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With the emergence of high throughput single cell techniques, the understanding of cellular diversity in
biologically complex processes has rapidly increased. The next step towards comprehension of e.g. key
organs in the mammal development is to obtain spatiotemporal atlases of the cellular diversity. However,
targeted cell typing approaches relying on existing single cell data achieve incomplete and biased maps
that could mask the molecular and cellular heterogeneity present in a tissue slide. Here we applied
spage2vec, a de novo approach to spatially resolve and characterize cellular diversity during human
heart development. We obtained well defined spatial maps of tissue samples from 4.5 to 9 post
conception weeks, not biased by probabilistic cell typing approaches. We found previously unreported
molecular diversity within cardiomyocytes and epicardial cells and identified their characteristic
expression signatures by matching them with specific subpopulations found in single cell RNA
sequencing datasets.

INTRODUCTION Transcriptomics® (ST) for untargeted spatial gene

expression profiling of grid-microdissected tissues, (2)

Recent efforts to decrypt cellular complexity of human
organs, and provide comprehensive maps of their
constituent cell types, have been supported by both
technological developments and a number of
international initiatives2. One such technological
advance is single-cell RNA sequencing (scRNA-seq)3+#
enabling profiling the transcriptome of tens of thousands
individual cells after tissue dissociation, and thus define
the cell-type composition of a tissue architecture. Single
cell data can be further combined with more recent
spatially resolved techniques>? to create organ-wide
gene expression atlases that map cell-type distributions
and spatial biological programs directly in tissue samples,
with spatial resolution.

With the aim of producing a spatiotemporal gene
expression and cell atlas of the developmental human
heart, Asp et al.1? recently combined three different high-
throughput technologies for gene expression profiling
with immunohistochemical staining. They studied three
developmental stages in the first trimester at 4.5-5, 6.5
and 9 post-conception weeks (pcw) using (1) Spatial

scRNA-seq of 6.5 pcw tissue samples for dissecting
cellular heterogeneity at single cell resolution, and (3) in
situ sequencing® (ISS) to resolve the spatial heterogeneity
at subcellular resolution. Finally, probabilistic cell-
mapping via pciSeq!! was applied to achieve single cell
level maps of the cell-type distribution. PciSeq jointly
assigned in situ decoded reads to segmented cells and
cells to cell-type gene expression profiles defined with
scRNA-seq. The result of the overall study is the first
comprehensive spatial atlas of the developmental human
heart.

Despite this achievement, some important limitations
were found in the study, as pointed out also by Phansalkar
et al. 12 in a commentary to the paper. One of the main
limitations of the probabilistic approach is that
preexisting knowledge of the tissue constituent cell-types
is required to characterize the spatial cellular
heterogeneity. Thus, probabilistic cell typing by in situ
sequencing (pciSeq) was only possible for the 6.5 pcw
developmental stage where single cell data was available,
leaving the cellular diversity in the 4.5-5 and 9 pcw time
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Figure 1. Overview of the Spage2vec approach to characterize the human developmental heart. A. SpageZ2vec
constructs a graph from the spatial gene expression of the tissue samples and projects spatial markers in a common latent
space. Scale bars: 1 mm, cutout 15 um. B. PAGA plot representing the different expression profiles defined using spage2vec.
Background colors represent main cell classes manually annotated based on cluster expression profiles. C. Heatmap
showing the mean expression of each gene (e.i. expression profile) in the clusters defined by spage2vec, along with
suggested cell classes, color coded as in Figure 1C. D. Spatial maps of the different expression profiles defined using
spage2vec in three sections (color coded as Figure 1B), one from each time point. For interactive multi-resolution viewing:
https://tissuumaps.research.it.uu.se/human _heart.html.

points unexplored at a single cell level. Additionally, cell- seq, such as pciSeq, may introduce a strong bias that can
typing methods that depend on priors defined by scRNA- limit the possibility to distinguish between cell sub-types

2


https://tissuumaps.research.it.uu.se/human_heart.html
https://doi.org/10.1101/2021.07.10.451822
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.10.451822; this version posted July 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

or sub-states that are not fully resolved by scRNA-seq, as
further discussed in the next paragraphs. Finally, most of
current cell-typing methods rely on their ability to
segment out tridimensional cells from a 2D
representation of them, leading to possible
misidentification of cells and misclassification of reads.

