSCs) differentiating
into different blood cell types. Applying TSCAN to the harmonized bone marrow data, we identified 6 cell clusters (Fig. 2a),
which form a minimum spanning tree with three branches, corresponding to the three major lineages of HSC differentiation -
myeloid, erythroid, and lymphoid (Fig. 2b). We confirmed these lineages with marker genes (Fig. 2c). Specifically, HSCs
are mostly in cluster 5, as indicated by high CD34 expression (Fig. 2c). By setting cluster 5 as the origin, we obtained three
pseudotemporal paths (Fig. 2a: the path of cluster 5 — 1; 5 — 6 — 2; 5 — 3 — 4). Lamian uses repeated bootstrap sampling
of cells along the branches to calculate a detection rate. In the HCA-BM data, these three branches can be detected in 93.8%
5—1),953% (5 — 6 —2)and 61.5% (5 — 3 — 4) in all bootstrap samples (or with a detection rate = 0.938, 0.953 and
0.615), suggesting that they are real branches rather than random noise.

2.2.2 Differential tree topology tests using HCA-BM data

Next, we assess the variability in the branch cell proportions across samples and between conditions (Module 2). Using all 8
donors, the branch cell proportion is 41.1%, 48.4% and 10.5% for the myeloid, erythroid and lymphoid branches, respectively.
Of note, the proportions show variation across donors (proportion Mean (SD) = 0.41 (0.10) for myeloid, 0.48 (0.11) for
erythroid, 0.11 (0.01) for lymphoid). Lamain uses a two-sided ¢-test to assess if there is a statistically significant difference
in the tree topology (i.e. branch cell proportion) between two sample groups. However in the HCA-BM data, comparing the
branch cell proportion between male and female donors did not show significant differences along the myeloid, erythroid, and
lympoid lineages (p-values = 0.53, 0.60, 0.60, respectively), suggesting that there is no significant change in tree topology
between the two sexes (Fig. 2d).

2.2.3 Lamian accurately characterizes stability and differences in tree topology

To demonstrate the validity of Lamian’s topology stability and differential topology analysis, we performed two sets of
simulations. In Simulation 1, we reduced the number of cells in the myeloid lineage in the HCA-BM data by subsampling (Fig.
2e,f). As expected, decreasing the number of cells decreased the detection rate for the myeloid branch (Fig. 2g). For example,
when 80% cells were reduced, the detection rate dropped to 0.106 (Fig. 2e,g). Hence, the detection rate provides a reasonable
measure for quantifying the certainty (or uncertainty) conveyed by the data about the presence of a branch.

In Simulation 2, we reduced the number of cells in the myeloid lineage in four out of the eight samples (Fig. 2f). As the
number of cells decreased, the detection rate of the myeloid branch again decreased, but at a much slower rate compared to
Simulation 1 (Fig. 2g). We found that conditional on the branch being detected, our differential topology test (Module 2) was
able to detect differences in the branch cell proportion between the two groups of samples in this simulation scenario. Most
importantly, it controls the probability of false positives (type I error rate) when there are no differences (i.e. removing no cells
or 0% of cells) and also has increasing statistical power to detect true positives as we increase the percent of cells removed in
half of the samples (Fig. 2h).

2.3 Lamian comprehensively detects differential pseudotemporal gene expression and cell density

We next illustrate how Lamian adjusts for sample-to-sample variation to identify differential gene expression (Module 3: TDE
and XDE tests) and differential cell density (Module 4: TCD and XCD tests) along pseudotime using the eight samples in the
HCA-BM dataset.

2.3.1 Detect differentially expressed genes along pseudotime using HCA-BM data
First, we ask which genes are varying along pseudotime (Module 3: TDE test). Applying the TDE test with a 5% FDR cutoff,
Lamian identified 8,475, 7,454 and 8,953 TDE genes for the myeloid, erythroid and lymphoid lineage, respectively (Fig.
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Figure 2. Lamain estimates tree topology stability (Module 1) and tests differential tree topology between sexes (Module 2) in the
HCA bone marrow data®?33, (a) Inferred tree topology using eight integrated scRNA-seq bone marrow samples displayed in the first two
principal components (PCs). Each dot is a cell colored by the cluster label (k = 6). (b) Similar to (a), but cells are colored by the inferred
pseudotime. The estimated detection rates (d/r) are shown for three tree branches which correspond to three major lineages of hematopoietic
stem cell (HSC) differentiation. (¢) Similar to (a), but cells are colored by the expression of lineage-specific marker genes. (d) Heatmap of
sample-level branch cell proportion (the number of cells in each branch divided by the total number of cells in a sample). The barplot on the
top shows the mean and standard deviation (SD) of the branch cell proportion across samples for each lineage. Samples are also colored by
sex. (e) Tree topology and detection rates after randomly removing x = 80% cells on the myeloid lineage (branch 5 — 1) as an illustration of
simulation. (f) Simulations are conducted in two ways by either removing certain percentage of cells (x-axis) along the myeloid lineage across
all eight samples (simulation 1: left) or removing cells in only half of the samples (simulation 2: right). (g) Lamian-reported detection rate of
the myeloid lineage (y-axis) after removing different percentage of cells (x-axis) in the two simulations. (h) In simulation 2, the difference
between two sample groups increases as the reduced cell percentage x increases. For each x, 10,000 simulations were run. The proportion of
p-values smaller than the significance cutoff 0.05 in the simulations (y-axis) is shown as a function of the reduced cell percentage (x-axis).

3a-c). Among the TDEs, we found known lineage markers corresponding to each lineage, such as CD14 for myeloid, HBB
for erythroid, and CD3D, CD19, CD27 for lymphoid. Hence, TDE genes can be used to identify branch lineages in the tree
topology. Unsupervised clustering of TDE genes and gene ontology (GO) analysis revealed the cascade of the transcriptional
program (Fig. 3a-c, Fig. Sla-f). For example, as HSCs differentiate to the erythroid lineage, the TDE genes with initially
high expression but low expression at the end are enriched in CD8-positive, alpha-beta T cell activation, whereas genes with
increasing expression along pseudotime are enriched in oxygen transport (Fig. Slc,d). Meanwhile, for the lymphoid lineage,
the TDE genes with high expression initially but low expression at the end are enriched in platelet degranulation, whereas genes
with increasing expression along pseudotime are enriched in T cell differentiation (Fig. Sle,f).

