

1 Phenogenomic characterization of a newly domesticated and novel species from the
2 genus *Verrucosispora*

3

4 Sarah J. Kennedy, ^a Celine Grace F. Atkinson, ^{a*} Brooke R. Tomlinson ^a, Lauren
5 Hammond, ^a Prahathees Eswara, ^a Bill J. Baker, ^b Lindsey N. Shaw^{a#}

6

7 ^aDepartment of Cell Biology, Microbiology and Molecular Biology, University of South
8 Florida, Tampa, Florida, USA

9 ^bDepartment of Chemistry, University of South Florida, Tampa, Florida, USA

10

11 Running Head: Domestication of *Verrucosispora sioxanthis* sp. nov.

12

13 #Address correspondence to Lindsey N. Shaw, shaw@usf.edu.

14 *Present address: Celine Grace F. Atkinson, Department of Pediatrics, Morsani College
15 of Medicine, University of South Florida, Tampa, Florida, USA

16

17 Abstract word count: 200

18 Main body of text word count: 5150

19

20

Abstract

21

22 The concept of bacterial dark matter stems from our inability to culture most microbes
23 and represents a fundamental hole in our knowledge of microbial diversity. Herein we
24 present the domestication of such an organism: a previously uncultured, novel species
25 from the rare-Actinomycetes genus *Verrucosispora*. Although initial recovery took >4
26 months, isolation of phenotypically distinct, domesticated generations occurred within
27 weeks. Two isolates were subjected to phenogenomic analyses, revealing
28 domestication correlated with enhanced growth rates in nutrient-rich media, but
29 diminished capacity to metabolize diverse amino acids. This is seemingly mediated by
30 genomic decay through the pseudogenization of amino acids metabolism genes.
31 Conversely, later generational strains had enhanced spore germination rates, potentially
32 through the reversion of a sporulation-associated kinase from pseudogene to true gene
33 status. We observed that our most wild-type isolate had the greatest potential for
34 antibacterial activity, which correlated with extensive mutational attrition of biosynthetic
35 gene clusters in domesticated strains. Comparative analyses revealed wholesale
36 genomic reordering in strains, with widespread SNP, indel and pseudogene mutations
37 observed. We hypothesize that domestication of this previously unculturable organism
38 resulted from the shedding of genomic flexibility required for life in a dynamic marine
39 environment, parsing out genetic redundancy to allow for a newfound cultivable
40 amenability.

41

42

Importance

43

44 The majority of environmental bacteria cannot be cultured within the laboratory.
45 Understanding why only certain environmental isolates can be recovered is key to
46 unlocking the abundant microbial dark matter that is widespread on our planet. In this
47 study we present not only the culturing but domestication of just such an organism.
48 Although initial recovery took >4 months, we were able to isolate distinct, sub-passaged
49 offspring from the originating colony within mere weeks. A phenotypic and genotypic
50 analysis of our generational strains revealed that adaptation to life in the lab occurred as
51 a result of wholesale mutational changes. These permitted an enhanced ability for
52 growth in nutrient rich media, but came at the expense of reduced genomic flexibility.
53 We suggest that without dynamic natural environmental stressors our domesticated
54 strains effectively underwent genomic decay as they adapted to unchallenging
55 conditions experienced in the laboratory.

56

57

Introduction

58

59 The Great Plate Count Anomaly has confounded microbiologists since the 1800s and
60 the introduction of solid growth media (1). The first recorded instance was in 1932 by
61 Razumov, who was unable to equate viable plate counts with the microscopic
62 enumeration of environmental isolates (2). Advances in next generation sequencing and
63 metagenomics in the modern era have only confirmed this culturable discrepancy,
64 leaving the longest unresolved question in microbiology unanswered. Recent analyses
65 of genomic data produce a bleak picture, highlighting that the current rate of
66 characterization at 600 new species per year will require more than 1,000 years to
67 complete (3). The knowledge from this microbial “dark matter” has untold and
68 innumerable consequences. Unlike the hypothetical understanding of dark matter in
69 astrophysics, concrete microbial dark matter discoveries divulge the uncultured majority
70 as a dominant factor within the universe (4). Technological advancements reveals that
71 this uncharacterized diversity also encodes the potential to produce countless bioactive
72 compounds that must be investigated (5), both for bacterial taxonomy and to potentially
73 restock our chemical arsenal in a post-antibiotic age (6).

74

75 While the post-antibiotic age is a relatively new threat, humans have been using
76 bacterial natural products since ancient Mesopotamia (7). More recently, however, we
77 have been able to optimize bacterial biosynthetic potential for myriad applications. This
78 domestication, or taming, is analogous to domestication of farm animals and crops.
79 Human selection has caused “wild type” organisms to evolve away from their highly

80 variable and complex natural environments: without dynamic natural environmental
81 stressors necessitating fitness traits, domesticated organisms effectively undergo
82 genomic decay as they adapt to static, unchallenging conditions experienced in the
83 laboratory (8).

84

85 During our explorations of cryptic microbial dark matter, we have previously reported
86 recovery and whole genome sequence of *Verrucosispora* sp. CWR15 isolated from a
87 Gulf of Mexico sponge. Although markedly understudied, the *Verrucosispora* genus has
88 attracted some attention due to the demonstratable bioactive potential of its secondary
89 metabolites. Since the taxon was established in 1998, there have been discoveries of
90 novel antibiotic (9), antitumor (10), anti-influenza A (11), and anti-HIV activities (12, 13).
91 Despite this, the majority marine-derived genus is among the “rare actinomycetes”
92 reticent to laboratory culturing and domestication (14).

93

94 In this study at hand we report the domestication of *Verrucosispora* sp. CWR15 by
95 sequencing laboratory sub-passaged, phenotypically distinct generations and their
96 functional characterization. Genomic exploration reveals laboratory-induced genetic
97 changes in key functions like metabolism, environmental information processing,
98 antibacterial gene clusters and antimicrobial resistances. This results in a domesticated,
99 previously unculturable organism that appears to be a novel species, herein named
100 *Verrucosispora sioxanthis*. This domestication and speciation serve as an example of
101 how to decrease the microbial dark matter knowledge gap with the aim of restocking the
102 antibiotic medicine cupboard in a post-antibiotic age.

103

Methods

104

105 **Serial passaging:** Three distinctive generations of *Verrucosispora sioxanthis* CWR15
106 were obtained via liquid sub-culturing. Each generation was grown for 7d in identical
107 baffled flasks with 60mL tryptic soy broth (TSB; 30g/L) containing sucrose (20% (v/v)
108 solution of filter sterilized 50% (w/v) sucrose) at 30°C at 210rpm. Serial passaging was
109 accomplished by withdrawing 1mL of cultures and inoculating them into fresh
110 TSB/sucrose flasks every 7d. Each generation was preserved at -80°C in 20% glycerol
111 in Instant Ocean (IO; 36g/L) solution.

112

113 **Spore solution generation:** Individual colonies were grown into 5mL TSB containing
114 sterile glass beads and sucrose for 7-14d at 210rpm and 30°C. Cultures were plated on
115 TSA supplemented with sucrose and placed in a humidified incubator at 30°C for 7-14d
116 until lawns established. Spores were scraped from agar plates into filter-sterilized water
117 (15). Cellular debris was filtered using autoclaved coffee filters, and solutions were
118 incubated at 55°C for 10min to kill vegetative cells prior to experimentation.

119

120 **Conditional growth assay:** TSB, Luria-Bertani Broth (LB; 10g/L tryptone, 5g/L yeast
121 extract, 10g/L NaCl), AMM (10g/L starch, 4g/L yeast extract, 2g/L peptone, 36g/L IO)
122 and International *Streptomyces* Project 2 (ISP-2; 10g/L malt extract, 4g/L glucose, 4g/L
123 yeast extract, 36g/L IO) were used for these assays in 96-well plates sealed with
124 parafilm and surrounded with a sterile moat of water to minimize evaporation over the
125 14d+ experiment. Five replicates of each media (75µL) were used with/without sucrose.

126 Freshly processed spore solution was inoculated to each well, to a final volume of
127 100 μ L. An identical set-up containing a UV-sterilized glass bead (0.5mm) in each well
128 was also used. Plates were incubated in a humidified shaker at 30°C and 210rpm, with
129 growth monitored via OD₆₀₀ every 24h using a Synergy 2 Microplate reader .

130

131 **Methylene blue assay:** The absorption and desorption of germinating spore solutions
132 was monitored as described previously (16). Five 24-well plates were inoculated with
133 TSB and spore solution, along with three sterile glass beads (3mm). Sealed plates were
134 incubated in a humidified shaker at 30°C and 210rpm. Methylene blue absorption was
135 performed within the growth plate to limit transferal loss, at 245rpm. Complete
136 methylene blue desorption employed two washes with 250mM HCl. Desorption was
137 determined by reading the OD₆₆₀ of supernatants. The exact concentrations of
138 methylene blue absorbed and desorbed was determined using a previously established
139 absorption coefficient (16).

140

141 **Genomic DNA extraction and sequencing:** Genomic DNA was extracted from 7d
142 TSB/sucrose/beads cultures incubated as described above. Cultures were mechanically
143 disrupted with sterile glass beads before undergoing phenol chloroform DNA extraction.
144 Quality was monitored with a Thermo Scientific NanoDrop® ND-1000 UV-Vis
145 Spectrophotometer. An Ion Torrent PGM Hi-Q View OT2 Kit was used to generate 200-
146 300bp library fragments with ~100ng of input DNA. Ion Plus Fragment Library Kit
147 Adapters and manufacturer's protocols were used to ligate adapters to fragments, and
148 Ion Xpress barcodes were attached to allow multiple samples on a single chip.

149 Purification was performed with Agencourt AMPure XP Reagent according to
150 manufacturer's protocol, and library size selection was performed with an E-Gel
151 SizeSelect Agarose Gel. Amplification was performed using an Ion Plus Fragment
152 Library Kit, purified with Agencourt AMPure XP Reagent, and analyzed with an Agilent
153 High Sensitivity DNA Kit and an Agilent 2100 Bioanalyzer instrument. Barcoded libraries
154 for each generation were pooled, and an Ion OneTouch 2 instrument was used to
155 prepare template-positive Ion PGM Hi-Q View Ion Sphere Particles (ISPs). ISPs were
156 enriched using an Ion OneTouch ES instrument prior to sequencing using an Ion 318 v2
157 chip (Ion Torrent).

