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ABSTRACT

Whole-genome duplications (WGDs), in which the number of nuclear genome copies is
elevated as a result of autopolyploidy or allopolyploidy, are a prominent process of
diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes
upon cytoplasmic genomes are not well understood, despite the central role that
cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and
photosynthesis depend upon successful interaction between the 3000+
nuclear-encoded proteins destined for the mitochondria or plastids and the gene
products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS,
organellar ribosomes, Photosystems | and I, and Rubisco. Allopolyploids are thus faced
with the critical task of coordinating interactions between nuclear and cytoplasmic genes
that were inherited from different species. Because cytoplasmic genomes share a more
recent history of common descent with the maternal nuclear subgenome than the
paternal subgenome, evolutionary “mismatches” between the paternal subgenome and
the cytoplasmic genomes in allopolyploids might lead to accelerated rates of evolution
in the paternal homoeologs of allopolyploids, either through relaxed purifying selection
or strong directional selection to rectify these mismatches. We tested this hypothesis in
maternal vs. paternal copies of organelle-targeted genes in six allotetraploids:
Brachypodium hybridum, Chenopodium quinoa, Coffea arabica, Gossypium hirsutum,
Nicotiana tabacum, and Triticum dicoccoides. We report evidence that allopolyploid
subgenomes exhibit unequal rates of protein-sequence evolution, but we did not
observe global effects of cytonuclear incompatibilities on paternal homoeologs of
organelle-targeted genes. Analyses of gene content revealed mixed evidence for
whether organelle-targeted genes re-diploidize more rapidly than
non-organelle-targeted genes. Together, these global analyses provide insights into the
complex evolutionary dynamics of allopolyploids, showing that allopolyploid
subgenomes have separate evolutionary trajectories despite sharing the same nucleus,
generation time, and ecological context.
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AUTHOR SUMMARY

Whole genome duplication, in which the size and content of the nuclear genome is
instantly doubled, represents one of the most profound forms of mutational change. The
consequences of duplication events are equally monumental, especially considering
that almost all eukaryotes have undergone whole genome duplications during their
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evolutionary history. While myriad genetic, cellular, organismal, and ecological effects of
whole genome duplications have been extensively documented, relatively little attention
has been paid to the diminutive but essential “other” genomes present inside the cell,
those of chloroplasts and mitochondria. In this study, we compared the evolutionary
patterns of >340,000 genes from 23 species to test whether whole genome duplications
are associated with genetic mismatches between the nuclear, mitochondrial, and
chloroplast genomes. We discovered tremendous differences between duplicated
copies of nuclear genomes; however, mitochondria-nuclear and chloroplast-nuclear
mismatches do not appear to be common following whole genome duplications.
Together these genomic data represent the most extensive analysis yet performed on
how polyploids maintain the delicate and finely tuned balance between the nuclear,
mitochondrial, and chloroplast genomes.
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INTRODUCTION

Whole genome duplication (WGD) events, in which the nuclear genome is doubled via
polyploidization, are among the most profound mutational changes observed in nature.
The high frequency of WGDs, especially among flowering plants [1—4], makes them a
major force in genome evolution. Accordingly, evolutionary biologists have had a great
deal of interest in exploring the consequences of and responses to WGD. The ensuing
studies have shown that the effects of WGDs are far-ranging, including silencing and
loss of duplicated genes [5—11], mobilization of previously dormant transposable
elements [12—-17], inter-genomic gene conversion and homoeologous chromosome
exchanges [18-25], alterations of epigenetic marks [26—33], massive, genome-wide
transcriptional rewiring [6,34—41], and a host of other associated physiological,
ecological, and life-history changes [42—-54]. Whole genome duplications are also
expected to produce novel interactions between the nuclear genome and the
mitochondrial and plastid genomes [55], but this dimension of allopolyploid evolution
has received relatively little attention (but see [56-62]).

Cytonuclear interactions are themselves the result of gene transfers from the
cytoplasmic genomes (mitochondrial and plastid) to the nuclear genome or the
recruitment of existing nuclear-encoded proteins to function in these organelles [63,64].
As a result, the vast majority of the ~2000 proteins that comprise the mitochondrial
proteome [65] and ~3000 proteins that comprise the plastid proteome [66] are
nuclear-encoded [67]. Many of these nuclear-encoded proteins directly interact with
gene products from the cytoplasmic genomes to form heteromeric complexes (e.g.,
Rubisco, Photosystems | and Il, organellar ribosomes and the enzymes that comprise
the mitochondrial electron transport chain). Additionally, the replication, expression, and
post-transcriptional modifications of cytoplasmic genomes are dependent on
nuclear-encoded proteins [68—71], as are the many biosynthetic and signaling functions
of mitochondria and plastids [72—78]. Taken together, the cellular and metabolic
functions that result from cytonuclear interactions, especially aerobic respiration and
photosynthesis, are critically important to eukaryotic health and fitness [79-83].
Perturbations to one genomic compartment can therefore have dramatic consequences
for the other genomic compartments [84—90], so much so that incompatibilities between
the nuclear and cytoplasmic genomes may be a potent force in generating and
reinforcing species boundaries [91-95].

Allopolyploidization, a WGD event resulting from a genome merger of two
differentiated species [96—-98], is expected to perturb cytonuclear interactions because
the cytoplasmic genomes have a more recent history of shared descent with one
nuclear subgenome than the other [55]. Researchers have hypothesized a number of
immediate and evolutionary responses that may mitigate any resulting deleterious
consequences. First, maternally biased nuclear gene expression in recently formed
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allopolyploid lineages could alleviate the deleterious consequences of incompatibilities
between the paternal nuclear subgenome and the cytoplasmic genomes [56]. Over
time, evolutionary rates may vary across nuclear subgenomes, with paternal copies of
organelle-targeted genes evolving faster than maternal copies, either as a reflection of
relaxed selection [99] or positive selection to rectify mismatches with the cytoplasmic
genomes [90]. In the long run, paternal copies of organelle-targeted genes may be
altered more frequently than maternal copies as a result of maternally biased gene
conversion [57,62] and homoeologous exchange [25], or completely excised from the
genome via pseudogenization and gene loss [58].

Investigations into the predicted outcomes of cytonuclear incompatibilities in
allopolyploids have so far had mixed results. Rubisco in particular has been a primary
focus, as the nuclear-encoded small subunit rbcS appears to have undergone
maternally biased gene conversion and maternally biased gene expression in some
allopolyploids, such as cotton, tobacco, Arabidopsis suecica, peanut, and wheat
[56,57,62]. Synthetic and recently formed allopolyploids show more inconsistent
support. For example, Tragopogon miscellus exhibits maternally biased expression of
rbcS, while its reciprocally formed congener Tragopogon mirus does not [58]. Synthetic
allotetraploid rice showed little evidence of maternally biased expression of rbcS [59],
and synthetic allopolyploid Cucumis x hytivus displayed paternally biased expression of
rbcS [61]. Generalizing rules of cytonuclear biology from these handful of somewhat
contradictory studies is made even more difficult because they have all only considered
a single cytonuclear complex.

A more extensive survey of 110 nuclear genes encoding subunits involved in
plastid protein complexes in allopolyploid Brassica napus did not find evidence for
maternally biased expression or retention of organelle-targeted genes [60]. What
remains to be evaluated is whether there are systematic rules that might explain the
discrepancies among these earlier studies and more generally what the principles are
that govern cytonuclear evolution in plant allopolyploids. There are as yet no
genome-wide investigations of the signatures of cytonuclear incompatibilities in a set of
independently formed allopolyploids that differ both in terms of the amount of
divergence between diploid progenitors (and therefore the probability of cytonuclear
incompatibilities [100]), or time since allopolyploidization (and therefore the probability of
an evolutionary response to cytonuclear incompatibilities [101]). The rapidly increasing
availability of genome sequences for a number of allopolyploid genomes and their
diploid relatives (e.g., Brassica [8,19,102,103], cotton [104—-107], wheat [108—-112],
peanut [23,113], coffee [114-117], tobacco [118,119], quinoa [21,120], and
Brachypodium [121,122]) makes it possible to better understand the rules of cytonuclear
biology in allopolyploid lineages.

Here we evaluate genome-wide patterns of molecular evolution in
organelle-targeted gene sets for six separate allotetraploid species: Brachypodium
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hybridum, Chenopodium quinoa (quinoa), Coffea arabica (coffee), Gossypium hirsutum
(cotton), Nicotiana tabacum (tobacco), and Triticum dicoccoides (wild emmer wheat).
We document strong effects of subgenome on overall rates and patterns of evolution
but find little evidence for global signatures of cytonuclear incompatibilities across
polyploid systems. We also find that organelle-targeted gene content is generally less
biased across subgenomes than the rest of the genome. Together, these genome-wide
analyses of six independently formed allotetraploid species provide insights into the
rules of polyploidy, a prominent process in eukaryotic diversification.
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RESULTS
Orthologous genes in six allopolyploid species and their diploid relatives

To compare rates and patterns of molecular evolution across subgenomes of six
allotetraploid angiosperms (Figure 1a), we inferred orthologous gene groups from the
two polyploid subgenomes, the closest available diploid species for each subgenome,
and an outgroup (Figure 2) using a combination of phylogenetic and syntenic methods.
The resulting orthologous gene groups are summarized in Table 1, and additional
details regarding their inference are provided in the Materials & Methods section as well
as in Figure S1.

Table 1. Orthologous gene groups in six allotetraploid angiosperms.

