

1 **Concurrent evolution of anti-aging gene duplications and cellular phenotypes in**
2 **long-lived turtles**

3 Scott Glaberman^{1,2,*}, Stephanie E. Bulls², Juan Manuel Vazquez³, Ylenia Chiari⁴, Vincent
4 J. Lynch^{5,*}

5
6 ¹ Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA

7 ORCID 0000-0003-0594-4732

8 ² Department of Biology, University of South Alabama, Mobile, AL, USA

9 ORCID 0000-0002-1700-8530

10 ³ Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, USA

11 ORCID 0000-0001-8341-2390

12 ⁴ Department of Biology, George Mason University, Fairfax, VA, USA ORCID 0000-0003-2338-

13 8602

14 ⁵ Department of Biological Sciences, University at Buffalo, SUNY, Buffalo, NY, USA ORCID

15 0000-0001-5311-3824

16

17 *Corresponding authors:

18 Scott Glaberman

19 sglaberman@gmu.edu

20 Vincent J. Lynch

21 vjlynch@buffalo.edu

22

23

24 **Abstract**

25 There are many costs associated with increased body size and longevity in animals, including
26 the accumulation of genotoxic and cytotoxic damage that comes with having more cells and
27 living longer. Yet, some species have overcome these barriers and have evolved remarkably
28 large body sizes and long lifespans, sometimes within a narrow window of evolutionary time.
29 Here, we demonstrate through phylogenetic comparative analysis that multiple turtle lineages,
30 including Galapagos giant tortoises, concurrently evolved large bodies, long lifespans, and
31 reduced cancer risk. We also show through comparative genomic analysis that Galapagos giant
32 tortoises have gene duplications related to longevity and tumor suppression. To examine the
33 molecular basis underlying increased body size and lifespan in turtles, we treated cell lines from
34 multiple species, including Galapagos giant tortoises, with drugs that induce different types of
35 cytotoxic stress. Our results indicate that turtle cells, in general, are resistant to oxidative stress
36 related to aging, while Galapagos giant tortoise cells, specifically, are sensitive to endoplasmic
37 reticulum stress, which may give this species an ability to mitigate the effects of cellular stress
38 associated with increased body size and longevity.

39

40 **KEYWORDS:** turtles, aging, longevity, body size, cancer, ER stress, apoptosis

41

42

43 **Introduction**

44 Body size and longevity are fundamental life history traits that vary tremendously across
45 vertebrates. Maximum body mass in vertebrates ranges from 0.5 g in the red-backed
46 salamander (*Plethodon cinereus*) (Moore et al., 2001) to 200,000 kg in the blue whale
47 (*Balaenoptera musculus*) (Lockyer, 1976), while maximum lifespan ranges from 8 weeks in the
48 pygmy goby (*Eviota sigillata*) (Depczynski and Bellwood, 2005) to over 400 years in the
49 Greenland shark (*Somniosus microcephalus*) (Nielsen et al., 2016). Life history comparisons
50 also show a strong positive correlation between body size and lifespan across animals, with few
51 exceptions (Healy et al., 2014). There are powerful physiological constraints acting on
52 organisms at the larger, longer-lived end of this spectrum, particularly the accumulation of
53 genetic and cellular damage that comes with having more cells and greater cell turnover (Peto,
54 2015). The consequences of such long-term genotoxic and cytotoxic stress include genome
55 instability, mitochondrial dysfunction, telomere reduction, and increased cancer risk (López-Otín
56 et al., 2013).

57 A recurring theme in lifespan and aging regulation is the critical role played by processes
58 that promote cellular protection and maintenance (Kenyon, 2010), including the ability of cells to
59 recycle materials, repair damage, and remove waste. Senescent cells, whose numbers greatly
60 increase with age, exhibit declines in these processes, and are also associated with pro-
61 inflammatory phenotypes that are linked to age-related diseases (Baar et al., 2017; Flatt and
62 Partridge, 2018). At the same time, apoptosis, which is the programmed destruction of unfit or
63 damaged cells, is reduced in older individuals (Salminen et al., 2011). This decline in cell
64 performance in combination with a decreased ability to remove poor performing cells are central
65 to the aging process (López-Otín et al., 2013). Similarly, cancer can arise from cumulative
66 genotoxic and cytotoxic stress, and apoptosis also plays a primary role in cancer resistance by
67 removing potentially cancerous cells (Verfaillie et al., 2013). Thus, if cancer-suppressing

68 mechanisms are similar across species, then larger, longer-lived organisms should be at greater
69 risk of cancer than smaller, shorter-lived ones (Peto, 2015).

70 The molecular and cellular mechanisms underlying the evolution of large bodies and
71 long lifespans have been explored in mammals such as elephants (Sulak et al., 2016; Vazquez
72 et al., 2018), whales (Seim et al., 2014), bats (Foley et al., 2018; Gorbunova et al., 2020), and
73 naked mole rats (Salmon et al., 2008; Gorbunova et al., 2014), but are less well studied in other
74 vertebrates. Reptiles are an excellent system in which to study the evolution of body size and
75 longevity because diverse lineages have repeatedly evolved large body sizes and long lifespans
76 (Chiari et al., 2018). Turtles, in particular, have lower rates of neoplasia than snakes and lizards
77 (Garner et al., 2004; Sykes and Trupkiewicz, 2006), are especially long-lived, and are “slower
78 aging” than other reptiles (Hoekstra et al., 2020). Most notably, Galapagos giant tortoises
79 (*Chelonoidis niger* species complex; hereafter referred to as *C. niger*) and Aldabra giant
80 tortoises (*Aldabrachelys gigantea*) can live over 150 years (3-5 times longer than their closest
81 relatives) and weigh over 200 kg (50-100 times heavier than their closest relatives) (Caccone et
82 al., 1999; Palkovacs et al., 2002; Poulakakis et al., 2012; Chiari, 2020). Galapagos giant
83 tortoises also appear to have evolved a suite of cellular traits that may contribute to their
84 longevity, such as a slower rate of telomere shortening and extended cellular lifespans
85 compared to mammals (Goldstein, 1974).

86 Here, we explore the evolution of body size and lifespan in turtles by integrating several
87 approaches (**Figure 1**): (1) phylogenetic comparative analysis of body size, lifespan, and
88 intrinsic cancer risk in turtles; (2) gene duplication analysis of aging and cancer-related genes
89 across available turtle genomes; (3) cell-based assays of apoptosis and necrosis in multiple
90 turtle species varying in body size and lifespan. We show that species with remarkably long
91 lifespans, such as Galapagos giant tortoises, also evolved reduced cancer risk. We also confirm
92 that the Galapagos giant and desert tortoise genomes encode numerous duplicated genes with
93 tumor suppressor and anti-aging functions (Quesada et al., 2019). Our comparative genomic

94 analysis further suggests that cells from large, long-lived species may respond differently to
95 cytotoxic stress, including endoplasmic reticulum (ER) and oxidative stress. The combined
96 genomic and cellular results suggest that at least some turtle lineages evolved large bodies and
97 long lifespans, in part, by increasing the copy number of tumor suppressors and other anti-aging
98 genes and undergoing changes in cellular phenotypes associated with cellular stress.

99

100 **Results**

101 **Repeated evolution of large body size in turtles**

102 We found substantial independent accelerations in the rate of body size evolution in
103 several turtle lineages, including a 29x rate increase (386% increase in carapace length) in the
104 stem-lineage of sea turtles (Cheloniidae) and a further 103x rate increase (757% increase in
105 carapace length) in leatherback sea turtles (*Dermochelys coriacea*), a 37x rate increase (35%
106 increase in carapace length) in the stem-lineage of soft-shell turtles (Trionychidae), a 200x rate
107 increase (364% increase in carapace length) in the stem-lineage of narrow-headed softshell
108 turtles (*Chitra chitra* and *Chitra indica*), and a 463x rate increase (364% increase in carapace
109 length) in Cantor's giant softshell turtle (*Pelochelys cantorii*) (**Figure 2A**).

110 Among the more notable groups with increased rates of body size evolution were the
111 “giant” tortoises, including a 81x rate increase (10% increase in carapace length) in the stem-
112 lineage of recently extinct Mascarene giant tortoises (*Cylindraspis* spp.), a 137x rate increase
113 (55% increase in carapace length) in the stem-lineage of Aldabra giant tortoises (*Aldabrachelys*
114 spp.) and a 87x rate increase (383% increase in carapace length) in *Aldabrachelys gigantea*,
115 and a series of rate accelerations in the ancestral lineages of Galapagos giant tortoises,
116 including a 20x rate increase (19% increase in carapace length) in the stem-lineage of
117 *Geochelone* and *Chelonoidis*, a 20x rate increase (27% increase in carapace length) in the
118 stem-lineage of *Chelonoidis*, and a 49x rate increase (81% increase in carapace length) in the
119 stem-lineage of *C. niger*. These data indicate that gigantism evolved independently in multiple

120 lineages of turtles, and step-wise in the evolution of giant tortoises with several rate
121 accelerations in lineages ancestral to *C. niger*.