In order to overcome these limitations and fully explore
the spatial heterogeneity of the developmental human
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heart, we present a de novo spatiotemporal analysis of
Asp et al. ISS data using all three developmental stages.
For our analysis we used a data driven approach, called
spage2vec!3, for generating a spatiotemporal common
representation of the spatial gene expression at the
different developmental stages. Spage2vec represents the
spatial gene expression as a graph and applies a powerful
graph representation learning technique to create a lower
dimensional representation of the data that is
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Clusters from pcw6 analysis

Figure 2. Analysis of individual developmental stages and correspondence with single cell data. A. PAGA plots of
the clusters found in each time point specific analysis. Clusters from each time point are represented in a PAGA plot,
including 4.5-5 pcw (top), 6.5 pcw (middle) and 9 pcw (bottom). Background colors represent the main cell types found
in the dataset. B. Heatmap representing correspondence in terms of cosine similarities between scRNA-seq data and
spage2vec clusters from pcw 6.5 (Methods). Cells from scRNA-seq dataset (rows) are sorted based on their cell type in

order to facilitate the interpretation.
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independent from scRNA-seq defined priors. We then
used this representation to define the identities and
spatiotemporal relationships of cell and sub-cell type
gene expression signatures across the three
developmental stages of the embryonic heart, identifying
previously unreported cell populations within
cardiomyocytes as well as in atrial sub-epicardial cells.

RESULTS

With the aim of exploring cellular diversity during the
human heart development, spageZvec!® was used to
identify cellular expression signatures de novo across the
three developmental stages (Figure 1A) (Methods). The
analysis is based on the locations of genes represented in
the gene panel used during ISS, and is thus dependent on
the panel’s ability to represent heterogeneity in gene
expression. A total of 27 clusters with specific cellular
expression signatures were found during the heart
development (Figure 1A-B). The signatures were
grouped in five main classes, according to their
expression patterns, including atrial cardiomyocytes,
cardiomyocytes, fibroblast-like
cells/epicardium-derived cells, epicardial cells and neural
crest cells (Figure 1B). Clusters assigned to the same
class were found to have similar molecular and spatial
patterns (Figure 1C-D, Supplementary figure 1-3).
Their distribution was also found to be consistent
through the different samples and time points analyzed
and most of them were found to have a conserved location
in the heart between pcw 4.5-5, pcw 6.5 and pcw 9
(Figure 1D, Supplementary figure 1-3).

ventricular

In order to identify common findings and discrepancies
with previous results, we compared the cellular identities
defined by spage2vec with the ones described in Asp et
al.’9. This comparison was limited to the only time point
analyzed via probabilistic pciSeq!!; post conception week
6.5 (Supplementary figure 4, Methods). A total of 27
meaningful cellular identities shared across all three time
points were defined in the spage2vec analysis, in contrast
to the 12 cell types defined from scRNA-seq data and
assigned in situ via probabilistic cell typing in Asp et al.
Most of these additional spage2vec clusters capture a
previously undescribed diversity within cardiomyocytes
(Supplementary figure 4A), while other cell types such
as endothelial cells or fibroblast-like cells present a one-
to-one correspondence. This is also observed when
comparing the expression signatures of the spageZvec
clusters and the cell types described in the single cell RNA
sequencing dataset from Asp et al. (Supplementary
figure 4B). Regarding the spatial location of the clusters,
both methods agreed on the location of some clusters
such as epicardial cells and, to a lesser extent, capillary
endothelial cells. However, significant differences were

observed when comparing the location of some cell types.
This is the case of the clusters with a fibroblast-like
expression signature, where spage2vec clusters present a
more specific spatial distribution through the tissue in
accordance with the previously known location of each of
the cell types analyzed and in contrast with the sparser
location identified by pciSeq (Supplementary figure
4(Q).

One of the main concerns of our approach was whether
samples with a higher number of cells could be driving the
clustering results of the rest of the samples, leading to a
misclassification of the cells in the smaller tissue samples.
To explore the consistency of the spage2vec clusters
found, individual clustering was performed separately on
each of the time points (Methods). A total of 94 clusters
were found, including 34 in pcw 4.5-5 and 30 both in pcw
6.5 and pcw 9 (Figure 2). Despite small differences, the
clusters found in the different time points present a
similar distribution in spage2vec latent space for all three
time points (Supplementary figure 5A). In addition,
most clusters found in specific time points recapitulated
molecular and spatial signatures found when analyzing all
time points together (Supplementary figure 5B). The
clear correspondence between both analyses proves that
the diversity found at different time points was not driven
by any of the samples individually (Supplementary
figure 6).

