

Evolution of the quorum sensing regulon in cooperating populations of *Pseudomonas aeruginosa*

Nicole E. Smalley¹, Amy L. Schaefer², Kyle L. Asfahl¹, Crystal Perez², E. Peter Greenberg², and Ajai A. Dandekar^{1,2*}

¹Department of Medicine, University of Washington, Seattle, WA 98195

²Department of Microbiology, University of Washington, Seattle, WA 98195

Keywords: Acylhomoserine lactone, adaptive evolution, metatranscriptomics, quorum quenching

*Corresponding author:

Ajai A. Dandekar
K-359A HSB, UW Box 356522
1705 NE Pacific St.
Seattle, WA 98195
Phone: 206-685-8551
dandekar@uw.edu

1 **Abstract**

2 The bacterium *Pseudomonas aeruginosa* is an opportunistic pathogen and it thrives in many
3 different saprophytic habitats. In this bacterium acyl-homoserine lactone quorum sensing (QS)
4 can activate expression of over 100 genes, many of which code for extracellular products. *P.*
5 *aeruginosa* has become a model for studies of cell-cell communication and coordination of
6 cooperative activities. We hypothesized that long-term growth of bacteria under conditions where
7 only limited QS-controlled functions were required would result in a reduction in the size of the
8 QS-controlled regulon. To test this hypothesis, we grew *P. aeruginosa* for about 1000 generations
9 in a condition in which expression of QS-activated genes is required for growth. We compared
10 the QS regulons of populations after about 35 generations to those after about 1000 generations
11 in two independent lineages by using quorum quenching and RNA-seq technology. In one evolved
12 lineage the number of QS-activated genes identified was reduced by about 70% and in the other
13 by about 45%. Our results lend important insights about the variations in the number of QS-
14 activated genes reported for different bacterial strains and, more broadly, about the environmental
15 histories of *P. aeruginosa*.

16 **Introduction**

17 The cell-density-dependent activation of certain genes in the opportunistic pathogenic bacterium
18 *Pseudomonas aeruginosa* relies in part on acyl-homoserine lactone (AHL) quorum sensing (QS).
19 There are two *P. aeruginosa* AHL circuits, the Las and Rhl circuits. The genes for these circuits
20 are conserved among hundreds of *P. aeruginosa* isolates from different environments. The Las
21 circuit relies on the product of the *lasI* gene, an AHL synthase, for production of the diffusible QS
22 signal *N*-3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL), and on the product of the *lasR*
23 gene, a transcription factor, which activates dozens of genes in response to 3OC12-HSL. The
24 product of the *rhlI* gene is a butanoyl-homoserine lactone (C4-HSL) synthase, and the product of
25 the *rhlR* gene is a C4-HSL-responsive transcription factor, which activates a set of genes that
26 overlaps with those activated by LasR (Schuster et al. 2013). In PAO1 and many other isolates
27 the Rhl circuit requires activation by the Las circuit. One isolate, *P. aeruginosa* PAO1, is
28 particularly easy to manipulate genetically and the genome of this strain was the first *P.*
29 *aeruginosa* genome sequenced (Stover et al. 2000). Strain PAO1 has become a model for studies
30 of QS and for sociomicrobiology investigations (Schuster et al. 2013).

31 The genes activated by QS in strain PAO1 have been identified by comparing QS mutants to their
32 parent (Whiteley et al. 1999, Schuster et al. 2003, Wagner et al. 2003, Chugani et al. 2012).
33 Transcriptome comparisons have shown that well over 100 genes are activated by QS in this
34 strain (Schuster et al. 2003, Wagner et al. 2003). Less is known about QS-dependent genes in
35 other isolates, but transcriptomics of QS mutants of several isolates from different environments
36 revealed the number of genes in the quorum regulon can vary from a few dozen to over 300,
37 depending on the isolate. There was a core set of 42 genes activated by QS in most of the studied
38 isolates (Chugani et al. 2012).

39 Many, but not all, QS-activated genes code for extracellular proteins or production of extracellular
40 products. This is consistent with the idea that QS serves as a cell-cell communication system,

41 which coordinates cooperative activities such that cells produce extracellular factors only when
42 they have reached sufficient population densities (Fuqua et al. 1994, Schuster et al. 2013). This
43 hypothesis has been tested in several ways. For example, a prediction of the hypothesis is that,
44 because there is a fitness cost to cooperation, QS mutants should have a fitness advantage over
45 their cooperating parent. This is in fact the case. Growth on proteins like casein or bovine serum
46 albumin relies on QS activation of genes coding for extracellular proteases, and LasR mutants
47 have a fitness advantage over their parent during co-culture on these proteins as carbon and
48 energy sources (Diggle et al. 2007, Sandoz et al. 2007). Furthermore, when *P. aeruginosa* is
49 cultured continuously with casein as the sole source of carbon and energy, LasR mutants emerge
50 and reach a substantial fraction of the population within 10-20 days of transfer (Sandoz et al.
51 2007, Dandekar et al. 2012).

52 Not all QS-activated genes code for extracellular products and there is some understanding of
53 the significance of this fact. One such gene, *nuh*, encodes a nucleoside hydrolase required for
54 growth on adenosine (Heurlier et al. 2005). Strain PAO1 grows slowly on adenosine but fast-
55 growing QS-dependent variants with amplification of a genomic region including *nuh* emerge upon
56 sustained growth on adenosine (Toussaint et al. 2017). The addition of adenosine as a second
57 carbon and energy source in addition to casein constrains the emergence of LasR mutants of
58 strain PAO1 (Dandekar et al. 2012).

59 We are interested in understanding how QS circuits might evolve in *P. aeruginosa* adapted to life
60 in different environments. Might such understanding help us understand the observed variation in
61 QS regulons of different *P. aeruginosa* isolates and reveal something about the life history of any
62 given isolate? The hypothesis underlying our investigation is that continuous growth of *P.*
63 *aeruginosa* in an environment requiring activation of a few QS-activated genes will result in a
64 reduction in the number of genes activated by QS – i.e., there will be a fitness advantage for
65 individuals that do not activate genes of no benefit in the environment. Because LasR mutants

66 arise within days of *P. aeruginosa* growth on casein, we provided *P. aeruginosa* with both casein
67 and adenosine in our experiments. Growth on casein involves production of excreted proteases,
68 which are considered as public goods. Growth on adenosine requires a cell-associated
69 nucleosidase, which is considered as a private good. As discussed above, when adenosine and
70 casein are both provided to the bacteria, LasR mutants are constrained for at least 30 days of
71 daily transfer (Dandekar et al. 2012). Our experiments involved daily culture transfer for 160 days
72 during which time we expect that a myriad of variants with different SNPs will arise. Thus, our QS
73 regulon analysis was performed on populations rather than individual isolates. Our work therefore
74 required development of a transcriptome comparison that did not involve a comparison of QS
75 mutants to parents: a metatranscriptome analysis of QS gene activation.

76 **Results**

77 **Long-term growth experiments**

78 *P. aeruginosa* cells grown in buffered Lysogeny Broth (LB) were used to inoculate five tubes of a
79 minimal broth containing only casein and adenosine (CAB) as carbon and energy sources. After
80 inoculation, cells were transferred to fresh CAB daily for the next 160 days (Figure 1A). A 30-day
81 experiment showed that QS mutants are constrained in CAB (Dandekar et al. 2012). A previous
82 publication has shown that after the first several days of growth on casein, a PsdR mutant sweeps
83 through the population. Mutations in *psdR* enhance growth on casein (Asfahl et al. 2015). The
84 *psdR* gene codes for a repressor of a peptide transporter, and enhanced growth can be explained,
85 at least in part, by improved uptake of peptide products of LasR-induced extracellular proteases.
86 Growth on adenosine (or casein and adenosine) results in emergence of cells which show
87 improved growth on adenosine resulting from a genome amplification of a region containing the
88 LasR-dependent *nuh* gene (Toussaint et al. 2017). The gene-amplification variants retain LasR-
89 dependent growth on adenosine.

90 Protease-negative isolates from growth in casein are almost always LasR mutants (Sandoz et al.
91 2007). We screened populations from 5-day, 50-day, 80-day and 160-day cultures of all five
92 lineages for protease-negative individuals (Sandoz et al. 2007). We did not observe any protease-
93 negatives among the 100 individuals from each of the 5-day or 50-day cultures, but protease-
94 negatives were identified in two of the 80- and 160-day populations (Figure 1B). One likely
95 explanation for breakthrough of protease-negative mutants after 160 days is that there is a
96 mutation uncoupling adenosine metabolism from the QS-regulon such that LasR mutants do not
97 incur a cost in CAB; they have a fitness advantage identical to that observed during growth of *P.*
98 *aeruginosa* on casein alone.

99 We selected two of the three lineages (lineages D and E), in which protease-negative mutants
100 were not detected, for further study. Early in the experiment at day 5, *psdR* mutations were not
101 detected in either lineage D or E. At day 50 specific *psdR* mutations were fixed in each population.
102 There was a frameshift mutation in lineage D (insertion of a C at position 431), and a T515C SNP
103 in lineage E. This finding was consistent with the idea that the populations were adapting to growth
104 on casein. We asked if an analogous adaptation was occurring for adenosine. When transferred
105 to a minimal medium containing only adenosine as a carbon and energy source, day-5
106 populations of both lineages grew slowly, but day-50 populations grew more rapidly (Figure 1C),
107 as would be expected of a population with a *nuh* region amplification. A next question is how does
108 evolution in CAB affect population growth? Because partial degradation of casein results in a
109 milky haze in CAB, growth cannot be monitored by following optical density. Therefore, we
110 assessed growth yields by using plate counting to determine cell yields after 18 h in CAB for
111 populations isolated after 5, 20, 50, 80 and 160 days, and found that there was a large increase
112 in yield at day 50 (Figure 1D). This corresponded to a time after *psdR* mutations had swept
113 through the two populations, and the populations had acquired the ability to grow rapidly on
114 adenosine (Figure 1C). Because cultures were diluted into fresh CAB daily as a 1% inoculum

115 there were six to seven doublings per day, corresponding to about 1,000 generations over the
116 160 daily transfers.

117 **Individual isolates from day-160 CAB cultures show diversity.**

118 That day-160 CAB populations attained substantially higher growth yields than day-5 populations
119 (Figure 1D) is evidence of a phenotypic fitness change and likely accumulation of mutations. To
120 assess the issue of mutation accumulation we sequenced the genomes of two isolates from
121 lineage D and two isolates from lineage E day-160 CAB cultures. With the parent strain PAO1 as
122 a reference we found between 151 and 167 single nucleotide polymorphisms in a given isolate.
123 Both of the isolates from lineage E had a 6-kb deletion encompassing *pvdD* and *pvdJ*, genes
124 required for synthesis of the iron siderophore pyoverdine (Table 1). Neither isolate from lineage
125 D had this deletion, however both D isolates possess an internal gene duplication event that would
126 render the pyoverdine peptidase synthase, *pvdI*, inactive (Table 1). The lineage E isolates had an
127 amplification of a genomic region that included *nuh* of about 150 kb (two copies in one isolate and
128 three in the other). One of the two lineage D isolates had two copies of a 90-kb *nuh*-containing
129 region and the other isolate did not have amplification of a *nuh*-containing region (Table 1). As
130 discussed above, mutations in *psdR* have been reported to sweep through populations grown on
131 casein alone after just a few daily transfers and in fact we found *psdR* mutations in all four of the
132 day-160 isolates. As expected, the *psdR* mutations were the same as those fixed in the day-50
133 populations (Table 1). Including the *psdR* mutations, there were nonsynonymous or in/del
134 mutations in only 12 genes in all four of the sequenced isolates (Table 1, bold entities). Taken
135 together, the genomic diversity and the improved population fitness suggest both that there are
136 certain mutations that are selected in these conditions and also that there might be a division of
137 labor among cells in these populations.

