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Precise characterization and targeting of host cell transcrip-
tional machinery hijacked by SARS-CoV-2 remains challeng-
ing. To identify therapeutically targetable mechanisms that are
critical for SARS-CoV-2 infection, here we elucidated the Mas-
ter Regulator (MR) proteins representing mechanistic determi-
nants of the gene expression signature induced by SARS-CoV-2.
The analysis revealed coordinated inactivation of MR-proteins
linked to regulatory programs potentiating efficiency of viral
replication (detrimental host MR-signature) and activation of
MR-proteins governing innate immune response programs (ben-
eficial MR-signature). To identify MR-inverting compounds ca-
pable of rescuing activity of inactivated host MR-proteins, with-
out adversely affecting the beneficial MR-signature, we devel-
oped the ViroTreat algorithm. Overall, >80% of drugs pre-
dicted to be effective by this methodology induced significant
reduction of SARS-CoV-2 infection, without affecting cell via-
bility. ViroTreat is fully generalizable and can be extended to
identify drugs targeting the host cell-based MR signatures in-
duced by virtually any pathogen.
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Introduction

Although the global death toll from COVID-19 is now
approaching 3.8M, with almost 152M documented cases
worldwide(1), only 2.85 billion vaccine doses have been ad-
ministered as of June 26th, 2021. Problematically, their dis-
tribution has been characterized by striking differences based

on geography, income, education, and other factors(2, 3).
These data highlight the need for a global, multi-pronged
approach to complement vaccine-mediated prevention with
novel pharmacologic treatments for infected individuals, es-
pecially among those at higher risk for poor outcomes. This
necessity is strongly supported by the continued emergence
of SARS-CoV-2 variants with increased transmission rates
and increased risk of resistance to current vaccines. Indeed,
the epidemiological community acknowledges that achieving
target herd immunity thresholds, estimated to be about 60%
to 70% of the population, is unlikely in the foreseeable future.

While the most desirable therapies are those that could be
prescribed at the first sign of infection—especially using oral
drugs in an outpatient setting—the development and identi-
fication of effective pharmaceutical agents to moderate the
clinical effects of COVID-19 during early stages of infec-
tion remain elusive. In addition to SARS-CoV-2, emergence
of new pathogens with pandemic potential is constantly in-
creasing due to population growth and mobility. As a re-
sult, availability of novel, rapidly deployable, and pathogen-
agnostic methodologies for rapid identification of pharmaco-
logical agents that mitigate disease morbidity and mortality
associated with viral infection would represent a critical ad-
vance in our response to both the current as well as future
pandemics.

Several approaches have been developed to identify specific
host pathways and proteins whose individual interaction with
viral proteins is either required to mediate SARS-CoV-2 in-
fection or represents a key modulator of virulence(4–9). In
contrast, there has been relatively little focus on experimen-
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tal elucidation of host cell transcriptional control mechanisms
and programs promoting a pro-viral cellular environment, in-
cluding identification of Master Regulator (MR) proteins rep-
resenting viral infection-mediated determinants of the tran-
scriptional regulatory programs hijacked by viruses to im-
prove their replication efficiency and overall infectivity. To
address this challenge systematically, we leveraged computa-
tional methodologies originally developed in the field of on-
cology to identify MR proteins controlling the transcriptional
state of cancer cells(10) and to prioritize MR-inverting drugs
to decommission the regulatory programs required by cancer
cells to maintain their aberrant cell state(11). Here we argue
that extension and translation of these methodologies to viral
infection can identify host cell MR proteins representing key
mechanistic dependencies of virtually any viral pathogen, as
well as drugs that achieve their therapeutic potential by mod-
ulating the activity of these MRs.

Based on their definition, MRs can be accurately and sys-
tematically identified by assessing the enrichment of their
transcriptional targets in differentially expressed genes, us-
ing the Virtual Inference of Protein activity by Enriched Reg-
ulon (VIPER) analysis(12). While many approaches can
be used to identify the tissue-specific targets of a protein,
the Algorithm for the Accurate Reconstruction of Cellular
Networks (ARACNe)(13) is one of the few that has been
extensively experimentally tested, with validation rates ex-
ceeding 70%(13–15). We have shown that VIPER can ac-
curately measure the activity of >70% of regulatory pro-
teins, including in single cells, where we have shown that
metaVIPER(16)—a VIPER extension specifically designed
for single-cell analyses—can virtually eliminate the gene
dropout issue due to low single cell profiling depth(17, 18)
and outperform antibody based measurements(17). Both al-
gorithms have been highly effective in elucidating protein-
based mechanisms that were virtually undetectable by gene
expression-based methods alone(10, 17, 19, 20) (see meth-
ods for additional details). Once MR proteins are identi-
fied by VIPER analysis, we have shown that the Clinical
Laboratory Improvement Amendments (CLIA)-certified On-
coTreat algorithm(11) can accurately and efficiently iden-
tify small molecule inhibitors that can invert their activity
thus collapsing the regulatory programs they control. The
latter leverages large-scale gene expression profiles of MR-
matched cell lines perturbed with a comprehensive reper-
toire of clinically-relevant drugs, including Food and Drug
Administration (FDA)-approved and late-stage experimental
ones and has led to several clinical trials (NCT02066532,
NCT02632071, and NCT03211988, among others).

It is therefore reasonable to ask whether these methodologies
can be successfully generalized to predict therapeutic agents
for non-cancer-related diseases, including those caused by in-
fectious pathogens. Given the urgency mandated by the cur-
rent COVID-19 pandemic, we decided to test the applicabil-
ity of this approach to SARS-CoV-2. Specifically, we asked
whether these methodologies could be used to identify MR
proteins in host cells representing the mechanistic determi-

nants of the transcriptional programs hijacked by the virus to
support efficient replication and dissemination, as well as the
drugs capable of inverting their activity. Should this prove
successful, the methodology could be trivially generalized to
other pathogens, conditional only on the availability of ap-
propriate infection gene expression signatures.

VIPER-inferred MRs from multiple SARS-CoV-2 infection
models consistently showed that innate immune response
programs were primarily governed by host MRs that were
significantly activated in response to SARS-CoV-2 infection.
In sharp contrast, the transcriptional programs required by
the virus to achieve optimal replication and infectivity during
the hijack phase were controlled by a different repertoire of
host MRs that were significantly inactivated following infec-
tion. We designed the ViroTreat algorithm to identify com-
pounds targeting and counteracting the subset of host cell
regulatory mechanisms that are hijacked by the virus to cre-
ate a pro-infective state, thereby inducing host cell-dependent
“viral regulatory contraception”. When used to prioritize a
set of 154 FDA-approved drugs primarily indicated in oncol-
ogy, ViroTreat predictions were highly effective, resulting in
>80% success rate in reducing SARS-CoV-2 infectivity in
colon epithelial cells, without affecting cell viability.

Based on these findings, we conclude that ViroTreat is not
only potentially valuable for identifying therapies in the set-
ting of COVID-19, but this approach can easily be general-
ized for virtually any pathogen in order to target host cell
regulatory mechanisms that facilitate viral hijacking and are
essential for the infective cycle.

Results

Description of the ViroTreat algorithm. ViroTreat at-
tempts to repurpose drugs as potential novel antiviral agents,
based on their ability to invert the activity of VIPER-inferred
MR protein modules controlling pro-infection programs.
More specifically, the algorithm matches the set of virus-
induced MRs that mechanistically regulate pro-infective pro-
grams with the context-specific Mechanism of Action (MoA)
of a large repertoire of drugs, as inferred by VIPER-based
analysis of RNA-seq profiles of drug perturbations vs. vehi-
cle control (Fig. 1).

