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21 Abstract

22 In Brassicaceae, hypersensitive-like (HR-like) cell death is a central component of
23 direct defenses triggered against eggs of the large white butterfly Pieris brassicae. The
24  signaling pathway leading to HR-like in Arabidopsis is mainly dependent on salicylic
25 acid (SA) accumulation, but downstream components are unclear. Here, we found that
26  treatment with P. brassicae egg extract (EE) trigger changes in expression of
27  sphingolipid metabolism genes in Arabidopsis and Brassica nigra. Disruption of
28  ceramide synthase activity led to a significant decrease of EE-induced HR-like whereas
29  SA signaling and reactive oxygen species levels were unchanged, suggesting that
30 ceramides are downstream activators of HR-like. Sphingolipid quantifications showed
31 that ceramides with C16:0 side-chains accumulated in both species, and this response
32 was independent on SA accumulation. Finally, we provide genetic evidence that the
33  modification of fatty acyl chains of sphingolipids modulates HR-like. Altogether, these
34  results show that sphingolipids play a key and specific role during insect egg-triggered
35 HR-like.
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38  Introduction

39  Programmed cell death (PCD) plays an essential role in plants. It is part of development
40 by promoting cell and tissue differentiation but results also from immune defense
41  system activation (Reape and McCabe, 2010; Coll et al., 2011; Huysmans et al., 2017).
42  The best studied form of pathogen-triggered PCD is termed the hypersensitive response
43  (HR), a spectacular response triggered upon recognition of adapted pathogens by
44  resistance proteins that leads to macroscopic cell death, induction of defense gene
45  expression and pathogen resistance (Balint-Kurti, 2019). A meta-analysis of PCD-
46  inducing conditions revealed that transcriptomic signatures of developmental PCD and
47  pathogen-triggered PCD are largely distinct (Olvera-Carrillo et al., 2015), suggesting
48  that they are under different genetic regulation. More specifically, pathogen-triggered
49  PCD is dependent on salicylic acid (SA) accumulation and signaling (Coll et al., 2011,
50  Huysmans et al., 2017; Balint-Kurti, 2019). In addition to immunity to pathogens, it was
51  reported that hypersensitivity may also function as a defense strategy against insect
52  herbivores (Fernandes, 1990; Stuart, 2015). In particular, plants from the Brassicales,
53 Solanales and Fabales were shown to induce localized cell death in response to
54  oviposition by insects (Shapiro and DeVay, 1987; Balbyshev and Lorenzen, 1997;
55  Garza et al., 2001; Little et al., 2007; Petzold-Maxwell et al., 2011; Fatouros et al.,
56  2016; Geuss et al., 2017; Griese et al., 2021), a process called HR-like (Reymond, 2013;
57  Fatouros et al., 2014). As a consequence, direct defense induction correlates with
58 decreased egg survival and/or increased egg parasitism (Shapiro and DeVay, 1987;
59  Balbyshev and Lorenzen, 1997; Fatouros et al., 2014; Fatouros et al., 2016; Geuss et al.,
60 2017; Griese et al., 2017; Griese et al., 2021). Like pathogen-triggered HR, egg-induced
61 HR-like responses are associated with an accumulation of reactive oxygen species
62 (ROS) and SA, and defense gene expression (Little et al., 2007; Hilfiker et al., 2014;
63  Geuss et al., 2017; Bonnet et al., 2017). Studies in Arabidopsis thaliana reported that
64  the signaling cascade involved in the response to eggs of the Large White Butterfly
65  Pieris brassicae is similar to pathogen-triggered immunity (PTI) (Gouhier-Darimont et
66  al. 2013). Notably, the induction of cell death was dependent on SA accumulation and
67  signaling. The exact cause of the decreased egg survival associated with HR-like is not
68  known, but data from Brassica nigra suggest that it could be due to water removal at
69  the oviposition site (Griese et al., 2017), consistent with low water potential observed in
70  tissues undergoing HR (Wright and Beattie, 2004). In addition, exposure to ROS at the
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71  oviposition site was shown to increase egg mortality (Geuss et al., 2017). These data
72 thus suggest that HR-like at oviposition sites may constitute an efficient defense
73 strategy against insect eggs.

74 As it could decrease insect pressure before damage occurs, the introgression of
75  egg-killing traits in cultivated crop species is desirable (Fatouros et al., 2016) and has
76 been successfully reported in Oryza sativa (Suzuki et al., 1996; Yamasaki et al., 2003;
77  Yang et al., 2014). Despite this achievement, this strategy is still mostly overlooked as
78  this response is poorly understood at the molecular level (Reymond, 2013; Fatouros et
79 al, 2016). The use of Arabidopsis as a model plant to explore the genetic basis of the
80 response to P. brassicae eggs has so far successfully identified PTI components as
81  regulators of egg-induced HR-like and showed that activation of cell surface receptor-
82 like kinases LecRK-I.1 and LecRK-1.8 is an early step of egg-induced responses
83  (Gouhier-Darimont et al., 2013; Gouhier-Darimont et al., 2019). Moreover,
84  phosphatidylcholines derived from P. brassicae egg extract were recently shown to
85 induce defense responses and cell death (Stahl et al., 2020). However, the identity of
86  cell-death inducing factors downstream of SA is unknown.

87 In contrast to animals, plants lack certain central components of PCD pathways,
88  such as caspases (Coll et al., 2011; Salvesen et al., 2015), but instead rely on a variety
89  of other proteases that fulfill similar functions (Salguero-Linares and Coll, 2019). The
90 identification and characterization of lesion mimic mutants, which display spontaneous
91 cell death along with elevated defenses, has largely contributed to shed light on
92  processes involved in PCD (Bruggeman et al., 2015). In particular, several lesion mimic
93 mutants were found to function in sphingolipid metabolism. The involvement of
94  sphingolipids in PCD induction in animals is well described (Young et al., 2013), and
95 their function is conserved in plants (Townley et al., 2005; Huby et al., 2019).
96  Sphingolipids differ from glycerolipids as they consist of a sphingoid long-chain base
97  (LCB) linked via the amide bond to one fatty acid (FA) moiety (Ali et al., 2018). LCB
98  backbones can be further modified through an a-hydroxylation or a desaturation. These
99  molecules, called ceramides (Cer), can be further modified by the attachment of a polar
100  head group consisting of a glucose or a glycosyl inositol phosphoryl moiety, leading to
101  the formation of complex sphingolipids such as GluCer (glucosylceramides) or GIPC
102  (glycosyl inositol phospho ceramides), respectively. In plants, the large majority of
103  identified sphingolipids are complex (Markham et al., 2013; Gronnier et al, 2016;
104  Carmon-Salazar et al., 2021), whereas LCB and Cer are low abundant. Interestingly,
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105  both free LCB and Cer have been shown to induce PCD when exogenously applied to
106  plants (Liang et al., 2003; Shi et al., 2007; Lachaud et al., 2011; Saucedo-Garcia et al.,
107 2011). Additionally, several fungal toxins such as Fumonisin B1 were shown to cause
108  cell death through an accumulation of free LCB by inhibiting ceramide synthases
109  (Berkey et al., 2012). While the mechanisms involved downstream of LCB/Cer are not
110  clear, the modification of sphingolipid levels in the context of immune responses was
111 shown to affect pathogen resistance (Ternes et al., 2011; Magnin-Robert et al., 2015;
112 Wu et al., 2015). Interestingly, one study found a role for sphingolipid metabolism in
113  resistance against insects. Expression of OsLCB2, encoding a serine palmitoyl
114  transferase involved in the first step of LCB biosynthesis, was found to be induced by
115  brown planthopper infestation and overexpression of OsLCB2 in Arabidopsis triggered
116  LCB accumulation, SA-dependent gene expression and resistance to aphids (Begum et
117  al., 2016).

118 Here we report that eggs of P. brassicae alter the expression of sphingolipid
119  metabolism genes and trigger an accumulation of ceramides in both Arabidopsis and B.
120  nigra. Furthermore, we show that HR-like induction is affected in different ceramide
121  synthase and FA hydroxylases mutants, whereas ROS and SA levels are not impaired in
122 the mutants. Altogether, these data indicate that sphingolipids play a key role in the
123 execution of egg-induced cell death.

124

125

126  Results

127

128  P. brassicae eggs induce biotic cell death markers

129  Different types of PCD exist in plants and a meta-analysis of publicly available
130  transcriptomic data previously enabled the identification of marker genes for different
131  types of cell death: biotic, osmotic, developmental and genotoxic (Olvera-Carrillo et al.,
132 2015). We previously published transcriptomic data from Arabidopsis plants subjected
133 to natural oviposition (Little et al., 2007) and used these expression profiles to explore
134  the molecular signatures associated with egg-induced HR-like. We extracted expression
135  data for the different PCD marker genes described in Olvera-Carillo et al. (2015) 24 h,
136 48 h and 72 h after egg deposition by P. brassicae. Interestingly, marker genes for


https://doi.org/10.1101/2021.07.09.451813
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.09.451813; this version posted July 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

137  biotic cell death were found to be highly induced after egg deposition, while markers for

138  other types of PCD were weakly responsive (Figure 1).

Hours after oviposition
24h 48h 72h

Developmental markers

Osmotic markers Biotic markers

Genotoxic markers

-4 0 4
139 Fold-change (log,)

140 Figure 1 Hypersensitive-like cell death following P. brassicae oviposition induces markers of biotic
141 PCD. Expression of marker genes for biotic-related PCD in Arabidopsis plants following oviposition by
142 P. brassicae butterflies for 24, 48 or 72 h. Marker genes were described in Olvera-Carrillo et al. (2015)
143 and expression data were extracted from a previously published microarray study by Little et al. (2007).