2.3.2 Detect differentially expressed genes associated with a covariate along pseudotime using HCA-BM data

Next, we tested whether there are differential gene expression patterns along pseudotime associated with sex as a covariate
(Module 3: XDE test). For each gene, Lamian reports three FDRSs: (1) FDR,yerq;; corresponds to testing if a gene is XDE
(overall test), (2) F DR;,.nq corresponds to testing if a XDE gene has significant trend difference associated with the sample
covariate (trend test), and (3) F DR,,.q, corresponds to testing if a XDE gene has significant mean shift associated with the
covariate (mean test). In addition, there are two other categories: both mean and trend differences (bothSig), or neither mean
or trend differences (otherSig). Using the XDE test, Lamian identified 43, 32 and 29 genes (overall test) with significant
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Figure 3. Lamian supports comprehensive analysis of differential gene expression (Module 3: TDE and XDE tests) and cell density
(Module 4: TCD and XCD tests) along pseudotime in the HCA bone marrow data. (a-c) Heatmap of model-fitted expression values for
TDE genes (rows, FDR < 0.05) along HSC differentiating to myeloid (a), erythroid (b), and lymphoid (c) inferred pseudotime lineages.
Rows are clustered using k-means clustering and ordered by differential gene patterns. (d) Heatmaps of Lamian-detected differentially
expressed (XDE) genes along the myeloid lineage (rows, FDR < 0.05) between male and female (Module 3). The heatmaps only show the
38/43 XDE genes annotated as having either significant mean shift or trend difference (i.e., 10 meanSig, 16 trendSig, and 12 bothSig genes).
The other XDE genes (otherSig genes: neither FDR;,o,q < 0.05 nor FDRpeqn < 0.05) are not included in the heatmaps. The six heatmaps
from the left to right correspond to raw normalized gene expression along pseudotime for each sex (left 2 heatmaps), model fitted gene
expression along pseudotime in each sex (middle 2 heatmaps), trend difference and mean shift between female and male along pseudotime
(right 2 heatmaps). Genes from chromosomes X and Y are labeled. (e) Example XDE (and non-XDE) gene expression along the myeloid
lineage with significant mean shift (meanSig), trend difference (trendSig), and both (bothSig). The fitted curve for each sample is also shown.
(f) The model-fitted cell density pseudotemporal patterns in myeloid lineage in TCD test. Each curve depicts the model-fitted values for one
sample. (g) Similar to (f) but curves are colored by sex used in the XCD test. The corresponding figures for (d-g) in the erythroid and
lymphoid lineages can be found in Fig. S2 (Module 3: XDE tests) and Fig. S3 (Module 4: TCD and XCD tests).
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differences (at the 5% F DR, cutoff) between male and female along the myeloid (Fig. 3d), erythroid (Fig. S2a), and
lymphoid (Fig. S2b) lineages, respectively. Next, Lamian further annotated the XDE genes into the gene patterns described
above. For the myeloid lineage, this results in 10 genes with mean shift only, 16 genes with trend difference only, and 12 genes
with significant changes both in mean and trend (Fig. 3d,e). Among the XDE genes, 33% (N=14) are from chromosome X and
Y, representing a significant enrichment in sex chromosomes (Fig. 3d, permutation test p-value = 0.0036 for chromosome X
and p < 107 for chromosome Y, see Methods). Notably, among the genes that show significant mean shift (with or without
trend difference), 12 genes have higher mean expression in males and they consist of 8 genes on Y chromosome and 4 genes on
autosomes. Likewise, 10 genes have higher mean in females and they consist of 3 genes on X chromosome and 7 genes on
autosomes (Fig. 3d). Unsupervised clustering of XDE genes revealed cascades of their dynamic transcriptional programs. For
example, among genes with trend difference only, the difference in SHISAS expression between female and male was positive
at the beginning and negative at the end of the pseudotime, whereas the difference in DUSP11 was negative at the beginning
and positive at the end (Fig. 3d). Analyses of the erythroid and lymphoid lineages yielded similar results (Fig. S2a,b).

2.3.3 Detect changes in cell density along pseudotime using HCA-BM data

Finally, we tested for changes in cell density both along the pseudotime (Module 4: TCD test) and whether these patterns were
associated with sex as a sample covariate (Module 4: XCD test). The TCD test shows that cell density changed significantly
along all three lineages (myeloid: Fig. 3f; erythroid: Fig. S3a; and lymphoid: Fig. S3c) (all p-values after adjusting for multiple
testing are < 1072%), although in this dataset it is unclear whether the cell density change was due to technical sampling bias
(e.g. certain cell types are easier to sample) or real biology. In the XCD test, we did not find significant differences in cell
density along pseudotime between male and female (myeloid: Fig. 3g; erythroid: Fig. S3b; and lymphoid: Fig. S3d).

2.4 Lamian is more powerful than existing methods to detect differences while controlling the FDR by
accounting for sample-level variation

In this section, we use simulated and real scRNA-seq data to demonstrate how Lamian is more powerful than existing methods

to detect gene expression differences that are associated with a covariate (Module 3: XDE test). We also demonstrate how

incorporating the the sample-to-sample variation into the differential gene expression test along psuedotime (Module 3: TDE

test) leads to less false discoveries compared to existing methods that also perform TDE detection.

2.4.1 Lamian controls the FDR in differential gene expression tests associated with sample-level covariates

First, we created a null data set based on the HCA-BM data (described in detail in Methods) ). Briefly, we first randomly
partitioned the eight HCA-BM samples into two groups and removed the group differences to create a dataset where we do not
expect any XDE genes between the two groups (Fig. 4a). When Lamian was applied to detect group differences, no XDE genes
were reported. Building upon the null data set above, we then introduced in silico spike-in differential signals with varying
strengths and pseudotemporal patterns between the two sample groups to a random set of genes (details in Methods). In this
way, we know which genes are XDE genes and whether they have mean shift, trend difference, or both (Fig. 4b).

Next, we applied Lamian to identify XDE genes and clustered genes based on their differential patterns (Fig. 4c-d). We
compared Lamian with limma and tradeSeq, two widely used tools to detect differences in gene expression. As limma is
designed to detect differential mean gene expression, we pooled all cells on a pseudotemporal path or branch to create a
pseudobulk expression profile (i.e. the average expression across cells for a gene) for each sample. In this way, limma uses the
pseudobulk data to detect mean differences between two sample groups. In contrast, tradeSeq (which is used by Slingshot) is a
method originally developed for comparing different branches of a pseudotemporal trajectory within a single sample. Here, we
tailored the function to compare the same branch in a pseudotemporal trajectory between two samples. Since tradeSeq does not
consider cross-sample variability, cells from replicate samples are pooled and treated as if they come from a single sample.

