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12 Mass spectrometry is an important experimental technique in the field of pro-
13 teomics. However, analysis of certain mass spectrometry data faces a combination
14 of two challenges: First, even a single experiment produces a large amount of
15 multi-dimensional raw data and, second, signals of interest are not single peaks
16 but patterns of peaks that span along the different dimensions. The rapidly
17 growing amount of mass spectrometry data increases the demand for scalable
18 solutions. Existing approaches for signal detection are usually not well suited for
19 processing large amounts of data in parallel or rely on strong assumptions concern-
20 ing the signals properties. In this study, it is shown that locality-sensitive hashing
21 enables signal classification in mass spectrometry raw data at scale. Through
2 appropriate choice of algorithm parameters it is possible to balance false-positive
23 and false-negative rates. On synthetic data, a superior performance compared to
% an intensity thresholding approach was achieved. The implementation scaled out
25 up to 88 threads on real data. Locality-sensitive hashing is a desirable approach
26 for signal classification in mass spectrometry raw data. Generated data and code
27 are available at https://github.com/hildebrandtlab/mzBucket. Raw data
28 is available at https://zenodo.org/record/5036526.
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» Background

50 Mass spectrometry in proteomics

31 Valuable information for medicine and design of new drugs for several severe diseases [1] are
32 expected to be gained by new discoveries in proteomics [2][3][4], the field that studies proteins
33 experimentally on a large scale. An experimental technique commonly used in proteomics is
sa  mass spectrometry (MS) [5], which allows to separate ionized molecules by their mass-to-
35 charge ratio (m/z) and which can be combined with measurement of other physical and
36 chemical properties.

37 The overall goal in an untargeted MS-based proteomics experiment is to identify and
38 quantify as many proteins as possible in a given sample with a high quantitative performance
39 in terms of precision and reproducibility. In particular, in bottom-up proteomics proteins are
a0 digested into peptides first and then those peptides are measured.

a1 If only the mass-to-charge ratio of a large, complex sample of peptides was measured,
a2 the resulting signal would be highly convoluted as many peptides have the same or a very
a3 similar m/z. In order to minimize overlapping signals and to get further information on the
a2 molecules measured, mass spectrometers are coupled with a previous separation device based
a5 on orthogonal (ideally) physical and chemical properties. Typically, the peptides are first
a6 separated using liquid chromatography (LC), where molecules are separated and gradually
a7 eluted at a certain retention time range, e.g., based on their polarity in the commonly used
s reversed phase (RP) chromatography. More recently, ion mobility (IMS) has become widely
a0 accessible in commercial mass spectrometers as an extra dimension of separation, where
so ionized molecules are continually separated based on their shape and size before being analyzed
st in the MS. For instance, in LC-IMS-MS [6][7][8] the retention time and mobility dimensions
s2 are recorded in addition to m/z. Figure[l]shows the experimental workflow in the left column.
53 Finally, in many experimental setups two types of mass spectra are recorded: So-called MS1
sa spectra of all the ions, typically for localization of signals of interest denominated precursors
ss and MS2 spectra, where selected (or unselected) precursors are fragmented and the obtained
s6 ion patterns (fragmentation spectra) are typically used for identification.

57 The first step in the analysis of MS1 spectra is to identify regions of interest. These signals
ss form characteristic patterns in the raw data. More precisely, molecules produce so-called
so isotopic patterns [9] that are caused by the occurrence of different isotopes in the chemical
6o elements. Thus, one expects a pattern of evenly spaced peaks, where the distance between
61 consecutive peaks varies inversely according to the charge state of the molecule (i.e., a spacing
62 of ~ 1m/z for z = 1, = 0.5m/z for z = 2, etc.).

63 The distribution of peak intensity within an isotopic pattern depends on the chemical
62 elements present in a molecule and their respective distribution of isotopes. Although it is
65 possible to deal with the resulting combinatorial complexity [10], often simpler approaches
66 that assume a typical chemical composition are used to model the distribution of the peak
67 intensity. A common example is the so-called averagine model [11].

68 Due to the coupling with the separation devices, the signals of interest are expected to
so occur repeatedly over time with the same pattern along the mass axis. Figure [1| shows an
70 example of a resulting signal in the center and right column.
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n  Problem statement and challenges

72 The problem to be solved can now be formulated as follows: Given MS1 spectra of a high-
73 throughput setup with additional dimensions of separation, classify whether the signals belong
7a to a region of interest or not.