Species Phylogenetic orthologous Syntenic orthologous Merge;l,‘;itr;?l?-copy siEZT:i::;);n:L?ﬁféts
gene groups gene groups (Union/Intersect) (Union/Intersect)
Quinoa 10511 17896 (9088 / 3284) (8201 /3121)
Wheat 25454 24212 (10180 / 3603) (4204 / 1759)
Cotton 29504 31841 (187157 10222) (17133 /10023)
Coffee 19399 20926 (6672 / 3869) (4032 /2379)
Tobacco 24797 32088 (9059 / 167) (8699 / 163)
Brachypodium 24854 34440 (14449 /8084) (14000 /7912)

' — Single-copy quintets include orthologous gene groups with one and only one sequence from an outgroup, two closely
related diploids, and two sequences from the allopolyploid.

The goal of our orthology inference methods was to produce orthologous
“quintets”, containing one gene sequence each from the outgroup species and the two
diploid model species and two gene sequences from the polyploid species, while also
requiring that gene trees be consistent with the overall species tree. Both syntenic and
phylogenetic methods produced sizable numbers of identical quintets; however, there
were many quintets only detectable using one method or the other. Tobacco was
especially challenging for syntenic inference, as the highly fragmented assemblies of all
three Nicotiana reference genomes made identifying syntenic blocks difficult. The
largest syntenic block between any two of the genomes in this clade was only 57 genes
long (N. tabacum and Solanum lycopersicum), and no syntenic block including N.
tomentosiformis or N. sylvestris was longer than 22 genes. Quinoa highlighted a
different issue that represents a common feature of polyploid genome assemblies in
that many genes were located on contigs that are not anchored to chromosomes.
Genes present in this fraction of the assembly can only be included in orthologous
groups by phylogenetics, and they are often replete with repetitive elements, making it a
likely spot for genome misassemblies (and subsequent errors in analyses that depend
upon them). Moreover, the quinoa genome contains cases of apparent homoeologous


https://doi.org/10.1101/2021.07.09.451712
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.09.451712; this version posted July 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

exchange in which genes were located on chromosomes from opposing subgenomes
(see also [21]).

Variation in assembly and annotation quality also represented a significant
challenge in identifying orthologous genes across genome assemblies produced by
different groups with different underlying data. The most extreme example of this issue
was the maternal diploid model for polyploid wheat, Aegilops speltoides, which was
represented only by a transcriptome assembly. Despite these and other hurdles, we
were able to identify orthologous gene groups as well as the more strict group of
single-copy quintets for each of these polyploid systems, which should present a useful
resource for polyploid genomics moving forward. The Aegilops speltoides
transcriptome, all OrthoFinder results, phylogenetic gene trees with branch lengths,
multi-species synteny networks, merged orthologous gene groups, CDS alignments,
and analyses of molecular evolution have been made available at
https://doi.org/10.6084/m9.figshare.13473207. For the remainder of the manuscript, we
report only on the results from the “Union” group of quintets that were identified by
either phylogenetic or syntenic inference, but we have performed all the same analyses
on the “Intersection” group, comprised only of those quintets that were identified by both
methods, and have provided the results from those analyses in Supplementary File 1.
Results obtained using the Intersection dataset did not substantively differ from those
obtained using the Union dataset.

Subgenomic distributions of organelle-targeted genes

To evaluate whether cytonuclear interactions affect subgenomic evolution in
allopolyploid species, we first partitioned genes by predicted subcellular targeting
localization and cytonuclear interaction activity in each allopolyploid system. The
Cytonuclear Molecular Interactions Reference for Arabidopsis (CyMIRA) database
indicates that the Arabidopsis thaliana nuclear genome has 1773 genes that encode
mitochondria-targeted products and 2931 genes that encode plastid-targeted products
[67]. By propagating this classification across the six allotetraploids studied here, we
found means of 3880 (SD = 730) genes with mitochondria-targeted products and 4464
(SD = 731) genes with plastid-targeted products (Table 2), which varies ~60-70%
among allotetraploid taxa. At least some of the observed variation among polyploids
appears to be due to phylogeny, as the number of mitochondria-targeted genes and
plastid-targeted genes varies extensively among diploids (25-30%, Figure S2). Diploid
relatives of our focal allotetraploids ranged from 17% fewer (Chenopodium diploids) to
108% more (Nicotiana diploids) mitochondria-targeted genes and from 37% fewer
(Triticum, Chenopodium diploids) to 33% more (Nicotiana diploids) plastid-targeted
genes than documented in Arabidopsis (Figure S2).
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Table 2. Functional gene partitioning in six allotetraploid angiosperms.

. Mitochondria-t Mitochondria-ta Mitochondria Plastid- Plastid- Plastid Enzyme
Species araeted rgeted Enzyme tarqeted targeted Complexes?
9 Interacting’ Complexes? 9 Interacting’ P
Quinoa 2830 894 279 3528 686 215
Wheat 4077 1048 378 4419 693 245
Cotton 4728 1232 458 5670 800 307
Coffee 3221 921 285 3889 621 193
Tobacco 3851 1092 402 4567 740 297
Brachypodium 4540 981 339 4684 674 238
Mean (SD) 3880 (730) 1031 (121) 358 (68) 4464 (731) 704 (61) 250 (45)
Arabidopsis
thaliana 1773 617 180 2931 375 128
(diploid)

' -~ Mitochondria- and plastid-targeted interacting genes are a subset of the total number of mitochondria-
and plastid-targeted genes
2 — Mitochondria and plastid enzyme complex genes are a subset of the total number of mitochondria-
and plastid-targeted interacting genes

Among the genes with mitochondria-targeted products, CyMIRA lists 617 A.
thaliana genes that have interactions with mitochondrial genes or gene products and
180 genes with products that are directly involved in enzyme complexes with
mitochondrially encoded subunits (i.e., mitoribosome, OXPHOS complexes, TAT
complex). We expected to find roughly twice as many genes in each functional category
for tetraploids as are present in Arabidopsis. In the six focal allotetraploids, we found
that functional categories were increased 40-250% (per category/species) relative to A.
thaliana, with means of 1031 (SD = 121) genes having interactions with mitochondrial
genes or gene products and 358 (SD = 68) genes with products that are directly
involved in those three mitochondrial enzyme complexes. A similar pattern was
observed for genes with plastid-targeted products. Where CyMIRA lists 375 A. thaliana
genes that have interactions with plastid genes or gene products and 128 genes with
products that are directly involved in enzyme complexes with plastid-encoded subunits
(i.e., chlororibosome, Photosystems | and Il, NDH, ATP synthase, Cytochrome b6f,
Rubisco, Clp protease, ACCase), we found means of 704 (SD = 61) and 250 (SD = 45)
genes in the allotetraploids for those categories, respectively. Gene numbers for all 55
functional gene categories are described in Table S1, gene IDs for each category and
de novo targeting predictions are available at
https://github.com/jsharbrough/CyMIRA _gene_classification/tree/master/Species_CyMI
RA, and the physical distribution of organelle-targeted genes along polyploid
chromosomes are shown in Figure S3.

Polyploidization events are expected to perturb cytonuclear interactions in part
because cytoplasmic genomes suddenly exist inside a cell in which all of their
nuclear-encoded interacting partners have been doubled. One possible evolutionary
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response to altered cytonuclear stoichiometry in the wake of whole genome duplication
is that nuclear-encoded organelle-targeted genes experience selection to rapidly return
to a diploid-like state [123,124]. We tested this hypothesis for both mitochondria- and
plastid-targeted nuclear genes in six independently formed allopolyploids using the
combined diploid relatives as models for the ancestral allopolyploid state. We found that
quinoa (x* = 54.40, p < 0.0001), wheat (x> = 660.23, p < 0.0001), tobacco (x? = 243.85,
p < 0.0001), and Brachypodium (x? = 50.15, p < 0.0001) retain a significantly smaller
proportion of organelle-targeted genes in duplicate than non-organelle-targeted genes,
whereas, cotton (x? = 134.12, p < 0.0001) and coffee (x*> = 13.40, p = 0.00025) exhibit
the opposite pattern by retaining a significantly larger proportion of organelle-targeted
genes than non-organelle-targeted genes (Table S2). Notably, the excess retention of
organelle-targeted genes in cotton was also evident when we restricted our analysis to
only include the subset of genes directly involved in mitochondrial (x? = 7.90, p =
0.0049) or plastid enzyme complexes (x? = 5.58, p = 0.018). Although levels of retention
within each category varied among species, we did not find a difference in retention
levels between mitochondria-targeted versus plastid targeted genes in any of the six
species (p > 0.05 for all species). Wheat (x*> = 18.35, p < 0.0001) and cotton (x? = 11.05,
p = 0.00089) both exhibited significantly more pentatricopeptide repeat (PPR) genes
(relative to non-organelle-targeted genes) compared to the combined diploids, while the
tobacco genome encoded significantly fewer PPR genes than expected (relative to
non-organelle-targeted genes) compared to the combined diploids (x> = 68.09, p <
0.0001). Together, these results provide mixed support for rapid loss of
organelle-targeted genes compared to the rest of the genome in allopolyploids, but do
indicate that similar forces may equally affect mitochondria- and plastid-targeted genes.
A second possible consequence of polyploidy is incompatibility between the
paternally derived nuclear subgenome and the maternally derived cytoplasmic
genomes, potentially resulting in preferential loss of paternally-derived
organelle-targeted genes in hybrid (allo)polyploid species. This effect could exaggerate
a general subgenome bias for paternal loss or partially compensate for a general bias
towards maternal loss. For five of the allotetraploid genomes, it was possible to assign
genes to subgenomes based on their chromosomal position, thereby permitting a
relative assessment of parental gene loss; the sole exception, N. tabacum, has
experienced extensive genomic rearrangement since polyploidization that precludes
subgenome assignment based on physical location. In general, we found significant
differences in non-organelle-targeted gene abundance across subgenomes for all five
allotetraploid species (Table 3), with quinoa, wheat, and coffee exhibiting more paternal
homoeolog loss, whereas cotton and Brachypodium exhibit a deficit in maternal
homoeologs (Figure 3, left panel). Interestingly, however, when considering biases in
organelle-targeted genes after correcting for genome-wide levels, these biases flip for
quinoa, wheat, and Brachypodium. That is, while both quinoa and wheat exhibit biased
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loss of paternal homoeologs for non-organellar targeting genes, those that are targeted
to the organelles exhibit biased maternal loss (again, relative to background; Figure 3
right panels, Table S3). Similarly, Brachypodium organelle-targeted genes exhibit biased
paternal loss (relative to background), whereas the genome-wide pattern shows biased
maternal loss. These patterns were also found using the diploid relatives to correct for
different gene abundances at the time of allopolyploidization (Figure S4). While the
maternal homoeolog deficit for organelle-targeted genes found in wheat and quinoa is
contrary to predictions based on cytonuclear incompatibilities, we note that this reflects
homoeolog retention relative to the genome-wide rate and suggests that these species
exhibit a lower degree of subgenomic bias in their organelle-targeted genes than the
genome-wide rate.

