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ABSTRACT

Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L.
(Zingiberaceae), is shown to have antioxidant, anti-inflammatory,
neuroprotective, anxiolytic, and antidepressant properties in both preclinical and
clinical studies. However, its low bioavailability is a limitation for its potential
adoption as a therapeutic agent. The process of micronization can overcome this
barrier by reducing the particle size and increasing the dissolution rate, potentially
improving the bioavailability of the compounds of interest. In this study, we
compared the in vitro antioxidant effects of curcumin (CUR) and micronized
curcumin (MC) and studied their effects on behavioral and neurochemical
parameters in zebrafish submitted to unpredictable chronic stress (UCS). MC (1
g/L) presented higher antioxidant activity in vitro as compared to CUR, as
measured by iron-reducing antioxidant power (FRAP), 1,1-diphenyl-2-2-picyryl-
hydrazyl radical removal (DPPH), and deoxyribose tests. UCS increased total
distance traveled in the social interaction test (Sl), while decreased crossings,
time, and entries to the top area in the novel tank test (NTT). No effects of UCS
were observed in the open tank test (OTT). The behavioral effects induced by
UCS were not blocked by any curcumin preparation. UCS also decreased non-
protein thiols (NPSH) levels, while increased glutathione reductase (GR) activity
and thiobarbituric acid reactive substances (TBARS) levels on zebrafish brain.
MC presented superior antioxidant properties than CUR in vivo, blocking the
stress-induced neurochemical effects. Although this study did not measure the
concentration of curcumin on the zebrafish brain, our results suggest that
micronization increases the bioavailability of curcumin, potentiating its antioxidant
activity both in vitro and in vivo. Our study also demonstrates that counteracting
the oxidative imbalance induced by UCS is not sufficient to block its behavioral
effects.

Keywords: supercritical fluids, unpredictable chronic stress, oxidative damage,
antioxidant, curcumin, micronization, zebrafish.
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1. Introduction

Stress is an adaptative process by which the body reacts to an external
stimulus or threat. Physiological, behavioral, and metabolic adaptations through
the activation of the sympathetic autonomic nervous system and the
hypothalamic-pituitary-adrenal axis (HPA) are triggered so that an organism
adequately responds to that stimulus (Kaufmann et al., 2016; Mcewen, 2006;
McEwen et al., 2015). However, when the individual is exposed to chronic
stress, depletion of the adaptive response can occur with deleterious results. In
this case, hyperactivation of the sympathetic autonomic nervous system and
HPA axis, increased cortisol levels, dysfunction of neurotransmitter systems,
neuroinflammation, defects in neurogenesis and synaptic plasticity,
mitochondrial dysfunction, redox state imbalance, and oxidative damage may
be present. These complex neurobiological changes can predispose the
individual to mental disorders such as anxiety and depression (Cernackova et
al., 2020; Popoli et al., 2012). The neurobiological basis of mental disorders is
not fully understood, but studies have already shown that oxidative status
imbalances are present in animal models and humans (Avery, 2011; Fedoce et
al., 2018; Harwell, 2007; Morris et al., 2020; Picard et al., 2018; Valko et al.,
2007). Therefore, compounds with antioxidant activity are potential candidates,
as a complement to the non-pharmacological and pharmacological therapeutic
approaches.

Curcumin is one of the compounds extracted from Curcuma longa L.
(Zingiberaceae) roots, widely used in Asian countries as a food coloring and
seasoning component. Several works have demonstrated the potent antioxidant
activity of this compound, both in vitro and in vivo (Ak and Gulgin, 2008; Menon
and Sudheer, 2007). Curcumin can attenuate intracellular production of reactive
oxygen species (ROS), increase antioxidant enzyme activity, and protect
mitochondria from oxidative damage in rats (Wei et al., 2006; Zhu et al., 2016).
Moreover, this compound has shown anti-inflammatory, neuroprotective, and
immunomodulatory effects (Bhutani et al., 2009; Kulkarni et al., 2008; Reeta et
al., 2010; Wang et al., 2008, 2014; Yadav et al., 2005; Zhao et al., 2014).

However, curcumin has low bioavailability due to poor absorption, rapid

metabolism, and quick systemic elimination, which compromise its therapeutic
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use for neuropsychiatric disorders (Anand et al., 2007; Yang et al., 2005). The
micronization process reduces the size of particles modifying the conformation
of crystal structure, changing the physical structure, and enhancing solubility
and dissolution rates. As expected, these effects could lead to an improvement
in the bioavailability of curcumin.

Previous studies have shown that micronization reduced the particle
size of Panax notoginseng saponins, changing dissolution/release and
increasing concentration in the plasma of rats compared with the larger particle
size preparations (Liang et al., 2021). Also, the micronized purified flavonoid
fraction (diosmin + hesperidin) showed a significant anticoagulant effect,
increasing platelet disaggregation in rats (McGregor et al., 1999). In humans,
micronized resveratrol (SRT501) showed higher plasmatic concentration,
providing measurable resveratrol levels in liver tissue of patients with colorectal
cancer and hepatic metastases. Moreover, STR501 increased the cleaved
caspase-3 (an apoptosis biomarker) in malignant hepatic tissue (Howells et al.,
2011). Our group has shown that micronization decreased the minimum
effective concentration of N-acetylcysteine (NAC) required to exert an anxiolytic
effect in zebrafish (Aguiar et al., 2017). Also, micronized curcumin and
resveratrol, but not non-micronized compounds, showed similar effects as the
antiepileptic drugs diazepam and valproate, reducing seizure occurrence and
slowing seizure progression in the PTZ-induced seizure model in zebrafish
(Almeida et al., 2021; Bertoncello et al., 2018; Decui et al., 2020).