First, MR proteins controlling regulatory programs induced
by viral infection were identified by VIPER analysis compar-
ing gene expression profiles from infected vs. non-infected
(control) tissue (Fig. 1a). In cancer, we have shown that
highly coordinated modules comprising between 10 and 50
proteins are necessary to control the state of a malignant
cell(10, 19). We thus expect that an equally compact set of
MR proteins would regulate the state of the host cells fol-
lowing SARS-CoV-2 infection and that a subset of these pro-
teins would be responsible for implementing and sustaining
cellular mechanisms critical for viral hijacking and replica-
tion. We thus focused on the top 50 most differentially active
proteins following virus infection as “candidate SARS-CoV-
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Fig. 1. Schematic representation of the ViroTreat algorithm. a. Virus-induced
MR proteins—the Viral Checkpoint—dissected by VIPER analysis of a gene ex-
pression signature, obtained by comparing an infected tissue or relevant model with
non-infected mock controls. b. Context-specific drug MoA database, generated by
perturbing an appropriate cell model with therapeutically relevant drug concentra-
tions, followed by VIPER analysis of the drug-induced gene expression signatures
to infer the drug-induced protein activity signature. ViroTreat prioritizes drugs able to
activate the Viral Checkpoint’s negative MR proteins by quantifying the enrichment
of such proteins on the drugs’ context-specific MoA.

2 infection MRs” (MRs hereafter, for simplicity) and refer to
them, collectively, as the Viral Checkpoint (Fig. 1a).

Second, VIPER was also used to elucidate the MoA of 154
FDA-approved oncology drugs, where MoA is defined as the
set of proteins differentially activated following drug per-
turbation of cell lines that recapitulate the regulatory net-
work of the cellular population targeted by the virus(21).
While this was done specifically in colon epithelial cells
for this study, the analysis can be easily extended to as-
sess drug MoA in other cellular contexts. Specifically, the
RNA-seq profiles used in this analysis were generated at
24h (by Pooled Library Amplification for Transcriptome Ex-
pression (PLATE-Seq) assays(22)), following treatment of
a colon adenocarcinoma cell line (LoVo) with a library of
FDA-approved drugs and vehicle control (DMSO). To avoid
assessing cell death or stress mechanisms, rather than drug
MoA effects, drugs were titrated at their 48h IC20, as assessed
by 10-point dose response curves (see methods for additional
details). Resulting profiles were then used to assess the dif-
ferential activity of regulatory proteins in drug vs. vehicle
control-treated cells with the VIPER algorithm(12) (Fig. 1b).

Finally, drugs were prioritized based on their ability to in-
vert the activity of SARS-CoV-2 Viral Checkpoint MRs, as
assessed by enrichment analysis of the MRs in each drug
context-specific MoA, using the analytic Rank Enrichment
Analysis (aREA) algorithm(11, 12) (Fig. 1).

SARS-CoV-2-induced MR signature. To elucidate MRs
comprising the SARS-CoV-Viral Checkpoint, we analyzed

publicly available single cell (scRNASeq) profiles of SARS-
CoV-2 infected epithelial cells (Supplementary Table 1), in-
cluding epithelial cell lines from both lung adenocarcinoma
(Calu-3 and H1299)(23), and gastrointestinal organoid mod-
els from the ileum and colon(24). Single cell RNASeq
analysis allows highly effective identification of individual
virus-infected cells, which would otherwise represent only
a minority of cells in culture. Moreover, single cell-based
gene expression signatures—computed by comparing con-
firmed infected cells to non-infected controls—are less af-
fected by contamination and dilution effects typical of bulk
RNASeq signatures representing a mixture of infected and
non-infected cells (see Supplementary Fig. 1 and Methods).

Single cell analysis revealed highly conserved differential
protein activity signatures, as defined by the top 50 most
differentially active candidate MRs (Viral Checkpoint), re-
flecting a highly conserved SARS-CoV-2 MR protein core,
at each of the different time-points post-infection for which
data was available from each model (p < 10−40, by 2-tailed
aREA test, Fig. 2a and Supplementary Fig. 2a). Moreover,
when comparing equivalent time-points, we observed signif-
icant conservation of the differentially active protein signa-
ture among lineage-related models (e.g., Calu-3 vs. H1299,
at 12h, p < 10−40, Supplementary Fig. 2a).

Moreover, such signature conservation was also observed
among unrelated lineages, when comparing equivalent time-
points (e.g., H1299 vs. colon non-transformed organoid at
24h, p < 0.01, Supplementary Fig. 2a). Taken together,
these findings suggest the existence of a highly reproducible,
SARS-CoV-2-mediated MR activity signature in epithelial
cells, regardless of organ context (lung vs. gastrointestinal
(GI)). Interestingly, however, inactivated MRs were signifi-
cantly more conserved, both among models and between lin-
eages, than activated MRs (p < 10−6, 2-tailed paired U-test,
Supplementary Fig. 2b,c), suggesting a potentially distinct
biological role for the activated vs. inactivated MR protein
cores in SARS-CoV-2 infection.

The MR activity signatures detected by single cell analy-
ses were also recapitulated by bulk-tissue analysis of SARS-
CoV-2-infected epithelial cells (Supplementary Table 1), al-
beit at a slightly lower statistical significance, as we expected.
These findings applied to both transformed models, including
lung (Calu-3, H1299, and A549) and colon (Caco-2) adeno-
carcinoma, and normal human bronchial epithelial (NHBE)
primary cells, as well as to more physiologic models, includ-
ing lung organoids. As should be expected, MR conservation
was more significant for models characterized by high infec-
tion rates (Supplementary Fig. 2a), likely due to signature
dilution/contamination by a high proportion of non-infected
cells in other models.

MRs govern distinct biological functions. Enrichment
analysis of SARS-CoV-2 MRs demonstrated a critical di-
chotomy of biological hallmark programs enriched in acti-
vated vs. inactivated MRs (Fig. 2b). Specifically, biologi-
cal hallmarks enriched in activated MRs included inflamma-
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Fig. 2. Changes in host cell protein activity in response to SARS-CoV-2 virus infection. a. Left, heatmap showing the activity of the top 10 most activated proteins in
response to SARS-CoV-2 infection in each of the models and time-points profiled at the single-cell level. Right, heatmap showing the activity of the top 10 most inactivated
proteins in response to SARS-CoV-2 infection in each of the models and time-points profiled at the single-cell level. b. Heatmap showing the enrichment of biological
hallmarks in the SARS-CoV-2-induced protein activity signatures. Shown is the Normalized Enrichment Score (NES) estimated by the aREA algorithm, with purple color
indicating enrichment in the over activated proteins and green color indicating enrichment in the inactivated proteins.

tory response, epithelial-to-mesenchymal transition (EMT)
and interferon response. Indeed, among the top aberrantly
activated MRs, we identified MX1, a protein induced by in-
terferon I and II(25), the interferon regulator IRF9, and ad-
ditional transcriptional regulators that mediate cellular re-
sponse to interferons, such as STAT1 and STAT2(26) (Fig.
2a). Several poorly characterized, zing-finger proteins were
also represented among the most differentially activated pro-
teins, suggesting they may play a role in programs related to
pathogen-mediated innate immunity.

In contrast, biological hallmarks enriched in inactivated MRs
were strongly related to virus-mediated host-cell hijack-
ing programs, such as PI3K signaling, unfolded protein re-
sponse, DNA repair, and metabolic-related processes(27, 28)
(Fig. reffig:fig2b). Consistent with this observation, the
most significantly inactivated MRs included several ribo-
somal subunit members (such as RPS27A, RPS3, RPL3,
RPS6, RPS14), as well as proteins involved in cell cycle
arrest (UBA52)(29), translational regulation, and cellular
metabolism (GABPB1)(30) (Fig. 2a).

VIPER identifies key SARS-CoV-2-interacting proteins.
To assess whether activated vs. inactivated MRs may rep-
resent a more effective target for drug-mediated reversal,
we proceeded to assess whether either aberrantly activated
or inactivated Viral Checkpoint MRs were enriched in host
proteins already established as cognate binding partners of
SARS-CoV-2 proteins. For this analysis, we leveraged a
collection of 332 host proteins previously reported to be in-
volved in protein-protein interactions (PPIs) with 26 of the
29 proteins encoded by the SARS-CoV-2 genome, as deter-
mined by mass-spec analysis of pull-down assays(5). Of
these interactions, 90 were with proteins included in the
5,734 we analyzed by VIPER. Gene-Set Enrichment Anal-
ysis (GSEA)(31) revealed statistically significant enrichment
of these 90 proteins in SARS-CoV-2 inactivated but not ac-
tivated MRs, across all the evaluated single-cell protein ac-
tivity signatures (p < 0.001, 2-tailed GSEA, Supplementary
Fig. 3). This suggests that host cell proteins that physically
interact with SARS-CoV-2 proteins are mostly inactivated in
response to the infection.

