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Abstract: The gut microbiome is spatially heterogeneous, with environmental niches con-9

tributing to the distribution and composition of microbial populations. A recently developed10

mapping technology, MaPS-seq, aims to characterize the spatial organization of the gut mi-11

crobiome by providing data about local microbial populations. However, information about12

the global arrangement of these populations is lost by MaPS-seq. To address this, we pro-13

pose a class of Gaussian Mixture Models (GMM) with spatial dependencies between mixture14

components in order to computationally recover the relative spatial arrangement of micro-15

bial communities. We demonstrate on synthetic data that our spatial models can identify16

global spatial dynamics, accurately cluster data, and improve parameter inference over a17

naive GMM. We applied our model to three MaPS-Seq datasets taken from varying regions18

of the mouse intestine. On cecal and distal colon datasets, we find our model accurately19

recapitulates known spatial behaviors of the gut microbiome, including compositional dif-20

ferences between mucus and lumen-associated populations. Our model also seem to capture21

the role of a pH gradient on microbial populations in the mouse ileum and proposes new22

behaviors as well.23

Importance: The spatial arrangement of the microbes in the gut microbiome is a defin-24

ing characteristic of its behavior. Various experimental studies have attempted to provide25

glimpses into the mechanisms that contribute to microbial arrangements. However, many of26

these descriptions are qualitative. We developed a computational method that takes micro-27

bial spatial data and learns many of the experimentally validated spatial factors. We can28

then use our model to propose previously unknown spatial behaviors. Our results demon-29

strate that the gut microbiome, while exceptionally large, has predictable spatial patterns30

that can be used to help us understand its role in health and disease.31

Code availability: github.com/amepas/Spatial_Mbiome32
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1 Introduction35

A defining characteristic of the gut microbiome community is its spatial structure. Nu-36

trients and chemical conditions differ along the gastrointestinal (GI) tract, impacting the37

distribution of taxa that reside there (1, 2). This spatial arrangement of microbes within38

the gut microbiome likely contributes to major aspects of its dynamic behavior, including39

community stability and host-microbe interactions (3, 4).40

Recently, a novel DNA technology, Metagenomic Plot Sampling by sequencing (MaPS-41

seq), was developed to offer insights into the spatial organization of the gut microbiome42

(5). In MaPS-seq, high-resolution segments (∼ 20µm squares) are extracted directly from43

along the gut. Segments are encapsulated in droplets with barcoded 16S rRNA amplification44

primers, such that sequencing reads with the same barcode originate from the same segment.45

Hence, MaPS-seq preserves localized information about the spatial structure of the micro-46

biome, and is a valuable tool for investigating the biogeography of the gut microbiome. Yet,47

the assignment of barcodes to droplets is a random process: MaPS-seq does not preserve the48

global arrangement of droplets along the gut.49

Known characteristics of the biogeography of the gut microbiome suggest it may be possi-50

ble to reconstruct the global arrangement of MaPS-seq droplets. For example, antimicrobial51

peptides, oxygen levels, and acidity vary along the length of the small intestine. Conse-52

quently, bacterial loads increase along the longitudinal axis of the small intestine and lead to53

a more microbe-rich ileum (2). In the colon, the density of the mucus layer increases along54

its longitudinal and cross-sectional axes—creating environmental niches favored by different55

species (1). In principle, it should be possible to reconstruct some of these global patterns56

from the high-resolution sampling of MaPS-seq.57

1.1 Our contribution58

We developed a class of computational models to recover known characteristics of the bio-59

geography of the gut microbiome from MaPS-seq data. Our models build upon the classical60

Gaussian Mixture Model (GMM, Figure 1). In a GMM, observations are mixtures of latent61

clusters, each of which is modeled as a multidimensional Gaussian random variable, inde-62

pendent of the others and with its own mean. We expand this framework by introducing63

spatial dependence between latent clusters. Specifically, clusters are arranged as a line (one-64

dimensional model) or grid (two-dimensional model) to investigate directional changes along65

the longitudinal axis only, or, respectively, both the longitudinal and radial axes of the gut.66