144

145

146  Expression of lipid metabolism genes is altered in response to P. brassicae
147  oviposition

148  Lipid metabolism is central in plant development and some sectors have been shown to
149  be involved in PCD during immunity (Siebers et al., 2016; Lim et al., 2017). We
150  explored the potential involvement of lipid metabolism during egg-induced responses.

151  Using transcriptome data from P. brassicae oviposition on Arabidopsis after 24, 48 and
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152 72 h (Little et al., 2007), we extracted expression ratios for genes related to lipid
153  metabolism (AraLip database; http://aralip.plantbiology.msu.edu/). Only genes whose
154  expression was significantly different (ratio >|1.5|, adj P value <0.05) at least at one
155  time point were selected. This analysis led to a list of 136 genes (out of 765 in the
156  AraLip database) representative of all major lipid pathways (Figure 2A). Data clustering
157  showed that genes were either up- or downregulated over time, displaying a very sharp
158  regulation process. Interestingly, genes involved in processes such as FA synthesis,
159  elongation or phospholipid synthesis were mostly downregulated while genes in
160  sphingolipid biosynthesis, TAG degradation, suberin and oxylipin biosynthesis were
161  mainly upregulated (Figure 2B). Notably, both oxylipins and sphingolipids have
162  previously been involved in the regulation of cell death (Siebers et al., 2016; Lim et al.,
163  2017; Huby et al., 2019), hinting to a potential implication during egg-induced
164  responses.

165 Biotic PCD is typically induced upon recognition of pathogens and this process
166  is regulated by SA (Radoji¢i¢ et al., 2018). In addition, we previously showed that P.
167  brassicae eggs trigger responses that require the SA pathway (Bruessow et al., 2010;
168  Gouhier-Darimont et al., 2013). We thus examined whether transcriptional alterations of
169  lipid metabolism genes were dependent on SA accumulation. Looking at expression of
170  lipid metabolism genes in the published oviposition transcriptome data with the SA
171  biosynthesis mutant sid2-1 (Little et al., 2007), we found only a few genes that
172 displayed significantly altered transcript levels after oviposition on sid2-1 compared to
173 Col-0 (Figure 2C), indicating that the transcriptional reprogramming of lipid
174  metabolism is mainly independent from SA accumulation. However, linear fitting of
175  both datasets shows that, overall, changes in gene expression were lower in sid2-1 (as
176  seen by regression line closer to the Col-0 axis), suggesting a partial contribution of SA
177  signaling to this response (Figure 2C).

178
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180 Figure 2 Transcriptomic alterations in lipid metabolism after insect egg deposition. A, Heatmap showing
181  expression of genes involved in lipid metabolism after oviposition by P. brassicae on Arabidopsis plants.
182 Microarray data were taken from Little et al. (2007) and a list of genes specifically involved in lipid
183 metabolism was obtained from the AraLip database. Only genes that were differentially regulated
184 between control and treated plants (Fold-change > |1.5]|, adj P<0.05) in at least one time-point are shown.
185 B, Number of gene up- or down-regulated in each metabolic categories defined on the AraLip database.
186  C, Expression of lipid metabolism genes in Col-0 and sid2-1 mutant plants three days after egg
187 deposition. Expression ratios from Col-0 are plotted against expression ratios from sid2-1. Each circle
188 represents one gene that is induced by eggs in Col-0. Filled circles are genes whose expression was
189  significantly different in sid2-1; open circles are genes whose expression was not different between Col-0
190 and sid2-1. The dotted line indicates perfect correspondence in expression ratios between Col-0 and sid2-
191 1 while the red line represents a regression analysis of the dataset (y = 0.72x + 0.16, R2=0.71).

192

193  HR-like induction is independent of MYB30 and oxylipin synthesis

194  We further explored the possibility that lipid metabolism may play a role in HR-like
195 induction upon insect egg perception. MYB30 was previously shown to regulate
196  pathogen-induced HR through the transcriptional regulation of VLCFA biosynthesis
197  and accumulation (Raffaele et al., 2008), providing an interesting link between lipid
198  metabolism and cell death induction. Because most VLCFA are found in sphingolipids
199  and cuticular waxes (De Bigault Du Granrut and Cacas, 2016), the authors concluded
200 that MYB30 induces cell death by promoting substrate accumulation for sphingolipid
201  synthesis (Raffaele et al., 2008; De Bigault Du Granrut and Cacas, 2016). As MYB30

202  expression was transiently induced before cell death onset, we measured the expression
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203  of both MYB30 and FATB, one of its target gene (Raffaele et al., 2008), during the first
204 24 h after P. brassicae crude egg extract (EE) treatment. Mutant plants were treated
205 with EE, which mimics responses induced by natural oviposition (Little et al., 2007;
206  Bruessow et al., 2010; Gouhier-Darimont et al., 2013; Hilfiker et al., 2014; Stahl et al.,
207 2020). However, neither of these genes was induced upon treatment and FATB
208  expression was even repressed over time (Supplemental Figure S1). In addition,
209  previous microarray data showed that MYB30 is repressed later during the EE response,
210  along with other MYB30-regulated genes (Little et al., 2007). Finally, EE-triggered cell
211  death, quantified by trypan blue staining (Gouhier-Darimont et al., 2013), was not
212  altered in myb30, indicating that this gene is not involved in the induction of HR-like
213  (Figure 3A). These data are in agreement with the observed repression of FA
214  synthesis/elongation genes (Figure 2A, B).

215 Lipid peroxidation plays a crucial role in the regulation of cell death through the
216  production of oxylipins (Garcia-Marcos et al., 2013; Siebers et al., 2016), and it was
217  reported that important oxylipin production occurs upon induction of HR by bacterial
218  pathogens (Andersson et al., 2006). This process occurs upon enzymatic or non-
219  enzymatic polyunsaturated FA oxidation, and one of the best known oxylipin is
220  jasmonic acid. We assessed the level of lipid peroxidation after 3 days of EE treatment
221 by using the thiobarbituric acid assay, which gives an indirect measure of lipid
222  peroxidation through the detection of its byproducts (Stahl et al., 2019). Interestingly,
223  we observed that EE caused an increase in the level of lipid peroxidation in wild-type
224  plants (Figure 3B), a clear argument that oxylipins are indeed produced in response to
225 eggs. We then genetically assessed whether lipid peroxidation was necessary for cell
226  death induction by using the FA desaturase fad3fad7fad8 triple mutant, which lacks tri-
227  unsaturated FAs from which most oxylipins are derived (McConn and Browse, 1996;
228  Weber et al., 2004). Trypan blue staining following EE treatment did not reveal any
229  difference in the ability of fad3fad7fad8 mutant plants to induce cell death,
230 demonstrating that this process is independent from trienoic FAs and oxylipin
231  production. Furthermore, TGA transcription factors TGA2, TGA5 and TGA6 were
232 shown to transduce responses downstream of oxylipins such as OPDA and
233 phytoprostanes (Mueller et al., 2008; Stotz et al., 2013). Consistent with our previous
234  results, the quadruple tga2tga3tga5tga6 mutant displayed wild-type levels of cell death
235 upon EE treatment, again suggesting that oxylipins do not play a role during this

236  response. These results provide critical indications that HR-like triggered by P.
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237  brassicae eggs is independent from MYB30 and from oxylipin-mediated signaling

238  pathways.
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241 Figure 3 EE-induced cell death is independent from MYB30 and oxylipins. A, C, D, Cell death after
242  three days of EE treatments in different mutants. For each genotype, a total of 8-12 leaves from 4 to 6
243 plants were treated with 2 uL of EE and cell death was quantitated by trypan blue staining. Untreated
244 leaves were used as controls. All experiments were repeated twice with similar results. Different letters
245 indicate significant differences at P<0.05 (ANOVA, followed by Tukey's HSD for multiple comparisons).
246 B, Relative nonenzymatic lipid peroxidation levels were measured by the quantification of TBA reactive
247 aldehydes in Col-0 plants treated with EE for three days. Data represent means = SE of three independent
248  experiments (n = 6 leaf discs/experiment). Asterisks denote statistically significant differences (Welch t-
249  test, *, P<0.05).

250

251  Expression of sphingolipid metabolism genes

252  Sphingolipids are composed of a sphingoid LCB (long-chain base) backbone, produced
253 by the condensation of a serine with a FA. LCB is then amidified to another FA moiety
254 by ceramide synthases. A range of modifications can occur on LCB backbones such as
255  hydroxylation or desaturation. These simple sphingolipids are named ceramides (Cer)
256  and the usual nomenclature is to characterize them by both their LCB core structure as
257  di- or tri-LCB (e.g. d18:0 for a dihydroxylated LCB with no unsaturation, t18:1 for a
258  trihydroxylated LCB with one unsaturation and so on) and the FA moiety (e.g. C16:0 or
259  h16:0 for 2-hydroxylated FA).

