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Abstract

Generative machine learning (ML) has been postulated to be a major driver in the
computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to
confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large
numbers of antibody sequences for their most critical design parameters: paratope,
epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based
antibody-antigen binding simulation framework, which incorporates a wide range of
physiological antibody binding parameters. The simulation framework enables both the
computation of antibody-antigen 3D-structures as well as functions as an oracle for
unrestricted prospective evaluation of the antigen specificity of ML-generated antibody
sequences. We found that a deep generative model, trained exclusively on antibody
sequence (1D) data can be used to design native-like conformational (3D) epitope-specific
antibodies, matching or exceeding the training dataset in affinity and developability variety.
Furthermore, we show that transfer learning enables the generation of high-affinity antibody
sequences from low-N training data. Finally, we validated that the antibody design insight
gained from simulated antibody-antigen binding data is applicable to experimental
real-world data. Our work establishes a priori feasibility and the theoretical foundation of
high-throughput ML-based mAb design.
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Highlights

e A large-scale dataset of 70M [3 orders of magnitude larger than the current state of
the art] synthetic antibody-antigen complexes, that reflect biological complexity,
allows the prospective evaluation of antibody generative deep learning

e Combination of generative learning, synthetic antibody-antigen binding data, and
prospective evaluation shows that deep learning driven antibody design and
discovery at an unconstrained level is feasible

e Transfer learning (low-N learning) coupled to generative learning shows that
antibody-binding rules may be transferred across unrelated antibody-antigen
complexes

e Experimental validation of antibody-design conclusions drawn from deep learning
on synthetic antibody-antigen binding data
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Graphical abstract | We leverage large synthetic ground-truth data to demonstrate the (A,B) unconstrained
deep generative learning-based generation of native-like antibody sequences, (C) the prospective evaluation of
conformational (3D) affinity, paratope-epitope pairs, and developability. (D) Finally, we show increased
generation quality of low-N-based machine learning models via transfer learning.
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Introduction

Monoclonal antibodies (mAbs) have proven incredibly successful in the fight against cancer
and autoimmune disease (and recently, viral infections) with an estimated market size of 300
billion USD by 2025 (7). And recently, immense efforts to utilize mAbs for the neutralization
of viral agents, such as HIV, influenza, and SARS-CoV-2 (2-4) are ongoing as well. So far,
however, lead times to mAb discovery and design are on average >3 years (5-8). The
reason for this is that current mAb development pipelines mostly rely on a combination of
large screening libraries and experimental heuristics with very little to no emphasis on
rule-driven discovery (9). Recently, it has been increasingly postulated that machine learning
(ML) may be useful in accelerating antibody discovery — especially when applied to
large-scale antigen-specific display library screening antibody sequencing data (70).
However, formal proof that ML can generate antibody sequences that are
3D-antigen-specific (affinity, paratope, epitope) if only provided with 1D-sequence training
data (the most abundant class of available antigen-specific antibody data) alone is missing.

Recent reports suggest that ML may be able to learn the rules of efficient antibody (protein)
design (6, 70-17). Specifically, Amimeur and colleagues (78) trained generative adversarial
networks (GANs) (79) on sequences obtained from the Observed Antibody Space (OAS)
database (20) to demonstrate the capacity of deep generative networks to discover mAbs
with certain developability parameters. Friedensohn and colleagues (27) trained variational
autoencoders (VAE) (22) on BCR-sequence data to identify antibody sequences in cohorts of
mice immunized with various antigens and to generate novel antigen-binding sequences.
Widrich et al. as well as Davidsen et al. have used LSTMs/VAEs to generate TCRp
sequences with the aim to generate realistic immune repertoires (23, 24). Finally, Eguchi et
al. built class-specific backbones using VAE to generate 3D coordinates of mAbs (25).
However, while several generative deep learning methods have been explored for the in
silico generation of immune receptor sequences, these strategies did not allow for the
examination of whether the generated sequences follow the same antigen-specificity
distribution as the input training data. This is due to the absence of large-scale
antigen-annotated antibody sequence training data and the lack of high-throughput
techniques for validating antigen binding of ML-generated antibody sequences.

Here, we investigated whether generative deep learning can learn 3D-affinity and epitope
information from 1D antibody sequence data. This was done by using two oracles (external
validators): (i) an in silico framework that enables unrestricted validation (prospective
evaluation) of the biological activity (paratope, epitope, affinity) of generated antibody
sequences. Specifically, we used an in silico antibody-antigen binding simulation framework
(which respects the biological complexity of antibody-antigen binding to the largest extent
possible), called Absolut! (26) that can annotate large collections of antibody sequences
with synthetic binding affinities (specificity) to a synthetic 3D-antigen, which allows the
assembly of large-scale complete-knowledge training data (27, 28). Due to its ability to
annotate newly generated antibody sequences with antigen-binding information, Absolut!
resolves the current problems of in silico validation of generated sequences (29, 30). And (i)
an experimentally validated deep learning classifier that was trained on binders and
non-binders to epidermal growth factor 2 (HER2) (37). Our work provides the basis for the
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ML-driven design of fit-for-purpose antibodies with respect to binding affinity, epitope, and
developability.
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Results

Assembly of synthetic antibody-antigen complexes @D Deep generative learning and generation of
CDR-H3 sequences
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Figure 1 | Workflow for ML-based antibody design and evaluation thereof. (A) Generation of in silico training
datasets with binding paratope, epitope, and affinity annotation. Briefly, PDB 3D antigen structures were
obtained from the Antibody Database (32) and native antibody sequences (CDR-H3) were obtained from Greiff
and colleagues (33). CDR-H3 sequences were annotated with their corresponding affinity and epitope to each
antigen using the Absolut! software suite (26). In addition, six widely used developability parameters were
calculated for each CDR-H3 sequence (see Table 2). (B) Training a generative model on high-affinity CDR-H3
sequences to each antigen. Native linear 1D antigen-specific CDR-H3 sequences were used as input to train
sequence-based RNN-LSTM generative models. Of note, the RNN-LSTM architecture did not receive any
explicit 3D-information on the paratope, epitope, affinity, nor the developability of a given sequence. (C)
Large-scale in silico CDR-H3 sequence generation and binding validation. Following training, the deep models
were used to generate new CDR-H3 sequences, which were then evaluated (prospectively tested) for their
antigen-specificity  (affinity, paratope, epitope) using Absolut! (simulation) and annotated with
developability-associated parameters. (D) To validate our RNN-LSTM model beyond the binding simulation
setting, we trained the model with experimental HER2 binder and non-binder CDR-H3 sequences and
generated 6x10° new sequences, and evaluated the generated sequences against an experimentally validated
CNN-based HER-2 classifier model as reported in (37).

Deep learning generates novel antigen-specific CDR-H3 sequences across a wide range of
developability parameters

ML-based generation of new antibody sequences with desired biological properties
requires large experimental datasets and a method to test the generated sequences for
such properties. To address the absence of large experimental antigen-specific
antibody-antigen datasets to train and test deep antibody generative models, we leveraged
Absolutl—a software suite that simulates the binding of antibody sequences to 3D
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antigens. Absolut!, to a large extent, replicates and recaptures the biological properties and
complexity of experimental antibody-antigen binding (26). We utilized our previously
published dataset of seven million (7x10°) native antibody (CDR-H3) amino acid sequences
(33) (see Methods) and (via Absolut!]) computed their binding to 10 protein antigens
(Table 1, Figure 1A). Briefly, synthetic antibody-antigen complexes were obtained by (i)
iterating over all possible binding positions between a sequence and an antigen to find the
optimal binding position and (ii) by calculating the resulting binding affinity, paratope,
epitope, and structural fold for each antibody CDR-H3 sequence (see Methods). Following
affinity annotation, a set of six developability parameters (Table 2) was calculated for each
CDR-H3 sequence (Figure 1A). CDR-H3 amino acid sequences equipped with affinity,
paratope, epitope, and developability information are henceforth termed
antigen-annotated CDR-H3 sequences.