122

123 **Reduction of intrinsic cancer risk in turtles**

124 In order to account for a relatively constant prevalence of cancer across species (Dorn et
125 al., 1968; Abegglen et al., 2015; Boddy et al., 2020), intrinsic cancer risk must coevolve with
126 changes in body size and lifespan across species. For example, a 100-year retrospective study
127 of neoplasia in zoo reptiles identified only six neoplasms in 490 turtle necropsies, which ranged
128 in size from the West African mud turtle (*Pelusios castaneus*, carapace length ca. 25–28 cm) to
129 the spiny softshell turtle (*Apalone spinifer spinifer*, carapace length ca. 54 cm) (Sykes and
130 Trupkiewicz, 2006). As expected, relative intrinsic cancer risk (RICR) in turtles also varies with
131 changes in body size and lifespan (**Figure 2A**). We estimated a 73-log₂ decrease RICR in the
132 stem-lineage of sea turtles (Cheloniidae), a 129-log₂ decrease RICR in leatherback sea turtles
133 (*Dermochelys coriacea*), a 14-log₂ decrease RICR in the stem-lineage of soft-shell turtles
134 (Trionychidae), a 34-log₂ decrease RICR in the stem-lineage of narrow-headed softshell turtles
135 (*Chitra chitra* and *Chitra indica*), and a 140-log₂ decrease RICR in the stem-lineage of Cantor's
136 giant softshell turtle (*Pelochelys cantorii*).

137 Among the “giant” tortoises, we estimated a 97-log₂ decrease RICR in the stem-lineage
138 of Mascarene giant tortoises (*Cylindraspis* spp.), a 154-log₂ decrease RICR in the stem-lineage
139 of Aldabra giant tortoises (*Aldabrachelys* spp.) and a 50-log₂ decrease RICR in *Aldabrachelys*
140 *gigantea*. In the lineages ancestral to Galapagos giant tortoises, we estimated a 67-log₂
141 decrease RICR in the stem-lineage of *C. niger* a 27-log₂ decrease RICR in the stem-lineage of
142 the *Chelonoidis*, and a 19-log₂ decrease RICR in the stem-lineage of *Geochelone* and
143 *Chelonoidis*. Thus, turtles coevolved large bodies and reduced intrinsic cancer risk, including
144 step-wise reductions in the lineages ancestral to *C. niger*.

145

146 **Identification of tumor suppressor and anti-aging gene duplications in turtle genomes**

147 Previous studies have shown that large-bodied cancer resistant species such as
148 elephants (Sulak et al., 2016; Vazquez and Lynch, 2021) and whales (Keane et al., 2015)
149 evolved an increased number of tumor suppressors, suggesting that the same may be possible
150 in giant, long-lived turtles. A previous study of Galapagos giant tortoises, for example, identified
151 several gene duplications in pathways that might be related to body size evolution and reduced
152 cancer risk (Quesada et al., 2019). Therefore, we reanalyzed the Galapagos giant tortoise
153 genome and other turtle genomes to identify gene duplications and used maximum likelihood-
154 based ancestral state reconstruction to determine lineages in which genes were duplicated. We
155 identified ~86 duplications in the stem-lineage of Testudines, 245 in the stem-lineage of
156 Pleurodira, 33 in the stem-lineage of tortoises (AncTortoise), 259 in *C. abingdonii*, 201 in *G.*
157 *agassizii*, 273 in *T. carolina*, 315 in *C. picta*, and 270 in *P. sinensis* (**Figure 3A**).

158 Consistent with previous studies which observed duplication of tumor suppressor and
159 other anti-aging genes in large, long-lived species, we found that 12% of the pathways enriched
160 among Galapagos giant tortoises were related to cancer and aging biology, while only 0-6% of
161 the pathways that were enriched among gene duplications in other lineages were related to
162 cancer and aging biology (**Figure 3B**). Next, we identified GO cellular component terms that
163 were enriched among gene duplications in each lineage. While gene duplications in some
164 lineages were enriched in GO terms related to cancer biology and aging, significantly more
165 ontology terms in Galapagos giant tortoises were related to cancer and aging biology (**Figure**
166 **3C**). Enriched pathway and ontology terms in Galapagos (**Figure 3D**) tortoises included
167 “Apoptosis”, “Programmed Cell Death”, “Cell death signalling via NRAGE, NRIF and NADE”,
168 “Dual Incision in GG-NER” and “Formation of Incision Complex in GG-NER”, and “Reduction of
169 cytosolic Ca++ levels”. We also observed that “Regulation of Insulin-like Growth Factor (IGF)
170 transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)” was an enriched
171 pathway term among Galapagos giant tortoise gene duplications, which may be related to the

172 regulation of body size. Among the GO cellular component terms exclusively enriched among
173 Galapagos giant tortoise gene duplications were “ER membrane protein complex”,
174 “endoplasmic reticulum membrane” and “nuclear outer membrane-endoplasmic reticulum
175 membrane network”, and “anaphase-promoting complex”.

176 Desert tortoise specific gene duplications were enriched in pathways related to cancer
177 biology and aging, particularly compared to other turtles. For example, 9.4% of the pathways
178 enriched among desert tortoise duplicates were related to cancer and aging biology,
179 significantly more than other turtle lineages but less than Galapagos giant tortoises (**Figure 3B**).
180 Similarly, significantly more GO terms in desert tortoises were related to cancer and aging
181 biology (**Figure 3C**). Enriched pathway and ontology terms in desert tortoises (**Figure 3E**) were
182 related to DNA damage and repair including “Formation of TC-NER Pre-Incision Complex”,
183 “Gap-filling DNA repair synthesis and ligation in TC-NER”, “Dual incision in TC-NER”, “Apoptotic
184 cleavage of cell adhesion proteins”, and “Transcription-Coupled Nucleotide Excision Repair
185 (TC-NER)”. Enriched in GO terms included “integral component of mitochondrial outer
186 membrane”, “nucleotide-excision repair complex”, and “autophagosome”. These data suggest
187 that desert tortoises have evolved gene duplications that may also contribute to cancer
188 resistance and the evolution of longevity.

189

190 **Turtle cells have unique responses to genotoxic and cytotoxic stress**

191 Our observation that gene duplications in the Galapagos and desert tortoise genomes
192 are enriched in pathways and GO terms related to the biology of aging, apoptosis, cell cycle
193 regulation, DNA damage repair, and mitochondrial oxidative DNA damage protection (**Figure**
194 **3D**), suggests that cells from these species may have different cellular responses to genotoxic
195 and cytotoxic stress than cells from other turtles. To test this hypothesis, we treated primary
196 fibroblasts from *C. niger*, *G. platynota*, *G. agassizii*, *H. aerolatus*, and *T. carolina* (**Figure 2B**)
197 with drugs to induce different types of stress including: 1) tunicamycin, which induces

198 endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) through an
199 accumulation of unfolded and misfolded proteins (Banerjee et al., 2011; Guha et al., 2017); 2)
200 etoposide, which forms a ternary complex with DNA and topoisomerase II and prevents re-
201 ligation of replicating DNA strands leading to single- and double-stranded DNA breaks (Wozniak
202 and Ross, 1983); and 3) paraquat, which causes oxidative stress through the production of
203 reactive oxygen species and S-phase cell cycle arrest (Salmon et al., 2008). We quantified the
204 kinetics of cell death using the RealTime-GloTM Annexin V Apoptosis and Necrosis assay (RTG)
205 every 30 minutes for 48 hours.

206 We found that tunicamycin induced a dose dependent increase in apoptosis in cells from
207 most species (**Figure 4A**). However, at 24 hrs and 25 uM, *C. niger* cells had an apoptotic
208 response that was at least double that of other species while *G. platynota* cells were insensitive
209 to tunicamycin (**Figure 4A**). In contrast etoposide did not induce apoptosis or necrosis in cells
210 from most species but did induce a strong apoptotic response in *G. agassizii* cells (**Figure 4B**).
211 Turtle cells were also variably sensitive to paraquat, but cells from all species induced apoptosis
212 in response to paraquat treatment (**Figure 4C**). Thus, *C. niger* cells are more sensitive to ER
213 and UPR stress than other species, *G. agassizii* cells are more sensitive to DNA damage
214 induced by etoposide than other species, and cells from all species were sensitive to oxidative
215 stress induced by paraquat.

216

217 **Discussion**

218 Reptiles in general, and turtles specifically, are an excellent system for studying the
219 mechanisms underlying variation in body size, lifespan, and cancer resistance (Chiari et al.,
220 2018; Hoekstra et al., 2020). Adult body size among turtle species differs by three orders of
221 magnitude, ranging from the speckled dwarf tortoise (*Chersobius signatus*; 100 g) to Aldabra
222 giant tortoises (*A. gigantea*; >300 kg), while longevity across species varies from tens of years
223 to >150 years in giant tortoises. Yet, even the smallest turtles live relatively long (up to 30 years)

224 compared to most other vertebrates. Turtles also have lower estimated cancer rates (~1.2%)
225 compared to mammals (~12.5%), suggesting that they have evolved the means to delay aging
226 and reduce cancer susceptibility (Garner et al., 2004; Sykes and Trupkiewicz, 2006; Abegglen
227 et al., 2015; Boddy et al., 2020). While increased lifespan and cancer prevalence in turtles
228 could, in part, be due to reduced damage resulting from their lower metabolic rates, previous
229 genomic and cellular data suggests that there may also be molecular differences that enable
230 extremes in body size, longevity, and cancer resistance (Goldstein, 1974; Quesada et al.,
231 2019).