Taken together, these results suggest an over-representation
of inactivated MRs among host cell proteins that could criti-
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cally modulate SARS-CoV-2 infectivity, thereby identifying
the Viral Checkpoint module comprised of inactivated MRs
as a candidate target and therapeutically actionable viral in-
fection dependency.

CRISPR assays confirm Viral Checkpoint MRs. To fur-
ther confirm the biofunctional duality of Viral Checkpoint
MRs, we also assessed their enrichment in proteins essen-
tial to the virus infectious cycle. Specifically, we evalu-
ated their enrichment in proteins identified by functional
CRISPR screens from two different studies, including using
SARS-CoV-2 infected Vero(9) and Huh-7.5(7) cells. Con-
sistent with our original observation and definition of the
Viral Checkpoint signature, the 50 most inactivated candi-
date MRs—as determined by integrating results from both
lung and GI models—were significantly enriched in antiviral
genes, as assessed by each CRISPR screen (p < 10−4 and
p < 10−3, respectively), as well as by their integration (Sup-
plementary Fig. 4a–c, p < 10−4), while the 50 most activated
MRs were not enriched in pro-viral genes (Supplementary
Fig. 4d–f), confirming the requirement of Viral Checkpoint
MRs inactivation for SARS-CoV-2 infectivity. These results
however, could not be considered for the development of Vi-
roTreat, since they became available after the candidate drugs
in our study had already been prioritized and scheduled for
validation.

ViroTreat prioritization of FDA-approved drugs. We
have shown that drug MoA—as represented by differen-
tially active proteins in response to the drug and measured
by VIPER analysis of drug perturbation profiles in lineage-
matched cells—is well recapitulated in vivo and in explants
when the activity of their MR proteins is conserved(21, 32).
Among the 25 cell lines for which perturbational profiles had
been generated in the PANACEA database (PANcancer Anal-
ysis of Chemical Entity Activity)(33), 2 cell lines, LoVo and
NCI-H1973, are the closest lineage-matched representative
models of the GI epithelial and lung epithelial cells, respec-
tively. However, while LoVo (human colon cell line) showed
significant conservation of MR proteins with a colon ade-
nocarcinoma cell line susceptible to SARS-CoV-2 infection
(Caco-2(34), Supplementary Fig. 5a,b), we did not observe
MR protein activity conservation between NCI-H1793 cells
and any of the three lung cell lines susceptible to SARS-CoV-
2 infection (Calu-3, ACE2-A549 and H1299, Supplementary
Fig. 5c–h). Based on these results and considering the avail-
ability of a compatible cell line model as a critical require-
ment to experimentally assess ViroTreat predicted drugs, we
focused our drug repurposing efforts on the GI context.

We ranked drugs based on the enrichment of aberrantly in-
activated MRs—following SARS-CoV-2 infection of GI cell
lines and organoids—in proteins activated by each drug (Vi-
roTreat algorithm, Fig. 1), based on the results of their per-
turbational assay. ViroTreat quantitative estimations were av-
eraged across GI organoid models and evaluated time points.
Among the 154 FDA-approved drugs profiled in LoVo cells,
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Fig. 3. ViroTreat results for the GI models. Shown are the enrichment plot for
the top 50 most inactivated (blue vertical lines) proteins, in response to SARS-CoV-
2 infection (the negative component of the viral Checkpoint) of the ileum organoid
for 12h, on the protein activity signature induced by the drug perturbations—drug
context-specific MoA, represented by the green-orange color scale in the x-axis—of
LoVo colon adenocarcinoma cells. The heatmap shows the Bonferroni’s corrected
-log10(p-value) estimated by ViroTreat. Shown are all the 22 candidate drugs (Vi-
roTreat p< 10−5) and 12 drugs selected as negative controls (ViroTreat p> 0.01)
in both ileum and colon-derived organoids at 12 and 24 hours post-infection.

ViroTreat prioritized 22 (13 orally available and 9 intra-
venous) at a highly conservative statistical threshold (p <
10−5, Bonferroni’s Corrected (BC)), see Fig. 3 and Supple-
mentary Table 2).

ViroTreat drugs inhibit SARS-CoV-2 infection. To pro-
vide proof-of-concept validation for the ViroTreat predic-
tions, we first assessed drug-mediated inhibition of SARS-
CoV-2 infection by ViroTreat-predicted vs. control drugs in
the colon adenocarcinoma cell line (Caco-2) known to sup-
port SARS-CoV-2 infection(34).

For this assay, we considered all 13 ViroTreat-inferred orally-
available drugs, as a more clinically relevant group, and the
top 5 most significant intravenous (IV) drugs. As candidate
negative controls, we selected 12 drugs—including 8 orally
available agents and 4 IV drugs—not inferred as statistically
significant by ViroTreat (p ≥ 0.01, Fig. 3 and Supplemen-
tary Table 2). Caco-2 cells were pre-treated for 24h prior to
SARS-CoV-2 infection. Drug concentration was maintained
through the entire infection time course and the relative in-
fection levels and cell viability were assessed by immunoflu-
orescence staining 24h post-infection (see methods and Fig.
4a). For each drug, the viability-normalized effect on SARS-
CoV-2 infectivity (antiviral effect) was quantified as the log-
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ratio between infectivity and cell viability reduction relative
to vehicle-treated (DMSO) controls (Supplementary Fig. 6).
Since multiple concentrations were tested, the lowest con-
centration corresponding to a significant antiviral effect was
reported (Supplementary Table 2). As a proof-of-concept for
the ability of the methodology to identify drugs capable of
reducing infectivity of SARS-CoV-2, we considered drugs
to be validated only if their antiviral effect was statistically
significant (False Discovery Rate (FDR) < 0.05) and they in-
duced a decrease in infectivity of at least 20%.

Of 18 drugs predicted to inhibit SARS-CoV-2 infection, 15
(83%) showed statistically significant antiviral effect. In con-
trast, none of the 12 drugs selected as potential negative con-
trols showed significant antiviral effect (Fig. 4b and Supple-
mentary Table 2), demonstrating a significant enrichment of
ViroTreat results in drugs with antiviral activity (p < 10−5,
1-tailed Fisher’s exact test (FET)). Consistently, the Re-
ceiver Operating Characteristic (ROC) had an Area Under the
Curve (AUC) = 0.907 (95% confidence interval (CI): 0.77–
0.91), which is highly statistically significant (p < 10−4, Fig.
4c), demonstrating the predictive power of ViroTreat in this
proof-of-concept.

To further assess the pathogen-specific nature of ViroTreat
predictions, we tested the ability of the 8 ViroTreat-inferred
drugs showing the strongest inhibition of SARS-CoV-2 infec-
tivity, to inhibit rotavirus infection and replication in Caco-
2 cells. Interestingly, none of these drugs significantly im-
paired rotavirus infectivity (Supplementary Fig. 7 and Sup-
plementary Table 2), showing that ViroTreat-inferred anti-
viral effects cannot be attributed to generalized impairment
of host cellular functions universally required for viral infec-
tion, but rather to activation of MRs specific to SARS-CoV-2
infection.