75 On top of the signal processing challenge, another technical problems arises: By introducing
76 additional dimensions of separation (such as LC and IMS), the sizes of single data sets
77 increase. Combined with a growth in the number of data sets measured, the storage used
78 for mass spectrometry data has thus grown tremendously over the past years (cf. Figure [2)
79 and is expected to grow further. Consequently, dealing with mass spectrometry raw data
so will eventually make the usage of Big Data technologies necessary. This means that data
g1 will be stored and processed in a distributed manner, which in turn restricts the algorithms
s2 applicable.

ss Locality-sensitive hashing

s« An often used Big Data method for the comparison of high-dimensional data is locality-
ss sensitive hashing (LSH) [12][13]. In particular, it is a generic algorithm for finding similar
ss pairs of data points (by some measure) in linear runtime. However, this reduction of runtime
87 comes at the prices that the algorithm is probabilistic in nature.

88 Owing to its wide applicability, the technique is widely used in different fields, including
so image retrieval [14], pattern recognition [15], and genome analysis [16][17].

90 Related work

o1 In the particular context of mass spectrometry, LSH has been used for looking up peptide
o2 sequences in databases [18][19], to cluster different spectra for MS1 spectra on LC-MS data
93 [20], and for fast database lookup on MS2 spectra [21].

04 Previous approaches to signal detection in mass spectrometry raw data either rely on
95 assumptions concerning the isotopic distribution [22] or are based on deep learning [23] and
96 thus lack interpretability.

97 Concerning the processing of larger data sets, established tools like MaxQuant [24] partially
os bypass large data sizes by using only parts of the data, i.e., by only looking at every 4th
99 spectrum by default [25].

100 To the best of our knowledge, signal classification by means of LSH for mass spectrometry
101 raw data has not been treated publicly.

2 Results

103 Approach

10a  Our approach exploits the fact that all signals from a given region of interest are expected
105 to be similar to each other [25], while noise is assumed to be much more random. Thus,
106 classification of the signal is achieved by deciding whether there are similar signals present.
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107 Finding similar objects is achieved by locality-sensitive hashing, as it allows to leverage parallel
108 computation.

100 The overall scheme of the approach, see Figure [3| for illustration, is the following: A
110 mass spectrometry raw data set is considered to be a set of mass axes for each possible
111 replicated measurement, that is, each retention time for LC-MS data or each retention time
112 and mobility measurement for LC-IMS-MS data, respectively. These mass axes are then cut
113 into small intervals, called windows. For each window several hash values are computed. If
114 two windows have the same hash value they are said to collide. The classification into “true”
15 signal and noise used the following criterion: If a peak lies within a window that collided with
116 any other window it is considered “true” signal, otherwise noise. To facilitate the lookup of
u7 collisions, a second map structure is used that maps hash values to their respective number
us of occurrences.

110 Advantages of the approach

120 As the hash function of each window can be computed and checked independently of the
121 other windows, the algorithm is embarrassingly parallel in nature. By using an augmented
122 LSH with n AND connectives and m OR connectives, the algorithm allows for tuning of
123 false-positive and false-negative rates.

124 In particular, our approach assumes no model or distributions for the signal shapes, only
125 similarity. Thus, we are able to distinguish different isotopic patterns as true signal, regardless
126 of the composition, size and charge of the ionized molecule.

127 Signal classification capability

128 Figure[d] shows the receiver operating characteristic (ROC) of a classification task on synthetic
120 data. By varying the amplification parameters m and 77E of the LSH, different types of
130 discrimination can be achieved, depending on the goal of the usef?]

131 The achieved performance is in accordance with expected behaviour when comparing the
132 implied similarity thresholds in Figure[5| When setting a low threshold, e.g., (m,n) = (30, 22)
133 (corresponding to the blue line in Figure[5]), almost all windows are considered signal, resulting
134 in a true-positive and false-positive rate of almost one.

135 A stricter discrimination with (m,n) = (30,32) improves the performance significantly.
136 This in turn indicates that the typical similarity measure of the data is in the area where the
137 orange line in Figure 5] has a high slope.

138 Using a very high threshold, e.g., (m,n) = (30,64) (corresponding to the green line in
130 Figure5)), some windows are lost, resulting in a lower true-positive rate. As the false-positive
140 rate shrinks as well, this setting may be employed as a strong filter to reduce large data sets.
141 The performance of our approach was compared to the common approach of filtering signal
142 by an intensity threshold. While the overall behavior of its ROC curve is similar to the one
143 of our approach, the performance is considerably better.