232 Here, we found that body size rapidly increased in multiple turtle lineages independently,
233 including a dramatic increase in both body size and the rate of body size evolution in Galapagos
234 giant tortoises. When body size, longevity, and intrinsic cancer rates are analyzed together
235 within an explicit phylogenetic context, large-bodied lineages evolved reduced intrinsic cancer
236 risk. Among the most dramatic decreases in cancer risk among turtles was in the stem-lineage
237 of Galapagos giant tortoises, suggesting this lineage evolved genetic and cellular mechanisms
238 that reduce cancer risk. Consistent with the evolution of reduced intrinsic cancer risk in this
239 lineage, we found that gene duplications in the Galapagos lineage are enriched in ER stress
240 associated pathways is similar to a previous analysis by Quesada et al. (2019), who found that
241 genes under positive selection in Galapagos giant tortoises are also enriched for ER function
242 and stress pathways. ER stress dysregulates protein homeostasis, which is one of the
243 hallmarks of aging and reduced animal lifespan (López-Otín et al., 2013; Morimoto and Cuervo,
244 2014; Kaushik and Cuervo, 2015). The impairment of protein production, folding, and
245 degradation associated with ER stress can impact many cellular processes and lead to the
246 buildup of toxic protein aggregates that are linked to many age-related diseases and cancers
247 (Vilchez et al., 2014).

248 Our data suggest a mechanistic connection between genes related to the ER, enhanced
249 responses to ER stress, and the UPR in Galapagos giant tortoise cells. Indeed, we found that

250 tunicamycin, which induces ER stress by activating the UPR and ultimately inducing apoptosis
251 (Nami et al., 2016), causes an immediate and pronounced apoptotic response in Galapagos
252 giant tortoise cells, while cells from other species were much slower to respond. These results
253 indicate that Galapagos giant tortoise cells have an extremely sensitive ER stress response. In
254 contrast, Galapagos giant tortoise cells did not exhibit a heightened apoptotic response to
255 paraquat and etoposide, which induce oxidative stress, DNA damage, and apoptosis
256 independently of the ER stress/UPR signaling pathway (Mizumoto et al., 1994; Suntres, 2002).
257 These data suggest that changes in the ER stress and UPR signaling pathways may contribute
258 to the evolution of long lifespans, large bodies, and augmented cancer resistance in Galapagos
259 giant tortoises.

260 Unexpectedly, we also found that cells from most species were unresponsive to
261 etoposide treatment, even at the highest dose and longest exposure time. The sole exception
262 was *G. agassizii* cells, which were similar to other species in their response to tunicamycin and
263 paraquat, but markedly more sensitive to etoposide treatment. These data suggest that turtle
264 cells can either export intra-cellular etoposide before it can induce DNA damage, are generally
265 insensitive to DNA damage induced by etoposide, or can rapidly repair etoposide induced DNA
266 damage. Regardless of these, and potentially other mechanisms that alter sensitivity to
267 etoposide, *G. agassizii* cells respond differently than cells from the other species tested. The
268 functional and organismal consequences of this altered sensitivity are unclear, but is similar to
269 elephant cells which have evolved to induce apoptosis at relatively low levels of DNA
270 damage(Sulak et al., 2016; Vazquez et al., 2018; Vazquez and Lynch, 2021). This reduced
271 threshold for inducing apoptosis in response to cellular stress may clear cells that have been
272 exposed to the kinds of stresses that eventually lead to cancer before transformation into cancer
273 cells.

274 Although medical literature has often portrayed high levels of apoptosis as a maladaptive
275 response to cellular stress contributing to aging (Szegezdi et al., 2006; Chadwick and Lajoie,

276 2019), previous work in elephants showed that heightened apoptotic responses to genetic and
277 cellular damage can actually be an adaptive and beneficial response linked to increased body
278 size and longevity (Abegglen et al., 2015; Sulak et al., 2016; Vazquez et al., 2018). This is
279 because rapid and effective clearance of damaged or injured cells can help maintain tissue
280 integrity (Baar et al., 2017; de Keizer, 2017), especially in organisms with many cells and large
281 amounts of cell turnover. Thus, our results are compatible with ER stress as a potential factor in
282 the evolution of large, long-lived turtles.

283

284 **Caveats and limitations**

285 There are several limitations to our findings that could be the subject of future research.
286 While all cellular assays were performed on a common cell type, fibroblasts, the tissue origin of
287 these cells differed among species. We note, however, that for Galapagos giant tortoises,
288 tunicamycin response was not confounded with the site of fibroblast origin. We were also unable
289 to obtain the age of source animals, which could affect results since apoptosis can decline
290 during senescence (Salminen et al., 2011). Finally, the taxon sampling can be expanded to
291 include cells from closely related species with large differences in body size or lifespan. This
292 would enable better resolution in isolating the evolutionary origins of enhanced responses to
293 genetic and cellular stress, for example, by including the closest living relative of Galapagos
294 giant tortoises (Chaco tortoises; *Chelonoidis chilensis*). We relied on primary cell lines that were
295 currently available in frozen zoos and commercial biobanks; but future cellular work could
296 attempt to sample fresh cells from the same tissue type and life stage across species, which is
297 logistically challenging.

298

299 **Conclusions**

300 While numerous studies have found comparative genomic signatures associated with
301 the evolution of body size, longevity, and cancer resistance (Keane et al., 2015; Herrera-Álvarez

302 et al., 2018; Babarinde and Saitou, 2020), there have been few attempts to validate these
303 findings experimentally at the cellular level (Jimenez et al., 2018). Furthermore, most previous
304 cellular studies on these subjects focus almost exclusively on placental mammals. The work
305 presented here utilizes turtle cell lines, which is much more feasible than studying body size and
306 aging phenotypes in these long-lived animals. Our most salient finding is that Galapagos giant
307 tortoises are much more sensitive at inducing apoptosis in response to ER stress compared to
308 other turtle species, and also have genomic and phylogenetic signatures of rapid evolutionary
309 increases in body size, lifespan, and cancer resistance. We also found more generally that all
310 turtle cell lines were resistant to oxidative stress induced by paraquat. This supports previous
311 oxidative stress studies in turtles, and indicates that turtles, in general, may be a promising
312 model system in which to study resistance to stress from long lifespans (Lutz et al., 2003).
313 However, while the resistance of turtle cells to oxidative stress may contribute to the generally
314 long lifespans of turtles, the sensitivity of Galapagos giant tortoise cells to ER stress may
315 increase their resistance to oncogenic transformation thus promoting healthy aging and larger
316 body sizes.

317

318 **Methods**

319 **Intrinsic cancer risk estimation**

320 The dramatic increase in body size and lifespan in some turtle lineages, and the
321 relatively constant rate of cancer across species of diverse body sizes and lifespan (Leroi et al.,
322 2003), would predict an increase in cancer risk concurrent with an increase in body size or
323 lifespan. In order to identify lineages with exceptional changes in body size (with total carapace
324 length used here as a proxy for body size), longevity, or intrinsic cancer risk, we jointly
325 estimated these parameters across turtles and reconstructed ancestral states within a
326 phylogenetic framework. Using phylogenetic and body size data from Colston et al. (2020) and
327 longevity data from AnAge (Magalhães and Costa, 2009), and following Peto's model of cancer

328 risk (2015; Vazquez and Lynch, 2021), we estimated the intrinsic cancer risk (K) as the product
329 of risk associated with body size and lifespan ($\text{lifespan}^6 \times \text{body size}$). In order to determine (K)
330 across species and at ancestral nodes, we first estimated body size at each node. We used a
331 generalization of the Brownian motion model that relaxes assumptions of neutrality and
332 gradualism by considering increments to evolving characters to be drawn from a heavy-tailed
333 stable distribution (the “stable model”) implemented in StableTraits (Elliot and Mooers, 2014).
334 The stable model allows for large jumps in traits and has previously been shown to out-perform
335 other models of body size evolution, including standard Brownian motion models, Ornstein–
336 Uhlenbeck models, early burst maximum likelihood models, and heterogeneous multi-rate
337 models (Prang, 2019). We used Phylogenetic Generalized Least-Square Regression (PGLS)
338 (Grafen and Hamilton, 1989; Martins and Hansen, 1997; Pagel, 1997) using a Brownian
339 covariance matrix as implemented in the R package ape (Paradis and Schliep, 2019) to infer
340 ancestral lifespans across turtles using our estimates for body size (Colston et al., 2020) and
341 reported maximum lifespans for each species (Magalhães and Costa, 2009). Fold-change in
342 cancer susceptibility was estimated between all ancestral (K1) and descendant (K2) nodes. The
343 fold change in cancer risk between a node and its ancestor was then defined as K2/K1 (Figure
344 2 – source data 1).