260 To explore the potential role of sphingolipids during egg-induced cell death, we

261  measured the expression of different Arabidopsis genes involved in sphingolipid

10
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262  metabolism and signaling by gPCR after treatment with EE for 24, 48 and 72 h.
263  Additionally, we performed the same analysis in B. nigra after 72 h, a plant species that
264  was shown to develop HR-like lesions (Fatouros et al., 2014; Fatouros et al., 2016;
265  Griese et al., 2017; Griese et al., 2021). Since the induction of cell death in B. nigra
266  plants treated with EE was variable, in line with the phenotypes observed after natural
267  oviposition on wild B. nigra constituting the original seed stock (Fatouros et al., 2014),
268 we classified the response into weak symptom (HR-) or severe cell death (HR+)
269  (Supplemental Figure S3). Remarkably, LCB2b and the ceramide synthase LOH2 were
270  consistently induced after 3 days of EE treatment in both plant species (Figure 4,
271 Supplemental Figure S2 and S3). Interestingly, LOH2 catalyzes the attachment of
272  C16:0 FA on dihydroxy LCB (d18:X), whereas LOH1 and LOH3 have a broader
273 substrate specificity and attach mainly VLCFA on trinydroxy LCB (t18:X) (Luttgeharm
274 et al., 2016; Ternes et al., 2011; Luttgeharm et al., 2015). Induction of LOH2 thus
275  suggests an increased metabolic flux towards C16-Cer (Figure 4), a class of known
276 inducers of cell death in plants (Berkey et al., 2012).

277
e TSC10A SBH1 OO
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279 Figure 4 Expression of sphingolipid biosynthetic genes is altered upon EE treatment. Genes involved in
280  each biosynthetic steps are indicated and substrates are indicated when appropriate. Results from
281 expression analyses in Arabidopsis and B. nigra plants treated for three days with EE are indicated in
282 color-coded boxes. Detailed expression data are available in Supplemental Figure S2 and S3. 3KS, 3-
283  ketosphinganine; d/tLCB, di/tri-hydroxy long chain base; VLCFA, very-long chain fatty acid; Cer,
284 ceramide; hCer, 2-hydroxyceramide; GlcCer, glucosylceramide; GIPC, glycosyl inositol phosphoryl
285  ceramide.

286

287 Complex sphingolipids (GluCer and GIPC) consist for the main part of a
288  trihydroxylated LCB attached to 2-hydroxy FA (hFA). The latter step is catalyzed by
289 FAHL and FAH2 (Nagano et al., 2012). Genes involved in fatty-acid hydroxylation
290 (FAH1/FAH2) and GluCer synthesis (GCS) were downregulated in Arabidopsis
291  (Supplemental Figure S2). This could indicate a decreased flux towards complex

292  sphingolipids, possibly resulting in the accumulation of precursors (Cer and hCer). In
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293  contrast, BnLOH3 and BnFAH1 were induced in B. nigra, indicating a potential
294  additional synthesis of complex sphingolipids in this species (Supplemental Figure S3).
295  Altogether, these data further confirm that P. brassicae egg perception results in
296  alterations of sphingolipid metabolism gene expression in two different plant species.
297 Although SA contributed partly to the expression of lipid metabolism genes
298  (Figure 2C), LOH2 and LCB2b were equally induced by EE in Col-0 and sid2-1,
299  suggesting a SA-independent regulation of these genes (Supplemental Figure S2, B).
300 Finally, to see whether the observed changes of sphingolipid metabolism gene
301  expression after EE treatment might also occur during interaction with different types of
302 attackers such as viruses, oomycetes, fungi, and bacteria, we explored publicly available
303  transcriptome data from Genevestigator expression database
304  (www.genevestigator.com). Interestingly, the pattern of sphingolipid-related gene
305 expression was very similar between all biotic interactions, independently of the
306 attacker or feeding mode considered (Supplemental Figure S4). This suggests that
307  activation of sphingolipid metabolism gene expression is a conserved immune response.
308

309 Ceramide synthase mutants show reduced EE-induced cell death

310 To further investigate the link between EE-triggered responses and sphingolipid
311  metabolism, we tested whether cell death induction was altered in mutants lacking
312  ceramide synthases LOH1, LOH2 or LOH3. Remarkably, both loh2 and loh3 displayed
313  decreased cell death after three days of EE treatment, whereas lohl did not show any
314  alteration (Figure 5A). These results are consistent with the observed induction of
315 LOH2 and supports a role for sphingolipids in the signaling pathway leading to EE-
316  induced cell death.

317 While studies have highlighted the existence of a link between SA signaling and
318  sphingolipids, it is still unclear whether sphingolipids act upstream or downstream of
319  SA accumulation and signaling during biotic interactions (Sanchez-Rangel et al., 2015).
320  We previously reported that ROS and SA accumulation act as signals in response to
321  insect eggs (Gouhier-Darimont et al., 2013; Gouhier-Darimont et al., 2019). We thus
322  tested whether the lack of ceramide synthases in loh2 and loh3 affected the production
323 of these early signals. Remarkably, no difference in H,O, and O% production could be
324  detected between Col-0 and mutant lines after EE treatment (Figure 5B,C), suggesting
325 that LOH2 and LOHS3 act downstream of ROS production.

326
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329 Figure 5 EE-induced cell death is reduced in ceramide synthase mutants. A-C, Cell death (A), H,O, (B)
330  or O, (C) levels after three days of EE treatment in ceramide synthase mutants. For each genotype, a
331  total of 12 to 16 leaves from 6 to 8 plants were treated with 2 uL of EE. Untreated leaves were used as
332  controls. D, Total SA (SA + SAG) levels in ceramide synthase mutants after 3 days of EE treatment.
333 Results from two independent experiments are shown (n=8). E,F, Expression of the SA-dependent marker
334 PR1 or the partially SA-dependent marker SAG13 in ceramide synthase mutants after three days of EE
335 treatment was monitored by gPCR. Data represent means + SE of three technical replicates. Gene
336  expression was normalized to the reference gene SAND. Different letters indicate significant differences
337  at P<0.05 (ANOVA, followed by Tukey's HSD for multiple comparisons). All experiments (except D)
338  were repeated at least twice with similar results.

339

340  Furthermore, SA reached similar levels after EE treatment in Col-0 and loh2 or loh3,
341  while lohl displayed higher basal SA levels and enhanced induction by EE treatment
342  (Figure 5D). Moreover, EE-induced expression of the SA-dependent marker gene PR1
343  and the partially SA-dependent marker SAG13 was similar between Col-0 and loh2 and
344  loh3 plants (Figure 5E,F). Consistent with higher SA levels, lohl displayed higher basal
345 and induced transcript levels for these marker genes. Altogether, these results
346  demonstrate a role for ceramides in the induction of cell death downstream of ROS and
347  SAsignaling.

348

349  FA hydroxylation modulates EE-induced responses

350 2-hydroxylation of FA in ceramides is known to be crucial for complex sphingolipid
351 synthesis (Markham et al., 2011; Ternes et al., 2011), and a link between 2-
352 hydroxylation of FA and cell death was demonstrated (Nagano et al., 2012). The current
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353  model for sphingolipid synthesis suggests that a-hydroxylation occurs at the ceramide
354  level through the activity of two isoforms of Fatty Acid Hydroxylase, FAH1 and FAH2
355 (Konig et al., 2012; Nagano et al., 2012). More specifically, FAH1 was shown to
356 specifically hydroxylate VLCFA whereas FAH2 preferentially uses C16:0 FA as
357  substrates. Interestingly, hVLCFA but not hl16:0 FAs accumulated upon H,0,
358 treatment, suggesting that hVLCFA play a role in the suppression of cell death
359  (Townley et al., 2005; Nagano et al., 2012). Based on our results demonstrating a role
360 for ceramides in the induction of cell death following egg perception, we tested the
361  contribution of sphingolipid FA hydroxylation in this response. After three days of EE
362 treatment, cell death was slightly increased in the fahl mutant, but similar in fah2
363  (Figure 6A). Further experiments revealed that while EE-induced H,O, production was
364 not altered (Figure 6B), basal and induced transcript levels of PR1 and SAG13 were
365 higher in fahl than in Col-0 (Figure 6C and D). Collectively, these data suggest that
366  hydroxylation of VLCFA in ceramides during egg-induced HR-like negatively regulates
367 cell death and defense gene expression.

368 We next examined FA 2-hydroxylation by GC-MS using a previously published
369 method (Cacas et al., 2016). Surprisingly, we found that EE did not cause changes in the
370  global distribution of hydroxy-FA levels (Figure 6E). One explanation could be that
371  hydroxy-FA profiles from specific sphingolipid species may be altered while the overall
372 amount remains stable.

373

374

375
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377 Figure 6 Fatty acid 2-hydroxylation modulates EE-induced cell death. A, Cell death and B, H,O, levels
378  after three days of EE treatments in fatty acid hydroxylase mutants. For each genotype, a total of 12 to 16
379  leaves from 6 to 8 plants were treated with 2 uL of EE. Untreated leaves were used as controls. C,D,
380 Expression of the SA-dependent marker PR1 and the partially SA-dependent marker SAG13 after three
381 days of EE treatment was monitored by qPCR. Data represent means + SE of three technical replicates.
382 Gene expression was normalized to the reference gene SAND. Different letters indicate significant
383  differences at P<0.05 (ANOVA, followed by Tukey's HSD for multiple comparisons). All experiments
384  were repeated at least twice with similar results. E, 2-hydroxy fatty acid levels following three days of EE
385  treatment were quantified by GC-MS. Data represent means + SE from three hiologically independent
386  samples (n = 3).