LA plot with more pairs of m and n can be found in the Supplementary Information. The best parameters
still lie on the implied ROC curve.
2Note that the number of windows in the data set influences the collision probabilities as well.
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144 Several synthetic data sets with different noise characteristics were created and all main
145 findings persisted, see Supplementary Information.

us Scalability

w7 Figure [6] shows the scalability of the approach for different choices of m and n on parts of a
148 measured data set. In this double-logarithmic plot, the wall-clock time of the implementation
149 roughly follows a linearly decreasing function of the number of threads used. This shows that
150 the implementation scales out well.

51 Discussion

152 While the evaluation on synthetic data showed that locality-sensitive hashing could be used in
153 a promising way to detect signals in mass spectrometry raw data, two challenges are expected
152 when applying the method to real world data.

155 First, in some mass spectrometry setups so-called chemical noise is present. These are sig-
156 nals that originate in chemical impurities in the measurement workflow and are characterized
157 by repeated occurrences. Thus, the chemical noise is self-similar and would be classified as a
18 true’ signal accordingly by this approach.

150 Finally, signals with a low relative intensity to noise peaks could be lost, as the similarity
160 measure on which the LSH is based drops.

161 The inability to remove noise peaks from within an isotopic pattern is typically mitigated by
162 the fact that subsequent processing steps like feature finding can take the multidimensional
163 signal shape into account which facilitates the removal of remaining noise peaks.

164 Testing the approach on real world data is desirable, but we could not find a gold-standard
165 ground-truth peak-level annotation of data.

s Conclusions

167 Due to the rapidly growing amount of mass spectrometry data, the analysis of mass spectrom-
168 etry raw data could greatly benefit from Big Data methods, most notably implying distributed
160 data storage and highly scalable algorithms.

170 In this study we showed that locality-sensitive hashing is a desirable approach for signal
i1 classification in mass spectrometry raw data. It allows for scalability and provides an approach
172 to signal classification that has a strong focus on self-similarity rather than model assumptions
173 as an intrinsic property of the data.

174 We propose an implementation using a Big Data framework, such as Apache Spark [26],
175 to facilitate testing on many large data sets from different types of mass spectrometry mea-
176 surements.
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177 Methods

17 Mass axis windows

179 For the types of mass spectrometry data considered here, the setup of the mass spectrom-
180 eter gives rise to a hierarchical structure of the data. In the case of LC-IMS-MS, data is
181 continuously acquired as individual scans across the three dimensions. For each retention
182 time several mobility bins are recorded and in turn for each mobility bin the full spectrum
183 along the mass axis is acquired. In order to allow detection of smaller regions of interest, the
18¢  algorithm works on short compact subsets (intervals) of the mass axis, henceforth referred to
185 as windows. One such window, represented by a list of tuples (m/z,1), is the single datum
186 considered by the algorithm for similarity search.

157 Window generation

188 The set of windows is created by dividing all recorded mass axes into windows. In order to
189 avoid missing an isotopic pattern by distributing it into two windows, a second set of windows
100 that is offset by half a window length is created, such that the mass axes are covered in an
101 overlapping fashion.

102 The length of the windows should be wide enough to capture a whole isotopic pattern, if
103 the windows are applied in an overlapping fashion and small enough such that the chance of
104 having several isotopic patterns in a window is small. For an assumed pattern length of up
105 to 5Da a window length of 10Da is considered useful.

196 Binning

197 The calculation of a window's hash value requires the mass axis in a binned form with equally
198 spaced bins. Finding an optimal binning scheme is by no means trivial: A very fine binning
100 resolution makes the algorithm less robust and increases the computational cost, while a
200 Vvery coarse binning resolution yields an increased loss of information. A binning resolution of
200 0.1m/z was considered suitable as, on the one hand, it still resolves isotopic pattern with up
202 to charge state five (corresponding to a spacing of 0.2m/z) and, on the other hand, keeps
203 the computational load feasible.

20« Locality-sensitive hashing
205 Used similarity measure

Two windows W; and W; shall be considered similar when their mass spectra have the same
shape but not necessarily the same overall scale. Therefore, the similarity function s(W;, W)

used is the cosine similarity
2 - Y
s
where I denotes the intensity array of a binned window, (-,-) the standard scalar product and
| - || the Euclidean norm. As a direct consequence from the linearity of the scalar product
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and norm, the cosine similarity is scale invariant:

(al;, BI;) (I, I;)
= = = s(Wi, Wj), (2)
[reaniiiycavy i 1R gl v
206 for o, 8 > 0. Thus, the findings of the algorithm are independent of the absolute intensity
207 values.

s(aW;, BW5)

208 Hash function and amplification

200 The appropriate family of hash functions for the cosine similarity is the random projection
210 hashing [27]. The hash function is given by h(-) = sign((-, 7)) with the components of the
a11 vector r being random samples from a standard normal distribution.