345

346 **Identification of duplicated genes and reconstruction of ancestral copy numbers**

347 Following Caulin (2015), we identified duplicated genes in the genomes of the Pinta
348 Island Galapagos giant tortoise (*Chelonoidis abingdonii*; ASM359739v1), Goode’s thornscrub
349 tortoise (*Gopherus evgoodei*; rGopEvg1_v1.p) and Agassiz’s desert tortoise (*Gopherus*
350 *agassizii*; ASM289641v1), Chinese softshell turtle (*Pelodiscus sinensis*; PelSin_1.0), painted
351 turtle (*Chrysemys picta bellii*; Chrysemys_picta_bellii-3.0.3), three-toed box turtle (*Terrapene*
352 *carolina triunguis*; T_m_triunguis-2.0), chicken (*Gallus gallus*; GRCg6a), and eastern brown
353 snake (*Pseudonaja textilis*; EBS10Xv2-PRI) using the Ensembl (Genes 103) BioMart web-

354 based tool to extract same-species paralogies (within_species_paralog) from each genome;
355 same-species paralogies are identified by Ensembl Compara (Howe et al., 2021) using gene
356 tree species tree reconciliation. Genes that were classified as pseudogenes on Ensembl were
357 not included. Duplicate genes identified in Goode's thornscrub tortoise (*G. evgoodei*;
358 rGopEvg1_v1.p) were manually verified in Agassiz's desert tortoise (*G. agassizii*;
359 ASM289641v1) using reciprocal best BLAT.

360 We used maximum likelihood-based ancestral state reconstruction to determine when in
361 the evolution of turtles each gene was duplicated. We encoded the copy number of each
362 putatively functional gene for each species as a discrete trait, with state 0 for one gene copy
363 and state 1 for two or more copies. We used IQ-TREE to select the best-fitting model of
364 character evolution (Minh et al., 2020; Hoang et al., 2018; Kalyaanamoorthy et al., 2017; Wang
365 et al., 2018; Schrempf et al., 2019), which was inferred to be a general time reversible model for
366 morphological data (GTR2) with character state frequency optimized (FO) by maximum-
367 likelihood from the data. Next, we inferred gene duplication events with the empirical Bayesian
368 ancestral state reconstruction (ASR) method implemented in IQ-TREE (Minh et al., 2020;
369 Hoang et al., 2018; Kalyaanamoorthy et al., 2017; Wang et al., 2018; Schrempf et al., 2019), the
370 best fitting model of character evolution (GTR2+FO) (Soubrier et al., 2012; Yang et al., 1995),
371 and the unrooted species tree for turtles (**Figure 3A**). We considered ancestral state
372 reconstructions to be reliable if they had Bayesian Posterior Probability (BPP) \geq observed state
373 frequency from the alignment; less reliable reconstructions were excluded from further analyses.

374

375 **Gene duplication pathway enrichment analysis**

376 To determine if gene duplications were enriched in particular biological pathways, we
377 used Enrichr (Chen et al., 2013, p 5; Kuleshov et al., 2016) to perform Over-Representation

378 Analysis (ORA) of the Reactome database (Jassal et al., 2020). Furthermore, we used the
379 Panther GO enrichment analysis tool (Mi et al., 2021) to perform ORA on GO cellular
380 component terms (Ashburner et al., 2000; The Gene Ontology Consortium, 2021). Gene
381 duplicates in each lineage were used as the foreground gene set, and the initial query set was
382 used as the background gene set. Enrichr uses a hypergeometric test for statistical significance
383 of pathway over-representation, while the Panther GO enrichment analysis tool uses a binomial
384 test for statistical significance of GO cellular component term over-representation.

385

386 **Cell culture**

387 Experimental cellular phenotypes were generated to compare results from the body size,
388 longevity, and intrinsic cancer risk analysis and the gene duplication and enrichment analysis.
389 Apoptosis was chosen as the major cellular endpoint of interest because of its central role in
390 aging and cancer through the removal of damaged or cancerous cells (Salminen et al., 2011;
391 Verfaillie et al., 2013).

392 We cultured cell lines from four tortoise taxa (*Chelonoidis niger*, *Geochelone platynota*,
393 *Gopherus agassizii*, *Homopus aerolatus*) obtained from the San Diego Frozen Zoo and one
394 turtle species (*Terrapene carolina*) obtained from the American Type Culture Collection (**Table**
395 **1**). All cells were primary fibroblasts derived from either the heart (*T. carolina*), trachea (*G.*
396 *agassizii*, *G. platynota*, *C. niger*), or eye (*H. aerolatus*). Turtle cells have previously been shown
397 to grow within a range of 23-30 °C (Clark and Karzon, 1967; Clark et al., 1970; Goldstein, 1974).
398 Therefore, cells were incubated at 25 °C, with 5% CO₂. Cells were cultured in Minimum
399 Essential Medium (MEM; Gibco) with 10% fetal bovine serum (Gibco) and 1% penicillin-
400 streptomycin antibiotic (Gibco) in standard T75 flasks (Thermo Fisher Scientific). Media was
401 changed every three days. Cells were passaged before reaching 90% confluency,
402 approximately every 7 to 9 days. For passaging, cell plates were rinsed with one volume of 37
403 °C DPBS (Gibco) and cells detached with 0.25% Trypsin-EDTA (Gibco). We note that cells

404 detached quickly with the assistance of gentle tapping of plates and without incubation. The cell
405 suspension was transferred to a 15-mL conical tube (Thermo Fisher Scientific) with an equal
406 volume of complete media to stop trypsinization. Cells were then centrifuged at 500 x g for 5
407 minutes, and then the pellet was resuspended in 1 mL of complete media. Cell viability was
408 determined using a TC10 Automated Cell Counter (Bio-Rad Laboratories) and was >75% for all
409 cell lines throughout the experiment.

410 We selected various cytotoxic drugs to induce different types of cellular stress, including
411 etoposide (Cayman Chemical Company), which induces single-stranded and double stranded
412 DNA breaks (Wozniak and Ross, 1983), paraquat (Sigma-Aldrich), which induces oxidative
413 stress through production of reactive oxygen species and s-phase cell cycle arrest (Salmon et
414 al., 2008), and tunicamycin (Cayman Chemical Company), which induces ER stress and the
415 unfolded protein response (UPR) by causing an accumulation of unfolded and misfolded
416 proteins (Banerjee et al., 2011; Guha et al., 2017).

417

418 **Kinetic measurements of cell death**

419 The RealTime-Glo™ Annexin V Apoptosis and Necrosis assay (RTG) visualizes the
420 kinetics of apoptosis over a given period of time and differentiates secondary necrosis occurring
421 during late apoptosis from necrosis caused by other cytotoxic events (Landreman et al., 2019).
422 RTG assays were performed for each species by seeding 5,000 cells per well into an opaque
423 bottomed 96-well plate with three replicates per treatment per species and one empty column
424 with no cells (background control). Cells were left to adhere for 24 hours, after which seeding
425 media was aspirated off and serial dilutions of Tunicamycin (0 µM, 10 µM, 50 µM, 100 µM),
426 Etoposide (0 µM, 100 µM, 500 µM, 1000 µM), or Paraquat (0 µM, 100 µM, 1000 µM, 5000 µM)
427 were applied. All drug treatments were made using Fluorobrite DMEM media. The "0 µM"
428 control treatments consisted of the vehicle used (DMSO or PBS) at the concentration matching
429 the highest drug concentration, while the background control ("NoCell"), consisted of the drug

430 treatment and assay reagents with no cells. As per the RTG product protocol, the 500-fold
431 dilution of reagents in Fluorobrite DMEM media was added to wells immediately after drug
432 treatments were applied (effectively reducing the initial drug dilutions in half). Readings were
433 then taken every 30 minutes for 48 hours using a GloMax Luminometer (Promega Corporation).

434

435 **Statistical analysis**

436 All statistical analyses reported in this paper are estimation statistics, including effect
437 sizes, 95% confidence intervals (CIs) of the effect size, and *P* values. Effect sizes and 95% CIs
438 are reported as: effect size [CI width lower bound; upper bound] with 5000 bootstrap samples;
439 the confidence interval is bias-corrected and accelerated. *P* values reported are the likelihood of
440 observing the effect sizes if the null hypothesis of zero difference is true. For each permutation
441 *P* value, 5000 reshuffles of the control and test labels were performed (Ho et al., 2019). All
442 statistical analyses were performed in RStudio (RStudio Team, 2020).

443

444 **Acknowledgements**

445 We thank the San Diego Frozen Zoo for providing cell lines for four of the tortoise
446 species in this project. The University of Chicago kindly hosted SG and SEB as part of NSF's
447 EPSCoR Program.

448

449 **Funding**

450 This project was funded by NSF EPSCoR award #1833065 (SG) and NSF IOS joint
451 collaborative awards #2028458 (VJL) and #2028459 (SG and YC). SB acknowledges financial
452 support from the Alabama Graduate Research Scholars Program (GRSP) funded through the
453 Alabama Commission for Higher Education and administered by Alabama EPSCoR.

454

455 **Competing Interests**

456 The authors claim no competing interests.

457

458 **References**

459 Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, Kiso WK, Schmitt DL,
460 Waddell PJ, Bhaskara S, Jensen ST, Maley CC, Schiffman JD. 2015. Potential
461 Mechanisms for Cancer Resistance in Elephants and Comparative Cellular Response to
462 DNA Damage in Humans. *JAMA* 314:1850–1860.