Table 3. Biased gene content of non-organelle-targeted genes across subgenomes of five
allotetraploid angiosperms.

Quinoa 9786 11053 -0.061 (-0.074 —-0.047) < 0.0001
Wheat 48786 52571 -0.037 (-0.044 — -0.031) < 0.0001
Cotton 29762 28871 0.015 (0.007 — 0.023) 0.00024
Coffee 19008 19773 -0.020 (-0.030 —-0.010) 0.00011
Brachypodium 34860 29605 0.082 (0.074 — 0.089) < 0.0001

Evolutionary rate differences across subgenomes and gene functional categories

We used the CyMIRA gene classifications from the maternal diploid models of each
allotetraploid to classify single-copy orthologous quintets into functional gene
categories, except in the case of wheat. For wheat, the paternal diploid model, Triticum
urartu, was used because the maternal diploid model (i.e., Aegilops speltoides) is only
represented by a transcriptome. These functional categories served as the basis for our
concatenated and gene-level analyses of evolutionary rate. Summary statistics
describing the number of orthologous quintets in each functional category are presented
for each allopolyploid system in Table 4 and Figure S5, along with the rates of
synonymous (ds) and nonsynonymous (dy) evolution in concatenated alignments.
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Table 4. Single-copy orthologous quintets partitioned by functional category in six
allotetraploid species.

Species Functional Category Ng:;:tir t:f ds dy dy/ds
Not-organelle-targeted 6885 0.499 0.096 0.193

Mitochondria-targeted Non-interacting 615 0.444 0.079 0.179
Mitochondria-targeted Interacting 213 0.477 0.105 0.220

Quinoa Mitochondria Enzyme Complexes 69 0.465 0.084 0.180
Plastid-targeted Non-interacting 900 0.449 0.081 0.180

Plastid-targeted Interacting 212 0.463 0.091 0.197

Plastid Enzyme Complexes 74 0.483 0.081 0.168
Not-organelle-targeted 3507 0.1882 0.035 0.187

Mitochondria-targeted Non-interacting 476 0.179 0.030 0.169
Mitochondria-targeted Interacting 67 0.162 0.033 0.206

Wheat Mitochondria Enzyme Complexes 38 0.191 0.039 0.206
Plastid-targeted Non-interacting 561 0.179 0.031 0.171

Plastid-targeted Interacting 86 0.171 0.030 0.175

Plastid Enzyme Complexes 38 0.228 0.030 0.131
Not-organelle-targeted 14957 0.108 0.038 0.348

Mitochondria-targeted Non-interacting 1076 0.106 0.033 0.309
Mitochondria-targeted Interacting 375 0.103 0.034 0.332

Cotton Mitochondria Enzyme Complexes 100 0.119 0.037 0.310
Plastid-targeted Non-interacting 1502 0.106 0.033 0.309

Plastid-targeted Interacting 270 0.102 0.031 0.303

Plastid Enzyme Complexes 94 0.100 0.029 0.289
Not-organelle-targeted 3397 0.181 0.055 0.306

Mitochondria-targeted Non-interacting 306 0.181 0.051 0.281
Mitochondria-targeted Interacting 121 0.170 0.052 0.306

Coffee Mitochondria Enzyme Complexes 31 0.187 0.057 0.307
Plastid-targeted Non-interacting 420 0.180 0.051 0.285

Plastid-targeted Interacting 88 0.163 0.049 0.300

Plastid Enzyme Complexes 25 0.159 0.043 0.273
Not-organelle-targeted 7323 0.438 0.090 0.205

Mitochondria-targeted Non-interacting 675 0.375 0.071 0.190
Mitochondria-targeted Interacting 209 0.374 0.082 0.220

Tobacco Mitochondria Enzyme Complexes 59 0.392 0.070 0.178
Plastid-targeted Non-interacting 952 0.380 0.072 0.191

Plastid-targeted Interacting 183 0.370 0.074 0.200

Plastid Enzyme Complexes 72 0.406 0.070 0.173
Not-organelle-targeted 11886 0.449 0.1052 0.234

Mitochondria-targeted Non-interacting 1310 0.388 0.0759  0.196
Mitochondria-targeted Interacting 367 0.398 0.086 0.216

Brachypodium Mitochondria Enzyme Complexes 116 0.399 0.0645 0.162
Plastid-targeted Non-interacting 1497 0.389 0.0763 0.196

Plastid-targeted Interacting 256 0.396 0.0829 0.209

Plastid Enzyme Complexes 83 0.485 0.0626 0.129

Rates of protein-sequence evolution vary substantially across CyMIRA functional
categories, likely indicative of variation in functional constraint (Figure S5a). In
particular, protein sequences of mitochondrial OXPHOS complexes, several of the
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plastid photosynthesis complexes (but not all, see e.g., the NADH dehydrogenase-like
[NDH] complex), as well as the mitochondrial and plastid RNA polymerases appear to
evolve especially slowly, indicating that they have experienced relatively stringent
purifying selection in these angiosperms. In addition to complex-level effects, we also
observed differences in protein-sequence evolution across our focal angiosperm
systems, with coffee and cotton genomes exhibiting higher quintet-wide d\/ds values
compared to quinoa, wheat, tobacco, and Brachypodium (Figure S5b).

Cytonuclear incompatibilities between maternally derived cytoplasmic genomes
and the paternal subgenomes of allopolyploids are expected to result in accelerated
rates of protein-sequence evolution in the paternal homoeologs of organelle-targeted
genes. We tested for signatures of these cytonuclear incompatibilities first by estimating
differences in rates of protein-sequence evolution (i.e., dy/ds = w) in concatenated and
individual gene alignments of paternal (wgear) vs. maternal (wyar) subgenomes in
non-organelle-targeted (NOT) genes to assess whether genome-wide biases exist in
our six focal allopolyploids. In concatenated analyses, quinoa, wheat, cotton, and
tobacco all showed significant departures (i.e., < 2.5% overlap of bootstrap distributions
between wp,r and wy,7) from equal rates of evolution across subgenomes. In particular,
quinoa, cotton, and tobacco exhibited higher w values in maternally derived
homoeologs of NOT genes than paternal homoeologs (i.e., Wear: Wyar ratio < 1), while
coffee and wheat showed the opposite pattern in which paternally derived homoeologs
exhibit faster rates of protein-sequence evolution than maternal homoeologs (i.e., Wear:
wyar ratio > 1; Figure 4a). We observed similar patterns in gene-level analyses as
compared to concatenated analyses in the three older polyploids (Figure 4b): a
significantly higher proportion of maternal homoeologs (py4r) exhibited faster rates of
evolution than paternal homoeologs (psa7) in quinoa (binomial test, p = 0.0022) and
cotton (binomial test, p < 0.0001), while ppsr was significantly greater than p,.r in wheat
(binomial test, p < 0.0001). Although p,.r was greater than pg,r in the concatenated
analysis of tobacco subgenomes, the difference was not significant at the gene level
(binomial test, p = 0.183). A similar result was obtained in coffee, with the concatenated
analysis showing a significant paternal bias, but gene-level patterns did not appear to
be paternally biased (binomial test, p = 0.375). Bootstrap distributions of wy,r in
Brachypodium estimated from concatenated alignments were higher than bootstrap
distributions of we,r but were not significantly different (i.e., > 2.5% overlap), while pyar
was significantly greater than pp,r at the individual gene level (binomial test, p =
0.00026). The higher w values in the maternal subgenomes of quinoa, cotton, and
Brachypodium and the higher w values in the paternal subgenome of coffee were
primarily driven by differences in dy as opposed to ds (Figure 2), indicating that these
subgenomes experience different rates of protein-sequence evolution. By contrast, the
elevated w values in the maternal subgenome of tobacco and the paternal subgenome
of wheat were primarily driven by ds (Figure 2), potentially indicating that different
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subgenomes experience different mutation rates or that the diploids used here
represent highly asymmetric models of the diploid progenitors. Taken together, these
analyses of NOT genes indicate that allopolyploids experience significant biases in
rates of evolution across subgenomes present inside the same cell.

