
MiDAS‌ ‌4:‌ ‌A‌ ‌global‌ ‌catalogue‌ ‌of‌ ‌full-length‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌sequences‌ ‌and‌‌                       
taxonomy‌ ‌for‌ ‌studies‌ ‌of‌ ‌bacterial‌ ‌communities‌ ‌in‌ ‌wastewater‌ ‌treatment‌ ‌plants‌ ‌ 

‌ 

Authors:‌‌ ‌Morten‌ ‌Simonsen‌ ‌Dueholm,‌ ‌Marta‌ ‌Nierychlo,‌ ‌Kasper‌ ‌Skytte‌ ‌Andersen,‌ ‌Vibeke‌‌ 
Rudkjøbing,‌ ‌Simon‌ ‌Knutsson,‌ ‌the‌ ‌MiDAS‌ ‌Global‌ ‌Consortium,‌ ‌Mads‌ ‌Albertsen,‌ ‌and‌ ‌Per‌‌ 
Halkjær‌ ‌Nielsen*‌ ‌ 

‌ 

Affiliation:‌ ‌ 

Center‌ ‌for‌ ‌Microbial‌ ‌Communities,‌ ‌Department‌ ‌of‌ ‌Chemistry‌ ‌and‌ ‌Bioscience,‌ ‌Aalborg‌‌ 
University,‌ ‌Aalborg,‌ ‌Denmark.‌ ‌ 
‌ 

*Correspondence‌ ‌to:‌ ‌Per‌ ‌Halkjær‌ ‌Nielsen,‌ ‌Center‌ ‌for‌ ‌Microbial‌ ‌Communities,‌‌ 
Department‌ ‌of‌ ‌Chemistry‌ ‌and‌ ‌Bioscience,‌ ‌Aalborg‌ ‌University,‌ ‌Fredrik‌ ‌Bajers‌ ‌Vej‌ ‌7H,‌‌ 
9220‌ ‌Aalborg,‌ ‌Denmark;‌ ‌Phone:‌ ‌+45‌ ‌9940‌ ‌8503;‌ ‌Fax:‌ ‌Not‌ ‌available;‌ ‌E-mail:‌‌ 
phn@bio.aau.dk‌ ‌ 

‌ 
Running‌ ‌title:‌ ‌‌Global‌ ‌microbiota‌ ‌of‌ ‌wastewater‌ ‌treatment‌ ‌plants‌‌ ‌ ‌    

1‌ ‌ 

‌ 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.06.451231doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451231
http://creativecommons.org/licenses/by/4.0/


Abstract‌ ‌ 
Biological‌ ‌wastewater‌ ‌treatment‌ ‌and‌ ‌an‌ ‌increased‌ ‌focus‌ ‌on‌ ‌resource‌ ‌recovery‌ ‌is‌‌                     
fundamental‌ ‌for‌ ‌environmental‌ ‌protection,‌ ‌human‌ ‌health,‌ ‌and‌ ‌sustainable‌ ‌development.‌‌                 
Microbial‌ ‌communities‌ ‌are‌ ‌responsible‌ ‌for‌ ‌these‌ ‌processes,‌ ‌but‌ ‌our‌ ‌knowledge‌ ‌of‌ ‌their‌‌                       
diversity‌‌and‌‌function‌‌is‌‌still‌‌poor,‌‌partly‌‌due‌‌to‌‌the‌‌lack‌‌of‌‌good‌‌reference‌‌databases‌‌and‌‌                               
comprehensive‌ ‌global‌ ‌studies.‌ ‌Here,‌ ‌we‌ ‌sequenced‌ ‌more‌ ‌than‌ ‌5‌ ‌million‌ ‌high-quality,‌‌                     
full-length‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌sequences‌ ‌from‌ ‌740‌ ‌wastewater‌‌treatment‌‌plants‌‌(WWTPs)‌‌                     
across‌ ‌the‌ ‌world‌ ‌and‌ ‌used‌ ‌the‌ ‌sequences‌ ‌to‌ ‌construct‌ ‌MiDAS‌‌4,‌‌a‌‌full-length‌‌amplicon‌‌                           
sequence‌ ‌variant‌ ‌resolved‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌reference‌ ‌database‌ ‌with‌ ‌a‌ ‌comprehensive‌‌                     
taxonomy‌‌from‌‌the‌‌domain‌‌to‌‌species-level‌‌for‌‌all‌‌references.‌‌Using‌‌a‌‌study-independent‌‌                       
amplicon‌‌dataset‌‌from‌‌the‌‌Global‌‌Water‌‌Microbiome‌‌Consortium‌‌project‌‌(269‌‌WWTPs),‌‌                     
we‌ ‌showed‌ ‌that‌ ‌the‌ ‌MiDAS‌ ‌4‌ ‌database‌ ‌provides‌ ‌much‌ ‌better‌ ‌coverage‌ ‌for‌ ‌bacteria‌ ‌in‌‌                           
WWTPs‌ ‌worldwide‌ ‌compared‌ ‌to‌‌commonly‌‌applied‌‌universal‌‌references‌‌databases,‌‌and‌‌                   
greatly‌ ‌improved‌ ‌the‌ ‌rate‌ ‌of‌ ‌genus‌ ‌and‌ ‌species-level‌ ‌classification.‌ ‌Hence,‌ ‌MiDAS‌ ‌4‌‌                       
provides‌ ‌a‌ ‌unifying‌ ‌taxonomy‌ ‌for‌ ‌the‌ ‌majority‌ ‌of‌ ‌prokaryotic‌ ‌diversity‌ ‌in‌ ‌WWTPs‌‌                       
globally‌,‌ ‌which‌ ‌can‌ ‌be‌ ‌used‌ ‌for‌ ‌linking‌ ‌microbial‌ ‌identities‌ ‌with‌ ‌their‌ ‌functions‌ ‌across‌‌                         
studies.‌ ‌Taking‌ ‌advantage‌ ‌of‌ ‌MiDAS‌ ‌4,‌ ‌we‌‌carried‌‌out‌‌an‌‌amplicon-based,‌‌global-scale‌‌                       
microbial‌ ‌community‌ ‌profiling‌ ‌of‌ ‌activated‌ ‌sludge‌ ‌plants‌ ‌using‌ ‌two‌ ‌common‌ ‌sets‌ ‌of‌‌                       
primers‌ ‌targeting‌ ‌the‌ ‌V1-V3‌ ‌and‌ ‌V4‌ ‌region‌ ‌of‌ ‌the‌ ‌16S‌ ‌rRNA‌ ‌gene.‌ ‌We‌ ‌found‌ ‌that‌ ‌the‌‌                               
V1-V3‌ ‌primers‌ ‌were‌ ‌generally‌ ‌best‌ ‌suited‌ ‌for‌ ‌this‌ ‌ecosystem,‌ ‌and‌ ‌revealed‌ ‌how‌‌                       
environmental‌ ‌conditions‌ ‌and‌ ‌biogeography‌ ‌shape‌ ‌the‌ ‌activated‌ ‌sludge‌ ‌microbiota.‌ ‌We‌‌                   
also‌ ‌identified‌ ‌process-critical‌ ‌taxa‌ ‌(core‌ ‌and‌ ‌conditionally‌ ‌rare‌ ‌or‌ ‌abundant‌ ‌taxa),‌‌                     
encompassing‌ ‌966‌ ‌genera‌ ‌and‌ ‌1530‌ ‌species.‌ ‌These‌‌represented‌‌approximately‌‌80%‌‌and‌‌                     
50%‌ ‌of‌ ‌the‌ ‌accumulated‌ ‌read‌ ‌abundance,‌ ‌respectively,‌ ‌and‌ ‌represent‌ ‌targets‌ ‌for‌ ‌further‌‌                       
investigations.‌ ‌Finally,‌ ‌we‌ ‌showed‌ ‌that‌ ‌for‌ ‌well-studied‌ ‌functional‌ ‌guilds,‌ ‌such‌ ‌as‌‌                     
nitrifiers‌ ‌or‌ ‌polyphosphate‌ ‌accumulating‌ ‌organisms,‌ ‌the‌ ‌same‌ ‌genera‌ ‌were‌ ‌prevalent‌‌                   
worldwide,‌ ‌with‌ ‌only‌ ‌a‌ ‌few‌ ‌abundant‌ ‌species‌ ‌in‌ ‌each‌ ‌genus.‌ ‌ 
 

2‌ ‌ 

‌ 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.06.451231doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451231
http://creativecommons.org/licenses/by/4.0/


Introduction‌ ‌ 
The‌‌invention‌‌of‌‌the‌‌activated‌‌sludge‌‌process‌‌for‌‌biological‌‌treatment‌‌of‌‌wastewater‌‌took‌‌                         
place‌ ‌approximately‌ ‌100‌ ‌years‌ ‌ago‌ 1‌ ‌and‌ ‌is‌ ‌now‌ ‌the‌ ‌world’s‌ ‌largest‌ ‌application‌ ‌of‌‌                           
biotechnology‌ ‌by‌ ‌volume‌ ‌‌2‌.‌ ‌The‌ ‌process‌ ‌relies‌ ‌on‌‌microbial‌‌degradation‌‌of‌‌organic‌‌and‌‌                         
inorganic‌ ‌compounds,‌ ‌biotransformation‌‌of‌‌toxic‌‌substances,‌‌and‌‌removal‌‌of‌‌pathogens.‌‌                   
However,‌‌wastewater‌‌contains‌‌many‌‌resources,‌‌which‌‌are‌‌currently‌‌poorly‌‌exploited.‌‌To‌‌                     
meet‌ ‌the‌ ‌UN‌ ‌sustainable‌ ‌development‌ ‌goals,‌ ‌a‌ ‌transition‌ ‌is‌ ‌taking‌ ‌place‌ ‌to‌ ‌integrate‌‌                         
treatment‌‌with‌‌the‌‌recovery‌‌of‌‌resources‌‌and‌‌energy‌‌production‌‌‌3,4‌.‌‌Activated‌‌sludge‌‌and‌‌                         
other‌ ‌treatment‌ ‌systems,‌ ‌such‌ ‌as‌ ‌granular‌ ‌sludge‌ ‌and‌ ‌biofilters,‌ ‌all‌ ‌rely‌ ‌on‌ ‌complex‌‌                         
microbial‌‌communities.‌‌Advances‌‌in‌‌the‌‌understanding‌‌of‌‌the‌‌microbial‌‌ecology‌‌of‌‌these‌‌                       
microbial‌ ‌communities‌ ‌have‌ ‌been‌ ‌ongoing‌ ‌for‌ ‌decades.‌ ‌However,‌ ‌at‌ ‌the‌ ‌most‌‌                     
fundamental‌ ‌level,‌ ‌many‌ ‌important‌ ‌microbes‌ ‌remain‌ ‌unidentified‌ ‌and‌ ‌undescribed.‌ ‌ 

‌  
While‌ ‌several‌ ‌studies‌ ‌have‌ ‌attempted‌ ‌to‌ ‌resolve‌ ‌the‌ ‌microbial‌ ‌diversity‌ ‌in‌ ‌wastewater‌‌                       
treatment‌ ‌plants‌ ‌(WWTPs),‌ ‌most‌ ‌have‌ ‌focused‌ ‌on‌ ‌few‌‌facilities‌‌in‌‌specific‌‌countries‌‌or‌‌                         
regions‌‌‌5–12‌.‌‌The‌‌only‌‌global‌‌diversity‌‌study‌‌of‌‌WWTPs‌‌concluded‌‌that‌‌there‌‌are‌‌billions‌‌                           
of‌ ‌different‌‌species-level‌‌OTUs‌‌(97%‌‌identity,‌‌16S‌‌rRNA‌‌V4‌‌region),‌‌and‌‌that‌‌very‌‌few‌‌                           
OTUs‌ ‌are‌ ‌shared‌ ‌across‌ ‌the‌ ‌world‌ ‌‌2‌.‌ ‌The‌ ‌28‌ ‌core‌ ‌OTUs‌ ‌identified‌ ‌in‌ ‌the‌ ‌study‌ ‌only‌‌                               
accounted‌ ‌for‌ ‌12%‌ ‌of‌ ‌accumulated‌ ‌read‌ ‌abundance‌ ‌in‌ ‌the‌ ‌samples,‌ ‌suggesting‌ ‌that‌ ‌we‌‌                         
deal‌ ‌with‌ ‌an‌ ‌overwhelming‌ ‌microbial‌ ‌diversity‌ ‌and‌ ‌complexity.‌ ‌However,‌ ‌studies‌ ‌of‌‌                     
process-critical‌‌functional‌‌groups‌‌have‌‌indicated‌‌that‌‌their‌‌global‌‌diversity‌‌could‌‌be‌‌much‌‌                       
lower,‌ ‌especially‌ ‌if‌ ‌we‌ ‌focus‌ ‌only‌ ‌on‌ ‌the‌ ‌abundant‌ ‌species,‌ ‌which‌ ‌are‌ ‌likely‌ ‌to‌ ‌have‌ ‌a‌‌                               
notable‌ ‌impact‌ ‌on‌ ‌treatment‌ ‌performance‌ ‌‌13‌.‌ ‌ 
‌ 