For all three tests (overall test, trend test, mean test), and across all signal strength levels, the real FDR was smaller than
the FDR reported by Lamian, demonstrating that Lamian was able to conservatively estimate FDR (Fig. 4e,g). Limma and
tradeSeq do not report separate FDRs for mean and trend differences. Limma reports an overall FDR for each gene. TradeSeq
can be run to detect different types of DE: earlyDETest identifies genes that show expression difference in early pseudotime;
patternTest identifies genes that show expression difference along all pseudotime that are equally-spaced; diffEndTest compare
the average expression at the end stage of pseudotime. It assigns an FDR for each test. Unlike Lamian, both limma and tradeSeq
underestimated the real FDR: the difference between the real FDR and their reported FDR was positive in most cases (Fig. 4e).
We also stratified XDE genes into three groups - mean shift only, trend difference only, and both mean and trend differences
- based on their true states. Within each stratum, the F DR,,,.,4; reported by Lamian conservatively estimated the real FDR,
whereas limma and tradeSeq underestimated the real FDR (Fig. 4e).

2.4.2 Lamian is powerful to detect differences in gene expression associated with sample-level covariates
We further compared the statistical power of different methods via the sensitivity-real FDR curve and the area under the curve
(AUC) (Fig. 4f, h). The power of detecting XDE genes by Lamian increased with increasing signal strength, both for detecting
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Figure 4. Evaluation of the FDR control and statistical power for detecting differential genes associated with sample covariate
(XDE). (a) An example null gene where no differential signals are expected along the trajectory between two groups of samples. In the top
panel, each dot is a cell colored by the sample (left) or the sample group (right). The plots show the gene’s expression along pseudotime in
each cell. In the bottom panel, curves are model-fitted gene expression patterns for each sample (left) or sample group (right). (b) Examples
of non-differential (non-XDE) genes and differential (XDE) genes with only mean difference (mean only), trend difference (trend only), and
both mean and trend difference (trend & mean) between two sample groups in the simulation data. For each gene, the top panel shows the
expression along pseudotime in each cell. Each dot is a cell colored by the sample group. The bottom panel shows sample-level model-fitted
gene expression curves along pseudotime. (¢) Heatmaps in four white-bar-seperated panels to show the expression patterns of XDE genes
(rows) by cells (columns) ordered by pseudotime. The 1st and 2nd panels show original values and model-fitted values of gene expression.
Cells from the samples in group O and 1 are separated. The 3rd and 4th panels show the standardized model-fitted group difference (trend
difference) and the mean shift between groups, where white space denotes no significant difference. (d) Model-fitted temporal patterns of
group 1 and 0 averaged across XDE genes in each gene cluster. (e-f) Performance evaluation of all methods in five spike-in signal strengths
settings (x-axis; signal strength increases from O to 4). (e) Plots in the first row shows the difference between the true and reported FDR for
overall XDE test, trend test, and mean test. Here, the FDR difference is the difference between the area under the realFDR-reportedFDR
curve and the diagonal line as illustrated in (g). Plots in the second row compare the FDR difference from different methods when
gold-standard genes are stratified into trend, mean, and trend & mean differences. (f) Similar to (e) but compares the power using the area
under sensitivity-realFDR curve as illustrated in (h)
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XDE genes overall or for detecting a specific class of XDE genes (Fig. 4f). For detecting all XDE genes (overall test), both
limma and tradeSeq had lower power compared to Lamian (Fig. 4f). When XDE genes are stratified, limma had comparable
power to Lamian for detecting XDE genes with mean shift (i.e. mean shift only or both mean and trend differences) but had
zero power to detect genes with trend difference only. TradeSeq had lower power in all XDE gene categories (Fig. 4f).

In addition to our simulation studies, we compared the output from Lamian, limma and tradeSeq using the real HCA-BM
dataset to detect sex differences (Fig. 5). For the myeloid lineage, limma detected 5 XDE genes and all of them were found
by Lamian. Lamian reported an additional 38 genes not found by limma (25 with trend difference, 9 with mean shift only)
(Fig. 5a). TradeSeq, on the other hand reported 3,677 XDE genes. However, a closer examination of the results from tradeSeq
indicates that at least a subset of these genes are false positives (Fig. 5b). For example, both BCLAF1 and CHPT1 were reported
as XDE by tradeSeq. For each gene, when cells from replicate samples were treated as if they were from one sample, the fitted
gene expression curve along pseudotime are different between male and female, which explains why tradeSeq reported the
gene as XDE. However, when the gene expression curve is fitted within each sample, the variation among replicate samples
is much bigger than the difference between male and female and hence there is no real statistically significant sex difference
(Fig. 5b). As a comparison, Fig. Sc illustrates example genes reported by Lamian. Here, the sex difference is clear even after
accounting for sample variability. Indeed, while XDE genes reported by Lamian and limma both significantly overlap with
both chromosome X and chromosome Y, XDE genes reported by tradeSeq did not show a statistically significant association
with chromosome X (Fig. 5c). Note that XDE genes found by Lamian but not limma also significantly overlap with sex
chromosomes, suggesting that these genes are indeed sex related (Fig. 5d). The performance of Lamian on the other two
lineages was similar (Fig. S4). Collectively, our analyses demonstrate that Lamian provides the unique ability to detect XDE
genes not offered by other methods.

2.4.3 Incorporating sample-level variation reduces false positives in TDE detection compared to existing methods
In addition to detecting differentially expressed genes along pseudotime that are associated with a covariate, Lamian can also
detect differentially expressed genes along pseudotime without any covariate information (Module 3: TDE test). In this case,
there are existing methods, such as Monocle, Slingshot, tradeSeq and TSCAN that perform a similar test. However, we note
that, compared to existing methods, Lamian is unique in that it incorporates sample-to-sample variability into the statistical
estimation framework. Using simulated data with multiple samples, we found that Lamian, compared to existing methods,
controls the FDR, while also maintaining strong statistical power for TDE detection (Supplementary Notes, Fig. S5).