We next performed concatenated and gene-level analyses of wpar and wyar in
organelle-targeted genes (normalized by NOT genes) to test whether paternal
homoeologs exhibited faster rates of protein-sequence evolution than maternal
homoeologs, as predicted if paternal subgenomes harbor incompatibilities with the
cytoplasmic genomes. We found evidence that concatenations of wheat genes involved
in mitochondrial enzyme complexes exhibited significantly higher wpg,; values (median =
0.661, 95% CIl = 0.268 — 0.807) compared to wy,r values (median = 0.0771, 95% CI =
0.0460 — 0.125), relative to NOT genes (wpar = 0.444, 95% Cl = 0.414 — 0.476; wpyar =
0.201, 95% CI = 0.189 — 0.215); however, no other species or functional classes
exhibited the predicted pattern (Figure 5). To further investigate the patterns of
molecular evolution the wheat mitochondrial enzyme complex genes, we manually
inspected and trimmed concatenated alignments from NOT genes, mitochondrial
enzyme complex genes, and plastid enzyme complex genes and re-inferred wp,r and
wyar in all three gene categories. Importantly, we found two small regions from two
genes in the mitochondrial enzyme complexes that were poorly aligned only in the
paternal subgenome, contributing to elevated wp,; but not wy,.r. The poorly aligned
regions appeared to be caused by a combination of an apparent frameshift in the
paternal homoeologs of one gene encoding a protein involved in the NADH
Dehydrogenase (OXPHOS Complex | - TRIDC1AG048530) and another gene
encoding a protein that functions in the large subunit of the mitoribosome
(TRIDC4AG029590) had an exon on the 3’ end of the gene with no apparent homology
to the other sequences in the quintet (likely due to misannotation or misassembly, as
the new T. turgidum assembly, GCA_900231445.1, does not have this same issue).
Both genes exhibited substantially different ds and d, values compared to other genes
in the same functional gene category (Table S4). Trimming the poorly aligned regions
resulted in a substantially lower dj, value for concatenated alignments of mitochondrial
enzyme complex genes, which in turn caused a lower wg,r value that was not
significantly different from the wy,r value (Figure S6). All timmed alignments and
analyses are available at
https://github.com/jsharbrough/allopolyploidCytonuclearEvolutionaryRate. For
gene-level analyses, we did not find any functional categories in any species that
exhibited significantly different normalized proportions of genes with higher wp,r or wyar
(Figure S7), a pattern which did not change when dy was used in place of w. Thus,
there do not appear to be global accelerations in protein-sequence evolutionary rate of
paternal homoeologs of organelle-targeted genes in the wake of allopolyploidization.
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We next evaluated w values at the level of specific cytonuclear interactions
(Table S5) and found scattered patterns of both paternal and maternal bias across
various cytonuclear interactions in the three older polyploids (i.e., quinoa, wheat, and
cotton). In particular, paternal homoeologs of quinoa exhibited significantly higher w
values (i.e., w values from concatenated alignments +/- 1 SE were outside
bootstrap-constructed 95% confidence intervals of NOT genes) than maternal
homoeologs in mitochondrial tRNA base modification, plastid NDH, and plastid tRNA
base modification, and maternal homoeologs exhibited significantly higher w values
than paternal homoeologs in both subunits of the chlororibosome and Photosystem |
(PSI). As seen at higher levels of organization, wheat mitochondrial enzyme complexes
generally exhibited higher w values in paternal vs. maternal homoeologs (see below for
detailed discussion) compared to NOT genes. However, the reverse was true in plastid
enzyme complexes, with plastid PSIl exhibiting significantly higher w values in maternal
vs. paternal homoeologs, relative to NOT genes. Wheat organellar tRNA aminoacyl
synthetases, which are largely dual-targeted [125], also exhibited significant maternal
bias compared to NOT genes. Cotton had fewer CyMIRA categories that showed
evidence of bias over-and-above genome-wide levels, with just the mitochondria- and
plastid-targeted recombination, replication, and repair (RRR) genes (also commonly
dual-targeted [67]) exhibiting elevated w values in paternal vs. maternal homoeologs
and the large subunit of the mitoribosome and mitochondria-targeted PPR genes
exhibiting higher w values in maternal vs. paternal homoeologs compared to NOT
genes. Coffee, tobacco, and Brachypodium all appear to be too young for this analysis,
as only a single functional category (plastid transcription and transcript maturation) in
coffee showed significant (maternal) bias compared to NOT genes, despite
genome-wide bias in w values of coffee and tobacco. There were no CyMIRA
categories that exhibited consistent patterns across even the older three allopolyploids,
highlighting the highly context-specific nature of evolutionary dynamics of cytonuclear
interactions in allopolyploids.

Because incompatibilities are only likely to arise in genes that are divergent at
the time of allopolyploidization, we also performed the analyses described above on
high and low divergence gene bins. To do so we split single-copy orthologous quintets
into two groups: those with high amino acid sequence divergence between diploid
models (measured by d,) and those with low amino acid sequence divergence. We
used a similar approach as before to normalize wpg,r and wy,ur using the NOT genes.
There were only two cases in which high and low divergence classes differed by more
than one standard error: mitochondrial and plastid enzyme complexes of wheat (Figure
S8). In particular, the low divergence class of wheat mitochondrial enzyme complexes
(MTEC) exhibited more extreme paternal bias than the high divergence class, while the
low-divergence class of wheat plastid enzyme complexes (PTEC) exhibited a more
extreme maternal bias compared to the high-divergence class. This somewhat
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surprising result notwithstanding, the lack of signal in the high divergence classes
across the other functional categories and species indicates that cytonuclear
incompatibilities of allopolyploids are not resolved by faster rates of protein-sequence
evolution in paternal homoeologs.

We compared patterns of autapomorphic amino acid changing mutations at sites
that were conserved throughout the rest of the quintet in genes encoding subunits of
mitochondrial enzyme complexes. For each species, we observed several gene
functional categories that exhibited an excess number of autapomorphic amino acid
changes compared to genes not targeted to the mitochondria or plastids in one
subgenome compared to the other. However, the direction of excess was not consistent
across species or even across functional gene categories (Table S6).

Because derived amino acids with substantially different biochemical properties
compared to ancestral residues (i.e., radical amino acid changes) are especially likely to
alter protein structure and function [126—131], we next restricted these analyses of
derived amino acid changes in the tetraploids to only include radical amino acid
changes (as defined by the Conservative/Radical Index CRI [132]). As was the case
with total derived amino acid changes, there existed several functional categories in
each species that exhibited significant biases in the accumulation of radical
autapomorphies across subgenomes, but the direction of bias and the functional
categories identified were not consistent across species. Several notable functional
categories did exhibit bias across multiple species though (e.g., DNA replication,
recombination, and repair genes [quinoa, cotton, Brachypodium], tRNA base
modification genes [quinoa, cotton, coffee, Brachypodium], and tRNA aminoacyl
synthetases [wheat, tobacco]), potentially indicating they are hotbeds for cytonuclear
incompatibilities and/or diploidization. Together these results indicate that cytonuclear
enzymes exhibit complex- and species-specific patterns of accumulation of derived
amino acids at conserved sites.

In sum, our concatenated, gene-level, and site level analyses provide evidence
that protein sequences of different allopolyploid subgenomes exhibit different w values,
potentially as a result of different rates of protein-sequence evolution, but cytonuclear
incompatibilities resulting from the allopolyploidization event do not leave global
signatures of accelerated protein sequence evolution in paternal homoeologs of
organelle-targeted genes. Moreover, while organelle-targeted genes are often lost at
higher rates than genome-wide rates of diploidization, this is not always the case,
especially in cotton, and biased gene content of allopolyploid subgenomes does not
appear to be related to cytonuclear incompatibilities. Rather, only species- and
complex-specific cytonuclear dynamics appear to alter rates of evolution in
organelle-targeted genes, and in directions not uniformly consistent with allopolyploidy
induced cytonuclear incompatibilities.
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DISCUSSION

We inferred orthologous gene sets, partitioned genes by subcellular targeting
localization and cytonuclear interaction, and evaluated genome-wide patterns of gene
content and natural selection across subgenomes of six allotetraploid angiosperms. We
report significant genome-wide biases across maternal vs. paternal subgenomes in
overall gene content in all five allopolyploids tested and in mutation-rate-corrected rates
of protein-sequence evolution (i.e., w) in all six allopolyploid genomes tested. The
directions of bias in both gene content and higher w were not consistent across
independent allopolyploidization events, and the patterns observed in gene content did
not appear to be similar in direction as bias in w.

The analyses reported here support three primary conclusions: (1) allopolyploid
subgenomes exhibit substantially different rates of protein-sequence evolution from one
another despite existing inside the same cell for thousands to millions of years; (2)
cytonuclear incompatibilities between the cytoplasmic genomes and the paternal
subgenome are complex and taxon-specific and do not result in global increases in
rates of protein-sequence evolution in paternal homoeologs of organelle-targeted
genes; and (3) gene content is not equally distributed across subgenomes, with both
species and cytonuclear functional classes contributing to variation in the rate at which
genomes fractionate following WGDs. The foregoing conclusions suggest a number of
questions that have implications for our understanding of polyploid biology.

Differential rates of protein-sequence evolution across allopolyploid subgenomes

Most prominent among our data are the remarkable differences in evolutionary patterns
across subgenomes, raising the question of what evolutionary forces underlie these
subgenomic biases? That is, allopolyploid subgenomes that have been (co-)evolving
inside the same nucleus for thousands to millions of years [133], remain on separate
evolutionary trajectories with respect to evolutionary rates in protein-coding genes.
Here, we consider several phenomena that could play a role in establishing and
maintaining subgenomic biases.

If w is adequately inferring patterns of natural selection across subgenomes (but
see below for alternative explanations), then the patterns of subgenomic biases in rates
of protein-sequence evolution reported here could arise from differences in the efficacy
of selection or effective population size (N,) across subgenomes. In particular, genes
that are more highly expressed [134,135], have higher local recombination rates
[136—139], or lower local TE densities [140-142] (but see [143]), are expected to
experience increased efficacies of natural selection and thus exhibit reduced rates of
protein-sequence evolution [144]. That is, genome-wide differences between the
progenitors at the time of allopolyploid formation (e.g., transcriptome size,
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recombination rate, TE load) would not only be expected to give rise to subgenomic
differences in the immediate aftermath of polyploidization [101,145-148], but also
contribute to evolved differences across subgenomes [10,11,149—-153].