212 To control for false positives or false negatives, an augmented LSH with n AND connectives
213 and m OR connectives is used. This means that instead of computing a single hash function
212 m X n hash functions are calculated and divided into m arrays of length n. Two objects
215 x; and x; are now considered collided if all n hash functions of a block yield the same
216 value. By choosing m and n appropriately, a sharp sigmoid shape of the collision probability
217 Py, n([x4, 24]) can be achieved, which effectively translates into a similarity threshold. Figure
218 b shows P, ([x;, x;]) for different values of m and n.

210 Intensity thresholding

20 A very simple and general approach to signal classification is by means of thresholding with
221 respect to a signal-to-noise ratio [28]. If one assumes a global noise estimate, this reduces to
22 a thresholding with respect to the intensity of each peak.

223 Data generation

224 The synthetic data sets consist of windows of length of 10m/z, with a binning resolution of
225 Olm/Z

226 In each set, two types of data were created: Firstly, windows containing no isotopic patterns
227 and noise only. Secondly, windows containing both isotopic patterns and noise. The label of
228 each peak (“signal”, if it is part of an isotopic pattern, “noise 2", if it is a noise peak in a
220 window that contains an isotopic pattern, and “noise 1", if it is a noise peak inside a window
230 without an isotopic pattern being present) was stored for later evaluation. In total 18445
231 windows per data set were created, of which 14107 contained noise only and 4338 contained
232 both signal and noise.

233 In the different data sets the intensities of the “true” signals were scaled differently, such
24 that the maximum signal peak has an intensity of 1000, 500, 250, 125, 64, or 32, respectively.

235 Modeling noise

The noise signal is assumed to consist of independently sampled peaks that share the following
properties: The number of peaks per window, k, is given as

k ~ Pois(\p) + 1,
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236 where Pois denotes a Poisson distribution with mean \,. Our data was generated using
237 )\p — 4
The location of each peak was sampled uniformly within the window and the intensity value
1 of each peak was sampled from
i ~ Exp(Ae),

238 where Exp denotes a exponential distribution with mean A2 !. Our data was generated using
230 A = 15.

220 Modeling isotopic patterns

241 For the “true” signal the averagine model [11] was used. The monoisotopic peak was placed
242 in the middle of the window and the contribution of the next five peaks was considered. In
243 order to model the repeated occurrences of patterns, two copies with all peaks scaled to half
244 intensities were added. Finally, a noise signal, individually sampled according to description
25 above, was added to every true pattern window.

246 The monoisotopic masses were ranged from 150u to 5000u in steps of 10u. Charge states
247 from le up to 5e were included if the resulting m/z was in the interval [150m/z, 2000m/z].

23 Classification by collision

249 In order to classify windows into “noise” or “signal”, for each window in the data set (several)
250 hash values are computed. Then the number of occurrences of each hash value is counted
251 and all hash values that occurred more then one time are stored in a table, the so-called
252 collision table. A window in question is called “signal” if at least one of its hash values can
253 be found in the collision table, otherwise it is called “noise”.

254 A single peak in the data set is classified by whether there was a collided window that
255 contains the peak. This is especially important as peaks can be part of several windows due
256 to the overlapping window approach.

»s7  Evaluation

258 Although the synthetic data provides ground truth labels, a meaningful computation of true-
250 positive and false-negative rates is not straightforward.

260 Since in our approach all peaks in a window will be assigned the same label, the following
261 problem is caused: When signal and noise is present in a window, peaks with label “noise 2"
262 will be considered “true” as well, which would result in a high false classification rate. For
263 work on real world data however, the inability to remove noise peaks among isotope patterns
264 is typically cured by the fact that subsequent processing steps like feature finding can take
265 the multidimensional signal shape into account, which facilitates the removal of remaining
266 noise peaks.

267 Thus, in order to learn about the false classification rate of actual interest, peaks with
26s label “noise 2" were not considered for the computation of classification rates both for the
260 intensity thresholding and our approach.
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270 The presence of peaks with label “noise 2" is nevertheless important to test whether whole
2711 patterns are missed due to noise in the same window.

