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o Abstract: The gut microbiome is spatially heterogeneous, with environmental niches con-
10 tributing to the distribution and composition of microbial populations. A recently developed
un  mapping technology, MaPS-seq, aims to characterize the spatial organization of the gut mi-
12 crobiome by providing data about local microbial populations. However, information about
13 the global arrangement of these populations is lost by MaPS-seq. To address this, we pro-
1. pose a class of Gaussian Mixture Models (GMM) with spatial dependencies between mixture
15 components in order to computationally recover the relative spatial arrangement of micro-
16 bial communities. We demonstrate on synthetic data that our spatial models can identify
17 global spatial dynamics, accurately cluster data, and improve parameter inference over a
18 naive GMM. We applied our model to three MaPS-Seq datasets taken from varying regions
19 of the mouse intestine. On cecal and distal colon datasets, we find our model accurately
2 recapitulates known spatial behaviors of the gut microbiome, including compositional dif-
a1 ferences between mucus and lumen-associated populations. Our model also seem to capture
2 the role of a pH gradient on microbial populations in the mouse ileum and proposes new
23 behaviors as well.

» Importance: The spatial arrangement of the microbes in the gut microbiome is a defin-
»s ing characteristic of its behavior. Various experimental studies have attempted to provide
% glimpses into the mechanisms that contribute to microbial arrangements. However, many of
o7 these descriptions are qualitative. We developed a computational method that takes micro-
s bial spatial data and learns many of the experimentally validated spatial factors. We can
2 then use our model to propose previously unknown spatial behaviors. Our results demon-
s strate that the gut microbiome, while exceptionally large, has predictable spatial patterns
a1 that can be used to help us understand its role in health and disease.

» Code availability: github.com/amepas/Spatial_Mbiome
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s 1 Introduction

s A defining characteristic of the gut microbiome community is its spatial structure. Nu-
w trients and chemical conditions differ along the gastrointestinal (GI) tract, impacting the
s distribution of taxa that reside there (1, 2). This spatial arrangement of microbes within
3 the gut microbiome likely contributes to major aspects of its dynamic behavior, including
w0 community stability and host-microbe interactions (3, 4).

n Recently, a novel DNA technology, Metagenomic Plot Sampling by sequencing (MaPS-
2 seq), was developed to offer insights into the spatial organization of the gut microbiome
i (5). In MaPS-seq, high-resolution segments (~ 20um squares) are extracted directly from
s along the gut. Segments are encapsulated in droplets with barcoded 16S rRNA amplification
s primers, such that sequencing reads with the same barcode originate from the same segment.
s Hence, MaPS-seq preserves localized information about the spatial structure of the micro-
s biome, and is a valuable tool for investigating the biogeography of the gut microbiome. Yet,
s the assignment of barcodes to droplets is a random process: MaPS-seq does not preserve the
s global arrangement of droplets along the gut.

50 Known characteristics of the biogeography of the gut microbiome suggest it may be possi-
s1 ble to reconstruct the global arrangement of MaPS-seq droplets. For example, antimicrobial
s peptides, oxygen levels, and acidity vary along the length of the small intestine. Conse-
53 quently, bacterial loads increase along the longitudinal axis of the small intestine and lead to
s« a more microbe-rich ileum (2). In the colon, the density of the mucus layer increases along
s its longitudinal and cross-sectional axes—creating environmental niches favored by different
ss species (1). In principle, it should be possible to reconstruct some of these global patterns
sz from the high-resolution sampling of MaPS-seq.

s 1.1 QOur contribution

5o We developed a class of computational models to recover known characteristics of the bio-
s geography of the gut microbiome from MaPS-seq data. Our models build upon the classical
o Gaussian Mixture Model (GMM, Figure 1). In a GMM, observations are mixtures of latent
&2 clusters, each of which is modeled as a multidimensional Gaussian random variable, inde-
&3 pendent of the others and with its own mean. We expand this framework by introducing
s+« spatial dependence between latent clusters. Specifically, clusters are arranged as a line (one-
s dimensional model) or grid (two-dimensional model) to investigate directional changes along
s the longitudinal axis only, or, respectively, both the longitudinal and radial axes of the gut.
67 A key question is whether our model can differentiate longitudinal from radial changes
¢ in the gut. We demonstrate on synthetic data that our model is capable of discriminating
s between one-dimensional and two-dimensional models. We apply our model to MaPS-seq
70 mouse ileum, cecal, and distal colon datasets. We provide strong evidence for the presence
7 of spatial structures across all datasets, with distinct regional characteristics. We show that
72 our proposed model recovers known biological behaviors of microbes within the GI tract
7z while also providing new insights into the spatial structure of the gut microbiome.
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Figure 1: Schematic Overview of directional Gaussian mixture model. Given ob-
served compositions from each barcode, the model simultaneously learns the community
composition of each latent cluster (u;), and the assignment of each barcode to a latent
cluster.
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Figure 2: Directional GMMs accurately select number of latent clusters and infer
model parameters. (A) Heatmap showing the accuracy of the selected model on various
simulated datasets with |[A| = |A| = 5 and within-cluster standard deviation of 1 (B)
|A| = |AL| =1, keeping the same standard deviation (C) RMSE of learned cluster means on
datasets with correct model selection. On all datasets, the directional GMMs are significantly
improving parameter inference