158

159 ***In silico prediction of species novelty:*** The hybrid assembly for generation 3 (H-G3,
160 used for scaffolding purposes) has been described previously (17). Determination of
161 dDDH and taxonomy was achieved by submitting the H-G3 genome through the Type
162 (Strain) Genome Server (TYGS), available at <https://tygs.dsmz.de/> (18). The
163 determination of closely related type strains (19-22), pairwise comparison of genome
164 sequences (22), phylogenetic inferences (23-25), and type-based species and
165 subspecies clustering (26) are described in (18). The DSMZ-generated phylogenetic
166 tree was exported to the Interactive Tree Of Life (iTOL) for visualization (27). Average
167 nucleotide identity (ANI) (28) and average amino acid identity (AAI) (29) of H-G3 was
168 repeated herein following the taxonomic reorganization of *Verrucosispora* and
169 *Micromonospora*.

170

171 **Domestication elucidation bioinformatics:** For the genetic investigation of
172 domestication, Ion Torrent PGM reads were trimmed and processed using “map reads
173 to contigs” of the previously published H-G3 (17) within CLC Genomics Workbench
174 (CLCGW, v20.0.2), default parameters. The resulting contigs for each generation were
175 aligned to *Verrucosispora* CNZ293 using progressiveMauve (30) (default settings,
176 except allowing use seed families option enabled) to generate a universal positional
177 identifying number for the generations to be plotted to. Generational genomic
178 accessions are available within **Data availability** section. The new genomes were
179 aligned (G1:G3) in progressiveMauve using previously described parameters. The
180 mapping coverage data exported from CLCGW generated a coverage histogram for G1.
181 Biosynthetic gene clusters (BGCs) were identified using bacterial antiSMASH v6.0.0
182 (31) and annotated CDS were obtained from CLCGW. For G1-G3 comparisons,
183 homologous genes were determined by reciprocal best BLASTn hit. Gene tracks were
184 generated from reference genomes and gene annotations were extracted from each
185 gene track using CLCGW. Extracted annotations were used in a reciprocal BLASTn
186 (32) with then-named *Verrucosispora maris* (currently *Micromonospora maris*) and
187 *Verrucosispora* sp. NA02020 genome annotations as local databases, and vice versa,
188 using default BLASTn settings with the flag “-max_target_seqs 1” to restrict results to
189 the lowest E-value for homologous determination of KEGG ontological groupings.
190
191 To explore domestication impact, extracted CDS nucleotide (nt) and translated amino
192 acid (aa) sequences from G1 and G3 genomes were aligned using Clustal Omega
193 (v1.2.3) (33), default parameters except wrapping options were enabled to prevent

194 wrapping (--wrap=10,000 for nt, --wrap=5,000 for aa). This was done in a pairwise
195 manner to compare equivalent proteins, unified across generations by annotation locus
196 tags.

197

198 G1 and G3 genome assemblies were submitted to antiSMASH v6.0.0 (31) with
199 “relaxed” strictness and all extra features enabled to identify BGCs. The previously
200 described SNP and indel analyses were applied to BGCs, with a modification to prevent
201 Clustal Omega wrapping (--wrap=1,000,000). The GC-content and contig average
202 mapping coverage depth were determined with CLCGW v21.0.3.

203

204 **Fluorescence microscopy:** Fluorescence microscopy was performed as previously
205 described (34). Cultures were grown in TSB with sucrose and glass beads (30°C and
206 210rpm) for 7d. Aliquots (10µL) of each culture were diluted in 200µL of PBS, and then
207 100µL was mixed with BODIPY FL dye (1µg/ml) and incubated for 10min at room
208 temperature. FM4-64 (1µg/ml) was added and 5µL was spotted onto a glass bottom
209 dish (MatTek) and covered with a 1% agarose pad. Microscopy was performed using a
210 GE Applied Precision DeltaVision Elite deconvolution fluorescence microscope
211 equipped with a Photometrics CoolSnap HQ2 camera. Seventeen planes were acquired
212 for each image, each 200nm apart. Files were deconvolved using the *softWoRx*
213 software v6.5.2.

214

215 **Amino acid utilization:** Methodology involving nitrogen-deficient basal media was used
216 as described previously (35). Briefly, 7d liquid cultures were pelleted and washed to

217 remove growth media. Duplicate inocula were prepared as described (35) for duplicate
218 un-supplemented basal media control plates and supplemented plates. Plates were
219 sealed with parafilm and placed in a humidified incubator at 30°C for 21d prior to
220 scoring results according to literature. Colonies were counted and reported by
221 comparison to basal media for baseline analyses. Sources of amino acids (0.1% w/v
222 final concentration) were: β -alanine (Calbiochem); L-arginine, proline, serine (Acros
223 Organics); L-glutamic acid (Sigma-Aldrich); glycine (Fisher).

224

225 **Secondary metabolite extraction:** Three biological replicates of *Verrucosispora*
226 *sioxanthis* were grown in 60mL baffled flasks in TSB, ISP-2, AMM or 2YT (10g/L yeast
227 extract, 16g/L tryptone, and 5g/L NaCl) (36) at 30°C and 210rpm. Following 21d
228 incubation, 30mL ethyl acetate (EtOAc) was added to cultures before being returned to
229 the incubator for 1h. The resulting extract was filtered through commercial grade coffee
230 filters to remove bacterial biomass, before being left to settle for 24h. The organic layers
231 were transferred to pre-weighed scintillation vials and dried overnight via an airline. An
232 additional 30mL EtOAc was added to original culture media for a second extraction 24h
233 later. Following two extractions, the final dried extract was solvated in 100% dimethyl
234 sulfoxide (DMSO) at 5mg/mL.

235

236 **Antimicrobial testing:** Overnight cultures of ESKAPE pathogens were utilized in
237 antibacterial screens as previously described (37). Plates were incubated at 37°C and
238 245rpm overnight. Inhibitory activity was determined via OD₆₀₀ readings within a
239 Synergy 2 microplate reader.

240

241 **Data availability:** *Verrucosispora sioxanthis* generational genomic contigs are
242 deposited in NCBI under the [BioProject PRJNA734818](#). Generation 1 (G1) is available
243 within the BioSample [SAMN19546627](#), and generation 3 (G3) is available within
244 [SAMN19546628](#). The G1 Whole Genome Shotgun project has been deposited at
245 DDBJ/ENA/GenBank under accession [JAHMAD000000000](#), G3 has been deposited at
246 DDBJ/ENA/GenBank under accession [JAHMAC000000000](#).

247

Results

248

249 **Cultivation and domestication of a novel isolate of the *Verrucosispora* genus:** We
250 have previously detailed the isolation and genome sequencing of a novel isolate from
251 the genus *Verrucosispora*, *Verrucosispora* sp. CWR15, isolated from a Gulf of Mexico
252 sponge (17). Given the understudied nature of the *Verrucosispora* genus, and the rarity
253 with which they are cultured, we present herein a detailed phenogenomic exploration of
254 the generational domestication of this organism. Following initial isolation of
255 *Verrucosispora* sp. CWR15 we observed that its continued culturing within the lab
256 proved difficult. Very often the organism failed to disperse in broth, and media
257 preparations would evaporate or desiccate during extended (7+ days) incubations. To
258 explore this, we initially tried different standard laboratory media (TSB and LB) without
259 the addition of the environmental sponge extract that *Verrucosispora* sp. CWR15 was
260 initially cultured on (**Figures 1A and 1B**). In so doing, we noted minimal growth in TSB
261 and LB alone that was only improved upon inclusion of both sucrose and glass beads,
262 alongside extended culture times. Towards this latter point, sucrose is known to incite
263 faster/non-aggregative growth in similarly hyphal-growing organisms such as
264 *Streptomyces* spp. (38), whilst sterile glass beads physically disrupt biomass in liquid
265 media and mechanically prevent aggregation. We next tried more specialized media
266 typically used to culture organisms such as *Verrucosispora* spp. (39-41). Here we found
267 that AMM and ISP-2 (**Figure 1C and 1D**) media were much better suited for rapid
268 biomass accumulation, as evidenced by the 3-5 day increase in optical density for
269 AMM, and for ISP-2 after the 6-day time point. Unfortunately, although these media

270 produced more robust growth, they are not amenable to downstream experimentation
271 due to component solubility and instability, particularly during long growth windows.
272 Indeed, such instability was evidenced by the drastic and sometimes unpredictable
273 growth patterns observed. Thus, all downstream experimentation was performed with
274 TSB + sucrose and beads, yielding reproducible and steady growth.

275

276 **Serial sub-culturing yields generationally distinct isolates with disparate growth**
277 **rates:** Using supplemented TSB, we were able to sub-passage *Verrucosispora* sp.
278 CWR15. This domestication, via gradual introduction to laboratory culturing, yielded
279 visually distinct generations over time that grew to different biomasses with varying
280 efficiencies. Strikingly, the first (G1), third (G3), and fifth (G5) generations were notable
281 as being the most phenotypically distinct. Initial differences were observed in dispersal,
282 biomass, and rate of growth between each generation. This is remarkable as: (1) no
283 record exists of this rarely cultured taxon displaying such laboratory-attenuation; (2)
284 such drastic phenotypic changes are typically described for bacteria spanning years not
285 days (42); and (3) the elucidation of laboratory-attenuation mechanisms could provide
286 the basis for understanding why this rarely cultured taxon resists traditional culturing. To
287 avoid complications from colony aggregation, we first measured growth rates of our
288 generational isolates using a modified methylene blue absorption protocol. We
289 observed that the three generations desorb methylene blue at different concentrations
290 based on their biomass (**Figure 2**). Although G1 may follow the same overall trends as
291 the other isolates, it never accumulates the same biomass as its offspring generations.
292 Indeed, even after four days, G1 has significantly less biomass than G2 and G3.

293 Contrastingly, G3 has the most biomass at all timepoints, although G3 and G5
294 eventually converge. Together, these initial growth trends suggest that the most “wild-
295 type” organism, G1, struggles to achieve the biomass of the more lab-attenuated G3
296 and G5. Such growth reticence of earlier generations likely contributes to the taxon’s
297 culturing infrequency.