463 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight
464 SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC,
465 Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene Ontology: tool for the
466 unification of biology. *Nat Genet* 25:25–29.

467 Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derkx KWJ, Bourgeois BRM, Stryeck S, Rijken
468 Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van
469 IJcken WF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi
470 J, de Keizer PLJ. 2017. Targeted Apoptosis of Senescent Cells Restores Tissue
471 Homeostasis in Response to Chemotoxicity and Aging. *Cell* 169:132-147.e16.

472 Babarinde IA, Saitou N. 2020. The Dynamics, Causes, and Impacts of Mammalian Evolutionary
473 Rates Revealed by the Analyses of Capybara Draft Genome Sequences. *Genome Biol*
474 *Evol* 12:1444–1458.

475 Banerjee A, Lang J-Y, Hung M-C, Sengupta K, Banerjee SK, Baksi K, Banerjee DK. 2011.
476 Unfolded Protein Response Is Required in nu/nu Mice Microvasculature for Treating
477 Breast Tumor with Tunicamycin. *J Biol Chem* 286:29127–29138.

478 Boddy AM, Abegglen LM, Pessier AP, Aktipis A, Schiffman JD, Maley CC, Witte C. 2020.
479 Lifetime cancer prevalence and life history traits in mammals. *Evol Med Public Health*
480 2020:187–195.

481 Caccone A, Rusch E, Ketmaier V, Suatoni E, Powell JR. 1999. Origin and evolutionary
482 relationships of giant Galápagos tortoises. *Proc Natl Acad Sci* 96:13223–13228.

483 Caulin AF, Graham TA, Wang L-S, Maley CC. 2015. Solutions to Peto's paradox
484 revealed by mathematical modelling and cross-species cancer gene analysis. *Philos
485 Trans R Soc Lond B Biol Sci* 370.

486 Chadwick SR, Lajoie P. 2019. Endoplasmic Reticulum Stress Coping Mechanisms and Lifespan
487 Regulation in Health and Diseases. *Front Cell Dev Biol* [Internet] 7. Available from:
488 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558375/>

489 Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. 2013. Enrichr:
490 interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC
491 Bioinformatics* 14:128.

492 Chiari Y. 2020. Morphology. In: Galapagos Giant Tortoises. 1st ed. Biodiversity of the World:
493 Conservation from Genes to Landscapes. Academic Press. p Chapter 8.

494 Chiari Y, Glaberman S, Lynch VJ. 2018. Insights on cancer resistance in vertebrates: reptiles as
495 a parallel system to mammals. *Nat Rev Cancer* 18:525–525.

496 Clark HF, Cohen MM, Karzon DT. 1970. Characterization of Reptilian Cell Lines Established at
497 Incubation Temperatures of 23 to 36°. *Proc Soc Exp Biol Med* 133:1039–1047.

498 Clark HF, Karzon DT. 1967. Terrapene heart (TH-1), a continuous cell line from the heart of the
499 box turtle *Terrapene carolina*. *Exp Cell Res* 48:263–268.

500 Colston TJ, Kulkarni P, Jetz W, Pyron RA. 2020. Phylogenetic and spatial distribution of
501 evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian
502 archosauromorphs). *BMC Evol Biol* 20:81.

503 Depczynski M, Bellwood DR. 2005. Shortest recorded vertebrate lifespan found in a coral reef

504 fish. *Curr Biol* 15:R288–R289.

505 Dorn CR, Taylor DON, Schneider R, Hibbard HH, Klauber MR. 1968. Survey of Animal
506 Neoplasms in Alameda and Contra Costa Counties, California. II. Cancer Morbidity in
507 Dogs and Cats From Alameda County. *JNCI J Natl Cancer Inst* 40:307–318.

508 Elliot MG, Mooers AØ. 2014. Inferring ancestral states without assuming neutrality or
509 gradualism using a stable model of continuous character evolution. *BMC Evol Biol*
510 14:226.

511 Ernst CH, Barbour RW. 1992. *Turtles of the World*. Reprint edition. Washington, D.C.:
512 Smithsonian Institution Scholarly Press.

513 Flatt T, Partridge L. 2018. Horizons in the evolution of aging. *BMC Biol* 16:93.

514 Foley NM, Hughes GM, Huang Z, Clarke M, Jebb D, Whelan CV, Petit EJ, Touzalin F, Farcy O,
515 Jones G, Ransome RD, Kacprzyk J, O'Connell MJ, Kerth G, Rebelo H, Rodrigues L,
516 Puechmaille SJ, Teeling EC. 2018. Growing old, yet staying young: The role of
517 telomeres in bats' exceptional longevity. *Sci Adv* 4:eaa0926.

518 Garner MM, Hernandez-Divers SM, Raymond JT. 2004. Reptile neoplasia: a retrospective study
519 of case submissions to a specialty diagnostic service. *Veterinary Clin North Am Exot
520 Anim Pract* 7:653–671.

521 Goldstein S. 1974. Aging in vitro: Growth of cultured cells from the Galapagos tortoise. *Exp Cell
522 Res* 83:297–302.

523 Gorbunova V, Seluanov A, Kennedy BK. 2020. The World Goes Bats: Living Longer and
524 Tolerating Viruses. *Cell Metab* 32:31–43.

525 Gorbunova V, Seluanov A, Zhang Z, Gladyshev VN, Vijg J. 2014. Comparative genetics of
526 longevity and cancer: insights from long-lived rodents. *Nat Rev Genet* 15:531–540.

527 Grafen A, Hamilton WD. 1989. The phylogenetic regression. *Philos Trans R Soc Lond B Biol Sci*
528 326:119–157.

529 Guha P, Kaptan E, Gade P, Kalvakolanu DV, Ahmed H. 2017. Tunicamycin induced
530 endoplasmic reticulum stress promotes apoptosis of prostate cancer cells by activating
531 mTORC1. *Oncotarget* 8:68191–68207.

532 Healy K, Guillerme T, Finlay S, Kane A, Kelly SBA, McClean D, Kelly DJ, Donohue I, Jackson
533 AL, Cooper N. 2014. Ecology and mode-of-life explain lifespan variation in birds and
534 mammals. *Proc Biol Sci* 281:20140298.

535 Herrera-Álvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ. 2018. How to make a
536 rodent giant: Genomic basis and tradeoffs of gigantism in the capybara, the world's
537 largest rodent. *bioRxiv*:424606.

538 Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. 2019. Moving beyond P values: data
539 analysis with estimation graphics. *Nat Methods* 16:565–566.

540 Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. 2020. The untapped
541 potential of reptile biodiversity for understanding how and why animals age. *Funct Ecol*
542 34:38–54.

543 Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG,
544 Bennett R, Bhai J, Billis K, Boddu S, Charkhchi M, Cummins C, Da Rin Fioretto L,
545 Davidson C, Dodiya K, El Houdaigui B, Fatima R, Gall A, Garcia Giron C, Grego T,
546 Guijarro-Clarke C, Haggerty L, Hemrom A, Hourlier T, Izuogu OG, Juettemann T,
547 Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Gonzalez Martinez J, Marugán JC, Maurel
548 T, McMahon AC, Mohanan S, Moore B, Muffato M, Oheh DN, Paraschas D, Parker A,
549 Parton A, Prosovetskaia I, Sakthivel MP, Salam AIA, Schmitt BM, Schuilenburg H,
550 Sheppard D, Steed E, Szpak M, Szuba M, Taylor K, Thormann A, Threadgold G, Walts
551 B, Winterbottom A, Chakiachvili M, Chaubal A, De Silva N, Flint B, Frankish A, Hunt SE,
552 Ilsley GR, Langridge N, Loveland JE, Martin FJ, Mudge JM, Morales J, Perry E, Ruffier
553 M, Tate J, Thybert D, Trevanion SJ, Cunningham F, Yates AD, Zerbino DR, Flicek P.
554 2021. Ensembl 2021. *Nucleic Acids Res* 49:D884–D891.

555 Jimenez AG, Winward J, Beattie U, Cipolli W. 2018. Cellular metabolism and oxidative stress as
556 a possible determinant for longevity in small breed and large breed dogs. *PLOS ONE*
557 13:e0195832.

558 Kaushik S, Cuervo AM. 2015. Proteostasis and aging. *Nat Med* 21:1406–1415.

559 Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, Madsen LB, van Dam S, Brawand
560 D, Marques PI, Michalak P, Kang L, Bhak J, Yim H-S, Grishin NV, Nielsen NH, Heide-
561 Jørgensen MP, Oziolor EM, Matson CW, Church GM, Stuart GW, Patton JC, George
562 JC, Suydam R, Larsen K, López-Otín C, O'Connell MJ, Bickham JW, Thomsen B,
563 de Magalhães JP. 2015. Insights into the Evolution of Longevity from the Bowhead
564 Whale Genome. *Cell Rep* 10:112–122.

565 de Keizer PLJ. 2017. The Fountain of Youth by Targeting Senescent Cells? *Trends Mol Med*
566 23:6–17.

567 Kenyon CJ. 2010. The genetics of ageing. *Nature* 464:nature08980.

568 Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL,
569 Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A.
570 2016. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
571 *Nucleic Acids Res* 44:W90–W97.