A key question is whether our model can differentiate longitudinal from radial changes67

in the gut. We demonstrate on synthetic data that our model is capable of discriminating68

between one-dimensional and two-dimensional models. We apply our model to MaPS-seq69

mouse ileum, cecal, and distal colon datasets. We provide strong evidence for the presence70

of spatial structures across all datasets, with distinct regional characteristics. We show that71

our proposed model recovers known biological behaviors of microbes within the GI tract72

while also providing new insights into the spatial structure of the gut microbiome.73
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Figure 1: Schematic Overview of directional Gaussian mixture model. Given ob-
served compositions from each barcode, the model simultaneously learns the community
composition of each latent cluster (µi), and the assignment of each barcode to a latent
cluster.
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Figure 2: Directional GMMs accurately select number of latent clusters and infer
model parameters. (A) Heatmap showing the accuracy of the selected model on various
simulated datasets with |∆| = |∆⊥| = 5 and within-cluster standard deviation of 1 (B)
|∆| = |∆⊥| = 1, keeping the same standard deviation (C) RMSE of learned cluster means on
datasets with correct model selection. On all datasets, the directional GMMs are significantly
improving parameter inference

2 Results74

2.1 Simulation Results75

We first evaluated whether our model can differentiate between one- and two-dimensional76

dynamics using simulated data. We simulated data under the one- and two-dimensional77

models (Methods 4.4), and asked if we could infer the number of latent clusters and their78

spatial arrangement. Using the Akaike Information Criterion (AIC), we found that our79

directional GMM is able to correctly determine the correct number of clusters (Figure 2A:B).80

Furthermore, the introduction of a dependence between latent clusters in the model also81

improved parameter inference compared to a naive GMM with no spatial structure (Figure82

2C). For all dataset forms, the Wilcoxon signed-rank test p-value was less than 0.001.83

2.2 Spatial Structure of MaPS-Seq Data84

We applied our directional GMM to three real MaPS-seq datasets from Sheth et al. (5)85

(Methods 4.5). The provided MaPS-seq data contains samples from 3 regions of a single86

mouse’s GI tract: the cecum (n = 405 barcodes), the ileum (n = 386 barcodes), and87

the distal colon (n = 259 barcodes). On the Cecum and Distal Colon datasets, the best88

supported models were two-dimensional (4×2 and 3×2 respectively). On the Ileum dataset,89
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Figure 3: Projections of MaPS-Seq Data. (A) Distal Colon dataset. The selected model
and MaPS-Seq data projected along the unit ∆ and ∆⊥ axes. Colors correspond to samples
belonging to a latent cluster. Ellipse radii represent the eigenvectors of the covariance matrix.
(B) Cecum dataset. (C) Ileum dataset. Selected model and MaPS-Seq data projected along
the unit ∆ axis. Normal distribution represent density of covariance matrices around each
cluster mean.
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AIC Selections
Dataset One-Dimension Two-Dimension AICnaive −AICstructure

Score Mixture Model Score Mixture Model
Ileum −37493 5× 1 -37340 3× 2 954
Cecum 32714 8× 1 31930 4× 2 3832

Distal Colon 6636 6× 1 5588 3× 2 1168

Table 1: AIC shows strong evidence for spatial structure across the GI tract. (A)
Best directional mixture model and its corresponding AIC score. Scores in bold indicate
selected model. Comparison of directional GMMs to naive GMM by AIC metric show
introduction of dependence between latent clusters significantly improves model fit. Full
relative likelihoods calculated using AIC scores between models are also shown (Methods
4.3).
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Figure 4: Directional GMM recovers spatial dynamics in the distal colon (A) Se-
lected model and corresponding locations of clusters in the distal colon (B) Scatter plot
of projected MaPS-seq samples assigned to lumen-associated clusters (red) and mucus-
associated clusters (blue). (C) Clusters associated with the mucus are enriched in Firmicutes
and those associated with the lumen display larger levels of Bacteroidetes.