138 **Validation of a population transcriptomics approach**

139 Valuable information about the *P. aeruginosa* QS regulon has been gained by transcriptome
140 analysis using QS gene deletion mutants (Schuster et al. 2003, Wagner et al. 2003, Chugani et
141 al. 2012), but transcriptomics is a far from perfect tool and this is particularly true for identification
142 of the complete set of QS-activated genes. Many genes in the *P. aeruginosa* QS regulon are co-
143 regulated by other factors (Schuster et al. 2004). Some genes show delays in QS activation
144 compared to other genes, and expression of other genes can be suppressed later in growth
145 (Schuster et al. 2003). Previous investigations have shown that assessing the transcriptome
146 during the transition between logarithmic phase and stationary phase (optical density of 2 in
147 buffered LB) provides a reasonable census of QS-activated genes (Chugani et al. 2012). Thus,
148 our analyses were with cells harvested from buffered LB at an optical density of 2.

149 Because we sought to define genes activated by QS, our comparison was to cells in which QS
150 was inhibited. Such cells cannot grow in CAB by themselves (because they require QS for growth
151 in this medium). Since our limited genomic sequencing analysis showed diversity among
152 individuals within a lineage, we chose to perform transcriptomics on populations. This precluded
153 the standard approach of generating QS mutants and comparing them to the wildtype. Rather we
154 compared populations grown in buffered LB plus an AHL lactonase to populations grown with
155 added AHLs (to control for the timing and magnitude of signal production by the populations).
156 Previous publications have shown that addition of the *Bacillus* AHL lactonase AiiA to cultures can
157 be employed to identify QS-activated genes in *P. aeruginosa* and other bacterial species (Feltner
158 et al. 2016, Mellbye et al. 2016, Liao et al. 2018, Cruz et al. 2020). Unlike the growth results in
159 CAB (Figure 1D), buffered LB growth of populations evolved for 160 days was indistinguishable
160 from growth of populations evolved for only 5 days (Supplemental Figure S1). Addition of AiiA
161 lactonase did not affect the growth of any of the *P. aeruginosa* populations and reduced AHLs to
162 below detectable levels (<1 nM and 5 nM for 3OC12-HSL and C4-HSL, respectively).

163 We first compared the transcriptomes of lineage D and E populations taken from the fifth day of
164 passage on CAB to each other. Populations were grown in buffered LB to an optical density of 2
165 with either added AHLs or added AiiA lactonase. Transcripts showing >2.8-fold higher levels in
166 populations grown with added AHLs compared to populations grown with AiiA lactonase were
167 considered QS activated. We identified 193 QS-activated genes in lineage D and 148 in lineage
168 E (Table 2). There were 137 genes common to both lineages. These differences may reflect a
169 combination of independent evolutionary trajectories and the vagaries of our transcriptome
170 analysis. There is reason to believe that it may be the latter: most of the QS-activated genes
171 identified in one, but not the other, lineage were minimally above the 2.8-fold threshold for
172 classification as QS activated (Table 2). Several of these genes were in operons where other
173 genes exceeded the cutoff. For example, 11 genes of the Hcp secretion island III (HSI-3) cluster
174 of type VI secretion system genes (T6SS, PA2361-PA2371) in lineage D were classified as QS-
175 activated, whereas only four of these genes in lineage E were classified as activated. Of the 137
176 QS-activated genes common to both lineages (Table 2), 126 (>90%) have previously been
177 identified as such (Schuster et al. 2003, Chugani et al. 2012). For the 42 genes defined as core
178 QS-activated genes (Chugani et al. 2012), 41 were QS-activated in both lineages D and E in the
179 day-5 populations (Table 2). These results indicated that this transcriptomics approach would
180 suffice to address our primary question: does long-term growth in CAB lead to a size reduction in
181 the QS regulon?

182 **Populations show a reduction in the QS regulon after 160 days in CAB**

183 To determine the influence of long-term growth in CAB on the QS regulon, we performed RNA-
184 seq on day-160 populations of lineages D and E grown in buffered LB with exogenously added
185 AHLs and compared the transcriptomes to those grown with AiiA lactonase to identify QS-
186 activated genes. We compared the QS-activated genes in day-160 populations to those in the
187 respective day-5 populations (Table 2). The number of QS-activated genes in lineage D was

188 reduced from 193 at day 5 to only 73 at day 160 (Figure 2A). For lineage E the number went from
189 148 to 108. There were a few genes that showed QS-activation in one, the other, or both day-160
190 populations but not in the day-5 populations. Without further experimentation we cannot speculate
191 as to whether this is a result of the experimental approach or of biological significance.
192 Regardless, there is a clear and obvious reduction in the number of genes in the QS regulon of
193 day-160 populations.

194 The loss of QS-gene activation after long-term growth in CAB could indicate a gene is expressed
195 at levels similar to or greater than the QS-activated levels early in growth on CAB, or it could
196 indicate a suppression of gene expression to levels similar to those in early populations grown in
197 the presence of AiiA lactonase. To address this issue, we examined expression (Source Data File
198 1) of the 51 genes that showed QS-activation in both early populations, but not in both late
199 populations. Only two of the 51 genes showed high levels of expression in day-160 populations,
200 *nuh* and the adjacent gene PA0144 (Figure 3A). The high expression of *nuh* and PA0144 was
201 expected from previous studies (Toussaint et al. 2017). The other 49 genes were expressed at
202 very low levels from both 160-day populations in the presence of added AHLs (Figure 3B and
203 Source Data File 1). This finding is consistent with the idea that the decreased size of the QS
204 regulon after 160 days of growth on CAB is economical.

205 **Characteristics of genes retained in the QS regulon after 160 days of growth in CAB**

206 As expected, the genes for AHL synthesis, *lasI* and *rhII*, are retained in the day-160 QS regulons
207 of both lineages (40 genes in common are retained, Figure 2B). Genes for production of
208 extracellular proteases are also retained, including the elastase gene, *lasB*, and the alkaline
209 protease genes, *apr* genes (Table 2). Of note, not all genes coding for an extracellular protease
210 are maintained in the regulon. For example, *piv*, which codes for an endopeptidase is no longer
211 QS-controlled in both day-160 populations. Not all the genes retained in the QS regulon are
212 obviously related to adenosine or casein digestion. For example, *hcnABC*, encoding a hydrogen

213 cyanide synthase, remains QS-regulated; hydrogen cyanide has previously been shown to be
214 important in policing of QS mutants (Wang et al. 2015, Yan et al. 2019). For other gene products,
215 the relation to growth in CAB is unclear, and the significance of this finding is yet to be determined.

216 **Characteristics of genes lost from the QS regulon after 160 days of growth in CAB**

217 There was a notable and obvious loss of genes related to Type VI secretion or Type VI-secreted
218 products from the QS-regulons of both lineages (51 genes in common are lost, Figure 2C). For
219 example, 9 of the 12 genes encoded by the Hcp secretion island II (HSI-2) cluster of T6SS genes
220 (PA1656-PA1668) were eliminated from the QS regulons of lineages D and E by day 160, as
221 were other T6SS-related genes throughout the genome. Continuous growth in the absence of
222 interspecific bacterial competitors in CAB might minimize the usefulness of the Type VI secretion
223 apparatus and secreted products that provide fitness by intoxicating local competitors (Schwarz
224 et al. 2010, Hernandez et al. 2020). Three genes considered as core QS-activated genes
225 (Chugani et al. 2012) were not activated in the day-160 populations of either lineage. All three
226 (PA2330, PA2331, and PA4134) encode hypothetical proteins and showed substantial activation
227 in day-5 populations but did not reach our threshold for activation in day-160 populations. Other
228 such genes include a chitinase (*chiC*) and two lectins (*lecA/lecB*), that may be involved in nutrient
229 acquisition in myriad environments, but not in CAB.

230 **Diverse routes to elimination of a gene from the QS regulon**

231 The elimination of a given gene from the QS regulon by day 160 in CAB could have many possible
232 explanations. For example, there can be a mutation in the promoter for that gene, there can be a
233 delay in the QS activation of that gene such that it falls below the cutoff for activation at an OD of
234 2, there could be a mutation in a co-activator of that gene, or there could even be a mutation in
235 that gene itself. Some of these possibilities have long-term consequences, and others can
236 perhaps be more readily reversed if conditions change. To begin to address the question of how
237 a gene identified as QS activated in day-5 populations might not be QS activated in day-160

238 populations, we examined promoter activity of the representative gene *pqsA* in our four day-160
239 clones used earlier for genome sequencing (two each, lineages D and E). We transformed the
240 four isolates with a *pqsA-gfp* reporter plasmid and followed GFP fluorescence during growth in
241 CAB. The two day-160 population E clones showed low, basal expression of the *pqsA* reporter
242 over 16 hours of growth, indicating a loss of cell density-dependent expression associated with
243 QS (Figure 4A). In contrast, only one of the two population D clones showed a similar loss in
244 density-dependent *pqsA* expression, while the other showed *pqsA* expression consistent with QS
245 activation, albeit delayed enough to prevent detection in our metatranscriptomic analysis.

246 Our earlier genomic analyses identified an identical SNP in *pqsR* in both lineage E clones that
247 codes for a S36N substitution. The *pqsR* gene (also called *mvfR*) codes for a PQS-responsive
248 transcriptional activator of *pqsA* (Diggle et al. 2003, Deziel et al. 2005, Xiao et al. 2006). We
249 reasoned that the PqsR S36N mutation could explain the loss of *pqsA* regulation by QS in our
250 lineage E day-160 clones. To determine whether the PqsR S36N mutant is inactive and unable
251 to induce expression of *pqsA*, we constructed a PAO1 *pqsR* S36N mutant and transformed both
252 the mutant and PAO1 with the *pqsA-gfp* reporter. We monitored GFP-fluorescence during culture
253 growth in buffered LB because *P. aeruginosa* PAO1 grows slowly in CAB during initial transfer
254 from buffered LB. The S36N PAO1 mutant showed minimal GFP fluorescence compared to
255 PAO1, similar to the lineage E clones (Figure 4B). For the sake of completeness, we also
256 monitored GFP expression from the *pqsA-gfp* reporter in day-160 lineage D and E clones; the
257 results were consistent with those from growth in CAB (Figure 4A). We conclude that the PqsR
258 S36N mutation explains the loss of *pqsA* from QS regulation in lineage E. The varied, but delayed,
259 expression of *pqsA* in the isolates from population D do not have as obvious of an explanation.
260 Clearly, there are different evolutionary trajectories leading to loss of or delayed expression of
261 genes like *pqsA* in *P. aeruginosa* populations during prolonged CAB growth.

