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Abstract

The incidence of infections caused by multidrug-resistant E. coli strains has risen in the past years.
Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The
study of E. coli plasmid epidemiology and genomics often requires long-read sequencing information,
but recently a number of tools that allow plasmid prediction from short-read data have been
developed.

Here, we reviewed 25 available plasmid prediction tools and categorized them into binary
plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked six tools
that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic
resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. They use either assembly
graph information (plasmidSPAdes, gplas), reference databases (MOB-Suite, FishingForPlasmids) or
both (HyAsP and SCAPP) to produce plasmid predictions. The benchmark data set consisted of 240 E.
coli strains, harboring 631 plasmids, which were representative for the diversity of E. coli in public
databases. Notably, these strains were not used for training any of the tools.

We found that two thirds (n=425, 66.3.%) of all plasmids were correctly reconstructed by at least one
of the six tools, with a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However,
the majority of plasmids that carried antibiotic resistance genes (n=85, 57.8%) could not be
completely recovered as distinct plasmids by any of the tools. MOB-suite was the only tool that was
able to correctly reconstruct the majority of plasmids (n=317, 50.23%), and performed best at
reconstructing large plasmids (n=166, 46.37%) and ARG-plasmids (n=41, 27.9%), but predictions
frequently contained chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the
highest fraction of plasmids smaller than 18 kbp (n=168, 61.54%). Large ARG-plasmids, however,
were recovered with small precision values (median=0.47, IQR=0.61), indicating that plasmidSPAdes
frequently merged sequences derived from distinct replicons. Additionally, only 63% of all plasmid-
borne ARGs were correctly predicted by plasmidSPAdes.

The remaining four tools (FishingForPlasmids, HyAsP, SCAPP and gplas) were able to correctly
reconstruct a combined total of 18 plasmids that were missed by MOB-suite and plasmidSPAdes.
Available bioinformatic tools can provide valuable insight into E. coli plasmids, but also have
important limitations. This work will serve as a guideline for selecting the most appropriate plasmid
reconstruction tool for studies focusing on E. coli plasmids in the absence of long-read sequencing
data.

Introduction

Escherichia coli is a versatile micro-organism able to survive and thrive in different ecological
habitats. It is a Gram-negative facultative anaerobe that commonly resides in the human gut as a
commensal bacteria [1]. However, several members of this species also harbor the potential to cause
severe infections, both intestinally [2] and extra-intestinally [3], in the healthcare settings [4] as well
as in the community [5]. The ‘success’ of E. coli as a pathogen can be mostly attributed to the wide
repertoire of virulence factors that strains may carry [6] and the increasing fraction of infections
caused by multidrug-resistant strains [7]. Many of the antibiotic resistance genes and virulence
factors present in E. coli are commonly encoded on plasmids, mobile genetic elements (MGE) that can
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be horizontally disseminated [8-10]. Therefore, precise identification and characterization of E. coli
plasmids are highly relevant from an epidemiological and clinical standpoint.

Over the past decade, Illumina short-read sequencing platforms have become a popular technology to
elucidate the genomic content and molecular epidemiology of bacteria. However, the frequent
occurrence of repeat elements prohibits the assembly of complete replicons (plasmids and
chromosomes) and often results in hundreds of contigs per genome with an unclear origin. Plasmid
and chromosome contigs are mingled in draft genome assemblies, which challenges the accurate
reconstruction of plasmids. More recently, long-read sequencing platforms (Oxford Nanopore and
PacBio) have successfully resolved this issue, but short-read sequencing remains the de facto standard
in many microbiology laboratories [11-14].

Several fully automated bioinformatics tools are currently available to predict bacterial plasmids from
short-read sequencing data. Since 2018, at least 15 different tools have been created for this purpose
(Table S1). They can be broadly categorized into two main classes. The first class comprises software
that produces a binary classification of contigs as either plasmid- or chromosome-derived, generating
an output that predicts the complete plasmid content of a bacterial strain, often referred to as the
‘plasmidome’. An accurate plasmidome prediction has proven helpful to discover the genomic location
of clinically relevant genes [15-18] and their role in shaping niche specificity [19], among others. The
second class consists of tools that aim to recover distinct closed plasmid sequences. The output of
these tools provide, in theory, a more comprehensive picture of the plasmid content of bacteria and
allow to study the dissemination and epidemiology of specific plasmids [20].

Here, we reviewed the different tools and strategies to achieve binary prediction, for example fast k-
mer based searches against reference plasmid databases (PlaScope and PlasmidSeeker), exploitation
of the natural distribution bias of protein-coding genes between plasmids and chromosomes (Platon),
and machine learning algorithms with different underlying features (cBAR, PlasFlow, mlplasmids,
PlasClass, RFPlasmid and PPR-Meta) and others. Furthermore, we benchmarked six tools aimed at
reconstructing fully closed distinct plasmids for use with E. coli, by using complete E. coli genomes
that were recently deposited to public databases. The strategies applied by the reconstruction tools
consist of graph-based approaches (plasmidSPAdes, gplas), reference-based approaches (MOB-Suite,
FishingForPlasmids) and hybrid approaches which use reference- and graph information (HyAsP and
SCAPP). We assessed their performance based on their ability to correctly recover different plasmids
as distinct and complete predictions, including plasmids that carry clinically relevant antibiotic
resistance determinants, such as extended-spectrum beta-lactamase (ESBL) genes.

Materials and Methods

2.1. Review of plasmid prediction tools

We performed a systematic search of peer-reviewed publications deposited in PubMed by August 25th
2020, using the following search terms:

((plasmid*[Title])) AND ((software[Title/Abstract] ) OR (tool*[Title/Abstract]) OR
program|[Title/Abstract])) AND ((predict*[Title/Abstract]) OR (sequencing[Title/Abstract]) OR
(identification[Title/Abstract]) OR (prediction[Title/Abstract]) OR (contigs[Title/Abstract] ) OR
(assembly [Title/Abstract]) OR (NGS[Title/Abstract])).

This search resulted in 238 peer-reviewed publications that we manually curated to obtain a list of 17
different tools with the goal to study the plasmid content of bacteria in silico (Table S1).

In order to find tools deposited on GitHub and GitLab, we used the search term “*plasmid*’. This
resulted in 229 repositories from which 7 relevant tools were added to the selection (Table S1). The
Github location of FishingForPlasmids was obtained through personal communication with the
developer.