To also assess whether the antiviral activity of ViroTreat-
predicted oncology drugs in Caco-2 cells might possibly be
attributed to their antineoplastic effects in a cancer cell con-
text, we evaluated the antiviral properties of the top 8 drugs
in non-transformed, human GI organoid-derived 2D primary
cell cultures. When tested on this more physiologic context,
7 of the 8 assayed drugs, including idarubicin, bosutinib, cy-
closporine, bicalutamide, vorinostat, amiodarone and osimer-
tinib, demonstrated significant antiviral effect against SARS-
CoV-2 based on our original criteria (FDR < 0.05 and de-
crease in SARS-CoV-2 infectivity of at least 20%, Fig. 4d
and Supplementary Fig. 7). Except for bicalutamide, which
exerted its antiviral effect at a 125-fold higher concentration,
all drugs were tested at concentrations comparable to their
48h IC20 in LoVo cells, representing the highest sub-toxic
concentration usable for optimal MoA elucidation. These
findings suggest that ViroTreat can apply the molecular char-
acterization of a drug’s MoA, as obtained by the measured
effect of the drug on protein activity levels in tissue lineage-
matched, neoplastic cell line models, to prioritize and repur-
pose drugs with potential antiviral activity in both infected
tumor models as well as non-transformed human organoid-
derived 2D primary cell cultures.

Finally, to test the tissue lineage context-specificity of Vi-
roTreat predictions, we assessed the antiviral effect of the
8 ViroTreat predicted drugs for the GI context showing the
strongest inhibition of SARS-CoV-2 infection in Caco-2, in
lung adenocarcinoma cell line models (Calu-3 and ACE2-
A549). Interestingly, only cyclosporine and osimertinib
showed a significant antiviral effect (FDR < 0.05 and ≥ 20%
infectivity decrease), while amiodarone, apremilast, bicalu-
tamide, bosutinib, exemestane, and pimozide did not (Sup-
plementary Fig. 8 and Supplementary Table 2). These results
highlight the relevance of lineage context-specificity when
prioritizing drugs with ViroTreat.

Discussion

While immunization remains the principal strategy to mit-
igate SARS-CoV-2 transmission and its associated clinical
morbidity, a significant fraction of the population is likely to
remain unvaccinated. In addition, protection against COVID-
19 is imperfect and incremental resistance to current vac-
cines, in the form of more transmissible and deadly SARS-
CoV-2 variants, has already been documented(8, 35, 36).
As a result, identification of safe and effective therapies for
COVID-19 patients—especially via short course, non-toxic,
and orally administered drugs—remains a major priority to
address for the current pandemic. This therapeutic strat-
egy would be especially valuable for patients with mild-to-
moderate symptoms in whom hospitalization may be pre-
vented. Since accurate medical devices for assessing blood
oxygen saturation have been cleared for in-home use, treat-
ing patients early in the disease could change the pandemic
landscape by allowing treatment in an outpatient context.

To provide a proof-of-concept for systematically addressing
these kinds of challenges and unmet needs, we developed
ViroTreat as a mechanism-based framework for repurposing
drugs, based on their ability to reprogram host cells to a state
refractory to virus hijacking. In contrast to previous host-
centric approaches aimed at targeting single host cell proteins
that directly interact with the viral proteome, ViroTreat was
designed to target an entire set of MR proteins, whose con-
certed regulatory activity is responsible for implementing and
maintaining a virus replication-permissive state in host cells,
as elucidated by VIPER-based Master Regulator analysis of
infected vs. control cells. By doing so, ViroTreat expands the
one disease/one target/one drug paradigm to one centered on
reversing the activity of an entire protein module (i.e, Viral
Checkpoint) based on the accurate assessment of each drug’s
proteome-wide MoA, as dissected from perturbational profile
data. Such a holistic approach to matching disease dependen-
cies to drug MoA overcomes the inherent limitations of drug
repurposing efforts that focus on inhibitors of individual pro-
teins or single pathways to thwart viral infectivity as part of
a host cell-directed strategy.

Elucidation of Viral Checkpoint MRs requires availability
of gene expression signatures that accurately reflect virus-
mediated changes in the host cell transcriptome. Thus, to
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Fig. 4. Experimental validation of ViroTreat predictions. a. Representative immunofluorescence images of non-infected (Mock) Caco-2 cells, vehicle control (DMSO)
treated and SARS-CoV-2 infected cells, and representative examples of a drug showing significant antiviral effect (Cyclosporine), of a drug showing non-significant antiviral
effect (Thalidomide) and a drug showing non-significant antiviral effect and cell toxicity (Fedratinib). Drug concentration (µM) is indicated to the left of the images showing
triplicated experiments. Cells were stained with DNA dye Draq5 (red) and anti-dsRNA antibody (green). b. Scatterplot showing the ViroTreat results (x-axis) compared to
the specific antiviral effect (y-axis) experimentally evaluated in Caco-2 colon adenocarcinoma cells. The vertical and horizontal dashed lines represent the thresholds for
statistical significance for ViroTreat (p = 10−5, BC) and specific anti-viral effect (FDR = 0.05), respectively. c. ROC analysis for the ViroTreat predictions, considering as
positive response a specific antiviral effect at FDR< 0.05 with at least 20% reduction in infectivity. Estimated AUC, 95% CI and p-value are indicated in the plots. d. Effect
of 8 drugs, showing the strongest reduction in SARS-CoV-2 infectivity in Caco-2 cells, on cell viability and SARS-CoV-2 infectivity of GI organoid-derived 2D primary cell
cultures. Bars indicate the mean ± Standard Error of the Mean (SEM). Antiviral effect: * FDR < 0.05, ** FDR < 0.01.

avoid confounding effects by model-idiosyncratic mecha-
nisms and to ensure identification of more universal and
reproducible MR proteins, we dissected the Viral Check-
point from multiple, complementary models, including trans-
formed cell lines and normal 3D-organoid cultures represent-
ing both airway and GI epithelium lineages. In addition, to
avoid additional confounding effects arising from infection
heterogeneity, we performed VIPER analysis at the single
cell level, thereby mitigating the contribution of non-infected
cells, which represent the majority of the tissue, based on
reads mapping to the SARS-CoV-2 genome. Similarly, we
avoided confounding effects arising from single cell tran-
scriptional state heterogeneity by comparing each infected
cell to a small pool of the closest non-infected cells, based on
MR analysis, as controls. Finally, to achieve context-specific
understanding of drug MoA, the analysis was performed in
tissues reflective of the biology of infected cells based on
conservation of their most differentially active MRs, as pre-
viously described(21, 32).

The ViroTreat framework prioritizes drugs from a predefined
library used to generate perturbational assays. For this proof-
of-concept, we maximized the translational potential of drug

predictions, by focusing our analysis on FDA-approved drugs
used primarily in an oncology setting; with particular empha-
sis on orally available drugs. However, the approach can be
easily extended to explore a much larger library of pharmaco-
logical compounds. Moreover, the database of drug context-
specific MoA can be generated independently and prior to
the identification, isolation and characterization of a viral
pathogen of interest, making it readily available for current
as well as future pandemics.

In addition, while most studies have focused on drugs that act
as high affinity inhibitors of target proteins(5–7, 9, 37–39), to
our knowledge, this is the first study to focus on pharmaco-
logic agents predicted to activate rather than inhibit an entire
module of Master Regulator proteins whose inactivation by
the virus was found necessary for its replication cycle. By in-
ducing drug-mediated reversion of Viral Checkpoint activity,
we successfully reprogrammed host cells to a state of “viral
regulatory contraception”, thereby significantly compromis-
ing the ability of the virus to hijack host cell machinery
required for its infective cycle. Accordingly, ViroTreat
allows identification of a global, pathway-independent,
therapeutically actionable set of pharmacological agents
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acting at multiple, key nodes of the host cell’s regulatory net-
work, and as such, most likely generalizable across a broad
spectrum of current and yet-to-evolve variants of SARS-
CoV-2. Notably, the validation rate for predicted drugs in
independent assays was extremely high. And, importantly, in
a completely unbiased fashion, Virotreat predicted antiviral
activity against SARS-CoV-2 of drugs that have recently
emerged as potential host cell-targeting antivirals, among
them, cyclosporine(40), amiodarone(41), pimozide(42),
mitoxantrone(43), osimertinib(44), bosutinib(45), and
bicalutamide(46). Moreover, three of the Virotreat-
predicted drugs—cyclosporine (NCT04492891), amiodarone
(NCT04351763), and bicalutamide (NCT04509999)—are
being evaluated in clinical trials for their safety and efficacy
in persons with SARS-CoV-2 infection.