298

299 **Whole genome sequencing of generational isolates:** With generationally distinct
300 strains in hand, we next performed whole-genome sequencing on our two most
301 phenotypically distinct isolates (G1 and G3). This was done to shed light on the rapid
302 domestication observed, and to glean insight as to why this taxon resists culturing.
303 Although we have previously published a hybridized Nanopore and Illumina genome for
304 H-G3 (17), herein we performed IonTorrent-based sequencing for G1 and G3 for ease
305 of comparison. These were individually re-mapped to the hybridized G3 (H-G3) genome
306 to provide standardized generational comparisons (**Figure 3**). Since the published H-G3
307 genome consisted of 35 contigs in no order, comparable universal position numbers
308 were derived using progressiveMauve to align contigs to the single contig scaffold
309 reference, *Verrucosispora* CNZ293. To account for differences between G1 and G3
310 genomes, all analyses examined only genes present within both. While G1 has a total of
311 5,018 CDS annotated, G3 only has 4,762 CDS. Amongst these, 4,420 genes were
312 present in both strains (88% of G1 CDS), presenting only a minor limitation to these
313 analyses. Generational mapping coverage depths and statistics are shown in
314 **Supplemental Table S1**; whilst the bioinformatics pipeline used herein is in
315 **Supplemental Figure S1**.

316

317 **Domestication induces SNPs, indels and widespread pseudogene alterations**

318 **throughout the genome:** To explore domestication mutations, we subtracted Mauve-

319 identified SNPs from the Clustal-identified mutations, allowing indel identification. In so

320 doing, it appears that the majority of genetic changes between our isolates is not due to

321 SNPs (285/4,420 genes, ~6.4%), but instead is indels (2,570/4,420 genes, ~58.1%).

322 When calculating mutation frequencies per gene (accounting for varying gene lengths)

323 we noted the SNP frequencies ranged from 0-3.5%, while indel frequencies ranged from

324 0-54%. To link KEGG ontological groups with CDS via BLASTn, we next pooled G1 and

325 G3 CDS and align them with the genomes of *Verrucosispora maris* (now

326 *Micromonospora maris*) and *Verrucosispora* NA02020. While these references only

327 confer KEGG ontology to 1,181/4,420 G1+G3 genes (~26.7%), it is not due to a lack of

328 homology. ANI values are 84.52% for *Verrucosispora/Micromonospora maris* and

329 84.91% for *Verrucosispora* NA02020, indicating similarity. Indeed, only 6 total CDS

330 were not matched in the reciprocal BLASTn's. The most significant contribution to the

331 lack of KEGG ontology is that ~40% and ~41% of *Verrucosispora/Micromonospora*

332 *maris* and *Verrucosispora* NA02020 CDS, respectively, are not associated with a KEGG

333 ontological group. Another point to note is that indels caused significant generational

334 DNA dissimilarity, as determined via Clustal Omega. Here, indel-identified genes

335 ranged from 46-99.97% DNA similarity: 1,778/4,420 genes (~40.2%) contained ≤ 10

336 indels; 546/4,420 genes (~12.4%) contained 11-50 indels, 210/4,420 genes (~4.8%)

337 contained 51-199 indels; and 36/4,420 genes (~0.8%) contained 201-1611 indels.

338 Overall, only 271/4,420 genes (~6.1%) contained both SNP and indel mutations.

339

340 Since pseudogenes present within the un-sequenced originating sponge strain cannot
341 be identified, the presence or absence of extraneous stop codons in G1 cannot be
342 determined. Instead, we explored the change of pseudogene status from G1 to G3 in
343 the context of laboratory attenuation. Upon analysis, we observed that 598/4,420 genes
344 (13.5%) changed pseudogene status from G1 to G3. Of these genes, 191/598 genes
345 (~31.9%) changed from pseudogene status in G1 to non-pseudogene status in G3.

346

347 **Pseudogene alteration in amino acid metabolism genes results in measurable**
348 **phenotypic outcome:** The largest KEGG ontological group within the references (and
349 therefore G1 and G3) belongs to metabolism, due to the overrepresentation of
350 metabolism within available annotations. Strikingly, numerous amino acid metabolism
351 genes were identified as undergoing mutations in our strains that changed pseudogene
352 status (**Supplemental Table S2**). These included genes that specify proteins required
353 for the utilizations of arginine, glutamine, proline, and serine. G1 contained six non-
354 pseudogenes and three pseudogenes, whilst the G3 pseudogene profile flipped to
355 majority pseudogene status (six pseudogenes and three non-pseudogenes); all
356 resulting from indels rather than SNPs. To determine if these events had phenotypic
357 outcome, the amino acid utilization profile of G1 and G3 were evaluated. Additionally,
358 although G5 was not subject to whole genome analysis, it was also included to provide
359 context and insight to continued domestication. We determined that G1 grew in all
360 tested conditions, including basal/nitrogen-deficient media (**Figure 4**). In comparison,
361 G3 and G5 were incapable of growth without amino acid supplementation and failed to

362 demonstrate G1-comparable biomass even in the presence of diverse amino acids. Of
363 note, although G1 grew in all conditions, the preferred nitrogen source appeared to be
364 arginine, which also elicited growth for the other generations as well, although not to the
365 same extent. G3 grew on a larger variety of sources (all but glycine) compared to G5,
366 which was only able to grow on arginine, glutamic acid, and glycine.

367

368 **Domestication results in enhanced spore germination rates:** As domesticated
369 generations accumulate greater biomass independent of amino acid metabolism, we
370 next focused on growth from spore solutions. While the under-annotated nature of the
371 taxon is a limitation, several sporulation-associated genes were identified. One in
372 particular, *cotH*, a kinase regulator implicated in spore-coat assembly and germination
373 (43) notably underwent domestication-induced pseudogene alteration. Strikingly, this
374 gene had only 80.95% nucleotide similarity between G1 and G3, due to ~19.0% indels
375 that cause change from pseudogene to non-pseudogene upon further domestication
376 (**Supplemental Table S2**). To explore this observation further, spore germination
377 assays were performed with each generational strain (**Figure 5**). We observed that G1
378 experienced delayed and minimal germination, and subsequent growth, as visualized by
379 a single suspended orange colony. Contrastingly, G3 and G5 germinate and begin
380 rapidly growing at around 14 days, with optical densities far exceeding those of the
381 essentially dormant G1. It is noteworthy that domestication-induced indel accumulation
382 within *cotH* results in G3 encoding a complete, non-pseudogene protein. This alteration
383 could be indicative of a broad selection pressure placed on sporulation and germination
384 genes, as functional CotH is required for efficient germination of *Bacillus subtilis* spores

385 (43). Furthermore, CotH is required for outer spore coat structure and integrity (44). A
386 G1 *cotH* pseudogene could thus contribute to decreased heat resistance and
387 subsequent minimal growth of heat-treated spores.

388

389 **Generational strains display differential aggregation phenotypes:** Next, to explore
390 macroscopic aggregative growth phenotypes, fluorescence microscopy with membrane
391 and cell wall staining was performed (**Figure 6**). We observed that G1 displayed a
392 compact, non-diffuse phenotype that was not present within the more filamentous,
393 elongated G3. G5 was observed to have a phenotype similar to G1, however with more
394 filaments branching from core aggregated cells. We thereby classified G5 to have a
395 phenotype averaging both G1 and G3 dispersal. Overall, these images suggest that G1
396 growth is more aggregative than the more domesticated generations. This could explain
397 the limited biomass accumulation of this strain, and its general failure to disperse.
398 Indeed, the overlapping filaments demonstrate a propensity to grow inwards rather than
399 outwards, causing eventual growth limitation and subsequently decreased biomass.

400

401 **Domestication limits the antibacterial capacity of *Verrucosispora* sp. CWR15:**
402 Given that the genus has contributed novel chemical structures in the past, we next
403 investigated the antibacterial potential of our isolates. We began by analyzing BGCs
404 using antiSMASH for H-G3, identifying 18 clusters, including those for NRPS,
405 T1PKS/T2PKS/T3PKS, siderophores, and bacteriocins. This low number is likely a
406 result of the limited taxonomic investigations and annotations of the genus. Indeed,
407 ~72% of the BGCs do not exceed >50% similarity within available sequences, and 5

408 clusters returned no significant similarity scores at all (**Supplemental Table S3**). These
409 5 included syntheses of a lasso peptide, NAAGN, two separate terpenes, and a class I
410 lanthipeptide.

411
412 To explore antimicrobial potential, G1 was grown in a variety of media prior to crude
413 extraction of secondary metabolites. These extracts were assayed against a panel of
414 ESKAPE pathogens (**Supplemental Table S4**) at a concentration of 250 μ g/mL (**Figure**
415 **7A**). Differential antibacterial activities were observed between culture conditions, with
416 ISP-2, AMM, and 2YT demonstrating minimal inhibitory effects. TSB conditions,
417 however, elicited profound antibacterial activity against *E. faecium*. This inhibition
418 (~91%) is notable for a crude extract, as no fractionation or purification was undertaken
419 to strengthen activity. Next, all three generations were examined for antibacterial
420 production in TSB. While all showed activity, G1 exhibited the greatest anti-*E. faecium*
421 effects (**Figure 7B**), readily exceeding that of G3 (~80%) and G5 (~67%). This finding is
422 fascinating as we demonstrate that the most wild-type-like strain (G1) has the greatest
423 capacity for antibacterial effects, a phenotype that is lost with increasing laboratory
424 domestication. Such a finding has significant potential ramifications for environmental-
425 microbe natural-products drug-discovery.

426
427 The PGM G1 and G3 genomes were uploaded to antiSMASH for investigation of the
428 differential generational bioactivity. The passage of G1 to G3 induced both SNPs and
429 indels in BGCs, however, as with the rest of the genome, the majority of mutations were
430 indels. These mutations contributed to antiSMASH predicting three clusters (producing

431 xanthoferrin, formicamycins A-M, and isorenieratene) in G1 that had no equivalent in G3
432 (**Supplemental Table S5**). Conversely, 7/18 BGCs noted above for H-G3 were absent
433 from G1, again due to domestication mutations (**Supplemental Table S6**).

434
435 We next undertook a dose-response study with G1 (**Figure 7C**), noting that the
436 observed anti-*E. faecium* activity persists even as the tested concentration decreases.
437 The inhibitory effects of G1 crude extracts continued at >50% until only after they were
438 diluted to a concentration of 100 μ g/mL. Such activity is indeed noteworthy, as, to our
439 knowledge, no anti-*E. faecium* activity has ever been reported within *Verrucosispora*
440 spp.