+~ 2 Results

s 2.1 Simulation Results

7 We first evaluated whether our model can differentiate between one- and two-dimensional
77 dynamics using simulated data. We simulated data under the one- and two-dimensional
s models (Methods 4.4), and asked if we could infer the number of latent clusters and their
79 spatial arrangement. Using the Akaike Information Criterion (AIC), we found that our
so directional GMM is able to correctly determine the correct number of clusters (Figure 2A:B).
&1 Furthermore, the introduction of a dependence between latent clusters in the model also
&2 improved parameter inference compared to a naive GMM with no spatial structure (Figure
g3 2C). For all dataset forms, the Wilcoxon signed-rank test p-value was less than 0.001.

=« 2.2 Spatial Structure of MaPS-Seq Data

ss We applied our directional GMM to three real MaPS-seq datasets from Sheth et al. (5)
ss (Methods 4.5). The provided MaPS-seq data contains samples from 3 regions of a single
&z mouse’s GI tract: the cecum (n = 405 barcodes), the ileum (n = 386 barcodes), and
s the distal colon (n = 259 barcodes). On the Cecum and Distal Colon datasets, the best
o supported models were two-dimensional (4 x 2 and 3 x 2 respectively). On the Ileum dataset,
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Figure 3: Projections of MaPS-Seq Data. (A) Distal Colon dataset. The selected model
and MaPS-Seq data projected along the unit A and A, axes. Colors correspond to samples
belonging to a latent cluster. Ellipse radii represent the eigenvectors of the covariance matrix.
(B) Cecum dataset. (C) Ileum dataset. Selected model and MaPS-Seq data projected along
the unit A axis. Normal distribution represent density of covariance matrices around each
cluster mean.
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AIC Selections
Dataset One-Dimension Two-Dimension AIC,give — AICstructure
Score Mixture Model | Score | Mixture Model
Tleum —37493 5x1 -37340 3x2 954
Cecum 32714 8x1 31930 4x2 3832
Distal Colon 6636 6x1 5588 3x2 1168

Table 1: AIC shows strong evidence for spatial structure across the GI tract. (A)
Best directional mixture model and its corresponding AIC score. Scores in bold indicate
selected model. Comparison of directional GMMs to naive GMM by AIC metric show
introduction of dependence between latent clusters significantly improves model fit. Full
relative likelihoods calculated using AIC scores between models are also shown (Methods
4.3).
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Figure 4: Directional GMM recovers spatial dynamics in the distal colon (A) Se-
lected model and corresponding locations of clusters in the distal colon (B) Scatter plot
of projected MaPS-seq samples assigned to lumen-associated clusters (red) and mucus-
associated clusters (blue). (C) Clusters associated with the mucus are enriched in Firmicutes
and those associated with the lumen display larger levels of Bacteroidetes.

o the best supported model was a one-dimensional model with 5 clusters (5 x 1). Using the
o model parameters from the best supported model on each dataset, we created one- and
» two-dimensional visualizations depicting the directions learned by our model (Figure 3).
o3 Qualitatively, our model appeared to segregate barcodes into distinct clusters along the gut.
o We also compared the support the selected directional model GMM to a naive GMM with
s no spatial structure. To compare models, we computed the AIC scores of our directional
o models to a naive GMM with the same number of latent clusters (Table 1). The naive
o7 GMMs have much larger AIC scores than the directional GMMs. Conventionally, models
e with scores that are larger by 10 or more are considered to have little support (6).