2.2 Retrieving E. coli complete genomes and metadata from NCBI database

Nchi-genome-download v0.2.10 (https://github.com/kblin/nchi-genome-download/) was used to
download all E.coli sequence labeled as ‘complete genomes’ up to August, 25th 2020 (n=1755).
Metadata of the isolates was retrieved and parsed using Entrez-utilities v13.9 [21]. All scripts used to
carry out the analyses in this study are available in a Git repository
(https://gitlab.com/jpaganini/recovering ecoli plasmids).
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2.3 Phylogenetic analysis

Phylogroups were determined in silico by using ClermonTyping v1.4.0 [22]. Core- and accessory-
genome distances were calculated by using PopPUNK v1.2 [23] with standard parameters. PopPUNK
was also used to build a core-genome neighbor-joining tree with 1381 complete E.coli genomes
downloaded from the NCBI database on August, 25th 2020. Tree visualization and metadata
information were integrated in Microreact [24] (Table S2).

2.4 Benchmark data set selection

Isolates that were not sequenced by both long- and short-read technologies (n=559) were excluded, as
well as sequences that were predicted as Escherichia cryptic clades [25] by in silico ClermonTyping
(n=12) and genomes that exhibited a predicted accessory-genome distance larger than 0.5 by
PopPUNK (n=2). We used a script written in R (version= 3.6.1) to remove genomes that had been
used for developing the tested tools (n=601). Moreover, we excluded genomes that did not carry any
plasmids (n=170), except for 19 randomly selected E. coli isolates without plasmids that were
included as negative controls. In order to get a balanced data set, we removed a random sample of
genomes isolated from farm animals (n=161). Finally, we removed 30 genomes containing short-read-
only assembled contigs that did not align to any replicon in their respective closed reference genome.
The data set resulted in 240 E. coli complete genomes, which carried a total of 631 plasmids (Figure
S1, Table S3).

2.5 Evaluating plasmid diversity in benchmarking data

We used Mash v2.2.2 (k=21, s=1000) to estimate the pairwise k-mer distances of all plasmids
(n=3264) from all complete E. coli genomes (n=1381). The obtained distances were clustered using
the t-distributed stochastic neighbour embedding (t-SNE) algorithm with a perplexity value of 30, and
data points (which represents individual plasmid sequences) were coloured in orange if they were part
of the benchmarking data set.

2.6 Plasmid Predictions

Illumina raw reads were downloaded using SRA Tools (v2.10.9). Reads were trimmed using trim-
galore (v0.6.6) (https://github.com/FelixKrueger/TrimGalore) to remove adapter contamination and
bases with a phred quality score below 20. SPAdes (v3.14.0) [26] was applied to perform de novo
assembly in careful mode and wusing kmer lengths of 37, 57 and 77. For isolates
GCA 014117345.1 ASM1411734v1, GCA 006352265.1 ASM635226v1 and
GCA 003812945.1 ASM381294v1, SPAdes was run using the --isolate option. The resulting contigs,
assembly graphs and trimmed-reads were used as input for the different plasmid reconstruction tools,
following the input requirements of the respective tools (Table S1). All tools were run with default
parameters. Tool’s versions were: FishingForPlasmids (no version information), MOB-suite (v3.0.0),
SCAPP (v0.1.3), plasmidSPAdes (v3.14.0), gplas (v0.6.1), HyAsP (v1.0.0).

2.7 Analysis of the plasmid bins composition

We used QUAST (v5.0.2) to align the contigs of each bin to the respective closed reference genome.
An extended description of the parameters used is available at Supplementary Material. Based on the
alignment results, we calculated precision, recall and F1-score as specified below.

Alignment length against reference plasmid|bp|

Recall |bp|= ,
Total length of reference plasmid (bp)

_ 2xPrecision|bp| x Recall |bp|

F1Score|bp| —— :
Precision|bp |+ Recall | bp|

If a bin was composed of contigs derived from different plasmids, precision, recall and F1l-score were
reported for each plasmid-bin combination.
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In order to quantify the chromosomal sequence content (if any) on a bin, we defined a chromosome
contamination metric as follows.

Alignment length against chromosome (bp |

Chromosome contamination= - - -
Total length of predicted bin|bp |

2.8 Evaluating maximum theoretical recall for each reference plasmid

Depending on the input requirement of the respective tools (graph or contigs), we converted assembly
graph nodes to FASTA format using the tool Any2Fasta (https://github.com/tseemann/any2fasta) or
used the contigs produced by SPAdes and aligned them to their respective closed reference genomes
using QUAST. Based on these alignments we calculated the maximum recall that could be obtained for
reconstruction of every reference plasmid using short-read sequencing data (Supplementary
Material).

2.9 Antibiotic resistance gene (ARG) prediction

Resistance genes were predicted by running Abricate (v1.0.1) against the resfinder database
(database indexed on April 19th 2020) with reference plasmids as query, using 80% as identity and
coverage cut-off. The same software and parameters were used to predict the presence of ARGs in the
plasmid bins generated by each of the plasmid reconstruction tools.

2.10 Evaluating reconstruction of ARG plasmids
For bins that carried ARGs, we calculated Recallarg, as indicated below.

Nr . of correctly predicted ARGs on bin
Totalnr . of ARGs onreference plasmid

Recall (ARG |=

Bins that included the complete ARG content of the reference plasmid (Recallarg=1) and were linked
to the correct plasmid backbone (F1-score>=0.95) were considered as correct reconstructions of the
ARG-plasmid.

Results
3.1 Computational methods to predict the plasmidome or distinct plasmids

We used a systematic search of peer-reviewed publications and two popular software-repository
hosting web services and retrieved a total of 25 plasmid- or plasmidome- prediction tools (Table S1).
Most of the tools (n=24) were fully automated and harbored the potential to be included in
computational pipelines. Of these 24 tools, 13 tools were designed to analyze the plasmidome of
multiple species using whole-genome sequencing data as input, while 8 tools can be applied to
metagenomic sequences. A total of two tools, Recycler and RFPlasmid, worked with both types of
input. Notably, we found one tool (FishingForPlasmids) that was developed to exclusively study the
plasmid content of E. coli.