the best supported model was a one-dimensional model with 5 clusters (5 × 1). Using the90

model parameters from the best supported model on each dataset, we created one- and91

two-dimensional visualizations depicting the directions learned by our model (Figure 3).92

Qualitatively, our model appeared to segregate barcodes into distinct clusters along the gut.93

We also compared the support the selected directional model GMM to a naive GMM with94

no spatial structure. To compare models, we computed the AIC scores of our directional95

models to a naive GMM with the same number of latent clusters (Table 1). The naive96

GMMs have much larger AIC scores than the directional GMMs. Conventionally, models97

with scores that are larger by 10 or more are considered to have little support (6).98

2.3 Recovery of GI Tract Biogeography99

We also investigated learned model parameters for correspondence to some of the known100

spatial dynamics of the gut microbiome. Figure 4 illustrates the recovered dynamics on the101

Distal Colon dataset. Under the partition presented in Figure 4, we observe large differences102

in the average compositions of Firmicutes and Bacteroidetes between lumen- and mucus-103
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Figure 5: Directional GMM recovers spatial dynamics in the cecum (A) Selected
model and corresponding locations of latent clusters in the cecum. (B) Scatter plot of
projected MaPS-seq samples assigned to cecal tip-associated clusters (blue) and cecal base-
associated clusters (red). (C) Clusters associated with the cecal tip have lower relative
abundances of Bacteroidetes and higher relative abundances of Actinobacteria than the cecal
base. (D) Selected model and correspoding locations of mixtures in the cecum. (E) Scatter
plot of projected MaPS-seq samples assigned to cecal crypt-associated clusters (brown) and
cecal lumen-associated clusters (pink). (F) Firmicutes are enriched in the lumen clusters
compared to the crypt clusters.
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Figure 6: Projected and observed Ileum dynamics (A) Projected compositions moving
along ∆ axis (B) Observed compositions in learned model clusters. Green bars correspond
to observed families in the Firmicutes phylum and gray correspond to other observed phyla

associated clusters.104

On the Cecum dataset, we observed compositional differences along both axes. Figure105

4A:C shows a cecal tip and base partition that has a noticeable compositional difference in106

the abundances of Actinobacteria and Bacteroidetes. The clusters on the two ends of the107

model have differences in the abundances of Firmicutes that correspond to the cecal crypt108

and lumen (Figure 5D : F ).109

On the Ileum dataset, we compared microbial population relative abundances across110

each latent cluster. Along the length of the ileum, we observed a general decreasing trend in111

Lactobacillaceae and increases in both Ruminococcaceae and Lachnospiraceae (Figure 6B).112

Our model’s choice of ∆ seems to capture some of these dynamics. Moving along the ∆ axis113

shows decreases in Lactobacillaceae and increases in Lachnospiraceae (Figure 6A). Some114

discrepancy is observed, most noticeably with the behavior of Actinobacteria.115

3 Discussion116

Novel experimental methods focused on the gut microbiome’s spatial organization have pro-117

vided new datasets for computational analysis. Here, we developed directional GMMs with118

dependent mixtures to infer spatial behaviors of phyla within the gut microbiome. We119

demonstrated the accuracy of the proposed directional GMMs on simulated data in terms of120
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ability to infer model parameters, and to differentiate one-dimensional from two-dimensional121

spatial structure. On MaPS-seq data, we demonstrated the presence of spatial structure in122

distinct regions of the mouse GI tract. Encouragingly, our model recapitulated well known123

spatial phenomena on the Distal Colon and Cecum datasets.124

In the distal colon, it has been shown that Bacteroidetes is enriched in the lumen, while125

Firmicutes are enriched in the mucus layer and crypts (2, 1). We observe these compositional126

differences, suggesting that our model is recovering the radial dynamics of the distal colon.127