572 Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: A Resource for Timelines,
573 Timetrees, and Divergence Times. *Mol Biol Evol* 34:1812–1819.

574 Landreman A, Bach M, Bjerke M. 2019. Understanding Cellular Biology in Real Time tpub_207.
575 Available from: <https://www.promega.com/resources/pubhub/2019/understanding-cellular-biology-in-real-time/>

576

577 Leroi AM, Koufopanou V, Burt A. 2003. Cancer selection. *Nat Rev Cancer* 3:226–231.

578 Lockyer C. 1976. Body weights of some species of large whales. *ICES J Mar Sci* 36:259–273.

579 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The Hallmarks of Aging.
580 *Cell* 153:1194–1217.

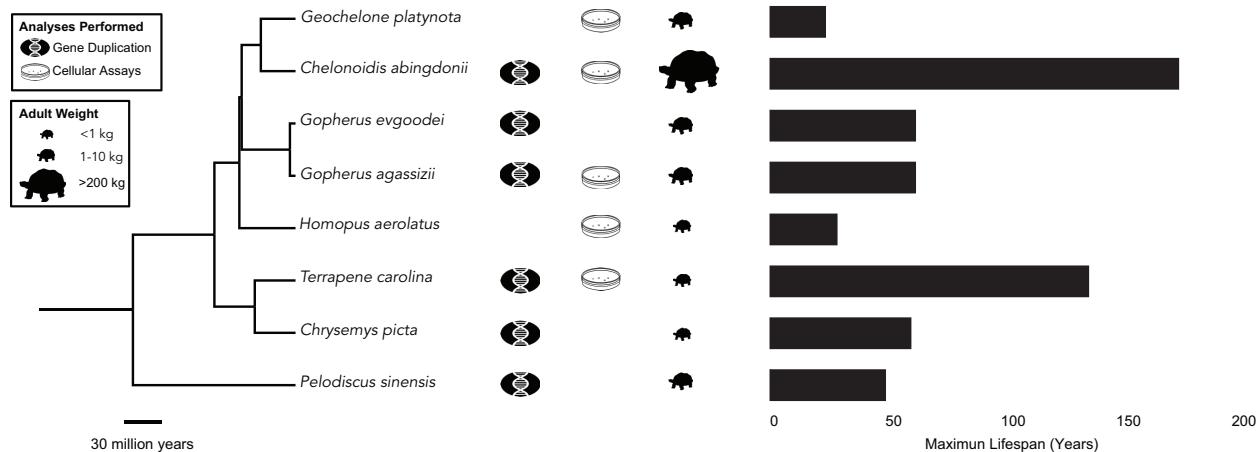
581 Lutz PL, Prentice HM, Milton SL. 2003. Is turtle longevity linked to enhanced mechanisms for
582 surviving brain anoxia and reoxygenation? *Exp Gerontol* 38:797–800.

583 Magalhães JPD, Costa J. 2009. A database of vertebrate longevity records and their relation to
584 other life-history traits. *J Evol Biol* 22:1770–1774.

585 Martins EP, Hansen TF. 1997. Phylogenies and the Comparative Method: A General Approach
586 to Incorporating Phylogenetic Information into the Analysis of Interspecific Data. *Am Nat*
587 149:646–667.

588 Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, Thomas PD. 2021.
589 PANTHER version 16: a revised family classification, tree-based classification tool,
590 enhancer regions and extensive API. *Nucleic Acids Res* 49:D394–D403.

591 Mizumoto K, Rothman RJ, Farber JL. 1994. Programmed cell death (apoptosis) of mouse
592 fibroblasts is induced by the topoisomerase II inhibitor etoposide. *Mol Pharmacol*
593 46:890–895.


594 Moore AL, Williams CE, Martin TH, Moriarity WJ. 2001. Influence of Season, Geomorphic
595 Surface and Cover Item on Capture, Size and Weight of *Desmognathus ochrophaeus*
596 and *Plethodon cinereus* in Allegheny Plateau Riparian Forests. *Am Midl Nat* 145:39–45.

597 Morimoto RI, Cuervo AM. 2014. Proteostasis and the Aging Proteome in Health and Disease. *J*
598 *Gerontol Ser A* 69:S33–S38.

599 Nami B, Donmez H, Kocak N. 2016. Tunicamycin-induced endoplasmic reticulum stress
600 reduces in vitro subpopulation and invasion of CD44+/CD24- phenotype breast cancer
601 stem cells. *Exp Toxicol Pathol* 68:419–426.

602 Nielsen J, Hedeholm RB, Heinemeier J, Bushnell PG, Christiansen JS, Olsen J, Ramsey CB,
603 Brill RW, Simon M, Steffensen KF, Steffensen JF. 2016. Eye lens radiocarbon reveals
604 centuries of longevity in the Greenland shark (*Somniosus microcephalus*). *Science*
605 353:702–704.

606 Pagel M. 1997. Inferring evolutionary processes from phylogenies. *Zool Scr* 26:331–348.
607 Palkovacs EP, Gerlach J, Caccone A. 2002. The evolutionary origin of Indian Ocean tortoises
608 (Dipsoschelys). *Mol Phylogenet Evol* 24:216–227.
609 Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary
610 analyses in R. *Bioinformatics* 35:526–528.
611 Peto R. 2015. Quantitative implications of the approximate irrelevance of mammalian body size
612 and lifespan to lifelong cancer risk. *Philos Trans R Soc Lond B Biol Sci* 370.
613 Poulakakis N, Russello M, Geist D, Caccone A. 2012. Unravelling the peculiarities of island life:
614 vicariance, dispersal and the diversification of the extinct and extant giant Galápagos
615 tortoises. *Mol Ecol* 21:160–173.
616 Prang TC. 2019. The African ape-like foot of *Ardipithecus ramidus* and its implications for the
617 origin of bipedalism. *eLife* 8:e44433.
618 Quesada V, Freitas-Rodríguez S, Miller J, Pérez-Silva JG, Jiang Z-F, Tapia W, Santiago-
619 Fernández O, Campos-Iglesias D, Kuderna LFK, Quinzin M, Álvarez MG, Carrero D,
620 Beheregaray LB, Gibbs JP, Chiari Y, Glaberman S, Ciofi C, Araujo-Voces M, Mayoral P,
621 Arango JR, Tamargo-Gómez I, Roiz-Valle D, Pascual-Torner M, Evans BR, Edwards
622 DL, Garrick RC, Russello MA, Poulakakis N, Gaughran SJ, Rueda DO, Bretones G,
623 Marquès-Bonet T, White KP, Caccone A, López-Otín C. 2019. Giant tortoise genomes
624 provide insights into longevity and age-related disease. *Nat Ecol Evol* 3:87–95.
625 RStudio Team. 2020. RStudio: Integrated Development Environment for R. Boston, MA:
626 RStudio, PBC. Available from: <http://www.rstudio.com/>
627 Salminen A, Ojala J, Kaarniranta K. 2011. Apoptosis and aging: increased resistance to
628 apoptosis enhances the aging process. *Cell Mol Life Sci* 68:1021–1031.
629 Salmon AB, Akha AAS, Buffenstein R, Miller RA. 2008. Fibroblasts from Naked Mole-Rats Are
630 Resistant to Multiple Forms of Cell Injury, But Sensitive to Peroxide, UV Light, and ER
631 Stress. *J Gerontol A Biol Sci Med Sci* 63:232–241.
632 Seim I, Ma S, Zhou X, Gerashchenko MV, Lee S-G, Suydam R, George JC, Bickham JW,
633 Gladyshev VN. 2014. The transcriptome of the bowhead whale *Balaena mysticetus*
634 reveals adaptations of the longest-lived mammal. *Aging* 6:879–899.
635 Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, Emes RD, Lynch VJ. 2016.
636 Correction: TP53 copy number expansion is associated with the evolution of increased
637 body size and an enhanced DNA damage response in elephants. *eLife* 5:e24307.
638 Suntres ZE. 2002. Role of antioxidants in paraquat toxicity. *Toxicology* 180:65–77.
639 Sykes JM, Trupkiewicz JG. 2006. Reptile neoplasia at the Philadelphia zoological garden,
640 1901–2002. *J Zoo Wildl Med* 37:11–19.
641 Szegezdi E, Logue SE, Gorman AM, Samali A. 2006. Mediators of endoplasmic reticulum
642 stress-induced apoptosis. *EMBO Rep* 7:880–885.
643 The Gene Ontology Consortium. 2021. The Gene Ontology resource: enriching a GOld mine.
644 *Nucleic Acids Res* 49:D325–D334.
645 Vazquez JM, Lynch VJ. 2021. Pervasive duplication of tumor suppressors in Afrotherians during
646 the evolution of large bodies and reduced cancer risk. *eLife* 10:e65041.
647 Vazquez JM, Sulak M, Chigurupati S, Lynch VJ. 2018. A Zombie LIF Gene in Elephants Is
648 Upregulated by TP53 to Induce Apoptosis in Response to DNA Damage. *Cell Rep*
649 24:1765–1776.
650 Verfaillie T, Garg AD, Agostinis P. 2013. Targeting ER stress induced apoptosis and
651 inflammation in cancer. *Cancer Lett* 332:249–264.
652 Vilchez D, Saez I, Dillin A. 2014. The role of protein clearance mechanisms in organismal
653 ageing and age-related diseases. *Nat Commun* 5:1–13.
654 Wozniak AJ, Ross WE. 1983. DNA Damage as a Basis for 4'-Demethylepipodophyllotoxin-9-
655 (4,6-O-ethylidene- β -d-glucopyranoside) (Etoposide) Cytotoxicity. *Cancer Res* 43:120–
656 124.