Finally, similar to DE analysis, our evaluation also shows that Lamian can accurately detect TCD and XCD with a
well-controlled type I error rate and high statistical power (Supplementary Notes, Fig. S6).

2.5 Lamian analysis of COVID-19 scRNA-seq data identifies differential CD8 T cell transcriptional pro-
grams during a critical stage of disease severity transition

We applied Lamian to a COVID-19 peripheral blood mononuclear cell (PBMC) 10x Genomics scRNA-seq dataset obtained
from a recent study>*. The COVID-19 disease severity of a patient may progress from mild to moderate to severe. It was
reported that the mild to moderate transition is a critical stage with rapid immune landscape changes that may determine the
trajectory of disease progression®*. CD8+ T cell activation is an important component of COVID-19 patients’ immune response
to the infection. By analyzing scRNA-seq data from 66 mild and 48 moderate COVID-19 patients, we examined the CD8+ T
cell activation program in these patients and asked how it changes during the mild-to-moderate disease severity transition.

First, we constructed a pseudotemporal trajectory using a total of 55,953 naive and CD8+ T cells identified from the
harmonized PBMC scRNA-seq data (Fig. 6a, see details in Methods). The trajectory contains only one path without branch,
thus we skip evaluating the tree branch uncertainty and differential topology. Applying TDE test, Lamian identified 2,195
TDE genes which were grouped into five clusters (Fig. 6b). Examination of these genes’ dynamic expression patterns show
that the inferred pseudotemporal trajectory reflects the CD8+ T cell activation process. For example, known naive/memory
T cell associated genes including TCF7, SELL and IL7R were found in cluster 1 (Fig. 6b,c). Genes in this cluster showed
decreasing expression along pseudotime, consistent with the loss of quiescent characteristics over the activation process. Genes
such as JUNB and CD7 are responsible in the induction of differentiation into effectors and thus catch up expression shortly in
cluster 2. Genes in this cluster 2 also include early activation marker CD69, GZMK and AP-1 family members (e.g. JUNB,
JUN), suggesting that this cluster plays a role in the cell fate switch from effector memory T cells to terminal effector T cell
phase. By contrast, genes in clusters 4 and 5 both show increasing expression along pseudotime, with cluster 5 reaching its
peak expression later than cluster 4. We found that genes encoding functional effector molecules such as CCL5 and IFNG are
enriched in cluster 4, and cluster 5 is enriched in both functional activation features such as GZMB, TBX21 and CX3CR1 and
terminal differentiation gene features such as GNLY, CD244 and CD38 (Fig. 6c¢).

We next investigated differences in the CD8+ T cell activation program between mild and moderate patients. The analysis
of cell density using XCD test shows that the abundance of activated effector T cells is significantly increased in moderate
compared to mild disease (FDR = 1.38 x 107!, Fig. 6d). The analysis of gene expression using XDE test identifies 1,315
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Figure 5. Comparison of sex-associated XDE detection of Lamian and other methods in HCA bone marrow data. (a) A Venn
diagram of the number of XDE genes detected by Lamian, limma and tradeSeq (pooled three types of tests) in the myeloid lineage when
comparing female and male samples. (b) Two example genes detected by tradeSeq but not Lamian. Purple-yellow plots display the patterns
output by tradeSeq while the green-brown plots display the pseudotemporal patterns for each sample (curve) fitted by Lamian. (¢) Two
example genes only detected by Lamian. The first row shows gene expression in each cell along pseudotime. Each dot is a cell. The second
row shows gene expression curve fitted by Lamian in each sample. (d) Overlap between XDE genes reported by different methods and sex
chromosome genes as a gold standard (left: chromosome X; right: chromosome Y). The overlap was calculated for top N XDE genes with
different Ns. The mean of the overlap across all Ns was used as the observed overlap statistic (see an illustration in Fig.S4a). Violin plots
show the permutation null distribution used to determine the statistical significance of the observed overlap statistics (shown as dots), and the
p-values are shown on the right of each plot.

XDE genes, which were grouped into 14 clusters (Fig. 6e). The first 12 clusters contain genes with pseudo-temporal trend
differences (including bothSig and trendSig), and their trend differences follow 6 major patterns (Fig. 6f, e.g. cluster 2a and 2b
have the same trend difference pattern, but cluster 2a has no significant mean shift whereas cluster 2b has significant mean
shift). The last 2 clusters contain genes with mean shift only. In cluster 1, TBET (encoded by TBX21) and ZEB2 are major
transcription factors (TF) for CD8 T cell effector responses>>~® and drive IFNG production. Genes in this cluster tend to
have lower expression in moderate patients compared to mild patients and the magnitude of difference increases along the
pseudotime (Fig. 6e,f), suggesting that mild patients have a more robust functional effector CD8 T cell response. In cluster 6
(incl. 6a and 6b), several interferon stimulated genes such as IFI6 and ISG15 as well as terminal differentiation transcription
factor BLIMP-1(encoded by PRDM1)3° become increasingly more upregulated in moderate patients compared to mild patients
along pseudotime, suggesting that a stronger inflammation in moderate patients drives CD8 T cell termination. Together,
these data indicate that compared to mild disease, CD8 T cells in moderate COVID-19 patients are programmed to be less
functional effector-like and more terminally differentiated. This is consistent with previous observation that comparing to
the COVID-19-recovered donors, ongoing disease patients show a more TEMRA differentiation with less T-bet+ functional
effector CD8 T cells*.

We further compared Lamian with limma and tradeSeq for detecting XDE genes. We first randomly partitioned the COVID
samples into two sets and detected XDE genes between mild and moderate samples within each set. We then examined the
proportion of overlap between the two XDE gene lists. By applying Lamian, we achieved the highest overlap proportion
between the two partitioned data sets. Among the remaining methods, the patternTest in tradeSeq performed slightly better than
the other tests in tradeSeq and limma in the top 1000 genes, but limma catched up after top 1000 genes and ranked the second
best after Lamian (Fig. 6g). This suggests that XDE genes identified by Lamian are most reproducible when analyzing different
sets of samples.
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Using all samples in the COVID-19 dataset, tradeSeq reported 3,825 XDE genes including 886 that were solely detected by
tradeSeq (Fig.6h). A closer examination of the sample-level pseudotemporal curves shows that XDE genes detected only by
tradeSeq consist of a large number of false positives where the mild and moderate samples were indeed mixed together due to
large sample-level variation (Fig. 61). Limma reported 3,772 genes, including 903 that were solely detected by limma. The
sample-level curves show that many of the genes reported only by limma did not show clear group differences (Fig. 6j). Lamian
reported 1,315 XDE genes, including 66 that were solely detected by Lamian. For these genes, group differences cannot be
explained away by the sample-level variation (Fig. 6h,j).