Nearly‌ ‌all‌ ‌microbial‌ ‌community‌ ‌studies‌ ‌of‌ ‌WWTPs‌ ‌are‌ ‌seriously‌ ‌hampered‌ ‌by‌ ‌several‌‌                       
problems‌ ‌that‌‌limit‌‌our‌‌insight‌‌and‌‌ability‌‌to‌‌share‌‌knowledge:‌‌One‌‌is‌‌the‌‌application‌‌of‌‌                             
different‌ ‌wet-lab‌ ‌protocols,‌ ‌e.g.,‌ ‌DNA‌ ‌extraction‌ ‌methods‌ ‌and‌ ‌choice‌ ‌of‌ ‌amplicon‌‌                     
primers.‌ ‌This‌ ‌problem‌ ‌can‌ ‌be‌ ‌partly‌ ‌mitigated‌ ‌by‌ ‌using‌ ‌standardized‌ ‌protocols‌ ‌for‌‌                       
sampling,‌‌DNA‌‌extraction,‌‌and‌‌amplicon‌‌library‌‌preparation‌‌‌14–16‌.‌‌In‌‌the‌‌MiDAS‌‌project,‌‌                       
we‌‌have‌‌thoroughly‌‌evaluated‌‌all‌‌steps‌‌for‌‌activated‌‌sludge‌‌samples‌‌and‌‌provide‌‌detailed‌‌                         
protocols‌ ‌online‌ ‌(https://www.midasfieldguide.org/guide/protocols).‌ ‌The‌ ‌second‌ ‌issue‌‌is‌‌             
the‌ ‌use‌ ‌of‌ ‌different‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌reference‌ ‌databases‌ ‌that‌ ‌lack‌ ‌reference‌ ‌sequences‌‌                         
with‌ ‌high‌ ‌identity‌ ‌to‌ ‌those‌ ‌present‌ ‌in‌ ‌WTTPs‌ ‌for‌ ‌many‌ ‌microbes,‌ ‌and‌ ‌also‌ ‌lack‌ ‌a‌‌                             
comprehensive‌ ‌taxonomy‌ ‌for‌ ‌the‌ ‌many‌ ‌uncultured‌ ‌environmental‌ ‌taxa‌ ‌‌17‌.‌ ‌To‌ ‌overcome‌‌                     
these‌ ‌problems,‌‌we‌‌recently‌‌developed‌‌MiDAS‌‌3,‌‌an‌‌ecosystem-specific‌‌full-length‌‌16S‌‌                     
rRNA‌‌gene‌‌reference‌‌database‌‌for‌‌wastewater‌‌treatment‌‌systems‌‌‌17,18‌.‌‌Although‌‌MiDAS‌‌3‌‌                       
is‌ ‌only‌ ‌based‌ ‌on‌ ‌Danish‌ ‌nutrient‌ ‌removal‌ ‌plants‌ ‌and‌ ‌anaerobic‌ ‌digesters,‌ ‌it‌ ‌also‌‌                         
performed‌‌well‌‌on‌‌samples‌‌from‌‌similar‌‌plants‌‌in‌‌other‌‌countries‌17‌.‌‌However,‌‌more‌‌plant‌‌                         
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designs,‌ ‌process‌ ‌types,‌ ‌and‌ ‌geographical‌ ‌locations‌ ‌are‌ ‌needed‌ ‌to‌ ‌cover‌ ‌the‌ ‌global‌‌                       
microbial‌ ‌diversity‌ ‌in‌ ‌WWTPs‌ ‌at‌ ‌the‌ ‌highest‌ ‌taxonomic‌ ‌resolution.‌ ‌ 
‌ 

Here‌ ‌we‌ ‌present‌ ‌the‌ ‌largest‌ ‌global‌ ‌WWTP‌ ‌sampling‌ ‌and‌ ‌sequencing‌ ‌campaign‌ ‌to‌ ‌date‌‌                         
with‌‌samples‌‌from‌‌740‌‌WWTPs.‌‌More‌‌than‌‌5‌‌million‌‌high-quality,‌‌full-length‌‌16S‌‌rRNA‌‌                         
gene‌‌sequences‌‌were‌‌obtained‌‌and‌‌used‌‌to‌‌expand‌‌MiDAS‌‌3‌‌to‌‌cover‌‌the‌‌global‌‌diversity‌‌                             
of‌ ‌microbes‌ ‌in‌ ‌wastewater‌ ‌treatment‌ ‌systems.‌ ‌The‌ ‌resulting‌ ‌database‌ ‌and‌ ‌taxonomy‌‌                     
(MiDAS‌ ‌4)‌ ‌represent‌ ‌a‌ ‌comprehensive‌‌catalogue‌‌that‌‌may‌‌act‌‌as‌‌a‌‌common‌‌vocabulary‌‌                         
for‌ ‌linking‌ ‌microbial‌ ‌taxonomy‌ ‌with‌ ‌function‌ ‌among‌ ‌studies‌ ‌across‌ ‌the‌ ‌field.‌‌                     
Furthermore,‌ ‌we‌ ‌carried‌ ‌out‌ ‌amplicon‌ ‌surveys‌ ‌on‌‌all‌‌activated‌‌sludge‌‌samples‌‌obtained‌                       
based‌‌on‌‌the‌‌two‌‌commonly‌‌applied‌‌amplicon‌‌primer‌‌sets‌‌targeting‌‌V1-V3‌‌and‌‌V4.‌‌With‌‌                           
this‌ ‌data‌ ‌we‌ ‌(i)‌ ‌evaluate‌ ‌which‌ ‌primer‌ ‌set‌ ‌is‌ ‌generally‌ ‌best‌ ‌suited‌ ‌for‌ ‌microbial‌‌                           
community‌ ‌profiling‌ ‌of‌ ‌WWTPs,‌ ‌(ii)‌ ‌determine‌ ‌which‌ ‌environmental‌ ‌and‌ ‌geographic‌‌                   
parameters‌ ‌correlate‌ ‌with‌ ‌specific‌ ‌genera,‌ ‌(iii)‌ ‌identify‌ ‌process-important‌ ‌taxa,‌‌and‌‌(iv)‌‌                     
investigate‌ ‌the‌ ‌genus-‌ ‌and‌ ‌species-level‌ ‌diversity‌ ‌within‌ ‌important‌ ‌functional‌ ‌guilds.‌ ‌ 
‌ 

Results‌ ‌and‌ ‌Discussion‌ ‌ 
The‌ ‌MiDAS‌ ‌global‌ ‌consortium‌ ‌was‌ ‌established‌ ‌in‌‌2018‌‌to‌‌coordinate‌‌the‌‌sampling‌‌and‌‌                         
collection‌‌of‌‌metadata‌‌from‌‌WWTPs‌‌across‌‌the‌‌globe‌‌(‌Data‌‌S1‌).‌‌Samples‌‌were‌‌obtained‌‌                         
in‌‌duplicates‌‌from‌‌740‌‌WWTPs‌‌in‌‌425‌‌cities,‌‌31‌‌countries‌‌on‌‌six‌‌continents‌‌(‌Figure‌‌1a‌),‌‌                             
representing‌‌the‌‌largest‌‌global‌‌sampling‌‌of‌‌WWTPs‌‌to‌‌date.‌‌The‌‌majority‌‌of‌‌the‌‌WWTPs‌‌                           
were‌ ‌configured‌ ‌with‌ ‌the‌ ‌activated‌‌sludge‌‌process‌‌(69.7%)‌‌(‌Figure‌‌1b‌),‌‌and‌‌these‌‌were‌‌                         
the‌ ‌main‌ ‌focus‌ ‌of‌ ‌the‌ ‌subsequent‌ ‌analyses.‌ ‌Nevertheless,‌ ‌WWTPs‌ ‌based‌ ‌on‌ ‌biofilters,‌‌                       
moving‌ ‌bed‌ ‌bioreactors‌ ‌(MBBR),‌ ‌membrane‌ ‌bioreactors‌ ‌(MBR),‌ ‌and‌ ‌granular‌ ‌sludge‌‌                   
were‌ ‌also‌ ‌sampled‌ ‌to‌ ‌cover‌ ‌the‌ ‌microbial‌ ‌diversity‌ ‌in‌ ‌other‌ ‌types‌ ‌of‌ ‌WWTPs.‌ ‌The‌‌                           
activated‌ ‌sludge‌ ‌plants‌ ‌were‌ ‌mainly‌ ‌designed‌ ‌for‌ ‌carbon‌ ‌removal‌ ‌only‌ ‌(C)‌ ‌(22.1%),‌‌                       
carbon‌ ‌removal‌ ‌with‌ ‌nitrification‌ ‌(C,N)‌ ‌(9.5%),‌ ‌carbon‌ ‌removal‌ ‌with‌ ‌nitrification‌ ‌and‌‌                     
denitrification‌ ‌(C,N,DN)‌ ‌(40.9%),‌ ‌and‌ ‌carbon‌ ‌removal‌ ‌with‌ ‌nitrogen‌ ‌removal‌ ‌and‌‌                   
enhanced‌ ‌biological‌ ‌phosphorus‌ ‌removal,‌ ‌EBPR‌ ‌(C,N,DN,P)‌ ‌(21.7%)‌ ‌(‌Figure‌‌1c‌).‌‌The‌‌                   
first‌ ‌type‌ ‌represents‌ ‌the‌ ‌most‌ ‌simple‌ ‌design‌ ‌whereas‌ ‌the‌ ‌latter‌ ‌represent‌ ‌the‌ ‌most‌‌                         
advanced‌ ‌process‌ ‌type‌ ‌with‌ ‌varying‌ ‌oxic‌ ‌and‌ ‌anoxic‌ ‌stages‌ ‌or‌ ‌compartments.‌ ‌ ‌   
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‌ 
Figure‌‌1:‌‌‌Sampling‌‌of‌‌WWTPs‌‌across‌‌the‌‌world.‌‌a)‌‌Geographical‌‌distribution‌‌of‌‌WWTPs‌‌included‌‌in‌‌the‌‌                               
study‌ ‌and‌ ‌their‌ ‌process‌ ‌configuration.‌ ‌b)‌ ‌Distribution‌ ‌of‌ ‌WWTP‌ ‌plant‌ ‌types.‌ ‌MBBR:‌ ‌moving‌ ‌bed‌‌                           
bioreactor;‌‌MBR:‌‌membrane‌‌bioreactor.‌‌c)‌‌Distribution‌‌of‌‌process‌‌types‌‌for‌‌the‌‌activated‌‌sludge‌‌plants.‌‌C:‌‌                             
carbon‌ ‌removal;‌ ‌C,N:‌ ‌carbon‌ ‌removal‌ ‌with‌ ‌nitrification;‌ ‌C,N,DN:‌ ‌carbon‌ ‌removal‌ ‌with‌‌nitrification‌‌and‌‌                         
denitrification;‌ ‌C,N,DN,P:‌ ‌carbon‌ ‌removal‌ ‌with‌ ‌nitrogen‌ ‌removal‌ ‌and‌ ‌enhanced‌ ‌biological‌ ‌phosphorus‌‌                     
removal‌ ‌(EBPR).‌ ‌The‌ ‌values‌ ‌next‌ ‌to‌ ‌the‌ ‌bars‌ ‌are‌ ‌the‌ ‌number‌ ‌of‌ ‌WWTPs‌ ‌in‌ ‌each‌ ‌group.‌ ‌ 
‌ 

MiDAS‌ ‌4:‌ ‌a‌ ‌new‌ ‌global‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌catalogue‌ ‌and‌ ‌taxonomy‌ ‌for‌ ‌WWTPs‌ ‌ 
Microbial‌ ‌community‌ ‌profiling‌ ‌at‌ ‌high‌ ‌taxonomic‌ ‌resolution‌ ‌(genus-‌ ‌and‌‌species-level)‌‌                   
using‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌amplicon‌ ‌sequencing‌ ‌requires‌ ‌a‌ ‌reference‌ ‌database‌ ‌with‌                     
high-identity‌ ‌reference‌ ‌sequences‌ ‌(≥99%‌ ‌sequence‌ ‌identity)‌ ‌for‌ ‌the‌ ‌majority‌ ‌of‌ ‌the‌‌                     
bacteria‌ ‌in‌‌the‌‌samples‌‌and‌‌a‌‌complete‌‌seven-rank‌‌taxonomy‌‌(domain‌‌to‌‌species)‌‌for‌‌all‌‌                           
reference‌ ‌sequences‌ ‌‌17,18‌.‌ ‌To‌‌create‌‌such‌‌a‌‌database‌‌for‌‌bacteria‌‌in‌‌WWTPs‌‌globally,‌‌we‌‌                           
applied‌‌synthetic‌‌long-read‌‌full-length‌‌16S‌‌rRNA‌‌gene‌‌sequencing‌‌‌17,19‌ ‌on‌‌samples‌‌from‌‌                       
all‌ ‌WWTPs‌ ‌included‌ ‌in‌ ‌this‌ ‌study.‌ ‌ ‌   
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More‌‌than‌‌5.2‌‌million‌‌full-length‌‌16S‌‌rRNA‌‌gene‌‌sequences‌‌were‌‌obtained‌‌after‌‌quality‌‌                         
filtering‌ ‌and‌ ‌primer‌ ‌trimming.‌ ‌The‌ ‌sequences‌ ‌were‌ ‌processed‌ ‌with‌ ‌AutoTax‌ ‌‌17‌,‌ ‌which‌‌                       
yielded‌ ‌80,557‌ ‌full-length‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌ASVs‌‌(FL-ASVs).‌‌These‌‌were‌‌added‌‌to‌‌our‌‌                         
previous‌‌MiDAS‌‌3‌‌database‌‌‌18‌,‌‌resulting‌‌in‌‌a‌‌combined‌‌database‌‌(MiDAS‌‌4)‌‌with‌‌a‌‌total‌‌                             
of‌ ‌90,164‌ ‌unique‌ ‌FL-ASV‌ ‌reference‌ ‌sequences.‌ ‌Out‌ ‌of‌ ‌these,‌ ‌88%‌ ‌had‌ ‌best‌ ‌hits‌ ‌in‌‌the‌‌                             
SILVA‌ ‌138‌ ‌SSURef‌ ‌NR99‌ ‌database‌ ‌above‌ ‌the‌ ‌genus-level‌ ‌threshold‌ ‌(≥94.5%‌ ‌identity)‌‌                     
and‌ ‌56%‌ ‌above‌ ‌the‌ ‌species-level‌ ‌threshold‌ ‌(≥98.7%‌ ‌identity)‌ ‌(‌Figure‌ ‌2b‌,‌ ‌‌Table‌ ‌1‌).‌‌ ‌  
‌ 

‌ 
Figure‌ ‌2:‌ ‌‌Novel‌ ‌sequences‌ ‌and‌ ‌‌de‌ ‌novo‌ ‌taxa‌ ‌observed‌‌in‌‌the‌‌MiDAS‌‌4‌‌reference‌‌database‌.‌ ‌Phylogenetic‌‌trees‌‌                                 
based‌‌on‌‌the‌‌FL-ASVs‌‌in‌‌the‌‌MiDAS‌‌4‌‌database.‌ ‌a)‌ ‌The‌‌eight‌‌most‌‌diverse‌‌phyla,‌‌b)‌‌Sequence‌‌novelty‌‌as‌‌determined‌‌                                       
by‌‌the‌‌percent‌‌identity‌‌between‌‌each‌‌FL-ASV‌‌and‌‌their‌‌closest‌‌relative‌‌in‌‌the‌‌SILVA_138_SSURef_Nr99‌‌database‌‌and‌‌                               
taxonomic‌ ‌thresholds‌ ‌proposed‌ ‌by‌ ‌Yarza‌‌et‌ ‌al.‌ ‌‌20‌.‌ ‌c)‌ ‌Taxonomy‌‌novelty‌‌defined‌‌based‌‌on‌‌the‌‌assignment‌‌of‌‌‌de‌‌novo‌‌                                     
taxa‌ ‌by‌ ‌AutoTax‌ ‌‌17‌.‌ ‌ 
‌ 

