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The relationship between structural and functional connectivity in the brain is a key question in systems
neuroscience. Modern accounts assume a single global structure-function relationship that persists
over time. Here we show that structure-function coupling is dynamic and regionally heterogeneous.
We use a temporal unwrapping procedure to identify moment-to-moment co-fluctuations in neural
activity, and reconstruct time-resolved structure-function coupling patterns. We find that patterns of
dynamic structure-function coupling are highly organized across the cortex. These patterns reflect
cortical hierarchies, with stable coupling in unimodal and transmodal cortex, and dynamic coupling
in intermediate regions, particularly in insular cortex (salience network) and frontal eye fields (dorsal
attention network). Finally, we show that the variability of structure-function coupling is shaped by the
distribution of connection lengths. The time-varying coupling of structural and functional connectivity
points towards an informative feature of the brain that may reflect how cognitive functions are flexibly

deployed and implemented.

INTRODUCTION

The brain is a network of anatomically connected
neuronal populations. Inter-regional signaling via elec-
trical impulses manifests as patterns of organized co-
activations, termed “functional connectivity”. The cou-
pling between structural connectivity (SC) and func-
tional connectivity (FC) is a fundamental feature that re-
flects the integrity of neural signaling [5]. Historically,
most studies have focused on static structure-function
coupling over the course of a whole scanning session
[73].

However, over the past decade functional connec-
tivity is increasingly conceptualized as a dynamic pro-
cess [46, 58, 71]. Functional connectivity patterns
display time-resolved fluctuations that are non-random
[10, 14, 26, 45, 84], highly organized [2, 28, 70, 80],
individual-specific [40], related to behaviour [23, 34]
and evolve over the lifespan [7]. As a result, structure-
function coupling is also likely to fluctuate over multiple
timescales. Indeed, multiple studies have reported ev-
idence of dynamic structure-function relationships over
the course of single recording sessions [30, 31], and over
more protracted periods, including early childhood and
young adult neurodevelopment [8, 35].

Importantly, previous studies on dynamic structure-
function coupling worked under the assumption that
structure-function relationships are uniform across the
brain. Recent research suggests that structure-function
coupling is regionally heterogeneous, such that struc-
tural and functional connectivity profiles are closely re-
lated in sensory (unimodal) cortex, but gradually de-
couple in transmodal cortex [8, 56, 59, 79]. The sys-
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tematic decoupling or “untethering” of structure and
function along this unimodal-transmodal gradient is
thought to reflect differentiation in micro-architectural
properties [12, 50, 73], including molecular, cellular
and laminar differentiation [8, 36, 68, 79]. Indeed,
computational models that implement regionally hetero-
geneous dynamics using micro-architectural properties
make more accurate predictions of functional connectiv-
ity from structural connectivity [20, 21, 42, 82].

How do regional patterns of structure-function cou-
pling fluctuate moment-to-moment? Here we derive
time- and region-resolved patterns of structure-function
coupling. We first estimate dynamic inter-regional co-
fluctuation using a recently-developed temporal unwrap-
ping method that does not require windowing [26,
28]. We then reconstruct dynamic patterns of regional
structure-function coupling and contextualize these pat-
terns with respect to macroscale brain organization, in-
cluding intrinsic networks, as well as functional and cel-
lular hierarchies.

RESULTS

The results are organized as follows. We first re-
construct frame-by-frame co-fluctuation matrices from
regional BOLD time-series [26, 28]. We then apply
a multilinear model to estimate regional time-series
of structure-function coupling [79], before compar-
ing regional fluctuations in structure-function coupling
with large-scale intrinsic networks [83], cortical hierar-
chies [48] and cytoarchitectonic classes [81]. We also
benchmark the extent to which dynamic fluctuations in
structure-function coupling can be explained by topolog-
ical and geometric embedding. Finally, we assess the
correspondence between conventional (static) structure-
function coupling and dynamic structure-function cou-
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Figure 1 | Time-resolved structure-function coupling. (a) The co-fluctuation of two brain regions ¢ and j is calculated as the
element-wise multiplication of the two z-scored fMRI BOLD activity time-series. The points of this time-series can be represented
as one element in a co-fluctuation matrix. (b) Pairwise structural relationships are derived from structural connectivity networks
reconstructed from diffusion MRI, including Euclidean distance between node centroids, shortest path length and communicability.
(¢) A multilinear regression model is used to predict a region’s co-fluctuation profile from it’s structural profile, using Euclidean

distance, path length and communicability as predictors.