One surprising aspects of the spage2vec de novo analysis
is its ability to resolve the cellular heterogeneity at a
higher resolution compared to the scRNA-seq data driven
analyses, finding a larger number of clusters, that appear
to make sense since they show distinct and consistent
spatial distribution across the different samples. This may
suggest that the spatial organization of biological markers
contains essential information for resolving spatial
cellular heterogeneity that is masked in scRNA-seq
analyses. In order to assess whether traces of this
spatially defined diversity could also be found in the
scRNA-seq dataset, the molecular signatures from the
intermediate time point samples (pcw 6.5) and its
corresponding scRNA-seq dataset were integrated using
SpaGE!* (Method). Correspondence between individual
scRNA-seq cells and the different spage2vec clusters
defined in pcw 6.5 is shown in Figure 2B. Several
molecular signatures defined by spage2vec matched
specific subpopulations in the single cell dataset,
including cardiomyocytes and endocardial cells. With the
aim of characterizing these subpopulations, which
presented clear spatial locations in the tissue
(Supplementary Figure 8), we identified their most
differentially expressed genes (Figure 3A,
Supplementary Figure 7) and assessed their gene
ontology (GO) characteristics using scRNA-seq
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(Methods). With this, identified two specific
endocardial subpopulations: one located in the atria and

show very distinct spatial localization, we did not find
notable differences in the expression of differentially
expressed genes, and both show enrichment in GO terms

we

the other one in the ventricles (Figure 3B). Although they
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Figure 3: Exploration of new clusters identified within cardiomyocytes and endothelial cells. A. Dotplot representing
the expression of the 4 most differentially expressed genes of each of the clusters related with endothelial cells (cluster 14
and 17), atrial (cluster 1,2 and 7) and ventricular (cluster 4, 8 and 15) cardiomyocytes. Expression is shown in the
endothelial and cardiomyocyte related clusters linked to specific populations within the scRNA-seq dataset from Asp.et
al.10 B. Spatial maps highlighting the reads assigned to the clusters related with endothelial cells and cardiomyocytes
(right), with gene ontology enrichment of biological processes for top 15 most differentially expressed genes of each cluster
(left). Color codes as in A.
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involved in cardiovascular morphogenesis and
development (Fig. 34, C).

High diversity was also found within cardiomyocytes,
where three different populations were described within
atrial cardiomyocytes and a total of five populations were
found within ventricular cardiomyocytes, three of them
having supporting scRNA-seq data (Figure 2B).
Moreover, spage2vec clusters present a better-defined
region-specific location compared to analogous pciSeq
cell-type maps in Asp et al., where some atrial cells are
misplaced in the ventricles and vice versa
(Supplementary Figure 4D).

Within ventricular cardiomyocytes, the five different
spage2vec clusters defined presented unique expression
patterns and spatial distributions from the periphery to
the interior of the heart. However, not all the clusters
were aligned with corresponding cell subpopulations
from scRNA-seq data integration (Method). While
clusters 4, 8 and 15 aligned within both ventricular and
MYOZ2-enriched cardiomyocytes, cluster 16 and 24
presented a very weak alignment within the cell
population sampled for scRNA-seq (Figure 2B). Clusters
aligning with specific cell subpopulations were further
characterized (Figure 3D, E). Cluster 4 had a location
within the ventricular wall, was found to have a high
expression of MYH7 and presented characteristics of
trabecular myocardium while cluster 8 had an outer
location and also had a strong expression of MYH7
consonant with outer, compact myocardium (Figure 3A).
Both cell types had GO characteristics of contracting
ventricular muscle although these GO terms were more
pronounced for trabecular myocardium. Cluster 15,
which was smaller in size, expressed genes and GO
characteristics of cell division and was preferentially
located diffusively in the outer compact myocardium.
These cells may thus be cardiomyoblasts participating in
the consolidation of the compact myocardium.