262 **Discussion**

263 *Escherichia coli* has been used as a model to investigate long-term evolution over a span of tens
264 of thousands of generations in a specific growth environment, and this rich research area can be
265 used as a framework for our studies of *P. aeruginosa*. For *E. coli* subjected to daily transfers to a
266 fresh medium containing a single carbon and energy source, population fitness gains occur over
267 time and certain mutations can sweep through a population (Lenski 2021). The sweeps result in
268 a substantial gain in fitness. Fitness improvements are most dramatic early and become
269 progressively smaller over time and generations. Multiple variants co-exist in a given population
270 and evolutionary trajectories are complicated and varied (Good et al. 2017). It is notable that,
271 unlike *E. coli*, our experimental subject, *P. aeruginosa*, is notorious for undergoing genetic
272 changes during routine laboratory maintenance. In fact, strain PAO1 cultures that have been
273 maintained in different laboratories show significant different genotypic and phenotypic
274 characteristics (LoVullo and Schweizer 2020).

275 Compared to *E. coli*, much less is known about evolution of *P. aeruginosa* during adaptation to a
276 constant environment. There is some information about adaptation to environments where *P.*
277 *aeruginosa* QS is required for growth (Schuster et al. 2013), and examples of such genetic
278 adaptations are present in all isolates passaged for 160 days in CAB (Table 1). In a relatively
279 short time during QS-dependent growth on casein, a mutation in *psdR*, which codes for a
280 repressor of a small-peptide uptake system, sweeps through the population and results in a
281 substantial fitness gain reflected by more rapid growth in this environment (Asfahl et al. 2015).
282 Inactivating mutations in the global regulator gene *mexT* or *mexEF-oprN* efflux pump genes also
283 improve growth on casein, at least in part, by increasing activity of the Rhl QS system (Oshri et
284 al. 2018, Kostylev et al. 2019). During QS-dependent growth on adenosine, a poor energy source
285 for *P. aeruginosa* PAO1, amplification of a genomic region containing the adenosine hydrolase
286 gene *nuh* arises and results in a substantial fitness advantage (Toussaint et al. 2017). Growth on
287 casein requires the QS-induced public extracellular protease elastase (LasB), and after *psdR*

288 sweeps through the population, LasR QS mutants emerge. These mutants, which do not activate
289 any of the many genes in the QS regulon, have a negative frequency-dependent fitness
290 advantage over their parents during growth on casein (Diggle et al. 2007, Sandoz et al. 2007,
291 Schuster et al. 2013). QS-dependent growth on adenosine requires the periplasmic *nuh* product,
292 purine hydrolase, a private good. In short-term evolution experiments (30 days, about 200
293 generations) on casein and adenosine together, QS mutants are constrained. They can benefit
294 from proteases produced by their parents but they have lost access to adenosine (Dandekar et
295 al. 2012). Together these adaptations to QS-dependent growth suggest plasticity in QS regulons,
296 and particularly during growth under strong selective pressures.

297 In any given environment QS may be important for fitness as a result of activation of only a small
298 number of genes. A fitness cost would be incurred by expression of the many other QS-activated
299 genes. One solution to this fitness problem might be a reduction in QS activation of a large fraction
300 of the QS regulon. There are several issues related to such a possibility. How might this be
301 facilitated mechanistically? Might such a reduction in any given isolate reflect its ecological
302 history? Would this provide a possible benefit in that perhaps a silenced gene could be returned
303 to the QS regulon if ecological conditions are altered? The gene pool can remain intact when
304 fitness is a result of rewiring gene regulation. There is circumstantial evidence to support the idea
305 that the QS regulon might reflect the ecological history of a given isolate. In a limited comparison
306 of QS-activated genes in seven isolates from different habitats, Chugani and colleagues found
307 diversity in the regulons of QS-activated genes among various isolates (Chugani et al. 2012).

308 We approached the question of whether reductions in the QS regulon might reflect environmental
309 conditions by executing a long-term evolution experiment with the well-studied *P. aeruginosa*
310 strain PAO1 grown in a specific medium where only a fraction of the genes activated by QS would
311 provide an obvious benefit to the population. To facilitate our experiments, we transferred
312 populations daily in a medium containing both casein and adenosine (CAB) as the sources of

313 carbon and energy. As expected, LasR QS mutants were constrained during *P. aeruginosa* PAO1
314 growth in CAB. By screening for protease-negative mutants we showed LasR mutants were
315 constrained in all five of the lineages we maintained for at least 50 days. By day 80, LasR mutants
316 had broken through in two of the five lineages (Figure 1B).

317 We subjected two of the three populations that continued to constrain LasR mutants at day 160
318 to further study. Similar to *E. coli*, fitness improvements were most dramatic early (by day 50),
319 and became progressively smaller over time (Figure 1D). In fact, *psdR* mutations arose in both
320 populations sometime between day 5 and day 50. It was also during this period that populations
321 acquired the ability to grow rapidly on adenosine (Figure 1C): there was both genotypic and
322 phenotypic heterogeneity within each population. This heterogeneity suggests an interesting
323 possibility, and it creates an experimental dilemma. The possibility is that there might not only be
324 competition for resources among the individuals in the population, but there might also be
325 cooperation through a division of labor to enhance resource utilization. We have not yet
326 addressed this possibility. The dilemma is that one cannot expect to learn about the breadth of
327 the QS regulon by isolating a small number of individuals, creating QS mutants, and comparing
328 transcriptomes of mutants to parents. To address this problem, we devised a method to interfere
329 with population-level QS by using an AHL lactonase. We call this method QS meta-transcriptome
330 gene analysis. Purified AHL lactonase has been employed to study QS gene activation in bacterial
331 pure cultures (Feltner et al. 2016, Mellbye et al. 2016, Liao et al. 2018, Cruz et al. 2020). QS
332 meta-transcriptome gene analysis extends this method and allows for studies of gene regulation
333 in heterogeneous populations, even mixed-species populations.

334 Our QS meta-transcriptomic analysis revealed marked reductions in the number of genes
335 activated by QS in day-160 populations compared to day-5 populations. In one population (D) the
336 number of QS activated genes at day 160 was only 26% of the number at day 5, and in the other
337 population (E) it was 53%. One way to eliminate a gene from the QS regulon is by deletion, but

338 our genome sequencing of two isolates from each population indicated this was not a common
339 event. Rather, it appeared that many QS regulon genes were intact and simply remained under
340 our arbitrary threshold (2.8-fold) at our arbitrary point in growth. This could result from a number
341 of mechanisms including delay in QS gene activation, modification of a co-regulatory pathway,
342 and subtle changes in levels of other transcriptional regulators in cells. Regardless of the
343 mechanism, this seems to represent a flexible solution to reducing the cost of QS when *P.*
344 *aeruginosa* populations thrive in an environment where only a few QS activated genes provide a
345 benefit. Although as yet untested, we hypothesize that modifying the environment in one way or
346 another to involve QS activities other than protease or adenosine metabolism can further alter the
347 regulon bringing genes back under QS control.

348 To begin to understand ways in which *P. aeruginosa* reduced its QS regulon during long-term
349 growth in CAB we focused on *pqsA*, a gene that showed greater than 10-fold QS activation in
350 either day-5 population and no activation in either day-160 population (Table 2, Figure 3B). *pqsA*,
351 the first gene in the *pqs* operon, is required for production of the *Pseudomonas* Quinolone Signal
352 (PQS). The *pqsA* promoter is activated by the PqsR transcription factor together with PQS, and
353 *pqsR* transcription is activated by LasR. We found a point mutation in the two day-160 lineage E
354 isolates, and this mutation was in fact fixed in the day-160 population. This presents a solution to
355 the question of how the *pqs* operon is removed from QS activation and silent. In this solution, the
356 pseudogene leaves an inactive copy of *pqsR* in the genome and pseudogenes can be repaired.
357 The two population D isolates showed different *pqsA* expression patterns in pure culture. One
358 exhibited a low level of *pqsA* expression and the other showed delayed expression in buffered
359 LB. Neither had a *pqsR* mutation. This population has developed a different strategy, as yet
360 unknown, to release *pqsA* expression from QS activation. This finding is consistent with our other
361 results indicating the populations are heterogeneous.

362 That genes can be lost from QS-control under the specific conditions of our experiment supports
363 the view that assessing the QS regulon of a *P. aeruginosa* isolate might provide information about
364 the ecological history of that isolate. We note that some of the differences between day-160
365 lineages and between day 5 and day 160 in a given lineage might be due to the noise inherent in
366 RNA-seq analyses. Nevertheless, during the course of our experiment, there was a reduction in
367 the number of genes activated by QS. The increased population fitness observed between day
368 50 and day 160 in our metapopulations (Figure 1D) at least in part result from this economization
369 in the size of the QS regulon.

370

371 **MATERIALS AND METHODS**

372 **Bacterial strains, plasmids and growth conditions**

373 Strains, plasmids and primers used for the study are listed in Supplemental Index Tables S1 and
374 S2. To create the PqsR S36N variant strain we used a homologous recombination-based, two-
375 step allelic exchange approach as described previously (Kostylev et al. 2019). Bacteria were
376 grown in either lysogeny broth [modified to use 0.5% NaCl (Miller 1972)] buffered with 50 mM 3-
377 (N-morpholino)propanesulfonic acid at pH 7.0 (buffered LB) or the minimal medium described in
378 (Kim and Harwood 1991) with 0.25% caseinate and 0.75% adenosine (CAB) (Dandekar et al.
379 2012) or 1% adenosine-only broth (Figure 1C). All broth cultures were grown at 37°C with shaking
380 (250 rpm) in 18 mm tubes, or in 200 µl volumes in 96-well plates where indicated. When required,
381 gentamicin was added to the medium (10 µg/ml *E. coli*, 100 µg/ml *P. aeruginosa*).

382 **Long-term growth experiments and phenotypes**

383 Evolved populations were derived from wild-type *P. aeruginosa* strain PAO1 as diagrammed in
384 Figure 1. Five individual colonies were used to inoculate buffered LB. Overnight cultures were
385 used to inoculate tubes containing 4-ml CAB (1% inoculum vol/vol). After a 24-h incubation, 100

386 μ l of culture was used to inoculate a fresh tube of CAB. This process continued for 160 days.
387 One-ml volumes of each population were collected at days 5, 20, 50, 80, and 160 and stored as
388 frozen glycerol (25% vol/vol) stocks at -80°C. To screen for protease-negative isolates (Figure
389 1B) we plated onto LB-agar and then patched 100 individual colonies onto skim milk agar plates
390 (Sandoz et al. 2007). Colonies that lacked a zone of clearing on the milk plates were scored as
391 protease-negative. To look for *psdR* mutations, scrapings of day-5 and day-50 population frozen
392 glycerol stocks were used to inoculate buffered LB. After overnight incubation, cells were pelleted
393 by centrifugation and genomic DNA was extracted using the Gentra Puregene Yeast/Bacteria kit
394 (Qiagen, Germantown, MD). The purified DNA was used as template for PCR (*psdR* primers
395 provided in Supplemental Index Table S2) and the PCR product Sanger sequenced. For growth
396 in 1% adenosine-only broth (Figure 1C), scrapings of day-5 and day-50 population frozen glycerol
397 stocks or individual colonies of PAO1 were used to inoculate buffered LB and incubated overnight.
398 Overnight cultures were back diluted in 1% adenosine-only broth to an OD₆₀₀ of 0.01 and growth
399 monitored by absorbance at 600 nm. To determine cell yields on CAB, scrapings of population
400 frozen glycerol stocks were used to inoculate buffered LB and incubated overnight. A 3-ml CAB
401 culture was then inoculated with 30 μ l of overnight culture, incubated at 37°C with shaking for 18
402 h, and then serially diluted for plating on LB agar to determine the number of colony forming units.