441
442 ***Verrucosispora* sp. CWR15 is a novel species:** As a final step, using data from our
443 genomic analyses, we created a 16S rRNA phylogenetic tree (**Figure 8**), comparing our
444 novel isolate to other members of the genus and the closely related *Micromonospora*.
445 This revealed that *Verrucosispora* sp. CWR15 is most similar to *Micromonospora*
446 *sediminimaris*, previously recognized as *Verrucosispora sediminis*. Due to the taxon
447 undergoing arrangement with *Micromonospora*, we also predicted the digital DNA-DNA
448 hybridization (dDDH) to determine novelty of the organism (**Supplemental Table S7**).
449 While taxonomy of the genus may be in flux as *Verrucosispora* spp. are increasingly
450 being acknowledged as heterotypic synonyms to *Micromonospora*, the highest dDDH
451 values of 63.9, 46.3, 61.1% (d0, d4, d6 respectively) do not exceed the accepted
452 threshold of 70%, indicating that the isolate is taxonomically distinct. Furthermore, the
453 92.04% ANI and 94.1% AAI to *Micromonospora sediminimaris* fall within the threshold

454 for speciation distinction. Collectively, these genomic and *in silico* assessments support
455 the notion that our isolate is a novel species, which we herein term *Verrucosispora*
456 *sioxanthis* based on the sioxanthin pigment that bestows the organism with its vibrant
457 orange appearance.

458

Discussion

459

460 Bacterial domestication although underexplored, is not unheard of. It is known that
461 endosymbionts accrue significant pseudogenes upon liberation from their eukaryotic
462 hosts (45-48). Indeed, pseudogene numbers within transitioning endosymbiotic bacteria
463 can reach into the thousands, often accounting for over half of the genome (47, 48). It is
464 also known that gene inactivation through pseudogene accumulation is correlated with
465 reduced selective pressures on redundant genes (49). This is synonymous with
466 laboratory attenuation in our study. As the previously sponge-associated *Verrucosispora*
467 *sioxanthis* was passaged through high-nutrient, stable laboratory conditions, the
468 organism no longer required the genetic flexibility that allowed it to respond to the host,
469 environment, and surrounding sponge microbiome. Thus, we propose that
470 pseudogenization effectively allowed the shedding of its flexible genome to adapt to a
471 low-stress laboratory environment, parsing out genetic redundancy in an otherwise
472 stable environment.

473

474 It is important to acknowledge that the only *Verrucosispora* colony recovered from our
475 sponges was on low-nutrient media supplemented with originating sponge extract.
476 While extended incubations are common for recovering organisms from marine or
477 otherwise oligotrophic environs (50), our incubation time (>4 months) is on the more
478 extreme end of the spectrum. We suggest that this organism needed both extended
479 incubation and trace host sponge factors to accumulate biomass as it approached the
480 laboratory-attenuated genetic profile of G1. We observed that passaging, or

481 domesticating, the organism allowed for quicker growth following initial adaptation to the
482 laboratory. Although each generation was given exactly seven days between passages
483 whilst maintaining all incubation parameters, the generational endpoint biomasses are
484 incomparable. The only variable that could explain these discrepancies is thus the
485 domestication mutations accumulated during laboratory adaptation.

486

487 The domestication documented herein is marked by genome-wide alterations. Indeed,
488 the extent of change in pseudogene status observed in our genomic comparisons was
489 quite striking. This clearly indicates a selection pressure for activating/inactivating
490 mutations in domesticated strains of *Verrucosispora sioxanthis*. This ability to either
491 produce a fully functional protein or introduce early stop codons is in line with the
492 genomic decay present in former endosymbionts that shed their eukaryotic hosts. As
493 facultative endosymbionts transition away from their hosts and host-specific selective
494 pressures, genome decay through gene inactivation is observed, mainly through the
495 usage of pseudogenes and truncated (and thus inactive) gene products (51).

496

497 To investigate the phenogenomic effects of domestication, biomass and metabolism
498 assays were performed to supplement *in silico* study. Regarding amino acid
499 metabolism, pseudogene-mediated flexibility seemingly contributed to *Verrucosispora*
500 *sioxanthis*' ability to adapt and flourish within non-native conditions. The amino acid
501 metabolism genes identified all underwent indel-induced pseudogene alterations in G3
502 resulting in less amino acid metabolic ability and an overall pseudogene-dominant
503 profile. This is in direct contrast to G1 that had the greatest amino acid metabolic

504 capacity and an overall non-pseudogene profile for those implicated genes. G1's non-
505 pseudogene profile for amino acid metabolism benefits the more wild-type organism;
506 the native oligotrophic conditions of a marine endosymbiont require genetic flexibility to
507 maintain nutrient requirements in a dynamic system. Without the selective pressure of
508 nutrient limitations, lab-attenuated G3 underwent genomic decay that led to a decrease
509 capacity for amino acid consumption. This is in line with the theory that genes not
510 conferring fitness are more susceptible to inactivation or otherwise deleterious mutations
511 (52).

512
513 In addition to amino acid metabolism, we also investigated domestication-impacted
514 secondary metabolism. Since metabolism was the most-affected ontological group, it
515 would follow that both primary and secondary metabolic pathways would be impacted.
516 Indeed, we demonstrate that domestication impacts the antibacterial activity of crude
517 fermentation extracts. The anti-*E. faecium* activity observed decreased from G1 to G3
518 and G5. Genetically, G1 is obviously most similar to the originating sponge isolate.
519 Environmental isolates, particularly marine sponge endosymbionts, must rely upon their
520 chemical defenses to compete and fend off predation (53), frequently producing some
521 form of antibacterial activity. The domestication of such isolates can lead to genome
522 decay, in which strains lose these defense mechanisms as they become laboratory
523 attenuated (54). This noted decrease in antibacterial potential is corroborated by Anti-
524 SMASH analysis, where indel-driven mutations result in widely variable predicted BGC
525 content between strains.

526

527 Notably, while less domesticated generations retain a greater ability to metabolize
528 amino acids, this does not directly contribute to growth rate as G1 was consistently
529 slower at accumulating biomass. This could be explained, in part, by spore germination
530 abilities. In G1, the *cotH* kinase regulator exists as a pseudogene which may result in
531 impaired germination of its spores, a phenotype observed in our assays. In support of
532 this, it is known that CotH influences spore germination in *B. subtilis* (55). Contrastingly,
533 G3 accumulated indels reverting this gene to non-pseudogene status. A fully-functional
534 CotH could allow G3 the ability to germinate, and propagate more rapidly as vegetative
535 cells, ultimately explaining its less spore-dense fluorescence images under microscopy.

536

537 While not every previously unculturable bacterium will behave as *Verrucosispora*
538 *sioxanthis*, we propose that this study is as a model for examining genome-wide effects
539 of domestication. Taken together, the identification of SNPs, indels, and pseudogenes
540 reveals the genetic impacts of domestication. Any of these variables alone would not
541 allow substantial elucidation of the genomic changes required for domestication.
542 Indeed, given that we observed SNPs accounting for 7% of genetic changes, and indels
543 for 58%, mere genomic comparisons alone are insufficient. It is the coupling of genome-
544 derived hypotheses, with phenotypic investigation herein, that demonstrates the holistic
545 value of a combined comparison. Collectively, this generates new insight into the
546 process of domesticating hard-to-tame environmental isolates recalcitrant to laboratory
547 culture. Consequently, we bring light to the subject of microbial dark matter and create
548 the potential to harness such novel phenogenomic information for untold future
549 biochemical applications.

550

551 **Acknowledgements:** This study was supported by grants AI124458 and AI157506
552 (both LNS) and AI154992 (BJB and LNS) from the National Institute of Allergy and
553 Infectious Diseases.

554

555

556 1. Winterberg H. 1898. Zur Methodik der Bakterienzählung. Zeitschr f Hyg 29:75-

557 93.

558 2. Staley JT, Konopka A. 1985. Measurement of in Situ Activities of

559 Nonphotosynthetic Microorganisms in Aquatic and Terrestrial Habitats. Annual

560 Review of Microbiology 39:321-346.

561 3. Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, Whitman

562 WB, Euzeby J, Amann R, Rossello-Mora R. 2014. Uniting the classification of

563 cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.

564 Nat Rev Microbiol 12:635-45.

565 4. Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. 2018. Microbial

566 Dark Matter Investigations: How Microbial Studies Transform Biological

567 Knowledge and Empirically Sketch a Logic of Scientific Discovery. Genome

568 biology and evolution 10:707-715.

569 5. Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA,

570 Labeda DP, Kelleher NL, Metcalf WW. 2014. A roadmap for natural product

571 discovery based on large-scale genomics and metabolomics. Nat Chem Biol

572 10:963-8.

573 6. Milshteyn A, Schneider Jessica S, Brady Sean F. 2014. Mining the Metabiome:

574 Identifying Novel Natural Products from Microbial Communities. Chemistry &

575 Biology 21:1211-1223.

576 7. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ,

577 Reynolds JM, Song MC, Park SR, Yoon YJ. 2019. A Review of the Microbial

578 Production of Bioactive Natural Products and Biologics. *Frontiers in Microbiology*

579 10.

580 8. Gibbons JG, Rinker DC. 2015. The genomics of microbial domestication in the

581 fermented food environment. *Current opinion in genetics & development* 35:1-8.

582 9. Keller S, Nicholson G, Drahli C, Sorensen E, Fiedler HP, Sussmuth RD. 2007.

583 Abyssomicins G and H and atrop-Abyssomicin C from the Marine *Verrucosipora*

584 Strain AB-18-032, p 391. *JAPAN ANTIBIOTICS RES ASSOC*, Japan.

585 10. Igarashi Y, Yu L, Miyanaga S, Fukuda T, Saitoh N, Sakurai H, Saiki I, Alonso-

586 Vega P, Trujillo ME. 2010. Abyssomicin I, a modified polycyclic polyketide from

587 *Streptomyces* sp. CHI39. *J Nat Prod* 73:1943-6.

588 11. Zhang J, Li B, Qin Y, Karthik L, Zhu G, Hou C, Jiang L, Liu M, Ye X, Liu M,

589 Hsiang T, Dai H, Zhang L, Liu X. 2020. A new abyssomicin polyketide with anti-

590 influenza A virus activity from a marine-derived *Verrucosipora* sp. MS100137.

591 *Appl Microbiol Biotechnol* 104:1533-1543.