Based on the output, most of the tools (n=23) can be broadly categorized into one of the following
three classes. The first class comprises software that predicts the plasmidome, thus producing a
binary classification of contigs as either plasmid- or chromosome-derived (n=10). The second class
consists of tools that aim to recover distinct plasmid sequences (n=11) (Figure 1, Table S1). The third
class of tools seeks to facilitate the detection of known plasmids (n=2). Below, we briefly review the
computational strategies applied by 17 tools that belong to the first two categories. Four tools were
excluded from this review for distinct reasons: plasmlIDent uses long-reads as input, plasmidID and
plasmidAssembler use a similar approach to MOB-suite for plasmid reconstruction and PLACNET
requires manual intervention from the user.

3.1.1 Binary Classification Tools

Binary classification tools take previously assembled contigs as input and classify them as being
plasmid- or chromosome-derived.

PlaScope [27] and PlasmidPicker perform k-mer searches against reference plasmid databases. This
strategy is very fast but limited to detecting k-mers that are present in the underlying database.
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Consequently, this produced high specificity and precision values but lower recall in a study that
included a benchmark of PlaScope [27, 28].
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Figure 1. Euler diagram of bioinformatics tools to predict the plasmidome of bacteria.

cBAR, PlasFlow and PlasClass all share a common underlying principle: using short k-mer frequencies
and machine learning (ML) algorithms to classify metagenomic assemblies. More specifically, cBAR
relies on observed differences in pentamer frequencies and uses a sequential minimal optimization
(SMO) model. PlasFlow calculates the frequencies of multiple k-mers sizes (between 5 and 7 nt) and
utilizes a neural-network voting classifier to integrate predictions. PlasFlow has a better performance
than cBAR [29, 30], but shows less reliable results for short contigs [31]. PlasClass addresses this
issue by using a set of four logistic regression classifiers, each trained on sequences of different length
[31]. Similar to cBAR, mlplasmids also relies on pentamer frequencies but uses a Support Vector
Machine (SVM) model to determine the origin of contigs for a single species, and contains models for
Escherichia coli, Klebsiella pneumoniae and Enterococcus faecium. Mlplasmids outperformed both
cBAR and PlasFlow when classifying data derived from whole-genome sequencing experiments, and it
can also accurately predict the plasmid localization of several antimicrobial resistance genes [29].
RFPlasmid [32], a recently released tool, uses a random forest classifier trained with a hybrid
approach by identifying chromosomal and plasmids marker genes using two databases and also
pentamer frequencies. This tool also works with metagenomic assemblies, albeit only for contigs from
the 17 different species for which classifiers were trained. Platon exploits the natural distribution bias
of protein-coding genes between plasmids and chromosomes and also analyzes higher-level
characteristics of the contigs: circularization, presence of replication and mobilization proteins,
presence of oriT and incompatibility sequences [28].

Finally, PPR-Meta [33] allows simultaneous identification of both phages and plasmids fragments from
metagenomes by using a Convolutional Neural Network. Notably, instead of k-mer frequencies, this
tool uses one-hot matrices to represent nucleotides and amino-acids sequences [33].

Despite the differences in approaches and performances, none of the aforementioned tools attempted
to further sort the predicted plasmidome into individual plasmids. As a consequence, these tools are
not suitable for studying the epidemiology of specific plasmids.
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3.1.2 Plasmid reconstruction tools

Based on their computational strategies, we can roughly subdivide plasmid reconstruction tools into
three different categories: i) de novo reconstruction of plasmids using assembly graph information, ii)
reference-based approaches and iii) hybrid approaches.

PlasmidSPAdes, Recycler, metaplasmidSPAdes and gplas [34-36] perform a de novo reconstruction of
plasmids using assembly graph information. PlasmidSPAdes and Recycler were released in 2016 and
were the first tools that exploited the information on the assembly graph for identifying individual
plasmids. PlasmidSPAdes is based on the assumption that plasmids have a different copy number than
the chromosome, and therefore plasmid contigs will exhibit a different read coverage than
chromosomal contigs. A number of studies have shown that this tool is able to reconstruct bacterial
plasmids with high recall [11, 37, 38], but they have also revealed two major disadvantages of this
approach: (1) plasmidSPAdes fails to identify large plasmids that have the same copy number as the
chromosome and (2) it has a tendency to merge different plasmids together. Recycler also tries to
identify plasmid-paths in the assembly graph by using coverage information but incorporates
additional data regarding the topology of the selected paths. The main rationale behind this algorithm
is that selected plasmid-paths should be cyclic, coverage should be homogeneous amongst all contigs
and mated pair-end reads should map to the same path. Recycler appears to successfully identify short
plasmids but yields very low precision values for long plasmids [11, 37]. This issue is partially
addressed by metaplasmidSPAdes, released in 2019 as an improvement on the original prediction
algorithm of plasmidSPAdes. This tool allows prediction of dominant plasmids in metagenomes,
defined as plasmids with coverage exceeding that of chromosomes and other plasmids. The algorithm
iteratively extracts cyclic subgraphs with increasing coverage from the metagenome assembly graph.
These potential plasmid sequences are later analyzed by a naive Bayesian classifier, called
plasmidVerify, that further assesses the gene content of potential plasmids. None of the
aforementioned tools takes advantage of the information embedded in the nucleotide sequences of the
assembled contigs to a priori simplify the task of identifying plasmid subgraphs. In contrast, gplas
initially classifies assembled contigs as plasmid-derived or chromosome-derived by using mlplasmids
(or plasflow), a tool that exploits short k-mer frequencies for achieving such classification.
Subsequently, plasmid-derived unitigs act as seeds for finding plasmid-walks with homogeneous
coverage in the assembly graph, using a greedy approach. Gplas generates a plasmidome network in
which nodes corresponding to plasmid unitigs and edges are created and weighted based on the co-
existence of the nodes in the solution space of the computed walks. Finally, this plasmidome network
is queried by a selection of network partitioning algorithms for generating bins of contigs that belong
to the same plasmid [36].