We examined the capacity of a deep (autoregressive) generative model (recurrent neural
networks with long short-term  memory—RNN-LSTM) to generate (design) novel
antigen-specific sequences as follows. (i) We trained the RNN-LSTM model on
antigen-specific CDR-H3 sequences (top 1% affinity sorted sequences, n.,=70 000)
(Figure 1). Importantly, we did not provide explicitly the affinity or paratope/epitope
information in the training process. (i) Subsequently, we used the trained model to
generate new CDR-H3 sequences (n,,=70 000) (Figure 1), (iii) which we evaluated in terms
of antigen specificity (using Absolutl), sequence novelty, and developability (Figure 1C).

The binding affinity (Figure 2A), as well as the paratope fold and epitopes of generated
CDR-H3 sequences, mirrored very closely those of the native (training) CDR-H3 sequences
(Figure 2B). Novel paratope folds and epitopes were also discovered as observed by the
paratope fold and epitope diversity (34) of generated CDR-H3 sequences that were higher
than those of native (training set) sequences (Figure 2B). The within-sequence similarity, as
measured by the distribution of Levenshtein distance (LD) between CDR-H3 sequences
within the set of native or generated CDR-H3 sequence datasets was preserved (Figure 2D,
Fig. S4) as were long-range sequence dependencies (gapped k-mer decomposition,
Pearson correlation 0.864-0.907, Figure 2C). To exclude the possibility that generated
CDR-H3 sequences showed high affinity merely by virtue of their similarity to the training
input, we validated that the generated CDR-H3 sequences were novel (<1% overlap
between generated and native antigen-specific sequences, Figure 2E) both measured by
exact sequence identity or based on sequence similarity (median Levenshtein distance
between generated and native CDR-H3 sequences: =9-10 a.a., Figure 2D). Thus, deep
generative learning explores non-trivial novel sequence spaces. We excluded the possibility
that the chosen RNN-LSTM-architecture would be biased to generate high-affinity
sequences as default by training on CDR-H3 sequence sets that contain (1) exclusively
low-affinity CDR-H3 sequences [generating exclusively low-affinity CDR-H3 sequences] and
(i) CDR-H3 sequences spanning the entire affinity spectrum (generating CDR-H3 spanning
the entire affinity spectrum) (Fig. S3). Finally, the distribution of developability parameters of
generated CDR-H3 sequences largely mirrored but also expanded the range of parameters
of native antigen-specific sequences (Figure 2F).
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Figure 2 | Deep learning (RNN-LSTM) generates novel antigen-specific CDR-H3 sequences across a wide range
of developability parameters. (A) Comparison of training and generated affinities. The affinity of training
antigen-specific CDR-H3 sequences (n,.;=70 000, blue) to 10 different 3D antigens obtained from PDB (see
Table 1). The affinity of the 70 000 generated CDR-H3 sequences from the 10 RNN-LSTM models was shown in
yellow. (B) Comparison of training and generated sequences for epitope recognition. Absolut! was used to
compute the (A) affinity and (B) paratope fold/epitope of the training data (see Methods: Generation of
lattice-based antibody-antigen binding structures using Absolut!). (C) Pearson correlation (range: 0.864-0.907)
of CDR-H3 sequence composition between training (“native”) and generated datasets quantifying the
preservation of long-range dependencies. CDR-H3 sequence composition was measured using gapped k-mers
where the size of the k-mer was 1 and the size of the maximum gap varied between 1 and 5. (D) CDR-H3
sequence similarity (Levenshtein distance, LD) distribution determined among training and generated CDR-H3
sequence datasets (see Fig. S4 for the LD distribution of CDR-H3 sequences with the native and generated set,
respectively). (E) CDR-H3 sequence novelty (overlap) defined as CDR-H3,gen xNCDR-H3,gen ,/70 000, where x
and y are the 10 antigens listed in Table 1) of CDR-H3 sequences (median overlap <0.5% — novelty: >99.5%)
between both “native and generated” and “generated and generated” datasets across all antigen
combinations. (F) Developability parameter distribution between training and generated CDR-H3 sequences
overlaps substantially (see Table 2 for a description of developability parameters used).
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On-demand generation of large amounts of CDR-H3 sequences with broad developability
and affinity that match or exceed the training sequences

Following the observation that deep generative models were capable of generating novel
CDR-H3 sequences that mirror very closely the binding and developability properties of
native CDR-H3 sequences (Figure 2), we hypothesized that such models are useful for
generating large quantities of CDR-H3 sequences with similar or better affinities than those
of the native ones. To assess this hypothesis, () we grouped the native antigen-specific
CDR-H3 sequences (Nsqaning= 70 000, top 1%) into four affinity categories based on their
binding energy (low energy — high affinity): ultimate binder (max native-%4), penultimate
binder (/5-%), binder (%4-min native), and hyperbinder (affinity>native max, i.e., higher
affinity than found in the training data CDR-H3 sequences, see schematic in Figure 3A), and
(i) we generated, for each antigen, 7x10° unique antigen-specific CDR-H3 sequences (i.e.,
10 times larger than the training dataset), and evaluated the generated CDR-H3 sequences
with respect to the four categories. Broadly, we found that the number of binders in all four
categories increased as the generated sequences increased (Figure 3A). Specifically, when
the number of generated CDR-H3 sequences equaled that of the training data
(Nseq generatea=7/0 000), we found binders in the same order of magnitude in all categories of
binders (binder-ultimate binder) compared to the native (training) dataset (blue lines),
except for hyperbinders (as the native populations have, per definitionem, no
hyperbinders). At Ny generatea=7%10°, the quantities of discovered binders far eclipsed those
of the native binders in all four categories by ~4-fold (Figure 3A) suggesting that generative
learning may be used for a highly exhaustive discovery of novel binders. Importantly, the
discovery of CDRH3 sequences with superior predicted binding affinity compared to the
native sequences (hyperbinder) further illustrates the importance of deep generative
models in the design and discovery of high-affinity CDR-H3 sequences (77, 78, 21, 35).
Hyperbinders showed affinity improvements over native CDR-H3 sequences in the range of
0.4-4.4% (percentages were calculated against the maximum affinity [lowest energy] of
each antigen’s training dataset) and median LD (against native binders) of 10 to 14. To
summarize, our RNN-LSTM models were able to generate large quantities of non-redundant
CDR-H3 sequences that match or exceed the affinity of the training sequences.

In the same vein, we hypothesized that deep generative models would prove useful for
generating CDR-H3 sequences with similar or richer developability profiles to native
CDR-H3 sequences (higher number of combinations or constraints on developability
parameter values). To this end, we devised a binary developability encoding wherein each
developability parameter (Table 2) is grouped into two categories: low (parameter values
that range between the min and median of the distribution of the parameter) and high
(parameter values that range between the median and max of the distribution of the
parameter) and annotated each CDR-H3 sequence with a composite developability
encoding combining all six developability parameters here examined (Figure 3B). For
has a low charge (0), low molecular weight (0), low gravy index (0), low instability index (0),
low affinity to MHCII (0) but a high affinity for MHCI (1). Subsequently, we compared the
total number of developability parameter combinations populated by the generated
sequences (against native sequences) in two conditions: native-sized wherein the number of


https://paperpile.com/c/Nv2Fix/IByX+wodH+yI7h+vYZo
https://doi.org/10.1101/2021.07.08.451480
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451480; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Page 10