387

388  Sphingolipidome is altered in response to EE in Arabidopsis and B. nigra

389  Our results point to a role for C16:0-containing ceramides and hVLCFA-containing
390 sphingolipids in modulating cell death in response to P. brassicae egg perception.
391  However, the large number of sphingolipid species present in plants (> 200, Pata et al.,
392  2010) renders the interpretation of phenotypes in sphingolipid-related mutants difficult.
393  To resolve this issue, we determined the sphingolipidome composition of Arabidopsis
394  and B. nigra plants in response to EE treatment. For the analysis, we used an extended

395 LC-MS/MS analytical method that covers all sphingolipid classes, with the exception of
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396  phosphorylated Cer (Mamode Cassim et al., 2021). Additionally, to explore the link
397  between sphingolipid alterations and SA (Sanchez-Rangel et al., 2015), we included
398  sid2-1 in our analysis.

399 Initial data exploration was performed by using 1-dimensional self-organizing
400 map (1D-SOM) clustering to compare lipid profiles between Arabidopsis and B. nigra
401 plants treated with EE (Figure 7A). Among the different clusters, several of them
402  showed a pattern corresponding to an accumulation of lipids in response to EE in both
403  (cluster 3 and 8) or in either plant species (cluster 2 for B. nigra and cluster 9 for
404  Arabidopsis). Notably, cluster 3 and 8 contained three Cer 16:0 species as well as LCB
405 t18:1, which are known cell death inducers, together with other Cer and GIPC
406  (Supplemental Table S1). In contrast, cluster 2 was dominated by hFA-containing Cer
407  and GIPC, while cluster 9 contained mainly non-hydroxy GIPC (Supplemental Table
408  S1). Notably, no GluCer species were present in clusters correlating with HR-like cell
409  death.

410 Surprisingly, only a few lipids had a different accumulation pattern between
411  Col-0 and sid2-1 plants (Figure 7B), indicating that SA does not play a substantial role
412  in sphingolipidome remodeling in response to EE. This conclusion is further supported
413 by the fact that no cluster in Figure 7A shows a SA-dependent pattern. Globally, we
414  could observe a significant increase and decrease in GIPC and hGluCer levels,
415  respectively, following EE treatment in Arabidopsis (Supplemental Figure S10, S11),
416  however no difference could be observed for the other classes (Figure 7C). In order to
417  identify putative HR-like lipid markers, we next performed a volcano plot analysis on
418  the sphingolipidome of Arabidopsis and B. nigra. Based on this analysis, we found 17
419  sphingolipids significantly accumulating in Col-0 plants following EE treatment (Figure
420  7D), while only one was less abundant. Top accumulating lipids in Arabidopsis were
421  Cer C16:0 and both hydroxyl- and non-hydroxy GIPC (Supplemental Figure S7, S11).
422 A number of markers were found to accumulate to a similar extent in B. nigra,
423  including Cer t18:0/ and t18:1/C16:0 (Supplemental Figure S5). In addition, several
424  GIPC, including GIPC t18:0/h16:0, also accumulated in both species. However, no
425  obvious pattern regarding chain length or hydroxylation could be observed in both
426  species (Supplemental Figure S8, S11, S12). Interestingly, while Arabidopsis
427  significantly accumulated GIPC of all types (long chain and very long chain FA,
428  hydroxylated or not) upon EE treatment, the response of B. nigra plants mainly showed
429  anaccumulation of GIPC C16:0 and h16:0 (Supplemental Figure S11A).
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Figure 7 EE treatment induces changes in sphingolipid levels in both Arabidopsis and B. nigra. Leaves
from either species were treated for three days with EE, and sphingolipids were extracted and analyzed by
LC-MS/MS as described in methods. A, 1D-SOM clustering and heatmap visualizationof sphingolipid
levels) using MarVis. Data were averaged over biological replicates (n=7), normalized using Euclidean
unit length and the number of clusters was set to 10 (see Supplemental Table S4). The upper heatmap
displays an average profile for each cluster and the one below displays all lipids individually. The list of
markers found in each cluster can be found in Supplementable Table S4. B, Comparison of the impact of
EE treatment on sphingolipid composition in Col-0 and sid2-1 plants. Each circle represents one
sphingolipid species. Filled circles are lipids whose level after EE treatment was significantly different
between both genotypes; open circles are lipids whose level did not significantly change. The dotted line
indicates perfect correspondence in accumulation between Col-0 and sid2-1. C, Levels of all major
classes of sphingolipids in Col-0 plant treated or not with EE. Bars represent means + SE from seven
biologically independent samples (n = 7). D, Volcano plot of the sphingolipids detected in Col-0 plants. A
threshold of P < 0.01 and a |FC| > 2 was used to identify molecules specifically changing upon EE
treatment. Open circles indicate lipid species that did not significantly change, red and blue filled circles
indicate lipid species that significantly changed upon EE treatment in B.nigra only or in both B. nigra and
Arabidopsis respectively. ID for the latter is shown. A list of all significant lipids is shown on the right. E,
Levels of the different C16-containing ceramides after EE treatment in Arabidopsis Col-0 plants (left) and
B. nigra (right). Data represent means + SE from four to ten independent samples. Asterisks denote
statistically significant differences between EE treated samples and their respective controls (Welch t-test,
*, P<0.05; **, P<0.01; ***, P<0.001). HR-, weak HR-like response; HR+, strong HR-like response.
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453 Overall, we observed common responses in both Arabidopsis and B. nigra
454  following treatment with EE. Notably, we found an accumulation of several known cell
455  death regulators, namely LCB t18:1 and Cer C16:0. In particular, the pattern of
456  accumulation of Cer t18:0/ and t18:1/C16:0 was consistent with a role in cell death as
457  shown by their strong accumulation in response to EE treatment in both species (Figure
458  7E). Moreover, in B. nigra this pattern correlated with HR intensity. In contrast, we
459  could not observe such a pattern in LCB accumulation between both species, suggesting
460  that they might not play a role in HR-like (Supplemental Fig S6). These results further
461  support the hypothesis that EE treatment in Arabidopsis and B. nigra results in
462 alterations of sphingolipid levels and a particular accumulation of Cer C16:0.

463

464  Sphingolipidome of ceramide synthase mutants in response to EE

465  In order to investigate the role of individual ceramide synthases, we next quantified all
466  sphingolipids in loh1, loh2 and loh3 mutant plants following EE treatment in a separate
467  experiment. We observed that mutations in lohl and loh2 had a larger impact on
468  sphingolipidome remodeling after EE treatment as compared to loh3 (Figure 8A-C). In
469  particular, lohl plants displayed largely higher constitutive and induced levels of long
470  chain FA-containing species from all sphingolipid classes (Supplemental Fig S12, S6-
471  S11), making any comparison with other mutants difficult. In addition, this renders the
472 identification of any EE-related cluster using 1D-SOM impossible when considering all
473  mutants, since previously reported species constitutively over-accumulate in lohl
474  (Supplemental Figure S12, Supplemental Table S5). Based on 1D-SOM clustering of
475  the data from loh2 and loh3 only, we observed the existence of two clusters (cluster 1
476  and 2) that show an accumulation pattern consistent with a role in HR-like (Figure 8D).
477  These clusters contained mostly C16:0 containing sphingolipids, including all Cer
478 C16:0 and LCB t18:1 previously identified as potential HR-like regulators, further
479  supporting our previous analysis. In particular, these clusters contained lipids present at
480  very low levels in loh2 plants, consistent with the previously reported catalytic activity
481  of LOH2 and with the cell death phenotype observed. However, these lipids were still
482  accumulating after EE treatment in loh3 and no cluster could identify sphingolipids
483  absent in both loh2 and Ioh3. In line with this conclusion, we observed a significant
484  accumulation of Cer d18:0/, t18:0/ and t18:1/C16:0 in Col-0 and loh3 after upon
485  treatment with EE which was absent in loh2 mutant plants (Figure 8E). In contrast, lohl

486  plants showed constitutive and induced levels of these lipids ~10 fold higher than Col-0
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plants and no further accumulation occurred after treatment. These results thus confirm
the central role of LOH1 and LOH2 in sphingolipid metabolism and during the response
to EE, but leaves the contribution of LOH3 unclear.
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Figure 8 Sphingolipid levels in ceramide synthase mutants upon treatment with EE. Leaves were treated
for three days with EE, and sphingolipids were extracted and analyzed by LC-MS/MS. A-C, Comparison
of the impact of EE treatment on sphingolipid composition in Col-0 and loh1 (A), loh2 (B) or loh3 (C)
mutant plants. Each circle represents one sphingolipid species. Filled circles are lipids whose level after
EE treatment was significantly different between both genotypes; open circles are lipids whose level did
not significantly change. The dotted line indicates perfect correspondence in accumulation between both
genotypes. D, 1D-SOM clustering and heatmap visualization of sphingolipid levels using MarVis. Data
were averaged over biological replicates (n=2-4), normalized using Euclidean unit length and the number
of clusters was set to 10. The upper heatmap displays an average profile for each cluster and the one
below displays all lipids individually. The list of lipids found in each cluster can be found in
Supplemental Table S6. E, Levels of the different C16-containing ceramides after EE treatment in
Arabidopsis Col-0 and loh1 loh2 or loh3 plants. Data represent means + SE from two to four independent
samples. Asterisks denote statistically significant differences between EE treated samples and their
respective controls (Welch t-test, *, P<0.05; **, P<0.01; ***, P<0.001). Lines indicate statistically
significant differences between Col-0 and mutant plants treated with EE.
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510 Discussion