403 **Genome sequencing and variant analysis**

404 Scrapings of day-160 population frozen glycerol stocks were streaked for isolation on LB agar
405 plates. After an overnight incubation, two individual colonies from population D and two from
406 population E were used to inoculate buffered LB. After overnight growth, genomic DNA was
407 extracted from cells and purified by using the Gentra Puregene Yeast/Bacteria kit (Qiagen,
408 Germantown, MD). The purified DNA was used to construct paired-end 2x150 bp libraries for
409 sequencing on an Illumina MiSeq (San Diego, CA). Reads were aligned to the PAO1 reference
410 genome (accession NC_002516) using the genomics software StrandNGS version 3.3.1 (Strand

411 Life Sciences, Bangalore, India). Variant analysis was performed with StrandNGS SNP, CNV and
412 SV pipelines. We defined a SNP as having a variant read frequency of >90% and an indel as
413 being <100 bp. Previously, we sequenced the genomes of two individual isolates of our laboratory
414 MPAO1 strain (SAMN06689578, SAMN09671539), which we used as comparisons for SNPs
415 calls and copy number/indel analyses.

416 **Purification of AiiA lactonase**

417 The AiiA AHL lactonase enzyme was purified as a maltose-binding protein (MalE) fusion from *E.*
418 *coli* cells as described elsewhere (Thomas and Fast 2011) except that 0.2 mM CoCl₂ was
419 substituted for ZnCl₂ and the MalE fusion was not removed by TEV cleavage. Purified AiiA was
420 concentrated to 10 mg/ml in protein buffer [20 mM Tris-HCl, 100 mM NaCl, pH 7.4 with 10%
421 glycerol (vol/vol)], and stored at -80°C until use. AiiA was added to cultures at a final concentration
422 of 100 µg/ml, which was sufficient to reduce 3OC12- and C4-HSL levels to below detection in
423 culture extracts as measured by bioassay (Schaefer et al. 2000).

424 **RNA-seq analyses**

425 Scrapings from glycerol stocks of populations D and E day-5 and day-160 passages were used
426 to inoculate into 3-ml of buffered LB. After an overnight incubation, cells from these cultures were
427 used to inoculate 3-ml of buffered LB with a starting optical density (OD₆₀₀) of 0.01. These cells
428 were grown to logarithmic phase (OD₆₀₀ 0.1-0.4) and then used to inoculate a 250-ml baffled flask
429 containing 25-ml of buffered LB (starting OD₆₀₀ 0.005) and one of the following: AiiA lactonase
430 (100 µg/ml), AHLs (2 µM 3OC12-HSL and 10 µM C4-HSL final concentrations), or no additions.
431 Two biological replicates were prepared for each sample condition. In early stationary phase
432 (OD₆₀₀ 2), AHL signals were solvent extracted from 5-ml of culture and concentrations were
433 determined by bioassay as described previously (Schaefer et al. 2000) to confirm AiiA-lactonase
434 activity. At the same time, cells from 2-ml of culture were pelleted by centrifugation, preserved in

435 RNAprotect bacteria reagent (Qiagen, Germantown MD), and stored at -80°C, followed by RNA
436 extraction as described previously (Cruz et al. 2020).

437 RNA-seq library preparation, bacterial Ribo-Zero rRNA depletion (Illumina, San Diego, CA), and
438 sequencing was performed by Genewiz (South Plainfield, NJ). Library samples were divided into
439 two separate HiSeq3000 runs, each with paired-end 2x150 bp read lengths. Trim Galore!
440 (Babraham Bioinformatics, Cambridge UK) was used to trim adapters prior to alignment against
441 the PAO1 reference genome (accession NC_002516) using StrandNGS version 3.3.1 (Strand
442 Life Sciences, Bangalore, India). DESeq2 (Love et al. 2014) was used for differential expression
443 analysis, using the Benjamini-Hochberg adjustment for multiple comparisons and a false-
444 discovery rate $\alpha = 0.05$. Samples from each treatment regimen were grouped by individual
445 population for the DESeq2 differential expression analyses (i.e., the three treatments for lineage
446 D day-5 populations described above were compared separately from the day-160 population
447 treatments, and likewise for lineage E populations). QS-activated regulons were determined by
448 comparing added AHLs vs. AiiA-treated samples for a given population (D or E) and passaging
449 time (5-day or 160-day), and imposing a 2.8-fold minimal fold-change threshold. We elected to
450 use the added AHLs treatment as the QS-induced treatment, rather than the no additions
451 treatment where AHL signals accumulate during culture growth, to control for the timing and
452 magnitude of AHL levels. However, the no additions treatment was included in the DESeq2
453 differential expression analyses. Normalized transcript counts (Source Data File 1 and Figure 3)
454 were obtained by taking the inverse log of the regularized log transformation (rlog) function in
455 DESeq2 (Love et al. 2014). Note that because there are two phenazine biosynthesis *phz* operons
456 in the PAO1 genome with high levels of sequence identity, it is not possible to differentiate from
457 which operon the transcripts derived, as the StrandNGS software assigns reads that match
458 multiple locations (<5 matches) to the earliest match location in the genome. Thus, although

459 phenazine synthesis is QS-regulated, we excluded *phzA1-G1* and *phzA2-G2* from subsequent
460 analyses of our differential expression data.

461 **QS gene reporter activity during growth**

462 We created a promoter probe fusion for *pqsA* and a promoterless *gfp* control (Supplemental Index
463 Table S2) by using PCR and *E. coli*-mediated DNA assembly (Kostylev et al. 2015). Plasmids
464 were used to electrotransform *P. aeruginosa* strains. Single transformant colonies harboring
465 pBBR-P_{*pqsA*}-*gfp* or pBBR-*gfp* were used to inoculate buffered LB supplemented with 100 µg/ml
466 gentamicin. Overnight cultures were back diluted to OD₆₀₀ 0.01, grown to mid-log phase (OD₆₀₀
467 0.1-0.4), diluted to an initial OD₆₀₀ of 0.01 in CAB or buffered LB as indicated, and dispensed in
468 200 µl volumes into a 96-well microtiter dish plate. Fluorescence (excitation 485 nm, emission
469 535 nm) and absorbance (OD₆₀₀) were measured every 15 min for 14 h using a Biotek Synergy
470 H1 microplate reader. Background fluorescence was determined using the promoterless pBBR-
471 *gfp* control.

472 **Sequence data deposition**

473 Raw sequencing reads for variant analyses of the two individual isolates from each of the day-
474 160 lineages (BioSamples SAMN16400702-SAMN16400711) were deposited in the NCBI
475 Sequence Read Archive under BioProject PRJNA667949. Raw sequencing reads and count
476 matrices for transcriptome analyses of CAB-evolved populations D (BioSamples
477 SAMN16400698, SAMN16400699) and E (BioSamples SAMN16400700, SAMN16400701) were
478 deposited under GEO accession GSE176411 as well.

479 **ACKNOWLEDGEMENTS**

480 This work was supported by US Public Health Service (USPHS) Grants K08AI102921 and
481 R01GM125714 (to A.A.D.) and R01GM059026 and R35GM136218 (to E.P.G.). A.A.D. was also
482 supported by the Burroughs-Wellcome Fund (Grant 1012253). E.P.G. and A.L.S. were also

483 supported by the Genomic Science Program, US Department of Energy, Office of Science,
484 Biological and Environmental Research as part of the Plant-Microbe Interfaces Science Focus
485 Area (pmi.ornl.gov). Oak Ridge National Laboratory is managed by University of Tennessee-
486 Battelle LLC for the US Department of Energy under Contract DE-AC05-00227525. K.L.A. was
487 supported by a Postdoctoral Fellowship from the Cystic Fibrosis Foundation (ASFAHL19F0). We
488 acknowledge core support from USPHS Grant P30DK089507 and the Cystic Fibrosis Foundation
489 (Grants SINGH15R0 and R565 CR11).

Table 1. Mutations in day-160 isolates present in at least one isolate from lineages D and E