Considering the role of chronic stress in neuropsychiatric disorders and
the potential neuromodulatory effects of curcumin, this study aimed to compare
the effects of curcumin and micronized curcumin on behavioral and
neurochemical parameters in adult zebrafish submitted to the unpredictable
chronic stress. In addition, we compared the antioxidant effects of both

preparations in vitro.

2. Materials and methods

2.1 Drugs
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Curcumin was obtained from Sigma-Aldrich® (CAS 458-37-7) (St. Louis,
MO, USA), and its micronization was carried out at the Laboratory of
Thermodynamics and Supercritical Technology (LATESC) of the Department of
Chemical and Food Engineering (EQA) at UFSC. Both curcumins preparations
were dissolved in 1% DMSO (Dimethyl sulfoxide anhydrous) obtained from
Sigma-Aldrich® (CAS 67-68-5) and diluted in injection water (Samtec
biotecnologia®, SP, Brazil) acquired from a commercial supplier. Other

reagents for neurochemical analysis were obtained from Sigma-Aldrich®.

2.2 Curcumin micronization with the solution enhanced dispersion by supercritical
fluids (SEDS)

The SEDS experimental equipment and procedure used to micronize
curcumin with supercritical carbon dioxide (COz) as an anti-solvent was
described in detail in previous studies (Dal Magro et al., 2017; Machado et al.,
2014). A schematic diagram of the experimental apparatus is presented in
Figure 1. The process parameters adopted in the present report were based on
previous data: solute concentration of 20 mg/mL, temperature at 35 °C, anti-
solvent flow rate of 20 mL/min, solution flow rate of 1 mL-min -1, and operating
pressure of 8 MPa (Aguiar et al., 2018, 2017, 2016; Bertoncello et al., 2018).

2.3 Morphology and determination of particle size

CUR and MC samples were submitted to morphological analysis by
Scanning Electron Microscopy (SEM) (JEOL JSM-6390LV United States), with
10 kV power and 300-500 objectives, to determine particle morphology and
Meter Size software (version 1.1) was used to determine the mean particle size
(Aguiar et al., 2016; Bertoncello et al., 2018).

2.4 Differential scanning calorimetry
The melting point of the CUR and MC was determined using a system of

differential scanning calorimetry (DSC) (Jade-DSC, Perkin Elmer). The samples

(5-10 mg) were prepared in an aluminum pan, and DSC measurements were
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performed by heating at 30 to 200 °C at a rate of 10 °C/minin an inert
atmosphere (N2 flow: 10 mL/min) (Aguiar et al., 2016; Bertoncello et al., 2018).
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Fig. 1 Schematic diagram of the experimental apparatus using the solution enhanced
dispersion by supercritical fluids technique (SEDS). CV (check valve), V1, V2, V3, and
V4 (ball valve), V5 and V6 (needle valve), and BRP (backpressure regulator).

2.5 In vitro antioxidant activity

To analyze the antioxidant activity in vitro, the following experimental
groups were tested: 1% DMSO; ascorbic acid (0.0625, 0.25 and 1 g/L, as
positive control); CUR (0.0625, 0.25 and 1 g/L) and MC (0.0625, 0.25 and 1
g/L). These concentrations were based on previous studies (Bertoncello et al.,
2018; Gilhotra and Dhingra, 2010; Xu et al., 2005). All analyses were performed
in duplicate with an n=5. A schematic diagram of the experimental tests is
presented in Figure 2.
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Fig. 2 Experimental design of the in vitro assays: FRAP (iron-reducing antioxidant
power), DPPH (1,1-diphenyl-2-2-picyryl-hydrazyl radical removal), GSH (protection
against glutathione oxidation), deoxyribose assay. DMSO (dimethyl sulfoxide), CUR
(curcumin) and MC (micronized curcumin).

2.5.1 Determination of iron-reducing antioxidant power (FRAP)

The antioxidant power was assessed by the reduction of Fe3* to Fe?*.
The samples were incubated at 37 °C for 15 min with a reaction medium
containing: 10 mM 2,4,6-Tripyridyl-Triazine (TPTZ) + 40 mM hydrochloric acid
(HCI), FeCls. 20 mM 6H20 and 300 mM acetate buffer (10:1:1 ratio). The
absorbance was read at 593 nm. Blanks for each sample were incubated
without TPTZ (Benzie and Strain, 1996). The detailed protocol is available at
protocols.io (Sachett et al., 2021a).

2.5.2 1,1-diphenyl-2-2-picyryl-hydrazyl radical removal test (DPPH)

The scavenging capacity of free radicals was assessed by the DPPH
assay. The samples at different concentrations were incubated for 24 h in the
dark with methanol and DPPH (0.24 mg/mL). DPPH and methanol, without
samples, were used as controls. Methanol was used as a blank. After
incubation, the absorbance was read at 517 nm. The effective concentration 50
(EC50) for each extract, which expresses the minimum amount of the extract

capable of reducing the initial concentration of DPPH radical by 50%, was
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calculated by non-linear regression using GraphPad Prism version 8 (Brand-
Williams et al., 1995). The detailed protocol is available at protocols.io (Sachett
et al., 2021b).