511  We previously reported that the induction direct defenses against insect eggs in
512  Arabidopsis involves the SA signaling pathway (Bruessow et al., 2010; Gouhier-
513 Darimont et al., 2013). In addition, a growing body of evidence indicates that the
514  response triggered by P. brassicae eggs are conserved in both B. nigra and Arabidopsis
515 (Geiselhardt et al., 2013; Fatouros et al., 2014; Bonnet et al., 2017). However,
516  components required for HR-like induction downstream of SA accumulation are still
517 unknown. Besides their role as structural components of membranes, sphingolipids
518 regulate PCD throughout the eukaryotic kingdom (Young et al., 2013). Analyzing
519  previously published transcriptomic data on plant response to oviposition (Little et al.,
520 2007), we observed an upregulation of genes related to sphingolipid metabolism.
521  Experimental validation of this observation confirmed that EE triggers transcriptional
522  alterations of genes involved in sphingolipid metabolism in both Arabidopsis and B.
523 nigra. Furthermore, EE treatment led to the accumulation of various sphingolipid
524  species. Despite differences in the profiles of other sphingolipids between Arabidopsis
525 and B. nigra, a common and marked accumulation of Cer C16:0 and several GIPCs
526  could be observed. Remarkably, the accumulation of Cer C16:0 is a conserved hallmark
527  of cell death induction in plants, animals and fungi (Berkey et al., 2012; Young et al.,
528  2013; Ali et al., 2018). In addition to the fact that EE was removed prior to sampling,
529  most of the accumulating Cer C16:0 contained t18:0 or t18:1 LCB, which are not found
530 in animals and GIPC are plant-specific lipids. It seems therefore unlikely that that the
531  observed increase is due to the potential presence of egg-derived lipids. Interestingly,
532 even though a similar accumulation of C16:0 was observed in response to Botrytis
533 cinerea and Pseudomonas syringae pv. tomato AvrRPM1, the level of other
534  sphingolipids, in particular GIPC, were largely different (Magnin-Robert et al., 2015).
535 We observed that cell death induction is dependent on the ceramide synthases
536 LOH2 and LOHS3, raising the question of the specificity of each enzyme during this
537  process. Previous work revealed that LOH2 is responsible for the production of most
538 C16:0-Cer in planta, while LOH1 and LOH3 were described as producing mainly
539  VLCFA-Cer. Sphingolipid profiling in these mutants showed that lohl accumulated
540  high levels of long chain-containing species whereas loh2 plants were devoid of most of
541 the C16:0 containing sphingolipids, consistent with previous studies (Ternes et al.,
542  2011; Markham et al., 2011). In vitro ceramide synthase activity shows that LOH3, in
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543  contrast to LOHL, can also accept C16:0 substrates (Luttgeharm et al., 2016). We thus
544  postulated that part of the observed accumulation of Cer C16:0 after EE treatment may
545  originate from LOH3 activity in addition to LOH2. However, loh3 mutants displayed
546  mostly wild-type constitutive and induced levels of nearly all species detected, in
547  agreement with previous studies (Ternes et al., 2011), thereby leaving the question of its
548  contribution unclear. A contribution of VLCFA-containing sphingolipid to cell death
549  was shown by the fact that acd5loh2 double mutants have very low levels of C16:0-
550  containing sphingolipids but still display spontaneous cell death (Bi et al., 2014). The
551  accumulation of C16:0 in lohl mutants was previously linked to the appearance of
552  spontaneous cell death after 8-10 weeks of development (Ternes et al., 2011). In our
553  study, 4-5 weeks old lohl plants had high levels of Cer C16:0 yet did not display
554  constitutive cell death, suggesting that plants trigger compensatory mechanisms to cope
555  with the accumulation of these lipids before lesions appear. In addition, the context and
556 the timing of this accumulation is largely different between development and biotic
557  interactions, thereby complicating the interpretation of such data. These considerations
558  together with the fact that only loh2 plants showed a correlation between the levels of
559  Cer C16:0 and the degree of cell death observed upon EE treatment may indicate that
560 the potential role of Cer C16:0 during HR-like is complex. Alternatively, we cannot
561 rule out that some of the observed phenotypes could be caused by non-catalytic
562  activities of LOH and FAH genes. In agreement with this idea, FAH1 and FAH2 were
563  previously shown to interact with the cell death suppressor BI-1 (Nagano et al., 2009).

564 How LCBs or ceramides induce cell death is still not clear (Berkey et al., 2012;
565 De Bigault Du Granrut and Cacas, 2016) but studies from plants and other organisms
566  may provide insights into their function. Sphingolipids, outside of their role as structural
567 lipids in plasma membranes (PM), are major constituent of lipid nanodomains (Mamode
568  Cassim et al., 2019). Membrane nanodomains, or so-called “lipid rafts”, are patches of
569 lipids and proteins that laterally segregates from the rest of the PM due to high degree
570  of intermolecular interactions between sphingolipids and sterols (Cacas et al., 2012; De
571  Bigault Du Granrut and Cacas, 2016). Proteomic studies of nanodomain-associated
572  proteins show that many immune regulators accumulate in these structures (Morel et al.,
573 2006) and studies in rice showed that alterations in nanodomain sphingolipid
574  composition can affect the abundance and function of PTI and cell death regulators in
575 nanodomains (Ishikawa et al., 2015; Nagano et al., 2016). Additionally, phytoceramides

576  were shown to perturb nanodomains in yeast (Pacheco et al., 2013). These results depict
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577  a dynamic relationship between sphingolipid metabolism and membrane nanodomains,
578  suggesting that changes in the composition of certain sphingolipid classes could affect
579  protein distribution and therefore nanodomain function.

580 In animal and yeast cells, ceramides have also been reported to have the ability
581  to self-assemble so-called ceramide channels in mitochondria’s outer membrane and to
582  promote the leakage of mitochondrial proteins (including cytochrome c), a hallmark
583  point of no return for PCD (Siskind et al., 2002; Colombini, 2017). In this model, Cer
584  are thus direct cell death executors, but whether such structures can form in plant cells
585 is currently unknown. Interestingly, C16:0 phytoceramides (with trihydroxy LCBSs)
586 were reported to have a higher pore-forming activity in rat mitochondria than
587  dihydroxy-ceramides (Perera et al., 2012), demonstrating that these molecules have the
588 ability to form pores. Remarkably, these structures were found to assemble at
589  physiological ceramide concentrations and their function was shown to be under the
590 regulation of apoptotic regulators (Colombini, 2017). Alternatively, Cer may function
591 through their interaction with cell-death modulator/executor proteins as revealed by the
592  recent identification in human mitochondria of the voltage-dependent anion channel
593 VDAC?2 as a critical effector of Cer-induced PCD (Dadsena et al., 2019). In plants, no
594  protein interacting with Cer have been described so far. However, the function of plant
595 VDAC in PCD appears to be conserved when expressed in human cells, suggesting that
596  Cer may also interact with VDAC channels in plants (Godbole et al., 2003). Given their
597  important role in PCD induction in plants, future research should aim at identifying the
598  molecular mechanisms underlying ceramide-regulated cell death.

599 Two recent studies in rice reported that alterations of hFA levels in nanodomains
600  resulted in the depletion of certain PTI and cell death modulators (Ishikawa et al., 2015;
601  Nagano et al., 2016). The role of sphingolipids in nanodomain structure and function
602  may bring light on the observation that fahl displayed increased cell death following EE
603  treatment, which correlated with a higher expression of SA-dependent markers PR1 and
604  SAG13. These data may thus suggest that the increased cell death observed in fahl after
605 EE treatment may be the result of altered signaling from plasma membrane
606  nanodomains. Although we found no clear alteration in overall hFA levels and
607  distribution in different sphingolipid classes upon EE treatment, further in-depth work
608  should examine the precise role of hFA species during HR-like.

609 Our results reveal a common accumulation of GIPC species in both Arabidopsis

610 and B. nigra in response to EE perception. GIPC are critical regulators of membrane
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611  organization (Mamode Cassim et al., 2021). Studies show that GIPC accumulate in
612 membrane nanodomains (Gronnier et al, 2016) and account for a large fraction of
613  extracellular vesicles lipids (Liu et al., 2020), however the function of complex
614  sphingolipids such as GlcCer and GIPC during biotic stresses is still poorly understood.
615 Interestingly, it was recently shown that GIPC are receptors for fungal toxins (Lenar¢i¢
616 et al., 2017) and gate unknown Ca®* channels upon binding of extracellular Na* (Jiang
617 et al., 2019). Whether GIPC play a role during HR-like is still not clear and work is
618  needed to further explore this possibility.

619 The hypothesis that SA signaling and sphingolipid metabolism are somehow
620  connected was based on the observation that certain sphingolipid mutants or treatment
621  with the fungal toxin fumonisin B1 lead to increased defense gene expression or SA
622  signaling/accumulation (Asai et al., 2006; Wang et al., 2008; Konig et al., 2012;
623  Luttgeharm et al., 2015; Sanchez-Rangel et al., 2015; Fang et al., 2016). This led to
624  postulate that the rise in Cer might precede SA accumulation (Sdnchez-Rangel et al.,
625 2015). We found that loh2 and loh3 mutant plants displayed wild-type ROS, SA and
626  PR1 levels, although they showed a significantly reduced cell death. These results thus
627  suggest that ceramides function downstream of egg-induced SA signaling. However, we
628  found no evidence that SA accumulation plays a role in the regulation of sphingolipid
629  metabolism in the context of insect egg-triggered immunity as shown by the wild-type
630  sphingolipid profile in sid2-1 plants treated with EE. Additionally, we could not observe
631  any significant alteration in the induction of LOH2 and LCB2b in sid2-1 compared to
632  Col-0 after EE treatment, suggesting that SA does not contribute to the induction of
633  these genes. It seems, however, that differences in sphingolipid-related gene expression
634  may not necessarily always translate into changes in sphingolipid metabolism. This is
635 evidenced by the differences observed in gene expression between Arabidopsis and B.
636  nigra despite very similar sphingolipid accumulation patterns and by the fact that B.
637 nigra HR- plants induced sphingolipid gene expression to a similar extent than HR+
638  plants, yet displaying intermediate Cer C16:0 accumulation. Thus, the regulation of
639  sphingolipid accumulation in response to EE may be post-trancriptional.