The resulting coefficient of determination (Rit) indicates how well

structural profile predicts functional connectivity for a particular brain region 7 at a particular time point ¢. The procedure generates
a “temporal tethering” matrix that captures the fluctuation of structure-function coupling for individual regions across time. The

time-series shows time-resolved fluctuations in mean R2.

pling. Data were derived from N = 327 healthy, unre-
lated participants from the Human Connectome Project
(HCP; [78]). Structural connectomes were reconstructed
from diffusion MRI (dMRI). Static and dynamic func-
tional connectivity were estimated from resting-state
functional MRI (fMRI) (see Materials and Methods for
detailed procedures). Analyses were performed using a
network parcellation of 400 cortical nodes [63].

Time-resolved structure-function coupling

The temporal unwrapping procedure generates a
node-by-node co-fluctuation matrix for each time point
(Fig. 1a). We then use a multilinear regression model
to predict the co-fluctuation profile of every node from
its structural connectivity profile [33, 79]. The model

was fitted separately for each time point (Fig. 1c). Pre-
dictors in the model were three measures that quantify
distinct types of communication [5, 65]: (1) Euclidean
distance, (2) shortest path length, and (3) communica-
bility (Fig. 1b). Euclidean distance embodies the notion
that proximal neurons may exchange information more
easily, and is consistent with navigation-like communica-
tion [66]. Shortest path length is a statistic that embod-
ies centralized routing-like communication [29], while
communicability is a statistic that embodies decentral-
ized diffusion-like communication [17, 27]. All mod-
els were fitted independently for each individual partici-
pant.

The multilinear model allows us to quantify regional
structure-function coupling across time. For each brain
region 4 and time point ¢, we measure the goodness of fit
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Figure 2 | Dynamic structure-function coupling. (a) Correlations between regional patterns of static and dynamic structure-
function coupling. (b) Correlations between dynamic structure-function coupling estimated using a multilinear model [79] versus
coupling estimated using an alternative Spearman rank correlation method [8]. (c) Mean time-resolved structure-function coupling
over time. (d) Mean time-resolved structure-function coupling over time and subjects. (e) Coefficient of variation of structure-
function coupling across time. (f) Coefficient of variation of structure-function coupling across time and mean over subjects.

using the coefficient of determination R?, between the
predicted and the empirical functional profile (Fig. 1c). A
value near 1 indicates strong coupling between the struc-
tural and functional profiles for the i-th node at time ¢.
These coefficients of determination are then assembled
into a node x time structure-function coupling (“tempo-
ral tethering”) matrix. The procedure was carried out
separately for each individual in the sample.

Fig. 2a shows the Pearson correlations between dy-
namic structure-function coupling maps and the static
structure-function coupling map reconstructed using the
whole time-series. The coefficients span a wide distri-
bution, encompassing both positive and negative val-
ues, suggesting that dynamic structure-function cou-
pling provides a fundamentally different perspective on
structure-function relationships. Fig. 2b shows the rela-
tionship between two alternative methods for estimating
regional structure-function coupling. The abscissa shows

structure-function coupling values estimated using the
multilinear model described above, while the ordinate
shows the same values estimated using the method de-
scribed by Baum and colleagues [8]. The latter, which
we term “Spearman rank coupling”, estimates structure-
function coupling as the Spearman rank correlation be-
tween the structural and functional profiles of each node.
The principal strength of the method is that it does not
make arbitrary assumptions about which predictors to in-
clude; the principal weakness is that the correlation can
only be computed between pairs of regions that have
an underlying structural connection, potentially miss-
ing out on biologically-important dyadic relationships.
Importantly, the two methods are positively correlated
(r = 0.22), suggesting that similar conclusions about
structure-function coupling can be drawn using the two
methods.

