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With the emergence of high throughput single cell techniques, the understanding of cellular diversity in 

biologically complex processes has rapidly increased. The next step towards comprehension of e.g. key 

organs in the mammal development is to obtain spatiotemporal atlases of the cellular diversity. However, 

targeted cell typing approaches relying on existing single cell data achieve incomplete and biased maps 

that could mask the molecular and cellular heterogeneity present in a tissue slide. Here we applied 

spage2vec, a de novo approach to spatially resolve and characterize cellular diversity during human 

heart development. We obtained well defined spatial maps of tissue samples from 4.5 to 9 post 

conception weeks, not biased by probabilistic cell typing approaches. We found previously unreported 

molecular diversity within cardiomyocytes and epicardial cells and identified their characteristic 

expression signatures by matching them with specific subpopulations found in single cell RNA 

sequencing datasets.  
 

INTRODUCTION 

Recent efforts to decrypt cellular complexity of human 

organs, and provide comprehensive maps of their 

constituent cell types, have been supported by both 

technological developments and a number of 

international initiatives1,2. One such technological 

advance is single-cell RNA sequencing (scRNA-seq)3,4 

enabling profiling the transcriptome of tens of thousands 

individual cells after tissue dissociation, and thus define 

the cell-type composition of a tissue architecture. Single 

cell data can be further combined with more recent 

spatially resolved techniques5–9 to create organ-wide 

gene expression atlases that map cell-type distributions 

and spatial biological programs directly in tissue samples, 

with spatial resolution.   

With the aim of producing a spatiotemporal gene 

expression and cell atlas of the developmental human 

heart, Asp et al.10 recently combined three different high-

throughput technologies for gene expression profiling 

with immunohistochemical staining. They studied three 

developmental stages in the first trimester at 4.5-5, 6.5 

and 9 post-conception weeks (pcw) using (1) Spatial 

Transcriptomics9 (ST) for untargeted spatial gene 

expression profiling of grid-microdissected tissues, (2) 

scRNA-seq of 6.5 pcw tissue samples for dissecting 

cellular heterogeneity at single cell resolution, and (3) in 

situ sequencing6 (ISS) to resolve the spatial heterogeneity 

at subcellular resolution. Finally, probabilistic cell-

mapping via pciSeq11 was applied to achieve single cell 

level maps of the cell-type distribution. PciSeq jointly 

assigned in situ decoded reads to segmented cells and 

cells to cell-type gene expression profiles defined with 

scRNA-seq. The result of the overall study is the first 

comprehensive spatial atlas of the developmental human 

heart. 

Despite this achievement, some important limitations 

were found in the study, as pointed out also by Phansalkar 

et al. 12 in a commentary to the paper. One of the main 

limitations of the probabilistic approach is that 

preexisting knowledge of the tissue constituent cell-types 

is required to characterize the spatial cellular 

heterogeneity. Thus, probabilistic cell typing by in situ 

sequencing (pciSeq) was only possible for the 6.5 pcw 

developmental stage where single cell data was available, 

leaving the cellular diversity in the 4.5-5 and 9 pcw time 
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points unexplored at a single cell level. Additionally, cell-

typing methods that depend on priors defined by scRNA-

seq, such as pciSeq, may introduce a strong bias that can 

limit the possibility to distinguish between cell sub-types 

Figure 1. Overview of the Spage2vec approach to characterize the human developmental heart. A. Spage2vec 
constructs a graph from the spatial gene expression of the tissue samples and projects spatial markers in a common latent 
space. Scale bars: 1 mm, cutout 15 μm. B. PAGA plot representing the different expression profiles defined using spage2vec. 
Background colors represent main cell classes manually annotated based on cluster expression profiles. C. Heatmap 
showing the mean expression of each gene (e.i. expression profile) in the clusters defined by spage2vec, along with 
suggested cell classes, color coded as in Figure 1C. D. Spatial maps of the different expression profiles defined using 
spage2vec in three sections (color coded as Figure 1B), one from each time point. For interactive multi-resolution viewing: 
https://tissuumaps.research.it.uu.se/human_heart.html.     