640 Overall, our results show that sphingolipid metabolism plays a central role in the
641  execution of HR-like in Brassicaceae after Pieris brassicae egg perception. Further
642  research should investigate other plant-insect egg interactions and aim at deciphering
643  the exact mechanism by which sphingolipids participate in HR-like.

644
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645

646 Materials and methods

647

648  Plant and insect growth conditions

649  All experiments described using Arabidopsis thaliana were conducted in the Col-0
650  background. Seeds of Brassica nigra were collected from a wild population in
651  Wageningen (The Netherlands) as previously described (Fatouros et al., 2014; Bonnet et
652 al., 2017). Plants were grown in growth chambers in short day conditions (10 h light,
653  22°C, 65% relative humidity, 100 pmol m?s™) and were 4 to 5 weeks old at the time of
654  treatment. Seeds were stratified for 3 days at 4 °C after sowing. Larvae, eggs and
655  butterflies of the Large White butterfly Pieris brassicae came from a population
656  maintained on Brassica oleracea in a greenhouse as described previously (Reymond et
657 al., 2000).

658 T-DNA insertion lines for lohl (SALK _069253), loh2 (SALK_018608), loh3
659  (SALK _150849), fahl (SALK_140660), fah2 (SAIL_862_HO01) were kindly provided
660 by Ivo Feussner (University of Gottingen); sid2-1 from Christiane Nawrath (University
661  of Lausanne), myb30 from Dominique Roby (LIPM INRA, Toulouse); fad3fad7fad8
662 from Edward E. Farmer (University of Lausanne); tga2tga3tga5tga6 from Corné
663  Pieterse (Utrecht University).

664

665 Whole-genome expression data

666  For in silico analysis of PCD (Figure 1) and lipid metabolism (Figure 2) marker gene
667  expression, microarray data from Arabidopsis samples after 24 to 72 h of oviposition by
668  P. brassicae (Little et al., 2007) were used. For in silico analysis of sphingolipid
669  metabolism marker gene expression (Supplemental Figure S4), transcriptome data from
670  Genevestigator public database (www.genevestigator.com) were used, except for data
671 on Pieris rapae and Spodoptera littoralis feeding, which were from published
672  microarray data (Reymond et al., 2004), and data on P. brassicae oviposition (Little et
673 al., 2007).

674

675  Treatment with egg extract

676  P. brassicae eggs were collected and crushed with a pestle in Eppendorf tubes. After

677  centrifugation (15' 000 g, 3 min), the supernatant (‘egg extract’, EE) was collected and
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678  stored at -20°C. Plants were 4-5 weeks old at the time of treatment. For each plant, two
679 leaves were treated with 2 ul of EE. This amount corresponds to one egg batch of ca. 20
680  eggs. A total of four plants were used for each experiment. After the appropriate time,
681  EE was gently removed with a scalpel blade and treated leaves were stored in liquid
682  nitrogen. Untreated plants were used as controls.

683

684  Histochemical staining

685  For visualization of cell death, EE was gently removed and leaves were submerged in
686  lactophenol trypan blue solution (5 ml of lactic acid, 10 ml of 50% glycerol, 1 mg of
687  trypan blue (Sigma), and 5 ml of phenol) at 28°C for 2-3 h. Hydrogen peroxide (H,05)
688  accumulation was measured with 3,3-diaminobenzidine (DAB; Sigma). Leaves were
689  submerged in a 1.0 mg ml-1 DAB solution and incubated in the dark at room
690 temperature for 6-8 h. Superoxide radical (O, ) was visualized with the sensitive dye
691  nitroblue tetrazolium (NBT; Sigma). Leaves were submerged in a solution containing
692  0.02% NBT and 10 mM NaN3 for 4 h at room temperature in the dark.

693 After each staining, leaves were destained for in boiling 95% ethanol.
694  Microscope images were saved as TIFF files and processed for densitometric
695  quantification with ImageJ version 1.64 (NIH).

696

697  Salicylic acid quantification

698  SA quantifications were performed using the bacterial biosensor Acinetobacter sp.
699 ADPWH (Huang et al., 2005; Huang et al., 2006) according to (DeFraia et al., 2008;
700  Zvereva et al., 2016). Briefly, 6 leaf discs (0.7 cm, ~20 mg) were ground in liquid
701  nitrogen and extracted in 0.1M sodium acetate buffer (pH 5.6). Extracts were then
702  centrifuged at 4°C for 15min at 16’000 g. 50 pL of extract were incubated with 5 pL of
703  B-Glucosidase from almonds (0.5 U/ul in acetate buffer, Sigma-Aldrich) during 90 min
704  at 37°C to release SA from SA-glucoside (SAG). 20 uL of extract was then mixed with
705 60 pL of LB and 50 pL of a culture of Acinetobacter sp. ADPWH_lux (ODggo = 0.4),
706  and incubated for 1 h at 37°C. Finally, luminescence was integrated using a 485 + 10
707 nm filter for 1 s. A 0to 60 ng SA standard curve diluted in untreated sid2-1 extract was
708 read in parallel to allow guantification. SA amounts in samples were estimated by
709 fitting a 3" order polynomial regression on the standards.

710

711  Determination of non-enzymatic lipid peroxidation
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712  Two leaves of each of three plants were treated for 3 days with EE and leaf discs (dia
713 0.7 cm) were harvested. Frozen leaf material (25 mg) was ground on liquid nitrogen,
714 mixed with 0.5 ml of 0.1 % trichloroacetic acid (TCA), and centrifuged at 10'000 g for
715 15 min. 0.25 ml of the supernatant was mixed with 0.5 ml of 20 % TCA and 0.5 ml of
716 0.5 % thiobarbituric acid (TBA) and the mixture was incubated at 95 °C for 30 min to
717  react MDA with TBA. Thereby a TBA-MDA complex is formed which is reported to
718  have a specific absorbance at 532 nm. The specific absorbance of 532 nm and a
719  nonspecific of 600 nm were measured with a UV-VIS spectrophotometer and the
720  nonspecific absorbance was subtracted from the specific absorbance. The
721  concentrations of MDA were calculated using Beer-Lambert’s equation with an
722 extinction coefficient for MDA of 155 mM™ cm™ (Heath and Packer, 1968) and
723 expressed to the fresh weight. Because this assay is described to overestimate the
724  absolute concentration of MDA (Stahl et al., 2019), we normalized data on MDA levels
725  in untreated Col-0 leaves and reported them as fold-changes.

726

727  Hydroxy-fatty acid quantification

728  Hydroxy-FA quantification was performed based on a previously published protocol
729  (Cacas et al., 2016). Briefly, 25 mg of frozen sample was spiked with 10 pg of
730  heptadecanoic acid (C17:0) and 2-hydroxy-tetradecanoic acid (h14:0) as internal
731  standards, and was transmethylated at 110°C overnight in 3 mL of methanol containing
732 5% (v/v) sulfuric acid. After cooling, 3 mL of NaCl (2.5%, w/v) was added, and methy!I
733 ester FAs were extracted in 1 mL of hexane. The organic phase was collected in a new
734 tube, buffered with 3 mL of saline solution (200 mM NaCl and 200 mM Tris HCI, pH
735  8), centrifuged and the organic phase was dried under a gentle stream of nitrogen at
736  room temperature. Free hydroxyl FAs were derivatized at 110°C for 30 min in 100 pL
737 of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA, Sigma) and pyridine (50:50, v/v),
738 and surplus BSTFA was evaporated under nitrogen. Samples were finally dissolved in
739  hexane and transferred into capped autosampling vials until analysis.

740 Quantitative analysis was performed using a HP-5MS capillary column (5%
741  phenyl-methyl-siloxane, 30 m x 250 mm, 0.25 mm film thickness; Agilent) with helium
742  carrier gas at 1.5 mL/min; injection was in splitless mode; injector temperature was set
743 to 250°C; the oven temperature was held at 50°C for 1 min, then programmed with a
744 25°C/min ramp to 150°C (2 min hold), and a 10°C/min ramp to 320°C (6 min hold).

745  Quantification of hydroxy-FAs was based on peak areas derived from specific ions in
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746  single-ion mode (SIM) and the respective internal standards. lons used for
747  quantifications are listed in the Supplemental Table S1.