Mutation rate varies tremendously across species, populations, individuals, and
even within genomes [154—-157], making it a potential candidate for generating
subgenome biases in w, if elevated mutation rate results in increased rates of
background selection, thereby reducing N, [144]. Such mutational biases could reflect
ancestral differences in parental species (e.qg., differences in DNA methylation [157]), or
could potentially arise after polyploidization in association with other biased phenomena
such as recombination [158], gene expression [8,36,38,159—166], epigenetic marks
[26-33], or transposable element activity [14—17], which are all thought to themselves
be mutagenic [167-170].

Subgenomes might also differ in N, as a result of backcrossing, in which one
polyploid subgenome experiences higher rates of introgression than the other
[171-173]. Repeated allopolyploid formation or gene flow from diploids (e.g.,
Brachypodium hybridum — [122], Arabidopsis suecica — [174]) can cause N, to differ
across subgenomes. Finally, recombination could also act to bias inferences of w
artifactually because genetic material exchanged across subgenomes via
homoeologous exchange [18-25,175-183], gene conversion
[19,20,57,62,133,153,184—-189], and other recombinational mechanisms (e.g., [190])
would be expected to bias w inferred across a topologically constrained tree. However,
we took steps to prevent this type of artifact from influencing our data by only including
genes that exhibited gene-tree topologies that were consistent with the species tree
topology.

The relative contributions of these various evolutionary dynamics are of central
importance to the understanding of polyploid genomes, but testing each hypothesis in
turn is made difficult by the fact that the sampled diploids are, to varying degrees,
imprecise models of the ancestral progenitors. Therefore, an unknown fraction of each
terminal “polyploid” branch in our quintet trees actually represents evolution as a diploid
prior to hybridization. Wheat in particular is susceptible to artifactual inflation of w
because Aegilops speltoides is so much more distantly related to the B subgenome of
the polyploid than Triticum urartu is to the A subgenome (Figure 2). The persistence of
slightly deleterious changes since the divergence of the A subgenome and the diploid A
genome may result in overestimates of w in the A subgenome compared to the B
subgenome. The same logic applies to all of our polyploid taxa to varying extents;
however, it is worth noting that while differences in ds across subgenomes were the
primary drivers of differences in w in wheat and tobacco, dy had a proportionally larger
effect than ds on differences in w in quinoa, cotton, coffee, and Brachypodium. This
latter finding is consistent with selection being the driving factor in variation in
evolutionary rates across subgenomes (but see prior caveat regarding quality of diploid
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models and evolution prior to polyploidization), rather than mutation rate variation or
artifactual inflation of w in the more closely related diploid-subgenome pair. In the same
vein, coffee and cotton, which are both thought to have extremely small effective
population sizes [191], exhibited the highest overall w values (Figure S5b). All told,
investigating site frequency spectra, gene expression profiling, and recombination rates
within populations and their relationships to the biased w values reported here will help
resolve these outstanding questions.

No global signature of mitonuclear incompatibilities in paternal homoeologs of
allopolyploid genomes

To test the hypothesis that incompatibilities stemming from evolutionary mismatches
between the maternally derived cytoplasmic genomes and the paternally derived
nuclear subgenome result in preferential loss and accelerated rates of protein-sequence
evolution in paternal homoeologs of organelle-targeted genes, we applied the same
analyses described above to sets of CyMIRA-partitioned genes, after accounting for
genome-wide effects. We did not discover evidence that cytonuclear incompatibilities
shape either gene content or protein-sequence evolution in paternal homoeologs of
organelle-targeted genes, despite multiple distinct tests of this hypothesis. In particular,
patterns of gene content on organelle-targeted genes exhibited the opposite pattern as
that observed in NOT genes in three of five allopolyploid taxa (the remaining two were
not significantly different from genome-wide patterns), indicating that organelle-targeted
genes tend to exhibit greater balance across subgenomes than the rest of the genome.
While the proportion of organelle-targeted genes per subgenome did not appear to be
especially maternally biased, four of six allotetraploids had reduced overall proportions
of organelle-targeted genes compared to NOT genes. Overall, rates of
protein-sequence evolution in organelle-targeted and interacting genes generally
reflected the genome-wide patterns of bias observed in NOT genes, rather than rate
accelerations peculiar to paternal but not maternal homoeologs.

One outstanding question stemming from our analyses of protein-sequence
evolution in paternal vs. maternal homoeologs of organelle-targeted genes is why hybrid
polyploid genomes appear to generally lack genome-wide signatures of cytonuclear
incompatibilities, despite their apparent importance in homoploid hybridization [95] and
introgression events [92]? It is possible that cytonuclear incompatibilities do leave
signatures on genomes, but not in terms of accelerated rates of protein-sequence
evolution in paternal homoeologs. For example, pseudogenization may be a rapid and
common mechanism for adaptation in plant genomes (e.g., [192]), which would be
missed by our quintet analyses. While we did not observe maternally biased gene
content in CyMIRA datasets, direct analysis of bias in homoeologous pairs in which one
copy is pseudogenized is necessary to rule out gene loss as a mechanism by which
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cytonuclear incompatibilities are resolved. The seemingly stochastic patterns of
homoeolog bias in accumulation of autapomorphic amino acid changes indicates that
there are often cases in which homoeologs of cytonuclear interacting genes evolve very
differently, perhaps reflecting cytonuclear incompatibilities or the precursor to gene loss
and diploidization, but these biases do not appear to coincide with the
allopolyploidization events in any systematic way. The presence of biased accumulation
of autapomorphies in Brachypodium may indicate that cytonuclear incompatibilities are
resolved rapidly. Cytonuclear incompatibilities may also be resolved via biased
homoeolog expression [162], gene conversion [57,62] or homoeologous exchange [25],
subfunctionalization of subcellular localization by differential isoform usage across
homoeologs [193], or other potential mechanisms that would not generate global
signatures of paternal acceleration in coding sequences of organelle-targeted quintets.

Biased homoeolog expression represents a potential mechanism by which
allopolyploids could resolve cytonuclear incompatibilities, but has found mixed support
in the studies that have so far attempted it. In particular, cotton, tobacco, Arabidopsis,
peanut, and the extremely young allotetraploid Tragopogon miscellus exhibit biased
maternal expression of the nuclear-encoded subunit of Rubisco [56-58], but others
have not found similar patterns in rice [59] or Brassica napus [60]. Moving forward,
large-scale genome-wide homoeolog expression bias could be evaluated across all the
CyMIRA gene sets (not just Rubisco) to test this hypothesis. Additionally, the topological
and alignment filtering steps we imposed on quintets here had the intended side effect
of filtering out genes exhibiting gene conversion or homoeologous exchange. Notable
among them was rbcS, which encodes the small subunit of Rubisco and was missing
from filtered, single-copy quintets in five of six species complexes (present only in
Brachypodium, the youngest allopolyploid). It is likely that because of rbcS’ propensity
for gene conversion [57], this apparent “hotbed” for cytonuclear incompatibilities might
provide additional evidence that was missed here. Certainly, a careful analysis of
maternal vs. paternal bias in gene conversion tracts and homoeologous exchanges
among organelle-targeted genes may be a fruitful future approach.

An additional and perhaps likely possibility is that cytoplasmic genomes of these
allopolyploids may evolve too slowly in protein-coding sequence to generate
widespread incompatibilities in hybrid polyploids [194]. The relatively young
allopolyploid Brassica napus may be a relevant example. The plastid genomes of B.
oleracea and B. rapa have very few differences, and a recent analysis did not detect
extensive incompatibilities with nuclear subgenomes [60]. By contrast, elevated rates of
protein-sequence evolution and w values in organelle-interacting genes have been
detected repeatedly in lineages with rapidly evolving cytoplasmic genomes
[86,87,89,195-202]. Therefore, genome-wide analyses of evolutionary rates appear to
be sensitive enough to detect cytonuclear incompatibilities when their effects are strong.
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Because cytonuclear interactions are critical for hybrid lineage success in many
cases [203—205], allopolyploids with cytonuclear incompatibilities may also be
evolutionarily short-lived, such that the relatively successful allopolyploids assayed here
may be unlikely to exhibit cytonuclear incompatibilities. Along these lines, allopolyploid
unisexual salamanders do not appear to exhibit maternally biased expression of
nuclear-encoded OXPHOS genes [206], despite high rates of mitochondrial DNA
sequence evolution and ancient divergence of the mitochondrial lineage from the
paternal lineages [173]. The high incidence of asexuality and selfing species among
polyploid lineages may speak to this possibility [44]. Overall, the data presented here
and elsewhere appear most consistent with a scenario in which cytonuclear
incompatibilities have minimal effects on rates of protein sequence evolution in
allopolyploid plants.

Cytonuclear gene content evolution in allopolyploids

Polyploids often have both larger cells [52,207—-210] and more chloroplasts per cell in
leaf tissue ([211-216][53]). Together, these phenomena suggest that stoichiometry
between nuclear and cytoplasmic genomes is important for cellular and organismal
function [55]. Previous work investigating single-copy genes in plants indicated that
organelle-targeted genes are among the first to return to diploidy following whole
genome duplication events [123,124]. The gene content analyses presented here
generally agree with those analyses, although cotton and coffee offer important
exceptions that muddy the waters. By contrast, Ferreira de Carvalho and colleagues
[60] reported higher levels of maintained duplicates in organelle-targeted genes in the
allopolyploid Brassica napus, compared to genome-wide levels. The discrepancies
between the former two studies (performed in diploids) and the latter two (performed in
polyploids) indicates that cytonuclear stoichiometry may be highly responsive to nuclear
gene content. In support of that hypothesis, diverse polyploids appear to compensate
for elevated nuclear ploidy with increased organelle genome copy number
[40,214,217-220]. Additional work investigating the immediate and evolved
consequences of cytonuclear stoichiometry at the genomic, transcriptomic, proteomic,
and organellar levels, especially by homoeologous pair analysis, will provide valuable
insights into the unresolved question of how genome doubling can affect cellular energy
production and homeostasis.