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2021. ; https://doi.org/10.1101/2021.07.10.451822doi: bioRxiv preprint 

https://tissuumaps.research.it.uu.se/human_heart.html
https://doi.org/10.1101/2021.07.10.451822
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

or sub-states that are not fully resolved by scRNA-seq, as 

further discussed in the next paragraphs. Finally, most of 

current cell-typing methods rely on their ability to 

segment out tridimensional cells from a 2D 

representation of them, leading to possible 

misidentification of cells and misclassification of reads. 

In order to overcome these limitations and fully explore 

the spatial heterogeneity of the developmental human 

heart, we present a de novo spatiotemporal analysis of 

Asp et al. ISS data using all three developmental stages. 

For our analysis we used a data driven approach, called 

spage2vec13, for generating a spatiotemporal common 

representation of the spatial gene expression at the 

different developmental stages. Spage2vec represents the 

spatial gene expression as a graph and applies a powerful 

graph representation learning technique to create a lower 

dimensional representation of the data that is 

Figure 2. Analysis of individual developmental stages and correspondence with single cell data. A. PAGA plots of 
the clusters found in each time point specific analysis. Clusters from each time point are represented in a PAGA plot, 
including 4.5-5 pcw (top), 6.5 pcw (middle) and 9 pcw (bottom). Background colors represent the main cell types found 
in the dataset. B. Heatmap representing correspondence in terms of cosine similarities between scRNA-seq data and 
spage2vec clusters from pcw 6.5 (Methods). Cells from scRNA-seq dataset (rows) are sorted based on their cell type in 
order to facilitate the interpretation. 
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independent from scRNA-seq defined priors. We then 

used this representation to define the identities and 

spatiotemporal relationships of cell and sub-cell type 

gene expression signatures across the three 

developmental stages of the embryonic heart, identifying 

previously unreported cell populations within 

cardiomyocytes as well as in atrial sub-epicardial cells.  

RESULTS 

With the aim of exploring cellular diversity during the 

human heart development, spage2vec13 was used to 

identify cellular expression signatures de novo across the 

three developmental stages (Figure 1A) (Methods). The 

analysis is based on the locations of genes represented in 

the gene panel used during ISS, and is thus dependent on 

the panel’s ability to represent heterogeneity in gene 

expression. A total of 27 clusters with specific cellular 

expression signatures were found during the heart 

development (Figure 1A-B). The signatures were 

grouped in five main classes, according to their 

expression patterns, including atrial cardiomyocytes, 

ventricular cardiomyocytes, fibroblast-like 

cells/epicardium-derived cells, epicardial cells and neural 

crest cells (Figure 1B).  Clusters assigned to the same 

class were found to have similar molecular and spatial 

patterns (Figure 1C-D, Supplementary figure 1-3).  

Their distribution was also found to be consistent 

through the different samples and time points analyzed 

and most of them were found to have a conserved location 

in the heart between pcw 4.5-5, pcw 6.5 and pcw 9 

(Figure 1D, Supplementary figure 1-3).  

In order to identify common findings and discrepancies 

with previous results, we compared the cellular identities 

defined by spage2vec with the ones described in Asp et 

al.10. This comparison was limited to the only time point 

analyzed via probabilistic pciSeq11; post conception week 

6.5 (Supplementary figure 4, Methods).  A total of 27 

meaningful cellular identities shared across all three time 

points were defined in the spage2vec analysis, in contrast 

to the 12 cell types defined from scRNA-seq data and 

assigned in situ via probabilistic cell typing in Asp et al. 