748

749  Sphingolipid analyses by LC-MS/MS

750  Analysis of sphingolipids by LC-MS/MS was done according to Mamode Cassim et al.
751  (2021). Lipids extracts were incubated 1 h at 50°C in 2 mL of methylamine solution (7
752  ml methylamine 33% (w/v) in EtOH combined with 3 mL of methylamine 40% (w/v) in
753  water (Sigma Aldrich) in order to hydrolyze phospholipids. After incubation,
754  methylamine solutions dried at 40°C under a stream of air. Finally, were resuspended
755  into 100 uL of THF/MeOH/H,0 (40:20:40, v/v) with 0.1% formic acid containing
756  synthetic internal lipid standards (LCB d17:1 [4.5 ng/ul], LCB-P d17:1 [4.5 ng/ul], Cer
757  d18:1/C17:0 [4.5 ng/ul], GluCer d18:1/C12:0 [8.3 ng/ul] and GML1 [87 ng/ul], Avanti
758  Polar Lipids) was added, thoroughly vortexed, incubated at 60°C for 20min, sonicated
759  2min and transferred into LC vials.

760 LC-MS/MS (multiple reaction monitoring mode) analyses were performed with
761 a model QTRAP 6500 (ABSciex) mass spectrometer coupled to a liquid
762  chromatography system (1290 Infinity I, Agilent). Analyses were performed in the
763  positive mode. Nitrogen was used for the curtain gas (set to 30), gas 1 (set to 30), and
764  gas 2 (set to 10). Needle voltage was at +5500 V with needle heating at 400°C; the
765  declustering potential was adjusted between +10 and +40 V. The collision gas was also
766  nitrogen; collision energy varied from +15 to +60 eV on a compound-dependent basis.
767 Reverse-phase separations were performed at 40°C on a Supercolsil ABZ+, 100
768  x 2.1 mm column and 5 pum particles (Supelco). The Eluent A was THF/ACN/5 mM
769  Ammonium formate (3/2/5 v/viv) with 0.1% formic acid and eluent B was THF/ACN/5
770  mM Ammonium formate (7/2/1 viviv) with 0.1% formic acid. The gradient elution
771 program for LCB, Cer and GluCer quantification was as follows: 0 to 1 min, 1% eluent
772 B; 40 min, 80% eluent B; and 40 to 42 min, 80% eluent B. The gradient elution
773 program for GIPC quantification was as follows: 0 to 1 min, 15% eluent B;31 min, 45%
774 eluent B; 47.5 min, 70% eluent B; and 47.5 to 49, 70% eluent B. The flow rate was set
775 at 0.2 mL/min, and 5mL sample volumes were injected. A list of transitions for all
776  sphingolipid species scanned during this procedure is available in Supplemental Table
777 S2. The number of analyzed molecules per subclass scanned were: 4 LCB; 4 LCB-P;
778 110 Cer; 121 GluCer; 383 (64 GIPC serie A) GIPC.
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779 The areas of LC peaks were determined using MultiQuant software (version 3.0;
780  ABSciex) for sphingolipids quantification. Due to the lack of authentic standards for
781  phytoceramides and GIPCs, the most abundant species present in plant tissues, absolute
782  quantification is impossible without strong assumptions and was therefore avoided.

783

784  Analysis of sphingolipid data

785  Areas of LC peaks for specific transitions were normalized to the signal of the standard
786  from the same class (Cer, hCer, GluCer or GIPC) and normalized to sample dry weight.
787 In total, 173 sphingolipid species could be quantified in all Arabidopsis and B. nigra
788  samples (Supplemental Table S7). Data clustering and heatmaps were generated using
789  the 1-dimensional self-organizing map (1D-SOM) algorithm implemented in the
790  MarVis Cluster software (Kaever et al., 2009). Prior to clustering, replicate values were
791  averaged and subsequent profiles were normalized to Euclidean unit length to allow
792  comparison for all samples. The number of clusters was set to 10.

793 For volcano plots, comparisons between CTL and EE treated samples were
794  performed using two-sided Welch T-test. For Arabidopsis datasets, initial data analysis
795  was performed using a two-way ANOVA specifying genotype and treatment. B. nigra
796  dataset was initially analyzed using a one-way ANOVA. Upon significant ANOVA
797  analysis at P < 0.05, multiple comparisons were performed on the most informative
798  sample pairs using two-sided Welch T-test without correction for multiple testing.

799

800 RNA extraction, reverse-transcription and quantitative real-time PCR

801  Tissue samples were ground in liquid nitrogen, and total RNA was extracted using
802  ReliaPrep™ RNA Tissue Miniprep (Promega) according to the manufacturer’s
803 instructions, including Dnasel treatment. Afterwards, cDNA was synthesized from 500
804 ng of total RNA using M-MLV reverse transcriptase (Invitrogen) and subsequently
805 diluted eightfold with water. Quantitative real-time PCR reactions were performed
806 using Brilliant 111 Fast SYBR-Green QPCR Master Mix on an QuantStudio 3 real-time
807  PCR instrument (Life Technologies) with the following program: 95°C for 3 min, then
808 40 cycles of 10 s at 95°C, 20 s at 60°C.

809 Values were normalized to the housekeeping gene SAND (At2928390). The
810  expression level of a target gene (TG) was normalized to the reference gene (RG) and
811  calculated as normalized relative quantity (NRQ) as follows: NRQ = E“'zg /E%s. For
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812  each experiment, three biological replicates were analyzed. A list of all primers used in
813  experiments can be found in Supplemental Table S3.

814 Transcript sequences for gene homologs in B. nigra were identified by BLAST
815  using Arabidopsis CDS sequences on BrassicaDB
816  (http://brassicadb.org/brad/index.php). Because of the lack of accessible genome
817  sequence, designed primer sequences were then checked for specificity using Primer
818 BLAST against the “Brassica” mRNA database. Primer pairs that had no unspecific
819  binding in other Brassica were tested by PCR on gDNA and cDNA from B. nigra for
820  size and specificity.

821

822  Statistics

823  Data were analyzed using R software version 3.6 or GraphPad Prism 9.0.1.

824

825  Accession numbers

826  Sequence data from this article can be found in TAIR (www.arabidopsis.org) and
827  BrassicaDB (http://brassicadb.org/brad/index.php) under the following accession
828 numbers: SAND (At2928390); MYB30 (At3g28910); FATB (Atlg08510); PR1
829  (At2g14610); SAG13 (At2g29350); LOH1 (At3g25540); LOH2 (At3g19260); LOH3
830 (Atlgl3580); LCB1 (At4g36480); LCB2a (At5g23670); LCB2b (At3g48780); FAH1
831  (At2g34770); FAH2 (At4g20870); IPCS2 (At2g37940); GCS (At2g19880); SBH1
832  (At1g69640); SBH2 (Atlgl4290); BnSAND (BniB003645); BnPR2 (BniB029818);
833 BnLOH1 (BniB046986); BnLOH2 (BniB021107); BnLOH3 (BniB004139); BnLCB1
834 (BniB021240); BnLCB2b (BniB033113); BnFAH1 (BniB033988); BnFAH2
835  (BniB037392); BnIPCS2 (BniB016748); BnSBH1 (BniB037186); and BnSBH2
836  (BniB033050).

837

838  Supplemental data

839  The following materials are available in the online version of this article.

840 Supplemental Figure S1. Expression of MYB30 and FATB in response to EE
841 treatment.

842 Supplemental Figure S2. Expression of sphingolipid metabolism genes in
843 Arabidopsis.

844 Supplemental Figure S3. Expression of sphingolipid metabolism genes in Brassica
845 nigra.
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846 Supplemental Figure S4. Expression of sphingolipid metabolism genes in response
847 to biotic stresses.