Table‌ ‌1:‌ ‌Novel‌ ‌sequences‌ ‌and‌ ‌‌de‌ ‌novo‌ ‌taxa‌‌observed‌‌in‌‌the‌‌MiDAS‌‌4‌‌reference‌‌database.‌‌‌Sequence‌‌                               
novelty‌ ‌was‌ ‌determined‌ ‌based‌ ‌on‌‌the‌‌percent‌‌identity‌‌between‌‌each‌‌FL-ASV‌‌and‌‌their‌‌closest‌‌relative‌‌in‌‌                               
the‌ ‌SILVA_138_SSURef_Nr99‌ ‌database‌ ‌and‌ ‌taxonomic‌‌thresholds‌‌proposed‌‌by‌‌Yarza‌‌et‌‌al.‌20‌.‌‌Taxonomy‌‌                       
novelty‌ ‌was‌ ‌defined‌ ‌based‌ ‌on‌ ‌the‌ ‌number‌ ‌of‌ ‌‌de‌ ‌novo‌ ‌‌taxa‌ ‌assigned‌ ‌by‌ ‌AutoTax‌ ‌at‌ ‌each‌ ‌taxonomic‌ ‌rank.‌ ‌ 

*‌De‌ ‌novo‌‌ ‌species‌ ‌also‌ ‌include‌ ‌known‌ ‌species‌ ‌that‌ ‌cannot‌ ‌be‌ ‌resolved‌ ‌based‌ ‌on‌ ‌full-length‌ ‌16S‌ ‌rRNA‌ ‌genes.‌ ‌ 
   

6‌ ‌ 

‌ 

‌  Sequence‌ ‌novelty‌ ‌  Taxonomy‌ ‌novelty*‌ ‌ 
‌  Sequences‌ ‌  Percentage‌ ‌  De‌ ‌novo‌‌ ‌Taxa‌ ‌  Percentage‌ ‌ 

New‌ ‌phylum‌ ‌(<75.0%)‌ ‌  84‌ ‌  0.09%‌ ‌  26‌ ‌  30.59%‌ ‌ 
New‌ ‌class‌ ‌(<78.5%)‌ ‌  183‌ ‌  0.20%‌ ‌  83‌ ‌  37.22%‌ ‌ 
New‌ ‌order‌ ‌(<82.0%)‌ ‌  334‌ ‌  0.37%‌ ‌  297‌ ‌  46.77%‌ ‌ 

New‌ ‌family‌ ‌(<86.5%)‌ ‌  1,067‌ ‌  1.18%‌ ‌  1,313‌ ‌  69.84%‌ ‌ 
 ‌New‌ ‌genus‌ ‌(<94.5%)‌ ‌  10,739‌ ‌  11.91%‌ ‌  8,220‌ ‌  86.33%‌ ‌ 

New‌ ‌species‌ ‌(<98.7%)‌ ‌  40,036‌ ‌  44.40%‌ ‌  30,264‌ ‌  96.54%‌ ‌ 
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MiDAS‌ ‌4‌ ‌reveals‌ ‌many‌ ‌novel‌ ‌taxa‌ ‌ 
Although‌ ‌only‌ ‌a‌ ‌small‌ ‌percentage‌ ‌of‌ ‌the‌ ‌reference‌ ‌sequences‌ ‌in‌ ‌MiDAS‌ ‌4‌ ‌represented‌‌                         
novel‌ ‌higher‌ ‌rank‌ ‌taxa‌ ‌(phylum,‌ ‌class,‌ ‌or‌ ‌order)‌ ‌according‌ ‌to‌ ‌the‌ ‌sequence‌ ‌identity‌‌                         
thresholds‌ ‌proposed‌ ‌by‌ ‌Yarza‌et‌ ‌al‌.‌ ‌‌20‌,‌ ‌a‌ ‌large‌ ‌number‌ ‌of‌ ‌sequences‌ ‌lacked‌ ‌lower-rank‌‌                           
taxonomic‌ ‌classifications‌ ‌and‌ ‌was‌ ‌assigned‌ ‌‌de‌ ‌novo‌ ‌‌placeholder‌ ‌names‌ ‌by‌ ‌AutoTax‌ ‌‌17‌ ‌                       
(‌Figure‌‌2c,‌‌‌Table‌‌1‌).‌‌In‌‌total,‌‌new‌‌‌de‌‌novo‌‌taxonomic‌‌names‌‌were‌‌generated‌‌by‌‌AutoTax‌‌                             
for‌‌26‌‌phyla‌‌(30.6%‌‌of‌‌observed),‌‌83‌‌classes‌‌(37.2%),‌‌297‌‌orders‌‌(46.8%),‌‌and‌‌more‌‌than‌‌                             
8,000‌ ‌genera‌ ‌(86.3%).‌ ‌ 
 
Phylum-specific‌‌phylogenetic‌‌trees‌‌were‌‌created‌‌to‌‌determine‌‌how‌‌the‌‌FL-ASV‌‌reference‌‌                     
sequences‌‌that‌‌were‌‌classified‌‌as‌‌‌de‌‌novo‌‌phyla‌‌were‌‌related‌‌to‌‌previously‌‌described‌‌taxa‌‌                           
(‌Figure‌ ‌S1a‌).‌ ‌The‌ ‌majority‌ ‌(65‌ ‌FL-ASVs)‌ ‌created‌ ‌deep‌ ‌branches‌ ‌from‌ ‌within‌ ‌the‌‌                       
Alphaproteobacteria‌ ‌together‌ ‌with‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌sequences‌ ‌from‌ ‌mitochondria,‌‌                 
suggesting‌‌they‌‌represented‌‌novel‌‌mitochondrial‌‌16S‌‌rRNA‌‌genes‌‌rather‌‌than‌‌true‌‌novel‌‌                       
phyla.‌‌We‌‌also‌‌observed‌‌several‌‌FL-ASVs‌‌assigned‌‌to‌‌‌de‌‌novo‌‌phyla‌‌that‌‌branched‌‌from‌‌                           
two‌ ‌classes‌ ‌within‌ ‌the‌ ‌Patescibacteria:‌ ‌the‌ ‌Parcubacteria‌ ‌(3‌ ‌FL-ASVs)‌ ‌and‌ ‌the‌‌                     
Microgenomatis‌ ‌(22‌ ‌FL-ASVs).‌ ‌These‌ ‌two‌ ‌classes‌ ‌were‌ ‌originally‌ ‌proposed‌ ‌as‌‌                   
superphyla‌‌due‌‌to‌‌their‌‌unusually‌‌high‌‌rate‌‌of‌‌evolution‌‌‌21,22‌.‌‌It‌‌is,‌‌therefore,‌‌likely‌‌that‌‌the‌‌                               
de‌ ‌novo‌ ‌phyla‌ ‌are‌ ‌artefacts‌ ‌resulting‌ ‌from‌ ‌the‌ ‌simple‌ ‌approach‌ ‌behind‌ ‌the‌ ‌AutoTax‌ ‌‌de‌‌                           
novo‌ ‌taxonomy‌ ‌assignment,‌ ‌which‌ ‌does‌ ‌not‌ ‌take‌ ‌different‌ ‌evolutionary‌ ‌rates‌ ‌into‌‌                     
account‌17‌.‌ ‌Most‌ ‌of‌ ‌the‌ ‌class-,‌ ‌and‌ ‌order-level‌ ‌novelty‌ ‌was‌ ‌found‌ ‌within‌ ‌the‌‌                       
Patescibacteria,‌ ‌Proteobacteria,‌ ‌Firmicutes,‌ ‌Planctomycetota,‌ ‌and‌ ‌Verrucomicrobiota.‌‌           
(‌Figure‌ ‌S1b‌).‌ ‌At‌ ‌the‌ ‌family-‌ ‌and‌ ‌genus-level,‌ ‌we‌ ‌also‌ ‌observed‌ ‌many‌ ‌‌de‌ ‌novo‌ ‌taxa‌‌                           
affiliated‌ ‌to‌ ‌Bacteroidota,‌ ‌Bdellovibrionota,‌ ‌and‌ ‌Chloroflexi.‌ ‌ 
 
MiDAS‌ ‌4‌ ‌provides‌ ‌a‌ ‌common‌ ‌taxonomy‌ ‌for‌ ‌the‌ ‌field‌ ‌ 
The‌ ‌performance‌ ‌of‌ ‌the‌ ‌MiDAS‌ ‌4‌ ‌database‌ ‌was‌ ‌evaluated‌ ‌based‌ ‌on‌ ‌an‌ ‌independent‌‌                         
amplicon‌ ‌dataset‌ ‌from‌ ‌the‌ ‌Global‌ ‌Water‌ ‌Microbiome‌ ‌Consortium‌ ‌(GWMC)‌ ‌project‌ ‌‌2‌,‌‌                     
which‌ ‌covers‌ ‌approx.‌‌1200‌‌samples‌‌from‌‌269‌‌WWTPs.‌‌The‌‌raw‌‌GWMC‌‌amplicon‌‌data‌‌                         
of‌ ‌the‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌V4‌ ‌region‌ ‌was‌ ‌resolved‌ ‌into‌ ‌ASVs,‌ ‌and‌ ‌the‌ ‌percent‌ ‌identity‌ ‌to‌‌                               
their‌‌best‌‌hits‌‌in‌‌MiDAS‌‌4‌‌and‌‌other‌‌reference‌‌databases‌‌was‌‌calculated‌‌(‌Figure‌‌3a‌).‌‌The‌‌                             
MiDAS‌ ‌4‌ ‌database‌ ‌had‌ ‌high-identity‌ ‌hits‌ ‌(≥99%‌ ‌identity)‌ ‌for‌ ‌72.0%±9.5%‌‌                   
(mean±std.dev.)‌ ‌of‌ ‌GWMC‌ ‌ASVs‌ ‌with‌ ‌≥0.01%‌ ‌relative‌ ‌abundance,‌ ‌compared‌ ‌to‌‌                   
57.9%±8.5%‌ ‌for‌ ‌the‌ ‌SILVA‌ ‌138‌ ‌SSURef‌ ‌NR99‌ ‌database,‌ ‌which‌ ‌was‌ ‌the‌ ‌best‌ ‌of‌ ‌the‌‌                           
universal‌ ‌reference‌ ‌databases‌ ‌(‌Figure‌ ‌3a‌).‌ ‌Similar‌ ‌analyses‌ ‌of‌‌ASVs‌‌obtained‌‌from‌‌the‌‌                       
samples‌ ‌included‌ ‌in‌ ‌this‌ ‌study‌ ‌showed,‌ ‌not‌ ‌surprisingly,‌ ‌even‌ ‌better‌ ‌performance‌ ‌with‌‌                       
high-identity‌ ‌hits‌ ‌for‌ ‌90.7%±7.9%‌ ‌of‌ ‌V1-V3‌‌ASVs‌‌and‌‌90.0%±6.6%‌‌of‌‌V4‌‌ASVs‌‌with‌‌                         
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≥0.01%‌ ‌relative‌ ‌abundance,‌ ‌compared‌ ‌to‌ ‌60.6±11.9%‌ ‌and‌ ‌73.9±10.3%‌ ‌for‌ ‌SILVA‌ ‌138‌‌                     
(‌Figure‌ ‌S2a‌).‌ ‌ 
‌ 

Using‌ ‌MiDAS‌ ‌4‌ ‌with‌ ‌the‌ ‌sintax‌ ‌classifier,‌ ‌it‌ ‌was‌ ‌possible‌ ‌to‌ ‌obtain‌ ‌genus-level‌‌                         
classifications‌ ‌for‌ ‌75.0%±6.9%‌ ‌of‌ ‌the‌ ‌GWMC‌ ‌ASVs‌ ‌with‌ ‌≥0.01%‌ ‌relative‌ ‌abundance‌‌                     
(‌Figure‌ ‌3b‌).‌ ‌In‌ ‌comparison,‌ ‌SILVA‌ ‌138‌ ‌SSURef‌ ‌NR99,‌ ‌which‌ ‌was‌ ‌the‌ ‌best‌ ‌of‌ ‌the‌‌                           
universal‌ ‌reference‌ ‌databases,‌ ‌could‌ ‌only‌ ‌classify‌ ‌31.4%±4.2%.‌ ‌When‌ ‌MiDAS‌ ‌4‌ ‌was‌‌                     
used‌ ‌to‌ ‌classify‌ ‌amplicons‌ ‌from‌ ‌this‌ ‌study,‌ ‌we‌ ‌obtained‌ ‌genus-level‌ ‌classification‌ ‌for‌‌                       
92.0%±4.0%‌‌of‌‌V1-V3‌‌ASVs‌‌and‌‌84.8%±3.6%‌‌of‌‌V4‌‌ASVs‌‌(‌Figure‌‌S2b‌).‌ ‌This‌‌is‌‌close‌‌                           
to‌ ‌the‌ ‌theoretical‌ ‌limit‌ ‌set‌‌by‌‌the‌‌phylogenetic‌‌signal‌‌provided‌‌by‌‌each‌‌amplicon‌‌region‌‌                           
analyzed‌ ‌‌17‌.‌ ‌ 
‌ 

MiDAS‌ ‌4‌ ‌was‌ ‌also‌ ‌able‌ ‌to‌ ‌assign‌ ‌species-level‌ ‌classifications‌ ‌to‌ ‌40.8%±7.1%‌ ‌of‌ ‌the‌‌                         
GWMC‌ ‌ASVs.‌ ‌In‌ ‌contrast,‌ ‌GTDB‌ ‌SSU‌ ‌r89,‌ ‌the‌ ‌only‌ ‌universal‌ ‌reference‌‌database‌‌that‌‌                         
contained‌ ‌a‌ ‌comprehensive‌ ‌species-level‌ ‌taxonomy,‌ ‌only‌ ‌classified‌ ‌9.9%±2.0%‌ ‌of‌ ‌the‌‌                   
ASVs‌‌(‌Figure‌‌3c‌).‌‌For‌‌the‌‌ASVs‌‌created‌‌in‌‌this‌‌study,‌‌MiDAS‌‌4‌‌provided‌‌species-level‌‌                           
classification‌ ‌for‌ ‌68.4%±6.1%‌ ‌of‌ ‌the‌‌V1-V3‌‌and‌‌48.5%±6.0%‌‌of‌‌the‌‌V4‌‌ASVs‌‌(‌Figure‌‌                         
S2c).‌ ‌ 
‌ 