Summary
The genome-wide analyses of maternal vs. paternal evolutionary rates presented here

represent the most extensive investigation of cytonuclear incompatibilities in
allopolyploids performed to date, representing six distinct allopolyploidization events of
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varying ages and divergences. We find clear evidence of differential evolution across
subgenomes, but little evidence of paternal-homoeolog-specific accelerations of
evolutionary rates in organelle-targeted genes. Additionally, we found that
organelle-targeted gene content tends to be less biased than the rest of the genome,
with mixed evidence of whether organelle-targeted genes tend to be lost more often
than the rest of the genome. Further work investigating the forces underlying these
observations and the consequences for organismal energy metabolism and
homeostasis will be critical for understanding the cytonuclear dimension of
allopolyploidy.
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MATERIALS AND METHODS
Genomic datasets

The proliferation of genome assemblies for polyploid plants and their diploid relatives
has enabled powerful phylogenomic analyses. We identified six allotetraploids that
share hybrid origins (Figure 1a), have publicly available chromosome-scale genome
assemblies for both the polyploid and the diploids that are most closely related to each
subgenome (with the exception of the wild emmer wheat [ Triticum dicoccoides] B
subgenome, whose diploid relative [Aegilops speltoides] only has a transcriptome
available), and varying degrees of divergence between their diploid progenitors and the
amount of time since allopolyploidization (Figure 1b). We also included the closest
available chromosome-scale assembly for an outgroup species to polarize substitutions.
Accession numbers and references are provided for assemblies and annotations used
from each species complex in Table 5.

Table 5. Genomic resources for six allotetraploid species complexes.

Species complex Species Ploidy Version/Accession Reference
Hordeum vulgare® 2X GCA_901482405.1 [110]
) Brachypodium distachyon 2X GCA_000005505.4 [221]
Brachypodium i . .
Brachypodium stacei’' 2x B_stacei_v1_1 [122]
Brachypodium hybridum 4x B_hybridum_v1_1 [122]
Gardenia jasminoides® 2x GCA_013103745.1 [117]
Coffee Coffea canephora 2x GCA_900059795.1 [116]
Coffea eugenoides® 2X GCA_003713205.1 [222]
Coffea arabica 4x GCA_003713225.1 [114,222]
Gossypioides Kirkii° 2X Gossypioides_kirkii_ISU-v3.0 [106]
Cotton Gossypium raimondii 2x G.raimondii_JGI_221_v2.0 [104]
Gossypium arboreum?® 2x G.arboreum_CRI-A2_assembly _v1.0 [223]
Gossypium hirsutum 4x Ghirsutum_458 v1.0 [224]
Spinacia oleracea® 2x GCA_002007265.1 [225]
. Chenopodium suecicum 2X Csuecicum_DT_PBjellyM2
Quinoa Chenopodium pallidicaule* 2X PGA_assembly_final_assembly_Cpallidicaule [120]
Chenopodium quinoa 4x quinoa_pb_chicago-2-final_PBJELLY_pilon [21]
Solanum lycopersicum® 2X ITAG4.0 [226]
Tobacco Nicotiana tomentosiformis 2x GCA_000390325.2 [119]
Nicotiana sylvestris® 2x GCA_000393655.1 [119]
Nicotiana tabacum 4x GCA_002210045.1 [118]
Hordeum vulgare® 2x GCA _901482405.1 [110]
Wheat Triticum urartu 2X GCA_003073215.1 [109]
Aegilops speltoides® 2X SRR949822
Triticum dicoccoides 4x GCA_002162155.2 [111]

O— Species used as outgroup sequence

1 Closest extant relative to maternal progenitor inferred from plastome data [122]
2_ Closest extant relative to maternal progenitor inferred from plastome data [227]

3_ Closest extant relative to maternal progenitor inferred from mitochondrial and plastome data [107,228]
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4_ Closest extant relative to maternal progenitor inferred from mitochondrial and plastome data [229]
5_ Closest extant relative to maternal progenitor inferred from mitochondrial and plastome data [230,231]

6_ Closest extant relative to maternal progenitor inferred from plastome data [232]

Orthologous quintet inference

Each of the six allopolyploids have subgenomes that are more closely related to those
of the sampled diploids than they are to each other. Combined with an outgroup lineage,
the resulting tree topology characteristics of allopolyploids (Figure 2) allow for robust
inference of lineage-specific rates of evolution in orthologous quintets. We used a
combination of phylogenetic and syntenic methods to construct orthologous quintets
(Figure S1).

To infer orthologous quintets using phylogenetic methods, we used Orthofinder v.
2.2.7 to infer orthologous groups of sequences, termed “orthogroups”, from the whole
proteomes (primary transcripts only) of all four species [233]. For each orthogroup, we
aligned CDS sequences in a codon-aware manner using the
align_fasta_with_mafft_codon subroutine in the sloan.pm perl module (available at
https://github.com/dbsloan/perl_modules) which translates CDS sequences into amino
acid sequences, aligns those amino acid sequences with MAFFT v7.407 [234], and
reverse translates the aligned amino acid positions into the CDS sequences to produce
the final alignment. We selected models of molecular evolution for each alignment using
jModelTest2 v2.1.10 to identify the model with the highest AlCc score [235,236], and
inferred phylogenetic trees with the MPI-compatible distribution of PhyML
v3.3.20180214 [235]. Five random tree starts were performed, and the treespace was
further searched using a combination of nearest-neighbor-interchange subtree pruning
and re-grafting. Support for trees was assessed using 100 bootstrap replicates, and
splits with < 50 bootstrap support were collapsed into polytomies using
collapeLowSupportBranches.py (unless otherwise stated all scripts are available at
https://github.com/jsharbrough/allopolyploidCytonuclearEvolutionaryRate/tree/master/sc
ripts).

All monophyletic, minimally inclusive, species-complete subtrees were pruned
out of orthogroup trees using subTreelterator.py. We next trimmed lineage-specific gene
duplicates from subtrees using trimBranches.py, which keeps only the longest sequence
or a random sequence in cases where sequence length is equal across copies. The
resulting trimmed subtrees that contained exactly one sequence from each diploid and
two sequences from the polyploid represented our set of phylogenetic orthologous
quintets. All scripts developed for reading, writing, and manipulating trees are based on
the DendroPy package (https://dendropy.ora/) [237].
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We used the pSONIC [238]program to create a genome-wide set of syntenic
orthologs. In short, pSONIC employs MCScanX [239] to create a list of pairwise
syntenic blocks between all possible pairs of species in each clade, combined with
orthogroups identified from OrthoFinder [233] to choose which syntenic blocks
contained the highest confidence orthologs that were direct descendants of the most
recent common ancestor of all species in the clade. Notably, the filtering criteria of
collinear groups from our run of pSONIC differed from its formal presentation in that we
did not remove collinear groups in which more genes received a “not pass” than “pass”
score, and the ends of each collinear block were not trimmed as described in the
manuscript describing pSONIC. These developments were made after our analyses
were performed with this tool, but before the tool was submitted and reviewed for
publication.

To take advantage of both inference methods, we merged phylogenetic and
syntenic orthologous quintets using mergeQuintets.py to produce a high quality set of
quintets that were identical across both methods (i.e. “Intersection”) and a second set of
quintets that included all identical quintets plus all the phylogenetic quintets whose
members were not present in the syntenic quintets and vice versa (i.e., “Union”).
Results from the Intersection dataset (Supplementary File 1, Figure S10, Figure S11)
did not differ in any meaningful way from the Union, so only Union results are described
in the main text. Phylogenetic quintets that overlapped with but were not identical to
syntenic quintets were excluded. Likewise, syntenic quintets that overlapped with but
were not identical to phylogenetic quintets were also removed from our final analysis.
These conflicting quintets represent a small minority of total quintets and are likely a
result of the different methods by which lineage-specific duplicates are handled in the
phylogenetic vs. syntenic pipelines.

For all non-conflicting orthologous quintets, we re-aligned CDS sequences as
before, trimmed alignments with Gblocks v0.91b using the codon setting with the
parameter -p set to n [240]. We estimated new models of molecular evolution using
jModelTest2 [235,236], and inferred phylogenetic trees as described above. We tested
whether the resulting gene tree topologies agreed with the overall species tree using the
quintetTopology.py script and excluded all genes with discordant tree topologies from
subsequent evolutionary rate analyses.

CyMIRA-based gene classification

To evaluate the effect of cytonuclear interactions on subgenome-specific evolutionary
dynamics, we used a combination of de novo targeting predictions and CyMIRA [67] to
partition genes into distinct functional and interaction categories. De novo targeting
predictions were obtained from four separate targeting prediction programs: iPSORT
v0.94 [241], LOCALIZER v1.0.4 [242], Predotar 1.03 [243], and TargetP v1.1b [244]. In
parallel, we used Orthofinder v2.2.7 to obtain orthology information with the Arabidopsis
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thaliana Araport 11 proteome [245]. We combined the de novo targeting predictions with
the Arabidopsis-inclusive orthogroups using the geneClassification.py script. Genes
were classified as cytonuclear-interacting genes if they shared the same orthogroup as
Arabidopsis genes whose products interact with mitochondrial/plastid genomes or gene
products according to the CyMIRA classifications scheme [67]. Genes present in
orthogroups lacking an Arabidopsis cytonuclear interacting gene were classified as
organelle-targeted if at least one de novo prediction tool indicated a mitochondrial or
plastid subcellular localization for the gene product and 250% of Arabidopsis genes
present in the orthogroup encode products targeted to the mitochondria or plastids
according to CyMIRA. Genes with evidence of dual targeting were included in both
mitochondria-targeted and plastid-targeted data partitions. The resulting genome-wide
targeting predictions and CyMIRA-guided classifications are available at
https://github.com/jsharbrough/allopolyploidCytonuclearEvolutionaryRate/tree/master/ge
neClassification and the pipeline for performing this classification is available at
https://github.com/jsharbrough/CyMIRA gene_classification. The breakdowns of gene
functional categories for each genome are provided in Table 2 and Table S2.