generated sequences matches the number of sequences in the native (training) dataset
(Nseqgeneratea=/0 000) and /arge where the number of generated sequences is an order of
magnitude larger than the native training sequences (Nyqgeneratea=7/%10°). We observed a
larger number of developability parameter combinations in the generated populations
(Figure 3B). Specifically, native-sized generation yielded 29-39 developability parameter
combinations (45-61% of all possible combinations), large generation yielded 33-44
(52-69% of all possible combinations) as compared to native sequences that yielded 21-37
combinations (33-58% of all possible combinations). Pearson correlation between the
counts of developability parameter combinations in native and generated sequences was
high (Pearson cor: 0.74-0.99, Figure 3B). In other words, deep generative models can be
leveraged to generate antibody sequences that are equally or more diverse than native
(training) ones in terms of developability profile.
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Affinity in the on-demand generation of large numbers of CDR-H3 sequences
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Figure 3 Exhaustive generation reveals better antibodies than are present in the training dataset. (A) To examine
the ability of the RNN-LSTM model to generate CDR-H3 sequences beyond the native realms (in terms of
quantity and affinity), we first binned the native high-affinity antigen-specific training CDR-H3 sequences into
four affinity classes: hyperbinder (affinity >max native), ultimate binder (max native>-1/3), penultimate binder
(1/3-2/3), and binder (2/3-min native). Following binning, we used deep generative models to generate 700K
new sequences, devised 10 cutoffs in the increment of 70K (70K[native sized], 140K...700K[large]), subsampled
10 times (from the 700K generated sequences) and counted the number of novel sequences in each cutoff.
Native and generated sequences are shown in blue and yellow; error bars are shown for subsampled sequences.
We found that, for all affinity classes, the number of sequences in each class increases as a function of the total
number of generated sequences. In addition, we found sequences that possess a higher affinity than the
native-training sequences (called hyperbinders) with affinity improvements over native CDR-H3 sequences
ranging between 0.04-4.4% [depending on the antigen, percentages were calculated relative to the minimum
affinity per antigen]. (B) To examine the diversity and preferences of developability combinations, we annotated
each CDR-H3 sequence with a binary developability encoding. Briefly, we binned each developability parameter
in two bins (low=min-median and high=median-max) and annotated each sequence with a composite binary

low molecular weight, low gravy index, low instability index, low affinity to MHCII and high affinity to MHC). We
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found that the generated CDR-H3 sequences yielded larger ranges of developability combinations in

native-sized generation (n,,=70 000) and /arge generation (n.q,= 7x10%. Error bars indicate the standard

deviation for the subsampling.

seq

The quality of ML-based antibody sequence generation is function of the size of the training
data

The absence of large antigen-annotated antibody sequences and structural datasets
remains a major challenge in developing robust machine learning methods for
antibody-antigen binding prediction as well as antigen-specific generation of monoclonal
antibodies (77, 36). Furthermore, the precise amount of antibody sequence data necessary
to recover native-like antibody affinity, epitope, and developability is a subject of ongoing
investigations (70-12). Therefore, within the framework of our simulation suite Absolut!, we
examined how the number of training CDR-H3 sequences impacts the resulting binding
affinity of the generated CDR-H3 sequences. To this end, from the top 1% antigen-specific
CDR-H3 sequences (n,,=70 000), we created smaller datasets of antigen-specific CDR-H3
sequences (Nseqsubsampie=700, 7000, 10 000, 20 000, 30 000, 40 000, 50 000, 60 000, and
Neeplicates=9); trained deep generative models on these subsets; and compared the resulting
binding affinity against native CDR-H3 sequences and CDR-H3 sequences generated by
models trained on the top 1% (nseq=70 000) antigen-specific CDR-H3 sequences (called
“data-rich” model). We found that the correspondence between the binding affinity and
epitope recognition of native and generated CDR-H3 sequences increased as a function of
the number of training CDR-H3 sequences (Figure 4A, Fig. S5). Specifically, our models
recovered very closely the native affinity (as measured by median energy) when we used
20 000 or more training CDR-H3 sequences (Fig. S5). Similarly, the agreement of epitope
occupancy between generated CDR-H3 sequences increases as a function of the sequence
size of the training set (Fig. S8, Fig. S11). Of note, we found that the agreement of epitope
occupancy between native and generated CDR-H3 sequence was already reasonable at a
small training dataset (ntrain=700) for antigens with fewer epitopes (e.g., 3VRL, see
Figure 2B bottom panel) (Fig. S8, Fig. S11). In contrast, antigens with more epitopes (e.g.,
1HOD, Figure 2B, bottom panel) required larger training datasets for reaching a high
concordance with the epitope occupancy observed in the training dataset (Fig. S8,
Fig. S11).

In summary, 20 000 CDR-H3 sequences were sufficient to train models that reproduce
native-like affinity. We note that our simulation framework Absolut! does not operate at
atomistic resolution (26), thus, Nyqainng IN the order of 20 000 shall only be regarded as a
lower bound of the number of training CDR-H3 sequences necessary to train a robust deep
generative model, in comparison with a higher dimensionality of binding modes in
experimental datasets.

Transfer learning enables the generation of high-affinity CDR-H3 sequences from
lower-sized (low-N) training datasets
Based upon the observation that lower-sized training datasets failed to produce CDR-H3

sequences with native-like binding affinity and epitope binding, we asked whether the
generation quality of models trained on lower-sized datasets (data-poor, “low-N, (37",
Nseqiaining=/00 and 7000) may be improved by transferring learned features from models
trained on larger training datasets, which were found to be sufficient for achieving a
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native-like affinity (data-rich, Nyqaining=/0 000, Figure 2, Figure 4A). We examined this
question by constructing a transfer learning architecture wherein pre-trained embedding
and RNN-LSTM layers from a data-rich model were stacked atop of a new fully-connected
layer with the resulting “transfer” model subsequently being trained on lower-sized datasets
(Figure 4). We performed two different transfer learning experiments termed (i) within
antigen and (ii) across antigens transfer. (i) within antigen transfer describes a transfer
experiment involving the same antigen (this transfer setting serves as control for the
functioning of the transfer architecture). That is, pre-trained embedding and LSTM layers
from a data-rich model based on CDR-H3 sequences specific for an antigen V were stacked
atop of a new dense layer; the resulting architecture was trained on lower-sized datasets
(Nseq training=7/00 and 7000) of antigen V. In contrast, (i) across antigen transfer identifies a
transfer experiment involving different antigens, e.g., a data-rich model of an antigen Vand
data-poor (lower-sized datasets Ny ining=/00 and 7000) models of antigen G (see Methods
and Figure 4B). Following training, for each antigen, we generated a total of 100 000
CDR-H3 sequences (10 000 sequences, 10 replicates) and measured the generation quality
with respect to affinity and epitope. We used the Kolgomorov-Smirnov distance (KSD) to
quantify the similarity between the generated binding affinity distributions and the native
affinity distribution. A small KSD indicates that the compared affinity distribution is similar
and increasing KSD indicates increased dissimilarity. We observed marked reductions of
KSD values (against the affinity distribution of the native population) for the within antigen
transfer in all models (Figure 4B, upper panel), which signifies the availability, learnability,
and transferability of general antibody-antigen binding features within an antigen. For the
across antigens transfer experiments, 7 out of 10 antigens showed reductions in KSD values
in at least one transfer scenario (Nyqaining=700 or 7000, Figure 4B, lower panel) suggesting
the transferability of antibody-antigen binding features across antigens and the
multi-faceted nature of the signal per antigen learned (nota bene, the medians of binding
affinities in the across antigens transfer scenario were closer to the native and data-rich
affinities in all 10 antigens, Fig. Sé). For epitope similarity, we used Pearson correlation
(Fig. S9-Fig. S10) and overlap (Fig. S12-Fig. S13) to quantify the concordance between
epitopes recognized by native and generated CDR-H3 sequences. Similar to affinity, we
found better concordance both for the within and across antigens transfer (increasing
Pearson correlation values, Fig. S9 and Fig. S10). Interestingly, the number of recognized
epitopes jumped in across-antigens transfer (Fig. S13) whereas in the within-antigen transfer
(Fig. S12) the number of recognized epitopes dropped, hinting at the utility of across
antigens transfer in generating epitope diversity. In summary, our in silico experiments
suggest that transfer learning may represent a suitable method for generating high-affinity
CDR-H3 sequences from lower-sized training datasets.


https://doi.org/10.1101/2021.07.08.451480
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.08.451480; this version posted July 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Page 14