Most of these additional spage2vec clusters capture a 

previously undescribed diversity within cardiomyocytes 

(Supplementary figure 4A), while other cell types such 

as endothelial cells or fibroblast-like cells present a one-

to-one correspondence. This is also observed when 

comparing the expression signatures of the spage2vec 

clusters and the cell types described in the single cell RNA 

sequencing dataset from Asp et al. (Supplementary 

figure 4B). Regarding the spatial location of the clusters, 

both methods agreed on the location of some clusters 

such as epicardial cells and, to a lesser extent, capillary 

endothelial cells.  However, significant differences were 

observed when comparing the location of some cell types. 

This is the case of the clusters with a fibroblast-like 

expression signature, where spage2vec clusters present a 

more specific spatial distribution through the tissue in 

accordance with the previously known location of each of 

the cell types analyzed and in contrast with the sparser 

location identified by pciSeq (Supplementary figure 

4C).  

One of the main concerns of our approach was whether 

samples with a higher number of cells could be driving the 

clustering results of the rest of the samples, leading to a 

misclassification of the cells in the smaller tissue samples. 

To explore the consistency of the spage2vec clusters 

found, individual clustering was performed separately on 

each of the time points (Methods). A total of 94 clusters 

were found, including 34 in pcw 4.5-5 and 30 both in pcw 

6.5 and pcw 9 (Figure 2). Despite small differences, the 

clusters found in the different time points present a 

similar distribution in spage2vec latent space for all three 

time points (Supplementary figure 5A). In addition, 

most clusters found in specific time points recapitulated 

molecular and spatial signatures found when analyzing all 

time points together (Supplementary figure 5B). The 

clear correspondence between both analyses proves that 

the diversity found at different time points was not driven 

by any of the samples individually (Supplementary 

figure 6).  

One surprising aspects of the spage2vec de novo analysis 

is its ability to resolve the cellular heterogeneity at a 

higher resolution compared to the scRNA-seq data driven 

analyses, finding a larger number of clusters, that appear 

to make sense since they show distinct and consistent 

spatial distribution across the different samples. This may 

suggest that the spatial organization of biological markers 

contains essential information for resolving spatial 

cellular heterogeneity that is masked in scRNA-seq 

analyses. In order to assess whether traces of this 

spatially defined diversity could also be found in the 

scRNA-seq dataset, the molecular signatures from the 

intermediate time point samples (pcw 6.5) and its 

corresponding scRNA-seq dataset were integrated using 

SpaGE14 (Method). Correspondence between individual 

scRNA-seq cells and the different spage2vec clusters 

defined in pcw 6.5 is shown in Figure 2B. Several 

molecular signatures defined by spage2vec matched 

specific subpopulations in the single cell dataset, 

including cardiomyocytes and endocardial cells. With the 

aim of characterizing these subpopulations, which 

presented clear spatial locations in the tissue 

(Supplementary Figure 8), we identified their most 

differentially expressed genes (Figure 3A, 

Supplementary Figure 7) and assessed their gene 

ontology (GO) characteristics using scRNA-seq 
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(Methods). With this, we identified two specific 

endocardial subpopulations: one located in the atria and 

the other one in the ventricles (Figure 3B). Although they 

show very distinct spatial localization, we did not find 

notable differences in the expression of differentially 

expressed genes, and both show enrichment in GO terms 

Figure 3: Exploration of new clusters identified within cardiomyocytes and endothelial cells. A. Dotplot representing 
the expression of the 4 most differentially expressed genes of each of the clusters related with endothelial cells (cluster 14 
and 17), atrial (cluster 1,2 and 7) and ventricular (cluster 4, 8 and 15) cardiomyocytes. Expression is shown in the 
endothelial and cardiomyocyte related clusters linked to specific populations within the scRNA-seq dataset from Asp.et 
al.10 B. Spatial maps highlighting the reads assigned to the clusters related with endothelial cells and cardiomyocytes 
(right), with gene ontology enrichment of biological processes for top 15 most differentially expressed genes of each cluster 
(left). Color codes as in A. 
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involved in cardiovascular morphogenesis and 

development (Fig. 3A, C).  