We next evaluated whether retention of genes targeted to the organelles differs
across subgenomes by comparing CyMIRA gene counts across subgenomes for five
out of six polyploid genomes (N. tabacum was excluded from this analysis owing to the
difficulty in positively identifying subgenomic ancestry for genes lacking a corresponding
homoeolog). We performed binomial tests of NOT genes against expectations of equal
retention, and then used x? tests of organelle-targeted gene groups against the
genome-wide patterns observed among genes not targeted to the organelles.

Evolutionary rate comparisons

We evaluated genome-wide signatures of cytonuclear incompatibilities in
organelle-targeted genes using a combination of single gene and concatenated
analyses. For all single-copy quintets whose evolutionary history was consistent with
the overall species tree, we removed poorly aligned quintets by estimating the total
length of the tree in terms of synonymous substitutions per site (ds) using model 1 in
codeml within PAML v4.9j [246]. Maximum cutoff values for ds were determined for each
species complex separately and are depicted by red lines in Figure S8.

After quality filtering, we estimated d,, ds, and w for individual quintets using
model 1 in codeml as above, and the RateAncestor parameter set to 1. Other PAML
parameters included the getSE parameter set to 1, the gamma shape parameter set to
a fixed alpha of O (i.e., no rate variation among codons), initial omega set to 0.4, and
initial kappa set to 2. For each quintet in each functional gene category, we evaluated
whether the maternal vs. paternal subgenome had a higher w value and a higher d,.
We used x? tests to evaluate whether individual categories differed from the pattern
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observed in the group of genes not targeted to the organelles. Using the inferred
mutational changes from the RateAncestor output, we also evaluated whether maternal
vs. paternal subgenomes had higher numbers of radical amino acid changes (i.e.,
substitutions between amino acids with substantially different biochemical properties) at
sites that were otherwise conserved across the quintet. Substitutions were identified as
radical if their score in the CRI matrix [132] was >0.5. Accumulation of derived
conservative and radical amino acid changes was analyzed in a similar manner to w
and d,, results, using a Fisher’s Exact Test to test whether there was a difference
compared to genes not targeted to the organelles.

Next, we concatenated quintets according to gene functional category and
estimated w in maternal vs. paternal subgenomes using similar PAML parameters as
before. For each PAML run, we repeated the analysis 1000 times to adequately sample
the maximum likelihood plane and found median w values from the replicates for each
branch. We then calculated the ratio of paternal to maternal subgenome w values
(wear’wuar), With a ratio >1.0 indicating faster rates of amino acid sequence evolution in
the paternal subgenome and a ratio <1.0 indicating a faster rate of amino acid sequence
evolution in the maternal subgenome. We assessed the statistical significance of the
degree to which subgenomes exhibited different rates of amino acid sequence evolution
by bootstrapping concatenated alignments at the gene level. For each bootstrap
replicate we randomly sampled genes with replacement from the original concatenation
and ran each bootstrapped alignment through five replicate runs of PAML. The median
w values of these five replicates were used as the bootstrap replicate values. We then
found the ratio of paternal to maternal w values for each bootstrap replicate and for
each gene functional category to evaluate whether bootstrapped distributions departed
from 1.0. To account for evolutionary forces that are not a result of cytonuclear
interactions, we normalized these ratios by dividing by the paternal to maternal w ratio
of genes not targeted to either organelle. We inferred two-tailed p values directly from
bootstrap distributions. For specific cytonuclear interaction categories, which are
composed of only a few dozen genes or less, we manually inspected concatenated
alignments, trimmed poorly aligned regions, bootstrapped alignments at the codon level
using the python script bootstrapCodons.py, and performed PAML analyses with a
similar approach as before.

Because cytonuclear incompatibilities are only expected when there exists
divergence between the two progenitor genomes, we also binned our quintets based on
high vs. low divergence between diploids for each species and repeated the gene-level
bootstrap procedure described above. First, we estimated d, between diploid relatives
for each quintet individually from the gene-specific PAML runs described above and
placed genes according to dyinto two equally sized bins. We then tested whether genes
with high levels of amino acid divergence exhibit greater accelerations in w in paternal
copies than in genes with lower levels of amino acid sequence divergence. We
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evaluated statistical significance by bootstrapping alignments at the gene level and
comparing paternal to maternal w ratio distributions from the same gene categories to
one another.
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Figure 1. Evolutionary relationships and origins of six allotetraploid angiosperms.
a) Cladogram depicting evolutionary relationships among six independently derived
allotetraploid angiosperms. b) The scatter plot depicts the synonymous substitutions per
synonymous site (ds) between the polyploid subgenome-diploid pair with the lowest
amount of divergence on the x-axis as a proxy for the amount of time since
allopolyploidization. Amino acid sequence divergence between subgenomes, measured
as nonsynonymous substitutions per nonsynonymous site (dy) between the two diploid
relatives, is shown on the y-axis. Higher levels of amino acid sequence divergence
between subgenomes increase the probability of a genetic incompatibility in the
polyploid, whereas longer periods of time since allopolyploidization increases the
probability that evolutionary responses to incompatibilities are detectable in the
polyploid.
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Figure 2. Synonymous and nonsynonymous rates of evolution in genomes (and
subgenomes) of focal allopolyploid systems. Substitution rates per site for
synonymous (ds — left) and nonsynonymous (d, — right) sites from concatenated
analyses of non-organelle-targeted genes are represented by branch lengths for each
genome (and subgenome). Allopolyploid systems are arranged from oldest (top) to
youngest (bottom), as described on the x-axis of Figure 1. Paternal subgenomes of
allotetraploids are bolded in green, and maternal subgenomes are bolded in purple.
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Figure 3. Gene content bias across allotetraploid subgenomes. The proportion of
genes present in paternal (rpa7) vs. maternal (ry4r) subgenomes is depicted for each of
five allotetraploid species arranged vertically from oldest (top) to youngest (bottom).
Tobacco was excluded from this analysis because the massive rearrangement it has
experienced makes subgenomic identification based on chromosomal position
intractable. The left panel includes only non-organelle-targeted genes, the middle panel
includes only mitochondria-targeted genes, and the right panel includes only
plastid-targeted genes. In the left panel, the red-dashed line represents equal content
across subgenomes. In the right two panels, the rpr and ry,.r are normalized by the
proportions estimated from genes not targeted to the organelles, such that the
red-dashed line reflects genome-wide patterns, rather than equality across
subgenomes. Proportion deltas that depart significantly from the red line are filled in
solid according to the direction of subgenomic bias (i.e., green: rpar > ryar; purple: rpar <
rar; NO fill: rear = nyar). The intimacy of interactions are depicted on the y-axis for each of
the right two panels from low- or no- interaction with organelle gene products (top), to
interacting genes (middle), to genes involved in mitochondrial or plastid enzyme
complexes (bottom).
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Figure 4. Genome-wide bias in w (dy/ds) across maternal and paternal
subgenomes. a) Log-transformed ratios of w values in paternal (wp,7) vs. maternal
(wuar) subgenomes from concatenations (circles), and underlying bootstrap distributions
(density curves) of genes encoding proteins that are not targeted to either the plastids
or mitochondria. Species panels are arranged vertically from oldest (top) to youngest
(bottom). The red-dashed line indicates equal w values across subgenomes, left of the
red line indicates higher w values in the maternal subgenomes, and right of the red line
indicates higher w values in the paternal subgenome. Bootstrap distributions of w ratios
that depart significantly (p < 0.05) from the red line are filled in solid according to the
direction of subgenomic bias (i.e., green: wpar/wWyar > 1.0; purple: wesr/wyar < 1.0; no fill:
WearlWyar = 1.0). b) Estimates of wear — wyar for each individual gene is depicted on the
bottom half of each species’ panel and the proportion of genes with higher w values in
the paternal subgenome (pp,7) minus the proportion of genes with higher w values in the
maternal subgenome (py.7) is depicted on the top half of each species’ panel for all
genes not-targeted to either the mitochondria or plastids. The red-dashed line
represents equal proportions of genes with higher w values across subgenomes, and
bars are filled in when proportion deltas are significantly different from zero (i.e., green:

Pear > Puar; PUrple: pear < pyar; NO fill: rpar = ryar).
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Figure 5. Ratios of maternal vs. paternal w values in organelle-targeted genes.
Log-transformed ratios of maternal vs. paternal w values for concatenations (black
circles) and underlying bootstrap distributions (density curves) of mitochondria- (left)
and plastid-targeted (right) genes in six focal allotetraploid species. Species panels are
arranged vertically from oldest (top) to youngest (bottom). The red-dashed line indicates
the wpar/wyar ratio for a concatenation of genes not-targeted to the organelles (Figure
4a). Ratios left of the red line indicate higher w values in the maternal subgenome, and
ratios right of the red line indicate higher w values in the paternal subgenome, after
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accounting for genome-wide patterns. Bootstrap distributions of w ratios that depart
significantly (p < 0.05) from the red line are filled in solid according to the direction of
subgenomic bias (i.e., green: normalized wpar/Wyar > 1.0; purple: normalized wpar/ Wyar
< 1.0; no fill: normalized wpar/wyar = 1.0). The intimacy of interactions are indicated on
the y-axis from low or no interaction with organelle gene products (top), to interacting
genes (middle), to genes involved in mitochondrial or plastid enzyme complexes
(bottom).
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Figure S1. Schematic representation of phylogenetic and syntenic pipelines for
inferring orthologous quintets in allopolyploid genomes. The final output of the
pipeline was a set of filtered, merged, single-copy quintets, which was used in
downstream analyses of rates of protein-sequence evolution.
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Figure S2. CyMIRA gene counts in diploid models compared to Arabidopsis. The
number of genes per category is depicted on the y-axis for both maternal (purple) and
paternal (green) diploid models compared to Arabidopsis (white). Functional gene
categories are listed to the right of each plot: NOT — genes that are
not-organelle-targeted, MTNI — mitochondria-targeted non-interacting genes, MTI —
mitochondria-targeted interacting genes, MTEC — genes involved in mitochondrial
enzyme complexes (subset of MTI), PTNI — plastid-targeted non-interacting genes, PTI