592 12. Leon B, Navarro G, Dickey BJ, Stepan G, Tsai A, Jones GS, Morales ME,

593 Barnes T, Ahmadyar S, Tsiang M, Gelezunas R, Cihlar T, Pagratis N, Tian Y, Yu

594 H, Linington RG. 2015. Abyssomicin 2 reactivates latent HIV-1 by a PKC- and

595 HDAC-independent mechanism. *Org Lett* 17:262-5.

596 13. Song Y, Li Q, Qin F, Sun C, Liang H, Wei X, Wong N-K, Ye L, Zhang Y, Shao M,

597 Ju J. 2017. Neoabyssomicins A-C, polycyclic macrolactones from the deep-sea

598 derived *Streptomyces koyangensis* SCSIO 5802. *Tetrahedron* 73:5366-5372.

599 14. Subramani R, Sipkema D. 2019. Marine Rare Actinomycetes: A Promising
600 Source of Structurally Diverse and Unique Novel Natural Products. *Marine Drugs*
601 17:249.

602 15. Shepherd MD, Kharel MK, Bosserman MA, Rohr J. 2010. Laboratory
603 maintenance of *Streptomyces* species. *Current protocols in microbiology Chapter*
604 10:Unit-10E.1.

605 16. Fischer M, Sawers RG. 2013. A Universally Applicable and Rapid Method for
606 Measuring the Growth of <span class="named-content genus-species"
607 id="named-content-1">*Streptomyces* and Other Filamentous
608 Microorganisms by Methylene Blue Adsorption-Desorption. *Applied and*
609 *Environmental Microbiology* 79:4499-4502.

610 17. Kennedy SJ, Cella E, Jubair M, Azarian T, Baker BJ, Shaw LN. 2020. Draft
611 Genome Sequence of *Verrucosispora* sp. Strain CWR15, Isolated
612 from a Gulf of Mexico Sponge. *Microbiology Resource Announcements*
613 9:e00176-20.

614 18. Meier-Kolthoff JP, Göker M. 2019. TYGS is an automated high-throughput
615 platform for state-of-the-art genome-based taxonomy. *Nature Communications*
616 10:2182.

617 19. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
618 Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation
619 using MinHash. *Genome Biology* 17:132.

620 20. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007.
621 RNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic
622 Acids Res 35:3100-8.

623 21. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
624 TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.

625 22. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-
626 based species delimitation with confidence intervals and improved distance
627 functions. BMC Bioinformatics 14:60.

628 23. Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: A Comprehensive, Accurate,
629 and Fast Distance-Based Phylogeny Inference Program. Molecular Biology and
630 Evolution 32:2798-2800.

631 24. Farris JS. 1972. Estimating Phylogenetic Trees from Distance Matrices. The
632 American Naturalist 106:645-668.

633 25. Kreft Ł, Botzki A, Coppens F, Vandepoele K, Van Bel M. 2017. PhyD3: a
634 phylogenetic tree viewer with extended phyloXML support for functional
635 genomics data visualization. Bioinformatics 33:2946-2947.

636 26. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A,
637 Rohde C, Rohde M, Fartmann B, Goodwin LA, Chertkov O, Reddy T, Pati A,
638 Ivanova NN, Markowitz V, Kyrpides NC, Woyke T, Goker M, Klenk HP. 2014.
639 Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of
640 *Escherichia coli*, and a proposal for delineating subspecies in microbial
641 taxonomy. Stand Genomic Sci 9:2.

642 27. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for
643 phylogenetic tree display and annotation. Nucleic Acids Res
644 doi:10.1093/nar/gkab301.

645 28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of
646 algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek
647 110:1281-1286.

648 29. Medlar AJ, Törönen P, Holm L. 2018. AAI-profiler: fast proteome-wide
649 exploratory analysis reveals taxonomic identity, misclassification and
650 contamination. Nucleic Acids Res 46:W479-w485.

651 30. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome
652 alignment with gene gain, loss and rearrangement. PLoS One 5:e11147.

653 31. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber
654 T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining
655 pipeline. Nucleic Acids Research 47:W81-W87.

656 32. Tomlinson BR, Malof ME, Shaw LN. 2020. A Global Transcriptomic Analysis of
657 Staphylococcus aureus Biofilm Formation Across Diverse
658 Clonal Lineages. bioRxiv doi:10.1101/2020.12.17.423160:2020.12.17.423160.

659 33. Sievers F, Higgins DG. 2018. Clustal Omega for making accurate alignments of
660 many protein sequences. Protein Science 27:135-145.

661 34. Brzozowski RS, White ML, Eswara PJ. 2019. Live-Cell Fluorescence Microscopy
662 to Investigate Subcellular Protein Localization and Cell Morphology Changes in
663 Bacteria. J Vis Exp doi:10.3791/59905.

664 35. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH, Sackin MJ.
665 1983. Numerical classification of *Streptomyces* and related genera. *J Gen*
666 *Microbiol* 129:1743-813.

667 36. Yim SS, Johns NI, Park J, Gomes AL, McBee RM, Richardson M, Ronda C,
668 Chen SP, Garenne D, Noireaux V, Wang HH. 2019. Multiplex transcriptional
669 characterizations across diverse bacterial species using cell-free systems.
670 *Molecular systems biology* 15:e8875-e8875.

671 37. Fleeman R, LaVoi TM, Santos RG, Morales A, Nefzi A, Welmaker GS, Medina-
672 Franco JL, Giulianotti MA, Houghten RA, Shaw LN. 2015. Combinatorial
673 Libraries As a Tool for the Discovery of Novel, Broad-Spectrum Antibacterial
674 Agents Targeting the ESKAPE Pathogens. *Journal of Medicinal Chemistry*
675 58:3340-3355.

676 38. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical
677 *Streptomyces* genetics. The John Innes Foundation, Norwich.

678 39. RHEIMS H, SCHUMANN P, ROHDE M, STACKEBRANDT E. 1998.
679 *Verrucosispora gifhornensis* gen. nov., sp. nov., a new member of the
680 actinobacterial family *Micromonosporaceae*. *International Journal of Systematic*
681 *and Evolutionary Microbiology* 48:1119-1127.

682 40. Xi L, Zhang L, Ruan J, Huang Y. 2012. Description of *Verrucosispora qiuiae* sp.
683 nov., isolated from mangrove swamp sediment, and emended description of the
684 genus *Verrucosispora*. *International Journal of Systematic and Evolutionary*
685 *Microbiology* 62:1564-1569.

686 41. Supong K, Suriyachadkun C, Suwanborirux K, Pittayakhajonwut P, Thawai C.
687 2013. *Verrucosispora andamanensis* sp. nov., isolated from a marine sponge.
688 *International Journal of Systematic and Evolutionary Microbiology* 63:3970-3974.
689 42. McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R. 2011. Tracing the
690 Domestication of a Biofilm-Forming Bacterium. *Journal of Bacteriology* 193:2027-
691 2034.
692 43. Nguyen KB, Sreelatha A, Durrant ES, Lopez-Garrido J, Muszewska A,
693 Dudkiewicz M, Grynberg M, Yee S, Pogliano K, Tomchick DR, Pawłowski K,
694 Dixon JE, Tagliabracci VS. 2016. Phosphorylation of spore coat proteins by a
695 family of atypical protein kinases. *Proceedings of the National Academy of
696 Sciences* 113:E3482-E3491.
697 44. Freitas C, Plannic J, Istialito R, Pelosi A, Zilhão R, Serrano M, Baccigalupi L,
698 Ricca E, Elsholz AKW, Losick R, O Henriques A. 2020. A protein phosphorylation
699 module patterns the *Bacillus subtilis* spore outer coat. *Molecular microbiology*
700 114:934-951.
701 45. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark
702 UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG. 1998.
703 The genome sequence of *Rickettsia prowazekii* and the origin of mitochondria.
704 *Nature* 396:133-40.
705 46. Cho NH, Kim HR, Lee JH, Kim SY, Kim J, Cha S, Kim SY, Darby AC, Fuxelius
706 HH, Yin J, Kim JH, Kim J, Lee SJ, Koh YS, Jang WJ, Park KH, Andersson SG,
707 Choi MS, Kim IS. 2007. The *Orientia tsutsugamushi* genome reveals massive

708 proliferation of conjugative type IV secretion system and host-cell interaction
709 genes. Proc Natl Acad Sci U S A 104:7981-6.

710 47. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré
711 N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D,
712 Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A,
713 Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S,
714 Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger
715 K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor
716 K, Whitehead S, Woodward JR, Barrell BG. 2001. Massive gene decay in the
717 leprosy bacillus. Nature 409:1007-11.

718 48. Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S. 2006.
719 Massive genome erosion and functional adaptations provide insights into the
720 symbiotic lifestyle of *Sodalis glossinidius* in the tsetse host. Genome Res 16:149-
721 56.

722 49. Goodhead I, Blow F, Brownridge P, Hughes M, Kenny J, Krishna R, McLean L,
723 Pongchaikul P, Beynon R, Darby AC. 2020. Large-scale and significant
724 expression from pseudogenes in *Sodalis glossinidius* - a facultative bacterial
725 endosymbiont. Microbial genomics 6:e000285.

726 50. Bodor A, Bounedjoum N, Vincze GE, Erdeiné Kis Á, Laczi K, Bende G, Szilágyi
727 Á, Kovács T, Perei K, Rákely G. 2020. Challenges of unculturable bacteria:
728 environmental perspectives. Reviews in Environmental Science and
729 Bio/Technology 19:1-22.