High diversity was also found within cardiomyocytes, 

where three different populations were described within 

atrial cardiomyocytes and a total of five populations were 

found within ventricular cardiomyocytes, three of them 

having supporting scRNA-seq data (Figure 2B). 

Moreover, spage2vec clusters present a better-defined 

region-specific location compared to analogous pciSeq 

cell-type maps in Asp et al., where some atrial cells are 

misplaced in the ventricles and vice versa 

(Supplementary Figure 4D). 

Within ventricular cardiomyocytes, the five different 

spage2vec clusters defined presented unique expression 

patterns and spatial distributions from the periphery to 

the interior of the heart. However, not all the clusters 

were aligned with corresponding cell subpopulations 

from scRNA-seq data integration (Method). While 

clusters 4, 8 and 15 aligned within both ventricular and 

MYOZ2-enriched cardiomyocytes, cluster 16 and 24 

presented a very weak alignment within the cell 

population sampled for scRNA-seq (Figure 2B). Clusters 

aligning with specific cell subpopulations were further 

characterized (Figure 3D, E). Cluster 4 had a location 

within the ventricular wall, was found to have a high 

expression of MYH7 and presented characteristics of 

trabecular myocardium while cluster 8 had an outer 

location and also had a strong expression of MYH7 

consonant with outer, compact myocardium (Figure 3A). 

Both cell types had GO characteristics of contracting 

ventricular muscle although these GO terms were more 

pronounced for trabecular myocardium. Cluster 15, 

which was smaller in size, expressed genes and GO 

characteristics of cell division and was preferentially 

located diffusively in the outer compact myocardium. 

These cells may thus be cardiomyoblasts participating in 

the consolidation of the compact myocardium. 

Regarding atrial cardiomyocytes, the three clusters 

identified were found to have a different location (Figure 

3F) and their specific markers were associated with 

distinct biological processes as suggested by Gene 

Ontology analysis (Figure 3G). Cluster 1 was located 

mainly in the periphery of the atria and has GO 

characteristics of appendage formation while cluster 2 

partly had a more central location and also expressed GO 

characteristics of cardiac conduction. Whereas cluster 7 

was localized in the cranial and caudal part of the atria 

and had GO characteristics of morphogenesis and 

epithelial to mesenchymal transition. These spatial and 

GO characteristics are in keeping with the formation of 

the atrial septum that occurs at this stage of development.  

Apart from the diversity found within cardiomyocytes, 

one of the most remarkable aspects of the analysis was 

the identification of different very thin sub-epicardial 

mesenchymal cell layers in the time point-specific 

analysis of pcw 6.5, possibly originating from epithelium 

via epithelial–mesenchymal transition (EMT)15,16.  We 

described the expression signature of these clusters using 

diffusion maps and pseudotime analysis (Figure 4A, B). 

The diffusion map suggests different differentiation 

processes involving the different mesenchymal clusters. 

By setting the root in epicardial cells (cluster 18), we 

identified two main branches in the pseudotime analysis, 

which could be indicating two differentiation paths 

involving epicardial cells: one involving the 

differentiation of epicardial cells into epicardial derived 

cells and fibroblasts (i.e., cluster 18-21-26-9-12-10) and a 

second one involving the possible differentiation of 

epicardial cells into atrial cardiomyocytes (i.e., cluster 18-

11-1-2-7) (Figure 4A, C). An additional branch connects 

epicardial derived cells to atrial cardiomyocytes (i.e., 

cluster 12-27-7-2-1), suggesting that EPDC undergo 

mesenchymal transition and differentiate into 

cardiomyocytes17,18. By mapping both the spage2vec 

identities and the pseudotime scores of these branches 

into the tissue we observed that the pseudotime 

described has a clear spatial component, matching with 

gradient from the periphery to the interior of the heart in 

the developing atria (Figure 4D). GO analysis of clusters 

presenting enough supporting scRNA-seq cells show 

terms enriched for EMT and atrial morphogenesis 

(Figure 4E). 