2.5.3 Protection against glutathione oxidation (GSH)

To quantify the presence of sulfhydryl groups after oxidation induced by
hydrogen peroxide (H202). Each sample was incubated for 30 min in the dark,
with a reaction medium containing potassium phosphate buffer (TFK) (200 mM,
pH 6.4) and H202 (5 mM). Afterward, the mixture was added to 5,5'-dithiobis-(2-
nitrobenzoic acid) (DTNB) (10 mM) and the absorbance was read at 412 nm
after 5 min. Samples without GSH were used as sample blank and the
incubation medium without sample was used as a control (Ellman, 1959). The

detailed protocol is available at protocols.io (Sachett et al., 2021c).

2.5.4 Deoxyribose assay

The production of malondialdehyde (MDA) after oxidation of deoxyribose
by hydroxyl radical (OH-) was measured through the TBARS. The samples
were incubated at 37°C for 1 h, with a reaction medium containing: KH2POu-
KOH (50 mM, pH 7.4), deoxyribose (60 mM), FeCls (1 mM),
ethylenediaminetetraacetic acid (EDTA) (1.04 mM), ascorbic acid (2 mM), and
H202 (10 mM). Then, 1% thiobarbituric acid (TBA) and 25% HCI were added to
the mix and heated in a water bath at 100 °C for 15 min. The absorbance was
read at 532 nm. Samples without deoxyribose were used as sample blank and
the incubation medium without sample was used as a control (Halliwell et al.,

1987). The detailed protocol is available at protocols.io (Sachett et al., 2021d).

2.6. Animals

All procedures were approved by the institutional animal welfare and
ethical review committee at the Federal University of Rio Grande do Sul
(UFRGS) (approval #35279/2018). The animal experiments are reported in
compliance with the ARRIVE guidelines 2.0 (Percie du Sert et al., 2020).


https://doi.org/10.1101/2021.07.08.451641
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451641; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Experiments were performed using 108 male and female (50:50 ratio) short-fin
wild-type zebrafish, 6 months old, weighing 300 to 400 mg. Adult animals were
obtained from the colony established at the Biochemistry Department of
UFRGS and maintained in our animal facility (Altamar, SP, Brazil) in a light/dark
cycle of 14/10 hours for at least 15 days before tests. Fish were transferred to
16-L home tanks (40 x 20 x 24 cm) with non-chlorinated water kept under
constant mechanical, biological, and chemical filtration at a maximum density of
two animals per liter. Tank water satisfied the controlled conditions required for
the species (26 = 2 °C; pH 7.0 £ 0.3; dissolved oxygen at 7.0 = 0.4 mg/L; total
ammonia at <0.01 mg/L; total hardness at 5.8 mg/L; alkalinity at 22 mg/L
CaCOs; and conductivity of 1500-1600 uS/cm). Food was provided twice a day
(commercial flake food (Poytara®, Brazil) plus the brine shrimp Artemia salina).

The animals were allocated to the experimental groups following block
randomization procedures to counterbalance the sex, the two different home
tanks, and the test arenas between the groups. Each experimental group was
originated from two identical home tanks. Animal behavior was video recorded
and analyzed with the ANY-Maze tracking software (Stoelting Co., Wood Dale,
IL, USA) by researchers blinded to the experimental groups. All tests were
performed between 08:00 and 12:00 a.m. The sex of the animals was confirmed
after euthanasia by dissecting and analyzing the gonads. For all experiments,
no tank and sex effects were observed, so data were pooled together.

After the tests, animals were euthanized by hypothermic shock according
to the AVMA Guidelines for the Euthanasia of Animals (Leary and Johnson,
2020). Briefly, animals were exposed to chilled water at a temperature between
2 and 4 °C for at least 2 min after loss of orientation and cessation of opercular

movements, followed by decapitation as a second step to ensure death.

2.7 Drug administration

Intraperitoneal (i.p.) injections were applied using a Hamilton Microliter™
Syringe (701N 10 pL SYR 26s/2"/2) x Epidural catheter 0.45 x 0.85 mm
(Perifix®-Katheter, Braun, Germany) x Gingival Needle 30G/0.3 x 21 mm (GN
injecta, SP, Brazil). The injection volume was 1 pL/100 mg of animal weight.

The animals were anesthetized by immersion in a solution of tricaine (300 mg/L,

9
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CAS number 886-86-2) until loss of motor coordination and reduction of
respiratory rate. The anesthetized fish were gently placed in a sponge soaked in
water placed inside a petri dish, with the abdomen facing up and the fish's head
positioned on the sponge’s hinge. The needle was inserted parallel to the spine
in the abdomen's midline posterior to the pectoral fins. This procedure was
conducted in approximately 10 seconds. The behavioral tests took place 24

hours after the last injection. Drug solutions were prepared daily.

2.8 Unpredictable chronic stress (UCS)

UCS was carried out based on previous studies (Bertelli et al., 2021;
Marcon et al., 2019; Mocelin et al., 2019; Piato et al., 2011). The experimental
design is presented in Figure 3 and the schedule and stressors are detailed in
the supplementary material (Table S1). Initially, fish were divided into control
(non-stressed group, S-) and UCS (stressed group, S+). After seven days, the
experimental groups were subdivided into DMSO (1% DMSO), CUR (10
mg/kg), and MC (10 mg/kg) (this dose was chosen based on the concentration
with the best antioxidant effect in vitro). The animals were anesthetized daily
and injected at 2:00 p.m. (as described above) and then returned to the home
tanks. The animals’ weight was checked on the 1%, 7", and 14" day and an
average between the weights of each tank was used to calculate the injection
volume. After the UCS, fish were submitted to the SI, NTT, and OTT, performed
on the 15", 16™, and 17" days, respectively. On the 15" and 16" days, after the
behavioral tests, the animals were also injected with the corresponding
treatments. On the 17" day, immediately after the OTT, fish were euthanized,

and the brain was dissected and homogenized for the biochemical assays.