730 51. Lamelas A, Gosalbes MJ, Manzano-Marín A, Peretó J, Moya A, Latorre A. 2011.
731 Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to
732 obligate insect endosymbiont. PLoS genetics 7:e1002357-e1002357.
733 52. Ochman H, Davalos LM. 2006. The Nature and Dynamics of Bacterial Genomes.
734 Science 311:1730.
735 53. Matobole RM, van Zyl LJ, Parker-Nance S, Davies-Coleman MT, Trindade M.
736 2017.
737 Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya co
738 mpressa and Higginsia bidentifera Collected from Algoa Bay, South Africa. Mar
739 Drugs 15.
740 54. Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. 2019. Domestication of
741 Industrial Microbes. Current Biology 29:R381-R393.
742 55. Iстicato R, Sirec T, Giglio R, Baccigalupi L, Rusciano G, Pesce G, Zito G, Sasso
743 A, De Felice M, Ricca E. 2013. Flexibility of the Prograamme of Spore Coat
744 Formation in *Bacillus subtilis*: Bypass of CotE Requirement by Over-Production
745 of CotH. PLOS ONE 8:e74949.
746
747

748

Supplemental Figure Legends

749

750 **Supplemental Table S1: G1 and G3 PGM reads mapped to H-G3 contigs.** The
751 IonTorrent PGM-derived G1 and G3 reads were mapped to the hybrid H-G3 assembly,
752 with average coverage, and length of resulting genome shown. Given that this analysis
753 was driven by IonTorrent sequencing, which carries an inherent technological limitation
754 from homopolymeric tracts and sequencing reporting fidelity, we chose to analyze
755 generational mapping coverage depths. Despite the >70% GC-rich nature of the
756 genome potentially exacerbating the homopolymeric tract limitation, G1's average
757 mapping coverage depth amongst all contigs was 30.2X. This demonstrates that the
758 downstream analysis of this data is not influenced by homopolymer tract limitations, as
759 coverage throughout the genome either approaches or exceeds the minimum coverage
760 threshold for analysis of 30X depth (SR1). Moreover, G3's average coverage mapping
761 depth was 38.2X. To further validate the IonTorrent data, we compared mapping
762 statistics for G3 to the published H-G3 scaffold across the three sequencing platforms
763 used (IonTorrent PGM, Illumina MiSeq, and Oxford Nanopore MinION). As expected,
764 Illumina MiSeq generated the longest genome with the greatest coverage depth, least
765 read mapping variants, and most reads matched to the genome. However, surprisingly,
766 the IonTorrent PGM data overall surpassed the Oxford Nanopore MinION statistics:
767 IonTorrent produced a longer genome with more reads mapped and greater depth
768 coverage. Bioinformatic precedence states that identification of genomic mutations
769 requires sufficient depth coverage to exclude false determinations (SR2). Since the
770 IonTorrent PGM depth coverage scored higher than the newer technology of the

771 MinION and exceeded 30X, basing our domestication analysis on the PGM sequencing
772 is fundamentally sound

773

774 **Supplemental Figure S1: Domestication analysis bioinformatics pipeline.**

775 *Verrucosispora sioxanthis* was passaged to generation 3 prior to Nanopore MinION and
776 Illumina MiSeq sequencing, Unicycler hybridization, PGAP annotation, and Mauve
777 arrangement of contigs (Hybrid Generation 3 genome, H-G3) (**A**). IonTorrent PGM
778 reads for generations 1 and 3 were individually mapped to H-G3 and annotated from
779 that scaffold (**B**), prior to Mauve-based identification of SNPs, antiSMASH-based
780 identification of biosynthesis, and KEGG-determined ontologies following reciprocal
781 BLASTn with reference strains. Extracted CDS, both nucleotide (nt) and amino acid (aa)
782 sequences were input into ClustalO for generational comparison alignment (**C**).

783

784 **Supplemental Table S2: Sporulation and amino acid metabolism genes identified**
785 **as not maintaining pseudogene status upon domestication.** One sporulation gene
786 (top, grey shading) *cotH* and nine amino acid metabolism genes (bottom, unshaded)
787 were identified as not maintaining pseudogene status upon passaging generation 1 to
788 generation 3. From left to right: locus, annotation, role, ClustalO-determined
789 generational DNA similarity (%), Mauve-identified SNP frequency (%), indel frequency
790 (%), number of extra stop codons and pseudogene status in generation 1, number of
791 extra stop codons and pseudogene status in generation 3, and if the pseudogene status
792 is maintained upon passaging. The ten genes are ranked top-to-bottom based on
793 increasing generational DNA similarity.

794

795 **Supplemental Table S3: Biosynthetic potential of *Verrucosispora sioxanthis*.**

796 Bacterial antiSMASH version 6.0.0 was used with the generation 3 hybrid assembly (H-
797 G3; GenBank-accessible SAIY00000000). Biosynthetic clusters with no similarity to
798 known clusters are shaded.

799

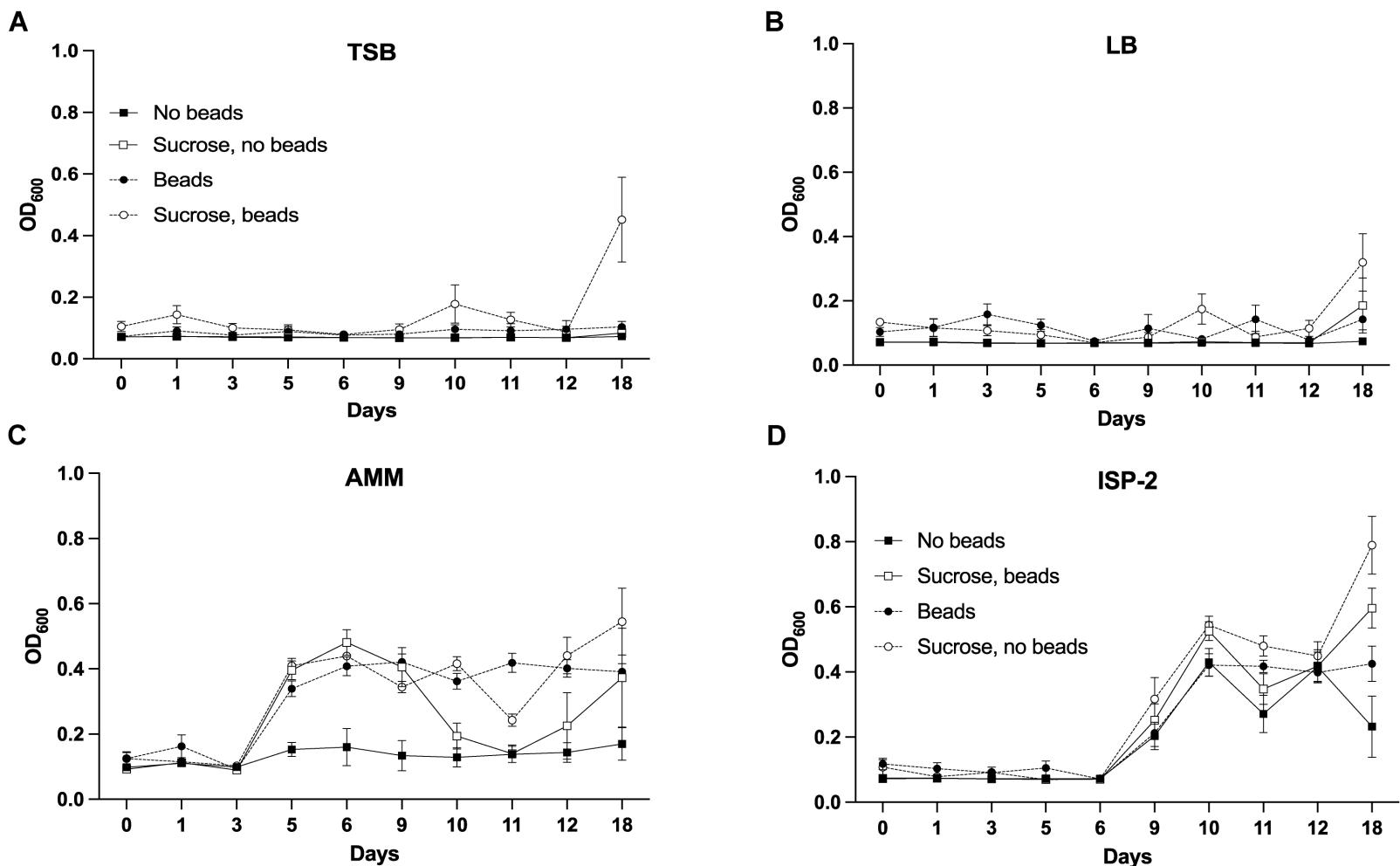
800 **Supplemental Table S4: Multi-drug Resistant ESKAPE Pathogens.** The resistance
801 profiles for the six ESKAPE pathogens are abbreviated as follows: Gentamycin (Gen),
802 Penicillin G (Pen G), Tetracycline (Tet), Daptomycin (Dap), Vancomycin (Van), Linezolid
803 (Lin), Ampicillin (Amp), Azithromycin (Azit), Chloramphenicol (Chlor), Clindamycin
804 (Clin), Cethromycin (Cet), Erythromycin (Ery), Penicillin (Pen), Tetracycline (Tet),
805 Ciprofloxacin (Cipro), Imipenem (Imi), Ampicillin/Sulbactum (Amp/Sulb), Amikacin
806 (Amik), Aztreonam (Azt), Cefepime (Cfp), Cefetazodime (Cfz), Levofloxacin (Levo),
807 Tobramycin (Tob), Polymyxin B (Poly B).