MOB-suite and FishingForPlasmids use a reference-based approach for reconstructing individual
plasmids. MOB-suite works as a modular set of tools for clustering, reconstruction and typing of
plasmids from assemblies. This software initially uses Mash [39] and a single-linkage clustering
algorithm to create clusters of similar plasmids present in a reference database. Input contigs are
then aligned against this database using Blast, and assigned to a plasmid cluster according to the best
hits obtained. Contigs assigned to the same reference cluster constitute potential individual plasmid
units. Also, the topology of the contigs is evaluated and every circular contig is considered an
individual plasmid. Finally, each identified plasmid is queried against a different database for finding
known replication and mobilization proteins and oriT sequences. According to the authors, MOB-suite
performs better than plasmidSPades at correctly reconstructing plasmids from a benchmarking data
set that included more than 370 plasmids from 14 different bacterial species [38]. However, the
authors identified that MOB-suite splits single plasmids into different predictions more often than
plasmidSPAdes. FishingForPlasmids attempts to reconstruct individual plasmids from Escherichia coli
assemblies. This tool identifies plasmid-contigs by using BlastN to align each contig against a curated
E. coli database. Each plasmid-derived sequence is further classified into discrete components by
using a combination of plasmidFinder and pMLST [40].

Finally, HyAsP and SCAPP use a hybrid approach, mixing principles from reference-based and de novo
methods. In HyAsP, a set of potential plasmid contigs is first selected based on: (1) a high density of
known plasmid genes, identified by using a database, (2) high read coverage and (3) a length that does
not exceed a maximum threshold. These plasmid-contigs will be used as seeds for finding plasmid-
walks within the original assembly graph using a greedy algorithm. Plasmid-walks must satisfy the
following conditions: (1) have a uniform GC content and sufficient read coverage, (2) do not have large
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gene-free segments and (3) total length of the plasmid-walk does not exceed a threshold. SCAPP, on
the other hand, is designed for finding plasmids in metagenome assemblies. This algorithm starts by
finding potential plasmid-contigs based on two strategies: (1) searching for plasmid-specific genes by
using a curated database and (2) assigning weight to each contig based on the output from PlasClass,
a ML-based binary classifier. The assembly graph is then queried to find cyclic walks of uniform
coverage, similar to Recycler, but prioritizing the inclusion of contigs with strong evidence of plasmid-
origin [41].

3.2 The benchmark data set represents the diversity of sequenced plasmids

To benchmark the aforementioned plasmid reconstruction tools, we used a data set of 240 E. coli
strains with complete genome sequences and short read data available from public databases that
harbored 631 plasmids. These E. coli genomes were absent from all training data sets used to develop
the selected plasmid prediction tools. The majority of the genomes derived from Europe (n=170), Asia
(n=39) and North America (n=24) (Figure 2A). They were isolated from multiple sources such as
animals (n=103), humans - clinical samples (n=27), humans - community samples (n=4),
environmental sources (n=86) and unknown sources (n=13) (Figure 2B).

To assess if the selected genomes were a representative sample of the phylogenetic diversity of E.
coli, we built a neighbor-joining tree combining our data set with 1,141 complete E. coli genomes and
determined the phylogroup of each of these genomes in silico. This analysis revealed that the selected
genomes were distributed across the core-genome tree and that all phylogroups were represented
with at least five strains. (Figure 2C).

Most of the genomes carried one (n=73), two (n=49) or three (n=28) plasmids, but notably some
genomes contained as much as nine (n=3), ten (n=1) or eleven (n=1), with a median of two (mean =
2.62 plasmids). We found a clear bimodal plasmid size distribution, with peaks around 4,500 bp and
100,000 bp (Figure 2D). Consequently, plasmids with a length smaller than 18,000 bp were classified
as ‘small’ (n=273), while plasmids that exceeded this cut-off value were classified as ‘large’ (n=358).
Next, we wanted to assess the diversity of plasmids included in the benchmark data set. We used
Mash to estimate the pairwise k-mer distances of all plasmids (n=3264) from all complete E. coli
genomes (n=1381) and clustered them with the t-SNE algorithm. Plasmids included in this study were
distributed among all major clusters, suggesting that this data set is able to properly capture the
diversity of the E. coli pan-plasmidome currently available at NCBI (Figure 2 E).

3.3 A third of all plasmids could not be correctly reconstructed by any of the tools

We selected six tools to reconstruct distinct plasmid sequences. These tools applied different
computational strategies: graph-based (plasmidSPAdes, gplas), reference-based (MOB-Suite,
FishingForPlasmids) and hybrid (HyAsP and SCAPP).

The rest of the plasmid reconstruction tools were not included in the analysis because of a variety of
reasons: Plasmid Assembler couldn’t be installed, plasmidID predictions were not completed due to
errors during execution, PLACNET required manual intervention of the user, Recycler provided
suboptimal results in comparison with plasmidSPAdes and HyAsP in previous studies [11,37] and
metaplasmidSPAdes uses a similar approach to plasmidSPAdes but optimized for metagenomic
samples.

We evaluated the predictions obtained with the six selected plasmid reconstruction tools in terms of i)
speed and memory requirements, ii) the number of plasmid predictions, iii) correct reconstruction of
reference plasmids, iv) chromosomal contamination included in predicted plasmids, and v) correct
reconstruction of ARG-plasmids.

We used a High Performance Cluster (HPC) to run the tools with minimal resources (number of
cores=2, 4GB of RAM per genome), and documented the total CPU-time and memory required by each
of them (Table 1, Figure S2). Most tools required less than 100 CPU hours to complete all predictions,
except for plasmidSPAdes which used 321.07 CPU hours. In contrast, FishingForPlasmids was the
fastest tool and completed the task in 10.60 CPU hours. PlasmidSPAdes and SCAPP had the highest
memory requirements, utilizing a total of 442.03 Gb and 435.23 Gb of RAM, respectively. The
remaining tools required less than 300 Gb to complete all predictions. Notably, FishingForPlasmids
only required a total of 36.57 Gb.

Next, we evaluated the number of plasmid predictions produced by each tool and calculated the
difference between this number and the true number of plasmids present in the benchmark data set
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(Table 1, Figure S3). The total number of plasmid predictions ranged from 377 (FishingForPlasmids)
to 2590 (HyAsP). plasmidSPAdes, MOB-suite, SCAPP and HyAsP overestimated the true number of
plasmids (n=631), while gplas and FishingForPlasmids underestimated this number. PlasmidSPAdes
displayed the least deviation by producing 642 bins, and therefore exceeding the total number of
plasmids by 11. Nevertheless, these absolute numbers do not reflect whether predictions were correct
or incorrect.
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Figure 2. (A) Genomes distribution according to geographical location and (B) isolation source. (C) Core-
genome clustering constructed using PopPUNK. We included 1381 complete E.coli genomes available at NCBI
database. Orange tips (n=240) indicate genomes that were included in the benchmarking data set, and outer
colors indicate phylogroups. (D) Plasmid length histogram and density plot. Dashed line indicates the cut-off
length (18,000 bp) for considering a plasmid as small or large . (E) tSNE plot based on plasmids k-mer distances
obtained with MASH (k=21, s=1000). Plasmids included in this benchmark (n=631) are colored in orange.