Collectively, our analyses demonstrate that Lamian provides a powerful tool for identifying differences associated with
covariates that the other methods do not offer. The COVID analysis also demonstrates the value of using multi-sample
differential pseudotime analysis for understanding dynamic gene expression programs in a disease.

3 Discussion

Our results demonstrate that Lamian provides a systematic solution to multi-sample pseudotime analysis capable of detecting
topology, gene expression and cell density differences between different conditions. Lamian evaluates statistical significance
after accounting for cross-sample variability which is important to filter out false discoveries that are not generalizable to new
samples. Lamian is a free and open source R package with a modular structure. While we demonstrated its default pipeline in
this article, users can replace certain modules by their own data or algorithm. For example, instead of constructing pseudotime
using TSCAN in Lamian, they can provide their own pseudotemporal trajectories constructed using other algorithms and
directly start analysis from module 2.

Lamian is computationally tractable. For analyzing the HCA bone marrow dataset with 32,819 cells and 8 samples, it took
4.1 hours to run the whole pipeline (0.1 h for trajectory variability, 1.5h for XDE detection and 1.5h for TDE detection, 0.01h
for cell density test) on a computer cluster with 25 CPUs (2.5 GHz CPU and at most 163 GB RAM). For analyzing 39,512 CD8
T cells in the COVID dataset with 114 samples, it took 37 hours to run the whole analysis pipeline.

Currently, the statistical model in Lamian is formulated for scRNA-seq data. However, its general principle and statistical
framework may be applicable to other data types such as single-cell ATAC-seq data as well, although the other data types may
have different data characteristics that requires one to tailor the model accordingly. These extensions will be a topic for future
research.
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Figure 6. (continued)
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Figure 6 (preceding page). Lamian analysis of COVID-19 samples identifies differential genes related to T-cell activation and
inflammation between mild and moderate patients. (a) PC plot of the CD8+ T cells colored by its pseudotime reflecting the T cell
activation process. (b) As the output of TDE test, this heatmap shows the original gene expression (left) and model-fitted gene expression
(right) of TDE genes along the pseudotime from naive to activated T cells as in (a). (¢) Example TDE genes from different TDE gene clusters
shown in (b). Each dot is a cell. Each curve is a sample’s pseudo-temporal pattern fitted by Lamian. (d) Pseudo-temporal pattern of the cell
density for each sample represented by a curve colored by the patient’s severity level. FDR reported by XCD test is also shown which
indicates significant difference between mild and moderate samples. (e) Heatmaps showing the pseudotemporal expression patterns of XDE
genes (rows). Cells (columns) from moderate and mild patients are plotted separately and ordered by the pseudotime. White bars are used to
separate original temporal gene expression in each group, model-fitted temporal gene expression, group trend difference (moderate group
minus mild group), and group mean shift. Example genes related to immune and inflammation process are marked on the left-hand side of the
heatmap. (f) Each XDE gene cluster in (e) is shown with the averaged group difference (left: black) and two example genes (right:
green-mild, brown-moderate). For each example gene, the thin and thick curves represent its pseudo-temporal pattern for each sample and for
the whole sample group, respectively. (g) Samples are randomly partitioned into two datasets. For each method, the proportion of top N XDE
genes that overlap between the two datasets (y-axis) is shown as a function of N (x-axis). (h) A Venn diagram showing the number of XDE
genes reported by each method. (i-k) Example genes that are reported only by tradeSeq (i), limma (j), or Lamian (k). The first row in each
plot displays sample-level patterns. The second row of (i) shows the patterns fitted by tradeSeq, and those in (j-k) show the group patterns
obtained by Lamian.
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4 Method

4.1 Data

Human Cell Atlas bone marrow dataset (HCA-BM)

The raw count matrix of bone marrow scRNA-seq data sequenced in 10x Genomics platform from 8 healthy donors were
downloaded from the Human Cell Atlas (HCA) data portal’>33. The raw data consist of 42,925 genes and 290,861 cells. Cells
with fewer than 5,000 reads, fewer than 1,000 expressed genes (i.e. genes with nonzero read count), or more than 10% of
reads mapped to the mitochondrial genome were deemed as low quality and filtered out. We also filtered out genes that were
expressed in less than 0.1% of all cells. This results in a data matrix of 22,401 genes x 32,819 cells used for subsequent
analyses.

COVID19 dataset (COVID-Su)

The raw count matrices of 256 PBMC 10x Genomics scRNA-seq samples from 139 COVID-19 patients were downloaded
from E-MTAB-9357 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9357/)3*. We filtered out cells with fewer than
2,000 reads or 500 expressed genes or more than 10% mitochondrial reads. We also filtered out samples with fewer than 500
cells. Seurat(v.3.2.1)** was applied to process, integrate data across samples and perform the cellular clustering with default
settings. Cell types were annotated based on known marker genes. CD8+ T cells were identified using CD3D expression > 1
log-scaled library-size-normalized SAVER-imputed read counts and CD8A expression > 1 criterion. Samples with fewer than
100 CD8+ T cells were filtered out. Among the total of 161 samples that passed the filters, we focused on analyzing samples
from 66 mild and 48 moderate patients subsequently.

4.2 Data preprocessing

In each dataset, Seurat(v.3.2.1)*" was used to integrate multiple samples. For differential expression (DE) analysis, SAVER
was used to impute gene expression values to address the drop-outs in the data. All DE methods used imputed values
except tradeSeq since it requires count values as inputs. Principal Component Analysis (PCA) and Uniform Manifold
Approximation and Projection (UMAP)?® were used for visualization, and they were both run using default settings.