» 2.3 Recovery of GI Tract Biogeography

w0 We also investigated learned model parameters for correspondence to some of the known
w1 spatial dynamics of the gut microbiome. Figure 4 illustrates the recovered dynamics on the
12 Distal Colon dataset. Under the partition presented in Figure 4, we observe large differences
03 in the average compositions of Firmicutes and Bacteroidetes between lumen- and mucus-
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Figure 5: Directional GMM recovers spatial dynamics in the cecum (A) Selected
model and corresponding locations of latent clusters in the cecum. (B) Scatter plot of
projected MaPS-seq samples assigned to cecal tip-associated clusters (blue) and cecal base-
associated clusters (red). (C) Clusters associated with the cecal tip have lower relative
abundances of Bacteroidetes and higher relative abundances of Actinobacteria than the cecal
base. (D) Selected model and correspoding locations of mixtures in the cecum. (E) Scatter
plot of projected MaPS-seq samples assigned to cecal crypt-associated clusters (brown) and
cecal lumen-associated clusters (pink). (F) Firmicutes are enriched in the lumen clusters
compared to the crypt clusters.
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Figure 6: Projected and observed Ileum dynamics (A) Projected compositions moving
along A axis (B) Observed compositions in learned model clusters. Green bars correspond
to observed families in the Firmicutes phylum and gray correspond to other observed phyla

associated clusters.

On the Cecum dataset, we observed compositional differences along both axes. Figure
4A:C shows a cecal tip and base partition that has a noticeable compositional difference in
the abundances of Actinobacteria and Bacteroidetes. The clusters on the two ends of the
model have differences in the abundances of Firmicutes that correspond to the cecal crypt
and lumen (Figure 5D : F).

On the Ileum dataset, we compared microbial population relative abundances across
each latent cluster. Along the length of the ileum, we observed a general decreasing trend in
Lactobacillaceae and increases in both Ruminococcaceae and Lachnospiraceae (Figure 6B).
Our model’s choice of A seems to capture some of these dynamics. Moving along the A axis
shows decreases in Lactobacillaceae and increases in Lachnospiraceae (Figure 6A). Some
discrepancy is observed, most noticeably with the behavior of Actinobacteria.

3 Discussion

Novel experimental methods focused on the gut microbiome’s spatial organization have pro-
vided new datasets for computational analysis. Here, we developed directional GMMs with
dependent mixtures to infer spatial behaviors of phyla within the gut microbiome. We
demonstrated the accuracy of the proposed directional GMMs on simulated data in terms of
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121 ability to infer model parameters, and to differentiate one-dimensional from two-dimensional
122 spatial structure. On MaPS-seq data, we demonstrated the presence of spatial structure in
123 distinct regions of the mouse GI tract. Encouragingly, our model recapitulated well known
124 spatial phenomena on the Distal Colon and Cecum datasets.

125 In the distal colon, it has been shown that Bacteroidetes is enriched in the lumen, while
s Firmicutes are enriched in the mucus layer and crypts (2, 1). We observe these compositional
17 differences, suggesting that our model is recovering the radial dynamics of the distal colon.
128 The presence of four distinct clusters representing the mucus layer is not surprising because
10 mucosal communities vary significantly over lengths as small as lem (7).

130 In the Cecum dataset, correspondence with other in vivo experiments suggest that we
1 recover dynamics in both the radial and longitudinal directions (Figures 5A:F). Zaborin et
132 al. (8) suggested that in the mouse cecum, Bacteroidetes increases in relative abundance
133 from the cecal tip to base. It should be noted that in their experiment, this trend did not
134 reach statistical significance. Our model seems to identify this compositional difference, in
135 addition to a distinction in the relative abundances of Actinobacteria (Figure 5A:C). Zaborin
13 et al. (8) did find a statistically significant difference between the levels of Firmicutes in the
17 lumen compared to cecal crypts. We observe a similar difference at the two ends of our
133 model (Figure 5D:F).

139 Within the ileum, we select a model with only a single direction of change. There is evi-
1o dence that our choice of model is biologically accurate: unlike in the cecum and distal colon,
11 the small intestine mucus layer is largely uninhabited due to the presence of antimicrobial
12 peptides (9). However, along the length of the small intestine, oxygen concentrations and pH
13 gradients vary (2). Among the learned clusters, we observe a stark decrease in the relative
e abundance of Lactobacillaceae (6). Along the flow of the digesta, the ileum becomes more
us alkaline. Because Lactobacillaceae are known to contribute to highly acidic environments, it
us is unsurprising that we observe this compositional differences along the length of the ileum.
w7 The pH gradient seems to be embedded in the A our model learns: cluster means along
us the A axis show a decrease in Lactobacillaceae similar to the observed compositions. The
us  presence of discrepancies on phyla like Actinobacteria suggest that there potentially exist
150 other sources of microbial dynamics in the ileum as well. To our knowledge, there are not
151 any experimental studies that describe the microbiome’s spatial dynamics within the ileum.
152 This demonstrates the utility of our model: not only can we computationally confirm known
153 aspects of the gut biogeography, but we can also propose new microbial spatial behaviors.
154 A limitation of the present approach is the resolution of the resulting clusters. Our direc-
155 tional GMM was able to capture global spatial patterns in the gut microbiome. Specifically,
156 given that MaPS-seq samples are approximately 20 pm apart, the clusters from the best
157 supported models on the Ileum, Distal Colon, and Cecum datasets correspond to approx-
1583 imately 1 cm regions. It would be interesting to investigate if a finer resolution change
159 be achieved. Future work should focus on investigating this possibility of high-resolution
1o mapping of MaPS-seq samples.