Impact of training dataset size on sequence generation quality
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Figure 4: Generation quality of antibody sequences depends on the size of the training dataset and transfer
learning enables the generation of higher-affinity CDR-H3 sequences from lower-sized training datasets. (A) To
examine the impact of sample size on the resulting binding affinity and epitope (see Fig. S8) of generated
CDR-H3 sequences, we created smaller training datasets (Nyeqsubsample=700, 7000, 10 000, 20 000, 30 000,
40 000, 50 000, 60 000, and Negjicares=5) from the full antigen-specific CDR-H3 sequences (Nyqaining=70 000),
trained deep generative models on the subsets and compared the binding affinity and epitope against affinity
and epitope from models trained on the full data and the native affinity and epitope (see Fig. S8 for correlations
of CDR-H3 epitope occupancy). We found that models trained on the larger dataset sizes (>2x10%), but not the
smaller subsets (in the order of 10% or 109, sufficiently replicate the distribution of binding affinity and epitope
CDR-H3 sequences. (B) To investigate whether transfer learning may be used to improve the affinity and epitope
(see also Fig. S9-Fig. S13) binding of CDR-H3 sequences generated by models trained on smaller-sized
datasets, we constructed a transfer architecture wherein embedding and RNN-LSTM layers from a “data-rich”
model (high N, N.eq, waining=70 000) were stacked atop of a fresh dense layer and training the resulting ‘transfer’
model on lower-sized datasets (data-poor; low N, Ny waining=700/7000). Two types of transfer experiments were
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performed: a within-antigen transfer experiment (e.g., between a data-rich model of an antigen Vand data-poor
models of the same antigen V) and a between-antigens (across antigens) transfer experiment (e.g., between
data-rich model of an antigen V and data-poor model of antigen G). We used Kolmogorov-Smirnov distance
(KSD, range: 0 for identical distribution, increasing value for increasing dissimilarity between distributions) to
quantify the similarity between affinity distributions of CDR-H3 sequences generated by the models with transfer
learning (+T) and without transfer learing (-T). Smaller KSD values indicate that the compared affinity
distributions are similar and a larger value signifies dissimilarity of affinity distributions. For within transfer
experiments, we found marked reductions of KSD values (against the native population) in all antigens signifying
the transferability of general antibody-antigen binding features within antigens. For across-antigens transfer
experiments, 7 out of 10 antigens showed reductions in KSD values in at least one transfer scenario (n.,
wainng=700 or 7000, Figure 4B) suggesting the transferability of antibody-antigen binding features across
antigens.

Experimental validation of antibody-design conclusions drawn from ML training on
simulated antibody-antigen binding data

Experimental validation at the scale of the number of antibody sequences that can
potentially be ML-generated (Figure 3) remains an unresolved technological problem. One
solution to this challenge are experimentally validated ML-classifiers that can screen the
potential sequence space for binders. One such classifier for HER-2 binders was previously
developed by Mason and colleagues (37). Briefly, this CNN-based classifier classifies
CDR-H3 amino acid sequences for their potential to bind HER2; all sequences annotated
with a binding probability of p>0.5 are considered binders. Mason and colleagues
validated this classifier experimentally by the expression and testing for binding of both
predicted binders and non-binders. Given that the experimental system by Mason et al. is
very similar to the one simulated in this work, i.e., testing of binding of CDR-H3 sequences,
we concluded that the CNN-classifier can be used to evaluate the experimental binding
potential of the output of our RNN sequence generator (Figure 1B). Therefore, we
performed the following experiment: we trained separate RNN-LSTMs on the
experimentally verified 11300 HER-2 binders (“RNN-LSTM binder model”) and the 27539
HER-2 non-binders (“RNN-LSTM non-binder model”) of the Mason dataset and used the
models to generate 6x10° sequences in each case (Figure 5A). These generated sequences
were assessed for their HER2-binding potential using the experimentally verified
CNN-classifier described above (Figure 5A). We found that 72% of the generated CDR-H3
sequences from the RNN-LSTM binder model were scored as binders and we ascertained
that the generated sequences follow the positional amino acid dependencies (usage) of the
experimentally verified training data (low mean-squared error, MSE, Figure 5B). We verified
that these results were not random by CNN-scoring the CDR-H3 sequences from the
RNN-LSTM non-binder model where only 14% of the generated CDR-H3 sequences were
scored as binders. Thus, we validated that the RNN-LSTM trained on
experimentally-determined HER-2-binding sequences, successfully generated sequences
classified as HER-2-binders by the experimentally validated CNN and that a training dataset
in the order of 1-2x10* sequences (as also observed with our synthetic data, Figure 4A) is
sufficient to generate CDR-H3 sequences that bind the target antigen. Of note, these
results also suggest that de novo antibody design is feasible using only binding sequences
(positive data) for ML model training.
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Evaluation of generated sequences with experimentally validated CNN
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Figure 5. RNN-LSTM model trained on experimentally validated binders (not synthetic sequences) generated
native-experimental-like binders. (A) To validate that our model can not only reproduce properties of native-like
synthetic sequences of binders but also experimentally determined binders, we trained the model with binders
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and non-binders obtained from recently published experimental data of binders against human epidermal
growth factor 2 (HER2) (37), generated 6x10° sequences and scored the sequences with the Mason et al. CNN
classifier (the CNN classifier outputs a probability value between 0-1. CDR-H3 sequences with probability >0.5
are categorized as binders). (B) We found that a large proportion (72%) of generated sequences originated from
the model that was trained on HER2 binders had high prediction probability values (P>0.5, as used in Mason et
al.) and correspondingly the majority (84%) of the generated sequences originated from the model that was
trained on HER2 non-binders had low prediction probability values (P<0.5) as well as similar amino acid usage
across positions as shown by the amino acid frequency plots (as described in the Mason et al. study). Of note,
the mean squared error (MSE) values of the generated sequences were comparable to the values of
experimental sequences indicating that our generated sequences preserve the characteristics of the
experimental sequences (HER2-binders, HER2-non-binders) rather well.

Discussion

We have here provided the in silico proof-of-principle that deep learning can learn the rules
of 3D-antibody-antigen interaction from 1D antibody sequence data alone by showing (in a
3D-lattice space) that novel antibody variants with high affinity and specific epitope binding
can be generated based on sufficiently large training data (Figure 2 and 4). Among the
generated antibodies, for all tested antigens (10 out of 10), we detected novel antibody
sequences that exceeded in affinity those found in the training dataset (Figure 3). ML-based
sequence generation also allowed for the discovery of novel developability parameter
combinations (Figure 3). For the machine learning model used, we determined the number
of training CDR-H3 sequences necessary (>2x10% for generating high-affinity CDR-H3s and
demonstrated that these numbers may be reduced by transfer learning (Figure 4). Finally,
we experimentally validated the antibody-design conclusions drawn from ML training on
simulated antibody-antigen binding data (Figure 5). More broadly, while the primary
objective of this paper was the proof-of-principle study of antibody generative learning, the
secondary objective was to develop a set of analytical approaches that may help study the
quality of generated antibody sequences in future studies with a similar aim.

In this work, we chose an RNN-LSTM based language modeling approach as it represents a
competitive baseline to the state-of-the-art transformer-based architecture (38). Recently,
variational autoencoders (VAE), as well as generative adversarial networks (GAN), have also
been used for generating T and B-cell receptor sequences (78, 21, 24). However, both in
the area of natural language processing as well as in the area of generative models for small
molecules, GANs and VAEs remain less competitive (Semeniuta et al., 2018; Preuer et al.,
2018). Although we decided to use an RNN-LSTM as a generative model, we hypothesize
that any accurate language model, for example, transformer architectures (26), would
procure similar results and conclusions. Further benchmarking is needed in the area of
generative protein design.

A common problem with deep learning-generated sequence data is that methods may
reproduce the training data with minimal changes, which has been termed the “copy
problem” by Renz and colleagues (39). The copy problem is especially prevalent when the
capacity for high-throughput testing of molecular properties (in our case, antigen binding
and developability) is unavailable. The absence of prospective testing capacity precludes
the functional (e.g., antigen binding) evaluation of the generated dataset, which renders
addressing the copy problem somewhat unfeasible (merely testing sequence diversity on
sequences of which the binding mode is unknown does not elucidate the extent of diversity
for a given binding mode for example). In this work, we were able to address and exclude a
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copy problem by evaluating all generated sequences for both binding as well as for
sequence diversity (Figure 2-Figure 4).