The presence of four distinct clusters representing the mucus layer is not surprising because128

mucosal communities vary significantly over lengths as small as 1cm (7).129

In the Cecum dataset, correspondence with other in vivo experiments suggest that we130

recover dynamics in both the radial and longitudinal directions (Figures 5A:F). Zaborin et131

al. (8) suggested that in the mouse cecum, Bacteroidetes increases in relative abundance132

from the cecal tip to base. It should be noted that in their experiment, this trend did not133

reach statistical significance. Our model seems to identify this compositional difference, in134

addition to a distinction in the relative abundances of Actinobacteria (Figure 5A:C). Zaborin135

et al. (8) did find a statistically significant difference between the levels of Firmicutes in the136

lumen compared to cecal crypts. We observe a similar difference at the two ends of our137

model (Figure 5D:F).138

Within the ileum, we select a model with only a single direction of change. There is evi-139

dence that our choice of model is biologically accurate: unlike in the cecum and distal colon,140

the small intestine mucus layer is largely uninhabited due to the presence of antimicrobial141

peptides (9). However, along the length of the small intestine, oxygen concentrations and pH142

gradients vary (2). Among the learned clusters, we observe a stark decrease in the relative143

abundance of Lactobacillaceae (6). Along the flow of the digesta, the ileum becomes more144

alkaline. Because Lactobacillaceae are known to contribute to highly acidic environments, it145

is unsurprising that we observe this compositional differences along the length of the ileum.146

The pH gradient seems to be embedded in the ∆ our model learns: cluster means along147

the ∆ axis show a decrease in Lactobacillaceae similar to the observed compositions. The148

presence of discrepancies on phyla like Actinobacteria suggest that there potentially exist149

other sources of microbial dynamics in the ileum as well. To our knowledge, there are not150

any experimental studies that describe the microbiome’s spatial dynamics within the ileum.151

This demonstrates the utility of our model: not only can we computationally confirm known152

aspects of the gut biogeography, but we can also propose new microbial spatial behaviors.153

A limitation of the present approach is the resolution of the resulting clusters. Our direc-154

tional GMM was able to capture global spatial patterns in the gut microbiome. Specifically,155

given that MaPS-seq samples are approximately 20 µm apart, the clusters from the best156

supported models on the Ileum, Distal Colon, and Cecum datasets correspond to approx-157

imately 1 cm regions. It would be interesting to investigate if a finer resolution change158

be achieved. Future work should focus on investigating this possibility of high-resolution159

mapping of MaPS-seq samples.160

A valuable next step would be designing MaPS-seq experiments with ground truth labels161

denoting spatial locations. With coarse-grained labels from various adjacent segments of the162

GI tract, we could better confirm our model’s ability to identify the microbiome’s spatial163

structure, and also the spatial scale recovered by the model. Nonetheless, the present work164

provides strong evidence that global spatial patterns can be reconstructed from MaPS-seq165

10

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2021. ; https://doi.org/10.1101/2021.07.09.451866doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.09.451866
http://creativecommons.org/licenses/by-nc/4.0/


Figure 7: A directional Gaussian mixture model (A) Graphical depiction of rela-
tionships between latent clusters in a one-dimensional model. (B) Relationships in a two-
dimensional model, where changes from left-to-right are described by ∆ and perpendicular
changes are described by ∆⊥. (C) GMM used to model sampling noise of observed samples
xn. µi represent latent clusters with relationships given in (A) and (B).

data that will only be improved with more detailed collection.166

4 Methods167

4.1 Directional Gaussian Mixture Models168

Our approach uses a Bayesian network to describe the relationship of spatially arranged169

clusters in the gut (Figure 7A-B). In detail, given a spatial configuration, the goal is to170

simultaneously learn community states for each latent cluster and assign barcoded MaPS-171

seq droplets to a cluster (Figure 1). The nodes of the Bayesian network, {µs|s ∈ S}, represent172

composition vectors of archetypal communities in respective clusters.173

In the present work, we are interested in changes along one- or two-dimensions. Studies174

suggest the presence of two natural directions in the gut microbiome (1). One dimension175

moves along the flow of the digesta, while the other moves orthogonally along the radial axis176