161 A valuable next step would be designing MaPS-seq experiments with ground truth labels
12 denoting spatial locations. With coarse-grained labels from various adjacent segments of the
13 GI tract, we could better confirm our model’s ability to identify the microbiome’s spatial
14 structure, and also the spatial scale recovered by the model. Nonetheless, the present work
s provides strong evidence that global spatial patterns can be reconstructed from MaPS-seq

10
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Figure 7: A directional Gaussian mixture model (A) Graphical depiction of rela-
tionships between latent clusters in a one-dimensional model. (B) Relationships in a two-
dimensional model, where changes from left-to-right are described by A and perpendicular
changes are described by A ;. (C) GMM used to model sampling noise of observed samples
Zp. p; represent latent clusters with relationships given in (A) and (B).

16 data that will only be improved with more detailed collection.

« 4 Methods

e 4.1 Directional Gaussian Mixture Models

1o Our approach uses a Bayesian network to describe the relationship of spatially arranged
o clusters in the gut (Figure 7A-B). In detail, given a spatial configuration, the goal is to
i simultaneously learn community states for each latent cluster and assign barcoded MaPS-
12 seq droplets to a cluster (Figure 1). The nodes of the Bayesian network, {us|s € S}, represent
173 composition vectors of archetypal communities in respective clusters.

174 In the present work, we are interested in changes along one- or two-dimensions. Studies
s suggest the presence of two natural directions in the gut microbiome (1). One dimension
e moves along the flow of the digesta, while the other moves orthogonally along the radial axis
177 (inward out).

178 This motivates the following definition for our model. We define a one dimensional model
s where § = {i|1 < i < K} for K latent clusters (Figure TA). Let A represent directional
1o changes between adjacent community compositions.

181 We can define

f() = N (1] fro, Qo)
fluilpior) = N (pilpior + A, Q) for i = 2. K

12 We also define a two-dimensional model where S = {(i,7)|1 <i < K,1 < j < 2} for 2K
13 latent clusters (Figure 7B). Let A, represent the direction along the second dimension, such

11
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that A - A, =0. We define

f(par) = N (paa|fio, Qo)
fQuilpa-1y) = N(Mu’/ﬂ(iq) +A,Q) fori=2.K
fp21) = N(par|pan + A1, Q)
1 .
fpailpis pagi-1y) = (,u% 5 (,uu + pag—1) + A+ AL) ,Q) fori=2.K

MaPS-seq outputs read counts for each of the operational taxonomic units (OTUs) in each
barcoded droplet. However, the total number of reads is independent of overall community
size. Therefore, the sequencing counts only provide information about the proportions of
each OTU in the community. Recent work has advocated using such compositional data
transformations to model microbiome data (10). We transformed read counts to relative
abundances, and then applied the PhILR transformation: an isometric log-transform (ILR)
with a phylogenetically derived basis (11). Each coordinate for the PhILR transformed data
measures the relative proportions of two clades in a phylogeny. Phylogenetic trees were
generated using QIIME (12), and provided as input to the PhILR R package. Given D taxa,
the latent community states are D — 1 dimensional vectors i, € RP~!. Zeros are handled
using multiplicative replacement with § = 1/D? for D-taxa (13).

The reads in a particular barcoded droplet provide noisy observations from a latent cluster
(Figure 7C). Thus, we can think of the data generation process as first selecting a latent
community state per barcode, then generating a noisy observation from that community
state. Let B index the set of barcodes, x, € RP~! for b € B be PhILR computed from
the observed sequencing reads for that barcode, and s = (7s)ses be the probability that a
barcode originated from each cluster s € §. Let ps be the set of direct ancestors of us. We
have

p(z) = Categorical(z|7s)
P(%’Zb, Mzb) = ./\/(xbmzbZzb) = H W(%Ius, Zs)]]l(zb:s)

seS

Altogether, the complete likelihood of the model can be written

plps, 2, x8) = [ [ F(mslpo.) T ] p(xol2n, 2y )p(21)

seS beB
— H f(ﬂs‘ups) HH [p(xb\zb = s, Ms)p(zb — S)]ﬂ(zb:s)
s€S beB seS

4.2 Parameter Inference

In both models, we seek to optimize p(us, zg, z5|0) where 0 = (s, Xs, As, @, Qo, fo). This
optimization is performed through an Expectation-Maximization (EM) algorithm. Under
this algorithm, parameters are inferred by alternating between two steps:

e E step: Given the current estimates of community states pk, model parameters 6",
compute the posterior expectation of each cluster assignment: E[1(z, = s)|uk, 6]
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210 e M step: Maximize the expected complete log-likelihood log p(us, 25, T5):