Page 8 of 17


https://doi.org/10.1101/2021.07.06.451259
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451259; this version posted July 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

In order to evaluate how the different tools performed at recovering E. coli plasmids as distinct and
complete predictions, we studied the distributions of recall, precision and F1-score (Table 1, Figure S4
A, B and C) for all plasmid predictions made by the tools. Based on these results, we determined an
F1-score cut-off value of 0.95 to define a plasmid as correctly reconstructed (or recovered) (Figure S4
D).

MOB-suite correctly recovered 317 (50.24%) plasmids (F1-score >=0.95), including 70 (11.10%) that
couldn’t be reconstructed by any other software (Figure 3A, B, Table 1). Similarly, plasmidSPAdes
reconstructed a total of 263 (41.68%) plasmids, including 55 (8.72%) that were not recovered by other
tools. Interestingly, 14 of these ‘unique reconstructions’ were also missing from the short-read
assembly graphs (Supplementary Material, Table S4 and Table S5). The rest of the tools achieved
smaller quantities of correct plasmid reconstructions, with values ranging from 92 (14.58%) to 152
(24.09%) (Figure 3 A and B, Table 1).We found that a total of 418 (66.25%) plasmids were correctly
reconstructed by at least one of the tools (Figure 3C). Out of these, only 7 (1.11%) were reconstructed
by all tools concurrently, 273 (43.26%) by multiple tools and 138 (21.9%) by a single tool.
Interestingly, combining MOB-suite and plasmidSPAdes predictions together achieved the correct
reconstruction of 400 (63.39%) plasmids, and incorporating the predictions from the remaining tools
only resulted in the reconstruction of 18 (2.85%) additional plasmids. Notably, a total of 213 (33.75%)
plasmids were incorrectly reconstructed (F1 score<0.95) by all tools, including 21 (3.32%) that were
not even detected. The majority of ARG-plasmids (n=85, 57.8%) could not be correctly reconstructed
by any of the tools (Table S6).
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Figure 3. (A) Reconstruction performance of each tool for all reference plasmids. Reference plasmids have been
ordered according to the number of tools by which they were correctly reconstructed, from low (left;
reconstructed by 0/6 tools) to high (right; reconstructed by 6/6 tools). Plasmids that were reconstructed with an
F1-score >=0.95, were considered as correct reconstructions. Plasmids for which no contig was included in the
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predictions were considered as ‘not-detected’. (B) Absolute count of all reconstruction status achieved by each
tool. (C) Absolute count of reconstruction categories when combining predictions from all tools.

We also compared the performance of the software when attempting to reconstruct small- and large
plasmids separately. For small plasmids, we discovered that all tools displayed similar Fl-score
distributions, with medians ranging from 0.95 to 0.99. However, the tools did not detect 21.25% -
89.74% of small plasmids. PlasmidSPAdes and MOB-suite were the only tools that achieved the correct
reconstruction of most of these replicons, with a total of 168 (61.54%) and 155 (55.31%), respectively.
When considering the reconstruction of large plasmids, percentages of not-detected plasmids were
much lower and ranged from 2.23% to 20.11% across tools. MOB-suite exhibited the highest F1-score
values (median= 0.74 , IQR= 0.17 - 0.97 ) and correctly reconstructed 166 (46.3%) of these replicons,
significantly surpassing the reconstruction capacity of the rest of the tools, which ranged from 45
(12.57%) to 95 (26.54%) (Table 1, Figure S6 A and B). Not surprisingly, most tools correctly
reconstructed a higher fraction of small plasmids, and also displayed higher F1-score values (Table 1,
Figure S6 A and B) when comparing with the reconstruction of large plasmids. FishingForPlasmids
was the only exception as it recovered a total of 14 (5.13%) small and 78 (21.79%) large plasmids.

All tools incorrectly incorporated chromosome-derived sequences into their predictions (Figure S7,
Table 1). FishingForPlasmids performed best at avoiding this error, and only 7 (1.8%) predictions
contained chromosomal contamination. In contrast, HyAsP introduced chromosomal contigs in 1,340
(51.7%) predictions with a chromosome contamination median of 0.88 (IQR=0.5 - 0.99), including
1,251 pure chromosome bins (chromosome contamination=1). Notably, plasmidSPAdes and MOB-suite
had a similar proportion of contaminated bins, 295 (46%) and 297 (40.2%), yet with different
chromosome contamination medians of 0.75 (IQR=0.14 - 0.92) and 0.10 (IQR=0.03 - 0.99),
respectively. Out of these, MOB-suite produced 65 predicted bins which exclusively consisted of
chromosome sequences, while plasmidSPAdes generated 20 of them. SCAPP introduced chromosomal
sequences in 249 (25.2%) predictions, but notably only 1 of them was only composed of chromosome
sequences. Finally, gplas incorporated chromosomal sequences in 197 (35.8%) predictions, of which
70 were exclusively composed of these types of sequences.

3.4 Plasmids carrying antibiotic resistance genes were difficult to reconstruct for all tools

Our data set included 147 (23.3%) plasmids containing antibiotic resistance genes (ARG-plasmids),
carrying a total of 618 resistance genes. Most of these replicons carried one (n=43), two (n=17), three
(n=12) or four (n=17) ARGs (Table S6). Interestingly, plasmids carrying ARGs had a median length of
109,773 bp (IQR=83,300 - 132,865 bp), and were markedly larger than plasmids with no resistance
determinants (median length 6,930 bp; IQR=4,072 - 91,111 bp). Furthermore, 143 (97.2 %) ARG-
plasmids were classified as large, while only 4 (2.8 %) were small plasmids (Figure S8A).

To investigate how the tools performed at reconstructing ARG-plasmids, we analyzed Recall, Precision
and F1-score values for these replicons (Figure S8B, C and D). Furthermore, we extracted the bins
that contained antibiotic resistance genes, and explored the fraction of detected ARGs in each
prediction -Recall(ARG)-. An ARG-plasmid was considered as correctly reconstructed if the prediction
simultaneously included all ARGs -Recall(ARG)=1- and correctly represented the reference plasmid
backbone (F1l-score >= 0.95).