808

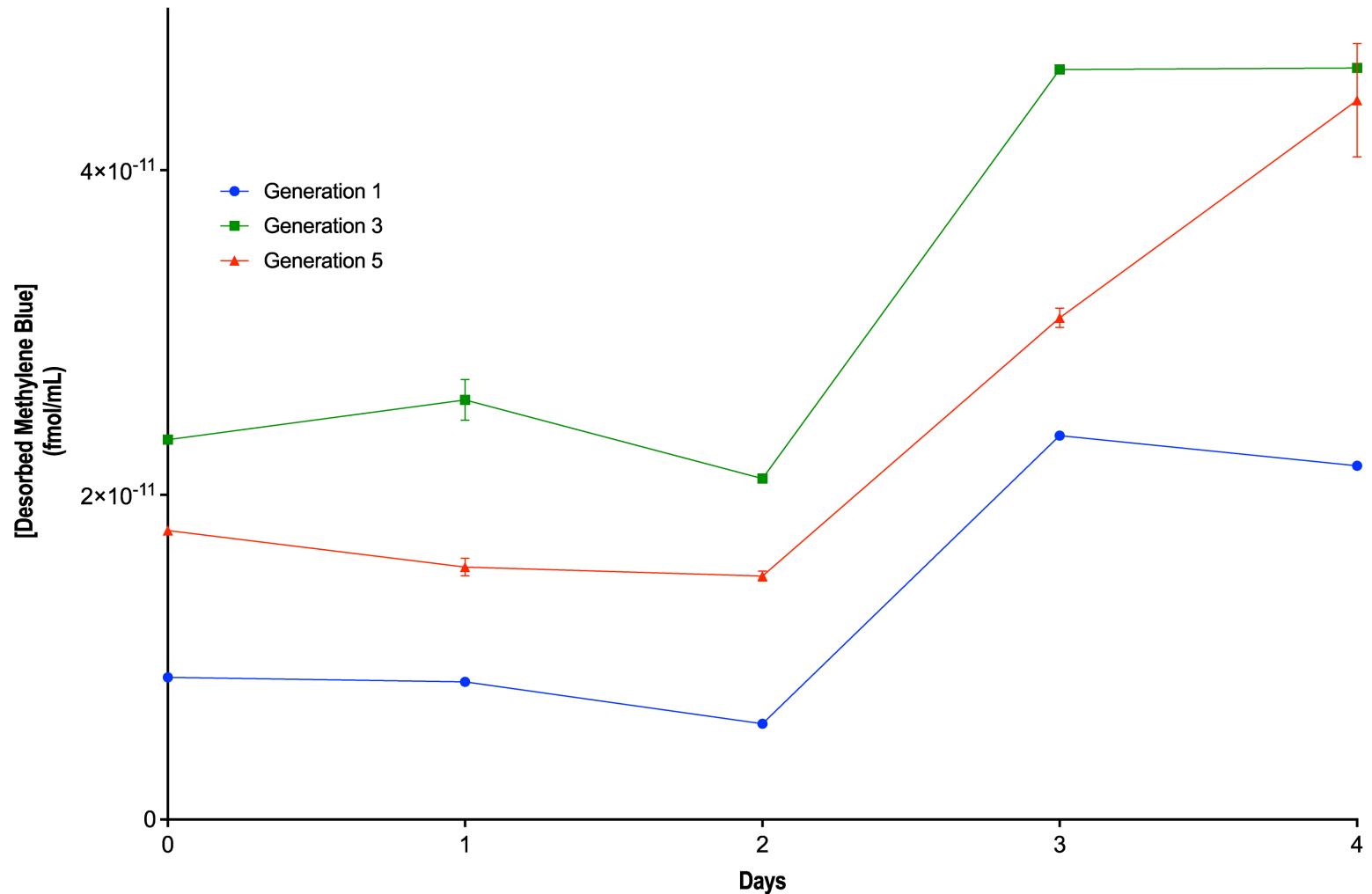
809 **Supplemental Table S5: Biosynthetic potential of *Verrucosispora sioxanthis* G1.**

810 Bacterial antiSMASH version 6.0.0 was used with the G1 genome. Biosynthetic clusters
811 with no equivalent to G3 are shaded. The frequencies of SNPs and Indels (%) was
812 calculated when a comparable G3 biosynthetic gene cluster was present. CLC
813 Genomics Workbench version 21.0.3 determined the average mapping coverage depth
814 of the BGC-containing contigs and BGC G+C content.

815


816 **Supplemental Table S6: Biosynthetic potential of *Verrucosispora sioxanthis* G3.**

817 Bacterial antiSMASH version 6.0.0 was used with the G3 genome. Biosynthetic clusters
818 with no equivalent to G1 are shaded. The frequencies of SNPs and Indels (%) was
819 calculated when a comparable G1 biosynthetic gene cluster was present. CLC
820 Genomics Workbench version 21.0.3 determined the average mapping coverage depth
821 of the BGC-containing contigs and BGC G+C content.


822

823 **Supplemental Table S7: Predicted *Verrucosispora sioxanthis* DNA-DNA**
824 **hybridization and G+C content differences within taxon.** The Type (Strain) Genome
825 Server <https://tygs.dsmz.de/> was used to generate pairwise comparisons to the subject
826 strains (leftmost column, accession provided). The resulting digital DNA-DNA
827 hybridization (dDDH) values based on gene content similarity (d0 and d6) and
828 sequence identity (d4) are presented with the confidence intervals (C.I.) and G+C
829 content differences.

830

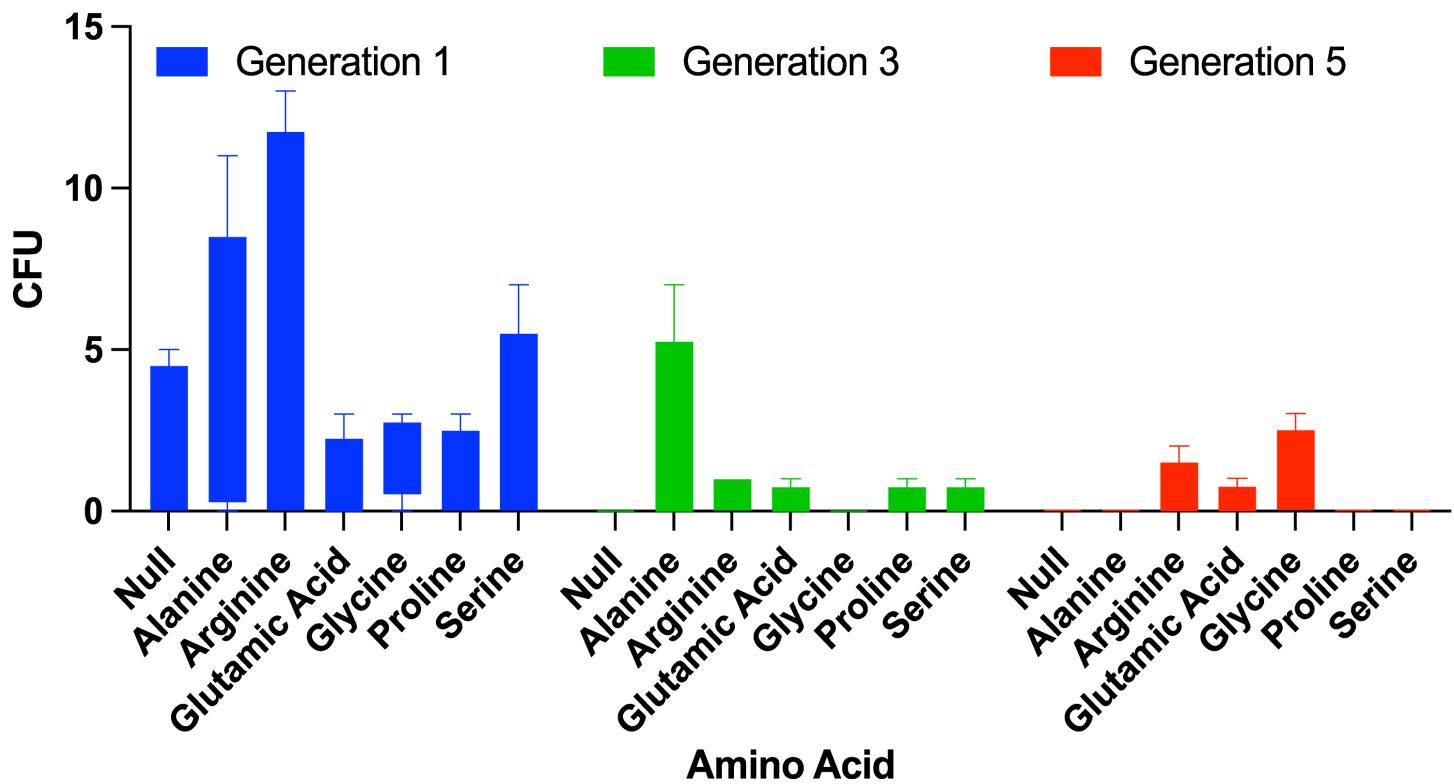

Figure 1: Optimization of growth parameters for *Verrucosipora* sp. CWR15. The isolate was cultured with sterile glass beads (dotted lines, circle) or without (solid lines, square) in four different growth media: (A) Tryptic Soy Broth, TSB; (B) Luria-Bertani Broth, LB; (C) AMM; and (D) International Streptomyces-2 broth, ISP-2; with 20% sucrose solution (unfilled) or without supplementation (darkened). Data is presented as the average of 5 technical replicates with error bars shown ±SEM.

Figure 2: Increased domestication increases biomass. Growth of three generational isolates (1, blue circle; 3, green square; 5, red triangle) was monitored by a modified methylene blue absorbance protocol. Data is presented as the average of 3 technical replicates with error bars shown \pm SEM.

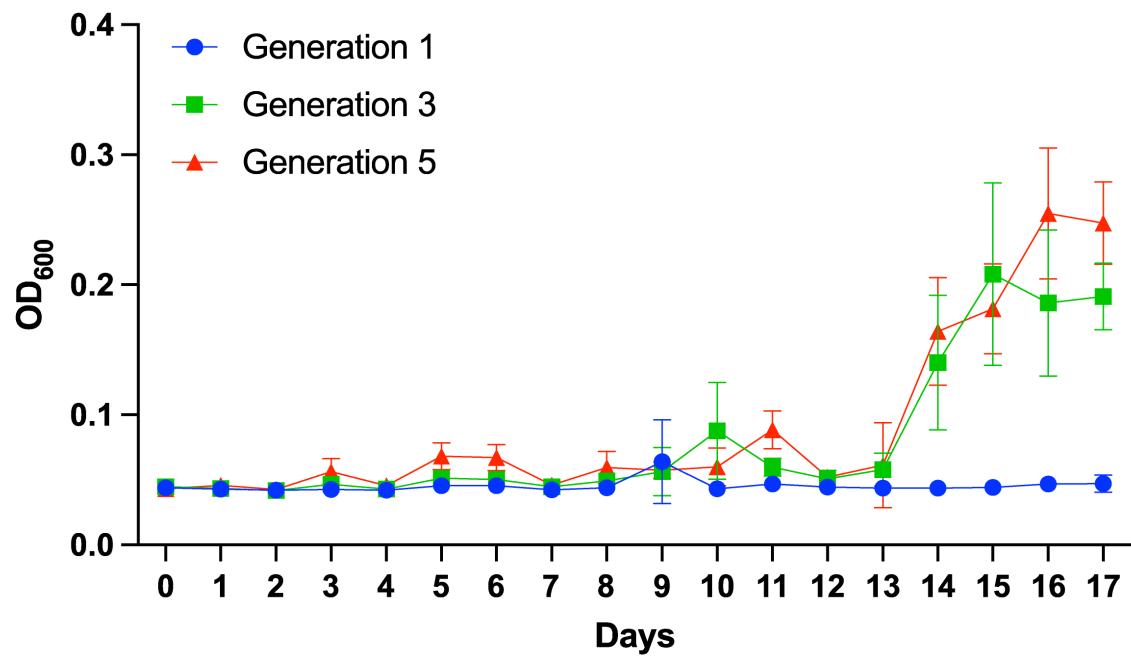


Figure 3: Summary of domestication-induced genomic changes in *Verrucosispora sioxanthis*. Circos plot identifying genomic positions of domestication interest. From outermost ring to innermost: contig-containing karyotype (thick black line), uncategorized KEGG genes (grey), KEGG-designated human diseases/antibiotic resistance genes (blue), KEGG-designated cellular processing genes (green), KEGG-designated environmental information processing genes (yellow), KEGG-designated genetic information processing genes (orange), KEGG-designated metabolism genes (red), pseudogene (purple) or non-pseudogene (yellow-orange) status, indel frequency histogram (magenta, scale 0 – 20%), SNP frequency histogram (blue, scale 0–1%), and coverage histogram (black, scale 0– 100X depth).