Figs. 2c,d show the mean structure-function coupling
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R?, while Fig. S1 shows the contribution of individ-
ual predictors. To quantify the variability of structure-
function coupling across time, we compute — separately
for each participant — the coefficient of variation of R?
across time (cv(R?)). The coefficient of variation is the
ratio of the standard deviation of R? to the mean of R2.
It is a standardized measure of dispersion of R? values
about the mean that captures the variability in structure-
function coupling across time. In other words, cv(R?)
allows us to compare the variability of structure-function
coupling time-series that have different means. Figs. 2e,f
show that cv(R?) is regionally heterogeneous and ap-
pears to be greatest in insular cortex, frontal eye fields,
medial prefrontal and medial occipital cortex. In the fol-
lowing section, we analyze this pattern in greater detail.

Hierarchical organization of dynamic structure-function
coupling

We next consider how patterns of dynamic structure-
function coupling reflect different features of cortical or-
ganization. Specifically, we focus on 3 widely studied
cortical annotations, including the unimodal-transmodal
principal functional gradient [48], intrinsic functional
networks [63] and cytoarchitectonic classes [81]. In
each case, we compute the mean coefficient of variation
of structure-function coupling. Fig. 3b shows exemplar
time-series of structure-function coupling for nodes in
insular and parietal cortex, exhibiting distinct variabil-
ity patterns. Figs. 3c-e show that brain regions that oc-
cupy intermediate positions in the cortical hierarchy tend
to display the most dynamic fluctuations in structure-
function coupling. Specifically, we find the most variable
fluctuations in the middle of the unimodal transmodal
hierarchy (classes 4-6), corresponding to the ventral at-
tention/salience network and the insular cortex in the
Yeo and Von Economo atlases, respectively, as well as the
frontal eye fields, corresponding to the dorsal attention
network. These observations are confirmed using spatial
autocorrelation-preserving null models to test the null
hypothesis that cv(R?) is greater than expected in inter-
mediate positions of the unimodal-transmodal hierarchy
(Fig. S2). Altogether, the results show that structure-
function coupling has an inverted U-shape relationship
with cortical hierarchies. Namely, the insular cortex
and frontal eye fields, intermediate in the unimodal-
transmodal hierarchy, have the most variable structure-
function coupling, while unimodal and transmodal cor-
tex have more stable structure-function coupling.

Relating static and dynamic structure-function coupling

In the previous section we considered how structure-
function coupling fluctuates around the mean. We next
ask: how closely do dynamic patterns of structure-
function coupling reflect static structure-function cou-
pling? To address this question, we systematically com-
pare the dynamic and static case. Taking into account

4

all time points in the dynamic case, we compute (a) the
proportion of time points for which dynamic coupling
is greater than static coupling (“dynamic > static”), (b)
how similar the dynamic patterns are to the static pat-
tern (“bias”) and, (c) how tightly scattered the dynamic
patterns are relative to the static pattern (“variance”)
(Fig. 4a).

We again observe a U-shape relationship with cortical
hierarchies. In particular, we find that regions intermedi-
ate in the unimodal-transmodal hierarchy, corresponding
to the insular cortex, tend to have greater dynamic than
static coupling (Fig. 4b). These regions also have the
closest correspondence between dynamic and static cou-
pling (Fig. 4c) and the lowest dynamical variance around
the static case (Fig. 4d). Altogether, these results suggest
that the relationship between dynamic and static cou-
pling is not uniform across the brain, but strongly de-
pends on the region’s position in the putative unimodal-
transmodal hierarchy, with the closest correspondence
between static and dynamic coupling observed in the
middle of the hierarchy. Taken together with the results
from the previous section, we reveal an interesting prop-
erty about areas that are intermediate in the hierarchy,
such as insular cortex and frontal eye fields. Namely, in-
termediate areas display the greatest overall fluctuations
relative to the mean, but over time tend to follow and
converge with static coupling.

Spatial and topological determinants of dynamic
structure-function coupling

We finally seek to understand how dynamic lo-
cal structure-function coupling depends on geometric,
anatomical and functional embedding. Given that the
unimodal-transmodal hierarchy possibly reflects a con-
tinuous gradient of connection lengths [54, 55, 671, we
ask whether dynamic structure-function coupling also re-
flects the distribution of connection lengths that a region
participates in. Fig. 5a shows the map of mean connectiv-
ity distance for each region [54, 55]. These regional dif-
ferences follow an inverted U-shape relationship with dy-
namic structure-function coupling, such that areas with
very short and very long connection lengths tend to have
more stable coupling, and areas with intermediate con-
nection lengths tend to have more variable coupling.
Fig. 5b shows that dynamic structure-function coupling
is poorly correlated with multiple measures of structural
and functional network embedding, including between-
ness, clustering and degree. Altogether, these results sug-
gest that the dynamic nature of structure-function cou-
pling in “middle hierarchy” regions potentially originates
from their connection length distribution.