4.3 Constructing pseudotemporal trajectory and evaluating its uncertainty
After samples are integrated, the harmonized data are used to construct pseudotemporal trajectory using a cluster-based
minimum spanning tree (cMST) approach. K-means clustering is applied to cluster cells based on the top principal components
(PCs) of log2-transformed library-size-normalized gene expression profiles. Trajectories are then inferred as in TSCAN by
constructing a minimum spanning tree that treats cluster centers as nodes. The number of PCs and the cell cluster number are
both determined using an elbow method as described in TSCAN?3. The origin of the pseudotime is specified by users based on
marker gene expression (or the origin cell types if users input the cell types annotation). For example, in the bone marrow data,
the cluster with the highest expression of hematopoietic stem cell (HSC) marker CD34 was set as the origin. Once the origin of
the trajectory is given, one can enumerate all paths and branches. Branches are identified based on nodes with degree > 2.
For each of the branch, we characterize its uncertainty using its detection rate in 10,000 bootstrap samples. Each bootstrap
sample is created by sampling cells from the original data with replacement. Cells in the bootstrap sample are used to reconstruct
pseudotemporal trajectory using the same cMST approach as in the original data. The origin of the pseudotime in a bootstrap
sample is determined using the cell cluster with the smallest mean of cells’ pseudotime in the original data. We then ask whether
each branch in the original data is also identified in the bootstrap sample by performing pairwise comparison of branches
between the original and bootstrap data. For a pair of branches (one from original data and one from bootstrap sample), we use
the Jaccard index to evaluate their overlap (i.e., what percentage of cells in these two branches are shared). If the Jaccard index
exceeds a cutoff, then the branch in the original data is called detected in the bootstrap sample. To determine the cutoff, a null
distribution of Jaccard index is constructed by evaluating the overlap between the cells in the branch and a randomly sampled
set of cells with the cell number matching those in the branch for 1,000 times. The 0.99 quantile of this null distribution is used
as the cutoff. After comparing the original trajectory with all bootstrap samples, the detection rate of a branch is defined as the
proportion of bootstrap samples in which the original branch can be detected.

4.4 Tree variability across samples and differential topology analysis

For each sample, the proportion of cells in each branch is calculated and referred to as “branch cell proportion”. For each
branch, the variance of branch cell proportion across samples is reported to characterize its cross-sample variability. To test
differential topology, for each branch we fit a regression model using the branch cell proportion as the dependent variable and
using the sample covariates specified by users as the independent variables. Statistical significance of the association between a
sample covariate and the branch cell proportion is determined by testing whether the corresponding regression coefficient is
zero using two-sided 7-test. The p-values are adjusted for multiple testing using the Benjamini-Hochberg procedure to obtain
false discovery rates (FDRs)zg. By default, FDR< 0.05 is used as the significance cutoff.
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4.5 Modeling gene expression along pseudotime

Given a pseudotemporal path or branch, Lamian will describe how gene expression Y varies along pseudotime ¢ and characterize
the relationship between each gene’s pseudotemporal expression pattern Y (¢) and V sample covariates Xj, ..., Xy (e.g. disease
status, age, etc.).

Without loss of generality, below we presents the statistical model for one gene. All other genes can be analyzed in the
same way. We use lowercase letters s and ¢ to denote sample and cell , respectively, and we use capital letter S to denote the
total number of samples. Assume that sample s consists of C; cells. Let 7, be the pseudotime of cell ¢ in sample s. Given a
gene, let y,. denote its expression level in cell ¢ of sample 5. Let x; = (1,x1, ... ,xsv)T be the realized values of covariates in
sample s. Here, we introduced an additional term x50 = 1 as an intercept term for the subsequent regression model.

We model each gene’s expression pattern along pseudotime as functional curves and represent the function using a total of
K + 1 B-spline basis functions @o(¢), ¢;(¢),..., 9k (¢). Here K is the number of equidistant knots used to define B-spline bases.
The gene’s functional curve in sample s is Y;(t) = Y'X_, @ (t)by. For each gene, the optimal K is automatically chosen by
comparing values ranging from 0 to a pre-defined maximum (20 by default) and selecting the one that minimizes the Bayesian
Information Criterion (BIC). The BIC for a given K is calculated as BICx = KSIn(Y.,C;) — 2Y Ik s + const. Here const is
a constant term that does not dependent on K (hence irrelevant for finding optimal K), and Ik s is the log-likelihood of the
B-spline regression for sample s (i.e. we fit a linear regression where the response variable is the gene expression in cells and
the independent variables are the K + 1 B-spline bases).

The observed data of the gene are assumed to be generated from this unobserved function after adding cell-level random
noise & as follows:

Yse = Ys(tsc) + &
K
= Z Ok (tsc)bsk + &
k=0
= ¢(tsc)Tbs+esc (1)
where

0(1) = [90(1), 91(1),-... ox (1)]
bs = [b50>bs17 ce abSK]T
Esc ~ N(Ov sz) 2
Since all samples share the same B-spline bases ¢ (z), the sample-specific temporal pattern is described via the sample-

specific regression coefficients by;. To model the relationship between a gene’s pseudotemporal pattern Y(¢) and sample
covariates X; while accounting for sample-to-sample variability that cannot be explained by the covariates, we further assume

bso Bo Bor ... PBov] [1 Uso
bs1 Bio B ... Biv| |xa U
bk Bxo Bxi ... Brv] |xw Usk

where B is a (K + 1) x (V + 1) matrix representing unknown fixed effects of covariates, and uy is a (K + 1) x 1 vector
representing unobserved sample-level random effects (i.e. random variations among samples with the same covariate values):

u, ~ N(0,0;Q) 4)

Here Qisa (K + 1) x (K + 1) positive definite matrix. Note that the degrees of freedom for estimating sample-level covariance
matrix Q after accounting for V + 1 covariates are S — (V + 1) and one needs at least K + 1 degrees of freedom to estimate a
full rank covariance matrix with dimension K + 1. Therefore, if the sample size S does not exceed V + K 42, we do not have
enough information to estimate an unconstrained Q. In that scenario, we add a constraint by assuming Q = wZI( K+1)x(K+1)
where I represents an identity matrix. This constraint reduces the number of parameters in  to 1. Define

ﬁk, = [ﬁk()vﬁklv R 7ﬁkV]T
ﬁ.v = [ﬁOVaﬁIVa cee 7BKV]T
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1 B,{ is the k"* row of B, corresponding to regression coefficients for basis ¢ (7). B, is the V" column of B, corresponding to
> regression coefficients for the v covariate X,. If gene g’s expression pattern does not dependent on X,, then B,=0.
To facilitate developing the model fitting algorithm, Equation 3 can also be rewritten in a vectorized form. Let Ix be a
K x K identity matrix, and

xXl 0 ... 0
0 xI' ... 0
X, =Igy1 @X! = : :
: : : 3
00 ... x (K+1)x[(K+1)(V+1)]
B = [ﬁg)‘aﬁ{a7ﬁ£]r = [ﬁ007”'7ﬁ0V7ﬁ107"-7B1V7---7I3K01---7[3KV]T (5)