‌ 
Figure‌ ‌3:‌ ‌Database‌ ‌evaluation‌ ‌based‌ ‌on‌ ‌amplicon‌ ‌data‌ ‌from‌ ‌the‌ ‌Global‌ ‌Water‌ ‌Microbiome‌‌                         
Consortium‌ ‌project.‌ ‌‌Raw‌ ‌amplicon‌ ‌data‌ ‌from‌ ‌the‌ ‌Global‌ ‌Water‌ ‌Microbiome‌ ‌Consortium‌‌project‌‌‌2‌ ‌was‌‌                           
processed‌‌to‌‌resolve‌‌ASVs‌‌of‌‌the‌‌16S‌‌rRNA‌‌gene‌‌V4‌‌region.‌‌The‌‌ASVs‌‌for‌‌each‌‌of‌‌the‌‌1165‌‌samples‌‌were‌‌                                       
filtered‌ ‌based‌ ‌on‌‌their‌‌relative‌‌abundance‌‌(only‌‌ASVs‌‌with‌‌≥0.01%‌‌relative‌‌abundance‌‌were‌‌kept)‌‌before‌‌                             
the‌ ‌analyses.‌ ‌The‌ ‌percentage‌ ‌of‌ ‌the‌ ‌microbial‌ ‌community‌ ‌represented‌ ‌by‌ ‌the‌ ‌remaining‌ ‌ASVs‌ ‌after‌ ‌the‌‌                             
filtering‌ ‌was‌ ‌88.35%‌‌±‌‌2.98%‌‌across‌‌samples.‌‌a)‌‌Percent‌‌of‌‌ASVs‌‌that‌‌have‌‌high-identity‌‌(≥99%)‌‌hits‌‌in‌‌                                 
MiDAS‌‌4‌‌and‌‌commonly‌‌applied‌‌universal‌‌reference‌‌databases.‌‌b)‌‌and‌‌c)‌‌Percent‌‌of‌‌ASVs‌‌that‌‌received‌‌b)‌‌                                 
genus-‌ ‌or‌ ‌c)‌ ‌species-level‌ ‌classification‌ ‌using‌‌sintax‌‌with‌‌the‌‌MiDAS‌‌4‌‌and‌‌commonly‌‌applied‌‌universal‌‌                             
reference‌ ‌databases.‌ ‌Outliers‌ ‌have‌ ‌been‌ ‌removed‌ ‌from‌ ‌the‌ ‌boxplots.‌ ‌ 
‌ 

‌   
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‌ 
‌ 

Based‌ ‌on‌ ‌the‌ ‌large‌ ‌number‌ ‌of‌ ‌WWTPs‌ ‌sampled,‌ ‌their‌ ‌diversity,‌ ‌and‌ ‌the‌ ‌independent‌‌                         
evaluation‌ ‌based‌ ‌on‌ ‌the‌ ‌GWMC‌ ‌dataset‌ ‌‌2‌,‌ ‌we‌ ‌expect‌ ‌that‌ ‌the‌ ‌MiDAS‌ ‌4‌ ‌reference‌‌                           
database‌ ‌essentially‌ ‌covers‌ ‌the‌ ‌large‌ ‌majority‌ ‌of‌ ‌bacteria‌ ‌in‌ ‌WWTPs‌ ‌worldwide.‌‌                     
Therefore,‌ ‌the‌ ‌MiDAS‌ ‌4‌ ‌taxonomy‌ ‌should‌ ‌act‌ ‌as‌ ‌a‌ ‌shared‌ ‌vocabulary‌ ‌for‌ ‌wastewater‌‌                         
treatment‌ ‌microbiologists,‌ ‌providing‌ ‌new‌‌opportunities‌‌for‌‌cross-study‌‌comparisons‌‌and‌‌                 
ecological‌ ‌studies‌ ‌at‌ ‌high‌ ‌taxonomic‌ ‌resolution.‌‌ ‌  
 
The‌ ‌V1-V3‌ ‌primer‌ ‌set‌ ‌is‌ ‌recommended‌ ‌for‌ ‌community‌ ‌profiling‌ ‌of‌ ‌WWTPs‌ ‌ 
Before‌ ‌investigating‌ ‌what‌ ‌factors‌ ‌shape‌ ‌the‌ ‌activated‌ ‌sludge‌ ‌microbiota,‌ ‌we‌ ‌compared‌‌                     
short-read‌ ‌amplicon‌ ‌data‌ ‌created‌ ‌for‌‌all‌‌samples‌‌collected‌‌in‌‌the‌‌Global‌‌MiDAS‌‌project‌‌                         
using‌‌two‌‌commonly‌‌used‌‌primer‌‌sets‌‌that‌‌target‌‌the‌‌V1-V3‌‌or‌‌V4‌‌variable‌‌region‌‌of‌‌the‌‌                               
16S‌ ‌rRNA‌ ‌gene.‌ ‌The‌ ‌V1-V3‌ ‌primers‌ ‌were‌ ‌chosen‌ ‌because‌‌the‌‌corresponding‌‌region‌‌of‌‌                         
the‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌provides‌ ‌the‌ ‌highest‌ ‌taxonomic‌ ‌resolution‌ ‌of‌ ‌common‌ ‌short-read‌‌                       
amplicons‌ ‌‌17,23‌,‌ ‌and‌ ‌these‌ ‌primers‌ ‌have‌ ‌previously‌ ‌shown‌ ‌great‌ ‌correspondence‌ ‌with‌‌                     
metagenomic‌ ‌data‌ ‌and‌ ‌quantitative‌ ‌fluorescence‌ ‌‌in‌ ‌situ‌ ‌‌hybridization‌‌(FISH)‌‌results‌‌for‌‌                     
wastewater‌‌treatment‌‌systems‌‌‌14‌.‌‌The‌‌V4‌‌region‌‌has‌‌a‌‌lower‌‌phylogenetic‌‌signal,‌‌but‌‌the‌‌                           
primers‌‌used‌‌to‌‌amplify‌‌it‌‌have‌‌better‌‌theoretical‌‌coverage‌‌of‌‌the‌‌bacterial‌‌diversity‌‌in‌‌the‌‌                             
SILVA‌ ‌database‌ ‌‌17,23‌.‌‌ ‌  
‌ 

‌ 
Figure‌ ‌4:‌ ‌Comparison‌ ‌of‌ ‌relative‌‌genus‌‌abundance‌‌based‌‌on‌‌V1-V3‌‌and‌‌V4‌‌region‌‌16S‌‌rRNA‌‌gene‌‌                               
amplicon‌‌data.‌‌‌Mean‌‌relative‌‌abundance‌‌was‌‌calculated‌‌based‌‌on‌‌709‌‌activated‌‌sludge‌‌samples.‌‌a)‌‌genera‌‌                             
present‌ ‌at‌ ‌≥0.001%‌ ‌relative‌ ‌abundance‌ ‌in‌ ‌V1-V3‌ ‌and/or‌ ‌V4‌ ‌datasets‌ ‌are‌ ‌shown.‌ ‌Genera‌ ‌with‌ ‌less‌ ‌than‌‌                               
two-fold‌ ‌difference‌ ‌in‌ ‌relative‌ ‌abundance‌ ‌between‌ ‌the‌ ‌two‌ ‌primer‌ ‌sets‌ ‌are‌ ‌shown‌‌with‌‌gray‌‌circles,‌‌and‌‌                               
those‌ ‌that‌‌are‌‌overrepresented‌‌by‌‌at‌‌least‌‌two-fold‌‌with‌‌one‌‌of‌‌the‌‌primer‌‌sets‌‌are‌‌shown‌‌in‌‌red‌‌(V4)‌‌and‌‌                                       
blue‌ ‌(V1-V3).‌ ‌Genus‌ ‌names‌ ‌are‌ ‌shown‌ ‌for‌ ‌all‌ ‌taxa‌ ‌present‌ ‌at‌ ‌minimum‌ ‌0.1%‌ ‌mean‌ ‌relative‌‌abundance‌‌                               
(excluding‌‌those‌‌with‌‌‌de‌‌novo‌‌names).‌‌b)‌‌Heatmaps‌‌of‌‌the‌‌most‌‌abundant‌‌genera‌‌with‌‌more‌‌than‌‌two-fold‌‌                                 
relative‌ ‌abundance‌ ‌difference‌ ‌between‌ ‌the‌ ‌two‌ ‌primer‌ ‌sets.‌ ‌ 
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‌ 
The‌ ‌majority‌ ‌of‌ ‌genera‌ ‌(62%)‌ ‌showed‌ ‌less‌ ‌than‌ ‌two-fold‌ ‌difference‌ ‌in‌ ‌relative‌‌                       
abundances‌ ‌between‌ ‌the‌ ‌two‌ ‌primer‌ ‌sets,‌ ‌and‌ ‌the‌ ‌rest‌ ‌were‌‌preferentially‌‌detected‌‌with‌‌                         
either‌‌the‌‌V1-V3‌‌or‌‌the‌‌V4‌‌primer‌‌(19%‌‌for‌‌both)‌‌(‌Figure‌‌4‌).‌‌However,‌‌we‌‌observed‌‌that‌‌                               
several‌ ‌genera‌ ‌of‌ ‌known‌ ‌importance‌‌detected‌‌in‌‌high‌‌abundance‌‌by‌‌V1-V3‌‌were‌‌hardly‌‌                         
observed‌ ‌by‌ ‌V4,‌ ‌including‌ ‌‌Acidovorax,‌ ‌‌Rhodoferax,‌ ‌Ca.‌ ‌‌Villigracilis‌,‌‌Sphaerotilus‌,‌‌and‌‌                   
Leptothrix‌.‌ ‌In‌ ‌contrast,‌ ‌only‌ ‌a‌ ‌few‌ ‌genera‌ ‌abundant‌ ‌with‌ ‌V4‌ ‌were‌ ‌strongly‌‌                       
underestimated‌ ‌by‌ ‌V1-V3‌ ‌(e.g.,‌ ‌‌Acinetobacter‌ ‌‌and‌ ‌‌Prosthecobacter)‌.‌ ‌ 
‌ 

As‌ ‌the‌ ‌V1-V3‌ ‌primers‌ ‌provide‌ ‌better‌ ‌taxonomic‌ ‌resolution‌ ‌and‌ ‌the‌ ‌least‌ ‌bias‌ ‌in‌‌                         
community‌ ‌profiling‌ ‌of‌ ‌abundant‌ ‌process-important‌‌taxa,‌‌we‌‌concluded‌‌that‌‌this‌‌primer‌‌                     
set‌‌is‌‌generally‌‌better‌‌suited‌‌for‌‌studies‌‌of‌‌WWTPs.‌‌Accordingly,‌‌we‌‌primarily‌‌focus‌‌on‌‌                           
the‌‌V1-V3‌‌dataset‌‌for‌‌the‌‌following‌‌analyses.‌‌However,‌‌it‌‌should‌‌be‌‌noted‌‌that‌‌there‌‌are‌‌                             
cases‌ ‌where‌ ‌the‌ ‌V1-V3‌ ‌primer‌ ‌set‌ ‌is‌ ‌inappropriate,‌ ‌e.g.,‌ ‌for‌ ‌the‌ ‌studies‌ ‌of‌ ‌anammox‌‌                           
bacteria‌ ‌‌24,25‌.‌ ‌A‌ ‌complete‌ ‌list‌ ‌of‌ ‌differentially‌ ‌detected‌ ‌genera‌ ‌can‌ ‌be‌ ‌found‌ ‌in‌‌                         
Supplementary‌ ‌Data‌ ‌S2‌.‌ ‌ 
‌ 

Process‌ ‌and‌ ‌environmental‌ ‌factors‌ ‌affecting‌ ‌the‌ ‌activated‌ ‌sludge‌ ‌microbiota‌ ‌ 
Alpha‌‌diversity‌‌analysis‌‌revealed‌‌that‌‌the‌‌richness‌‌and‌‌diversity‌‌in‌‌activated‌‌sludge‌‌plants‌‌                         
were‌‌mainly‌‌determined‌‌by‌‌process‌‌type‌‌and‌‌industrial‌‌load‌‌(‌Figure‌‌S3‌,‌‌‌Supplementary‌‌                       
results‌).‌ ‌The‌ ‌richness‌ ‌and‌ ‌diversity‌ ‌increased‌ ‌with‌ ‌the‌ ‌complexity‌ ‌of‌ ‌the‌ ‌treatment‌‌                       
process,‌ ‌as‌ ‌found‌ ‌in‌ ‌other‌ ‌studies,‌ ‌reflecting‌ ‌the‌ ‌increased‌ ‌number‌ ‌of‌ ‌niches‌ ‌‌26‌.‌ ‌In‌‌                           
contrast,‌ ‌it‌ ‌decreased‌ ‌with‌ ‌high‌ ‌industrial‌ ‌loads,‌ ‌presumably‌ ‌because‌ ‌industrial‌‌                   
wastewater‌‌often‌‌is‌‌less‌‌complex‌‌and‌‌therefore‌‌promotes‌‌the‌‌growth‌‌of‌‌fewer‌‌specialised‌‌                         
species‌ ‌‌7‌.‌ ‌ 
‌ 

Distance‌ ‌decay‌ ‌relationship‌ ‌(DDR)‌ ‌analyses‌ ‌were‌ ‌used‌ ‌to‌ ‌determine‌ ‌the‌ ‌effect‌ ‌of‌‌                       
geographic‌ ‌distance‌ ‌in‌ ‌the‌‌microbial‌‌community‌‌similarity‌‌(‌Figure‌‌S4‌,‌‌‌Supplementary‌‌                   
results‌).‌ ‌We‌ ‌found‌ ‌that‌ ‌distance‌ ‌decay‌ ‌was‌ ‌only‌ ‌effective‌ ‌within‌ ‌shorter‌ ‌geographical‌‌                       
distances‌ ‌(<2,500‌ ‌km),‌ ‌which‌ ‌suggests‌ ‌that‌ ‌the‌ ‌microbiota‌ ‌was‌ ‌partly‌ ‌shaped‌ ‌by‌‌                       
immigrating‌‌bacteria‌‌from‌‌the‌‌source‌‌community‌‌as‌‌recently‌‌observed‌‌‌27‌.‌‌In‌‌addition,‌‌we‌‌                         
observed‌ ‌low‌ ‌similarity‌ ‌between‌ ‌geographically‌ ‌separated‌ ‌samples‌ ‌(>2,500‌ ‌km)‌ ‌at‌ ‌the‌‌                     
ASV-level,‌ ‌but‌ ‌higher‌ ‌similarities‌ ‌with‌ ‌OTUs‌ ‌clustered‌ ‌at‌ ‌97%‌ ‌and‌ ‌even‌ ‌more‌ ‌at‌ ‌the‌‌                           
genus-level.‌‌This‌‌suggests‌‌that‌‌many‌‌ASVs‌‌are‌‌geographically‌‌restricted‌‌and‌‌functionally‌‌                     
redundant‌‌in‌‌the‌‌activated‌‌sludge‌‌microbiota,‌‌so‌‌different‌‌strains‌‌or‌‌species‌‌from‌‌the‌‌same‌‌                           
genus‌ ‌across‌ ‌the‌ ‌world‌ ‌may‌ ‌provide‌ ‌similar‌ ‌functions.‌ ‌ 
‌ 
‌ 
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‌ 
Figure‌‌5:‌‌Effects‌‌of‌‌process‌‌and‌‌environmental‌‌factors‌‌on‌‌the‌‌activated‌‌sludge‌‌microbial‌‌community‌‌                           
structure.‌ ‌‌Principal‌ ‌coordinate‌‌analyses‌‌of‌‌Bray-Curtis‌‌and‌‌Soerensen‌‌beta-diversity‌‌for‌‌genera‌‌based‌‌on‌‌                         
V1-V3‌ ‌amplicon‌ ‌data.‌ ‌Samples‌‌are‌‌colored‌‌based‌‌on‌‌metadata.‌‌The‌‌fraction‌‌of‌‌variation‌‌in‌‌the‌‌microbial‌‌                               
community‌‌explained‌‌by‌‌each‌‌variable‌‌was‌‌determined‌‌by‌‌PERMANOVA‌‌(Adonis‌‌R‌2‌-values).‌‌Temperature‌‌                       
range:‌ ‌Very‌ ‌low‌ ‌=‌ ‌<10°C,‌ ‌low‌ ‌=‌ ‌10-15°C,‌ ‌moderate‌ ‌=‌ ‌15-20°C,‌ ‌high‌ ‌=‌‌20-25°C,‌‌very‌‌high‌‌=‌‌25-30°C,‌‌                                   
extremely‌ ‌high‌ ‌=‌ ‌>30°C‌ ‌.‌ ‌Industrial‌ ‌load:‌ ‌None‌ ‌=‌ ‌0%,‌ ‌very‌ ‌low‌ ‌=‌ ‌0-10%,‌ ‌low‌ ‌=‌ ‌10-30%,‌ ‌medium=‌‌                                   
30-50%,‌ ‌high‌ ‌50-100%,‌ ‌all‌ ‌=‌ ‌100%.‌ ‌ 
‌ 