657

658 **Figure 1: Overview of the study design.** Species with genomes utilized for gene duplication
659 analysis as well as turtle species with cells used to measure apoptotic responses to genotoxic
660 and cytotoxic drugs are indicated. Phylogenetic tree was built with TimeTree (Kumar et al.,
661 2017). Turtle size data come from (Ernst and Barbour, 1992; Colston et al., 2020), longevity
662 data are from AnAge.

663

664

665

666

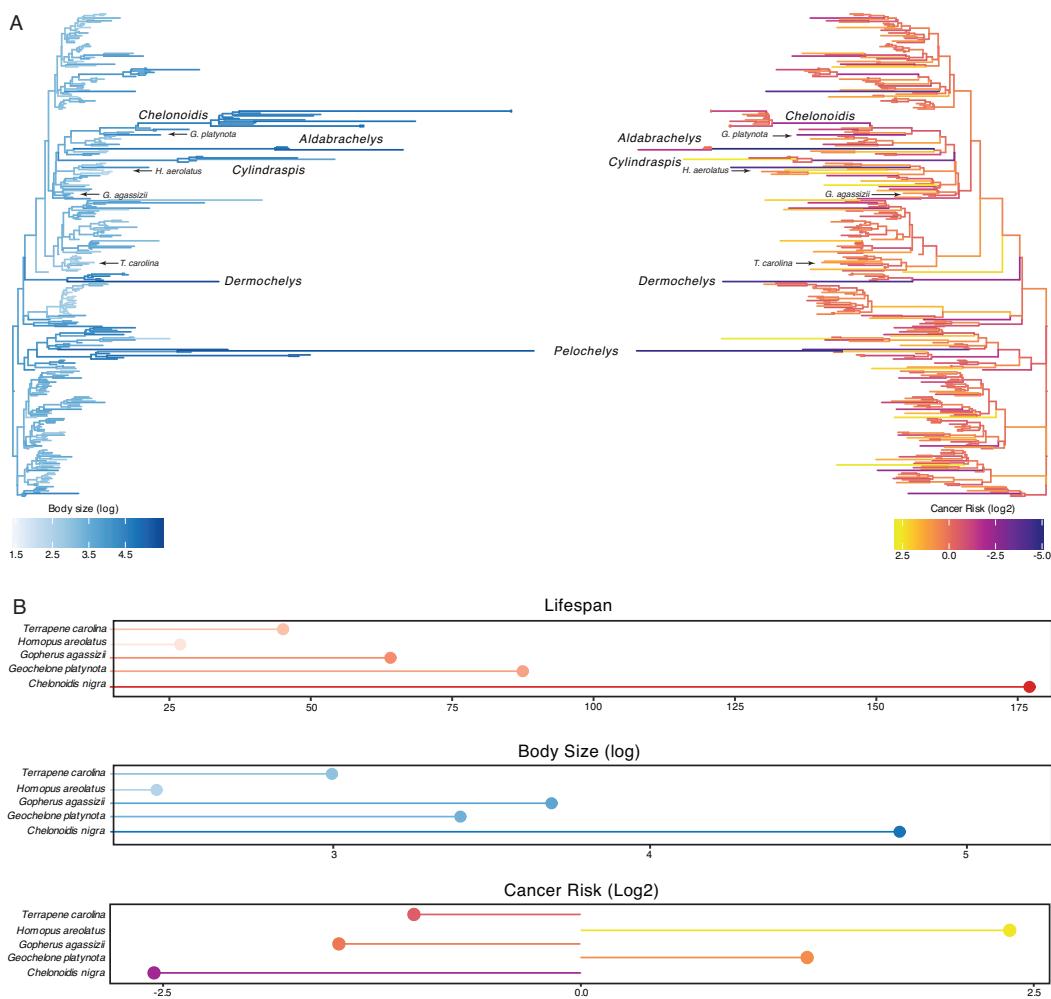
667

668

669

670

671

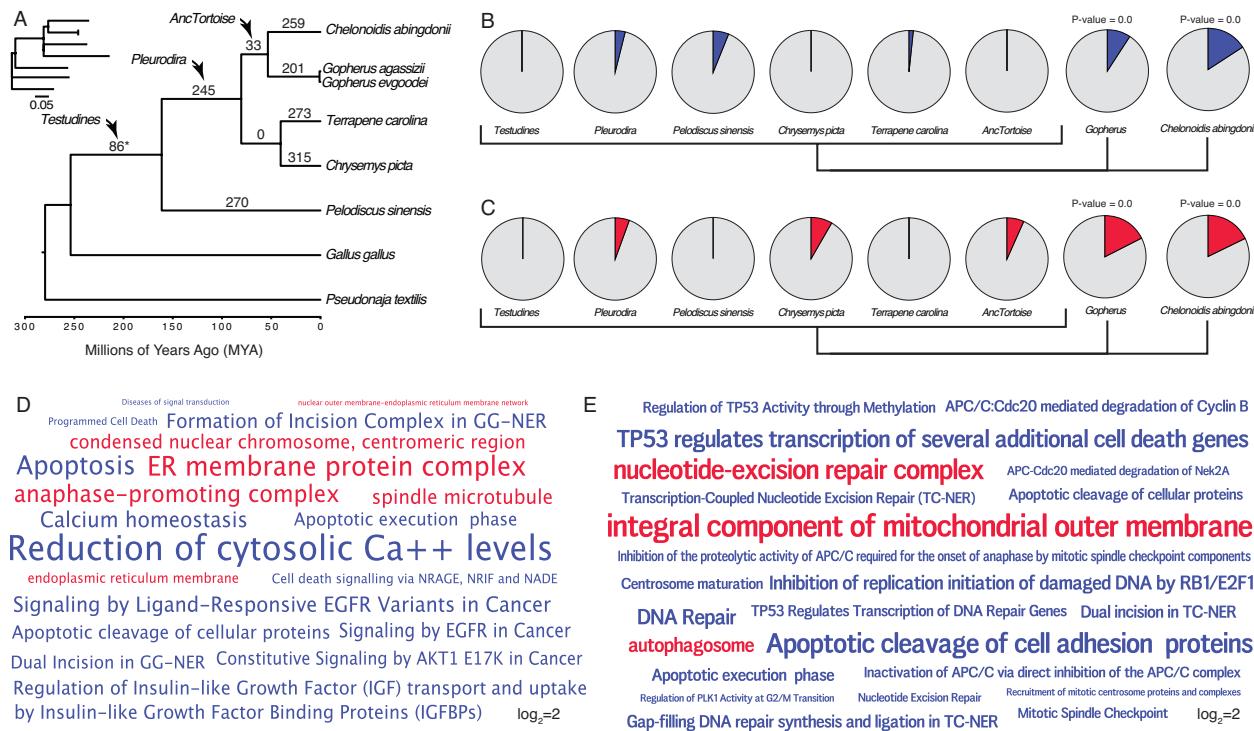

672

673

674

675

676


677

678 **Figure 2: Convergent evolution of large-bodied, cancer resistant turtles.**

679 **(A)** Turtle phylogeny with branch lengths and colors scaled by log2 change in body size
680 (left) and estimated intrinsic cancer risk (right). Clades and lineages leading to
681 exceptionally large turtles and tortoises are labeled, as are species used in cytotoxic
682 stress assays.

683 **(B)** Lifespan (upper), body size (middle), and estimated intrinsic cancer risk (lower) of
684 species used in stress assays.

685 **Figure 2 – source data 1.** Ancestral reconstructions of testudine body size, lifespan, and
686 intrinsic cancer risk.

687

688 **Figure 3: Gene duplicates in Galapagos and desert tortoises are enriched in tumor
689 suppressor and anti-aging functions.**

690 (A) Turtle phylogeny indicating the number of genes duplicated in each lineage, inferred
691 by maximum likelihood. Inset, phylogeny with branch lengths proportional to gene
692 duplication rate. The asterisk (*) denotes a node with gene duplications reconstructed
693 with lower support than other nodes and non-significant (BPP=0.541).

694 (B) Pie charts indicating the proportion of enriched Reactome pathways in each lineage
695 related to cancer biology and aging (blue slices). Gene duplicates in Galapagos giant
696 and desert tortoises are significantly more enriched in these terms than other lineages
697 (two-sided permutation t-test is 0.00).

698 (C) Pie charts indicating the proportion of enriched GO cellular component terms related
699 to cancer biology, DNA damage repair, programmed cell death, and the endoplasmic
700 reticulum (red slices). Gene duplicates in Galapagos giant and desert tortoises are

701 significantly more enriched in these terms than other lineages (two-sided permutation t-
702 test is 0.00).