Among the methodological limitations, the most critical one
is the need to obtain physiologic models to identify appro-
priate infection signatures, generate relevant drug perturba-
tional profiles, and validate predicted drugs. In addition,
there are also challenges in assessing the optimal concentra-
tion at which each compound should be profiled.

From a translational perspective, in the setting of both the
current and future pandemics, as well as for recurrent epi-
demics such as those caused by influenza and other vi-
ral pathogens, the Viral Checkpoint framework can lever-
age bulk and single-cell profiles from infected cells to
quickly identify the precise set of MR proteins responsi-
ble for creating a virus infection-friendly environment in the
host cell. Once identified, independent of the specific viral
pathogen, potential therapeutic agents can be efficiently pri-
oritized by ViroTreat, using readily available—and relatively
inexpensive—perturbational databases to elucidate context-
specific, proteome-wide drug MoA. Host cell-directed ther-
apies shown to be effective in cell line and organoid models
based on such predictions can then undergo rapid validation
in more physiologic contexts, prior to testing in human trials
designed to evaluate their safety and therapeutic value in the
clinical setting.
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Methods

Cell lines. Vero E6 (ATCC CRL-1586) and Caco-2 (ATCC HTB-
37) cells were maintained in DMEM supplemented with 10% fetal

bovine serum and 1% penicillin/streptomycin.

GI organoids. Human tissue was received from colon resection
from the University Hospital Heidelberg. This study was car-
ried out in accordance with the recommendations of the Univer-
sity Hospital Heidelberg with informed written consent from all
subjects in accordance with the Declaration of Helsinki. All sam-
ples were received and maintained in an anonymized manner. The
protocol was approved by the “Ethics commission of the Univer-
sity Hospital Heidelberg” under the protocol S-443/2017. Stem
cells containing crypts were isolated following previously described
protocols(47). Organoids were passaged and maintained in basal
and differentiation culture media (Supplementary Table 3) as previ-
ously described(47).

Viruses. SARS-CoV-2 (strain BavPat1) was obtained from the Eu-
ropean Virology Archive. The virus was amplified in Vero E6
cells and used at a passage 3 for all experiments as previously
described(24, 34).

SARS-CoV-2 infection assay. 20,000 cells were seeded per well
into a 96-well dish 24 hours prior to drug treatment. 100 µL of
media containing the highest drug concentration was added to the
first well. Six serial 1:5 dilutions were made (all samples were per-
formed in triplicate). Drugs were incubated on cells for 24 hours.
Prior to infections, fresh drugs were replaced and SARS-CoV-2 at
Multiplicity Of Infection (MOI) 3 was added to each well. 24 hours
post-infection cells were fixed in 4% paraformaldehyde (PFA) for
10 mins at Room Temperature (RT). PFA was removed and cells
were washed twice in 1X PBS and then permeabilized for 10 mins at
RT in 0.5% Triton-X. Cells were blocked in a 1:2 dilution of Li-Cor
blocking buffer (Li-Cor) for 30 mins at RT. Cells were stained with
1/1000 dilution anti-dsRNA (J2, SCIONS) for 1h at RT as marker
of infected cells as previously described(34). Cells were washed
three times with 0.1% Tween in PBS. Secondary antibody goat anti-
mouse IR 800 (Thermo) and DNA dye Draq5 (Thermo) were diluted
1/10,000 in blocking buffer and incubated for 1h at RT. Cells were
washed three times with 0.1% Tween/PBS. Cells were imaged in 1X
PBS on a LICOR imager. Effect of drugs were analyzed by com-
paring the average fluorescence of mock treated cells to drug treated
cells. Draq5 staining was used to determined cell viability.

Rotavirus infection assay. 40,000 cells were seeded per well into
a collagen-coated 96-well dish 24 hours prior to drug treatment. 100
µL of media containing the highest drug concentration was added
to the first well. Six serial 1:5 dilutions were made (all samples
were performed in triplicate). Drugs were incubated on cells for 24
hours. Media was removed and cells were washed 2X with serum-
free media and were infected with WT SA11 Rotavirus expressing
mKate at MOI 0.1 (calculated in MA104 cells) diluted in serum-
free media. Rotavirus was previously activated for 30 minutes at
37◦C in serum-free media containing 2 µg/ml trypsin. Infection
was allowed to proceed for 1 hour. Following infection, virus was
removed and cells were washed 1X with serum-free media. Media
containing drugs and 0.5 µg/ml trypsin were added back to cells to
allow for Rotavirus propagation. 24 hours post-infection cells were
fixed with 2% PFA for 15 mins and then stained with DAPI. Cells
were imaged in 1X PBS on a Cell Discoverer 7 using a 5X objec-
tive. Quantifications of infection was carried out by quantifying the
number of infected cells (mKate positive cells) in infected and not
infected samples using CellProfiler.
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SARS-CoV-2 infection of human colon organoids-derived 2D
primary cell cultures. Organoids were cultured in 24-well plates
in basal medium for 5–7 days following the original protocol of Sato
and co-workers(47). To obtain human colon organoids-derived 2D
primary cell cultures, the medium was removed from the 24-well
plates, organoids were washed 1X with cold PBS and spun (450g for
5 mins). PBS was removed and organoids were digested with 0.5%
Trypsin-EDTA (Life technologies) for 5 mins at 37◦C. Digestion
was stopped by addition of serum containing medium. Digested-
organoids were spun again at 450g for 5 mins and the supernatant
was removed and digested organoids were re-suspended in basal
media at a ratio of 250 µL media/well (corresponding to approxi-
mately 400 organoids per ml). Prior seeding, the 48-well tissue cul-
ture plates were coated with 2.5% human collagen in water for 1 h
at 37◦C. The collagen mixture was removed from the 48-well plate
and 250 µL of trypsin-digested organoids (corresponding to about
100 digested organoids) were added to each well. 48 hours post-
seeding differentiation media (Supplementary Table 3) was added
to cells and 4 days post-differentiation cells were treated with drugs
at the indicated concentrations for 2 hours prior to SARS-CoV-2 in-
fection. Media containing drugs was removed and 106 Focus Form-
ing Units (FFU) (as determined in Vero cells) of SARS-CoV-2 was
added to each well for 1 hour at 37◦C. Following 1 hour incubation,
virus was removed and fresh differentiation media containing drugs
was added to cells. 24 hours post-infection RNA was harvested, and
virus replication was monitored by RT-qPCR.

Estimation of the antiviral effect. We define the antiviral effect
of a drug as its viability-normalized effect on SARS-CoV-2 infectiv-
ity. The antiviral effect was quantified as the log-ratio between in-
fectivity and cell viability reduction relative to vehicle-treated con-
trols. Statistical significance was estimated by Student’s t-test for
each evaluated drug concentration, and multiple-hypothesis testing
due to the multiple evaluated concentrations was corrected using
the conservative Bonferroni’s method. Multiple hypothesis testing
due to multiple evaluated drugs was further corrected by Benjamini-
Hochberg False Discovery Rate (FDR).

RNA isolation, cDNA, and RT-qPCR. RNA was harvested from
cells using RNAeasy RNA extraction kit (Qiagen) as per manufac-
tures instructions. cDNA was made using iSCRIPT reverse tran-
scriptase (BioRad) from 250 ng of total RNA as per manufactures
instructions. RT-qPCR was performed using iTaq SYBR green (Bio-
Rad) as per manufacturer’s instructions. TBP or HPRT1 were used
as normalizing genes. See Supplementary Table 4 for primers used.

VIPER analysis of bulk RNA-Seq datasets. The source for all
the datasets is listed in Supplementary Table 1. RNA-Seq raw-
counts data for Calu-3, H1299 and Caco-2 cell line models were
obtained from Gene Expression Omnibus Database (Gene Expres-
sion Omnibus (GEO), GSE148729)(23). Raw-counts data for A549
cell line, Normal Human Bronchial Epithelial (NHBE) primary
cells, a post-mortem lung tissue sample from a COVID-19 pa-
tient and a healthy human lung biopsy were downloaded from
GEO (GSE147507)(48). Normalized data (Transcript per Kilobase
Million, TPM) for lung organoids were downloaded from GEO
(GSE160435). Raw-count data was normalized using the variance
stabilization transformation (VST) procedure as implemented in the
DESeq package from Bioconductor(49).