272 Scalability study

273 For parallel computing, the algorithm was implemented in C++ with multithreading enabled
274 by usage of openMP [29]. The scalability study was performed on a single Ubuntu 20.04 LTS
275 machine with two Intel Xeon Gold 6238 CPUs, each featuring 22 physical cores ©2.1 GHz.
276 Overall, enabled hyper-threading allows for the parallel execution of 88 threads. The machine
277 is further equipped with 192 GiB (12x 16 GiB) of DIMM DDR4 ©2933 MHz main memory.
2zs Our C++ package was compiled using GCC 9.3 and optimization level -03.

279 As test data a single MS1 frame of a nanoLC-TIMS-MS/MS (DDA-PASEF [8]) analysis
280 of Hela whole proteome digest was used and raw data access was enabled by OpenTIMS
281 [30]. Hela cells were lysed in a urea-based lysis buffer (7 M urea, 2 M thiourea, 5 mM
282 dithiothreitol (DTT), 2% (w/v) CHAPS) assisted by sonication for 15 min at 4°C in high
283 potency using a Bioruptor instrument (Diagenode). Proteins were digested with Trypsin using
284 a filter-aided sample preparation (FASP) [31] as previously detailed [32]. 200 ng of peptide
285 digest were analyzed using a nanoElute UPLC coupled to a TimsTOF PRO MS (Bruker).
286 Peptides injected directly in an Aurora 25 cm x 75 pm ID, 1.6 pm C18 column (lonopticks)
287 and separated using a 120 min. gradient method at 400 nL/min. Phase A consisted on
288 water with 0.1% formic acid and phase B on acetonitrile with 0.1% formic acid. Sample was
280 injected at 2% B, lineally increasing to 20% B at 90 min., 35% B at 105 min., 95% at 115
200 min. and hold at 95% until 120 min. before re-equilibrating the column at 2%B. The MS
201 was operated in DDA-PASEF mode [8], scanning from 100 to 1700 m/z at the MS dimension
202 and 0.60 to 1.60 1/k0 at the IMS dimension with a 100 ms TIMS ramp. Each 1.17 sec MS
203 cycle comprised one MS1 and 10 MS2 PASEF ramps (frames). The source was operated
204 at 1600 V, with dry gas at 3 L/min and 200°C, without nanoBooster gas. The instrument
20s was operated using Compass Hystar version 5.1 and timsControl version 1.1.15 (Bruker). All
206 reagents and solvents used were MS-grade.
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Figure 1: Experimental workflow in an LC-IMS-MS setup and resulting signal of interest.
a) Chemical separation by high-performance liquid chromatography (HPLC) and
resulting intensity distribution along retention time. b) Subsequent ion-mobility
separation (IMS) and resulting intensity distribution along the mobility dimension.
c) Time-of-flight mass spectrometry (TOF-MS) and resulting isotopic pattern, i.e.,
evenly spaced peaks with a certain distribution of the peaks envelope. The column
on the right shows the signal as a function of two variables, drift time and retention
time on the top and mass-over-charge ratio and drift time on the bottom. Note the
repeated occurrence of these isotopic patterns in the 3D plot on the bottom right.
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Figure 2: Size of recorded data at the European Bioinformatics Institute (EMBL-EBI) over
time for different platforms in life sciences. Mass spectrometry and other data has
shown an exponential growth. Plot recreated after [33].
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Figure 3: Schematic overview of the approach: Short intervals (windows) of the several mass
axes are considered as smallest building blocks of the data set and generated from
the raw data. Then for each window the (several) hash functions & map into the
hash buckets. Finally, if more than one window is mapped in a given hash box, all
windows inside the box are considered “true” signal.
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Figure 4: Receiver operating characteristic. Single points mark the results of our approach
and the tuples denote the number of AND and OR amplifications used. The solid
line shows the performance of the intensity-threshold approach and the dashed line
the results of random guessing.
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Figure 5: Controlling typical similarity of pairs: Probability P, ,([x;,x;]) to retrieve a pair
for several combined hashes as a function of similarity s(xz;,z;). By appropriate
choice of m and n, found pairs have a high probability of having at least a certain
similarity. Note that the x-axis starts at s(z;,z;) = 0.55, for values smaller than
that all curves are almost zero.
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Figure 6: Scalability for different m and n: Wall-clock time of the implementation in seconds
as a function of the number of threads used. Note the logarithmic scales on both
axes. The approximately linear trend shows that the implementation scales out well.
See text for the setup used.
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