703 **(D)** Wordcloud of the Reactome (blue) pathways and GO cellular component terms (red)
704 enriched exclusively in Galapagos giant tortoises. Only pathway and GO terms enriched
705 with $P \leq 0.05$ are shown are scaled according to Log2 fold-enrichment (see inset scale).

706 **(E)** Wordcloud of the Reactome (blue) pathways and GO cellular component terms (red)
707 enriched in desert tortoises. Only pathway and GO terms enriched with $P \leq 0.05$ are
708 shown are scaled according to Log2 fold-enrichment (see inset scale).

709 **Figure 3 – source data 1.** Ancestral reconstruction of copy number changes.

710 **Figure 3 – source data 2.** Gene duplications and pathway enrichments for each lineage.

711

712

713

714

715

716

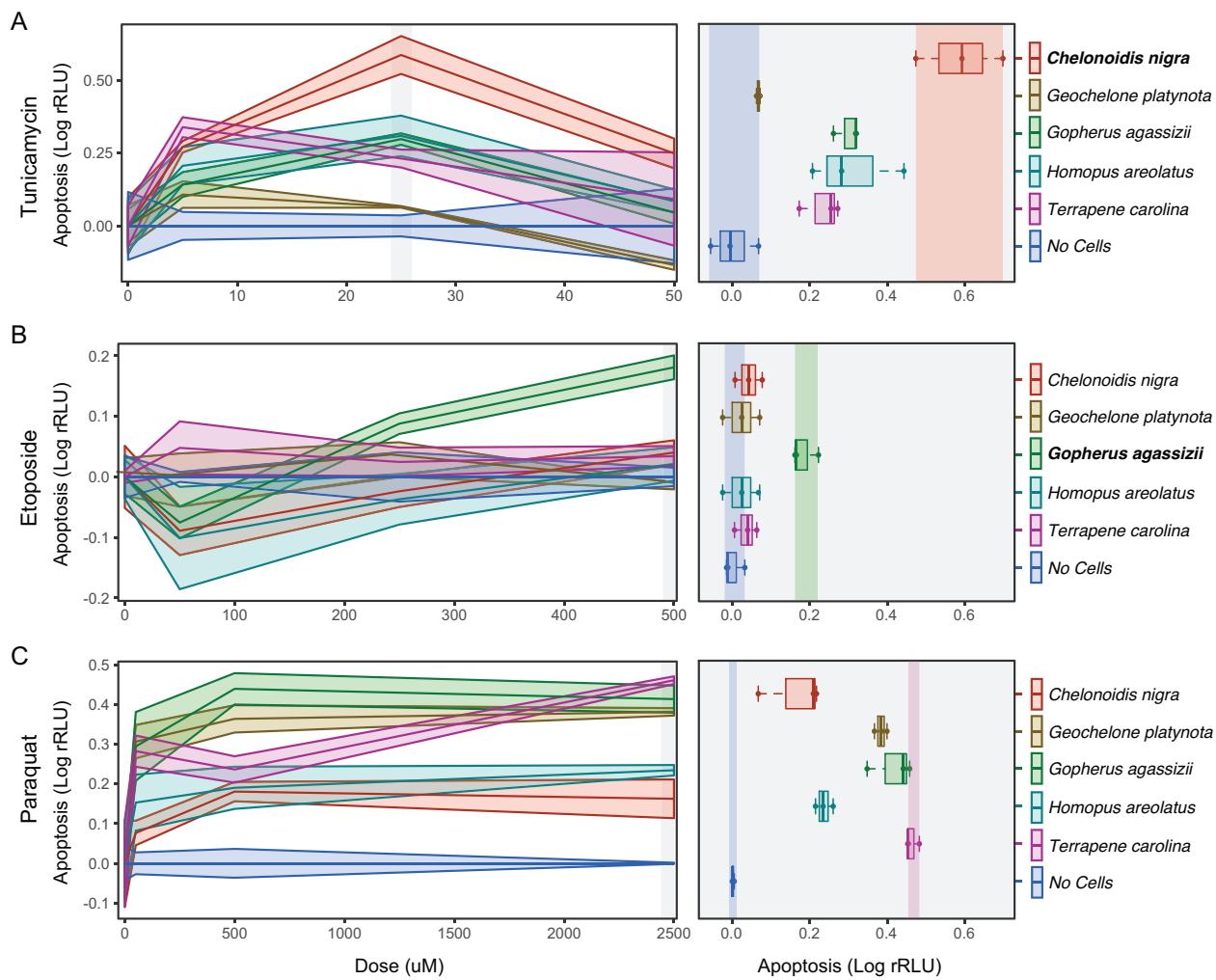
717

718

719

720

721


722

723

724

725

726

727

728 **Figure 4: Cells from Galapagos giant and desert tortoises have unique stress responses**

729 (A) Left, dose response curves for tunicamycin, which induces endoplasmic reticulum
730 stress and the unfolded protein response (24 hours post-treatment). Right, boxplots
731 showing differences between species 24 hours after treatment with 25uM tunicamycin;
732 statistical tests are relative to *C. niger*, which had the strongest apoptotic response. The
733 unpaired mean difference between *C. niger* and *G. platynota* is -0.521 [95.0%CI -0.631,
734 -0.408]. The *P* value of the two-sided permutation t-test is 0.0. The unpaired mean
735 difference between *C. niger* and *G. agassizii* is -0.288 [95.0%CI -0.399, -0.193]. The *P*
736 value of the two-sided permutation t-test is 0.0. The unpaired mean difference between
737 *C. niger* and *H. areolatus* is -0.278 [95.0%CI -0.431, -0.124]. The *P* value of the two-

738 sided permutation t-test is 0.0. The unpaired mean difference between *C. niger* and *T.*
739 *carolina* is -0.355 [95.0%CI -0.465, -0.246]. The *P* value of the two-sided permutation t-
740 test is 0.0. n=3.

741 **(B)** Left, dose response curves for etoposide, which induces DNA strand breaks (24
742 hours post-treatment). Right, boxplots showing differences between species 24 hours
743 after treatment with 500uM etoposide; statistical tests are relative to *G. agassizii*, which
744 had the strongest apoptotic response. The unpaired mean difference between *G.*
745 *agassizii* and *C. niger* is -0.141 [95.0%CI -0.195, -0.106]. The *P* value of the two-sided
746 permutation t-test is 0.0. The unpaired mean difference between *G. agassizii* and *G.*
747 *platynota* is -0.16 [95.0%CI -0.227, -0.112]. The *P* value of the two-sided permutation t-
748 test is 0.0. The unpaired mean difference between *G. agassizii* and *H. areolatus* is -0.16
749 [95.0%CI -0.227, -0.112]. The *P* value of the two-sided permutation t-test is 0.0. The
750 unpaired mean difference between *G. agassizii* and *T. carolina* is -0.147 [95.0%CI -
751 0.198, -0.115]. The *P* value of the two-sided permutation t-test is 0.0. n=3. **(C)** Left, dose
752 response curves for paraquat, which induces oxidative stress (24 hours post-treatment).
753 Right, boxplots showing differences between species 24 hours after treatment with
754 2500uM paraquat; statistical tests are relative to *C. niger*, which had the weakest
755 apoptotic response. The unpaired mean difference between *C. niger* and *G. platynota* is
756 0.24 [95.0%CI 0.176, 0.317]. The *P* value of the two-sided permutation t-test is 0.0. The
757 unpaired mean difference between *C. niger* and *G. agassizii* is 0.272 [95.0%CI 0.188,
758 0.356]. The *P* value of the two-sided permutation t-test is 0.0. The unpaired mean
759 difference between *C. niger* and *H. areolatus* is 0.0927 [95.0%CI 0.0337, 0.169]. The *P*
760 value of the two-sided permutation t-test is 0.0. The unpaired mean difference between
761 *C. niger* and *T. carolina* is 0.32 [95.0%CI 0.262, 0.396]. The *P* value of the two-sided
762 permutation t-test is 0.0. n=3

763 **Figure 4 – figure supplement 1.** Tunicamycin RealTime-Glo time course.

764 **Figure 4 – figure supplement 2.** Etoposide RealTime-Glo time course.

765 **Figure 4 – figure supplement 3.** Paraquat RealTime-Glo time course.

766 **Figure 4 – source data 1.** RealTime-Glo datafiles.

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

Scientific Name	Common Name	Family	Biopsy Site	Average cell viability (%)
<i>Homopus areolatus</i>	Parrot-beaked tortoise	Testudinidae	Eye	83 ± 15
<i>Gopherus agassizii</i>	Desert tortoise	Testudinidae	Trachea	93 ± 6
<i>Geochelone platynota</i>	Burmese star tortoise	Testudinidae	Trachea	96 ± 1
<i>Chelonoidis nigra</i>	Galapagos tortoise	Testudinidae	Trachea	89 ± 7
<i>Terrapene carolina</i>	Common Box Turtle	Emydidae	Heart	91 ± 7

786

787 **Table 1. Turtle experimental cell lines.** Biopsy site is the location from which primary
788 fibroblast cells were derived. Average *in vitro* cell viability percent is over 12-14 passages
789 depending on cell line. Cell viability was calculated as the ratio of live cells to total cells at each
790 passage with standard deviation.

791