To‌‌gain‌‌a‌‌deeper‌‌understanding‌‌of‌‌the‌‌factors‌‌that‌‌shape‌‌the‌‌activated‌‌sludge‌‌microbiota,‌‌                           
we‌ ‌examined‌ ‌the‌ ‌genus-level‌ ‌beta-diversity‌ ‌using‌ ‌principal‌ ‌coordinate‌ ‌analysis‌‌(PCoA)‌‌                   
and‌‌permutational‌‌multivariate‌‌analysis‌‌of‌‌variance‌‌(PERMANOVA)‌‌analyses‌‌(‌Figure‌‌5‌,‌‌                   
Supplementary‌ ‌results‌).‌ ‌We‌ ‌found‌ ‌that‌ ‌the‌ ‌overall‌ ‌microbial‌ ‌community‌ ‌was‌ ‌most‌‌                     
strongly‌ ‌affected‌ ‌by‌ ‌continent‌ ‌and‌ ‌temperature‌ ‌in‌ ‌the‌ ‌WWTPs.‌ ‌However,‌‌process‌‌type,‌‌                       
industrial‌‌load,‌‌and‌‌the‌‌climate‌‌zone‌‌also‌‌had‌‌significant‌‌impacts.‌‌The‌‌percentage‌‌of‌‌total‌‌                           
variation‌ ‌explained‌ ‌by‌ ‌each‌ ‌parameter‌ ‌was‌ ‌generally‌ ‌low,‌ ‌indicating‌ ‌that‌ ‌the‌ ‌global‌‌                       
WWTPs‌ ‌microbiota‌ ‌represents‌ ‌a‌ ‌continuous‌ ‌distribution‌ ‌rather‌ ‌than‌ ‌distinct‌ ‌states,‌ ‌as‌‌                     
observed‌ ‌for‌ ‌the‌ ‌human‌ ‌gut‌ ‌microbiota‌ ‌‌28‌.‌ ‌ ‌   
‌ 

Genera‌ ‌selected‌ ‌for‌ ‌by‌ ‌process‌ ‌type‌ ‌and‌ ‌temperature‌ ‌ 
Redundancy‌ ‌analyses‌ ‌(RDA)‌ ‌were‌ ‌used‌ ‌to‌ ‌identify‌ ‌which‌ ‌genera‌ ‌were‌ ‌the‌ ‌strongest‌‌                       
indicators‌ ‌for‌ ‌specific‌ ‌processes‌ ‌and/or‌ ‌environmental‌ ‌conditions.‌ ‌RDA‌ ‌was‌‌performed‌‌                   
on‌ ‌both‌ ‌V1-V3‌ ‌(‌Figure‌ ‌S5‌)‌ ‌and‌ ‌V4‌ ‌(‌Figure‌ ‌S6‌)‌ ‌amplicon‌ ‌data‌ ‌sets‌ ‌to‌ ‌ensure‌ ‌that‌‌                             
essential‌ ‌taxa‌ ‌were‌ ‌not‌ ‌missed‌ ‌due‌ ‌to‌ ‌primer‌ ‌bias.‌ ‌We‌ ‌here‌ ‌highlight‌ ‌the‌ ‌results‌ ‌for‌‌                             
process‌ ‌type‌ ‌and‌ ‌temperature.‌ ‌Results‌ ‌for‌ ‌the‌ ‌other‌ ‌parameters‌ ‌and‌ ‌RDA‌ ‌scores‌‌for‌‌all‌‌                           
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analyses‌ ‌can‌ ‌be‌ ‌found‌ ‌in‌ ‌‌Supplementary‌ ‌Results‌ ‌and‌ ‌‌Supplementary‌ ‌Data‌ ‌S3‌,‌‌                     
respectively.‌ ‌ 
‌ 

The‌ ‌RDA‌ ‌analyses‌ ‌of‌ ‌process‌ ‌types‌ ‌revealed‌ ‌that‌ ‌genera‌ ‌commonly‌ ‌involved‌ ‌in‌‌                       
nitrification‌ ‌(‌Nitrosomonas‌ ‌‌and‌ ‌Nitrospira‌),‌ ‌denitrification‌ ‌(‌Rhodoferax‌,‌ ‌‌Sulfuritalea‌),‌‌             
and‌ ‌the‌ ‌polyphosphate‌ ‌accumulating‌ ‌organisms‌ ‌(PAOs)‌ ‌(‌Tetrasphaera‌,‌ ‌‌Ca.‌‌               
Accumulibacter,‌ ‌and‌ ‌‌Dechloromonas‌)‌ ‌were‌‌strongly‌‌enriched‌‌in‌‌more‌‌advanced‌‌process‌‌                   
types‌‌along‌‌with‌‌‌de‌‌novo‌‌taxa‌‌midas_g_17‌‌(family:‌‌Saprospiraceae),‌‌midas_g_72‌‌(class:‌‌                     
Anaerolineae),‌ ‌and‌ ‌midas_g_300‌ ‌(order:‌ ‌Sphingobacteriales).‌ ‌Conversely,‌ ‌carbon‌‌             
removal‌ ‌plants‌ ‌were‌ ‌enriched‌ ‌with‌ ‌‌Hydrogenophaga‌ ‌and‌ ‌‌Prevotella,‌ ‌‌the‌ ‌filamentous‌‌                   
genera‌ ‌‌Sphaerotilus‌ ‌‌and‌ ‌‌Thiothrix,‌ ‌‌and‌ ‌the‌ ‌glycogen-accumulating‌ ‌organisms‌ ‌(GAOs)‌‌                 
Ca.‌ ‌‌Competibacter‌ ‌and‌ ‌‌Defluviicoccus‌.‌ ‌Specific‌ ‌to‌ ‌the‌ ‌EBPR‌ ‌plants‌ ‌were‌ ‌an‌ ‌increased‌‌                       
abundance‌ ‌of‌ ‌known‌ ‌PAOs‌ ‌(see‌ ‌above)‌ ‌and‌ ‌‌Azospira‌,‌ ‌‌Propionivibrio‌,‌ ‌‌Propioniciclava‌,‌‌                   
Ca.‌‌Amarolinea,‌‌and‌‌the‌‌‌de‌‌novo‌‌taxa‌‌midas_g_399‌‌(class:‌‌Actinobacteria),‌‌midas_g_384‌‌                     
(family:‌ ‌Saprospiraceae),‌ ‌and‌ ‌midas_g_945‌ ‌(class:‌ ‌Elusimicrobia).‌ ‌The‌ ‌latter‌ ‌genera‌‌                 
should‌ ‌be‌ ‌considered‌ ‌targets‌ ‌for‌ ‌further‌ ‌characterization‌ ‌as‌ ‌potential‌ ‌PAOs‌ ‌or‌ ‌GAOs.‌ ‌ 
‌ 

The‌ ‌RDA‌ ‌based‌ ‌on‌ ‌temperature‌‌showed‌‌that‌‌high‌‌temperatures‌‌were‌‌associated‌‌with‌‌an‌‌                         
increased‌ ‌abundance‌ ‌of‌ ‌‌Ca‌.‌ ‌Competibacter,‌ ‌‌Thauera‌,‌ ‌‌Defluviicoccus‌,‌ ‌‌Azospira‌,‌‌               
Rhodoplanes,‌‌Ottowia,‌‌‌and‌‌Phaeodactylibacter‌,‌‌whereas‌‌lower‌‌temperatures‌‌favoured‌‌the‌‌                 
presence‌ ‌of‌ ‌‌Flavobacterium‌,‌ ‌‌Tetrasphaera‌,‌ ‌‌Ferruginibacter‌,‌ ‌‌Trichococcus‌,‌ ‌‌Ca.‌‌             
Epiflobacter,‌‌and‌‌‌Acinetobacter‌.‌‌These‌‌differences‌‌suggest‌‌that‌‌plants‌‌with‌‌similar‌‌design‌‌                     
and‌ ‌operation‌‌may‌‌have‌‌differences‌‌in‌‌community‌‌composition‌‌depending‌‌on‌‌prevailing‌‌                     
temperature‌ ‌conditions.‌‌ ‌  
‌ 

Core‌ ‌and‌ ‌conditional‌ ‌rare‌ ‌or‌ ‌abundant‌ ‌taxa‌ ‌in‌ ‌the‌ ‌global‌ ‌activated‌ ‌sludge‌ ‌microbiota‌ ‌ 
Core‌‌taxa‌‌are‌‌commonly‌‌defined‌‌in‌‌complex‌‌communities‌‌based‌‌on‌‌how‌‌frequent‌‌specific‌‌                         
taxa‌ ‌are‌ ‌observed‌ ‌in‌ ‌samples‌ ‌from‌ ‌a‌ ‌well-defined‌ ‌habitat‌ ‌‌29‌.‌ ‌In‌ ‌addition,‌ ‌an‌ ‌abundance‌‌                           
threshold‌ ‌can‌ ‌be‌ ‌applied‌ ‌to‌ ‌select‌ ‌for‌ ‌those‌ ‌taxa‌ ‌that‌ ‌may‌ ‌likely‌ ‌have‌ ‌a‌ ‌quantitative‌‌                             
impact‌‌on‌‌ecosystem‌‌functioning‌‌‌6‌.‌‌We‌‌here‌‌used‌‌three‌‌frequency‌‌thresholds‌‌for‌‌the‌‌core‌‌                           
taxa‌ ‌with‌ ‌>0.1%‌ ‌relative‌ ‌abundance‌ ‌in‌ ‌80%‌ ‌(strict‌ ‌core),‌ ‌50%‌ ‌(general‌‌core),‌‌and‌‌20%‌‌                           
(loose‌ ‌core)‌ ‌of‌ ‌all‌ ‌activated‌ ‌sludge‌ ‌plants‌ ‌(‌Figure‌ ‌6a‌).‌ ‌ 
‌ 

12‌ ‌ 

‌ 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.06.451231doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?vQw3Mx
https://www.zotero.org/google-docs/?jZGwfz
https://doi.org/10.1101/2021.07.06.451231
http://creativecommons.org/licenses/by/4.0/


‌ 
Figure‌ ‌6:‌ ‌Identification‌ ‌of‌ ‌core‌ ‌and‌ ‌conditionally‌ ‌rare‌ ‌or‌ ‌abundant‌ ‌taxa.‌ ‌‌a)‌ ‌Identification‌ ‌of‌ ‌strict,‌‌                             
general,‌ ‌and‌ ‌loose‌ ‌core‌ ‌genera‌ ‌based‌ ‌on‌ ‌how‌ ‌often‌ ‌a‌ ‌given‌ ‌genus‌‌was‌‌observed‌‌at‌‌a‌‌relative‌‌abundance‌‌                                   
above‌ ‌0.1%‌ ‌in‌ ‌WWTPs.‌ ‌b)‌ ‌Identification‌ ‌of‌ ‌conditionally‌ ‌rare‌ ‌or‌ ‌abundant‌ ‌(CRAT)‌ ‌genera‌ ‌based‌ ‌on‌‌                             
whether‌ ‌a‌ ‌given‌ ‌genus‌ ‌was‌ ‌observed‌ ‌at‌ ‌a‌ ‌relative‌ ‌abundance‌ ‌above‌ ‌1%‌ ‌in‌ ‌at‌ ‌least‌ ‌one‌ ‌WWTP.‌ ‌The‌‌                                   
cumulative‌ ‌genus‌ ‌abundance‌ ‌is‌ ‌based‌ ‌on‌ ‌all‌ ‌ASVs‌ ‌classified‌ ‌at‌ ‌the‌ ‌genus-level.‌ ‌All‌ ‌core‌ ‌genera‌ ‌were‌‌                               
removed‌‌before‌‌identification‌‌of‌‌the‌‌CRAT‌‌genera.‌‌c)‌‌and‌‌d)‌‌Number‌‌of‌‌genera‌‌and‌‌species,‌‌respectively,‌‌                               
and‌‌their‌‌abundance‌‌in‌‌different‌‌process‌‌types‌‌across‌‌the‌‌global‌‌WWTPs.‌‌Values‌‌for‌‌genera‌‌and‌‌species‌‌are‌                                 
divided‌ ‌into‌ ‌strict‌ ‌core‌ ‌(SC),‌ ‌general‌ ‌core‌ ‌(GC),‌ ‌loose‌ ‌core‌ ‌(LC),‌ ‌CRAT,‌ ‌other‌ ‌taxa,‌ ‌and‌ ‌unclassified‌ ‌ASVs.‌ ‌ 
‌ 

In‌ ‌addition‌ ‌to‌ ‌the‌ ‌core‌ ‌taxa,‌ ‌we‌ ‌also‌ ‌identified‌ ‌conditionally‌ ‌rare‌ ‌or‌ ‌abundant‌ ‌taxa‌‌                           
(CRAT)‌ ‌‌30‌ ‌(‌Figure‌ ‌6b‌).‌ ‌These‌ ‌are‌ ‌taxa‌ ‌typically‌ ‌present‌ ‌in‌ ‌low‌ ‌abundance,‌ ‌but‌‌                         
occasionally‌ ‌become‌ ‌prevalent,‌ ‌including‌ ‌taxa‌ ‌related‌ ‌to‌ ‌process‌ ‌disturbances,‌ ‌such‌ ‌as‌‌                     
bacteria‌ ‌causing‌ ‌activated‌ ‌sludge‌ ‌foaming‌ ‌or‌ ‌those‌ ‌associated‌ ‌with‌ ‌the‌ ‌degradation‌ ‌of‌‌                       
specific‌ ‌residues‌ ‌in‌ ‌industrial‌ ‌wastewater.‌ ‌CRAT‌ ‌have‌ ‌only‌ ‌been‌ ‌studied‌ ‌in‌ ‌a‌ ‌single‌‌                         
wastewater‌ ‌treatment‌ ‌plant‌ ‌treating‌ ‌brewery‌ ‌wastewater,‌ ‌despite‌ ‌their‌ ‌huge‌ ‌potential‌‌                   
effect‌‌on‌‌performance‌‌‌30,31‌.‌‌CRAT‌‌are‌‌here‌‌defined‌‌as‌‌taxa‌‌which‌‌are‌‌not‌‌part‌‌of‌‌the‌‌core,‌‌                                 
but‌ ‌present‌ ‌in‌ ‌at‌ ‌least‌ ‌one‌ ‌WWTP‌ ‌with‌ ‌a‌ ‌relative‌ ‌abundance‌ ‌above‌ ‌1%.‌ ‌ 
‌ 
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‌ 