10
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Fig. 3 Experimental design. Zebrafish remained in the home tank and were subjected
to the UCS for 14 days or remained undisturbed (non-stressed control). After the first
seven days of stress, zebrafish were daily injected i.p. with DMSO 1%, CUR 10 mg/kg,
or MC 10 mg/kg. On the 15" of the experimental protocol, animals were subjected to
the social interaction test. On the 16™ animals were subjected to the novel tank test. On
the 17" animals were subjected to the open tank test and then euthanized to collect the
brain, which was used in biochemical analyses. DMSO (dimethyl sulfoxide), CUR
(curcumin) and MC (micronized curcumin).

2.8.1 Social interaction test (Sl)

The Sl test was conducted as described previously (Benvenutti et al.,
2020; Bertelli et al., 2021) Animals were placed individually for 7 min in a tank
(30 x 10 x 15 cm, 10 cm water level) flanked by two identical tanks (15 x 10 x 13
cm, 10 cm water level ), either empty (neutral stimulus) or containing 10
unfamiliar zebrafish (social stimulus) (Fig. 3). The position of the social stimulus
(right or left) was counterbalanced throughout the tests. The test apparatus was
virtually divided into three vertical areas (interaction, middle, and neutral).
Videos were recorded from the front view. Animals were habituated to the
apparatus for 2 min and then analyzed for 5 min. The following parameters
were quantified: total distance traveled, number of crossings (transitions
between the areas of the tank), time spent in the interaction area (as a proxy for
social interaction time), and time spent in the neutral area (Seibt et al., 2011).
We changed the water in the tanks between animals to avoid interference from

drug traces or alarm substances released by previously tested fish.

11
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2.8.2 Novel tank test (NTT)

The NTT was conducted as described previously (Benvenultti et al.,
2020; Bertelli et al., 2021; Marcon et al., 2019; Mocelin et al., 2019). Animals
were individually placed in the tank (24 x 8 x 20 cm, 15 cm water level) and
recorded for 6 min. Videos were recorded from the front view. The test
apparatus was virtually divided into three horizontal areas (top, middle, and
bottom) (Marcon et al., 2019; Mocelin et al., 2019). The water in the tanks was
changed between animals to avoid interference from drug traces or alarm
substances released by previously tested fish. The following parameters were
quantified: total distance traveled (m), number of crossings (transitions between
the areas of the tank), time spent (s), and number of entries in the top area of
the tank.

2.8.3 Open tank test (OTT)

The OTT was conducted as described previously (Benvenutti et al.,
2020; Bertelli et al., 2021). Animals were individually placed in the center of a
circular arena made of opaque white plastic (24 cm diameter, 8 cm walls, 2 cm
water level) and recorded for 10 min. The apparatus was virtually divided into
two areas for video analyses: the central area of 12 cm in diameter and the
periphery. Videos were recorded from the top view. The following parameters
were quantified: total distance traveled (m), number of crossings (transitions
between the areas of the tank), absolute turn angle (°), and time spent in the

center area of the tank (s) (Johnson and Hamilton, 2017; Krook et al., 2019)

2.9 Biochemical assays

For each independent sample, three brains were pooled (n=6) and
homogenized in 450 pL of phosphate-buffered saline (PBS, pH 7.4, Sigma-
Aldrich) and centrifuged at 10,000 g at 4 °C in a cooling centrifuge; the
supernatants were collected and kept in microtubes on ice until the assays were

performed. The detailed protocol for prepare brain tissue samples is available at

12
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protocols.io(Sachett et al., 2020a). The protein was quantified according to the
Coomassie blue method using bovine serum albumin (Sigma-Aldrich) as a
standard (Bradford, 1976). The detailed protocol for protein quantification is

available at protocols.io (Sachett et al., 2020b)

2.9.1 Non-protein thiols (NPSH)

The content of NPSH in the samples was determined by mixing equal
volumes of the brain tissue preparation (50 pg of proteins) and trichloroacetic
acid (TCA, 6%), centrifuging the mix (10,000 g, 10 min at 4 °C), the
supernatants were added to TFK (1 M) and DTNB (10 mM) and the absorbance
was measured at 412 nm after 1 h. The detailed protocol is available at
protocols.io (Sachett et al., 2020c).

2.9.2 Glutathione reductase activity (GR)

The GR activity in the samples was determined by mixing the sample (30
Mg of protein) with a reaction medium containing TFK + EDTA (154 mM, pH 7.0)
and nicotinamide adenine dinucleotide phosphate (NADPH, 2mM). Then,
oxidized glutathione (GSSG, 20 mM) was added and the increase of NADPH
absorbance per minute was read at 340 nm. The detailed protocol is available

at protocols.io (Sachett et al., 2021e)

2.9.3 Glutathione peroxidase activity (GPx)

The GPx activity in the samples was determined by mixing the sample
(30 ug of protein) with a reaction medium containing TFK + EDTA (0.5 M, pH
7.0), NADPH (1.6 mM), GSH (10 mM), GR (2.5 U/mL), and 10 mM azide. Then,
H202 (4 mM) was added and the decrease of NADPH absorbance per minute
was read at 340 nm. The detailed protocol is available at protocols.io (Sachett
et al., 2021f).