Differential gene expression signatures for the Wyler’s dataset(23)
(GSE148729) were computed by comparing the SARS-CoV-2 in-

fected samples against the centroid—i.e. the average expression
of each gene—of the closest matched non-infected (mock) samples
as identified by unsupervised clustering. Specifically, we first per-
formed K-means cluster analysis of the normalized gene expres-
sion profiles. The optimal number of clusters was estimated by
silhouette-score analysis as implemented in the “fviz_nbclust” func-
tion of the “factoextra” package (https://cran.r-project.
org/web/packages/factoextra/index.html). Cluster
solutions were evaluated from k= 2 to k= 10 and the solution with
the highest average of silhouette scores was considered as optimal.
Based on the optimal cluster solution, we selected as reference for
each infected sample the centroid of the mock samples within the
same cluster. In cases of clusters constituted by infected samples
only, the centroid of the mock samples in the closest cluster were
used as reference. Because a two clusters solution was estimated
as optimal for all cluster analysis, the other cluster was the trivial
closest cluster solution in all cases. Cluster solutions with less than
two samples per cluster were considered ineffective. For Calu-3 cell
line, we noticed that samples associated to the two series (series-1
and series-2) clustered separately—i.e. samples clustered according
to series memberships. To avoid possible batch effects in the anal-
ysis, the samples of these two series were re-clustered separately
to identify the best matched mock control samples in each series
independently. For series-1, the mock samples at 4h and 24h clus-
tered together and were used as reference to compute the differential
expression signatures of all the Calu-3 SARS-CoV-2 infected sam-
ples. For series-2, three mock samples, including one mock sample
at 4h and two mock samples at 12h clustered together and were
used as reference to compute the differential expression signatures
for all the Calu-3 SARS-CoV-2 infected samples. Of note, in series-
2, one mock sample at 4h (GSM4477923) clustered separately from
all the other samples with a silhouette score of zero which indicates
no clear cluster assignment. This sample was considered as outlier
and excluded from the downstream analysis. For the Caco-2 cell
line, the centroid of the 4h mock samples was used as reference to
compute the differential expression signatures of the SARS-CoV-
2 infected samples at 4h and 12h, while the centroid of 24h mock
samples was used as reference to compute the differential expression
signatures of the 24h SARS-CoV-2 infected samples. For the H1299
cell line, the centroid of the 4h mock samples was used as reference
to compute the differential expression signatures of the SARS-CoV-
2 infected samples at 4h and 12h; and the centroid of the 36h mock
samples was used as reference to compute the differential expres-
sion signatures of the 36h SARS-CoV-2 infected samples.

Differential gene expression signatures for the Blanco-Melo’s
dataset(48) (GSE147507) were computed using the centroid of the
matched—i.e. same cell line or primary cells—mock control sam-
ples as reference. For the post-mortem human lung sample from a
COVID-19 patient, the differential gene expression signature was
computed using the healthy human lung biopsy samples as refer-
ence.

Differential gene expression signatures for the lung organoid sample
was computed using as reference its matched mock control sample.

The differential activity of 5,734 proteins, including 1,723 tran-
scription factors, 630 co-transcription factors, and 3,381 signaling
proteins, was estimated for each of the differential gene expression
signatures with the VIPER algorithm(12), using matched context-
specific models of transcriptional regulation. Lung, colon and
rectal adenocarcinoma context-specific models of transcriptional
regulation were reverse-engineered, based on 517 lung, 459 colon
and 167 rectal adenocarcinoma samples in The Cancer Genome
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Atlas (TCGA) with the ARACNe algorithm(13, 50), as discussed
in(19). While, ideally, regulatory networks from non-cancer-related
epithelial cells may have been more appropriate, use of cancer-
related regulatory networks is justified by the high conservation of
protein transcriptional targets in cancer-related and normal cells
from the same lineage(14). The regulatory models are available as
part of the arcane.networks R package from Bioconductor (https:
//www.bioconductor.org/packages/release/
data/experiment/html/aracne.networks.html).
Specifically, protein activity signatures in response to SARS-CoV-2
infection of the lung adenocarcinoma cell lines (Calu-3, H1299
and A549), lung organoids and human lung tissue samples were
inferred with the VIPER algorithm using the lung adenocarcinoma
context-specific network. Protein activity signatures for Caco-2
colorectal carcinoma cell line were estimate with the metaVIPER
algorithm(16) using the colon and rectal adenocarcinoma context-
specific networks.

The VIPER-inferred protein activity signatures of infected samples
at the same time point in the same cell line were integrated using the
Stouffer method(51).

VIPER analysis of scRNA-Seq datasets. Single-cell
(sc)RNAseq count matrices, based on Unique Molecular Iden-
tifiers (UMIs), for Calu-3 and H1299 lung adenocarcinoma cell
lines were downloaded from GEO (GSE148729). Both count
matrices were already filtered for low quality cells as described(23).
Count matrices (UMI) from ileum and colon organoids were made
available by Boulant lab and are also publicly available on GEO
(GSE156760). Count matrices were filtered for low quality cells as
described by Triana et al.(24).

In contrast to bulk RNASeq profiles, single cell RNASeq profiles
(scRNASeq) allow effective identification of the individual cells
likely to be infected by the virus, which commonly represent a mi-
nority of cells in a culture. For this study, therefore, we defined cells
to be infected if they present at least one sequenced read mapped to
the SARS-CoV-2 genome. Critically, gene expression signatures
based on scRNASeq profiles, as computed by comparing bona fide
infected cells to non-infected controls, are less affected by contam-
ination and dilution effects characteristic of bulk RNASeq-derived
signatures, resulting from a variable proportion of infected vs. non-
infected cells.

To account for confounding effects and gene expression profile het-
erogeneity associated with mechanisms that are independent of vi-
ral infection(23, 24)—such as cell cycle and the use of models de-
rived from cancer cell lines(52)—differential expression signatures
between infected and non-infected single cells were computed by
comparing each infected cell to its k = 50 closest non-infected ones
(Supplementary fig. 1). This approach significantly improved ac-
curacy and reproducibility of differential gene expression signa-
tures, including across different cell lines, by minimizing confound-
ing effects not associated with viral infection. To identify mock
controls cells for each individual infected cell we transformed the
count matrices to count per million (CPM) and subsequently to
VIPER-inferred protein activity signatures. Briefly, gene expres-
sion profiles were transformed to differential gene expression sig-
natures using the “scale” method—i.e. z-score transformation—as
implemented in the VIPER package(12). Then, using lung adeno-
carcinoma context-specific models of transcriptional regulation, we
transformed the single-cell gene expression signature matrices for
Calu-3 and H1299 cell lines to VIPER-inferred protein activity sig-
nature matrices. Similarly, using colon and rectal adenocarcinoma

context-specific networks, we transformed the single-cell gene ex-
pression signature matrices for ileum and colon organoids to the cor-
responding metaVIPER-inferred protein activity signature matrices.