We discovered that the reconstruction of large ARG-plasmids was particularly challenging for the
evaluated tools, since all of them exhibited lower Fl-score values in comparison with the
reconstruction of large non-ARG-plasmids (Figure S8 B and E,Table 1).We excluded small plasmids
from this comparison due to the low amount of small ARG-plasmids present in our data set.

MOB-suite correctly identified 548 (88.67%) plasmid-derived ARGs, and achieved 41 (27.89%) correct
ARG-plasmid reconstructions (Figure 4 A and B, Table 1). In 49 (33.3%) additional predictions, all
ARGs were assigned into a single bin -Recall(ARG)=1-, but the bin incorrectly represented the
reference plasmid backbone (Fl-score < 0.95) (Figure 4C) by being incomplete, hybridized with
sequences derived from other replicons, or both (Figure S9). Moreover, we discovered that MOB-suite
incorrectly incorporated 92 chromosome-derived ARGs, distributing them among 39 bins. Finally, we
found that when predicting large ARG-plasmids, this tool presented remarkably lower recall values
(median=0.38, IQR=0.09 - 0.88) in comparison with reconstruction of large non-ARG-plasmids
(median=0.87, IQR=0.19 - 0.98) (Figure S8 C).
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PlasmidSPAdes detected 390 (63.11%) plasmid-derived ARGs, and correctly reconstructed 23
(15.65%) ARG-plasmids. Additionally, in 59 (40.14%) predictions all ARGs were assigned to a single
bin, but the plasmid backbone was most frequently contaminated with sequences from other replicons
(Figure S9). Notably, this tool couldn’t predict any of the ARGs present in 37 (25.17%) reference ARG-
plasmids (Figure 4 A and B, Table 1). Finally, for the reconstruction of large ARG-plasmids,
plasmidSPAdes presented remarkably lower precision values (median=0.47, IQR=0.31 - 0.92) in
comparison with reconstruction of large non-ARG-plasmids (median=0.9, IQR=0.35 - 1) (Figure S8 D).
The rest of the tools successfully reconstructed smaller fractions of ARG-plasmids, ranging from 5
(3.4%) to 13 (8.84%). Interestingly, HyAsP detected a high fraction of plasmid-derived ARGs (n=525,
n=84.95%), but it only achieved the correct reconstruction of 5 (3.4%) ARG-plasmids. For most HyAsP
predictions, all ARGs couldn’t be assigned to a single bin (n=66, 44.9%) or presented an incorrect
plasmid backbone (n=62, 42.18%). FishingForPlasmids detected the least amount of resistance genes
(n=133, 21.52%) and couldn’t predict any of the ARGs present in 97 (66%) reference ARG-plasmids.
Next, we evaluated the performance of the tools when reconstructing plasmids that carry ESBL genes
(ESBL plasmids). Our data set included 60 ESBL plasmids, each carrying a single ESBL gene. Most
abundant ESBL variants were CTX-M15 (n=16, 25%), CTX-Mb55 (n=12, 20%) and CTX-M1 (n=6, 10%)
(Figure S10A). Furthermore, we observed that ESBL genes were harbored by plasmids with diverse
sequences (Figure S10B).
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Figure 4. (A) Bar plot displaying the number of plasmid-derived ARGs that were detected/not detected by each
of the tools. This plot also shows the number of chromosome derived ARGs included in the plasmid predictions.
(B) Bar plot displaying the number of reference ARG-plasmids belonging to each different reconstruction
category. Reconstruction categories were defined as follows. Correct reconstruction: all ARGs were predicted in
the same bin (Recall(ARG) =1) and the backbone of the plasmid was correct (Fl-score >=0.95). Incorrect
backbone: all ARGs were predicted in the same bin (Recall(ARG) =1) but the backbone of the plasmid was
incorrect (Fl-score < 0.95). Incomplete ARGs: Not all ARGs were included in the same bin (Recall(ARG)<1). No
ARGs detected: None of the ARGs derived from the reference plasmids were included in any bins created by the
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tool. (C) Scatter-plot showing relation between Recall(ARG) and F1-score (bp) values for predictions that carry at

least one ARG of plasmid origin. Dots are colored according to the same criteria as in B.

MOB-suite correctly identified a total of 57 (95%) ESBL genes of plasmid origin, of which 20 were also
assigned to the correct plasmid backbone (Fl-score >=
reconstruction of the ESBL plasmids (Table 1, Figure S11A). Despite this, MOB-suite predictions
achieved high F1-scores for reconstruction of ESBL plasmids (median=0.93, IQR=0.72 - 0.97) (Table

1, Figure S11B).

0.95),

resulting in a 33% correct

The rest of the tools reconstructed ESBL plasmids with less success, ranging from 0 (0%) to 10
(16.67%) total correct reconstructions (Table 1, Figure S11 A). HyAsP detected a high fraction of
plasmid-derived ESBL genes (n=52, 86.67%), but did not achieve the correct reconstruction of any
plasmids. PlasmidSPAdes detected the majority of plasmid-derived ESBL genes (n=40, 66.66%), and
these were included in bins that presented high recall (median=0.97,IQR=0.77 - 0.96) but low
precision values (median=0.52, IQR=0.38 - 0.95) (Table 1, Figure S11C).

Table 1. Summary of tool’s performances.