Regarding atrial cardiomyocytes, the three clusters
identified were found to have a different location (Figure
3F) and their specific markers were associated with
distinct biological processes as suggested by Gene
Ontology analysis (Figure 3G). Cluster 1 was located
mainly in the periphery of the atria and has GO
characteristics of appendage formation while cluster 2
partly had a more central location and also expressed GO
characteristics of cardiac conduction. Whereas cluster 7
was localized in the cranial and caudal part of the atria
and had GO characteristics of morphogenesis and
epithelial to mesenchymal transition. These spatial and
GO characteristics are in keeping with the formation of
the atrial septum that occurs at this stage of development.

Apart from the diversity found within cardiomyocytes,
one of the most remarkable aspects of the analysis was
the identification of different very thin sub-epicardial
mesenchymal cell layers in the time point-specific
analysis of pcw 6.5, possibly originating from epithelium
via epithelial-mesenchymal transition (EMT)!516, We
described the expression signature of these clusters using
diffusion maps and pseudotime analysis (Figure 4A, B).
The diffusion map suggests different differentiation
processes involving the different mesenchymal clusters.
By setting the root in epicardial cells (cluster 18), we
identified two main branches in the pseudotime analysis,
which could be indicating two differentiation paths
involving epicardial cells: one involving the
differentiation of epicardial cells into epicardial derived
cells and fibroblasts (i.e., cluster 18-21-26-9-12-10) and a
second one involving the possible differentiation of
epicardial cells into atrial cardiomyocytes (i.e., cluster 18-
11-1-2-7) (Figure 4A, C). An additional branch connects
epicardial derived cells to atrial cardiomyocytes (i.e.,
cluster 12-27-7-2-1), suggesting that EPDC undergo
mesenchymal transition and differentiate into
cardiomyocytes'718. By mapping both the spageZvec
identities and the pseudotime scores of these branches
into the tissue we observed that the pseudotime
described has a clear spatial component, matching with
gradient from the periphery to the interior of the heart in
the developing atria (Figure 4D). GO analysis of clusters
presenting enough supporting scRNA-seq cells show
terms enriched for EMT and atrial morphogenesis
(Figure 4E).

DISCUSSION

The improvement of targeted spatially resolved
transcriptomic approaches 1920 in terms of signal-to-noise
ratio, sequencing depth, number of genes and number of
cells analyzed is leading towards the generation of larger
datasets that will enable more and more comprehensive
data driven spatial analysis. So far, methods such as ISS
have primarily been a useful complement to scRNA-seq
strategies by uncovering the spatial location of scRNA-seq
defined cell populations. However, spatial molecular
organization in itself presents intrinsic critical
information of the cellular heterogeneity that is not
captured by non-spatial methods, thus de novo
approaches that do not rely on previous knowledge are
starting to gain relevance in the field due to their notable
advantages321, In this study, thanks to one of these de
novo approaches, spage2vec!3, we have been able to
define 27 molecular signatures conserved during the
developmental process of the heart based solely on the
spatial location of the expressed molecules of 69 targeted
genes.
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Figure 4. Description of the differentiation of epicardial cells in the human heart development. A,B. Diffusion map of
pseudo-cell expression profiles defined in pcw 6.5 (Methods) and assigned to clusters related with epicardial cells,
ventricular cardiomyocytes, epicardium-derived cells and fibroblasts. Each spot is labelled in A according to the cluster it
was assigned to in Figure 2A. In B, the color of each spot represents its pseudotime score, considering the root in cluster 18
(epicardial cells). Two main branches can be observed. Pseudotime scores above 0.5 were trimmed for visualization
purposes C. Spatial map highlighting the spots assigned to the clusters present in Figure 4A in one of the two sections from
pcw 6.5. D. Spatial map representing the pseudotime scores of each of the spots described in Figure 4B in one of the sections
from pcw 6.5 and a region of interest present in the same tissue. Clusters were represented in two different plots, depending
on whether they were situated in Branch 1 (top) or Branch 2 (bottom) according to Figure 4A-B. E. Dot plot showing
enrichment of Gene Ontology biological processes for top 15 most differentially expressed genes in the clusters represented

in Figure 4A.