(5™, 6"") = arg max > log f(palpp.)
S ses

+ Z ZE[R(% = 5)|ps, 0] [log p(xs| 2 = 5, p1s) + log p(2z = )]
beB seS

an Thus we take maximum a posteriori estimates of ps and maximum likelihood estimates
212 of the remaining parameters. Model parameters are initialized using a basic GMM with
213 independent clusters trained on the same data. On simulated data, 20 initializations are
2 used. On real data, 200 are used. Inference terminates following 5 consecutive steps where
25 the expected complete log-likelihood increases by < 10™* of the previous step.

26 4.3 Model Selection

27 The Akaike Information Criterion (AIC) was used to evaluate models:
AIC(k) = —21n(L) + 2px

ns where L denotes the likelihood of the data under the fitted model and pr is the number
210 of parameters for the model k. We used the complete log likelihood as a surrogate for the
220 log likelihood of the data since it is a lower bound. When comparing models with different
21 numbers of latent clusters, we choose the model with the minimum AIC score (6).

222 In the case of models with the same number of latent clusters (i.e. 4 clusters arranged in a
23 line vs. clusters arranged in a 2 by 2 grid), we can directly compare the complete likelihoods
2¢ P(ls, 25, 5) of either model.

25 On both simulated and real data, we test up to 8 clusters for the one and two dimensional
26 models, or until the average community state size is 50 samples, whichever comes first. For
27 the one dimensional model, clusters were arranged in a line from a 2 x 1 model up to an
28 8 X 1 model. For the two dimensional model, clusters were arranged in a grid from a 2 x 2
20 model up to a 4 x 2 model.

x 4.4 Simulation Analysis

2 This is an unsupervised learning problem, so we first evaluated our model on simulated
2 data. To this end, we create simulated datasets under the two proposed models. First we
213 sample two clusters means from a Pareto distribution with o = 1, normalize to the relative
24 abundance space with D = 47 taxa, sort taxa in decreasing order, and then transform to the
235 ILR space. The difference in the ILR space between these two means is defined to be A. The
26 A parameter is then scaled to our desired magnitude. Our method for sampling A allows
237 for larger dynamics to be observed on more abundant taxa. For two-dimensional models, we
28 sample A from a standard multivariate normal distribution and then orthogonalize relative
239 to A. The remaining clusters means are arranged around one of the two original cluster
20 Mmeans as per the two models (arranged in the ILR space in a line or in a grid).
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241 Then, we randomly sample cluster covariance matrices % from an Inverse-Wishart dis-
22 tribution with v = D + 1 and ¥ = %’_‘11. Finally, a total of 360 artifical MaPS-seq samples

23 are drawn evenly and independently from each cluster.

244 We analyzed two aspects of model performance on simulated data: 1) selection of the
s correct number of latent clusters, and 2) parameter estimation accuracy. In order to evaluate
a6 our model selection framework, we train both the one and two directional models with varying
27 amounts of latent clusters on simulated data. We used the aforementioned model selection
2s  criteria to determine the optimal model.

249 Next, the accuracy of our parameter inference is determined by calculating the average
0 RMSE of the learned cluster means. Although our proposed model assigns labels to clusters
1 to reflect their spatial arrangements, other unsupervised clustering algorithms assign arbi-
2 trary labels. Therefore, to compare RMSE of model parameters, we look at our proposed
3 model’s RMSE and the best RMSE of all label permutations of a naive GMM.

= 4.5 MaPS-seq data analysis

s We used the publicly available data from Sheth et al. The Cecum, Ileum, and Distal Colon
6 datasets were each extracted from 3cm segments of their respective regions. MaPS-seq clus-
»7 ters are the same size in all datasets (20 pm). Each sample is a vector of the relative
s abundances of all OTUs. We focused on the most abundant taxa that constitute 95% of all
0 relative abundance across the three datasets. This corresponded to 47 taxa. Relative abun-
%0 dances were then renormalized. Using the provided fasta files, we generated phylogenetic
21 trees in QIIME (12). Data is then transformed using the PhILR R package.
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