The transfer learning experiments demonstrated the capacity of deep learning models
trained on large collections of CDR-H3 sequences to augment weaker datasets (smaller
datasets that fail to reproduce faithfully the affinity and epitope of native sequences) for
both within and across antigens scenarios (Figure 4). Although transfer learning improved
(smaller KSD values against native) the generation quality of weaker models in all 10
antigens for the within antigen transfer scenario, three antigens (3RAJ, 3VRL, and 5E%94) did
not show improvements (larger KSD values against native) for the across antigens transfer
scenario (although closer examination of the generated affinity distributions revealed that
the median affinity values of across antigens transfer learning were closer to the median
affinity values of native CDR-H3 sequences, Fig. S6é). Furthermore, the number of
recognized epitopes in any transfer learning was notably larger than the number of
recognized epitopes in sequence generation without transfer learning and in native CDR-H3
sequences (Fig. S13) independent of the KSD values against native CDR-H3 sequences. This
illustrates the key challenges remaining in the prospective testing of many orthogonal
variables wherein several parameters must be captured and justly reflected in order to
communicate faithfully the underlying trends in the data. Indeed the success of cross tasks
transfer has been shown to be heavily influenced by the compatibility of the source and
target task types (40). Nevertheless, our cross-antigens transfer learning experiments show
that, at least in the case of our antibody sequence datasets, neural network models can
extrapolate 3D non-linear dependencies to CDR-H3 sequences outside the training
distribution (40-42).

One may argue that our framework generates sequences that are binders within the lattice
framework but would not be binders if tested in vitro/vivo. That said, we ensured that the
antibody-antigen simulation framework is state-of-the-art surpassing all currently available
large-scale antibody-antigen binding simulation frameworks (28) (e.g., the inclusion of
discretized PDB-stored antigens, 3D-binding [albeit on a 90°-grid], experimentally
determined physiologically relevant amino-acid interaction potentials (26)). The inbuilt
physiological relevance of our antibody-antigen simulation model affords a more precise
understanding of how the accuracy of computational models increases with the number of
available antibody sequences for training, which will help in planning experimental
validation studies. We also avoided the possibility that the generative model learns to
exploit the affinity models by refraining from a full reinforcement learning setting, in which
the affinity model would be used as a reward function (Renz et al., 2020). Specifically, the
major challenge of predicting antigen reactivity of an antibody sequence lies in
recapitulating the residue interactions between the antibody and antigen structures in 3D
space. Even our simplified computational model of antibody structure includes physical
antibody-antigen interactions in 3D space entailing non-linearities and positional
dependencies reminiscent of the biological complexity (26). Consequently, one may argue
that our simulation framework and investigations are suitable for establishing an informative
lower bound of the complexities encountered in machine and deep-learning-based
biological sequence design. Indeed, a recent study by Mason et al. (37) that leverages
experimental deep mutational scanning data showed that a training dataset size in the
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order of 10* (as also shown in this study; Figure 4A) was sufficient to train machine learning
models that discriminate binders and non-binders. Furthermore, the study also highlights
that a large proportion of dissimilar sequences (LD>2) bind to the target antigen (as also
shown in this study; Figure 2D). These parallels (with results from experimental data)
reiterate the utility and relevance of simulated custom-designed synthetic datasets in
advancing the development of computational approaches for antibody design and
discovery.

For future investigations, we cannot highlight enough the need for experimental validations
to compliment the herein in silico results. Recently, Saka and colleagues showed that
RNN-based generated antibody sequences bind the desired target providing experimental
proof of principle of our computational framework (43). Here, we validated our RNN-LSTM
framework by scoring the generated CDR-H3 sequences using an experimentally validated
oracle (CNN-classifier) (37) (Figure 5). Furthermore, our RNN-LSTM models were trained
separately on binders (positive data) and non-binders (negative data) suggesting that the
design of native-like CDR-H3 sequences is possible without the need for negative examples
and accuracy is likely to be further improved with more training examples (the 72%-HER2
generation rate by the RNN is fairly close to the CNN prediction accuracy of ~80%, (37)).
This could potentially reduce the cost to generate training datasets given that the HER-2
generation rate of the RNN was remarkably high despite only being trained on positive
data. Indeed earlier studies have shown that performance improvements/reductions by
including more or less negative data vary across models and application domains (44, 45).
This highlights the potential applicability of our framework in real-life settings beyond the
synthetic simulated setting earlier described. We strongly believe that the synergistic
combination of simulation and experimental strategies is necessary for the time- and
cost-efficient discovery of antibody therapeutics. Naturally, future refinements to the
Absolut! simulation framework would further improve the applicability of conclusions drawn
to experimental settings. These refinements are among others (see (26) for a more detailed
discussion): (i) antibody full VH-VL chains (so far, we can only model CDRH3-antigen
binding), (ii) smaller angle grid in the lattice: our framework was limited to integer positions
in a 3D grid, (iii) addition of constraints at the CDR3 ends in order to reproduce the
anchoring of the CDR chains to the framework/conserved domains of the antibody.

Once more experimental data have become available, one may venture into merging
simulation and experimental training data. For example, one could perform transfer
learning based on antibody sequences with only partially determined experimental labels
thus increasing the biological faithfulness of deep-learning-designed antibody sequences
(46). Such a setup may be further augmented in the form of federated learning (47).
Furthermore, here we performed deep learning on amino acid sequences and not
nucleotide sequences although nucleotide sequences are essential for experimental
antibody expression. However, codon usage is often species-specific (48). Therefore, we
opted for the more general amino acid encoding. Nevertheless, our deep learning setup
would work equally well for nucleotide sequences.

A key property of in silico generative frameworks such as ours is that once trained, it paves
the way for large-scale and on-demand generation of antigen-specific and developable
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immune receptor sequences. The fast production of antibodies has seen continued interest
from the field (6, 7). Although library-based discoveries have the potential to generate a
higher volume of antigen-specific data as compared to crystallography or related
approaches, they remain reliant on multiple rounds of selection as well as other
experimental heuristics. We approached the discovery process by leveraging deep
generative models, which implicitly aim to learn the rules of antibody-antigen binding.
Once learned, the generation of vast quantities (virtually limitless) of antibody sequences
becomes feasible, abrogating the need for follow-up screening. Rule-based generation also
imparts the ability to design (not merely discover) antibody sequences by biasing the deep
generative models towards a particular set of developability parameters via reinforcement
learning or instance selection (78, 49). The combination of near-limitless and fast sequence
generation may enable the construction of an on-demand antibody generator where
antigen-specific antibody sequences can be obtained at will.

In this work, we did not train on datasets that were selected for both binding and
developability therefore not optimizing both antibody design entities at once. This is partly
due to the inherent sparsity of the data although our datasets are the largest currently
available. Incorporating several orthogonal properties in one training dataset is an
interesting avenue for future research. Furthermore, we would like to point out that we have
not optimized in any way the deep generative architecture used. Therefore, our framework
allows for optimizing the generative output of deep learning approaches in future
benchmarking studies (70, 50).

In closing, naturally occurring proteins represent only a small subset of the theoretically
possible protein sequence space. Here, we demonstrate a proof-of-principle that deep
learning helps explore a broader sequence and structural space than present in the training
data thereby enabling the discovery and the design of antibody sequences with enhanced
or novel properties (6, 57). Moreover, our ground-truth-based framework may be useful in
the establishment of methods for model interpretability (57-54).