‌ 
Figure‌‌7:‌‌Percent‌‌relative‌‌abundance‌‌of‌‌strict‌‌and‌‌general‌‌core‌‌taxa‌‌across‌‌process‌‌types.‌‌‌a)‌‌Strict‌‌core‌‌                                 
genera.‌ ‌b)‌ ‌General‌ ‌core‌ ‌genera.‌ ‌c)‌ ‌General‌ ‌core‌ ‌species.‌ ‌The‌ ‌taxonomy‌ ‌for‌ ‌the‌ ‌core‌ ‌genera‌ ‌indicates‌‌                               
phylum‌‌and‌‌genus.‌‌The‌‌genus‌‌name‌‌is‌‌provided‌‌together‌‌with‌‌the‌‌core‌‌species.‌‌‌De‌‌novo‌‌taxa‌‌in‌‌the‌‌core‌‌are‌‌                                       
highlighted‌ ‌in‌ ‌red.‌ ‌ 
‌ 

Core‌‌taxa‌‌and‌‌CRAT‌‌were‌‌identified‌‌for‌‌both‌‌the‌‌V1-V3‌‌and‌‌V4‌‌amplicon‌‌data‌‌to‌‌ensure‌‌                               
that‌ ‌critical‌ ‌taxa‌ ‌were‌ ‌not‌‌missed‌‌due‌‌to‌‌primer‌‌bias.‌‌We‌‌identified‌‌250‌‌core‌‌genera‌‌(15‌‌                               
strict,‌‌65‌‌general,‌‌and‌ ‌170‌‌loose)‌‌and‌‌715‌‌CRAT‌‌genera‌‌(‌Supplementary‌‌Data‌‌S4‌).‌‌The‌‌                           
strict‌‌core‌‌genera‌‌(‌Figure‌‌7a‌)‌‌mainly‌‌contained‌‌genera‌‌with‌‌versatile‌‌metabolisms‌‌found‌‌                       
in‌ ‌several‌‌environments,‌‌including‌‌‌Flavobacterium‌,‌‌‌Novosphingobium‌,‌‌and‌‌‌Haliangium‌.‌‌               
The‌‌general‌‌core‌‌(‌Figure‌‌7b‌)‌‌included‌‌many‌‌known‌‌bacteria‌‌associated‌‌with‌‌nitrification‌‌                       
(‌Nitrosomonas‌ ‌‌and‌ ‌‌Nitrospira‌),‌ ‌polyphosphate‌ ‌accumulation‌ ‌(‌Tetrasphaera‌,‌ ‌‌Ca‌.‌‌             
Accumulibacter),‌ ‌and‌ ‌glycogen‌ ‌accumulation‌ ‌(‌Ca.‌ ‌Competibacter).‌ ‌The‌ ‌loose‌ ‌core‌‌                 
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contained‌ ‌well-known‌ ‌filamentous‌ ‌bacteria‌ ‌(‌Ca‌.‌ ‌Microthrix,‌ ‌‌Ca‌.‌ ‌Promineofilum,‌ ‌‌Ca.‌‌                 
Sarcinithrix,‌ ‌‌Gordonia‌,‌ ‌‌Kouleothrix‌,‌ ‌and‌ ‌‌Thiothrix‌),‌ ‌but‌ ‌also‌ ‌‌Nitrotoga,‌ ‌‌a‌ ‌less‌‌‌common‌‌                     
nitrifier‌ ‌in‌ ‌WWTPs.‌ ‌ 
‌ 

Because‌ ‌MiDAS‌ ‌4‌ ‌allowed‌ ‌for‌ ‌species-level‌ ‌classification,‌ ‌we‌ ‌also‌ ‌identified‌ ‌core‌ ‌and‌‌                       
CRAT‌‌species‌‌based‌‌on‌‌the‌‌same‌‌criteria‌‌as‌‌for‌‌genera‌‌(‌Figure‌‌S7,‌‌Supplementary‌‌Data‌‌                           
S4‌).‌‌This‌‌revealed‌‌113‌‌core‌‌species‌‌(0‌‌strict,‌‌9‌‌general,‌‌and‌‌104‌‌loose).‌‌The‌‌general‌‌core‌‌                               
species‌ ‌(‌Figure‌ ‌7c‌)‌ ‌included‌ ‌the‌ ‌‌Nitrospira‌ ‌defluvii‌ ‌and‌ ‌‌Tetrasphaera‌ ‌midas_s_5,‌ ‌a‌‌                     
common‌‌nitrifier‌‌and‌‌PAO,‌‌respectively.‌‌‌Arcobacter‌‌‌midas_s_2255,‌‌a‌‌potential‌‌pathogen‌‌                   
commonly‌‌abundant‌‌in‌‌the‌‌influent‌‌wastewater,‌‌was‌‌also‌‌part‌‌of‌‌the‌‌general‌‌core‌‌‌32‌.‌‌The‌‌                             
loose‌ ‌core‌ ‌contained‌ ‌additional‌ ‌species‌ ‌associated‌ ‌with‌ ‌nitrification‌ ‌(‌Nitrosomonas‌‌                 
midas_s_139‌ ‌and‌ ‌‌Nitrospira‌ ‌nitrosa‌),‌‌polyphosphate‌‌accumulation‌‌(‌Ca‌.‌‌Accumulibacter‌‌               
phosphatis,‌ ‌‌Dechloromonas‌ ‌midas_s_173,‌ ‌‌Tetrasphaera‌ ‌‌midas_s_45),‌ ‌as‌‌well‌‌as‌‌known‌‌                 
filamentous‌ ‌species‌ ‌(‌Ca‌.‌ ‌Microthrix‌ ‌parvicella‌ ‌and‌ ‌midas_s_2,‌ ‌‌Ca‌.‌ ‌Villigracilis‌‌                 
midas_s_471‌ ‌and‌ ‌midas_s_9223,‌ ‌‌Leptothrix‌ ‌midas_s_884).‌ ‌In‌ ‌addition‌ ‌to‌ ‌the‌ ‌core‌‌                   
species,‌ ‌we‌ ‌identified‌ ‌1417‌ ‌CRAT‌ ‌species.‌ ‌ 
‌ 

Many‌ ‌core‌ ‌taxa‌ ‌and‌ ‌CRAT‌ ‌can‌ ‌only‌ ‌be‌ ‌identified‌ ‌with‌ ‌MiDAS‌ ‌4‌ ‌ 
The‌ ‌core‌ ‌taxa‌ ‌and‌ ‌CRAT‌ ‌included‌ ‌a‌ ‌large‌‌proportion‌‌of‌‌MiDAS‌‌4‌‌‌de‌‌novo‌‌taxa.‌‌At‌‌the‌‌                                 
genus-level,‌ ‌106/250‌ ‌(42%)‌ ‌of‌ ‌the‌ ‌core‌‌genera‌‌and‌‌500/715‌‌(70%)‌‌of‌‌the‌‌CRAT‌‌genera‌‌                           
had‌ ‌MiDAS‌ ‌placeholder‌ ‌names.‌ ‌At‌ ‌the‌ ‌species-level,‌ ‌the‌ ‌proportion‌ ‌was‌ ‌even‌ ‌higher.‌‌                       
Here‌ ‌placeholder‌ ‌names‌ ‌were‌ ‌assigned‌ ‌to‌ ‌101/113‌ ‌(89%)‌ ‌of‌ ‌the‌ ‌core‌ ‌species‌ ‌and‌ ‌                         
1352/1417‌ ‌(95%)‌ ‌CRAT‌ ‌species.‌ ‌This‌ ‌highlights‌ ‌the‌ ‌importance‌ ‌of‌ ‌a‌ ‌comprehensive‌‌                     
taxonomy‌ ‌that‌ ‌includes‌ ‌the‌ ‌uncultured‌ ‌environmental‌ ‌taxa.‌‌ ‌  
‌ 

The‌ ‌core‌ ‌and‌ ‌CRAT‌ ‌taxa‌ ‌cover‌ ‌the‌ ‌majority‌ ‌of‌ ‌the‌ ‌global‌ ‌activated‌ ‌sludge‌ ‌microbiota‌‌ ‌  
Although‌ ‌the‌ ‌core‌ ‌taxa‌ ‌and‌ ‌CRAT‌ ‌represent‌ ‌a‌ ‌small‌ ‌fraction‌ ‌of‌ ‌the‌ ‌total‌ ‌diversity‌‌                           
observed‌ ‌in‌ ‌the‌ ‌MiDAS‌ ‌4‌ ‌reference‌ ‌database,‌ ‌they‌ ‌accounted‌ ‌for‌ ‌the‌ ‌majority‌ ‌of‌ ‌the‌‌                           
observed‌ ‌global‌ ‌activated‌ ‌sludge‌ ‌microbiota‌ ‌(‌Figure‌ ‌6c‌ ‌and‌ ‌‌Figure‌ ‌6d‌).‌ ‌Accumulated‌‌                     
read‌ ‌abundance‌ ‌estimates‌ ‌ranged‌ ‌from‌ ‌57-68%‌ ‌for‌ ‌the‌ ‌core‌ ‌genera‌ ‌and‌‌11-13%‌‌for‌‌the‌‌                           
CRAT,‌‌and‌‌combined‌‌they‌‌accounted‌‌for‌‌68-79%‌‌of‌‌total‌‌read‌‌abundance‌‌in‌‌the‌‌WWTPs‌‌                           
depending‌‌on‌‌process‌‌types.‌‌The‌‌core‌‌taxa‌‌represented‌‌a‌‌larger‌‌proportion‌‌of‌‌the‌‌activated‌‌                           
sludge‌ ‌microbiota‌ ‌for‌ ‌the‌ ‌more‌ ‌advanced‌ ‌process‌ ‌types,‌ ‌which‌ ‌likely‌ ‌reflects‌ ‌the‌‌                       
requirement‌‌of‌‌more‌‌versatile‌‌bacteria‌‌associated‌‌with‌‌the‌‌alternating‌‌redox‌‌conditions‌‌in‌‌                       
these‌‌types‌‌of‌‌WWTPs.‌‌The‌‌remaining‌‌fraction,‌‌21-32%,‌‌consisted‌‌of‌‌6-8%‌‌unclassified‌‌                       
genera‌‌and‌‌genera‌‌present‌‌in‌‌very‌‌low‌‌abundance,‌‌presumably‌‌with‌‌minor‌‌importance‌‌for‌‌                         
the‌ ‌plant‌ ‌performance.‌ ‌The‌ ‌species-level‌ ‌core‌ ‌taxa‌ ‌and‌ ‌CRAT‌ ‌represented‌ ‌11-24%‌ ‌and‌‌                       
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24-33%‌‌accumulated‌‌read‌‌abundance,‌‌respectively.‌‌Combined,‌‌they‌‌accounted‌‌for‌‌almost‌‌                   
50%‌ ‌of‌ ‌the‌ ‌observed‌ ‌microbiota.‌ ‌ 
‌ 

Global‌ ‌diversity‌ ‌within‌ ‌important‌ ‌functional‌ ‌guilds‌‌ ‌  
The‌ ‌general‌ ‌change‌ ‌from‌ ‌simple‌ ‌to‌ ‌advanced‌ ‌WWTPs‌ ‌with‌ ‌nutrient‌ ‌removal‌ ‌and‌ ‌the‌‌                         
transition‌ ‌to‌ ‌water‌ ‌resource‌ ‌recovery‌ ‌facilities‌ ‌(WRRFs)‌ ‌requires‌ ‌increased‌ ‌knowledge‌‌                   
about‌‌the‌‌bacteria‌‌responsible‌‌for‌‌the‌‌removal‌‌and‌‌recovery‌‌of‌‌nutrients,‌‌so‌‌we‌‌examined‌‌                           
the‌‌global‌‌diversity‌‌of‌‌well-described‌‌nitrifiers,‌‌denitrifiers,‌‌PAOs,‌‌and‌‌GAOs‌‌(‌Figure‌‌8‌).‌‌                       
GAOs‌‌were‌‌included‌‌because‌‌they‌‌may‌‌compete‌‌with‌‌the‌‌PAOs‌‌for‌‌nutrients‌‌and‌‌thereby‌‌                           
interfere‌ ‌with‌ ‌the‌ ‌biological‌ ‌recovery‌ ‌of‌ ‌phosphorus‌ ‌‌33‌.‌ ‌Because‌ ‌MiDAS‌ ‌4‌ ‌provided‌‌                       
species-level‌ ‌resolution‌ ‌for‌ ‌a‌ ‌large‌ ‌proportion‌ ‌of‌ ‌activated‌ ‌sludge‌ ‌microbiota,‌ ‌we‌ ‌also‌‌                       
investigated‌‌the‌‌species-level‌‌diversity‌‌within‌‌genera‌‌affiliated‌‌with‌‌the‌‌functional‌‌guilds.‌‌                     
A‌‌complete‌‌overview‌‌of‌‌species‌‌in‌‌all‌‌genera‌‌detected‌‌in‌‌this‌‌global‌‌study‌‌is‌‌provided‌‌in‌‌                               
the‌ ‌MiDAS‌ ‌field‌ ‌guide‌ ‌(https://www.midasfieldguide.org/guide).‌ ‌ 
‌ 