DISCUSSION 

The improvement of targeted spatially resolved 

transcriptomic approaches 19,20 in terms of signal-to-noise 

ratio, sequencing depth, number of genes and number of 

cells analyzed is leading towards the generation of larger 

datasets that will enable more and more comprehensive 

data driven spatial analysis. So far, methods such as ISS 

have primarily been a useful complement to scRNA-seq 

strategies by uncovering the spatial location of scRNA-seq 

defined cell populations. However, spatial molecular 

organization in itself presents intrinsic critical 

information of the cellular heterogeneity that is not 

captured by non-spatial methods, thus de novo 

approaches that do not rely on previous knowledge are 

starting to gain relevance in the field due to their notable 

advantages13,21. In this study, thanks to one of these de 

novo approaches, spage2vec13, we have been able to 

define 27 molecular signatures conserved during the 

developmental process of the heart based solely on the 

spatial location of the expressed molecules of 69 targeted 

genes.  
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In contrast with the original study10, where cell typing 

was constrained by availability of scRNA-seq data, our 

approach is able to define, in a spatiotemporal manner, 

different molecular signatures conserved through the 

different time points analyzed during the heart 

development.  Our analysis showed to be especially 

relevant for capturing stable cell populations conserved 

through the developmental process, such as epicardial 

cells, and could be used for understanding biological 

processes like migration and differentiation. Supervised 

cell typing approaches11,22,23 will force the ISS data to fit 

signatures designed from scRNA-seq, with the risk of 

introducing biases and losing part of the potential 

biological information available in the ISS data. 

Furthermore, supervised approaches may fail to assign 

cells to a cell type due to discrepancies between the 

detected molecular signatures and the scRNA-seq data. As 

a consequence, while de novo approaches such as 

spage2vec assign a molecular signature to each read 

analyzed, probabilistic cell typing approaches avoid 

assigning a signature to many of the reads analyzed, 

missing in some cases molecular patterns with a true 

biological implication.  

Moreover, unlike most existing cell typing strategies, 

spage2vec does not rely on cell segmentation. This aspect 

is highly beneficial when working with compact tissue, 

where cell borders are difficult to define. Spage2vec 

directly clusters the mRNA reads based on their local 

environment, and neighborhood information is 

incorporated in the process. Therefore, it is possible to 

discern populations that are similar in gene expression 

but have distinct spatial contexts in the tissue. In order to 

capture spatial signatures at cellular resolution, 

spage2vec aggregates local information from 

neighborhoods within a radius of 14.59 μm, which is a 

reasonable inter-cell distance, although the detected 

spatial clusters can represent cellular and even 

subcellular gene expression patterns. Since the method is 

completely unsupervised, super-cellular or sub-cellular 

patterns may also be captured depending on multiple 

factors that are related to the gene panel selected, 

sequencing resolution, and local differences in cell 

density. 

For its unsupervised analysis, spage2vec depends on a 

targeted ISS gene panel. In this case, the genes were 

selected at an early stage of the Asp work10, based on 

scRNA-seq and Spatial Transcriptomics data. Despite the 

clear limitation of using a subset of markers for 

identifying clusters de novo, we have shown that 

leveraging deep learning representation power, 

spage2vec can also identify subpopulations through non-

linear aggregation of spatial marker features, even 

without marker genes that can directly identify all cell 

populations. This is demonstrated by the identification of 

distinct atrial and ventricular subclusters with discrete 

GO characteristics. Another important cluster identified 

in spage2vec is the endocardial cluster that in Asp et al.10 

was not subclustered out of the large scRNA-seq cluster 

comprising endothelial cells.  

Apart from its ability to capture specific subpopulations, 

here we prove that spage2vec can be used to describe 

differentiation processes, including its spatial component. 