848 Supplemental Figure S5. Effect of EE treatment in B. nigra
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1190  Supplemental Figure 1 Expression of Arabidopsis MYB30 and one of its target FATB. Expression after
1191 EE treatment was monitored by gqPCR. Data represent means + SE of three technical replicates. Gene
1192 expression was normalized to the reference gene SAND. This experiment was repeated once with similar
1193  results.
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1197 Supplemental Figure 2 Time-course expression of sphingolipid metabolism genes in Arabidopsis. A,
1198 Expression of target genes was monitored by gPCR in Col-0 24 h to 72 h after EE treatment. B,
1199 Expression of target genes was monitored by qPCR in Col-0 and sid2-1 72 h after EE treatment. Data
1200 represent means + SE of three technical replicates. Gene expression was normalized to the reference gene
1201 SAND. Different letters indicate significant differences at P<0.05 (ANOVA, followed by Tukey's HSD
1202  for multiple comparisons). Experiments were repeated twice with similar results.
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1206  Supplemental Figure 3 Time-course expression of sphingolipid metabolism genes in Brassica nigra. A,
1207 Representative pictures of macroscopic HR-like symptoms triggered by P. brassicae EE after 3 days of
1208  treatment. Location of EE application is delineated by the white circles. B, Expression of target genes was
1209  monitored by gPCR 72 h after EE treatment. Gene expression was normalized to the reference gene
1210 BnSAND. Data represent means + SE of three to seven independent biological replicates (n = 3-8).
1211  Asterisks denote statistically significant differences between EE treated and control plants (Welch t-test,
1212 * P<0.05; **, P<0.01; ***, P<0.001). HR-, weak HR-like response; HR+, strong HR-like response.
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1218  Supplemental Figure 4 Diverse biotic stresses induce transcriptional alterations in sphingolipid
1219 metabolism. Relative expression levels of the selected sphingolipid genes in response to different
1220  attackers (insects, bacteria, fungi, oomycetes and virus) were obtained from Genevestigator. When more
1221  than two time-points were available, one early and one late time points were selected. Whole-genome
1222 expression data for P. brassicae oviposition or insect feeding (Pieris rapae or Spodoptera littoralis
1223  herbivory) were obtained from previous publications (see Methods for details).
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Supplemental Figure 5 Effect of EE treatment in B. nigra. Leaves were treated for three days with EE,
and sphingolipids were extracted and analyzed by LC-MS/MS. A,B, Volcano plot of the sphingolipids
detected in HR- (A) and HR+ (B) B. nigra plants. A threshold of P < 0.05 and a |FC| > 2 was used to
identify molecules specifically changing upon EE treatment. Open circles indicate lipid species that did
not significantly change, red and blue filled circles indicate lipid species that significantly changed upon
EE treatment in B.nigra only or in both B. nigra and Arabidopsis respectively. A list of all significant
lipids is shown on the right. C, Levels of all major classes of sphingolipids in B. nigra. Bars represent
means = SE from seven biologically independent samples (n = 7). Data represent means + SE from four
to ten independent samples. Asterisks denote statistically significant differences between EE treated
samples and their respective controls (Welch t-test, *, P<0.05; **, P<0.01; ***, P<0.001). HR-, weak
HR-like response; HR+, strong HR-like response.
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1246  Supplemental Figure 6 Free LCB and LCP-P levels in Arabidopsis wild-type and mutant lines and B.
1247 nigra plants following EE treatment. A, Col-0 and sid2-1 mutant plants (upper panels) or B. nigra (lower
1248 panels) were treated with EE for three. Bars represent means + SE from seven independent samples. B,
1249  Col-0, lohl, loh2 and loh3 mutant plants were treated as described in panel A. Bars represent means + SE
1250  from two to four independent samples. Data were first analyzed using one-way (B. nigra) or two-way
1251  (Arabidopsis) ANOVA. Colored boxes indicate significant ANOVA at P< 0.05. Significant lipid markers
1252 were further analyzed using a selected number of pairwise comparisons: CTL and EE; EE-treated mutants
1253  compared to EE-treated Col-0. Asterisks denote statistical significance (Welch t-test between EE treated
1254  samples and their respective controls. *, P< 0.05; **, P< 0.01; ***, P<0.001). HR-, weak HR-like
1255  response; HR+, strong HR-like response.
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Supplemental Figure 7 Ceramide levels in Arabidopsis wild-type and mutant lines and B. nigra plants
following EE treatment. A, Col-0 and sid2-1 mutant plants (upper panels) or B. nigra (lower panels) were
treated with EE for three days. Sphingolipid levels are presented based on FA side-chain (left panel) or
LCB (right panel) distribution. Bars represent means = SE from seven independent samples. B, Col-0,
loh1, Ioh2 and loh3 mutant plants were treated as described in panel A. Bars represent means = SE from
two to four independent samples. Data were first analyzed using one-way (B. nigra) or two-way
(Arabidopsis) ANOVA. Colored boxes indicate significant ANOVA at P < 0.05. Significant lipid
markers were further analyzed using a selected number of pairwise comparisons: CTL and EE; EE-treated
mutants compared to EE-treated Col-0. Asterisks denote statistical significance (Welch t-test between EE

treated samples and their res

pective controls. *, P< 0.05; **, P< 0.01). HR-, weak HR-like response;

HR+, strong HR-like response.
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Supplemental Figure 8 Hydroxy-ceramide levels in Arabidopsis wild-type and mutant lines and B. nigra
plants following EE treatment. A, Col-0 and sid2-1 mutant plants (upper panels) or B. nigra (lower
panels) were treated with EE for three. Sphingolipid levels are presented based on FA side-chain (left
panel) or LCB (right panel) distribution. Bars represent means + SE from seven independent samples. B,
Col-0, loh1, loh2 and loh3 mutant plants were treated as described in panel A. Bars represent means + SE
from two to four independent samples. Data were first analyzed using one-way (B. nigra) or two-way
(Arabidopsis) ANOVA. Colored boxes indicate significant ANOVA at P < 0.05. Significant lipid
markers were further analyzed using a selected number of pairwise comparisons: CTL and EE; EE-treated
mutants compared to EE-treated Col-0. Asterisks denote statistical significance (Welch t-test between EE
treated samples and their respective controls. *, P< 0.05; **, P< 0.01). HR-, weak HR-like response;
HR+, strong HR-like response.

45


https://doi.org/10.1101/2021.07.09.451813
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.09.451813; this version posted July 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

made available under aCC-BY-NC-ND 4.0 International license.

A Glucosylceramides

Arabidopsis O Col-0 CTL m Col-0 EE O sid2-1 CTL m sid2-1 EE

1.2 - 1.6
1
1.2+
0.8
06 A 0.8
E 0.4
o 0.4
2 4
2 0.2 ) )
E 0 i (:),Ji-i-_r
(=
% B.nigra O C O HR ® HR-
N127 12
£
S 107 10
=
81 8
61 6
41 4
21 2
0+ : : : —nd 0 m——

D N O NS O NS NS N d18:0  d18:1 t18:0 t18:1
ST S S, AN N A S
LA N A A < I ¢ S S A S ol

B

16 -

Arabidopsis
s
o
=
2
<
=
5 ° ~ 9 N 2 S S N W O o
— bv b % % Q o . h . by .
2 9 e o o ¥ o v ¥ v ¥ v
N 2.
E Arabidopsis
‘26 1.6 -
O Col-0 CTL m foh2 CTL
1.2 - W Col-0EE m loh2 EE
O loh1 CTL @ Joh3 CTL
0.8 4 W /oh1EE B Joh3 EE
0.4 J—'
O -

d18:0 d18:1 t18:0 t18:1

Supplemental Figure 9 GluCer levels in Arabidopsis wild-type and mutant lines and B. nigra plants
following EE treatment. A, Col-0 and sid2-1 mutant plants (upper panels) or B. nigra (lower panels) were
treated with EE for three days. Sphingolipid levels are presented based on FA side-chain (left panel) or
LCB (right panel) distribution. Bars represent means = SE from seven independent samples. B, Col-0,
loh1, Ioh2 and loh3 mutant plants were treated as described in panel A. Bars represent means = SE from
two to four independent samples. Data were first analyzed using one-way (B. nigra) or two-way
(Arabidopsis) ANOVA. Colored boxes indicate significant ANOVA at P < 0.05. Significant lipid
markers were further analyzed using a selected number of pairwise comparisons: CTL and EE; EE-treated
mutants compared to EE-treated Col-0. Asterisks denote statistical significance (Welch t-test between EE
treated samples and their respective controls. *, P< 0.05; **, P< 0.01). HR-, weak HR-like response;
HR+, strong HR-like response.
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1297

1298  Supplemental Figure 10 Hydroxy-GluCer levels in Arabidopsis wild-type and mutant lines and B. nigra
1299 plants following EE treatment. A, Col-0 and sid2-1 mutant plants (upper panels) or B. nigra (lower
1300 panels) were treated with EE for three days. Sphingolipid levels are presented based on FA side-chain
1301  (left panel) or LCB (right panel) distribution. Bars represent means + SE from seven independent
1302  samples. B, Col-0, loh1, loh2 and loh3 mutant plants were treated as described in panel A. Bars represent
1303  means = SE from two to four independent samples. Data were first analyzed using one-way (B. nigra) or
1304  two-way (Arabidopsis) ANOVA. Colored boxes indicate significant ANOVA at P < 0.05. Significant
1305 lipid markers were further analyzed using a selected number of pairwise comparisons: CTL and EE; EE-
1306  treated mutants compared to EE-treated Col-0. Asterisks denote statistical significance (Welch t-test
1307 between EE treated samples and their respective controls. *, P< 0.05; **, P< 0.01; ***, P<0.001). HR-,
1308  weak HR-like response; HR+, strong HR-like response.
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Supplemental Figure 11 GIPC serie A levels in Arabidopsis wild-type and mutant lines and B. nigra
plants following EE treatment. A, Col-0 and sid2-1 mutant plants (upper panels) or B. nigra (lower
panels) were treated with EE for three. Sphingolipid levels are presented based on FA side-chain (left
panel) or LCB (right panel) distribution. Bars represent means + SE from seven independent samples. B,
Col-0, loh1, loh2 and loh3 mutant plants were treated as described in panel A. Bars represent means + SE
from two to four independent samples. Data were first analyzed using one-way (B. nigra) or two-way
(Arabidopsis) ANOVA. Colored boxes indicate significant ANOVA at P < 0.05. Significant lipid
markers were further analyzed using a selected number of pairwise comparisons: CTL and EE; EE-treated
mutants compared to EE-treated Col-0. Asterisks denote statistical significance (Welch t-test between EE
treated samples and their respective controls. *, P< 0.05; **, P< 0.01; ***, P<0.001). HR-, weak HR-like
response; HR+, strong HR-like response.
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1322
1323
1324  Supplemental Figure 12 Effect of EE treatment on sphingolipid profiles in ceramide synthase mutants.
1325  Leaves from Col-0, lohl, Ioh2 and loh3 plants were treated for three days with EE. A, 1D-SOM
1326  clustering and heatmap visualization of sphingolipid levels) using MarVis. Data were averaged over
1327  biological replicates (n=2-4), normalized using Euclidean unit length and the number of cluster was set to
1328  10. The upper heatmap displays an average profile for each cluster and the one below displays all lipids
1329  individually. The list of markers found in each cluster can be found in Supplemental Table S5. B, Levels
1330  of all major classes of sphingolipids. Bars represent means + SE from two to four independent samples.
1331  Asterisks denote statistically significant differences between EE treated samples and their respective
1332  controls (Welch t-test, *, P<0.05).
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