2.9.4 Substances reactive to thiobarbituric acid (TBARS)
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The lipid peroxidation was evaluated by quantifying the production of
TBARS. Samples (50 pg of proteins) were mixed with TBA (0.5%) and TCA
(20%) (150 pL). The mixture was heated at 100 °C for 30 min. The absorbance
of the samples was determined at 532 nm in a microplate reader. MDA (2 mM)
was used as the standard. The detailed protocol is available at protocols.io
(Sachett et al., 2020d).

2.10 Statistical analysis

We calculated the sample size to detect an effect size of 0.35 for the
interaction between stress and treatment with a power of 0.9 and an alpha of
0.05 using G*Power 3.1.9.7 for Windows. The total distance traveled was
defined as the primary outcome. The total sample size was 107, which was
rounded up to 108 to yield n = 18 animals per experimental group.

The normality and homogeneity of variances were confirmed for all data
sets using D'Agostino-Pearson and Levene tests, respectively. Results were
analyzed by one-way (analysis of the antioxidant activity in vitro), or two-way
(UCS) ANOVA followed by Tukey post hoc test when applicable. The outliers
were defined using the ROUT statistical test and were removed from the
analyses. This resulted in 6 outliers (1 animal from each group) removed from
the Sl test, 4 outliers (1 animal from CUR S-, MC S-, DMSO S+ and MC S+
groups) removed from the NTT and 2 outliers (1 animal from each DMSO S+
and MC S+ groups) removed from the OTT. The tank and sex effects were
tested in all comparisons and no effect was observed, so the data were pooled.

Data are expressed as mean + standard deviations of the mean (S.D.).
The level of significance was set at p<0.05. Data were analyzed using IBM
SPSS Statistics version 27 for Windows and the graphs were plotted using

GraphPad Prism version 8.0.1 for Windows.

3. Results and discussion

3.1. Micronization
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Characterization and size of the particles of the non-micronized and
micronized curcumin are presented in Figure 4. The SEM showed a decrease in
the size and change in the morphology of the CUR patrticles after micronization
(Fig. 4A and 4B), being observed by the difference in zoom capable of
visualizing the shape of the particles. CUR has an average size of 12.36 um
while the average size obtained through SEDS was 2.29 um, which means a
reduction of 5.4 times (Fig. 4C). The DSC data (Fig. 4D) showed the detected
melting point for curcumin was 176.01 °C, while for micronized curcumin the
melting point was reduced to 170.9 °C. Changes to the melting point are related
to alterations in dissolution and solubility rates, among other properties, and are
caused by modification in the crystalline structure of the composts (Aguiar et al.,
2018, 2017, 2016; Bertoncello et al., 2018; Chen et al., 2012; Cheng et al.,
2016; Li et al., 2015; Moribe et al., 2005; Zhang et al., 2009).

The micronization of curcumin (Bertoncello et al., 2018), N-acetylcysteine
(Aguiar et al., 2017), trans-resveratrol (Aguiar et al., 2018, 2016; Almeida et al.,
2021; Decui et al., 2020), methotrexate (Chen et al., 2012), phenylbutazone
(Moribe et al., 2005), Panax notoginseng saponins (Liang et al., 2021),
etoposide (Cheng et al., 2016), ellagic acid (Li et al., 2015), taxifolin (Zu et al.,
2012) atorvastatin calcium (Zhang et al., 2009) and ibuprofen (Han et al., 2011,
Sosna et al., 2018) by the SEDS technigue have shown a reduction in particle
size, an increase in the dissolution rate, an increase in the solubility, as well as
a modification of the crystalline structure of the compound when compared with
non-micronized composts. Recently, the micronization of Panax notoginseng
saponins changed the pharmacokinetic parameters of these compounds in rats,
showing significantly higher values in plasma powders with smaller particle
sizes than the larger particle sizes (Liang et al., 2021). Therefore, micronization
can improve the bioavailability of compounds, being a critical tool for the
industry, especially for compounds with low solubility (Aguiar et al., 2016; Chau
et al., 2007; Chen et al., 2012; Li et al., 2015).
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Fig. 4. Effects of micronization of curcumin on size values and thermal analysis. (A)
particle size in the scanning electron microscope of non-micronized curcumin, (B)
particle size in the scanning electron microscope of micronized curcumin, (C) particle
size values in raw compounds, (D) differential scanning calorimetry. Dp (average
particle diameter); VC (variation coefficient).

3.2. Antioxidant activity in vitro

The experimental design is summarized in Figure 2. In this experiment,
we analyzed the in vitro antioxidant effects of CUR and MC in comparison to the
positive control ascorbic acid. The FRAP method quantifies the electron-
donating capacity of a compound by reduction of iron from ferric status to
ferrous in solution (Halliwell, 1990). MC (at 0.25 and 1 g/L) increased the
reduction of iron compared to CUR in the same concentrations (p <0.0001, Fg,40
= 316.2, Fig. 5A). As expected, ascorbic acid showed a greater reducing
capacity than MC and CUR in all concentrations. MC and ascorbic acid in all
concentrations and CUR at 0.25 and 1 g/L exhibited an increased reduction
potential when compared to 1% DMSO. These results indicate that the electron-
donating capacity was increased by micronization. Similar results have been
found in the literature where micronization increased the iron-reducing capacity
(Li et al., 2015; Lu et al., 2020; Zhu et al., 2014).
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DPPH is a free radical used to evaluate the antioxidant capacity through
its elimination by reduction via donation of a hydrogen atom by a compound
(Brand-Williams et al., 1995). In the DPPH assay, MC 1 g/L increased the
scavenging of the DPPH radical when compared to CUR at the same
concentration, being equivalent to the positive control ascorbic acid at all
concentrations tested (p<0.0001, Fg,40 = 228.2, Fig. 5B). CUR 0.0625 g/L
removed more radicals than MC and ascorbic acid at the same concentration,
but less than ascorbic acid at 1 g/L. MC, CUR, and ascorbic acid, in all
concentrations tested, showed more inhibition of the radical than DMSO. There
was no statistical difference in the ECso among the treatments. Other studies
reported that resveratrol, NAC, taxifolin, ellagic acid, and apple pomace
micronized by SEDS, increased the antioxidant activity when compared to the
non-micronized compost in DPPH tests (Aguiar et al., 2018, 2017; Li et al.,
2015; Lu et al., 2020; Zu et al., 2012).