Interestingly, when we compute the group-average
similarity of inter-regional structure-function time-
courses (i.e. how similar are inter-regional fluctuations
in structure-function coupling), we find a comparable re-
lationship with Euclidean distance (Fig. 5d). Namely,
regions that are physically close together and far apart
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Figure 3 | Relationship with cortical hierarchies. (a) Coefficient of variation of the structure-function coupling, averaged over all
participants. (b) Time-series of regional structure-function coupling shown for one region in parietal cortex (left) and one region
in insular cortex (right) from one randomly selected participant. The mean coefficient of variation is displayed for three types of
cortical annotations: (c) 10 equally-sized bins of the principal functional gradient [48], (d) intrinsic functional networks [83], and
(e) von Economo cytoarchitectonic classes [81].
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Figure 4 | Relating static and dynamic structure-function coupling. (a) Top: static structure-function coupling is estimated using
the functional connectivity matrix derived from the whole resting-state time-series [79], and compared with dynamic coupling.
The dynamic structure-function coupling of node i corresponds to the i** row of the dynamic coupling matrix, while the static
coupling corresponds to the i*" element of static coupling vector. Middle: dynamic values represented as a time-series (black line)
that fluctuates around the single static coupling value (blue line). Bottom: dynamic coupling values are represented as a scattered
distribution of points (black) around the static coupling value (blue point). The two are compared in different cortical annotations
using three summary statistics: (b) the probability of having a larger dynamic coupling value compared to the static coupling, (c)
the bias, and (d) the variance of the dynamic coupling to reproduce the static values.

tend to display similar fluctuations in structure-function
coupling, and regions that are at intermediate distances
from one another tend to display dissimilar fluctua-
tions in coupling. Finally, we compare the similarity
of structure-function coupling between regions with the
structural and functional connectivity between those re-
gions. We find that the mean similarity of structure-
function coupling is greater for areas that are struc-
turally connected than areas that are not (t(79798) =
80.95, p < 0.001) (Fig. 5e). Likewise, mean similarity of
structure-function coupling is greater for areas that par-
ticipate in the same intrinsic networks than those that
are in different networks (t(79798) = 45.34, p < 0.001)

(Fig. 5e). In other words, coordinated patterns of dy-
namic structure-function coupling are — as expected —
driven by inter-regional structural and functional con-
nectivity.

DISCUSSION

Emerging theories emphasize dynamic functional in-
teractions that unfold over structural brain networks
[46]. Here we study time- and region-resolved patterns
of structure-function coupling. We find that dynamic
coupling patterns reflect cortical hierarchies, with the
most dynamic fluctuations in the insula and frontal eye
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Figure 5 | Spatial and topological determinants of structure-function coupling variability. (a) Average connectivity distance
calculated following [54], and correlated with the average coefficient of variation of the structure-function coupling from Fig. 3a.
Scatter color and size represent the standard deviation. (b) Coefficient of variation of structure-function coupling compared to
network embedding metrics derived from structural and functional networks. (¢) R? similarity between pairs of nodes calculated
as the Pearson correlation between pairs of regional structure-function coupling averaged across subjects (d) R? similarity cor-
related with Euclidean distance. Colormap show the density of the scatter plot. (e) R? similarity values grouped by structural
connectedness and functional intrinsic networks.
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fields. These graded patterns of dynamic coupling reflect
the topological and geometric embedding of these “mid-
dle hierarchy” regions.

Our results build on recent work showing that
structure-function coupling is not uniform across the
brain, but highly region-specific [8, 59, 79, 82]. These
studies have consistently demonstrated that structure-
function coupling is graded, with strong coupling in
unimodal cortex and weak coupling in transmodal cor-
tex. By applying a temporal unwrapping method to esti-
mate functional co-fluctuation patterns from moment-to-
moment, we show that structure-function coupling is not
only regionally heterogeneous, but also highly dynamic
[30]. Namely, we find that variability in coupling follows
an inverted-U shape relative to the unimodal-transmodal
hierarchy: the extremes or “anchors” of the hierarchy dis-
play more stable structure-function coupling, while re-
gions intermediate in the hierarchy display more sizable
fluctuations.