. . FishingFor
HyAsP MOB-suite gplas plasmidSPAdes SCAPP Plasmids
Computational
Performance
Memory Usage (GB) 299.2 202.82 150.36 442.03 435.23 36.57
CPU-Time (hr) 46.57 46.62 83.64 321.07 70.96 10.6
Nr. of plasmid predictions
Nr. total predicted plasmids 2590 738 550 642 986 377
(bins)
Nr. correct predictions of
plasmid absonce (%) 2(10.53) 13 (68.42) 17 (89.47) 9 (47.37) 17 (89.47) 18 (94.74)
Plasmids reconstruction
All Plasmid (n=631)
Nr. correctly reconstructed. 157 (50 13) 317 (50.24) 130 (20.6) 263 (41.68) 152 (24.09) 92 (14.58)
plasmids (%)
Nr. small plasmids (%) 82 (30.04) 151 (55.31) 87 (31.87) 168 (61.54) 98 (35.9) 14 (5.13)
Nr. large plasmids (%) 45 (12.57) 166 (46.37) 43 (12.01) 95 (26.54) 54 (15.08) 78 (21.79)
Nr. incorrectly reconstructed 355 (56 74) 231 (36.61) 289 (45.8) 252 (39.94) 291 (46.12) 243 (38.51)
plasmids (%)
Nr. small plasmids (%) 53(19.41) 50 (18.32) 17 (6.23) 47 (17.22) 59 (21.61) 14 (5.13)
Nr. large plasmids (%) 305 (85.20) 181 (50.56) 272 (75.98) 205 (57.26) 232 (64.80) 229 (63.97)
Nr. undetected plasmids (%) = 146 (23.14) 83 (13.15) 212 (33.6) 116 (18.38) 188 (29.79) 296 (46.91)
Nr. small plasmids (%) 138 (50.55) = 72 (26.37) 169 (61.9) 58 (21.25) 116 (42.49) 245 (89.74)
Nr. large plasmids (%) 8 (2.23) 11 (3.07) 43 (12.01) 58 (16.2) 72 (20.11) 51 (14.25)
- dian - TOR)* 0.12 0.89 0.59 0.95 0.18 0.64
] ]
Fl-score (median - IQR) (0.04-0.41) (0.3-0.98) (0.3-0.94) (0.49-0.99)  (0.07-0.81) (0.29 - 0.93)
Small plasmids’ 0.98 0.98 0.99 0.98 0.96 0.95
mall plasmids (0.76 - 0.99) (0.94 -0.99) (0.98-0.99) (0.96-0.99)  (0.88-0.99) (0.7 -0.98)
L lasmids” 0.11 0.74 0.49 0.6 0.12 0.61
arge plasmids (0.04-0.32) (0.17-0.97) (0.21-0.76)  (0.31-0.97)  (0.06 - 0.41) (0.28 - 0.91)
Recall (median - IOR)" 0.07 0.89 0.5 0.99 0.13 0.51
Recall (median - IQR)
£ca. [medlan (0.02 - 0.32) (0.21-0.99) (0.22 - 0.93) (0.88-1) (0.04 - 0.78) (0.18 - 0.93)
Small plasmids® 1 1 1 1 0.99 1
mall plasmids (0.92-1) (0.96 - 1) (0.98 -1) (1-1) (0.92 - 1) (0.96 -1)
L lasmids” 0.06 0.63 0.4 0.94 0.07 0.46
arge plasmids (0.02-0.2) (0.12-0.96) (0.16-0.72)  (0.36-0.99)  (0.03-0.31) (0.16 - 0.84)
Procisi dian - IOR)* 0.87 0.98 0.97 0.93 0.8 1
Precision (median - IOR) (05-098) (0.68-1)  (0.55-1) (0.41-0.98) (0.39-0.94) (1-1)
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Small plasmids® 0.96 0.98 0.98 0.96 0.95 0.96
mall plasmids (0.86-0.98) (0.95-0.99) (0.97-0.99) (0.92-0.98) (0.83-0.98) (0.65-0.97)
L lasmids® 0.84 0.97 0.93 0.58 0.75 1
arge plasmids (0.48-0.98) (0.53-1) (0.47 - 1) (0.33-0.99)  (0.34-0.92) (1-1)
Chromosome contamination 0.88 0.1 0.45 0.75 0.3 1
(Median - IQR) (0.59 - 0.99) (0.03-0.99) (0.11-1) (0.14-0.92) (0.09-0.66) (0.6-1)
Nr. bins with chromosome
contamination (%) 1,340 (51.73) 297 (40.2) 197 (35.81) 295 (45.95) 249 (25.25) 7 (1.86)
Nr. pure chromosome bins 1,251 65 70 20 1 4
Plasmids reconstruction
ARG-plasmids (n=147)
ARGS in bins
Nr. plasmid-derived ARGs (%) 525 (84.95) 548 (88.67) 331 (53.56) 390 (63.11) 223 (36.08) 133 (21.52)
Nr. chromosome-derived
ARGS 130 92 71 29 34 1
Reconstruction status
Nr. plasmids correctly
revonstructed (%) 5 (3.4) 41 (27.89) 10 (6.8) 23 (15.65) 10 (6.8) 13 (8.84)
Nr. plasmids predicted with
incorrect backbones (%) 62 (42.18) 49 (33.33) 38 (25.85) 59 (40.14) 23 (15.65) 9 (6.12)
Nr. plasmids predicted with
incomplete ARG content (%) 66 (44.9) 47 (31.97) 59 (40.14) 28 (19.05) 39 (26.53) 28 (19.05)
Nr. plasmids with no ARGs
predicted (%) 14 (9.52) 10 (6.8) 40 (27.21) 37 (25.17) 75 (51.02) 97 (65.99)
Large ARG-plasmids
reconstruction metrics
(n=143)
. . 0.06 0.38 0.29 0.87 0.06 0.35
Recall (Median - IQR) (0.02-0.16) (0.09-0.88) (0.14-0.62)  (0.2-0.96)  (0.03-0.17) (0.15 - 0.55)
. . X 0.84 0.92 0.86 0.47 0.71 1
Precision (Median - IQR) 4 46-0.99) (0.42-1) (0.44-1) (0.31-0.92) (0.32-0.88) (1-1)
. . 0.1 0.44 0.41 0.53 0.1 0.51
Fl-score (Median - IQR) (0.04-0.26) (0.13-0.9) (0.19-0.65) (0.24-0.73)  (0.05-0.26) (0.25 - 0.69)
. 141 141 135 129 113 138
o)
Nr . detected plasmids (%) g 60 (98.60)  (94.41) (90.21) (79.02)  (96.50)
Plasmids reconstruction
ESBL-plasmids (n=60)
ESBL genes in bins
Nr. plasmid-derived (%) 52 (86.67) 57 (95) 27 (45) 40 (66.67) 23(38.33) 11 (18.33)
Nr. chromosome-derived (%) 10 8 7 2 2 0
Reconstruction status
Nr. ESBL genes in correct
plasmid backbone (%) 0 (0) 20 (33.33) 4 (6.67) 10 (16.67) 5 (8.33) 6 (10)
Nr. ESBL genes in incorrect
plasmid backbone (%) 52 (86.67) 37 (61.67) 23 (38.33) 30 (50) 18 (30) 5 (8.33)
Reconstruction metrics
. . 0.29 0.93 0.69 0.65 0.27 0.98
Fl-score (Median - IQR) (0.07 - 0.46) (0.72-0.97) (0.45-0.88)  (0.51-0.95)  (0.09 - 0.84) (0.71 - 0.99)
. . 0.18 0.89 0.65 0.96 0.23 0.95
Recall (Median - IQR) (0.04-0.31) (0.77-0.96) (0.36-0.84) (0.89-0.97)  (0.05- 0.84) (0.56 - 0.99)
. . X 0.91 0.98 0.97 0.52 0.85 0.99
Precision (Median -IQR) 954 -0.98) (0.93-1) (0.89-1) (0.38-0.95)  (0.72-0.92)  (1-1)