Locus ^a	Gene(s) ^b	Mutation	160-day Isolate	SNP ^c	DNA coordinate(s)	Effect ^d	Gene description ^b
Multiple	PA0109-PA0192	Gene duplication	D1		132441-222530	90.1 kb duplication (2 copies)	Contains two genes (encoding a purine nucleosidase and an adenosine deaminase) that when duplicated confer fast growth on adenosine (Toussaint, et al. 2017)
	PA0117-PA0260		E1		137061-291830	154.7 kb duplication (2 copies)	
	PA0122-PA0260		E2		137061-290290	153.2 kb duplication (3 copies)	
PA0143	<i>nuh</i>	Intergenic SNP	D1, D2, E1, E2	C>T	163308	Promoter mutation	Purine nucleosidase Nuh
PA0928	<i>gacS</i>	Non-synonymous SNP	D1, D2, E1, E2	C1420T	101433	G474S	Histidine kinase sensor-response regulator
PA1949	<i>rbsR</i>	Non-synonymous SNP	D1, D2, E1, E2	C32T	2134424	A11V	Ribose operon repressor RbsR
PA2338		Non-synonymous SNP	E2	A635G	2582731	Q212R	Probable binding protein component of ABC maltose/mannitol transporter
		Insertion	D1, D2	G856GC	2582952	R288 Frameshift	
PA2399-PA2400	<i>pvdD, pvdJ</i>	Deletion	E1, E2		2664201-2670360	6.2 kb deletion spanning 2 genes	Pyoverdine synthetase D, J
PA2402	<i>pvdI</i>	(Internal) gene duplication	D1		2677291-2684990	Internal 7.7 kb duplication (2 copies)	Pyoverdine peptide synthetase I
			D2		2677291-2684220	Internal 6.9 kb duplication (4 copies)	
PA2492	<i>mexT</i>	Non-synonymous SNP	D1, D2, E1, E2	T887C	2808355	L296P	Transcriptional regulator MexT
PA2494	<i>mexF</i>	Non-synonymous SNP	D1, D2, E1, E2	G2069A	2812077	R690H	Multidrug efflux transporter MexF
PA2602 ^e		Insertion	D2	C338CG	2945601	R116 Frameshift	3-mercaptopropionate dioxygenase
			E1, E2	C338CGG	2945601		
PA3205		Insertion	E1	TG81TCC	3595466	P31 Frameshift	Hypothetical protein
			D2	TG81TGC	3595466		
PA3488 ^f	<i>tlf5</i>	Insertion	E1	A72AG	3906126	H28 Frameshift	T6SS-associated effector immunity protein
		Deletion	D1, D2	AG73A	3906126	G27 Frameshift	
		Insertion	E2	C280CA	3906334	N96 Frameshift	
PA3527 ^g	<i>pyrC</i>	Intergenic insertion	D2, E1	G>GC	3947041	Upstream mutation at 3947041	Dihydroorotate
PA3535	<i>epsS</i>	Stop gained	D1, D2, E1, E2	C2491T	3957397	Q831Stop	Probable serine protease
PA3548	<i>algI</i>	Intergenic SNP	D1, D2, E1, E2	G>A	3974147	Upstream mutation at 3974147	Alginate biosynthesis protein
PA3620	<i>mutS</i>	Deletion	D1, D2, E1, E2	TGC2067T	4056590	L690 Frameshift	DNA mismatch repair protein MutS
PA3626		Non-synonymous SNP	E1, E2	T232C	4062198	S78G	tRNA pseudouridine synthase D
			D1	T658C	4061772	S220G	
PA3629	<i>adhC</i>	Non-synonymous SNP	E1	T800C	4064188	N267S	Alcohol dehydrogenase
			D2	T1033C	4063955	T345A	
PA4344		Non-synonymous SNP	E1, E2	G449C	4874042	A150V	Probable hydrolase
			D1	T953C	4873538	E318G	
PA4499	<i>psdR</i>	Insertion	D1, D2	A431AC	5036675	L146 Frameshift	Dipeptide regulator
		Non-synonymous SNP	E1, E2	T515C	5036759	V172A	
PA4547	<i>pilR</i>	Non-synonymous SNP	D1, D2, E1, E2	T971C	5095955	L324P	Two-component response regulator PilR
PA4554	<i>pilY1</i>	Deletion	E1, E2	GC341G	5101022	N116 Frameshift	Type IV pilus assembly protein PilY1
		Stop gained	D1	G962A	5101644	W321 Stop	
PA4701 ^h		Non-synonymous SNP	E1, E2	T26C	5280530	L9P	Conserved hypothetical protein
		Insertion	D1, D2	A44AC	5280548	H17 Frameshift	
PA5090 ⁱ	<i>vgrG5</i>	Insertion	E1	G1277GC	5730568	L427 Frameshift	T6SS-associated protein VgrG5
		Deletion	D2	GC1277G	5730568	G426 Frameshift	

For inclusion in this list, the indicated gene(s) had mutations identified in one or both sequenced isolates from the two lineages.

Unless otherwise indicated, SNPs were identified by the presence of 90% or more variant reads at the indicated locus as compared to the PAO1 reference genome.

^aBold text indicates loci with SNPs or in/dels shared among all four isolates from the day-160 lineages with minimum read frequencies of 90% (except as in footnotes f - i).

^bAs described at pseudomonas.com (Windsor, et al. 2016).

^cNucleotide change and location within the coding sequence of the gene, unless the SNP is intergenic.

^dProtein amino acid location and change resulting from the SNP or, in the case of intergenic SNPs, the genomic coordinate of the nucleotide change relative to the translation start codon.

^ePA2602 SNP frequency was below the 90% variant reads cutoff for all four isolates, but present at noteable frequency (89% variant reads) in lineage D isolate 2 and lineage E isolate 2, and in lineage E isolate 1 (80% variant reads).

^fPA3488 SNP resulting in G27 frameshift was present in both isolates from lineage D supported by 94-95% variant reads, while the SNP resulting in H28 frameshift was present in lineage E isolate 1 with 79% variant reads; the N96 frameshift was found in both isolates from lineage E supported by 77 and 88% variant reads.

^gPA3527 SNP frequency of 94% variant reads in lineage E isolate 1, and 84% in lineage D isolate 2.

^hPA4701 Non-synonymous SNP variant reads frequency was 100% in both isolates from lineage E, while the insertion SNP was supported by 89% variant reads in both isolates from lineage D.

ⁱPA5090 Insertion SNP present in lineage E isolate 1 with 87% variant reads frequency, while the deletion SNP was present in lineage D isolate 2 with 90% variant reads.

Table 2. Quorum sensing-activated genes in day-5 and day-160 CAB populations

Locus tag ^b	Fold Change ^a					
	Day 5		Day 160		Gene ^b	Description
	Pop D	Pop E	Pop D	Pop E		
PA0026 ^c	4.9	3.4		3.6	<i>plcB</i>	phospholipase C
PA0027	5.5	4.0		5.0		hypothetical protein
PA0028	4.4	4.4		3.9		hypothetical protein
PA0050	4.0	3.5				hypothetical protein
PA0052	10.4	5.6	4.3	6.4		hypothetical protein
• PA0122 ^d	17.2	11.0	3.1	5.5	<i>rahU</i>	hypothetical protein
PA0132	5.9				<i>bauA</i>	beta alanine-pyruvate transaminase
PA0143	3.6	2.9			<i>nuh</i>	nonspecific ribonucleoside hydrolase
PA0144	5.1	6.9				hypothetical protein
PA0157		3.0			<i>triB</i>	resistance-nodulation-cell division (RND) efflux membrane fusion protein
PA0174	3.3					hypothetical protein
PA0175	3.9				<i>cheR2</i>	chemotaxis protein methyltransferase
PA0178				3.0		two-component sensor
PA0179	2.9			4.6		two-component response regulator
PA0484	3.2					hypothetical protein
PA0572	5.6	3.2		3.1		hypothetical protein
PA0586	2.9					hypothetical protein
PA0588				3.6		hypothetical protein
PA0776	2.9					hypothetical protein
PA0792			4.5		<i>prpD</i>	propionate catabolic protein
PA0793			7.8			hypothetical protein
PA0794			5.2			aconitate hydratase
PA0795			5.3		<i>prpC</i>	methylcitrate synthase
PA0796			8.9		<i>prpB</i>	2-methylisocitrate lyase
PA0797			3.7			transcriptional regulator
• PA0798				3.1	<i>pmtA</i>	phospholipid methyltransferase
PA0852	17.3	12.8	3.4	7.0	<i>cbpD</i>	chitin-binding protein
PA0855	4.4	3.1		3.3		hypothetical protein
PA0996	41.2	22.6			<i>pqsA</i>	anthranilate-CoA ligase
PA0997	35.4	14.3			<i>pqsB</i>	hypothetical protein
PA0998	15.5	5.2			<i>pqsC</i>	hypothetical protein
PA0999	8.1				<i>pqsD</i>	2-heptyl-4(1H)-quinolone synthase
PA1000	14.6	5.1			<i>pqsE</i>	thioesterase
PA1001	7.5	4.4			<i>phnA</i>	anthranilate synthase component I
PA1002	4.6	5.1		3.3	<i>phnB</i>	anthranilate synthase component II
PA1003	3.7	3.9		3.0	<i>mvfR</i>	transcriptional regulator
PA1041	3.4			6.4		probable outer membrane protein precursor
PA1130	3.2	3.0			<i>rhIC</i>	rhinosyltransferase
• PA1131	15.0	10.4	4.6	6.8		major facilitator superfamily transporter
PA1166	3.4			4.0		hypothetical protein
PA1168	33.3	46.1	63.3	9.3		hypothetical protein
PA1169			5.1			arachidonate 15-lipoxygenase
PA1172	3.0				<i>napC</i>	cytochrome c-type protein
PA1175	3.4				<i>napD</i>	periplasmic nitrate reductase protein
PA1176	2.9			4.6	<i>napF</i>	ferredoxin protein
PA1177	4.1			5.1	<i>napE</i>	periplasmic nitrate reductase protein
PA1214		3.4				hypothetical protein
PA1215	3.1			2.9		hypothetical protein
• PA1216	9.0	4.6	3.5	5.1		hypothetical protein
PA1219		3.0				hypothetical protein
PA1220	3.3		2.9	3.8		hypothetical protein
• PA1221	8.7	6.4	6.6	10.6		hypothetical protein
• PA1245	18.4	15.7	4.4	10.1	<i>aprX</i>	hypothetical protein
• PA1246	21.9	16.5	4.3	8.0	<i>aprD</i>	alkaline protease secretion ATP-binding protein
• PA1247	18.1	14.9	4.3	8.9	<i>aprE</i>	alkaline protease secretion protein
• PA1248	17.1	14.1	3.9	8.9	<i>aprF</i>	alkaline protease secretion protein
• PA1249	25.6	19.0	6.3	10.4	<i>aprA</i>	alkaline metalloproteinase
PA1250	17.3	21.4	3.2	22.8	<i>aprI</i>	alkaline proteinase inhibitor
PA1251	11.6	11.8		12.6		chemotaxis transducer
• PA1431	25.4	20.5	4.1	21.7	<i>rsaL</i>	regulatory protein RsaL
PA1432	7.7	8.7	3.2	36.6	<i>lasI</i>	acyl-homoserine-lactone synthase
PA1433				7.9		hypothetical protein
PA1512	3.2				<i>hcpA</i>	secreted protein Hcp
PA1656	8.9	8.4		8.4	<i>hsfA2</i>	type VI secretion protein
PA1657	9.2	7.8		3.5	<i>hsfB2</i>	type VI secretion protein
PA1658	7.1	5.3			<i>hsfC2</i>	type VI secretion protein
PA1659	10.2	6.3		3.4	<i>hsfF2</i>	type VI secretion protein
PA1660	5.7	4.2			<i>hsfG2</i>	type VI secretion protein