In this manuscript we report two main trajectories 

involving epicardial cells in atrial development. In fact, 

this observation is supported by Singh et al. 201324, 

Greulich et al. 201125, Cai et al. 200817 and Zhou et al. 

200818, who report that at the atrial level epicardial cells 

flow into the atrial myocardial wall of venous origin and 

through epithelial-to-mesenchymal transition 

differentiate into arterial endothelium, smooth muscle 

and perivascular fibroblasts and may contribute to 

myocardialization of the atrial wall.  

All in all, by applying spage2vec to study the human heart 

development we have been able to perform a 

spatiotemporal analysis of the cells found in post 

conception week 4.5-5, 6.5 and 9, identifying different 

molecular signatures within cardiomyocytes as well as an 

atrial subepicardial cell type previously unreported. This 

study shows the advantages of using de novo strategies 

that do not rely on cell segmentation and scRNA-seq to 

characterize developmental processes and opens the 

possibility of applying this approach to similar biological 

systems where reference single cell RNA sequencing data 

may be limited or not available.  

Figure 4. Description of the differentiation of epicardial cells in the human heart development. A,B. Diffusion map of 
pseudo-cell expression profiles defined in pcw 6.5 (Methods) and assigned to clusters related with epicardial cells, 
ventricular cardiomyocytes, epicardium-derived cells and fibroblasts. Each spot is labelled in A according to the cluster it 
was assigned to in Figure 2A. In B, the color of each spot represents its pseudotime score, considering the root in cluster 18 
(epicardial cells). Two main branches can be observed. Pseudotime scores above 0.5 were trimmed for visualization 
purposes C. Spatial map highlighting the spots assigned to the clusters present in Figure 4A in one of the two sections from 
pcw 6.5. D. Spatial map representing the pseudotime scores of each of the spots described in Figure 4B in one of the sections 
from pcw 6.5 and a region of interest present in the same tissue. Clusters were represented in two different plots, depending 
on whether they were situated in Branch 1 (top) or Branch 2 (bottom) according to Figure 4A-B. E. Dot plot showing 
enrichment of Gene Ontology biological processes for top 15 most differentially expressed genes in the clusters represented 
in Figure 4A. 
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METHODS 

Data and code availability. All the code used to perform 
spage2vec on the developing human heart ISS data can be 
found in the following site:  

 https://github.com/wahlby-lab/spage2vec_heart.  

An online TissUUmaps26 viewer for interactive 
exploration of the analysis results can be found in:  

https://tissuumaps.research.it.uu.se/human_heart.h
tml. All the data generated in this study can be 
downloaded from the TissUUmaps viewer for further 
exploration.  

Datasets. The ISS dataset of the developing human heart 
10 comprises gene expression information of 69 marker 
genes and decoded spatial coordinates of mRNA spots in 
eight tissue sections at three developmental time points 
(Figure 1A). There are 189541, 812808, and 1471602 
mRNA reads at the three time points respectively, 
summing up to a total of 2473951 reads.  

Spatiotemporal representation of ISS gene 
expression data with spage2vec. Spage2vec13  learns to 
map local neighborhood relationships between mRNA 
spots as distances in a continuous latent space using a 
deep learning model. As a result, a numerical vector is 
assigned to each individual mRNA spot describing its 
neighborhood composition. Therefore, molecules that 
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share similar local environments are described with 
numerically similar vectors and consequently mapped in 
close proximity in the learnt latent space. In such a way, 
we are able to build a spatiotemporal representation of 
the spatial gene expression in an unsupervised manner 
and without using any prior information. The learnt 
representation is then used to perform clustering analysis 
in order to define localized gene expression signatures 
that represent cell-type signatures across the three 
embryonic stages. 