PT-EC
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— plastid-targeted interacting genes, PTEC — genes involved in plastid enzyme
complexes (subset of PTI).
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Figure S3. Physical distribution of organelle-targeted genes on chromosomes of
focal allopolyploid genomes. Mitochondria-targeted (orange), plastid-targeted
(green), and dual-targeted (grey) genes mapped onto chromosomes (black lines) of the
six focal allotetraploid genomes. Taxa are arranged from oldest (top) to youngest
(bottom), with maternally derived subgenomes on the left and paternally derived
subgenomes on the right (excepting tobacco). Chromosome numbers are listed to the
left of each chromosome (quinoa chromosomes are numbered according to similarity
with Chenopodium pallidicaule chromosomes).
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Figure S4. CyMIRA gene counts in maternal and paternal subgenomes of
allotetraploids relative to diploid models. Bar graph depicting the number of genes
present in the maternal subgenome as a proportion of the number of genes present in
the maternal diploid model’'s genome (r4r) subtracted from the number of genes
present in the paternal subgenome as a proportion of the number of genes present in
the paternal diploid model’'s genome (rp47) for seven functional categories of genes:
not-organelle-targeted, mitochondria-targeted non-interacting,
mitochondria-targeted-interacting, mitochondria enzyme complexes, plastid-targeted
non-interacting, plastid-targeted interacting, plasti enzyme complexes. Polyploid taxa
are arranged vertically from oldest (top) to youngest (bottom) for quinoa, cotton, coffee,
and Brachypodium. Wheat was excluded because the maternal diploid transcriptome
from Aegilops speltoides was not a good indicator of gene counts.
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Figure S5. Rates of protein-sequence evolution in CyMIRA gene categories
the combined set of allopolyploids. Data points from each species complex are also

evolution across CyMIRA functional categories are depicted in box-

across the six focal allopolyploids. a) Quintet
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genes are represented by green boxes. b) Boxplot depicting rates of protein-sequence
evolution across allopolyploid species complexes separated by subcellular compartment
of localization. Fill color is as described in panel (a).
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Figure S6. Poorly aligned regions largely explain elevated w values in paternal
homoeologs of wheat mitochondrial enzyme complexes. a) w values from maternal
(purple) vs. paternal (green) branches estimated from concatenations of genes that are
not-organelle-targeted (left), involved in the mitochondrial enzyme complexes (middle),
or involved in plastid enzyme complexes (right) in untrimmed (circles) vs. trimmed
(triangles) alignments. The removal of two regions totalling ~240bp accounts for the
apparently elevated w values in paternal homoeologs of wheat mitochondrial enzyme
complex genes. b-d) Deconstructed w values from concatenated PAML runs for genes
(b) not-targeted to the organelles, (c) genes involved in the mitochondrial enzyme
complexes, and (d) genes involved in plastid enzyme complexes in untrimmed (top) vs.
trimmed (bottom) alignments. Rates of evolution for synonymous (ds - left) and
nonsynonymous (dy - right) sites are represented by branch lengths, and branches are
scaled similarly across functional categories. Green branches represent rates in the
paternal subgenome and purple branches represent evolutionary rates in the maternal
subgenome of T. dicoccoides.
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Figure S7. Proportions of genes that have higher w values in paternal vs.
maternal copies of organelle-targeted genes. The proportion of genes with higher w
values in the paternal homoeolog than in the maternal homoeolog (pear) minus the
proportion of genes with higher w values in the maternal homoeolog than in the paternal
homoeolog (puar) is depicted along the x-axis. Mitochondria- (left) and plastid-targeted
(right) genes are separated by the degree of interaction: non-interacting genes (top),
interacting genes (middle), and genes involved in cytonuclear enzyme complexes
(bottom, subset of interacting genes). Proportions are normalized by those found in
non-organelle-targeted genes, and genomic bias is denoted by color with maternal bias
(i.e., ppar — puar < 0) colored purple and paternal bias (i.e., ppar — Pyar > 0) colored
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green. None of the values exhibited biased proportions according to x?tests, relative to
genes not targeted to the organelles. Allopolyploids are arranged from oldest (top) to
youngest (bottom) as in Figure 2.

48


https://doi.org/10.1101/2021.07.09.451712
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.09.451712; this version posted July 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Not-organelle-targeted Mitochondria-targeted Plastid-targeted
MAT PAT MAT PAT MAT PAT
A : A High Divergence | Non-Int. ‘. A High Divergence | Non-Int. : A High Divergence
' ‘@ Low Divergence Int E 3 ‘@ Low Divergence | Int A @ Low Divergence
o ' =+ ; ¥
: | || = S [T 1] Eec 3 [ T 1]
! | Non-Int. e Non-int. 5
; ] . Int. == Int. =
//j/% : E.C. =7 L E.C. i
/g-ﬁ -~ : Non-Int. = Non-Int. A
) . y Int. sy Int. b2
' E.C. = E.C. =S
: AL Non-Int. = Non-Int. =L
Int. ety Int. =
_’r E.C = E.C i
r’"ﬁﬁ 1] : Non-Int. = Non-Int. &=
S 5 : Int = Int =
s ' = — - —a—
i ‘ == EC. . E.C. 3
\\ = Non-Int. 25 Non-int. A
‘ ] Int. % Int. o
3 ;‘ o : E.C. r‘ E.C. _“"’_
03 -02 -01 00 01 02 03 -2 -1 0 1 2 -3 -2 -1 0 1 2 3
W 7= Wypar Normalized w,,,- w,,,, Normalized w,,, - w,,, .

Figure S8. Divergence-binned analysis of subgenomic bias in rates of
protein-sequence evolution in six focal allopolyploids. Rates of protein-sequence
evolution paternal subgenomes (wp,7) Minus those found in maternal subgenomes
(wuar) are depicted on the x-axis for non-organelle-targeted genes (left),
mitochondria-targeted genes (middle), and plastid-targeted genes (right). Genes were
concatenated by functional category and binned according to divergence with
high-divergence bins (top) depicted by triangles and low-divergence bins (bottom)
depicted by circles. Error bars represent standard errors inferred by PAML.
Allopolyploids are arranged from oldest (top) to youngest (bottom). The right two panels
are further divided by the degree of intimacy of interaction, with non-interacting genes
on top, interacting genes in the middle, and genes that are part of enzyme complexes
on bottom. The red-dashed line represents equal rates of protein-sequence evolution in
the left panel, but on the right two panels the red-dashed line represents the
genome-wide pattern taken from the left panel (i.e., organelle-targeted rates were
normalized by non-organelle targeted rates). Maternal bias (i.e.,wysr > wpear) Occurs left
of the red-dashed lines and paternal bias (i.e., wWear > Wyar) OCcurs to the right of the
red-dashed line.
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Figure S9. Alignment filtering based on ds in orthologous quintets. Individual
genes with either total ds values (wheat, cotton, coffee) or ingroup-only ds levels
(quinoa, tobacco, Brachypodium) greater than the cutoff point (indicated by the red line)
were excluded from analyses of rates of protein-sequence evolution, as we could not
exclude the possibility that those quintets were poorly aligned vs. truly divergent.
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Figure $S10. Genome-wide bias in w (d,/ds) across maternal and paternal
subgenomes, identical quintets only. Log-transformed ratios of w values in paternal
(wpear) vs. maternal (wyar) subgenomes from concatenations (circles), and underlying
bootstrap distributions (density curves) of genes encoding proteins that are not targeted
to either the plastids or mitochondria using only quintets that were identical across
phylogenetic and syntenic methods. Species panels are arranged vertically from oldest
(top) to youngest (bottom). Tobacco was excluded from this analysis because it
produced so few syntenic quintets. The red-dashed line indicates equal w values across
subgenomes, left of the red line indicates higher w values in the maternal subgenomes,
and right of the red line indicates higher w values in the paternal subgenome. Bootstrap
distributions of w ratios that depart significantly (p < 0.05) from the red line are filled in
solid according to the direction of subgenomic bias (i.e., green: wear/wyar > 1.0; purple:
Weard Wyar < 1.0; no fill: wpar/wyar = 1.0).
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Figure S11. Ratios of maternal vs. paternal w values in organelle-targeted genes,
identical quintets only. Log-transformed ratios of maternal vs. paternal w values for
concatenations (black circles) and underlying bootstrap distributions (density curves) of
mitochondria- (left) and plastid-targeted (right) genes, including only quintets that were
identical across phylogenetic and syntenic methods. Species panels are arranged
vertically from oldest (top) to youngest (bottom). Tobacco was excluded from this
analysis because it produced so few syntenic quintets. The red-dashed line indicates
the wpar/wyar ratio for a concatenation of genes not-targeted to the organelles (Figure
S9). Ratios left of the red line indicate higher w values in the maternal subgenome, and
ratios right of the red line indicate higher w values in the paternal subgenome, after
accounting for genome-wide patterns. Bootstrap distributions of w ratios that depart
significantly (p < 0.05) from the red line are filled in solid according to the direction of
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subgenomic bias (i.e., green: normalized wpy/Wyar > 1.0; purple: normalized wpar/ Wyar
< 1.0; no fill: normalized wpar/wyar = 1.0). The intimacy of interactions are indicated on
the y-axis from low or no interaction with organelle gene products (top), to interacting
genes (middle), to genes involved in mitochondrial or plastid enzyme complexes
(bottom).
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