Nitrosomonas‌ ‌and‌ ‌potential‌ ‌comammox‌ ‌‌Nitrospira‌ ‌were‌ ‌the‌ ‌only‌ ‌abundant‌ ‌(≥0.1%‌‌                   
average‌ ‌relative‌ ‌abundance)‌ ‌genera‌ ‌found‌ ‌among‌ ‌ammonia-oxidizing‌ ‌bacteria‌ ‌(AOB),‌‌                 
whereas‌‌both‌‌‌Nitrospira‌‌and‌‌‌Nitrotoga‌‌were‌‌abundant‌‌among‌‌the‌‌nitrite‌‌oxidizers‌‌(NOB),‌‌                       
with‌‌‌Nitrospira‌‌being‌‌the‌‌most‌‌abundant‌‌across‌‌all‌‌countries‌‌(‌Figure‌‌8‌).‌‌‌Nitrobacter‌‌was‌‌                         
not‌ ‌detected,‌ ‌and‌ ‌‌Nitrosospira‌‌was‌‌detected‌‌in‌‌only‌‌a‌‌few‌‌plants‌‌in‌‌very‌‌low‌‌abundance‌‌                             
(≤0.01%‌‌average‌‌relative‌‌abundance).‌‌At‌‌the‌‌species-level,‌‌each‌‌genus‌‌had‌‌2-5‌‌abundant‌‌                       
species‌ ‌(‌Figure‌ ‌S8‌).‌ ‌The‌ ‌most‌ ‌abundant‌ ‌and‌ ‌widespread‌ ‌‌Nitrosomonas‌ ‌species‌ ‌was‌‌                     
midas_s_139.‌ ‌However,‌ ‌midas_s_11707‌ ‌and‌ ‌midas_s_11733‌ ‌were‌ ‌dominating‌ ‌in‌ ‌a‌ ‌few‌‌                   
countries.‌ ‌For‌ ‌‌Nitrospira‌,‌ ‌the‌ ‌most‌ ‌abundant‌ ‌species‌ ‌in‌ ‌nearly‌ ‌all‌ ‌countries‌ ‌was‌ ‌‌N.‌‌                         
defluvii‌.‌ ‌ASVs‌ ‌classified‌ ‌as‌ ‌the‌ ‌comammox‌ ‌‌N.‌ ‌nitrosa‌ ‌‌34,35‌ ‌was‌ ‌also‌ ‌common‌ ‌in‌ ‌many‌‌                           
countries‌‌across‌‌the‌‌world.‌‌However,‌‌because‌‌the‌‌comammox‌‌trait‌‌is‌‌not‌‌phylogenetically‌‌                       
conserved‌‌at‌‌the‌‌16S‌‌rRNA‌‌gene‌‌level‌‌‌34,35‌,‌‌we‌‌cannot‌‌conclude‌‌that‌‌these‌‌ASVs‌‌represent‌‌                             
true‌ ‌comammox‌ ‌bacteria.‌ ‌For‌ ‌‌Nitrotoga‌,‌ ‌only‌ ‌two‌ ‌species‌ ‌were‌ ‌detected‌ ‌with‌ ‌notable‌‌                       
abundance,‌ ‌midas_s_181‌ ‌and‌ ‌midas_s_9575.‌ ‌ ‌   
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‌ 
Figure‌ ‌8:‌ ‌Global‌ ‌diversity‌ ‌of‌ ‌genera‌ ‌belonging‌ ‌to‌ ‌major‌ ‌functional‌ ‌groups.‌ ‌The‌ ‌percent‌ ‌relative‌‌                           
abundance‌ ‌represents‌ ‌the‌ ‌mean‌ ‌abundance‌ ‌for‌ ‌each‌ ‌country‌ ‌taking‌ ‌into‌ ‌account‌ ‌only‌ ‌WWTPs‌ ‌with‌ ‌the‌‌                             
relevant‌ ‌process‌ ‌types:‌ ‌nitrifiers‌ ‌(C,N;‌ ‌C,ND,N,‌ ‌C,N,DN,P),‌ ‌denitrifiers‌ ‌(C,N,DN,‌ ‌C,N,DN,P),‌‌                   
polyphosphate‌ ‌accumulating‌ ‌organisms‌ ‌(PAOs)‌ ‌and‌ ‌glycogen‌ ‌accumulating‌ ‌organisms‌ ‌(GAOs)‌‌                 
(C,N,DN,P).‌‌The‌‌genera‌‌are‌‌sorted‌‌based‌‌on‌‌their‌‌mean‌‌global‌‌abundance‌‌with‌‌the‌‌most‌‌abundant‌‌genera‌‌at‌‌                                 
the‌ ‌bottom.‌‌ ‌  
‌ 

‌   
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Denitrifying‌ ‌bacteria‌ ‌are‌ ‌very‌ ‌common‌ ‌in‌ ‌advanced‌ ‌activated‌ ‌sludge‌ ‌plants,‌ ‌but‌ ‌are‌‌                       
generally‌ ‌poorly‌ ‌described.‌ ‌Among‌ ‌the‌ ‌known‌ ‌genera,‌ ‌‌Rhodoferax‌,‌ ‌‌Zoogloea‌,‌ ‌and‌‌                   
Thauera‌ ‌were‌ ‌most‌ ‌abundant‌ ‌(‌Figure‌ ‌8‌).‌ ‌‌Zoogloea‌ ‌and‌ ‌‌Thauera‌ ‌are‌ ‌well-known‌ ‌floc‌‌                       
formers,‌ ‌sometimes‌ ‌causing‌ ‌unwanted‌ ‌slime‌ ‌formation‌ ‌‌36‌.‌ ‌‌Rhodoferax‌ ‌was‌ ‌the‌ ‌most‌‌                     
common‌‌denitrifier‌‌in‌‌Europe,‌‌whereas‌Thauera‌‌dominated‌‌in‌‌Asia.‌‌The‌‌denitrifiers‌‌were‌‌                       
generally‌ ‌poorly‌ ‌classified‌ ‌at‌ ‌the‌ ‌species-level,‌ ‌except‌ ‌for‌ ‌‌Zoogloea‌ ‌(‌Figure‌ ‌S9‌).‌ ‌For‌‌                       
Zoogloea‌,‌ ‌only‌ ‌‌Z.‌ ‌caeni‌‌ ‌and‌ ‌midas_s_1080‌ ‌were‌ ‌abundant.‌ ‌ 
‌ 

EBPR‌ ‌is‌ ‌performed‌ ‌by‌ ‌PAOs,‌ ‌with‌ ‌three‌ ‌genera‌ ‌recognized‌ ‌as‌ ‌important‌ ‌in‌ ‌full-scale‌‌                         
WWTPs:‌ ‌‌Tetrasphaera‌,‌ ‌‌Dechloromonas‌,‌ ‌‌and‌ Ca.‌ ‌Accumulibacter‌ ‌‌13‌.‌ ‌According‌ ‌to‌‌                 
relative‌‌read‌‌abundance,‌‌all‌‌three‌‌were‌‌found‌‌in‌‌EBPR‌‌plants‌‌globally,‌‌with‌‌‌Tetrasphaera‌‌                         
as‌ ‌the‌ ‌most‌ ‌prevalent‌ ‌(‌Figure‌ ‌8‌).‌ ‌‌Dechloromonas‌ ‌was‌ ‌also‌ ‌abundant‌ ‌in‌ ‌nitrifying‌ ‌and‌‌                         
denitrifying‌ ‌plants‌ ‌without‌ ‌EBPR,‌ ‌indicating‌ ‌a‌ ‌more‌ ‌diverse‌ ‌ecology.‌ ‌Four‌ ‌recognized‌‌                     
GAOs‌ ‌were‌ ‌found‌ ‌globally:‌ ‌‌Ca.‌ ‌Competibacter,‌ ‌‌Defluviicoccus‌,‌ ‌‌Propionivibrio,‌ ‌and‌‌                 
Micropruina‌,‌ ‌‌with‌ ‌‌Ca‌.‌ ‌Competibacter‌ ‌being‌ ‌the‌ ‌most‌ ‌abundant‌ ‌(‌Figure‌ ‌8‌).‌Only‌‌a‌‌few‌‌                         
species‌ ‌(2-6‌ ‌species)‌ ‌in‌ ‌each‌ ‌genus‌ ‌were‌ ‌dominant‌ ‌across‌ ‌the‌ ‌world‌ ‌for‌ ‌both‌ ‌PAOs‌‌                           
(‌Figure‌ ‌S10‌)‌ ‌‌and‌ ‌GAOs‌ ‌(‌Figure‌ ‌S11‌),‌ ‌except‌ ‌for‌ ‌‌Ca‌.‌ ‌Competibacter,‌ ‌which‌ ‌covered‌‌                       
approx.‌ ‌20‌ ‌abundant‌ ‌but‌ ‌country-specific‌ ‌species.‌ ‌Among‌ ‌PAOs,‌ ‌the‌ ‌abundant‌ ‌species‌‌                     
were‌ ‌‌Tetrasphaera‌ ‌midas_s_5,‌ ‌‌Dechloromonas‌ ‌midas_s_173,‌ ‌‌Ca.‌ ‌‌Accumulibacter‌‌             
midas_s_315,‌‌‌Ca.‌‌A.‌‌phosphatis,‌‌and‌‌‌Ca.‌‌A.‌‌aalborgensis.‌‌Interestingly,‌‌some‌‌of‌‌the‌‌most‌‌                         
abundant‌ ‌PAOs‌ ‌and‌ ‌GAOs‌ ‌were‌ ‌also‌ ‌abundant‌ ‌in‌ ‌the‌ ‌simple‌ ‌process‌ ‌design‌ ‌with‌‌                         
C-removal,‌ ‌indicating‌ ‌more‌ ‌versatile‌ ‌metabolisms.‌ ‌ ‌   
‌ 

Global‌ ‌diversity‌ ‌of‌ ‌filamentous‌ ‌bacteria‌ ‌ 
Filamentous‌‌bacteria‌‌are‌‌essential‌‌for‌‌creating‌‌strong‌‌activated‌‌sludge‌‌flocs.‌‌However,‌‌in‌‌                       
large‌ ‌numbers,‌ ‌they‌ ‌can‌ ‌also‌ ‌lead‌ ‌to‌ ‌loose‌ ‌flocs‌ ‌and‌ ‌poor‌ ‌settling‌ ‌properties‌.‌ ‌This‌ ‌is‌‌                             
known‌ ‌as‌ ‌bulking,‌ ‌a‌ ‌major‌ ‌operational‌ ‌problem‌ ‌in‌‌many‌‌WWTPs.‌‌Many‌‌can‌‌also‌‌form‌‌                           
foam‌ ‌on‌ ‌top‌ ‌of‌ ‌process‌ ‌tanks‌ ‌due‌ ‌to‌‌hydrophobic‌‌surfaces.‌‌Presently,‌‌approximately‌‌20‌‌                         
genera‌‌are‌‌known‌‌to‌‌contain‌‌filamentous‌‌species‌‌‌37‌,‌‌and‌‌among‌‌those,‌‌the‌‌most‌‌abundant‌‌                           
are‌‌‌Ca.‌‌Microthrix,‌‌‌Leptothrix,‌‌‌Ca‌.‌‌Villigracilis,‌‌‌Trichococcus‌,‌‌and‌‌‌Sphaerotilus‌‌‌(‌Figure‌‌                   
9‌).‌ ‌They‌ ‌are‌ ‌all‌ ‌well-known‌ ‌from‌ ‌studies‌ ‌on‌ ‌mitigation‌ ‌of‌ ‌poor‌ ‌settling‌ ‌properties‌ ‌in‌‌                           
WWTPs.‌‌Interestingly,‌‌‌Leptothrix‌,‌‌‌Sphaerotilus‌‌and‌‌‌Ca.‌‌Villigracilis‌‌belong‌‌to‌‌the‌‌genera‌‌                     
where‌ ‌abundance-estimation‌ ‌depended‌ ‌strongly‌ ‌on‌ ‌primers,‌ ‌with‌ ‌V4‌ ‌underestimating‌‌                 
their‌‌abundance‌‌(‌Figure‌‌3‌).‌‌‌Ca.‌‌Microthrix‌‌and‌‌‌Leptothrix‌‌‌were‌‌strongly‌‌associated‌‌with‌‌                       
continents,‌ ‌most‌ ‌common‌ ‌in‌ ‌Europe‌ ‌and‌ ‌less‌ ‌in‌ ‌Asia‌ ‌and‌ ‌North‌ ‌America‌ ‌(‌Figure‌ ‌9‌).‌ ‌ 
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‌ 
Figure‌‌9:‌‌Global‌‌diversity‌‌of‌‌known‌‌filamentous‌‌organisms.‌‌‌The‌‌percent‌‌relative‌‌abundance‌‌represents‌                         
the‌ ‌mean‌ ‌abundance‌ ‌for‌ ‌each‌ ‌country‌ ‌across‌ ‌all‌ ‌process‌ ‌types.‌ ‌The‌ ‌eight‌ ‌most‌ ‌abundant‌ ‌filamentous‌‌                             
organisms‌ ‌based‌ ‌on‌ ‌mean‌ ‌relative‌ ‌abundance‌ ‌across‌ ‌the‌ ‌countries‌ ‌are‌ ‌shown.‌ ‌The‌ ‌filaments‌ ‌are‌ ‌sorted‌‌                             
based‌ ‌on‌ ‌their‌ ‌mean‌ ‌global‌ ‌abundance‌ ‌with‌ ‌the‌ ‌most‌ ‌abundant‌ ‌taxa‌ ‌at‌ ‌the‌ ‌bottom.‌ ‌The‌ ‌remaining‌ ‌taxa‌‌                                 
comprise‌ ‌‌Haliscomenobacter‌,‌ ‌‌Defluviicoccus‌ ‌seviorii‌,‌ ‌‌Sarcinithrix‌,‌ ‌‌Ca‌.‌ ‌Amarolinea,‌ Kouleothrix‌,‌ ‌‌Ca‌.‌‌                 
Alysiosphaera,‌ ‌‌Nocardioides‌,‌ ‌midas_g_1668,‌ ‌‌Anaerolinea‌,‌ ‌‌Tetrashaera‌ ‌‌midas_s_328,‌ ‌midas_g_105,‌‌             
midas_g_2111,‌ ‌midas_g_344,‌ ‌‌Skermania‌,‌ ‌‌Ca‌.‌ ‌Nostocoida,‌ ‌‌Neomegalonema‌,‌‌and‌‌‌Beggiatoa‌‌(not‌‌all‌‌were‌‌                     
detected).‌ ‌ 
‌ 