(inward out).177

This motivates the following definition for our model. We define a one dimensional model178

where S = {i|1 ≤ i ≤ K} for K latent clusters (Figure 7A). Let ∆ represent directional179

changes between adjacent community compositions.180

We can define181

f(µ1) = N (µ1|µ̄0, Q0)

f(µi|µi−1) = N (µi|µi−1 + ∆, Q) for i = 2..K

We also define a two-dimensional model where S = {(i, j)|1 ≤ i ≤ K, 1 ≤ j ≤ 2} for 2K182

latent clusters (Figure 7B). Let ∆⊥ represent the direction along the second dimension, such183
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that ∆ ·∆⊥ = 0. We define184

f(µ11) = N (µ11|µ̄0, Q0)

f(µ1i|µ1(i−1)) = N (µ1i|µ1(i−1) + ∆, Q) for i = 2..K

f(µ21) = N (µ21|µ11 + ∆⊥, Q)

f(µ2i|µ1i, µ2(i−1)) = N
(
µ2i

∣∣∣∣12 (µ1i + µ2(i−1) + ∆ + ∆⊥
)
, Q

)
for i = 2..K

MaPS-seq outputs read counts for each of the operational taxonomic units (OTUs) in each185

barcoded droplet. However, the total number of reads is independent of overall community186

size. Therefore, the sequencing counts only provide information about the proportions of187

each OTU in the community. Recent work has advocated using such compositional data188

transformations to model microbiome data (10). We transformed read counts to relative189

abundances, and then applied the PhILR transformation: an isometric log-transform (ILR)190

with a phylogenetically derived basis (11). Each coordinate for the PhILR transformed data191

measures the relative proportions of two clades in a phylogeny. Phylogenetic trees were192

generated using QIIME (12), and provided as input to the PhILR R package. Given D taxa,193

the latent community states are D − 1 dimensional vectors µs ∈ RD−1. Zeros are handled194

using multiplicative replacement with δ = 1/D2 for D-taxa (13).195

The reads in a particular barcoded droplet provide noisy observations from a latent cluster196

(Figure 7C). Thus, we can think of the data generation process as first selecting a latent197

community state per barcode, then generating a noisy observation from that community198

state. Let B index the set of barcodes, xb ∈ RD−1 for b ∈ B be PhILR computed from199

the observed sequencing reads for that barcode, and πS = (πs)s∈S be the probability that a200

barcode originated from each cluster s ∈ S. Let ρs be the set of direct ancestors of µs. We201

have202

p(zb) = Categorical(zb|πS)

p(xb|zb, µzb) = N (xb|µzbΣzb) =
∏
s∈S

[N (xb|µs,Σs)]
1(zb=s)

Altogether, the complete likelihood of the model can be written203

p(µS , zB, xB) =
∏
s∈S

f(µs|µρs)
∏
b∈B

p(xb|zb, µzb)p(zb)

=
∏
s∈S

f(µs|µρs)
∏
b∈B

∏
s∈S

[p(xb|zb = s, µs)p(zb = s)]1(zb=s)

4.2 Parameter Inference204

In both models, we seek to optimize p(µS , zB, xB|θ) where θ = (πS ,ΣS ,∆∗, Q,Q0, µ0). This205

optimization is performed through an Expectation-Maximization (EM) algorithm. Under206

this algorithm, parameters are inferred by alternating between two steps:207

• E step: Given the current estimates of community states µtS , model parameters θt,208

compute the posterior expectation of each cluster assignment: E[1(zb = s)|µtS , θt]209
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• M step: Maximize the expected complete log-likelihood log p(µS , zB, xB):210

(µt+1
S , θt+1) = arg max

(µS ,θ)

∑
s∈S

log f(µs|µρs)