The phenotypic state similarity between cells of the same dataset
was quantified by the euclidean distance, calculated based on the
top 100 principal components of the VIPER-inferred protein ac-
tivity matrix. Briefly, the Singular Value Decomposition (SVD)
was used to estimate the matrix of cells by eigenproteins (princi-
pal components), and linear regression analysis was used to iden-
tify the components (eigenprotein vectors) significantly associated
to the viral infection, expressed as the sum of the normalized UMI
viral counts—counts mapping to the SARS-CoV-2 genome. For
ileum and colon, the vectors of viral counts were generated by
summing the normalized counts generated by targeted sequencing
analysis(24). Principal components significantly associated with in-
fection (p < 0.05) were removed from the Principal Component
Analysis (PCA) space. Next, we performed a K-Nearest Neigh-
bors (KNN) analysis in the dimensionally reduced PCA space, con-
sidering the top 100 infection-independent principal components,
to identify the phenotypically closest 50 mock cells for each of
the infected cells. The KNN analysis was performed using the
FNN package(53). The 50 phenotypically closest mock cells were
used as reference to compute the SARS-CoV-2-induced differential
gene expression signature for each of the infected cells. Specif-
ically, the differential gene expression signature for each infected
cell was estimated by subtracting the mean expression of the 50
phenotypically closest mock cells and dividing by their standard de-
viation. For Calu-3 and H1299 cell lines, we considered as “SARS-
CoV-2-infected” all the cells with at least 1 sequencing read map-
ping to the SARS-CoV-2 genome. For ileum and colon, we con-
sidered as “SARS-CoV-2-infected”, all cells identified by targeted
sequencing(24).

The differential gene expression signatures of SARS-CoV-2 in-
fected cells were transformed to inferred protein activity signatures
by VIPER and metaVIPER algorithms, as described above.

Single-cell protein activity signatures of each data set were inte-
grated by arithmetic mean at each available time point for each cell
line.

Similarity of VIPER-inferred protein activity signatures. The
conservation of MR proteins between VIPER-inferred protein activ-
ity signatures was quantified by the reciprocal enrichment of the top
25 most activated, and the top 25 most inactivated proteins in sig-
nature S1 in proteins differentially active in signature S2 and vice
versa(54), as implemented by the viperSimilarity() function in the
viper package from Bioconductor.

Enrichment of biological hallmarks on SARS-CoV-2 in-
fection-induced protein activity signatures. Hallmarks gene
sets (v.7.2) were downloaded from the molecular signatures
database (MSigDB) website (http://www.gsea-msigdb.
org/gsea/msigdb/collections.jsp). Enrichment of the
MsigBD biological hallmarks protein-sets on the SARS-CoV-2 in-
duced, VIPER-inferred protein activity signatures, with the aREA
algorithm(12).

Enrichment of Viral Checkpoint MRs on infection essential
genes identified by CRISPR screens. CRISPR screen results (z-
score) were downloaded from the supplementary data of Wei et.al(9)
(Vero-E6 cells) and Schneider et.(7) (Huh-7.5 cells). Z-scores were
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integrated across all experimental conditions for each cell line using
the Stouffer’s method(51). Enrichment of the top 50 most activated,
and the top 50 most inactivated proteins in response to SARS-CoV-2
infection, obtained after integrating (average) all 10 single-cell pro-
tein activity signatures, on each CRISPR experiment z-score signa-
ture, and on their Stouffer’s integration, were estimated by GSEA.
Normalized Enrichment Score (NES) and p-value were estimated
by permuting the genes in the CRISPR signatures 10,000 times
uniformly at random. SARS-CoV-2 inactivated MRs essential for
infectivity were identified as the genes in the leading-edge for the
GSEA of the inactivated MRs on the integrated CRISPR screen sig-
nature.

Enrichment of SARS-CoV-2 interacting protein on host pro-
teins differentially active in response to SARS-CoV-2 infec-
tion. A list of 332 SARS-CoV-2 interacting proteins was obtained
from the supplementary materials of Gordon et al.(5). 90 of the 332
interacting proteins were represented among the regulatory proteins
for which we could infer their activity. Enrichment analysis of this
90 SARS-CoV-2 interacting proteins on the VIPER-inferred pro-
tein activity signatures was performed by GSEA. NES and p-values
were estimated by permuting the VIPER-inferred protein activity
signatures 10,000 times uniformly at random.

ViroTreat analysis. We have previously shown that tumor check-
points can be pharmacologically switched, either off(11, 15, 20, 55,
56) or on(19), leading to their collapse and loss of viability or gain of
associated functional properties, respectively. This observation was
instrumental for the development and validation of the NY CLIA
certified, VIPER-based methodology OncoTreat, for the prioritiza-
tion of small molecule compounds that can either inactivate or ac-
tivate a tumor checkpoint on a sample-by-sample basis, with criti-
cal applications in precision oncology(11). Based on the successful
outcomes observed with OncoTreat when evaluated in the context of
tumor suppression, we sought to develop a novel, analogous algo-
rithm, ViroTreat, to identify small molecule compounds capable of
suppressing viral infection by targeting the Viral Checkpoint mod-
ule. Similar to its use in cancer, ViroTreat systematically assesses
and prioritizes a small-molecule compound’s ability to reverse the
activity of a set of MR proteins based on large-scale drug perturba-
tion assays in cell lines that recapitulate (a) the regulatory model of
the target cellular population and (b) the activity of MR proteins.
Specifically, perturbational assay data are comprised of RNASeq
profiles generated at 24h (by PLATE-Seq assays(22)), following
treatment of MR-matched cell lines with a library of FDA-approved
and late-stage experimental drugs (in Phase 2 and 3 clinical trials)
and DMSO as control. These profiles are then used to assess the dif-
ferential activity of relevant MRs in drug vs. DMSO-treated cells.
Finally, enrichment of MR proteins in proteins whose activity has
been inverted by the drug is computed by protein set enrichment
analysis (PSEA) using the aREA algorithm(11, 57). The RNASeq
profiles used for ViroTreat analysis were generated at 24h following
treatment of LoVo cells with a repertoire of 154 FDA-approved on-
cology drugs. Perturbations were performed at each drug’s highest
sublethal concentration (48h IC20) or maximum serum concentra-
tion (Cmax) at its Maximum Tolerated Dose (MTD), whichever was
lower. This was done to prevent confounding effects, unrelated to
the drug MoA, resulting from cell death or stress pathway activation.
RNASeq data was generated using PLATE-Seq, a fully automated,
96-well based assay(22) (Supplementary Table 2).

Code availability. All the code used in this work is freely available
for research purposes. VIPER and aREA algorithms are part of the
“viper” R-system’s package available from Bioconductor. The lung
adenocarcinoma, colon and rectal context-specific interactomes are
available as part of the “aracne.networks” R-system’s package from
Bioconductor.
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Supplementary Figures and Tables

Schematic workflow for the identification of SARS-CoV-2 signatures

Principal  Component Analysis

The closest mocks are identified
by KNN algorithm in the PCA space

SARS-CoV-2 
sc-Viral Checkpoint

PC1

PC
2

SARS-CoV-2 
Infected Cell 1

SARS-CoV-2
Infected Cell 2

mock

infected

Up-regulated genes

Down-regulated genes

TR*

*TR=  Transcriptional regulator, candidate master regulator protein

TR

DEGS

TR

TR

TR

TR

Activated 
Regulators

Inactivated 
Regulators

Protein Activity inference

Single-cell
gene expression 

profiles
Cells

Ge
ne

s

~2000 genes per cell

(1)
(3)

Differential Gene Expression 
Signature (DGES)

(DGES for each individual infected cell
using as reference the closest 50 mock cells)

vs.