Interestingly, the most dynamic fluctuations were ob-
served in insular cortex and frontal eye fields. In concert
with the anterior cingulate and dorsolateral prefrontal
cortices, the insula forms the ventral attention or salience
network, which supports the orienting of attention to
behaviourally-relevant stimuli, including sensory and au-
tonomic signals related to the internal milieu [3, 77].
By participating in a diverse set of interdigitated connec-
tions with multiple brain regions, the insula is thought to
dynamically coordinate communication among multiple
cognitive systems [32, 43, 75]. In particular, the poste-
rior portion of the insula displays prominent functional
connectivity with sensory regions, while the anterior por-
tion is primarily connected with frontal areas involved in
higher cognitive function [61, 75]. In a similar vein, the
frontal eye fields constitute a key node in the dorsal at-
tention network, involved in biasing attention towards
top-down goals and information foraging [15, 16].

Aligning these two findings, we observe a common
functional theme of regions on the inteface between
higher-order hetermodal cognition and primary percep-
tual and internal states. We speculate that the greater
variability in local structure-function coupling in the in-
sula and frontal eye fields delineates a potential mecha-
nism by which signals are flexibly routed through these
unique cortical hubs across wide domains. These “mid-
dle hierarchy” regions must engage in particularly broad
coordination patterns, integrating ongoing unimodal in-
formation processing with the more sustained and ex-
tended operations in heteromodal cortex. This informa-
tion is likely weighted by salience and goal relevance,
while also allowing novel ongoing sensory information
to gain access to heteromodal cortex.

The graded nature of local structure-function cou-
pling appears to be shaped by the geometric embed-
ding of individual brain regions. Namely, we also find
an inverted-U shape relationship between connectivity
distance and variability in structure-function coupling,
such that regions with very short or very long connec-

tivity distance tend to display stable coupling, while re-
gions with intermediate connectivity distance, particu-
larly insular cortex and frontal eye fields, display more
variable structure-function coupling. These findings res-
onate with a growing appreciation for how geometric re-
lationships shape topological relationships in the brain
[9, 11, 24, 53, 60, 67, 72]. In particular, physical separa-
tion from sensorimotor cortex is thought to correspond
to graded variation in connectivity distance, culminat-
ing in predominantly long-range functional connectiv-
ity in association cortex [12, 44, 48, 54, 55]. The par-
ticular distribution of connection lengths that “middle
hierarchy” regions participate in — leaning neither to-
ward overly short- or long-range connectivity — may sup-
port flexible reconfiguration and participation in multi-
ple systems [15, 32, 43, 75, 77], manifesting as variable
structure-function coupling.

Our results build on a rapidly-developing literature on
local structure-function relationships [73]. While tradi-
tional studies have focused on global structure-function
relationships captured by a single forward model [33,
37, 38, 51, 52], numerous recent reports point to region-
specific structure-function coupling patterns [8, 59, 79].
These structure-function relationships undergo exten-
sive maturation and lifespan trajectories [8, 25]. Inter-
estingly, regional differences in structure-function cou-
pling are correlated with micro-architectural variations,
including intracortical myelin and cellular composition
[8, 79]. This suggests that local circuit properties —
invisible to macroscale connectivity reconstructions —
may additionally drive structure-function coupling [12].
Consistent with this notion, multiple modeling studies
have recently shown that biophysical models constrained
by regionally heterogeneous micro-architectural infor-
mation, such as myelination, gene expression and neu-
rotransmitter receptor profiles, make more accurate pre-
dictions about functional connectivity compared to re-
gionally homogeneous models [20, 21, 82]. How re-
gional differences in micro-architecture shape moment-
to-moment fluctuations in structure-function coupling
remains an important question for future research.