Then Equation 3 can also be written as:
b; = Xsﬁ +ug (6)
Thus, the observed data model in Equation 1 is equal to

Yse = ¢ (tsc)Tbs + &
= ¢ (tsc>T (Bxs + us) + Esc
= 9 (tsc)" (XsB +uy) + & @)

where & ~ N(0,62) and us ~ N(0,52Q). We further assume that 62 follows an inverse-Gamma distribution:

o] ~1G(a,m) ®)
For the given gene, let y; = [y, ..., ySCS]T denote its expression in all cells in in sample s, € = |&q,... 7é:scs]T, and
®; = [9(ts1),...,9(tsc,)]?, then Equation 7 can also be written in a matrix form as:

Ys = cbs(BXs + us) + &
== q)s (Xsﬁ + us) + & (9)

3 The above model can be fit using an Expectation-Maximization (EM) algorithm (see details in the Supplementary
+ Notes). The algorithm can estimate the unknown parameters ® = {,Q, &, 1} and infer 62 based on the observed data. Here
5 Gg,a’n ER,QER<K+1)X(K+I>,ﬁ ER<K+1)(V+1).

s 4.6 Detecting differential expression associated with sample covariate (XDE)

7 Under the Lamian model, detecting differential expression associated with a sample covariate X,, amounts to testing whether
s B, =1[Bov:Bivs---,Bry]T =0. A XDE gene is a gene with 8 , # 0. For a XDE gene, if fo, = B1, = ... = Bxv = ¢ (i.e. all Bi,s
s are equal), then the effect of the covariate is to shift the gene’s pseudotemporal curve up or down by a constant ¢ for every unit
10 change in X, (because the B-spline bases satisfy Zf:o @ () = 1). Such a gene is called XDE with mean shift only. If f3,s are
11 not all equal for a XDE gene, then the covariate also changes the trend of the gene’s pseudotemproal curve. To systematically
12 detect and classify XDE genes, we consider the following nested models:

13 o My: ﬁ.v = [ﬁ()vaﬁlva"’ uﬁKV}T =0.
14 e Mi:,#0and o, =By =...=Pgy=c.
15 o M: [3")750.

16 We conduct the following hypothesis tests:

17 e Overall XDE test: the null model My is compared with the alternative model M. Rejecting My implies XDE.
18 e Mean test: My and M, are compared. Rejecting My implies mean shift.
19 o Trend test: My and M, are compared. Rejecting M implies trend difference.
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A gene is called XDE if the XDE test is significant. For a XDE gene, if the mean test is significant but the trend test is not
significant, the gene is called XDE with mean shift only. If the trend test is significant but the mean test is not, then the XDE
gene is called XDE with trend difference only. If both the mean test and the trend tests are significant, then the XDE gene is
called XDE with both mean shift and trend difference.

To conduct a hypothesis test comparing two models, we use a permutation-based likelihood ratio test. Without loss of
generality, consider comparing null model My versus alternative model M; as an example (other model comparisons are handled
similarly). The test statistic is the log-likelihood ratio (LLR) between M; and M computed using the observed data. To
construct the null distribution of the test statistics, we use a permutation approach. In each permutation, we first bootstrap
the cells (keeping cell number the same as the observed data) to account for the pseudotime variability, and we then permute
the values of the covariate X, among the samples. Using the permuted data, the models are refit and the LLR statistic is
recomputed. Using the LLR obtained from all permutations (by default, 100 times), an empirical distribution is fitted using
kernel density estimate (base::density()) to serve as the null distribution. The p-value is calculated as the tail probability of
the null distribution (i.e. probability that a LLR drawn from the null distribution is equal or larger than the observed LLR). The
p-values from all genes are adjusted for multiple testing using the Benjamini-Hochberg procedure to obtain false discovery
rates (FDRs)?%. By default, FDR< 0.05 is used as the significance cutoff.

4.7 Detecting differential expression along pseudotime (TDE)

Unlike Lamian, most existing pseudotime methods do not detect differential expression associated with covariates (XDE).

Instead, they detect differential expression along pseudotime (TDE). While our main focus is to detect XDE genes, Lamian also
provides a function to detect TDE genes.
When all samples are from one group without covariate, the Equation 3 becomes

Boo
Bio
s= | . | +ug (10)
Bxo
Note that Zf:o (1) = 1. Thus, if Boo = Bio = ... = Bxo = ¢ (i.e. all Byps are equal), then the pseudotemporal pattern shared

by samples is ¢ ()" B , = ¢, which is a constant that does not change along pseudotime. Therefore, TDE detection can be
formulated as comparing the following two models:

e Hy: Bro (k=0,1,...,K) are all equal
e Hi: By (k=0,1,...,K) are not necessarily all equal
This yields the following hypothesis test:
e TDE test: Hy and H; are compared. Rejecting Hy implies differential expression along pseudotime (TDE).
The TDE test can also be generalized to account for sample covariates. With covariates, the compared models become:

e Hy: By (k=0,1,...,K) within each column of B in Equation 3 are equal (i.e. B, =¢,1 wherev=0,1,...,V and 1
represents a K 4 1 vector with all elements equal to 1)

e H;: No constraint on B

The hypothesis test is conducted using a permutation-based likelihood ratio test. We first compute the log-likelihood
ratio (LLR) between H; and Hj as the test statistic using observed data. We then construct the null distribution of LLR
using permutations. In each permutation, we first bootstrap the cells to to account for pseudotime variability, and we then
permute the pseudotime of the cells within each sample. Using the permuted data, the models are refit and the LLR statistic is
recomputed. The null distribution is derived by applying the kernal density estimate (base::density()) to the empirical LLR
statistics obtained from all permutations (by default, for 100 times). P-value is calculated as the tail probability of the empirical
distribution. The p-values from all genes are adjusted for multiple testing using the Benjamini-Hochberg procedure to obtain
FDR?®. By default, FDR< 0.05 is used as the significance cutoff.