PA1661	5.1	5.3			<i>hsfH2</i>	type VI secretion protein
PA1662	4.4	4.4			<i>clpV2</i>	ClpA/B-type protease
PA1663	4.8	4.3			<i>sfa2</i>	type VI secretion protein
PA1664	6.0	6.1			<i>orfX</i>	type VI secretion protein
PA1665	4.9	6.1			<i>fha2</i>	type VI secretion protein
PA1666	3.8	5.9			<i>lip2</i>	type VI secretion protein
PA1668	4.0	3.8			<i>dotU2</i>	type VI secretion protein
PA1670		3.3			<i>stp1</i>	serine/threonine phosphoprotein phosphatase
PA1784	9.1	5.4	3.5			hypothetical protein
PA1837a	3.2		3.8			hypothetical protein
PA1860	2.8					hypothetical protein
• PA1869	38.5	43.1	9.5	13.1	<i>acp1</i>	acyl carrier protein
• PA1871	7.2	4.5		3.9	<i>lasA</i>	protease LasA
PA1891		4.3				hypothetical protein
PA1892	3.6	4.1				hypothetical protein
PA1893	3.0					hypothetical protein
PA1894	9.8	10.8	3.0			hypothetical protein
PA1896	3.1	2.8				hypothetical protein
PA1897	5.2	5.4				hypothetical protein
PA1898	3.0				<i>qscR</i>	quorum-sensing control repressor
PA2024				2.8		ring-cleaving dioxygenase
PA2030	3.3	3.4		3.0		hypothetical protein
PA2031	4.1	4.2		4.5		hypothetical protein
PA2066	3.0					hypothetical protein
PA2067	5.2	3.5				probable hydrolase
PA2068	13.7	13.9	2.9			major facilitator superfamily transporter
PA2069	14.8	9.6	3.2			carbamoyl transferase
PA2072	3.2			3.0		hypothetical protein
PA2076	4.7	4.5		3.8		transcriptional regulator
PA2137				2.9		hypothetical protein
PA2142a	4.6			5.0		hypothetical protein
PA2166	3.3			18.4		hypothetical protein
PA2174		2.9		3.2		hypothetical protein
PA2180			4.0			hypothetical protein
• PA2193	29.0	31.4	11.2	23.3	<i>hcnA</i>	hydrogen cyanide synthase subunit
• PA2194	11.8	14.9	4.3	7.1	<i>hcnB</i>	hydrogen cyanide synthase subunit
• PA2195	8.6	11.8	2.9	3.9	<i>hcnC</i>	hydrogen cyanide synthase subunit
PA2300	4.4	3.6			<i>chiC</i>	chitinase
• PA2302	18.2	19.7		6.9	<i>ambE</i>	L-2-amino-4-methoxy-trans-3-butenoic acid synthesis gene
• PA2303	23.4	31.5	4.5	11.7	<i>ambD</i>	L-2-amino-4-methoxy-trans-3-butenoic acid synthesis gene
• PA2304	16.4	16.1		7.9	<i>ambC</i>	L-2-amino-4-methoxy-trans-3-butenoic acid synthesis gene
• PA2305	12.9	16.1		6.5	<i>ambB</i>	L-2-amino-4-methoxy-trans-3-butenoic acid synthesis gene
PA2329	3.7					probable ATP-binding component of ABC transporter
• PA2330	3.1	3.3				hypothetical protein
• PA2331	4.0	3.1				hypothetical protein
PA2361	2.9				<i>icmF3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2362	2.9	3.1			<i>dotU3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2363	3.0				<i>hsfJ3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2364	3.0				<i>lip3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2365	3.8				<i>hsfB3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2366	3.1				<i>hsfC3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2367	3.6				<i>hcp3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2368	5.3	4.1			<i>hsfF3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2369	3.8	3.1			<i>hsfG3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2370	5.0	4.2			<i>hsfH3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2371	2.9				<i>clpV3</i>	Hcp secretion island-3 encoded type VI secretion system (H3-T6SS)
PA2374	3.1	3.5			<i>tseF</i>	Hcp Secretion Island-III-encoded type VI secretion system (H3-T6SS)
PA2386			3.8		<i>pvdA</i>	L-ornithine N5-oxygenase
PA2404			3.3		<i>fpvH</i>	hypothetical protein
PA2405			3.2			hypothetical protein
PA2411			3.1			thioesterase
PA2412			4.8			hypothetical protein
PA2413			3.6		<i>pvdH</i>	diaminobutyrate-2-oxoglutarate aminotransferase
PA2423	6.1	4.7		3.5		hypothetical protein
PA2425			2.9		<i>pvdG</i>	pyoverdine biosynthesis protein
PA2426			3.0		<i>pvdS</i>	extracytoplasmic-function sigma-70 factor
PA2477		4.9				thiol:disulfide interchange protein
PA2478	3.4	3.5				thiol:disulfide interchange protein
PA2512		5.1		3.3	<i>antA</i>	anthranilate dioxygenase large subunit
PA2513		2.8		3.4	<i>antB</i>	anthranilate dioxygenase small subunit
PA2514		3.6			<i>antC</i>	anthranilate dioxygenase reductase
PA2515	3.1	5.8			<i>xylL</i>	1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase
PA2566	6.4	4.1				hypothetical protein

PA2570	4.8	3.5			<i>lecA</i>	galactophilic lectin
PA2572				3.5		two-component response regulator
PA2587	20.9	18.5	5.2	13.8	<i>pqsH</i>	2-heptyl-3-hydroxy-4(1H)-quinolone synthase
PA2588	7.7	5.3		4.9		transcriptional regulator
PA2589	4.5					hypothetical protein
PA2591	20.3	16.8	8.8	38.0	<i>vqsR</i>	transcriptional regulator
PA2592	9.3	7.2	3.0	4.4		spermidine/putrescine-binding protein
PA2593	5.0	4.8			<i>qteE</i>	quorum threshold expression protein
PA2747				11.0		hypothetical protein
PA2769	3.6	3.7				hypothetical protein
PA2937	3.4					hypothetical protein
PA2939	26.4	14.1	4.1		<i>pepB</i>	aminopeptidase
PA3104		2.9			<i>xcpP</i>	
PA3233				4.8		hypothetical protein
PA3234				4.1		acetate permease
PA3235				3.3		hypothetical protein
PA3249	3.2					probable transcriptional regulator
PA3311	2.8				<i>nbdA</i>	diguanylate cyclase
PA3325	9.3	8.8		8.3		hypothetical protein
PA3326	30.0	15.7	10.6	24.8	<i>clpP2</i>	ATP-dependent Clp protease proteolytic subunit
PA3327	34.6	45.0	7.3	36.4		non-ribosomal peptide synthetase
PA3328	62.0	47.9	7.7	51.2		FAD-dependent monooxygenase
PA3329	25.0	26.3	4.6	20.1		hypothetical protein
PA3330	58.3	50.8	7.0	68.8		short-chain dehydrogenase
PA3331	18.1	16.2	3.0	17.2		cytochrome P450
PA3332	53.6	45.4	5.0	80.0		hypothetical protein
PA3333	42.1	36.3	3.7	12.3	<i>fabH2</i>	3-oxoacyl-ACP synthase
PA3334	37.9	25.6	4.6	14.9	<i>acp3</i>	acyl carrier protein
PA3335	16.5	16.7		7.0		hypothetical protein
PA3336	3.3	4.2				probable major facilitator superfamily (MFS) transporter
PA3347	3.2				<i>hsbA</i>	HptB-dependent secretion and biofilm anti anti-sigma factor HsbA
PA3361	5.3	4.4			<i>lecB</i>	fucose-binding lectin PA-III
PA3369				5.4		hypothetical protein
PA3370				4.9		hypothetical protein
PA3371				4.0		hypothetical protein
PA3451	3.0			3.8		hypothetical protein
PA3476	26.6	28.9	19.3	41.1	<i>rhII</i>	acyl-homoserine-lactone synthase
PA3477	8.4	6.4		5.8	<i>rhIR</i>	transcriptional regulator
PA3478	4.5			3.5	<i>rhIB</i>	rhamnosyltransferase chain B
PA3479	27.7	18.8	7.8	17.6	<i>rhIA</i>	rhamnosyltransferase subunit A
PA3520	4.2	3.3				putative periplasmic substrate binding protein
PA3535	8.7	10.8		6.5	<i>eprS</i>	serine protease
PA3688	3.0					hypothetical protein
PA3723				4.1		FMN oxidoreductase
PA3724	51.6	39.7	14.3	23.2	<i>lasB</i>	elastase LasB
PA3904	18.4	28.2	8.2	28.1	<i>PAAR4^e</i>	PAAR protein
PA3905	31.1	22.4		12.0	<i>tecT^e</i>	type VI effector chaperone for Tox-Rease, TecT
PA3906	15.2	15.4		5.2	<i>co-tecT^e</i>	co-chaperone, co-TecT
PA3907	20.3	25.6		6.5	<i>tseT^e</i>	TOX-REase-5 domain-containing effector, TseT
PA3908	24.1	16.5		4.1	<i>tsiT^e</i>	immunity protein TsiT
PA3928	3.1					hypothetical protein
PA3930	3.3				<i>cioA</i>	cyanide insensitive terminal oxidase
PA4117	4.5	3.7		3.1	<i>bphP</i>	phytochrome BphP
PA4127	7.1	7.7			<i>hpcG</i>	2-oxo-hepta-3-ene-1,7-dioic acid hydratase
PA4128	24.5	25.3	4.7			hypothetical protein
PA4129	46.6	27.6	8.4			hypothetical protein
PA4130	37.0	26.6	12.8		<i>nirA</i>	sulfite/nitrite reductase
PA4131	27.7	18.4	22.0	46.0		iron-sulfur protein
PA4132	16.1	10.6	4.4			hypothetical protein
PA4133	38.3	25.8	5.2			cbb3-type cytochrome C oxidase subunit I
PA4134	11.3	7.4				hypothetical protein
PA4139	3.7	6.3	4.0			hypothetical protein
PA4140			2.9			hypothetical protein
PA4141	8.0	6.9	4.1	8.7		hypothetical protein
PA4142	3.1	3.5				probable secretion protein
PA4175	3.9	3.2			<i>piv</i>	endopeptidase IV
PA4190	3.7	4.4		3.1	<i>pqsL</i>	monooxygenase
PA4208				3.1	<i>opmD</i>	probable outer membrane protein precursor
PA4209	3.5	3.1		5.0	<i>phzM</i>	phenazine-specific methyltransferase
PA4217	5.6	5.6		2.9	<i>phzS</i>	flavin-containing monooxygenase
PA4294	3.5					hypothetical protein
PA4299	3.0				<i>tadD</i>	Flp pilus assembly lipoprotein TadD

PA4301	3.5				<i>tadB</i>	Flp pilus assembly protein TadB
PA4302	4.2				<i>tadA</i>	Flp pilus assembly ATPase
PA4304	3.1				<i>rcpA</i>	type II/III secretion system protein
PA4305	3.4				<i>rcpC</i>	Flp pilus assembly protein RcpC
PA4306	7.8	4.5			<i>flp</i>	type IVb pilin Flp
PA4590	5.2	4.1	4.6		<i>pra</i>	protein activator
PA4637a	3.9	2.8				hypothetical protein
PA4648	4.5				<i>cupE1</i>	Pilin subunit CupE1
PA4677	8.6	7.7	3.4	9.8		hypothetical protein
PA4703	3.3					hypothetical protein
PA4738	6.3			14.4		hypothetical protein
PA4739	7.2	2.9		15.8		hypothetical protein
PA4778	5.2	4.5		3.5	<i>cueR</i>	protein CueR
PA4869	2.8					hypothetical protein
PA5058	4.6	2.9			<i>phaC2</i>	poly(3-hydroxyalkanoic acid) synthase
PA5059	4.9	4.2			<i>dguB</i>	transcriptional regulator
PA5083			5.2		<i>dguA</i>	Rid2 subfamily protein
PA5084			26.9			oxidoreductase
PA5220	5.0	3.6	3.8	5.4		hypothetical protein
PA5267	4.5				<i>hcpB</i>	secreted protein Hcp
PA5352	4.1	3.0				hypothetical protein
PA5353	3.0	3.5			<i>glcF</i>	glycolate oxidase iron-sulfur subunit
PA5354	4.0	3.1			<i>glcE</i>	glycolate oxidase FAD binding subunit
PA5355	4.1	3.0			<i>glcD</i>	glycolate oxidase subunit
PA5481	4.0			10.6		hypothetical protein
PA5482	4.7			11.4		hypothetical protein

^a Differential gene expression of populations grown with added AHLs vs. added AiiA.

^b Locus tag and gene name from pseudomonas.com (Windsor, et al 2016) except where indicated.