There were no significant differences between treatments on the
percentage of remaining sulfhydryl groups of GSH (Fig. 5C). However, all
treatments were able to inhibit oxidation of GSH measured by the remaining
sulfhydryl groups of GSH that react with DTNB after oxidation induced by H20..

In the deoxyribose assay, OH- generated by Fenton reaction, oxidizes
deoxyribose with the formation of MDA, quantified by TBARS (Halliwell et al.,
1987). Thus, the ability of the compound to inhibit the formation of OH- and,
consequently, the inhibition of the formation of MDA was analyzed. Both MC
and CUR 1 g/L increased the inhibition of OH- production when compared to
ascorbic acid (p <0.0001, Fg,40 = 13.92, Fig. 5D). However, ascorbic acid 0.0625
g/L showed a greater inhibition when compared to CUR and MC at the same
concentration and, also ascorbic at 2.5 g/L when compared to MC 2.5 g/L. MC
0.25 g/L showed less inhibition than 1% DMSO.

These results indicate that curcumin can eliminate peroxides, inhibit the
formation of free radicals, and protect against an imbalance in the oxidative
state of the organism and lipid peroxidation. Studies indicate that the antioxidant
effect of curcumin can be attributed to its phenolic groups, acting as reducing
agents, hydrogen donors, as well as oxygen adsorption inhibitors (Zheng et al.,
2017). This supports our results suggesting that the ability to eliminate free
radicals from MC obtained by the DPPH and deoxyribose assay is related to
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their reducing properties in the FRAP. Similar results have already been
observed in several studies using curcumin preparations in vitro (Landeros et
al., 2017; Sahu, 2016; Singh et al., 2018). However, this is the first study
evaluating these effects in micronized curcumin.

Studies using this technology showed that the SEDS process is a robust
methodology for improving the physicochemical properties and antioxidant
activity by increasing the bioaccessibility and availability of phenolic and other
compounds active (Lu et al., 2020; Sefrin Speroni et al., 2021; Zhou et al.,
2004; Zu et al., 2012). Furthermore, positive correlations were detected
between radical scavenging activity, ferric reducing antioxidant power, and total
phenolic content of wine grape pomace micronized (Zhu et al., 2014). These
data suggest the possibility of improving the antioxidant effects of composts by

micronization.
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Fig. 5. Effects of DMSO, Ascorbic Acid, Curcumin, and Micronized curcumin on
antioxidant activity in vitro. Data are expressed as mean = S.D. One-way
ANOVA/Tukey. n= 5. *p<0.05 x 1% DMSO. #p<0.05 x ascorbic acid (in the same
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sulfoxide), FRAP (ferric reducing antioxidant power), DPPH (1,1-diphenyl-2-2-picyryl-
hydrazyl), and GSH (L-Glutathione reduced).
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3.3 Effects of CUR and MC on behavioral and neurochemical parameters in

zebrafish submitted to unpredictable chronic stress (UCS)

The timeline and experimental design are shown in Figure 3. Based on
the most effective concentration of curcumin (1 g/L) observed in the in vitro
antioxidant activity assays, we performed the UCS to verify the effects of both
preparations on behavioral and neurochemical parameters in zebrafish. The
unpredictable chronic stress induces several behavioral and neurochemical
characteristics that resemble those observed in patients with anxiety and/or
mood disorders (Chattariji et al., 2015; Willner, 2017, 2005). Antidepressants
(Demin et al., 2020; Marcon et al., 2016; Reddy et al., 2021; Song et al., 2018),
anxiolytics (Marcon et al., 2016), antioxidant (Marcon et al., 2019; Mocelin et al.,
2019), ketamine (Reddy et al., 2021) and prazosin (O’Daniel and Petrunich-
Rutherford, 2020) showed protective effects in this model.

Zebrafish live in social groups and, like humans, respond to the social
support of conspecifics from a familiar shoal and recover from stressful events
better in the presence of conspecifics (Faustino et al., 2017). In the Sl test, two-
way ANOVA revealed a main effect of stress on total distance (Fig. 6A),
indicating a locomotor dysfunction induced by UCS. Both CUR and MC were
unable to block this effect. The number of crossings (Fig. 6B), time in the
interaction (Fig. 6C), and neutral (Fig. 6D) areas were not affected by UCS,
indicating that, in this experimental condition, there was no impact of stress on
social preference parameters. Notably, in the scientific literature, the effect of
UCS on zebrafish shoaling behavior has been inconsistent, presenting
decreased or increased social interaction after UCS (Chakravarty et al., 2013;
Piato et al., 2011). In contrast to these studies, Fulcher et al. (2017) and Bertelli
et al., (2021) found that UCS did not alter the social interaction of zebrafish in