* In all cases, undetected plasmids were not included in the calculation of Precision, Recall and F1-score.
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' Discussion

A tool that is able to correctly predict E.coli plasmids will assist in identifying clinically relevant
plasmids [42-45], and improve our understanding of the complex dynamics of ARG dissemination
across different ecological niches [46-48]. From the vast offer of software to predict plasmids from
short-read data we selected six tools and benchmarked their performances when attempting to
reconstruct individual E. coli plasmids, with a special focus on plasmids that carry ARGs.

A total of 418 (66.24%) plasmids were correctly reconstructed by at least one of the tools compared in
this benchmark. Interestingly, 400 (63.39%) of these plasmids were recovered by combining the
predictions from MOB-suite and plasmidSPAdes alone. Therefore, adding the predictions from the rest
of the tools resulted only in 18 (2.85%) additional correct reconstructions.

We observed that plasmidSPAdes correctly reconstructed the highest fraction of small plasmids
(n=168 ,61.5%). This result is consistent with the observations that small plasmids usually have high
copy numbers [49] and therefore exhibit a higher coverage; which in theory would facilitate their
prediction using this tool. A similar success at predicting small plasmids was also reported by [11, 38].
Nevertheless, it is worth noticing that most small plasmids (n=215, 79%) are represented as a single
node in the assembly graph. Therefore, using a binary classification tool would be sufficient for
correctly predicting these replicons.

MOB-suite correctly reconstructed a total of 166 (46.37%) large plasmids, and considerably
outperformed the rest of the tools, which ranged from 45 (12.57%) to 95 (26.54%) correct
reconstructions. Nevertheless, MOB-suite’s performance strongly depends on its underlying database,
which is enriched for Enterobacteriaceae plasmid sequences [38]. Consequently, the reconstruction
capacity of this tool could be different when attempting to predict plasmids from bacterial species
less frequently represented in its database.

A third (n=213, 33.76%) of all plasmids could not be correctly reconstructed by any of the evaluated
tools. In particular, the reconstruction of ARG-plasmids proved to be problematic. We hypothesize that
ARG-plasmids constitute a particularly hard puzzle to solve for all compared computational
approaches, for several reasons.

Firstly, ARG-plasmids usually carry a high number of repeated sequences [50-52], and therefore
exhibit highly entangled assembly graphs. Secondly, ARGs are frequently located on large plasmids
with low copy number, and therefore have coverage values that are similar to chromosomes [49].
Consequently, finding plasmid-walks with differential coverage in the assembly graphs could be
challenging for all tools relying on this strategy. This hypothesis is supported by the observation that
plasmidSPAdes predicted large ARG-plasmids with the lowest precision values (median=0.47,
IQR=0.31-0.92) of all tools, indicating that these plasmids are more frequently merged with sequences
derived from other replicons. Additionally, this tool failed to predict 37% of all plasmid-located ARGs,
which would be explainable in case that these contigs should have coverage values similar to the
chromosomes.

Thirdly, ARG-plasmids are frequently built as mosaic-like structures, containing mobile components
that can be found in different plasmid backbones [49, 53-55]. This type of genomic organization also
complicates their reconstruction using reference-based methods, since databases might contain very
similar fragments that are shared by a variety of plasmids. Consequently, unequivocally assigning
these “shared fragments” to a unique reference plasmid (or plasmid group) could be problematic. This
is supported by the results obtained using MOB-suite. This software identified the highest proportion
of plasmid-derived ARGs (n=548, 88.67%), but most ARG-plasmids reconstructions had either an
incomplete ARG content (n=47, 31.97%) or an incorrect backbone (n=49, 33.33%). These results, in
combination with the low recall values observed (median=0.38, IQR=0.09 - 0.88) seems to suggest
that large ARG-plasmids were frequently split into multiple bins.

Despite the aforementioned limitations, MOB-suite was the most effective tool at predicting ARG-
plasmids in E. coli, achieving the correct reconstruction of 41 (27.89%) of these, while the rest of the
tools ranged from 5 (3.4%) to 23 (15.65%) correct ARG-plasmid reconstructions. Additionally, MOB-
suite was the best performing tool for prediction of ESBL-plasmids. It identified 57 (95%) plasmid-
borne ESBL-genes and had a median F1-score of 0.93 (IQR=0.72 - 0.97). However, it must be noted
that a fraction (n=13, 22.80%) of ESBL-plasmid predictions presented low Fl-score values, implying
that in these cases the contigs carrying the ESBL gene were associated with the incorrect plasmid
backbone.
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All tools exhibited chromosomal contamination in their predictions. Notably, FishingForPlasmids
outperformed the rest of the tools and only included chromosomal sequences in 7 (1.8%) bins. The
rest of the tools included chromosomal sequences in a range from 25.25% to 51.73% of the bins.
Surprisingly, MOB-suite included chromosomal sequences in 297 (40.2%) bins, including 65
chromosome-only predictions (chromosome contamination=1).

The results from our study indicate that accurate reconstruction of E. coli plasmids from short-reads is
still challenging using currently available bioinformatic methods. Long-read sequencing technology is
still the best option for recovering plasmids as closed and individual components. Nonetheless, in the
absence of long-reads, bioinformatic tools can be applied to gain valuable insight on different aspects
of the plasmidome of E. coli. MOB-suite presented the best overall performance of all tools, but
predictions were frequently contaminated with chromosomal sequences. Consequently, using MOB-
suite coupled to a binary classification tool could improve plasmid predictions in E. coli. Furthermore,
these predictions could be used as an initial screening step for selecting interesting isolates for long-
read sequencing.
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