In contrast with the original study!9, where cell typing
was constrained by availability of scRNA-seq data, our
approach is able to define, in a spatiotemporal manner,
different molecular signatures conserved through the
different time points analyzed during the heart
development. Our analysis showed to be especially
relevant for capturing stable cell populations conserved
through the developmental process, such as epicardial
cells, and could be used for understanding biological
processes like migration and differentiation. Supervised
cell typing approaches?12223 will force the ISS data to fit
signatures designed from scRNA-seq, with the risk of
introducing biases and losing part of the potential
biological information available in the ISS data.
Furthermore, supervised approaches may fail to assign
cells to a cell type due to discrepancies between the
detected molecular signatures and the scRNA-seq data. As
a consequence, while de novo approaches such as
spage2vec assign a molecular signature to each read
analyzed, probabilistic cell typing approaches avoid
assigning a signature to many of the reads analyzed,
missing in some cases molecular patterns with a true
biological implication.

Moreover, unlike most existing cell typing strategies,
spage2vec does not rely on cell segmentation. This aspect
is highly beneficial when working with compact tissue,
where cell borders are difficult to define. Spage2vec
directly clusters the mRNA reads based on their local
environment, and neighborhood information is
incorporated in the process. Therefore, it is possible to
discern populations that are similar in gene expression
but have distinct spatial contexts in the tissue. In order to
capture spatial signatures at cellular resolution,
spage2vec  aggregates local information from
neighborhoods within a radius of 14.59 um, which is a
reasonable inter-cell distance, although the detected
spatial clusters can represent cellular and even
subcellular gene expression patterns. Since the method is
completely unsupervised, super-cellular or sub-cellular
patterns may also be captured depending on multiple
factors that are related to the gene panel selected,
sequencing resolution, and local differences in cell
density.

For its unsupervised analysis, spage2vec depends on a
targeted ISS gene panel. In this case, the genes were
selected at an early stage of the Asp work!?, based on
scRNA-seq and Spatial Transcriptomics data. Despite the
clear limitation of using a subset of markers for
identifying clusters de novo, we have shown that
leveraging deep learning representation power,
spage2vec can also identify subpopulations through non-
linear aggregation of spatial marker features, even
without marker genes that can directly identify all cell
populations. This is demonstrated by the identification of
distinct atrial and ventricular subclusters with discrete
GO characteristics. Another important cluster identified
in spage2vec is the endocardial cluster that in Asp et al.10
was not subclustered out of the large scRNA-seq cluster
comprising endothelial cells.

Apart from its ability to capture specific subpopulations,
here we prove that spageZ2vec can be used to describe
differentiation processes, including its spatial component.
In this manuscript we report two main trajectories
involving epicardial cells in atrial development. In fact,
this observation is supported by Singh et al. 201324,
Greulich et al. 201125, Cai et al. 200817 and Zhou et al.
200818, who report that at the atrial level epicardial cells
flow into the atrial myocardial wall of venous origin and
through epithelial-to-mesenchymal transition
differentiate into arterial endothelium, smooth muscle
and perivascular fibroblasts and may contribute to
myocardialization of the atrial wall.

All in all, by applying spage2vec to study the human heart
development we have been able to perform a
spatiotemporal analysis of the cells found in post
conception week 4.5-5, 6.5 and 9, identifying different
molecular signatures within cardiomyocytes as well as an
atrial subepicardial cell type previously unreported. This
study shows the advantages of using de novo strategies
that do not rely on cell segmentation and scRNA-seq to
characterize developmental processes and opens the
possibility of applying this approach to similar biological
systems where reference single cell RNA sequencing data
may be limited or not available.
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METHODS

Data and code availability. All the code used to perform
spage2vec on the developing human heart ISS data can be
found in the following site:

https://github.com/wahlby-lab/spage2vec heart.

An online TissUUmaps? viewer for interactive
exploration of the analysis results can be found in:

https://tissuumaps.research.it.uu.se/human heart.h
tml. All the data generated in this study can be
downloaded from the TissUUmaps viewer for further
exploration.

Datasets. The ISS dataset of the developing human heart
10 comprises gene expression information of 69 marker
genes and decoded spatial coordinates of mRNA spots in
eight tissue sections at three developmental time points
(Figure 1A). There are 189541, 812808, and 1471602
mRNA reads at the three time points respectively,
summing up to a total of 2473951 reads.