The present results need to be interpreted with respect
to multiple limitations. First, structural connectivity net-
works were reconstructed using diffusion weighted MRI,
a method that is susceptible to systematic false positives
and negatives [18, 41, 47, 74]. Although the present
findings are observed in individual participants and can
be demonstrated using alternative methods, further de-
velopment in computational tractometry is necessary.
Likewise, it is important to note that there exist multi-
ple alternative methods to quantify dynamic functional
connectivity. We applied a recently-developed temporal
unwrapping method that has been demonstrated to be
robust to a wide range of methodological choices, includ-
ing parcellation and global signal regression method,
and are sensitive to individual differences [26, 28].

Collectively, the present work identifies patterns of lo-
cal structure-function coupling that are systematically or-
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ganized across the cortex and highly dynamic. The tem-
poral tethering of structure and function points towards
a rich and under-explored feature of the brain that may
potentially help to understand how functions and cogni-
tive processes are flexibly implemented and deployed.

METHODS
Data acquistion

Structural and functional data were obtained from the
Human Connectome Project (s900 release [78]). Scans
from 327 healthy young participants (age range 22-
35 years) with no familial relationships were used, in-
cluding individual measures of diffusion MRI and four
resting-state functional MRI time-series (two scans on
day one and two scans on day two, each of 15 minutes
long). Data were processed following the procedure de-
scribed in [57, 68].

Structural network reconstruction

Gray matter was parcellated into 400 cortical regions
according to the Schaefer functional atlas [63]. Struc-
tural connectivity between regions was estimated for
each participant using deterministic streamline tractog-
raphy. First, the distribution of fiber orientation for each
region was generated using the multi-shell multi-tissue
constrained spherical deconvolution algorithm from the
MRtrix3 package [22, 76] (https://www.mrtrix.org/).
After that, the structural connectivity weight between
any two regions was given by the number of streamlines
normalized by the mean length of streamlines and the
mean surface area of the two regions. This normaliza-
tion reduces bias towards long fibers during streamline
reconstruction, as well as the bias from differences in re-
gion sizes.

Functional time-series reconstruction

Functional MRI data were corrected for gradient non-
linearity, head motion (using a rigid body transforma-
tion), and geometric distortions (using scan pairs with
opposite phase encoding directions (R/L, L/R) [19]).
BOLD time-series were then subjected to a high-pass fil-
ter (>2000s FWHM) to correct for scanner drifts, and to
the ICA-FIX process to remove additional noise [62]. The
data was parcellated in the same atlas used for structural
networks.

Time-resolved structure-function coupling

To estimate region- and time-resolved structure-
function coupling, we first constructed temporal co-
fluctuation matrices. We started by calculating the
element-wise product of the z-scored BOLD time-series
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between pairs of brain regions [28]. Region pairs with an
activity on the same side of the baseline will have a pos-
itive co-fluctuation value, whereas two regions that fluc-
tuate in opposite directions at the same time will have
a negative co-fluctuation value (Fig. 1a). The average
across time of these co-fluctuation matrices recovers the
Pearson correlation coefficient that is often used to de-
fine functional connectivity.

To define region-specific structure-function coupling,
we constructed a multilinear regression model to pre-
dict the co-fluctuation profile of a node i from its ge-
ometric and structural connectivity profile to all other
nodes j # i [79]. Predictors included shortest path
length, communicability and Euclidean distance. We
used the minimax-normalized weighted structural con-
nectivity matrix for each individual, and calculated the
metrics using the Python version of the Brain Connectiv-
ity Toolbox (https://github.com/fiuneuro/brainconn). A
negative log transformation was applied to the structural
connectivity weights before calculating the shortest path
length [4].

Concretely, for region i, subject s, time point ¢, we
have,

coflucs i = Bo + Pidist; + Baspls; + Bzcmes; (1)

where cofluc,,; is the co-fluctuation profile, pre-
dicted by Euclidean distance dist;, shortest path length
spls.;, and weighted communicability cmec; ;. The regres-
sion coefficients {8y, 51, B2, B3} were estimated by ordi-
nary least squares. Coupling was measured using ad-
justed R-squared Rf)t, a metric for goodness of fit. The
regression was applied for individual profiles of brain re-
gions, generating a cortical map of coupling values at
each time point for each subject.