Methods

Reference experimental B-cell receptor and 3D-crystal structure antigen data

Native B-cell receptor (CDR-H3) sequences ("'seq = 7x 106, murine origin [we showed in a
separate work that murine and human CDR-H3 sequences have similar affinity distributions
in the Absolut! antibody-antigen simulation framework] (26)) were obtained from Greiff and
colleagues (33). Ten antigen 3D-crystal structures were sourced from known
antibody-antigen complexes in the Antibody Database (AbDb) (Table 1) (32) (Table 1) and
converted into lattice-based discretized Absolut! format (26). To annotate each CDR-H3
sequence for antigen specificity, we determined the best binding position of an antibody
sequence to an antigen and calculated the corresponding binding affinity via the software
suite Absolut! (see below and (26)). Antigen-specific CDR-H3 sequences were defined as
the top 1% affinity-sorted CDR-H3 sequences for each antigen (n,=1% times 7x10° = 70
000). We chose the top 1% as it selected a sufficiently high number of sequences as well as
ensured high antigen-specific affinity (see Supplementary Fig. S3 for a comparison of the
distribution of all 7 million CDR-H3 sequences [“native”] vs the top 1% affinity ones
[“native_top"]).
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Table 1. List of 3D-antigens used in the deep-learning-based antibody generation pipeline.

PDB-ID Antigen Species of origin
IGG4 REA FC .

1ADQ (206 residues,~ 22kDa) Homo sapiens
GUINEA FOWL LYSOZYME

1FBI (129 residues, ~14kDa) Numida meleagris

1HOD ANGIOGENIN Homo sapiens

(122 residues, ~13kDa)
STAPHYLOCOCCAL NUCLEASE

TNSN (138 residues, 15kDa) Staphylococcus aureus
MAJOR MEROZOITE SURFACE PROTEINS MSP1-19

10B1 (95 residues, ~10kDa) Plasmodium falciparum

CYTOCHROME C
1TWEJ (104 residues, ~11kDa) Equus caballus

MENINGOCOCCAL VACCINE ANTIGEN FACTOR H

2YRV TITLE 2 BINDING PROTEIN (229 residlues, ~25kDa) N\eisseria Meningitidis
3RAJ ADP-RIBOSYL CYCLASE 1 Homo sapiens
(230 residues, ~25kDa)
3VRL GAG PROTEIN Human Immunodeficiency
(73 residues, ~8kDa) Virus 1
GLUCAGON-LIKE PEPTIDE 1 RECEPTOR .
5E%4 Homo sapiens

(110 residues, ~12kDa)
*Weight (in kilodaltons, kDa) was estimated by using the average amino acid weight of 110 Da. Missing residues were omitted.

Reference CNN model trained on experimental human epidermal growth factor 2 (HER2)
CDR-H3 binder and non-binder sequences

CDR-H3 sequences that bind (binders) and do not bind (non-binders) to HER2 were
obtained from Mason and colleagues (37). They used a total of experimentally validated 11
300 HER2-binders and 27 539 validated HER-2 non-binders to train a convolutional neural
network (CNN) classifier that assigns an HER-2 binding probability to a given input CDR-H3
sequence. The accuracy of this CNN classifier was experimentally validated. We used the
CNN classifier to evaluate the HER-2 binding probability of CDR-H3 sequences generated
by our RNN-LSTM model (see Figure 5).

Generation of lattice-based antibody-antigen binding structures using Absolut!

The Absolut! software was used to compute the binding energy and best binding structure
(here termed paratope fold or binding fold) of antibody (CDR-H3) sequences around the
antigens in a 3D-lattice space (see (26) for a very detailed explanation). Briefly, the antigens
of interest, named by their PDB entry (Table 1), were transformed into a coarse-grained
lattice antigen representation (a step called discretization, performed using the program
LatFit (55)]), where each residue occupies one position and consecutive AAs are neighbors,
creating a non-overlapping 3D chain with only 90 degrees angles. In the lattice, a position is
encoded as an integer (for instance, [x=31, y=28, z=15] is encoded as a single integer code
[x+L*y+L*L*z] where L is the lattice dimension: 64). Further, protein chains are represented
as a starting position and a list of moves, for instance, 63263-SUSDLLUR is a peptide
starting at position (x=31, y=28, z=15; 31+64*28+64*64*15=63263) with 9 AAs and
following the structure ‘Straight, Up, Straight, Down, Left, Left, Up, Right’ where each "turn’
is defined from the previous bond and is coordinate-independent. From each CDR-H3
sequence investigated, all peptides of 11 consecutive AAs are taken (sliding window with a
step size of 1; window size of 11 was chosen to provide the best compromise between
computational cost and CDR-H3 length/coverage see (26)) and are assessed for binding to
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the antigen. From exhaustive enumeration of all possible structures of the peptide around
the antigen, Absolut! returns the structure minimizing the energy of the complex (Fig. S1).
Exhaustive enumeration of all possible binding folds (binding structures) of a CDR-H3
sequence enables Absolut! to function as an oracle since it can generate the binding fold as
well as evaluate the binding energy of any sequence against the antigen of interest. The
energy is computed from neighboring, noncovalent AAs either between the CDR-H3 and
the antigen (binding energy) and within the CDR-H3 (folding energy) using an empirical
experimentally estimated potential (56). Among all 11 AAs peptides for this CDR-H3, the
one with the best total (binding + folding) energy is kept and its structure is called the
‘binding structure’ or the ‘paratope fold’ of the CDR-H3 (Fig. S1). The paratope in that
structure will be the spatial conformation of interacting AAs on the antibody side and the
epitope the spatial conformation of interacting AAs on the antigen side. In that way, each
CDR-H3 sequence is annotated with a 3D binding structure (paratope and epitope) and
binding energy (see Figure 1 and Fig. S1 for illustration). In summary, using Absolut!, we
constructed a dataset of 70 million (7 Million CDR-H3 sequences x 10 antigens [Table 1])
antibody-antigen structures with annotated paratope, epitope, affinity, and antibody
developability (see below).

Computation of developability parameters

Developability is defined as the “feasibility of molecules to successfully progress from
discovery to development via evaluation of their physicochemical properties” (57).
Developability parameters (Table 2, inspired by the works described in (78, 31, 58)) were
computed using the module Bio.SeqUtils.ProtParam in  Biopython (59 and
NetMHCIIpan versions 4.0 and 4.1 (60). For NetMHCpan and NetMHCIIpan we used the
percent rank (the percentile of the predicted binding affinity compared to the distribution of
affinities calculated on a set of random natural peptides) where typically the thresholds for
strong binders are defined at 2% and weak binders between 2-10%.

Table 2. Antibody developability parameters and their computational implementation.
Developability parameter Computational descriptor ~ Computational tool (function)

Bio.SeqUtils.ProtParam
Charge charge at pH 7 (charge_at_pH) (59)

Bio.SeqUtils.ProtParam
Hydrophobicity Gravy (gravy) (59)

Bio.SeqUtils.ProtParam
(instability_index)

Stability Instability index (59
Affinity to MHC class Il Average rank of predicted NetMHCIIpan 4
molecules affinity to MHC Il molecules (60)

Average rank of predicted
Affinity to MHC | molecules affinity to MHC | molecules  NetMHCpan 4 (60)

Bio.SeqUtils.ProtParam
Weight Molecular weight (kDa) (molecular_weight) (59

Deep generative learning using long short-term memory neural networks
The architecture of the deep generative model used consists of three layers (see Figure 1
and Fig. S2): (i) an embedding layer with 256 output-vector dimensions, (ii) a recurrent
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neural network of the type long short-term memory (RNN-LSTM) (67) with 1024 units and
finally (iii) a fully-connected output layer with softmax-activations of 21 (twenty amino acids
and one whitespace character) output-vector dimensions (see Figure 1). Input-target pairs,
i.e., sequences and their labels, were obtained by first merging the antibody sequences
(CDR-H3s) into a text corpus, sequences were separated by a single whitespace character. A
window of size w (w=42 amino acids) was used to fragment the corpus into chunks of input
sequences x of length w. For each input sequence x a target sequence y was created by
sliding a window of size w-7 one step forward. The last character was removed from x
creating an input-target pair (X, y) each with the size w-7. Thus, the LSTM model g(x; ) is
trained to predict the next character of the given sequence using categorical cross-entropy
loss L(¥, g(x 6)), where 8 is the parameter/weight of the LSTM model. We partitioned the
input-target pairs into training (70%), validation (15%), and test (15%) sets. The training was
carried out for 20 epochs with Adam optimizer (62). At the end of each epoch, training and
evaluation loss were computed for evaluation. The generation was initiated with a seed
string and the hyperparameter temperature was set to 1. Our implementation is based on
TensorFlow 2.0 (63).