the social interaction test.
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Fig. 6. Effects of CUR and MC (10 mg/kg) in zebrafish submitted to the UCS on the
social interaction test (day 15). (A) total distance traveled (B) the number of crossings,
(C) time in the interaction area and (D) time in the neutral area. Data are expressed as
mean + S.D. Two-way ANOVA/Tukey. n=17 *p<0.05 stress effect. DMSO (dimethy!l
sulfoxide); CUR (curcumin); MC (micronized curcumin).
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In the NTT, a reduction of the exploratory behavior towards the top area
can be interpreted as an index of anxiety. Anxiolytic drugs such as fluoxetine,
buspirone, and diazepam increase, whereas anxiogenic drugs such as caffeine
and nicotine decrease the time on the top area of the tank (Bencan et al., 2009;
Egan et al., 2009; Gebauer et al., 2011, Levin et al., 2007). Here, UCS
decreased the number of crossings (Fig. 7B), time spent (Fig. 7C), and entries
(Fig. 7D) to the top area of the tank in the NTT. Neither the UCS nor the
treatments altered the total distance traveled (Fig. 7A). These results replicate
and reinforce previous studies showing that UCS induces anxiety-like behavior
in zebrafish (Chakravarty et al., 2013; Demin et al., 2020; Marcon et al., 2019,
2018a, 2016; Mocelin et al., 2019; O’'Daniel and Petrunich-Rutherford, 2020;
Piato et al., 2011; Reddy et al., 2021; Song et al., 2018). Both CUR and MC
were unable to block these alterations.

22


https://doi.org/10.1101/2021.07.08.451641
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451641; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Interaction F05 =0.7989  p=0.4527 Interaction Fpgg =0.3573  p=0.7004
Treatment Fjg5 =1.085 p=0.3419 Treatment Fpg5 =0.1560  p=0.8558
Stress Fi98 =1.761 =0.1876 Stress F198 =5.978 p=0.0163
30— 19 P 250 — 18
® o 2004 o
P (0]
(0]
® o Q +
20— ° @ ‘ 1504 @ ‘ +
E 23 + ©
@ © £ Q o
e @ 100—
@ o
ot —_
2L ($)
m)
10— 50— % %
o o o © Q@
° oea@ @ o ©
® O
@
_ -50
IDMSO CUR MCI IDMSO CUR MCI IDMSO CUR MCI IDf\/’ISO CUR l\/'ICII
S- S+ S- S+
Interaction  Fpe =0.1123  p=0.8939 Interaction  Fogg =0.4997 p=0.6082
Treatment Fjgg=1.114 p=0.3324 Treatment F,qg =0.07650 p=0.9264
Stress Fiog =4495 p=0.0365 Stress F1g8 =4.273 p=0.0414
100 — 1 60— 1%
+ (o]
o (6]
80 0] e @
z e 3 407 o * *
@ 60 — o E (O] + Q
0 ) o ® o ©
a o 2 2 QR S
[e] Q
S 40— e . 2 204
Q@ Q
£ =
cC (7]
= )
o 20 = @]
£ S
= w0 @
(@]
0— (6]
-20 -20
DMSOCUR MC, ~ DMSO CUR MC, [DMSOCUR MC, ~ DMSO CUR MC,
S- S+ S- S+

Fig. 7. Effects of CUR and MC (10 mg/kg) in zebrafish submitted to the UCS on the

novel tank test (day 16). (A) total distance traveled, (B) the number of crossings, (C)
time in the top area, (D) entries in the top area. Data are expressed as mean = S.D.

Two-way ANOVA/Tukey. n=17-18. "p<0.05 stress effect. DMSO (dimethyl sulfoxide);
CUR (curcumin); MC (micronized curcumin).

23


https://doi.org/10.1101/2021.07.08.451641
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451641; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The OTT is a paradigm adapted from the open-field test (OFT) used in
rodents, showing similarity with exploration, thigmotaxis, and freezing
parameters. A decrease in the time spent in the thigmotaxis area (periphery)
and an increase in exploration indicates a decrease in anxiety in zebrafish
(Johnson and Hamilton, 2017; Stewart et al., 2012). Two-way ANOVA revealed
an interaction between both factors on the number of line crossings (Fig. 8B),
however, no significant effects were observed in post hoc analysis. In addition,
there were no significant effects of any intervention on total distance, absolute
turn angle, and time spent in the center area (Fig. 8A, 8C, and 8D,
respectively).

Several studies evaluated the effects of curcumin using animal models of
chronic stress. In rodents submitted to stress for 21 or 28 days, curcumin (10-40
mg/kg, i.p. or p.o. for the same time) blocked the stress effects decreasing
immobility time in the OFT and memory deficits in the Morris water maze
(MWM). In these studies, curcumin decreased serum corticosterone and
increased BDNF and monoamine levels. Moreover, curcumin increased
hippocampal neurogenesis and decreased brain monoamine oxidase activity,
when compared to the stressed group (Bhutani et al., 2009; da Silva Marques et
al., 2021; Xu et al., 2009, 2007, 2006). In rats submitted to UCS for 35 days,
curcumin (40 mg/kg i.p. for 35 days) decreased the immobility time and
increased the swimming time in the forced swim test, besides increased the
percent of sucrose consumption (Fan et al., 2019, 2018). Similarly, treatment
with curcumin (20 mg/kg p.o.) for 8 days increased the glucose preference and
locomotor activity in OFT, as well as a decrease in the escape latency in MWM
and the brain cytokines levels in rats submitted to UCS for 8 days (Vasileva et
al., 2018). We supposed that the effects of curcumin on stress-induced
behavioral changes might be observed with a longer exposure time or even in a

dose range different from that used in the present study.
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Fig. 8. Effects of CUR and MC (10 mg/kg) in zebrafish submitted to the UCS on the
open tank test (day 17). (A) total distance traveled (B) the number of crossings, (C)

absolute turn angle, (D) time in the center area. Data are expressed as mean + S.D.
Two-way ANOVA. n=17-18. DMSO (dimethyl sulfoxide); CUR (curcumin); MC