Many‌‌of‌‌the‌‌filamentous‌‌bacteria‌‌were‌‌linked‌‌to‌‌specific‌‌process‌‌types‌‌(‌Figure‌‌S12‌),‌‌e.g.,‌‌                           
Ca‌.‌ ‌Microthrix‌ ‌were‌ ‌not‌ ‌observed‌ ‌in‌ ‌WWTPs‌ ‌with‌ ‌carbon‌ ‌removal‌ ‌only,‌ ‌and‌ ‌‌Ca‌.‌‌                         
Amarolinea‌‌were‌‌only‌‌abundant‌‌in‌‌EBPR‌‌plants.‌‌The‌‌number‌‌of‌‌abundant‌‌species‌‌within‌‌                         
the‌ ‌genera‌ ‌were‌ ‌generally‌‌low,‌‌with‌‌one‌‌species‌‌in‌‌‌Trichococcus,‌‌‌two‌‌in‌‌‌Ca.‌‌Microthrix‌‌                           
and‌ ‌approx.‌ ‌five‌ ‌in‌ ‌‌Leptothrix‌ ‌‌and‌ ‌‌Ca‌.‌ ‌Villigracilis‌ ‌(‌Figure‌ ‌S13‌).‌ ‌Only‌ ‌five‌ ‌abundant‌‌                         
species‌ ‌were‌ ‌observed‌ ‌for‌ ‌‌Sphaerotilus‌.‌ ‌However,‌ ‌a‌ ‌substantial‌ ‌fraction‌ ‌of‌ ‌unclassified‌‌                     
ASVs‌‌was‌‌also‌‌observed,‌‌demonstrating‌‌that‌‌certain‌‌species‌‌within‌‌this‌‌genus‌‌are‌‌poorly‌‌                         
resolved‌ ‌based‌ ‌on‌ ‌the‌ ‌16S‌ ‌rRNA‌ ‌gene.‌ ‌‌Ca.‌ ‌‌Promineofilum‌‌was‌‌also‌‌poorly‌‌resolved‌‌at‌‌                           
the‌ ‌species-level‌ ‌(‌Figure‌ ‌S14‌).‌ 
‌ 

Conclusion‌ ‌and‌ ‌perspectives‌ ‌ 
We‌ ‌present‌ ‌a‌ ‌worldwide‌ ‌collaborative‌ ‌effort‌ ‌to‌ ‌produce‌ ‌MiDAS‌ ‌4,‌ ‌an‌ ‌ASV-resolved‌‌                       
full-length‌ ‌16S‌ ‌rRNA‌ ‌gene‌ ‌reference‌ ‌database,‌ ‌which‌ ‌covers‌ ‌more‌ ‌than‌‌31,000‌‌species‌‌                       
and‌ ‌enables‌ ‌genus-‌‌to‌‌species-level‌‌resolution‌‌in‌‌microbial‌‌community‌‌profiling‌‌studies.‌‌                     
MiDAS‌ ‌4‌ ‌covers‌ ‌the‌ ‌vast‌ ‌majority‌ ‌of‌ ‌WWTP‌‌bacteria‌‌globally‌‌and‌‌provides‌‌a‌‌strongly‌‌                           
needed‌ ‌common‌ ‌taxonomy‌ ‌for‌ ‌the‌ ‌field,‌ ‌which‌ ‌provides‌ ‌the‌ ‌foundation‌ ‌for‌‌                     
comprehensive‌ ‌linking‌ ‌of‌ ‌microbial‌ ‌taxa‌ ‌in‌ ‌the‌ ‌ecosystem‌ ‌with‌ ‌their‌ ‌functional‌ ‌traits.‌‌                       
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Presently,‌ ‌hundreds‌ ‌of‌ ‌studies‌ ‌are‌ ‌undertaken‌ ‌to‌ ‌combine‌ ‌engineering‌ ‌and‌ ‌microbial‌‌                     
aspects‌ ‌of‌ ‌full-scale‌ ‌WWTPs.‌ ‌However,‌ ‌most‌ ‌ASVs‌ ‌or‌ ‌OTUs‌ ‌in‌ ‌these‌ ‌studies‌ ‌are‌‌                         
classified‌ ‌at‌ ‌poor‌ ‌taxonomic‌ ‌resolution‌ ‌(family-level‌ ‌or‌ ‌above)‌ ‌due‌ ‌to‌ ‌the‌ ‌use‌ ‌of‌‌                         
incomplete‌ ‌universal‌ ‌reference‌ ‌databases.‌ ‌Because‌ ‌many‌ ‌important‌ ‌functional‌ ‌traits‌‌are‌‌                   
only‌ ‌conserved‌ ‌at‌ ‌high‌ ‌taxonomic‌ ‌resolution‌ ‌(genus-‌ ‌or‌ ‌species-level),‌ ‌this‌ ‌strongly‌‌                     
hampers‌ ‌our‌ ‌ability‌ ‌to‌ ‌transfer‌ ‌new‌ ‌taxa-specific‌ ‌knowledge‌‌from‌‌one‌‌study‌‌to‌‌another.‌‌                         
This‌ ‌will‌ ‌change‌ ‌with‌ ‌MiDAS‌ ‌4,‌ ‌and‌ ‌we‌ ‌expect‌ ‌that‌ ‌reprocessing‌ ‌of‌ ‌data‌ ‌from‌ ‌earlier‌‌                             
studies‌ ‌may‌ ‌reveal‌ ‌new‌ ‌perspectives‌ ‌into‌ ‌wastewater‌ ‌treatment‌ ‌microbiology.‌ ‌Our‌ ‌new‌‌                     
online‌ ‌global‌ ‌MiDAS‌ ‌Field‌ ‌Guide‌ ‌presents‌ ‌the‌ ‌data‌ ‌generated‌ ‌in‌ ‌this‌ ‌study‌ ‌and‌‌                         
summarises‌‌present‌‌knowledge‌‌about‌‌all‌‌taxa.‌‌We‌‌encourage‌‌researchers‌‌within‌‌the‌‌field‌‌                       
to‌ ‌contribute‌ ‌new‌ ‌knowledge‌ ‌to‌ ‌MiDAS‌ ‌using‌ ‌the‌ ‌contact‌ ‌link‌ ‌in‌ ‌the‌ ‌MiDAS‌ ‌website‌‌                           
(https://www.midasfieldguide.org/guide/contact).‌‌ ‌  
‌ 

The‌‌global‌‌microbiota‌‌of‌‌activated‌‌sludge‌‌plants‌‌has‌‌been‌‌predicted‌‌to‌‌harbour‌‌a‌‌massive‌‌                           
diversity‌ ‌with‌ ‌up‌ ‌to‌ ‌one‌ ‌billion‌ ‌species‌ ‌‌2‌.‌ ‌However,‌ ‌most‌ ‌of‌ ‌these‌ ‌occur‌ ‌at‌ ‌very‌ ‌low‌‌                               
abundance‌‌and‌‌are‌‌without‌‌importance‌‌for‌‌the‌‌treatment‌‌process.‌‌By‌‌focusing‌‌only‌‌on‌‌the‌‌                           
abundant‌ ‌taxa,‌ ‌we‌ ‌can‌ ‌see‌ ‌that‌ ‌the‌ ‌number‌ ‌is‌ ‌much‌ ‌smaller,‌ ‌i.e.,‌ ‌approximately‌ ‌1000‌‌                           
genera‌ ‌and‌ ‌1500‌ ‌species.‌ ‌We‌ ‌consider‌ ‌these‌ ‌taxa‌ ‌functionally‌ ‌the‌ ‌most‌ ‌important‌‌                       
globally,‌‌representing‌‌a‌‌“most‌‌wanted‌‌list”‌‌for‌‌future‌‌studies.‌‌Some‌‌taxa‌‌are‌‌abundant‌‌in‌‌                           
most‌‌WWTPs‌‌(core‌‌taxa),‌‌and‌‌others‌‌are‌‌occasionally‌‌abundant‌‌in‌‌fewer‌‌plants‌‌(CRAT).‌‌                         
The‌‌CRAT‌‌have‌‌received‌‌little‌‌attention‌‌in‌‌the‌‌field‌‌of‌‌wastewater‌‌treatment,‌‌but‌‌they‌‌can‌‌                             
be‌‌of‌‌profound‌‌importance‌‌for‌‌WWTP‌‌performance.‌‌‌Both‌‌groups‌‌have‌‌a‌‌high‌‌fraction‌‌of‌‌                           
poorly‌ ‌characterised‌ ‌species‌.‌ ‌The‌ ‌new‌ ‌species-level‌ ‌resolution‌ ‌enables‌ ‌us‌ ‌to‌ ‌identify‌‌                     
samples‌‌where‌‌these‌‌important‌‌core‌‌taxa‌‌occur‌‌in‌‌high‌‌abundance.‌‌This‌‌provides‌‌an‌‌ideal‌‌                           
starting‌ ‌point‌ ‌for‌ ‌obtaining‌ ‌high-quality‌ ‌metagenome-assembled‌ ‌genomes‌ ‌(MAGs),‌‌               
isolation‌ ‌of‌ ‌pure‌ ‌cultures,‌ ‌in‌‌addition‌‌to‌‌targeted‌‌culture-independent‌‌studies‌‌to‌‌uncover‌‌                       
their‌ ‌physiological‌ ‌and‌ ‌ecological‌ ‌roles.‌ ‌ 
‌ 

Among‌ ‌the‌ ‌known‌ ‌functional‌ ‌guilds,‌ ‌such‌ ‌as‌ ‌nitrifiers‌ ‌or‌ ‌polyphosphate-accumulating‌‌                   
organisms,‌‌the‌‌same‌‌genera‌‌were‌‌found‌‌worldwide,‌‌with‌‌only‌‌a‌‌few‌‌abundant‌‌species‌‌in‌‌                           
each‌ ‌genus.‌ ‌There‌ ‌were‌ ‌differences‌ ‌in‌ ‌the‌ ‌community‌ ‌structure,‌ ‌and‌ ‌the‌ ‌abundance‌ ‌of‌‌                         
dominant‌ ‌species‌ ‌was‌ ‌mainly‌ ‌shaped‌ ‌by‌ ‌process‌ ‌type,‌ ‌temperature,‌ ‌and‌ ‌in‌ ‌some‌ ‌cases,‌‌                         
continent.‌‌This‌‌discovery‌‌sends‌‌an‌‌important‌‌message‌‌to‌‌the‌‌field:‌‌relatively‌‌few‌‌species‌‌                         
are‌ ‌abundant‌ ‌worldwide,‌ ‌so‌ ‌research‌ ‌or‌ ‌operational‌ ‌results‌ ‌can‌ ‌reliably‌ ‌be‌ ‌transferred‌‌                       
from‌‌one‌‌geographical‌‌region‌‌to‌‌another,‌‌stimulating‌‌the‌‌transition‌‌from‌‌WWTPs‌‌to‌‌more‌‌                         
sustainable‌ ‌WRRFs.‌ ‌ 

‌ 

20‌ ‌ 

‌ 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.06.451231doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?HV9FwT
https://doi.org/10.1101/2021.07.06.451231
http://creativecommons.org/licenses/by/4.0/


The‌ ‌relatively‌ ‌low‌ ‌number‌ ‌of‌ ‌uncharacterized‌ ‌abundant‌ ‌species‌ ‌also‌ ‌shows‌ ‌that‌ ‌it‌ ‌is‌‌                         
within‌ ‌our‌ ‌reach‌ ‌to‌ ‌describe‌ ‌all‌ ‌of‌ ‌them‌ ‌in‌ ‌terms‌ ‌of‌ ‌identity,‌ ‌physiology,‌ ‌ecology,‌ ‌and‌‌                             
dynamics,‌ ‌providing‌ ‌the‌ ‌necessary‌ ‌knowledge‌ ‌for‌ ‌informed‌ ‌process‌ ‌optimization‌ ‌and‌‌                   
management.‌ ‌The‌ ‌number‌ ‌of‌ ‌poorly‌ ‌described‌ ‌genera‌ ‌(i.e.,‌ ‌those‌ ‌with‌ ‌only‌ ‌a‌ ‌MiDAS‌‌                         
placeholder‌‌genus‌‌name)‌‌was‌‌88‌‌among‌‌the‌‌250‌‌core‌‌genera‌‌(35%)‌‌and‌‌more‌‌than‌‌89%‌‌at‌‌                               
the‌‌species-level,‌‌so‌‌there‌‌is‌‌still‌‌some‌‌work‌‌to‌‌do‌‌to‌‌link‌‌their‌‌identities‌‌and‌‌function.‌‌An‌‌                                 
important‌ ‌step‌ ‌in‌ ‌this‌ ‌direction‌ ‌is‌ ‌the‌ ‌visualization‌ ‌of‌ ‌the‌ ‌populations.‌ ‌With‌ ‌the‌‌                         
comprehensive‌ ‌set‌ ‌of‌ ‌FL-ASVs,‌ ‌it‌ ‌is‌ ‌now,‌ ‌for‌ ‌the‌ ‌first‌ ‌time,‌ ‌possible‌ ‌to‌ ‌design‌‌                           
comprehensive‌‌sets‌‌of‌‌specific‌‌FISH‌‌probes,‌‌and‌‌to‌‌critically‌‌evaluate‌‌the‌‌old‌‌probes.‌‌In‌‌                           
the‌‌Danish‌‌WWTPs,‌‌we‌‌have‌‌successfully‌‌done‌‌this‌‌for‌‌groups‌‌in‌‌the‌‌Acidobacteriota‌‌‌38‌ ‌                           
based‌ ‌on‌ ‌the‌ ‌MiDAS‌ ‌3‌ ‌database‌‌‌18‌.‌‌Our‌‌recent‌‌retrieval‌‌of‌‌more‌‌than‌‌1000‌‌high-quality‌‌                             
MAGs‌ ‌from‌ ‌Danish‌ ‌WWTPs‌ ‌with‌ ‌advanced‌‌process‌‌design‌‌is‌‌also‌‌an‌‌important‌‌step‌‌to‌‌                           
link‌ ‌identity‌ ‌to‌ ‌function‌ ‌‌39‌.‌ ‌The‌ ‌HQ-MAGs‌ ‌can‌ ‌be‌ ‌linked‌ ‌directly‌ ‌to‌ ‌MiDAS‌‌4‌‌as‌‌they‌‌                               
contain‌ ‌complete‌ ‌16S‌ ‌rRNA‌ ‌genes.‌ ‌They‌ ‌cover‌ ‌62%‌ ‌(156/250)‌ ‌of‌ ‌the‌ ‌core‌ ‌genera‌ ‌and‌‌                           
61%‌‌(69/113)‌‌of‌‌the‌‌core‌‌species‌‌identified‌‌in‌‌this‌‌study.‌‌These‌‌MAGs‌‌may‌‌also‌‌form‌‌the‌‌                               
basis‌ ‌for‌ ‌further‌ ‌studies‌ ‌to‌ ‌link‌ ‌identity‌ ‌and‌ ‌function,‌ ‌e.g.,‌ ‌by‌ ‌applying‌‌                       
metatranscriptomics‌ ‌‌40‌ ‌and‌‌other‌‌‌in‌‌situ‌‌techniques‌‌such‌‌as‌‌FISH‌‌combined‌‌with‌‌Raman‌‌                         
41–43‌,‌ ‌guided‌ ‌by‌ ‌the‌ ‌“most‌ ‌wanted”‌ ‌list‌ ‌provided‌‌in‌‌this‌‌study.‌‌We‌‌expect‌‌that‌‌MiDAS‌‌4‌‌                               
will‌‌have‌‌huge‌‌implications‌‌for‌‌future‌‌microbial‌‌ecology‌‌studies‌‌in‌‌wastewater‌‌treatment‌‌                       
systems.‌ ‌ 
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