Spatiotemporal representation of ISS gene
expression data with spage2vec. Spage2vec!3 learns to
map local neighborhood relationships between mRNA
spots as distances in a continuous latent space using a
deep learning model. As a result, a numerical vector is
assigned to each individual mRNA spot describing its
neighborhood composition. Therefore, molecules that

10
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share similar local environments are described with
numerically similar vectors and consequently mapped in
close proximity in the learnt latent space. In such a way,
we are able to build a spatiotemporal representation of
the spatial gene expression in an unsupervised manner
and without using any prior information. The learnt
representation is then used to perform clustering analysis
in order to define localized gene expression signatures
that represent cell-type signatures across the three
embryonic stages.

Constructing a spatial gene expression graph. We first
construct a graph where each node represents an mRNA
spot, with a one-hot encoding feature vector representing
its corresponding gene. Each node is then connected by
edges to its spatial local neighbors of the same tissue
section within a maximum distance (d_max = 44.9 pixels/
14.58 pm). We estimate the maximum distance such that
99% of nodes in the graph are connected to at least one
neighbor. Connected components with less than six nodes
are successively removed from the graph in order to
exclude spurious reads such as spots located outside of
the region of the heart sample, thus leaving 97.7% of the
original mRNA reads for further processing.

Graph neural network model and training. We train
then a graph neural network on the spatial gene
expression graph to produce the spage2vec latent
representation for each mRNA spot. The neural network
consists of two GraphSAGE?’ layers. At each layer, the
features of a node and its local neighborhood are
aggregated and propagated to the next layer. The neural
network learns its parameters in an unsupervised setting
by minimizing a loss function based on random walks.
The loss function of a node encourages similarity between
the node and a direct neighbor that occurs in a random
walk, and dissimilarity between the node and another
node randomly sampled from the graph. Regarding the
hyperparameters of the model, we use the mean
aggregator at each layer and ReLU as activation function
for the first layer. The size of each layer is 32. The model
is trained for 10 epochs with a batch size equal to 64,
using Adam optimizer?® with a learning rate equal to
0.001. The output for each mRNA spot is then a spage2vec
latent vector of length 32.

Cluster analysis and visualization. After predicting a
latent vector for each mRNA spot based on its
neighborhood composition, we compute a kNN (k = 15)
weighted graph of the spage2vec latent vectors and apply

the Leiden clustering algorithm2?® (with clustering
resolution r=1) on the KNN-graph. We then use PAGA30 to
quantify the connectivity of acquired clusters, which
represents the proximity of the clusters in the latent
space. Each cluster with less than 1000 nodes is merged
into the closer larger cluster in the PAGA graph having the
maximum connectivity to the smaller cluster, if the
connectivity was greater than 0.1. Otherwise, they are
considered outliers and filtered out. After merging and
filtering out the small clusters, we count the number of
spots per cluster per gene followed by cluster-wise Z-
score normalization to create a cluster expression matrix.
This led to the final set of spage2vec clusters, which can
be visualized interactively using TissUUmaps?6.

Spage2vec and scRNA-seq data integration. We
perform data integration between spage2vec clusters of
individual analysis of pcw 6.5 ISS data and the
corresponding scRNA-seq data from Asp etal. Specifically,
we first log-normalize scRNA-seq total counts per cell.
Then, we generate pseudo-cell gene expression profiles
for each mRNA spot by aggregating its k-nearest neighbor
(k=100) in the spage2vec latent space. Next, we filter
genes with less than 100 reads and log-normalize total
counts per pseudo-cell. We thereafter integrate pseudo-
cell and scRNA-seq gene expression profiles using
SpaGE“. The two datasets are aligned by projecting them
in a common latent space by domain adaptation3! using
30 principal vectors. After alignment, we can either infer
the spatial profile of genes that are missing from the
original ISS gene panel, or vice versa assign scRNA-seq
cells to spageZvec clusters by k-nearest neighbor
imputation.

Specifically, for each scRNA-seq cell we compute a cosine
similarity in the common latent space with respect to all
the k-th (k=15) nearest neighbor pseudo-cells, and we
define correspondence with a spage2vec cluster as the
sum of all cosine similarities with respect to those
pseudo-cells belonging to the given spage2vec cluster. We
then exclude scRNA-seq cells with low correspondence to
spage2vec clusters (i.e. maximum cosine similarity
smaller than 0.3), and we assign each scRNA-seq cell to
the spage2vec cluster with highest cosine similarity.
Spage2vec clusters with less than 10 scRNA-seq cells
assigned are marked as weakly aligned as they miss
enough supporting scRNA-seq cells and thus are excluded
from further analyses.
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