Implementation of transfer learning

We leveraged transfer learning to examine whether the generation quality of models
trained on lower-sized datasets (data-poor, “low-N, (37)") may be improved by transferring
learned features from models trained on larger training datasets. For a visualization of the
transfer learning setup, see Figure 4. Prior to any transfer learning experiment, we randomly
sampled 1% (Ngmpe=700) and 10% (7 000) sequences from the set of antigen-specific
CDR-H3 sequences, defined as the top 1% affinity-sorted CDR-H3 sequences for each
antigen, Ngmoe=70 000). Sampling was performed 5 times per antigen. Models trained on
70 000 sequences were termed “data-rich” and models trained on 700-7000 sequences,
“data-poor”. In a transfer experiment, a transfer learning architecture was constructed by
stacking the pre-trained embedding followed by the pre-trained RNN-LSTM layers from
data-rich models and a new fully-connected layer (see Figure 4B for network architecture).
The training was performed as described in the previous section (“Deep generative
learning”). Transfer learning was performed in two ways termed “within-antigen” and
"across-antigens” (see Figure 4). “"Within-antigen” experiments describe transfer-learning
between the same antigen (e.g., embedding and RNN-LSTM layers of data-rich models
stem from the same antigen that is used to train a data-poor model). “Across-antigens”
describes the transfer of layers between different antigens (e.g., the combination of a
data-rich model of antigen V and a data-poor model of antigen G). The within-antigen
experiments served as positive controls where stronger signals (from a data-rich model)
were used to improve the performance of a weaker model.

Sequence similarity, composition, and long-range dependencies

Sequence similarity among generated CDR-H3 sequences was determined by Levenshtein
distance and gapped k-mer analysis. Levenshtein distances were computed using the
distance function in the package Python-Levenshtein (64). Long-range dependencies
were assessed by gapped k-mer analysis using the R package kebabs (65) as previously
described (64, 67).
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Distance between distributions

The similarity between two CDR-H3 affinity distributions was quantified using the
Kolmogorov-Smirnov distance (KSD) using the function ks.diss (Kolgomorov-Smirnov
test, KSD) from the R package Provenance (68). The KSD measures the largest vertical
distance between the two examined (cumulative) distributions. A KSD value close to 0
indicates that the distributions are very similar and a larger distance (e.g., 1) indicates larger
differences between the distributions.

Mean squared error of positional amino acid frequency matrix
As previously described (69), the difference between two amino acid position-specific
frequency matrices (Figure 5) was quantified by the mean squared error (MSE)

1NN A B2

w2 205 (Aig — Big) , where A is the reference native amino acid frequency matrix, B is
the generated amino acid frequency matrix, n is the twenty amino acid alphabet, m is the
length of CDR-H3, /is the row index and jis the column index.

Graphics
Plots were generated using the R package ggplot2 (70) and arranged using Adobe
Illustrator 2020 (Adobe Creative Cloud 5.2.1.441).

Hardware
Computations were performed on the Norwegian e-infrastructure for Research & Education
(NIRD/FRAM; https://www.sigma2.no) and a custom server.

Data and code availability
Preprocessed datasets, code, and results figures are available at:
https://github.com/csi-greifflab/manuscript_insilico_antibody genera

tion.
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Supplementary Material

Absolut! antibody-antigen binding annotation pipeline
Curated antigens CDR-H3 sequences

CARTILAGERACPT
CARTILAXERACQ
CARNLIVNGWTK

Optimal binding

Epitope and affinity annotated CDR-H3 sequences

CDR3 sequence Energy (affinity) Paratope Epitope
CARTILAGERACPT -91.82 (33,32,30)-SLRDRLSLDR  14-24-35-37-42-78
CARTILAXERACQ  -94.82 (33,32, 30)-UDRUSUDRDU  3-14-19-86
CARNLIVNGWTK  -91.92 (31,30, 31)-SSDSLSLRUS 7-31-19-85

Supplementary Figure S1 (relates to Figure 1 and Figure 2B). Absolut! Antibody-antigen binding pipeline (26).
For a given antigen and CDR-H3 sequence, the software suite Absolut! performs an exhaustive search (termed
exhaustive docking (26)) over all binding positions, returns the corresponding binding affinities, and finally
outputs the binding energy (affinity) and the binding structure (the paratope fold, paratope amino acid residues,
and epitope amino acid residue position) for the optimal (lowest energy) binding. A protein chain is defined by
its amino acid sequence, a starting point in space, and a list of relative moves in space to determine the next AA
position (Straight (S), Up (U), Down (D), Left (L), Right (R)).
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Supplementary Figure S2 (relates to Figure 1). Workflow of deep generative learning using long short-term
memory neural networks. To create input-target pairs to train the network (i) we defined the top 1% of affinity
sorted CDR-H3 (amino acid) sequences (n,.;=70 000) as antigen-specific sequences, (ii) merged the sequences
into a text corpus, (i) fragmented the text corpus into segments sequences of size w=42, and (iv) created
input-target pair of 1:w-1 and 2:w characters. The input-target pairs are then used to train the LSTM network.

random!- \_ _Mmedian: -74.64

native
native_top/
generated_top-

native_bottom-

CDR-H3 sequence origin

generated_bottom-

-90 —60 -30
Affinity

Supplementary Figure S3 (relates to Figure 2A). Generated CDR-H3 sequences of models trained on high and
low-affinity sequences reproduce the high and low binding affinity distribution accordingly. To examine the
capacity of our model to generate sequences that are localized at different regions of the native binding affinity
spectrum, we trained the model, separately, on high and low-affinity sequences (high and low-affinity sequences
were obtained by first sorting the native sequences according to their binding affinity and subsequently taking
the top and bottom 1% of the affinity-sorted data for the antigen 10B1; N.eq 1op: 70 000; Neeq poriom: 70 000). We
found that generated sequences sufficiently reproduce the binding affinity distributions of top and bottom
sequences. generated_topegin: -93.47, yellow; native_top edan: -94.22, blue; generated_bottom,cgi: -61.89,
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yellow; native_bottom, .q..: -62.29, blue. As a baseline, we also displayed the binding affinity distribution of all
7x10° native sequences, median: -72.82, blue; and the binding affinity distribution of random (sampled from a
uniform amino acid distribution, Neeq, andom="10°) sequences, median: -74.64, red.
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Supplementary Figure S4 (Relates to Figure 2D) Distributions of Levenshtein distances calculated among native
and generated CDR-H3 sequences are largely similar. To quantify how similar (or different) native and generated
CDR-H3 sequences are, we calculated Levenshtein distances (LD) for native and generated CDR-H3 sequences
of a given antigen and plotted the distances as distributions. Medians of each distribution are displayed. We
found that the native and generated distributions overlap substantially. (for a more tractable pairwise LD
calculation, we subsampled the full dataset five times (Nyqsubsample="1000), showed the mean of the number of
sequences per LD, and used the resulting standard deviations as error bars.)