Constructing a spatial gene expression graph. We first 
construct a graph where each node represents an mRNA 
spot, with a one-hot encoding feature vector representing 
its corresponding gene. Each node is then connected by 
edges to its spatial local neighbors of the same tissue 
section within a maximum distance (d_max = 44.9 pixels/ 
14.58 μm). We estimate the maximum distance such that 
99% of nodes in the graph are connected to at least one 
neighbor. Connected components with less than six nodes 
are successively removed from the graph in order to 
exclude spurious reads such as spots located outside of 
the region of the heart sample, thus leaving 97.7% of the 
original mRNA reads for further processing. 

Graph neural network model and training. We train 
then a graph neural network on the spatial gene 
expression graph to produce the spage2vec latent 
representation for each mRNA spot. The neural network 
consists of two GraphSAGE27 layers. At each layer, the 
features of a node and its local neighborhood are 
aggregated and propagated to the next layer. The neural 
network learns its parameters in an unsupervised setting 
by minimizing a loss function based on random walks. 
The loss function of a node encourages similarity between 
the node and a direct neighbor that occurs in a random 
walk, and dissimilarity between the node and another 
node randomly sampled from the graph. Regarding the 
hyperparameters of the model, we use the mean 
aggregator at each layer and ReLU as activation function 
for the first layer. The size of each layer is 32. The model 
is trained for 10 epochs with a batch size equal to 64, 
using Adam optimizer28 with a learning rate equal to 
0.001. The output for each mRNA spot is then a spage2vec 
latent vector of length 32. 

Cluster analysis and visualization. After predicting a 
latent vector for each mRNA spot based on its 
neighborhood composition, we compute a kNN (k = 15) 
weighted graph of the spage2vec latent vectors and apply 

the Leiden clustering algorithm29  (with clustering 
resolution r=1) on the kNN-graph. We then use PAGA30  to 
quantify the connectivity of acquired clusters, which 
represents the proximity of the clusters in the latent 
space. Each cluster with less than 1000 nodes is merged 
into the closer larger cluster in the PAGA graph having the 
maximum connectivity to the smaller cluster, if the 
connectivity was greater than 0.1. Otherwise, they are 
considered outliers and filtered out. After merging and 
filtering out the small clusters, we count the number of 
spots per cluster per gene followed by cluster-wise Z-
score normalization to create a cluster expression matrix. 
This led to the final set of spage2vec clusters, which can 
be visualized interactively using TissUUmaps26.   

Spage2vec and scRNA-seq data integration. We 
perform data integration between spage2vec clusters of 
individual analysis of pcw 6.5 ISS data and the 
corresponding scRNA-seq data from Asp et al. Specifically, 
we first log-normalize scRNA-seq total counts per cell. 
Then, we generate pseudo-cell gene expression profiles 
for each mRNA spot by aggregating its k-nearest neighbor 
(k=100) in the spage2vec latent space. Next, we filter 
genes with less than 100 reads and log-normalize total 
counts per pseudo-cell. We thereafter integrate pseudo-
cell and scRNA-seq gene expression profiles using 
SpaGE14. The two datasets are aligned by projecting them 
in a common latent space by domain adaptation31 using 
30 principal vectors. After alignment, we can either infer 
the spatial profile of genes that are missing from the 
original ISS gene panel, or vice versa assign scRNA-seq 
cells to spage2vec clusters by k-nearest neighbor 
imputation. 

Specifically, for each scRNA-seq cell we compute a cosine 
similarity in the common latent space with respect to all 
the k-th (k=15) nearest neighbor pseudo-cells, and we 
define correspondence with a spage2vec cluster as the 
sum of all cosine similarities with respect to those 
pseudo-cells belonging to the given spage2vec cluster. We 
then exclude scRNA-seq cells with low correspondence to 
spage2vec clusters (i.e. maximum cosine similarity 
smaller than 0.3), and we assign each scRNA-seq cell to 
the spage2vec cluster with highest cosine similarity. 
Spage2vec clusters with less than 10 scRNA-seq cells 
assigned are marked as weakly aligned as they miss 
enough supporting scRNA-seq cells and thus are excluded 
from further analyses. 
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