(micronized curcumin).
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Fig. 9. Effects of CUR and MC (10 mg/kg) in zebrafish submitted to UCS on
neurochemical parameters. (A) non-protein thiol levels, (B) glutathione reductase
activity, (C) glutathione peroxidase activity, (D) lipid peroxidation levels. Data are
expressed as mean = S.D. Two-way ANOVA/Tukey. n=6. *p<0.05 x 1% DMSO non-
stressed. #p<0.05 x 1% DMSO stressed. DMSO (dimethyl sulfoxide); CUR (curcumin);
MC (micronized curcumin).
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After the behavioral tests, we evaluated the effects of CUR and MC on
neurochemical parameters in zebrafish submitted to UCS. Two-way ANOVA
revealed an interaction between both factors for NPSH levels, GPx and GR
enzyme activity, and TBARS levels. The post hoc analysis showed that UCS
decreased the NPSH levels (a measure that reflects the levels of GSH) (Fig.
9A), increased the GR enzyme activity (Fig. 9B), and increased lipid
peroxidation (measured by TBARS levels) (Fig. 9D). These results indicate an
oxidative status disturbance UCS-induced and consequently oxidative damage
in the zebrafish brain. Despite the two-way ANOVA revealed an interaction
between both factors on the GPx enzyme activity, no significant effects were
observed in post hoc analysis between the control non-stressed and stressed
group. MC blocked the effects of UCS, normalizing GR activity, and increasing
NPSH levels and GPx activity, consequently decreasing the lipid peroxidation.
CUR was able to increase GPx enzyme activity, although it was unable to block
the effects of the stress on lipid peroxidation, NPSH levels, and GR activity.

Some organs, like the brain, are more vulnerable to the detrimental
effects of ROS because it has a high metabolic rate and lower antioxidant levels
(Maes et al., 2011; Mandelker, 2008). Stress adaptation or allostasis increases
cerebral energy demand, reflecting the increased mitochondrial activity within
the brain, which is related to high oxygen consumption and greater ROS
production (Avery, 2011; Harwell, 2007; Picard et al., 2018). Moreover, the
increased production of ROS has been linked to hyperactivation of the HPA axis
with a consequent increase in cortisol secretion by producing damage to
hippocampal neurons, which maintain the homeostasis of the HPA axis by
negative feedback mechanisms (Bhatia et al., 2011; KVETNANSKY et al.,
1995; Maes et al., 2011; SAPOLSKY et al., 1986). The overproduction of ROS
and decrease in antioxidant defenses consequently cause an oxidative stress
status that alters neuronal homeostasis and favors the occurrence of oxidative
lesions in proteins, lipids, and nucleic acids, which may result in cell death
(Avery, 2011; Harwell, 2007; Valko et al., 2007). The reduced GSH is one of the
main antioxidant components involved in the removal of ROS and maintenance
of oxidative status. GPx reduces H202 through the GSH oxidation to oxidized
glutathione in dimerized form (GSSG). GSSG is then recycled by the enzyme
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GR through the NADPH oxidation reaction to oxidized NADP. In addition, GSH
also can undergo oxidation and form disulfides of the GSSR type with the
cysteine thiol present in proteins. The sulfhydryl group present in the cysteine
thiol is the active site and is responsible for its protective functions against
oxidative stress. Therefore, its oxidation leads to the formation of GSH
disulfides and inactivation of its antioxidant capacity, leaving the organism more
susceptible to suffer oxidative damage (Dasuri et al., 2013; Gandhi and
Abramov, 2012).

Our results suggest that unpredictable chronic stress decreased the
antioxidant defenses by depleting cerebral GSH, making the zebrafish brain
more susceptible to oxidative damage such as lipid peroxidation. On the other
hand, UCS increased the activity of GR as a reflex of the organism in face of
the decrease in GSH. Indeed, studies have shown the UCS increases body
cortisol levels, at the same time that increase ROS production, decreases the
antioxidant mechanisms (NPSH level and antioxidant enzyme activity
superoxide dismutase (SOD)), and consequently increases lipid peroxidation
(TBARS levels) in the zebrafish brain (Marcon et al., 2019, 2018b, 2018a,;
Mocelin et al., 2019). Interestingly, we also demonstrated for the first time that
MC has a better protective effect than CUR against oxidative stress, blocking
the stress-induced neurochemical effects in the zebrafish brain. We suggest
that CM prevented oxidative stress by increasing antioxidant defenses (GSH

level and GPx enzyme activity).

4. Conclusion

In this study, we have shown micronized curcumin prevented the effects
of chronic stress on neurochemical markers, despite the absence of effects on
behavioral parameters. Considering the heterogeneous and complex effects
caused by chronic stress, one possibility is that curcumin would be exerting
neuroprotective effects as an antioxidant, but not being able to modulate other
systems involved in stress-induced behavioral changes. However, there is a
clear superiority of the micronized preparation over the conventional against
stress-induced oxidative stress: Finally, the micronization with the SEDS
technique altered the crystalline structure of the compound and its melting point,
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which led to significant improvements in both in vivo and in vitro tests. Thus, the
micronization may increase bioavailability and potentiate the therapeutic effect
of drugs, making the technology of supercritical fluid micronization promising to

the pharmaceutical industry.
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