+
∑
b∈B

∑
s∈S

E[1(zb = s)|µtS , θt] [log p(xb|zb = s, µs) + log p(zb = s)]

Thus we take maximum a posteriori estimates of µS and maximum likelihood estimates211

of the remaining parameters. Model parameters are initialized using a basic GMM with212

independent clusters trained on the same data. On simulated data, 20 initializations are213

used. On real data, 200 are used. Inference terminates following 5 consecutive steps where214

the expected complete log-likelihood increases by < 10−4 of the previous step.215

4.3 Model Selection216

The Akaike Information Criterion (AIC) was used to evaluate models:217

AIC(k) = −2 ln(L̂) + 2pk

where L̂ denotes the likelihood of the data under the fitted model and pk is the number218

of parameters for the model k. We used the complete log likelihood as a surrogate for the219

log likelihood of the data since it is a lower bound. When comparing models with different220

numbers of latent clusters, we choose the model with the minimum AIC score (6).221

In the case of models with the same number of latent clusters (i.e. 4 clusters arranged in a222

line vs. clusters arranged in a 2 by 2 grid), we can directly compare the complete likelihoods223

p(µS , zB, xB) of either model.224

On both simulated and real data, we test up to 8 clusters for the one and two dimensional225

models, or until the average community state size is 50 samples, whichever comes first. For226

the one dimensional model, clusters were arranged in a line from a 2 × 1 model up to an227

8× 1 model. For the two dimensional model, clusters were arranged in a grid from a 2× 2228

model up to a 4× 2 model.229

4.4 Simulation Analysis230

This is an unsupervised learning problem, so we first evaluated our model on simulated231

data. To this end, we create simulated datasets under the two proposed models. First we232

sample two clusters means from a Pareto distribution with α = 1, normalize to the relative233

abundance space with D = 47 taxa, sort taxa in decreasing order, and then transform to the234

ILR space. The difference in the ILR space between these two means is defined to be ∆. The235

∆ parameter is then scaled to our desired magnitude. Our method for sampling ∆ allows236

for larger dynamics to be observed on more abundant taxa. For two-dimensional models, we237

sample ∆⊥ from a standard multivariate normal distribution and then orthogonalize relative238

to ∆. The remaining clusters means are arranged around one of the two original cluster239

means as per the two models (arranged in the ILR space in a line or in a grid).240
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Then, we randomly sample cluster covariance matrices Σ from an Inverse-Wishart dis-241

tribution with ν = D + 1 and Ψ = ID−1

D−1 . Finally, a total of 360 artifical MaPS-seq samples242

are drawn evenly and independently from each cluster.243

We analyzed two aspects of model performance on simulated data: 1) selection of the244

correct number of latent clusters, and 2) parameter estimation accuracy. In order to evaluate245

our model selection framework, we train both the one and two directional models with varying246

amounts of latent clusters on simulated data. We used the aforementioned model selection247

criteria to determine the optimal model.248

Next, the accuracy of our parameter inference is determined by calculating the average249

RMSE of the learned cluster means. Although our proposed model assigns labels to clusters250

to reflect their spatial arrangements, other unsupervised clustering algorithms assign arbi-251

trary labels. Therefore, to compare RMSE of model parameters, we look at our proposed252

model’s RMSE and the best RMSE of all label permutations of a naive GMM.253

4.5 MaPS-seq data analysis254

We used the publicly available data from Sheth et al. The Cecum, Ileum, and Distal Colon255

datasets were each extracted from 3cm segments of their respective regions. MaPS-seq clus-256

ters are the same size in all datasets (20 µm). Each sample is a vector of the relative257

abundances of all OTUs. We focused on the most abundant taxa that constitute 95% of all258

relative abundance across the three datasets. This corresponded to 47 taxa. Relative abun-259

dances were then renormalized. Using the provided fasta files, we generated phylogenetic260

trees in QIIME (12). Data is then transformed using the PhILR R package.261
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