^c Arrows adjacent to loci indicate operons and their direction of transcription as described by (Wurtzel et al, 2012).

^d Closed circles indicate that the gene was identified as part of the core quorum sensing regulon defined in (Chugani, et al 2012).

^e Gene names as described in (Burkinshaw, et al 2018).

490 **REFERENCES**

491 Asfahl, KL, Walsh, J, Gilbert, K and Schuster, M (2015). Non-social adaptation defers a tragedy
492 of the commons in *Pseudomonas aeruginosa* quorum sensing. *ISME J* **9**(8): 1734-1746.

493 Burkinshaw, BJ, Liang, X, Wong, M, Le, ANH, Lam, L and Dong, TG (2018). A type VI secretion
494 system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone
495 complex. *Nat Microbiol* **3**(5): 632-640.

496 Chugani, S, Kim, BS, Phattarasukol, S, Brittnacher, MJ, Choi, SH, Harwood, CS and Greenberg,
497 EP (2012). Strain-dependent diversity in the *Pseudomonas aeruginosa* quorum-sensing regulon.
498 *Proc Natl Acad Sci U S A* **109**(41): E2823-2831.

499 Cruz, RL, Asfahl, KL, Van den Bossche, S, Coenye, T, Crabbe, A and Dandekar, AA (2020).
500 RhlR-regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of
501 *Pseudomonas aeruginosa*. *mBio* **11**(2).

502 Dandekar, AA, Chugani, S and Greenberg, EP (2012). Bacterial quorum sensing and metabolic
503 incentives to cooperate. *Science* **338**(6104): 264-266.

504 Deziel, E, Gopalan, S, Tampakaki, AP, Lepine, F, Padfield, KE, Saucier, M, Xiao, G and Rahme,
505 LG (2005). The contribution of MvfR to *Pseudomonas aeruginosa* pathogenesis and quorum
506 sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without
507 affecting *lasR*, *rhlR* or the production of N-acyl-L-homoserine lactones. *Mol Microbiol* **55**(4): 998-
508 1014.

509 Diggle, SP, Griffin, AS, Campbell, GS and West, SA (2007). Cooperation and conflict in quorum-
510 sensing bacterial populations. *Nature* **450**(7168): 411-414.

511 Diggle, SP, Winzer, K, Chhabra, SR, Worrall, KE, Camara, M and Williams, P (2003). The
512 *Pseudomonas aeruginosa* quinolone signal molecule overcomes the cell density-dependency of
513 the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase
514 and can be produced in the absence of LasR. *Mol Microbiol* **50**(1): 29-43.

515 Feltner, JB, Wolter, DJ, Pope, CE, Groleau, MC, Smalley, NE, Greenberg, EP, Mayer-Hamblett,
516 N, Burns, J, Deziel, E, Hoffman, LR and Dandekar, AA (2016). LasR variant cystic fibrosis isolates
517 reveal an adaptable quorum-sensing hierarchy in *Pseudomonas aeruginosa*. *mBio* **7**(5).

518 Fuqua, WC, Winans, SC and Greenberg, EP (1994). Quorum sensing in bacteria: the LuxR-LuxI
519 family of cell density-responsive transcriptional regulators. *J Bacteriol* **176**(2): 269-275.

520 Good, BH, McDonald, MJ, Barrick, JE, Lenski, RE and Desai, MM (2017). The dynamics of
521 molecular evolution over 60,000 generations. *Nature* **551**(7678): 45-50.

522 Hernandez, RE, Gallegos-Monterrosa, R and Coulthurst, SJ (2020). Type VI secretion system
523 effector proteins: Effective weapons for bacterial competitiveness. *Cell Microbiol* **22**(9): e13241.

524 Heurlier, K, Denervaud, V, Haenni, M, Guy, L, Krishnapillai, V and Haas, D (2005). Quorum-
525 sensing-negative (*lasR*) mutants of *Pseudomonas aeruginosa* avoid cell lysis and death. *J
526 Bacteriol* **187**(14): 4875-4883.

527 Kim, MK and Harwood, CS (1991). Regulation of benzoate-CoA ligase in *Rhodopseudomonas*
528 *palustris*. *FEMS Microbiol Lett* **83**: 199-204.

529 Kostylev, M, Kim, DY, Smalley, NE, Salukhe, I, Greenberg, EP and Dandekar, AA (2019).
530 Evolution of the *Pseudomonas aeruginosa* quorum-sensing hierarchy. *Proc Natl Acad Sci U S A*
531 **116**(14): 7027-7032.

532 Kostylev, M, Otwell, AE, Richardson, RE and Suzuki, Y (2015). Cloning should be simple:
533 *Escherichia coli* DH5alpha-mediated assembly of multiple DNA fragments with short end
534 homologies. *PLoS One* **10**(9): e0137466.

535 Lenski, RE. (2021). "The *E. coli* long-term experimental evolution project site."
536 <http://myxo.css.msu.edu/ecoli>

537 Liao, L, Schaefer, AL, Coutinho, BG, Brown, PJB and Greenberg, EP (2018). An aryl-homoserine
538 lactone quorum-sensing signal produced by a dimorphic prosthecate bacterium. *Proc Natl Acad*
539 *Sci U S A* **115**(29): 7587-7592.

540 Love, MI, Huber, W and Anders, S (2014). Moderated estimation of fold change and dispersion
541 for RNA-seq data with DESeq2. *Genome Biol* **15**(12): 550.

542 LoVullo, ED and Schweizer, HP (2020). *Pseudomonas aeruginosa mexT* is an indicator of PAO1
543 strain integrity. *J Med Microbiol* **69**(1): 139-145.

544 Mellbye, BL, Giguere, AT, Bottomley, PJ and Sayavedra-Soto, LA (2016). Quorum quenching of
545 *Nitrobacter winogradskyi* suggests that quorum sensing regulates fluxes of nitrogen oxide(s)
546 during nitrification. *mBio* **7**(5).

547 Miller, JH (1972). *Experiments in molecular genetics*. Cold Spring Harbor, New York, Cold Spring
548 Harbor Laboratory.

549 Oliveros, JC. (2015). "Venny. An interactive tool for comparing lists with Venn's diagrams."
550 <https://bioinfogp.cnb.csic.es/tools/venny/index.html>.

551 Oshri, RD, Zrihen, KS, Shner, I, Omer Bendori, S and Eldar, A (2018). Selection for increased
552 quorum-sensing cooperation in *Pseudomonas aeruginosa* through the shut-down of a drug
553 resistance pump. *ISME J* **12**(10): 2458-2469.

554 Sandoz, KM, Mitzimberg, SM and Schuster, M (2007). Social cheating in *Pseudomonas*
555 *aeruginosa* quorum sensing. *Proc Natl Acad Sci U S A* **104**(40): 15876-15881.

556 Schaefer, AL, Hanzelka, BL, Parsek, MR and Greenberg, EP (2000). Detection, purification, and
557 structural elucidation of the acylhomoserine lactone inducer of *Vibrio fischeri* luminescence and
558 other related molecules. *Methods in Enzymology* **305**: 288-301.

559 Schuster, M, Hawkins, AC, Harwood, CS and Greenberg, EP (2004). The *Pseudomonas*
560 *aeruginosa* RpoS regulon and its relationship to quorum sensing. *Mol Microbiol* **51**(4): 973-985.

561 Schuster, M, Lostroh, CP, Ogi, T and Greenberg, EP (2003). Identification, timing, and signal
562 specificity of *Pseudomonas aeruginosa* quorum-controlled genes: a transcriptome analysis. *J*
563 *Bacteriol* **185**(7): 2066-2079.

564 Schuster, M, Sexton, DJ, Diggle, SP and Greenberg, EP (2013). Acyl-homoserine lactone quorum
565 sensing: from evolution to application. *Annu Rev Microbiol* **67**: 43-63.

566 Schwarz, S, Hood, RD and Mougous, JD (2010). What is type VI secretion doing in all those
567 bugs? *Trends Microbiol* **18**(12): 531-537.

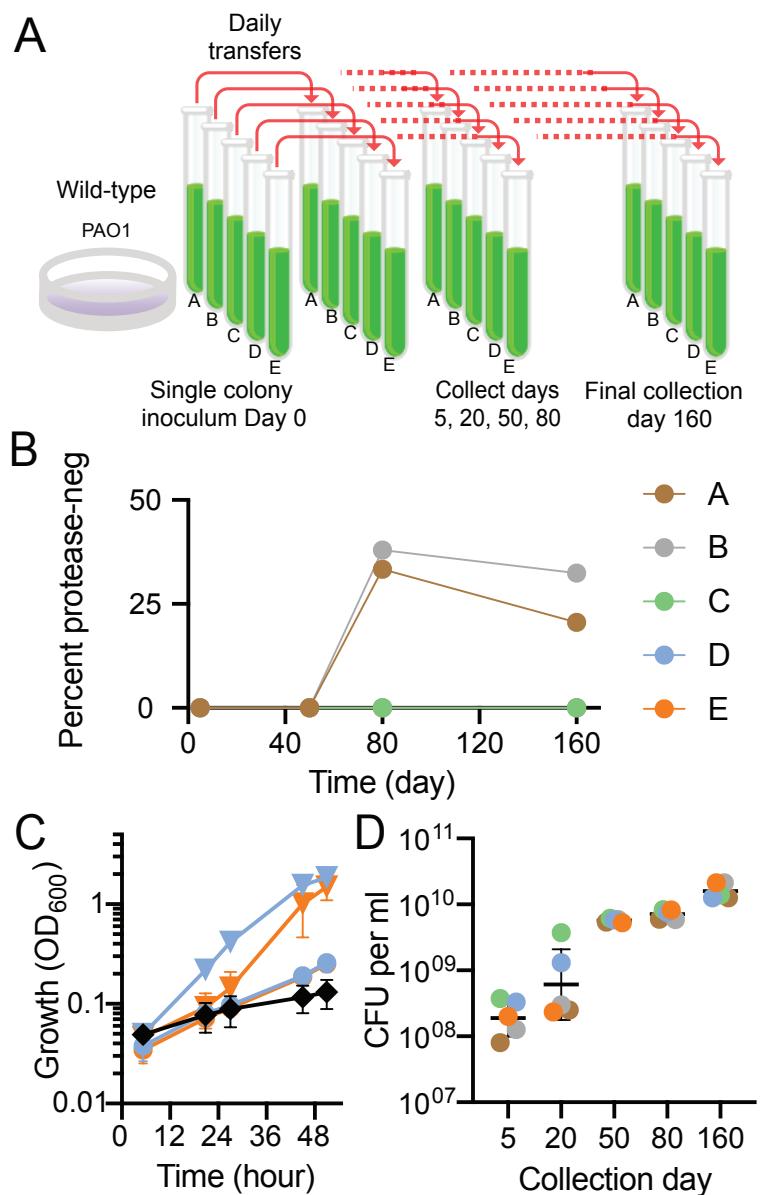
568 Stover, CK, Pham, XQ, Erwin, AL, Mizoguchi, SD, Warrener, P, Hickey, MJ, Brinkman, FS,
569 Hufnagle, WO, Kowalik, DJ, Lagrou, M, Garber, RL, Goltory, L, Tolentino, E, Westbrock-Wadman,
570 S, Yuan, Y, Brody, LL, Coulter, SN, Folger, KR, Kas, A, Larbig, K, et al. (2000). Complete genome
571 sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature* **406**(6799):
572 959-964.