4.8 EM algorithm for fitting the Lamian model
The algorithm used to fit the Lamian model is provided in Supplementary Notes in detail.
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4.9 Analysis of cell density changes

Given a pseudotemporal path or branch, we divide the pseudotime from O to its maximum into 100 consecutive intervals of
equal lengths. The number of cells in each interval # and sample s is counted and denoted as ry;. One approach to modeling cell
density changes is to model ry using a count distribution (e.g. Poisson or Negative binomial) with mean L;Ay; where Ly is a
sample-specific normalizing constant corresponding to the total cell number on the pseudotemporal path. One can then model
log Ay as functional curves using B-spline bases similar to the gene expression model. Fitting such a model, however, requires
algorithms such as Markov Chain Monte Carlo which makes this approach less appealing computationally. We therefore use an
alternative and simpler approach in which ry /L, is modeled in the same way as the gene expression model in equation 1 (i.e.
treating time interval 7 as cell and treating ry /L, in the same way as ys.). In this way, testing if the cell density changes along
pseudotime (TCD test) or if a sample covariate changes the pseudotemporal cell density curves (XCD test) can be handled
following the same procedure for TDE and XDE tests. This approach is more computationally efficient and yields reasonable
results empirically in our benchmark data.

4.10 Comparisons with existing methods

4.10.1 XDE detection

For detecting differential expression associated with covariates, we compared Lamian with t radeSeq (v.1.1.23) and 1imma
(v.3.40.6). We applied tradeSeq by considering the cells belonging to two groups as those belonging to two lineages. The
cell weights on each group were set as 0.99 and 0.01 respectively. We then fit the models by running the fitGAM() function
with the default setting. All three types of tests for between-lineage comparisons were included. Specifically, earlyDETest(),
diffEndTest() and patternTest() were applied to identify early drivers of differentiation, differentiated markers and expression
patterns over pseudotime, respectively. 1imma was applied by pooling each sample as a pseudobulk. Its functions ImFit(),
eBayes(), and topTable() were used to perform the test.

4.10.2 TDE detection

For detecting differential expression along pseudotime, we compared Lamian with Monocle2 (v.2.14.0), Monocle3??
(v.3.0.2.1), tradeSeq27 (v.1.1.23) and TSCAN?? (v.1.7.0). All methods other than Lamian treat cells from all samples as
if they were from one sample. Monocle2 performs the testing with an approximate y? likelihood ratio test. In this test,
generalized additive models (GAMs) are applied to fit the gene expression against pseudotime as a full model while the
null model considers the gene expression is a constant along pseudotime. Monocle3 performs trajectory inference on the
coordinates from uniform manifold approximation and projection (UMAP) and then implements the Moran’s I test to identify
genes whose expression is associated with pseudotime with statistical significance. TSCAN applies the same fitting and
testing method as Monocle?2 except that TSCAN uses MGCV package and Monocle?2 applies VGAM package. tradeSeq is
used by s1ingshot?* to identify dynamic genes along pseudotime. Both tests designed for within-lineage comparisons in
tradeSeq were included (startVsEndTest() and associationTest()).

4.10.3 Significance cutoff
All p-values reported by each method were adjusted for multiple-testing using the Benjamini-Hochberg procedure to obtain
false discovery rates (FDRS)ZS. By default, FDR< 0.05 is used as the significance cutoff.

4.11 Simulations

4.11.1 XDE detection

We first created null simulation data where we do not expect any XDE genes. The simulation was based on the 13,269 cells
on the erythroid branch in the real HCA-BM data described in Section 4.1. For the null simulation in Fig. 4a, the eight bone
marrow scRNA-seq samples were randomly partitioned into two groups (group 0 and 1). Next, to remove any group differences
for a given gene, we divided the pseudotime into 100 non-overlapping intervals of equal lengths. Within each interval and
within each sample group, we calculated the median of the gene’s normalized expression. For cells in the sample group with
lower median value, we added their expression with the difference of median expression between the two groups so that the two
groups have similar expression values.

Building upon the null dataset above, we then introduced in silico spike-in differential signals with varying strengths and
pseudotemporal patterns between the two sample groups to a random set of genes. This spike-in simulation data set was used in
Fig. 4b-h. We randomly selected 20% (1814) genes as the gold standard XDE genes (gs genes) and randomly assigned them to
3 groups: trend difference only, mean shift only, and both trend & mean differences. We then spiked in differential trend, mean,
or both trend & mean signals into these gold standard genes based on their differential type. To generate the spike-in signals,
we selected highly variable genes from the remaining 80% non-gold-standard (non-gs) genes using cells in sample group 0
and using their original unpermuted data. To select highly variable genes, we applied B-splines to fit the relationship between
the standard deviation (SD) and the mean of gene expression of the non-gold-standard (non-gs) genes across cells in group 0.
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Genes with positive residuals (i.e. SD is larger than its expected value estimated from the mean expression) are selected as
highly variable. We applied k-means clustering to cluster these genes into 5 clusters using their standardized log2-transformed

SAVER-imputed expression. Here the cluster number 5 was determined using the same elbow method as described in TSCAN.
For each gene that was clustered, we fit a B-spline on the log2-transformed SAVER-imputed expression against pseudotime.

We evaluated the magnitude of change of the gene along pseudotime by calculating a F'—statistic that compares a full model
(which assumes gene expression along pseudotime is modeled using the B-spline curve plus additive noise) and a null model
(which assumes gene expression along pseudotime is a constant plus additive noise). We used highly variable genes (i.e. those
with positive residuals) as “source genes”. We ordered source genes in increasing F —statistics. We categorized the tail 1814
source genes into 4 groups from the smallest to the largest F —statistics to represent signal strengths from weakest (1) to highest
(4). In each signal-strength simulation, we added the gene expression profiles in each sample from the source genes in the
same strength group onto those gold standard genes. The signal-spike-in procedures were performed in SAVER-imputed gene
expression matrix and original count matrix in parallel. For gold standard genes with trend difference, we added signals to both
group 0 and 1, except that the signals were permuted before adding to group 1. For gold standard genes with mean shift, we
permuted the source gene expression profiles within each sample before adding signals to group 0. For gold standard genes
with both trend and mean differences, we added source signals directly to group O cells without centering the data.

4.11.2 TDE, TCD, and XCD detection
Simulations for evaluating TDE, TCD and XCD detection are presented in Supplementary Notes.
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