1ADQ 1HOD ANSN 10B1
s 81 p e
4 E S 3 A
i i i o
5 - 3 -
) i ik £
- = =
L i ) -
£ 3 = x
i 3 0 i
= i 1 -
i ‘ i Ei o
= . & . 4 =
i t i i 2
1 X =
T o i £ E
5 E ) 1 b e
f i B Ery o
i e i 4 -
iR i & 18 i
i 28 L o 52
E ; E = 3 i
= 3 i 11 i
1] 5 15 0 5
. 1 3 a3 i
i o B i :
& B o i in
] o i b o
£ i i E &
E 5 £ - 84 2
e == = o =X 2
S A - vy 2 15
S B F e T e E
g EREai =3 = i e %
°
o AWEJ 2YPV 3RAJ 3VRL 5E94
= o . . e e
Hh 5 i W 713
- & ) 3 "
& £ #ie i %
3 ] e = 3
i o i i Ei
: = 3 o E
) ik fee ] 4
z = o = E
. 5 4 ] i 37
= i o i
A ) i b i
E & = o8 &
i i HE £ i
z = = ] "
o o k] i s
z o )
= 3 3 = e
= 5 52 i
3 -3 i &= -
2 = . 3 ]
T £ Bk i £
o= 5 b 4 i
<PRAS arEEs ge0T
& L E
- i = E
2 ] .
b E 5 i
= il = 5
= i 7 ¥
il L i — 3
P = 7 ==
S W W a -
S oS 5t s
S A = : i ;7
-120 -100 -80 -60 -120 -100 -80 -60 -120 -100 -80 -60 -120 -100 -80 -60 -120 -100 -80 -60
Affinity (Energy)

native | generated

Supplementary Figure S5 (relates to Figure 4A) Affinity (as indicated by energy) improves as a function of the
number of training sequences. To examine the impact of sample size on the resulting binding affinity of
generated CDR-H3 sequences, we created smaller training datasets (Nseqsusample=700, 7000, 10 000, 20 000, 30
000, 40 000, 50 000, 60 000, and Ngjcaies=5) from the full antigen-specific CDR-H3 sequences (Nyeq training=70 000),
trained deep generative models on the subsets and compared the binding affinity and epitope against affinity
and epitope from models trained on the full data and the native affinity and epitope. We found that models
trained on the larger dataset sizes (>2x10%, but not the smaller subsets (in the order of 10° or 10?), sufficiently
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replicate the distribution of binding affinity and epitope CDR-H3 sequences. Medians of these distributions are
shown in Figure 4A as boxplots.
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Supplementary Figure Sé6 (relates to Figure 4B) Distributions of cross-transferred binding affinities. To examine
the impact of cross-transfer learning (transfer learning across antigens), we (re)used the embedding and LSTM
layers of data-rich models (N.eq, waining=70 000, row: 4) in combination with a fresh dense layer, train the resulting
model with reduced training datasets (Neq, waining: 700/7000, row: 2 and 3), and compared the binding affinity of
the generated sequences against the native (N.eq, taining: O, row: 1) and data-rich (Nyeq, training: 70 000, row: 4)
affinities (see Figure 4). Donor and recipient antigens are denoted in the columns and rows (of each panel),
respectively. For purposes of readability, here shown are aggregate distributions (the composite of the five
random samplings for each cross-transfer task). Broadly, we found that the medians of affinity distributions of the
cross-transferred models (red, row 2 and 3) were closer to the medians of affinities of the native and data-rich
distributions (grey, row 1 and 4) compared to the medians of models without transfer (grey, row 2 and 3).
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Supplementary Figure S7 (relates to Figure 4B) Distributions of transferred affinities. Transfer learning was
performed by (i) constructing a transfer architecture wherein embedding and RNN-LSTM layers from a
“data-rich” model (Nseq, waining=70 000) were stacked atop of a fresh dense layer and (ii) training the resulting
“transfer’ model on lower-sized datasets (data-poor, Ny waining=700, 7000). Within-antigen transfer experiment
describes transfer learning within the same antigen (e.g., between a data-rich model of an antigen V and
data-poor models of the same antigen V). Affinity distributions of CDR-H3 sequences generated by transfer
(+T/with transfer) models are shown in red whereas affinity distributions of CDR-H3 sequences generated by

non-transfer models (-T/without transfer) are shown in grey. Medians of these distributions are shown in
Figure 4B as boxplots.
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Supplementary Figure S8 (relates to Figure 4A) Distributions of Pearson correlation of frequencies of epitopes
recognized by native and generated CDR-H3 sequences as a function of the number of training sequences. To
examine whether generated CDR-H3 sequences recovered the epitopes of the native CDR-H3 sequences, we
correlated the frequencies of epitopes recognized by native and generated CDR-H3 sequences for all antigens
(Nsample=5 per model). Broadly, we found that the Pearson correlation values increase as a function of the number
of training sequences. In addition, we found that the Pearson correlation for antigens with fewer epitopes (e.g.,
3VRL, Figure 2B bottom panel) was already reasonable at a small training dataset (ntrain700). In contrast, the
correlation for antigens with many epitopes (e.g., THOD, Figure 2B, bottom panel) required larger training
datasets for reaching a high concordance with the epitope occupancy found in the training dataset.
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Supplementary Figure S9 (relates to Figure 4B, within antigen transfer) Distributions of Pearson correlation of
frequencies of epitopes recognized by native and generated CDR-H3 for the within antigen transfer setting. To
examine whether within-antigen-transfer-generated CDR-H3 sequences recovered the epitopes of the native
CDR-H3 sequences, we correlated the frequencies of CDR-H3 bound to epitopes bound by native and
transfer-generated CDR-H3 sequences for all antigens for small dataset sizes as described in Figure 4B. We
found that epitope occupancy was higher correlated for CDR-H3 sequences with transfer learning (+T)

compared to those generated without transfer learning (-T) in particular for the smallest dataset size (Nyeq, training =
700).
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Supplementary Figure S10 (relates to Figure 4B, across antigens transfer) Distributions of Pearson correlation
between CDR-H3 frequencies bound to native and transfer-generated epitopes in the across-antigens setting.
To examine whether across-antigens-transfer-generated CDR-H3 sequences recovered the occupancy of the
epitopes of the native CDR-H3 sequences, we correlated the frequencies of CDR-H3 bound to epitopes bound
by native and transfer-generated CDR-H3 sequences for all antigens for small dataset sizes as described in
Figure 4B. We found that epitopes were better recovered in CDR-H3 sequences with transfer learning (+T)
compared to without transfer learning (-T) in particular for the smallest dataset size (Nseq, raining = 700).
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Supplementary Figure S11 (relates to Figure 4A and Fig. S8) Overlap of epitopes recognized by native and
generated CDR-H3 sequences as a function of the number of training CDR-H3 sequences. For each training
dataset size (ntrain700-ntrain70000), we plotted the total number of epitopes recognized by native (training)
CDR-H3 sequences (nepitope), the total number of epitopes recognized by generated epitopes (gepitope), and
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the absolute overlap of epitopes recognized by native and generated CDR-H3 sequences. (noverlap). Broadly,
we found that generated CDR-H3 sequences recognized a higher number of epitopes (except for 10B1) than
native CDR-H3 sequences.
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Supplementary Figure S12 (relates to Figure 4B top panel and Fig. S9). Overlap of epitopes recognized by
native and generated CDR-H3 sequences as a function of the number of training CDR-H3 sequences in
within-antigen transfer learning. We plotted for each training dataset size the total number of epitopes
recognized by generated CDR-H3 sequences for without transfer learning (-T_epitope), with transfer learning
(+T_epitope), the total number of epitopes recognized by native CDR-H3 sequences (native_epitope), the
overlap of epitopes recognized by both native and generated CDR-H3 sequences for without transfer learning
(-T_overlap), and lastly the overlap of epitopes recognized by native and generated CDR-H3 sequences for with
transfer learning (+T_overlap). We found that generated CDR-H3 sequences recognized fewer or equal numbers
of epitopes compared to the native CDR-H3 sequences. The reverse is true for the across antigens transfer case
(Fig. $13).
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Supplementary Figure S13 (relates to Figure 4B bottom panel and Fig. S10). Overlap of epitopes recognized by
native and generated CDR-H3 sequences as a function of the number of CDR-H3 training sequences in
across-antigens transfer learning. To examine the concordance among recovered epitopes in the across-antigens
transfer learning setting, we plotted, for each dataset size (ntrain700-ntrain7000), the total number of epitopes
recognized by generated CDR-H3 sequences without transfer learning (-T_epitope), with transfer learning
(+T_epitope), the total number of native epitopes (native_epitope), and the overlap of epitopes recognized by
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native and generated epitopes for without transfer learning (-T_overlap) and with transfer learning (+T_overlap).
We found that the generated CDR-H3 sequences recognized more epitopes than the native ones.
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