573 Thomas, PW and Fast, W (2011). Heterologous overexpression, purification, and in vitro
574 characterization of AHL lactonases. *Methods Mol Biol* **692**: 275-290.

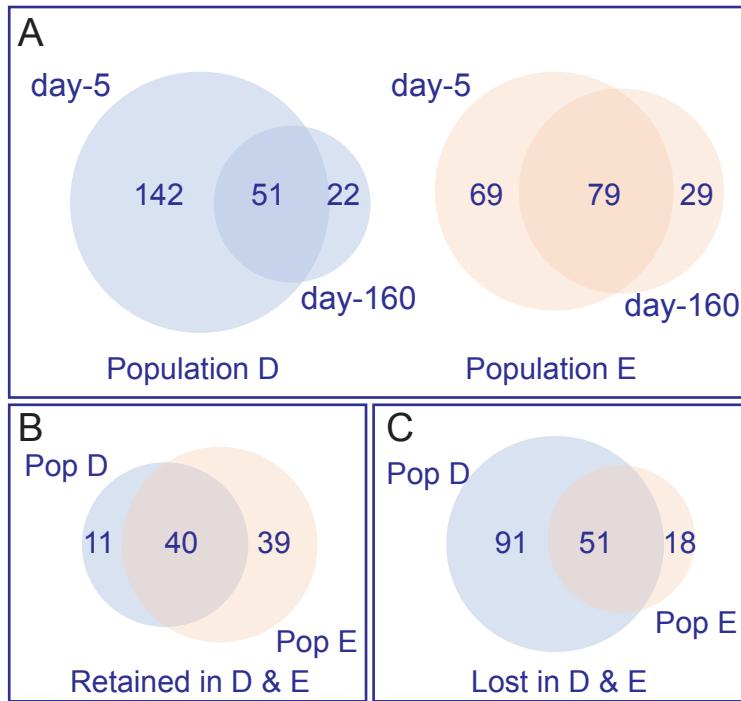
575 Toussaint, JP, Farrell-Sherman, A, Feldman, TP, Smalley, NE, Schaefer, AL, Greenberg, EP and
576 Dandekar, AA (2017). Gene duplication in *Pseudomonas aeruginosa* improves growth on
577 adenosine. *J Bacteriol* **199**(21).

578 Wagner, VE, Bushnell, D, Passador, L, Brooks, AI and Iglewski, BH (2003). Microarray analysis
579 of *Pseudomonas aeruginosa* quorum-sensing regulons: effects of growth phase and environment.
580 *J Bacteriol* **185**(7): 2080-2095.

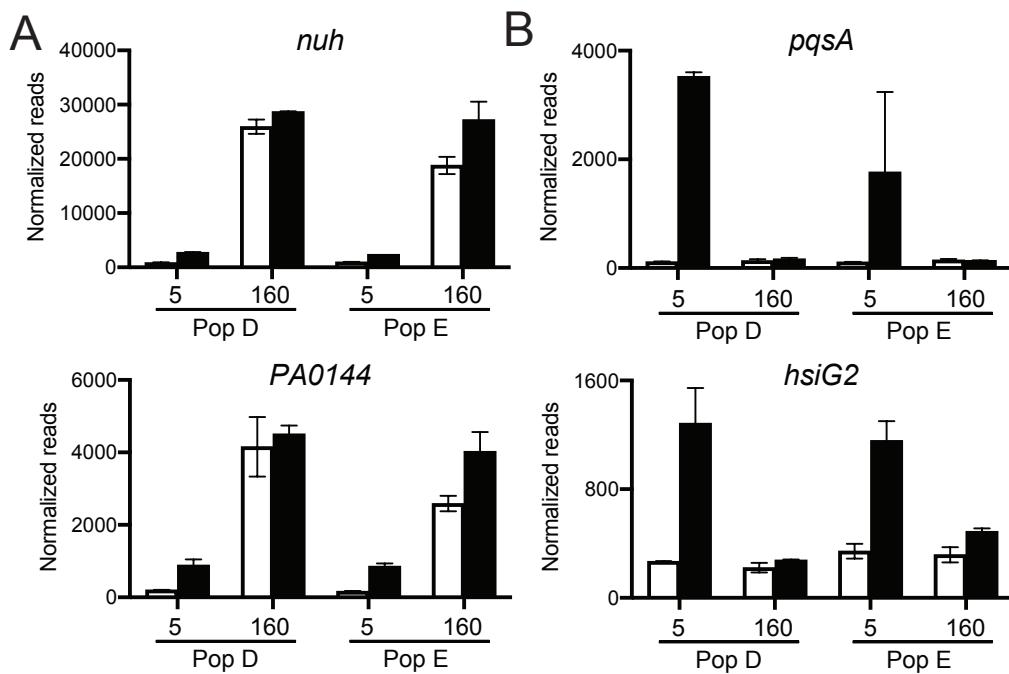
581 Wang, M, Schaefer, AL, Dandekar, AA and Greenberg, EP (2015). Quorum sensing and policing
582 of *Pseudomonas aeruginosa* social cheaters. *Proc Natl Acad Sci U S A* **112**(7): 2187-2191.


583 Whiteley, M, Lee, KM and Greenberg, EP (1999). Identification of genes controlled by quorum
584 sensing in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A* **96**(24): 13904-13909.

585 Winsor, GL, Griffiths, EJ, Lo, R, Dhillon, BK, Shay, JA and Brinkman, FS (2016). Enhanced
586 annotations and features for comparing thousands of *Pseudomonas* genomes in the
587 *Pseudomonas* genome database. *Nucleic Acids Res* **44**(D1): D646-653.


588 Wurtzel, O, Yoder-Himes, DR, Han, K, Dandekar, AA, Edelheit, S, Greenberg, EP, Sorek, R and
589 Lory, S (2012). The single-nucleotide resolution transcriptome of *Pseudomonas aeruginosa*
590 grown in body temperature. *PLoS Pathog* **8**(9): e1002945.

591 Xiao, G, Deziel, E, He, J, Lepine, F, Lesic, B, Castonguay, MH, Milot, S, Tampakaki, AP, Stachel,
592 SE and Rahme, LG (2006). MvfR, a key *Pseudomonas aeruginosa* pathogenicity LTTR-class
593 regulatory protein, has dual ligands. *Mol Microbiol* **62**(6): 1689-1699.


594 Yan, H, Asfahl, KL, Li, N, Sun, F, Xiao, J, Shen, D, Dandekar, AA and Wang, M (2019).
595 Conditional quorum-sensing induction of a cyanide-insensitive terminal oxidase stabilizes
596 cooperating populations of *Pseudomonas aeruginosa*. *Nat Commun* **10**(1): 4999.

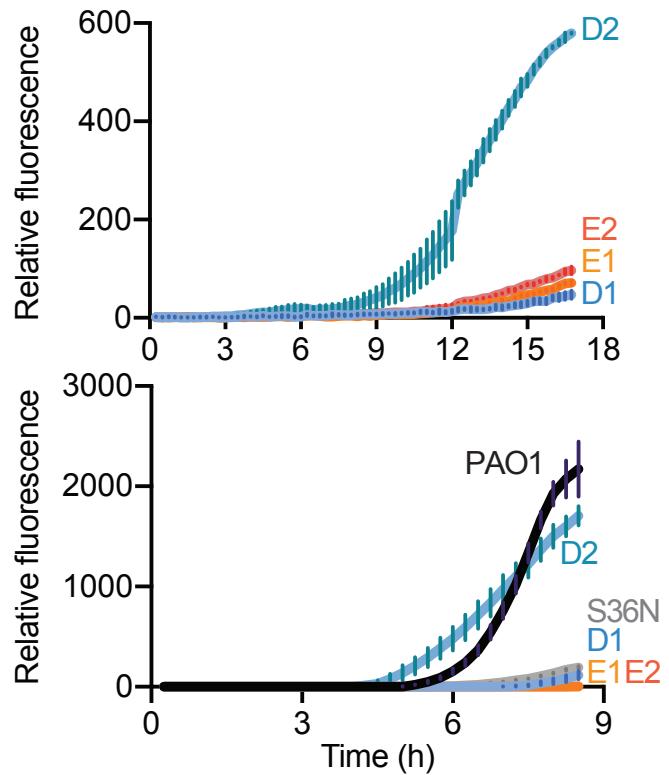

Figure 1. Long-term evolution of *P. aeruginosa* PAO1 serially passaged in a medium (CAB) that requires quorum sensing for growth. (A) Experimental design. (B) Abundance of protease-negative (neg) cheaters in each lineage (A thru E) at the indicated days of serial passage in CAB. (C) Growth in adenosine-only (1% weight/vol) broth of lineages D (blue) or E (orange) collected after 5 days (circles) or 50 days (triangles) of serial passage in CAB. Growth of the parent strain PAO1 (black diamonds) is included for comparison. Data are the means of two biological replicates, error bars are the range. (D) Growth yields of indicated populations grown in CAB for 18 h as determined by colony forming units (CFU) per ml. Black lines are the geometric mean of three or four biological replicates for each population; error bars are the geometric standard deviation.

Figure 2. Many QS-activated genes in day-5 populations do not show QS activation in day-160 populations. (A) Venn diagrams showing the relationship between QS-controlled genes at day-5 vs. day-160 populations for lineages D (blue) and E (peach). (B) Venn diagram showing the overlap of genes that remain under QS-control (Retained) in both populations after 160-days of serial passage in CAB. (C) Venn diagram showing the overlap of genes that are no longer under QS-control (Lost) in both populations. Numbers in the Venn diagrams were determined using [Venny](#) (Oliveros 2015) and area calculated using the area-proportional Venn diagram plotter and editor found at <http://apps.bioinforx.com/bxaf7c/app/venn/index.php>. The numbers of genes in each category are indicated. Lists of genes shared in each category are in Table 2.

Figure 3. Normalized reads of select genes that are lost from QS control during serial passage in CAB for 160 days. (A) The only two lost genes with increased expression, *nuh* and PA0144, after 160 days of CAB passage. (B) Two representative lost genes, *pqsA* and *hsIG2*, with low expression levels in 160-day populations even in the presence of added AHLs. For all graphs white bars are AiiA-treated and black bars are plus AHL signals. Data are the mean normalized transcript counts of the two biological replicates for populations (D or E) passaged for 5 or 160 days in CAB; error bars represent the range. Normalized reads for all genes are provided in Source Data File 1.

Figure 4. There are diverse routes to eliminate *pqsA* from the QS regulon. GFP fluorescence in isolates containing a P_{pqsA} -*gfp* reporter plasmid, grown in 96-well plates in CAB (top) and buffered LB (bottom). The strains include isolates evolved for 160 days in CAB for population D (D1, D2) or E (E1, E2), the parent strain (PAO1), and a PqsR-variant strain (S36N). Plotted are the averaged relative fluorescence units over time of three technical replicates for two biological replicates; error bars represent standard deviations of means.