Static and dynamic structure-function coupling

The multilinear regression model, when applied with-
out temporal expansion, generates one R? value per
brain region, which we refer to here as static coupling
[79]. By incorporating temporal co-fluctuation patterns,
we obtained structure-function coupling measure R? per
region as a frame-by-frame time-series, which we call dy-
namic coupling. To assess how dynamic coupling differs
from static coupling, we frame the question as compar-
ing a single observation (static) with a distribution (dy-
namic). We defined three summary statistics: (1) the
probability of having a larger dynamic coupling value
compared to the static coupling, (2) the bias, and (3) the
variance of the dynamic coupling to reproduce the static
values. Bias was used to evaluate how dynamic values
deviate from the static value. It was calculated as the
median of the difference between the dynamic coupling
values and the static coupling. Small values of bias indi-
cate that dynamic coupling values are close to the static
coupling values, while large values indicate deviation.
Variance was used to evaluate the extent of scattering of
the dynamic values. It was calculated as the standard


https://www.mrtrix.org/
https://github.com/fiuneuro/brainconn
https://doi.org/10.1101/2021.07.08.451672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451672; this version posted July 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

deviation of the distribution formed by the dynamic val-
ues. More specifically, we used the difference between
the 84!" percentile and the 16'" percentile to avoid an
underestimation for skewed distributions. Thus a low
variance value means that the distribution had low vari-
ability, and high variance value indicates the opposite.

Cortical annotations

Patterns of dynamic local structure-function coupling
were contextualized relative to three common annota-
tions: (1) 7 intrinsic functional networks as defined by
Yeo et al. in [83], 7 cytoarchitectonic classes described
by von Economo and Koskinas in [64, 81], and 10 func-
tional hierarchy groups as defined in [79], based on
the principal functional gradient reported by Margulies
et al.. Collectively, these three partitions of the brain are
thought to reflect multimodal hierarchies [39].

Null models

To assess correspondence between coupling maps and
cortical annotations, we applied spatial autocorrelation-
preserving permutation tests, termed “spin tests” [1, 49,
79]. In this model, the cortical surface is projected
to a sphere using the coordinates of the vertex closest
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to the center of mass of each parcel. The sphere is
then randomly rotated, generating surface maps with
randomized topography, where each parcel has a re-
assigned value. The parcels corresponding to the me-
dial wall were assigned to the closest rotated parcel
[36, 69, 79]. The rotation was applied to one hemi-
sphere and then mirrored to the other hemisphere.
We generated 10000 spin permutations using netneuro-
tools (https://github.com/netneurolab/netneurotools).
Details of spatially-constrained null models in neu-
roimaging (https://github.com/netneurolab/markello
spatialnulls) were described in [49].
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Figure S1 | Predictor contributions. Dominance Analysis was used to quantify the distinct contributions of the three predictors
in the mulitlinear model (Euclidean distance, path length and communicability) [6, 13] (https://github.com/dominance-analysis/
dominance-analysis). The technique estimates the relative importance of predictors by constructing all possible combinations of
predictors and quantifying the relative contribution of each predictor as additional variance explained (i.e. gain in R?) by adding
that predictor to the models. The incremental R? contribution of each predictor to a given subset model of all the other predictors
is then calculated as the increase in R? due to the addition of that predictor to the regression model. Left: dominance over time for
the three predictors. Each column in the matrix shows the frequency of the predictor being the dominant predictor through time.
Right: brain map of the matrix averaged over subjects and runs.

a | principal functional gradient b | intrinsic functional networks c | cytoarchitectonic classes
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Figure S2 | Spin test of the coefficient of variation of the structure-function coupling. Black points show partition-specific
mean cv(R?) (same as results in Fig. 3c-e). Boxplots show distributions of partition-specific mean cv(R?) for 10,000 spatial
autocorrelation-preserving null models (“spin tests”) [1, 49]. Darker (filled) and lighter (non-filled) boxes show partitions for
which cv(R?) is statistically significant (p < 0.05) and non-significant (p > 0.05), respectively.
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Figure S3 | Co-fluctuation amplitude and structure-function coupling To characterize the amplitude of the co-fluctuation time
series, Esfahlani et al. calculated the root sum square (RSS) of the co-fluctuation time series across the network at each time point.
The maximum and median of each of the R} vectors (column vector at figure 1c) is positively correlated with the RSS.
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