Infected 

Cell
Closest mocks

G
en

e 
Ex

pr
es

si
on

Gene1
Gene2
Gene3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Gene n

(4)
(6)

Protein 
Activity Profiles

VIPER

~6000 regulatory proteins

Cells
Pr

ot
ei

ns

(2)

VIPER

(5)

Supplementary Figure 1. Diagram showing the workflow used to compute the protein activity signatures induced by
SARS-CoV-2 infection from scRNA-Seq data. Normalized single-cell gene expression profiles for all cells of the same
model (i.e. Calu3, H1299, colon and ileum) were transformed to differential gene expression signatures by applying the z-score
procedure. Single-cell differential gene expression signatures were then transformed to protein activity profiles by applying the
VIPER algorithm with context-specific regulatory networks. A Principal Component Analysis (PCA) was performed on these
VIPER-inferred protein activity profiles. For each infected cell the closest 50 mock cells in the PCA space were selected as
reference to compute a SARS-CoV-2 induced differential gene expression signature. The VIPER algorithm was then applied to
these SARS-CoV-2 induced differential gene expression signatures to infer SARS-CoV-2 induced protein activity signatures.
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Supplementary Figure 2. Conservation of VIPER-inferred Viral Checkpoint. a. Heatmap showing the conservation
across single-cell and bulk-tissue samples. Results are expressed as -log10(p-value), estimated by the reciprocal enrichment
of the 25 most activated and 25 most inactivated proteins in each signature using the aREA algorithm as implemented in the
viperSimilarity function of the VIPER package. b–c. Conservation specifically for the top 50 most activated proteins (b) and
most inactivated proteins (c) in response to SARS-CoV-2 infection between time points and models profiled at the single-cell
level.
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Supplementary Figure 3. Enrichment of host factors known to physically interact with SARS-CoV-2 proteins on the
host proteins differentially active in response to viral infection. GSEA showing the enrichment for the SARS-CoV-2 in-
teracting proteins in the individual SARS-CoV-2 induced protein activity signatures. NES and p-values were estimated by
one-tailed test and 1,000 permutations.
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Supplementary Figure 4. Enrichment of candidate SARS-CoV-2 infection MR proteins on host factors essential for
SARS-CoV-2 infectivity. GSEA showing the enrichment of the top 50 most inactivated proteins in response to SARS-CoV-
2 infection (inactivated candidate MR proteins) on the antiviral essential genes (a–c), but no enrichment of the top 50 most
activated proteins in response to SARS-CoV-2 infection (activated candidate MR proteins) on the pro-viral essential genes
(d–f), identified by 2 CRISPR screens (a, b, d and e) and their integration (c and f).
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Supplementary Figure 5. Conserved activity of MR proteins between cell line models susceptible to SARS-CoV-2 in-
fection (Caco-2, Calu-3, ACE2-A549 and H1299) and the lineage context-matched cell lines included in the drug per-
turbation PANACEA resource (LoVo and NCI-H1793). a. GSEA for the enrichment of the Caco-2 top 25 most activated
and top 25 most inactivated proteins in the LoVo protein activity signature. b. GSEA for the enrichment of the LoVo top 25
most activated and top 25 most inactivated proteins in the Caco-2 protein activity signature. c. GSEA for the enrichment of
the Calu-3 top 25 most activated and top 25 most inactivated proteins in the NCI-H1793 protein activity signature. d. GSEA
for the enrichment of the NCI-H1793 top 25 most activated and top 25 most inactivated proteins in the Calu-3 protein activity
signature. e. GSEA for the enrichment of the ACE2-A549 top 25 most activated and top 25 most inactivated proteins in the
NCI-H1793 protein activity signature. f. GSEA for the enrichment of the NCI-H1793 top 25 most activated and top 25 most
inactivated proteins in the ACE2-A549 protein activity signature. g. GSEA for the enrichment of the H1299 top 25 most
activated and top 25 most inactivated proteins in the NCI-H1793 protein activity signature. h. GSEA for the enrichment of the
NCI-H1793 top 25 most activated and top 25 most inactivated proteins in the H1299 protein activity signature. Normalized
Enrichment Score (NES) and p-value were estimated by two-tailed test and 1,000 permutations.
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Supplementary Figure 6. Experimental evaluation of the antiviral effect of FDA-approved drugs in Caco-2 cells. a. 15
of the 18 drugs predicted by ViroTreat showing significant antiviral effect (FDR < 0.05 and ≥ 20% infectivity decrease). b.
3 of the 18 drugs predicted by ViroTreat showing no significant antiviral effect. c. 12 drugs not significant by ViroTreat (p ≥
0.01) selected as putative negative controls. The scatter-plots show the effect of each drug—SARS-CoV-2 infectivity shown in
cyan and cell viability in red—relative to vehicle control (y-axis), assayed at different concentrations (x-axis) in triplicate. The
lines indicate the average across replicates. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 10−4, ****** p < 10−6, 1-tailed
Student’s t-test, BC.
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Supplementary Figure 7. Experimental evaluation of 8 drugs, predicted by ViroTreat and showing the strongest SARS-
CoV-2 antiviral effect in Caco-2 cells, for their effect on rotavirus infectivity. The scatter-plots show the effect of each
drug—rotavirus infectivity shown in cyan and cell viability in red—relative to vehicle control (y-axis), assayed at different
concentrations (x-axis) in triplicate. The lines indicate the average across replicates. * p < 0.05, 1-tailed Student’s t-test, BC.
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Supplementary Figure 8. Experimental evaluation of the antiviral effect of FDA-approved drugs in lung adenocarci-
noma cell lines. A set of drugs, predicted by ViroTreat for the GI context and with validated antiviral effect in Caco-2 cells
were evaluated in Calu-3 (a) and A549-ACE2 (b) cells. The scatter-plots show the effect of each drug—SARS-CoV-2 infectiv-
ity shown in cyan and cell viability in red—relative to vehicle control (y-axis), assayed at different concentrations (x-axis) in
triplicate. The lines indicate the average across replicates. * p < 0.05, ** p < 0.01, **** p < 10−4, 1-tailed Student’s t-test,
BC.
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Supplementary Table 1. SARS-CoV-2 host cell RNA-Seq and scRNA-Seq datasets.

Model Data type Publication Source
Calu3 Bulk RNASeq Wyler et al.1 (GEO) GSE148729
H1299 Bulk RNASeq Wyler et al.1 (GEO) GSE148729
Caco2 Bulk RNASeq Wyler et al.1 (GEO) GSE148729
A549 Bulk RNASeq Blanco Melo et al.2 (GEO) GSE147507
Lung Organoids Bulk RNASeq (GEO) GSE160435
NHBE Bulk RNASeq Blanco Melo et al.2 (GEO) GSE147507
Human lung Bulk RNASeq Blanco Melo et al.2 (GEO) GSE147507
Calu3 scRNASeq Wyler et al.1 (GEO) GSE148729
H1299 scRNASeq Wyler et al.1 (GEO) GSE148729
Ileum scRNASeq Triana et al.3 Boulant Lab
Colon scRNASeq Triana et al.3 Boulant Lab
Vero6 CRISPRcas9 Wei et al.4 Supplementary Data
A549 CRISPRcas9 Daniloski et al.5 Supplementary Data
Huh-7.5 CRISPRcas9 Wang et al.6 Supplementary Data
Huh-7.5 CRISPRcas9 Schneider et al.7 Supplementary Data
1Wyler, E., et al. (2021). iScience 24(3): 102151.
2Blanco-Melo, D., et al. (2020). Cell 181(5): 1036-1045 e1039.
3Triana, S., et al. (2021). Mol Syst Biol 17(4): e10232.
4Wei, J., et al. (2021). Cell 184(1): 76-91 e13.
5Daniloski, Z., et al. (2021). Cell 184(1): 92-105 e116.
6Wang, R., et al. (2021). Cell 184(1): 106-119 e114.
7Schneider, W. M., et al. (2021). Cell 184(1): 120-132 e114.

Supplementary Table 2. Drugs library, ViroTreat and focused validation screen results.

< See supplementary file Table-S2.xlsx >
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Supplementary Table 3. Organoids’ culture media.

Compound Final concentration
Basal media
Ad DMEM/F12
+GlutaMAX
+HEPES
+P/S
L-WRN 50% by volume
B27 1:50
N-acetyl-cysteine 1 mM
EGF 50 ng/mL
A83-01 500 nM
IGF-1 100 ng/mL
FGF basic 50 ng/mL
Gastrin 10 mM
Differentiation media
Ad DMEM/F12
+GlutaMAX
+HEPES
+P/S
B27 1:50
N-acetyl-cysteine 1 mM
R-spondin 5% by volume
Noggin 50 ng/mL
EGF 50 ng/mL
Gastrin 10 mM
A83-01 500 nM

Supplementary Table 4. PCR primers.

Gene name Species Forward sequence Reverse sequence
HPRT1 Human cct ggc gtc gtg att agt gat aga cgt tca gtc ctg tcc ata a
COV1 SARS-CoV-2 gcc tct tct gtt cct cat cac aga cag cat cac cgc cat tg
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