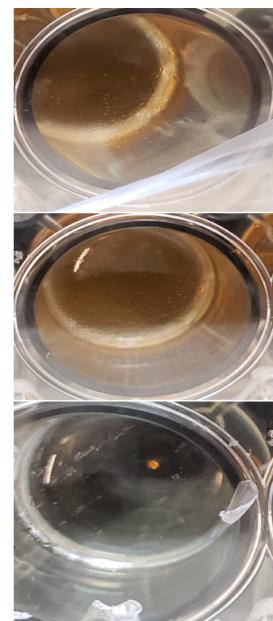
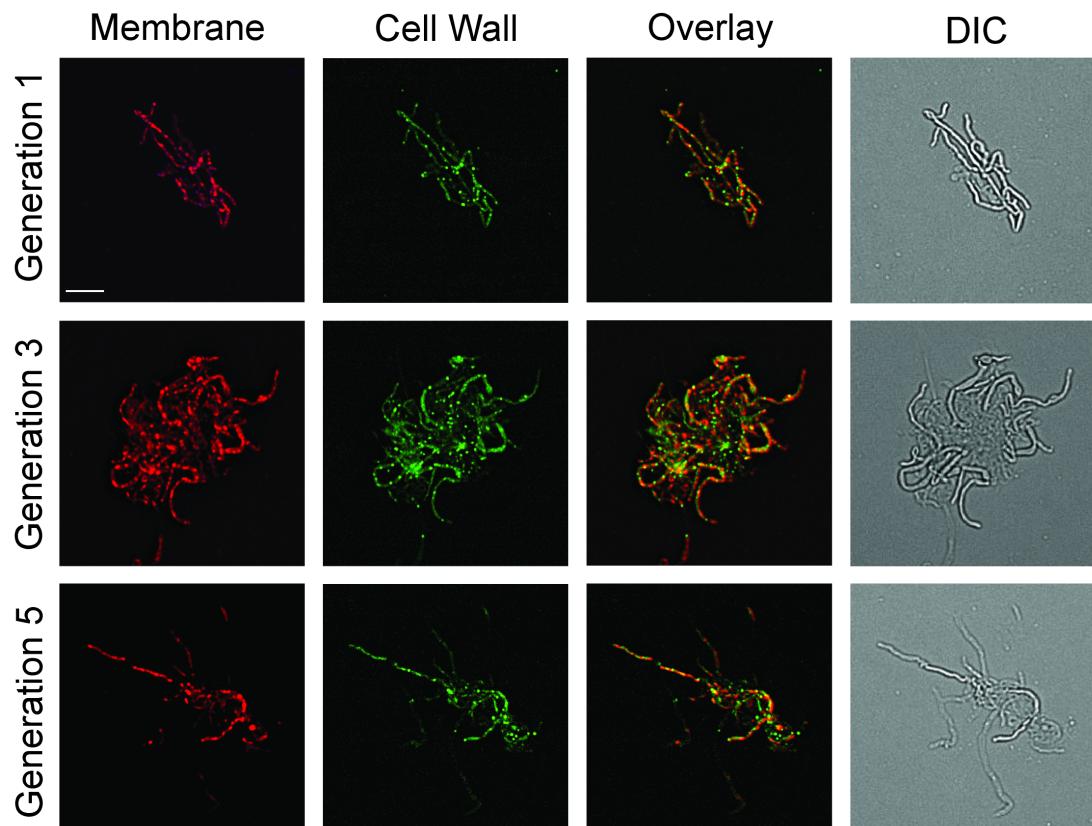


Figure 4: Domestication results in an impaired ability to metabolize diverse amino acids. The three generations were grown in nitrogen-deficient media that was supplemented with the amino acids (0.1% w/v) noted. Cultures were plated in biological duplicate within two technical replicates, and the CFU was enumerated. Data is shown as box and whisker plots with bars denoting the minimum and maximum spread of replicate values ($n=4$).


A

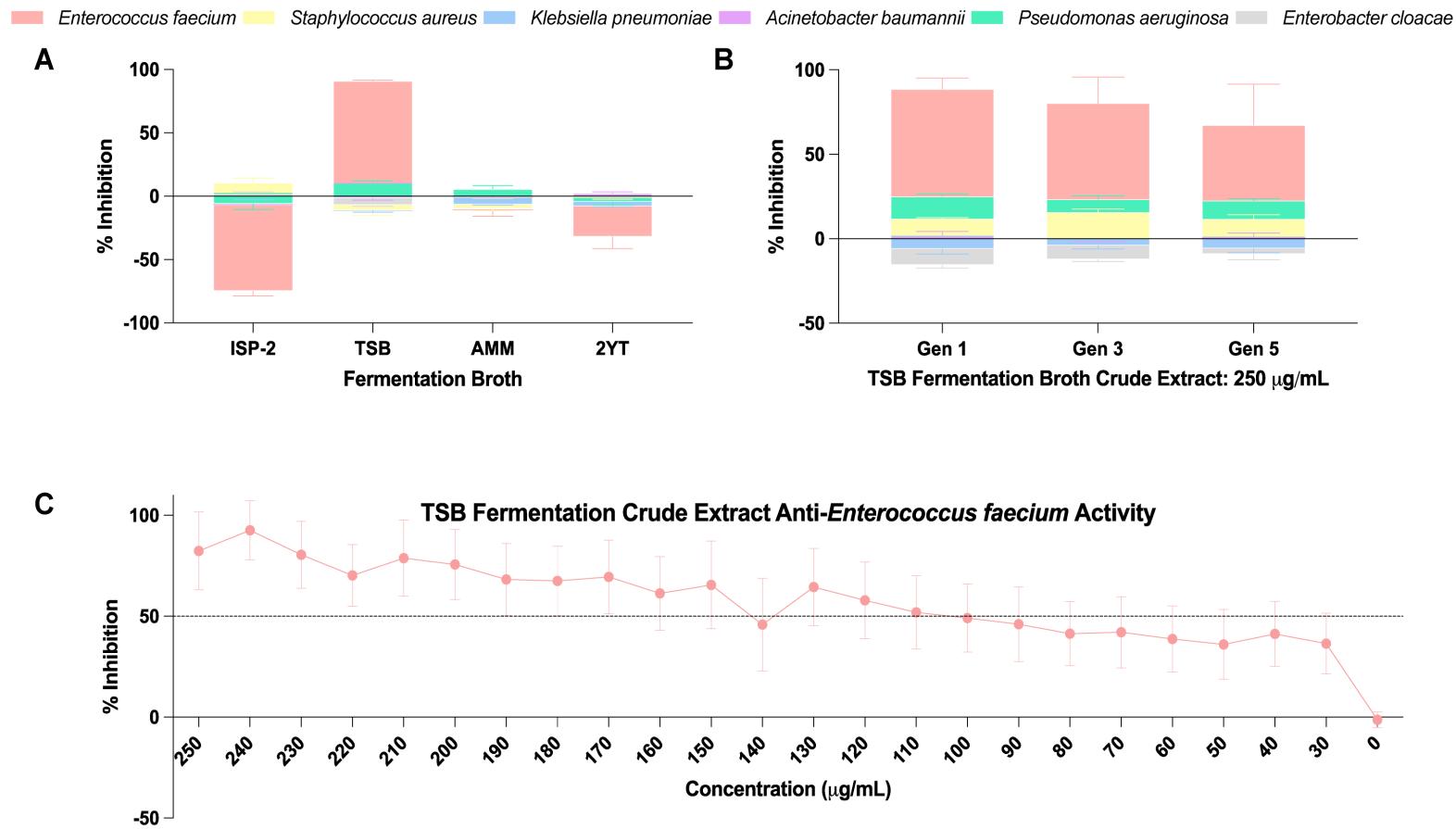

B


Figure 5: Domestication leads to increased germination rates and growth efficiency. (A) The mean OD₆₀₀ values for each generation are plotted over time as spores initially germinate, and then continue to grow. Each data point is the average of three independent experiments with 6 technical replicates ($n=18$), with 95% CI error bars. (B) Endpoint photos of the three generations (1, blue circle; 3, green square; 5, red triangle). No contaminants were observed, and all growth was determined to originate from the heat-treated spore solutions as any contaminating planktonic cells would rapidly overgrow and present as media turbidity.

Figure 6: Variable mycelial growth patterns are elicited by *Verrucosispora sioxanthis* domestication. Fluorescence micrographs of cells from Generation 1, 3, and 5 of *Verrucosispora sioxanthis*. Left to right columns show cells with FM4-64 membrane stain (red), BODIPY FL cell wall stain (green), overlay, and DIC. Scale bar is 5 μ m.

Figure 7: Domestication limits the antibacterial capacity of *Verrucosporia sioxanthis*. G1 was grown for 3 weeks in: International Streptomyces Project 2, ISP-2; Tryptic Soy Broth, TSB; AMM; or 2X Yeast Extract Tryptone, 2YT. Crude extracts were generated and assayed against a panel of ESKAPE pathogens for antibacterial activity at a concentration of 250 µg/mL (A). As in A, however all three generational strains were used only in TSB (B). Crude extracts of G1 grown in TSB were tested for dose-dependence against *Enterococcus faecium* (C). Percent inhibition was determined by comparison to DMSO-treated controls. Data is from three biological and two technical replicate experiments. Error bars are shown \pm SEM.

Figure 8: Taxonomy of *Verrucosispora sioxanthis*. Tree inferred with FastME 2.1.6.1 from GBDP distances calculated from 16S rDNA gene sequences. The branch lengths are scaled in terms of GBDP distance formula d5. The numbers above branches are GBDP pseudo-bootstrap support values > 60% from 100 replications, with an average branch support of 66.9%. The tree was rooted at the midpoint. Tree was resolved and edited with Interactive Tree Of Life (iTOL).