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Mass spectrometry is an important experimental technique in the field of pro-12

teomics. However, analysis of certain mass spectrometry data faces a combination13

of two challenges: First, even a single experiment produces a large amount of14

multi-dimensional raw data and, second, signals of interest are not single peaks15

but patterns of peaks that span along the different dimensions. The rapidly16

growing amount of mass spectrometry data increases the demand for scalable17

solutions. Existing approaches for signal detection are usually not well suited for18

processing large amounts of data in parallel or rely on strong assumptions concern-19

ing the signals properties. In this study, it is shown that locality-sensitive hashing20

enables signal classification in mass spectrometry raw data at scale. Through21

appropriate choice of algorithm parameters it is possible to balance false-positive22

and false-negative rates. On synthetic data, a superior performance compared to23

an intensity thresholding approach was achieved. The implementation scaled out24

up to 88 threads on real data. Locality-sensitive hashing is a desirable approach25

for signal classification in mass spectrometry raw data. Generated data and code26

are available at https://github.com/hildebrandtlab/mzBucket. Raw data27

is available at https://zenodo.org/record/5036526.28
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Background29

Mass spectrometry in proteomics30

Valuable information for medicine and design of new drugs for several severe diseases [1] are31

expected to be gained by new discoveries in proteomics [2][3][4], the field that studies proteins32

experimentally on a large scale. An experimental technique commonly used in proteomics is33

mass spectrometry (MS) [5], which allows to separate ionized molecules by their mass-to-34

charge ratio (m/z) and which can be combined with measurement of other physical and35

chemical properties.36

The overall goal in an untargeted MS-based proteomics experiment is to identify and37

quantify as many proteins as possible in a given sample with a high quantitative performance38

in terms of precision and reproducibility. In particular, in bottom-up proteomics proteins are39

digested into peptides first and then those peptides are measured.40

If only the mass-to-charge ratio of a large, complex sample of peptides was measured,41

the resulting signal would be highly convoluted as many peptides have the same or a very42

similar m/z. In order to minimize overlapping signals and to get further information on the43

molecules measured, mass spectrometers are coupled with a previous separation device based44

on orthogonal (ideally) physical and chemical properties. Typically, the peptides are first45

separated using liquid chromatography (LC), where molecules are separated and gradually46

eluted at a certain retention time range, e.g., based on their polarity in the commonly used47

reversed phase (RP) chromatography. More recently, ion mobility (IMS) has become widely48

accessible in commercial mass spectrometers as an extra dimension of separation, where49

ionized molecules are continually separated based on their shape and size before being analyzed50

in the MS. For instance, in LC-IMS-MS [6][7][8] the retention time and mobility dimensions51

are recorded in addition to m/z. Figure 1 shows the experimental workflow in the left column.52

Finally, in many experimental setups two types of mass spectra are recorded: So-called MS153

spectra of all the ions, typically for localization of signals of interest denominated precursors54

and MS2 spectra, where selected (or unselected) precursors are fragmented and the obtained55

ion patterns (fragmentation spectra) are typically used for identification.56

The first step in the analysis of MS1 spectra is to identify regions of interest. These signals57

form characteristic patterns in the raw data. More precisely, molecules produce so-called58

isotopic patterns [9] that are caused by the occurrence of different isotopes in the chemical59

elements. Thus, one expects a pattern of evenly spaced peaks, where the distance between60

consecutive peaks varies inversely according to the charge state of the molecule (i.e., a spacing61

of ≈ 1m/z for z = 1, ≈ 0.5m/z for z = 2, etc.).62

The distribution of peak intensity within an isotopic pattern depends on the chemical63

elements present in a molecule and their respective distribution of isotopes. Although it is64

possible to deal with the resulting combinatorial complexity [10], often simpler approaches65

that assume a typical chemical composition are used to model the distribution of the peak66

intensity. A common example is the so-called averagine model [11].67

Due to the coupling with the separation devices, the signals of interest are expected to68

occur repeatedly over time with the same pattern along the mass axis. Figure 1 shows an69

example of a resulting signal in the center and right column.70
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Problem statement and challenges71

The problem to be solved can now be formulated as follows: Given MS1 spectra of a high-72

throughput setup with additional dimensions of separation, classify whether the signals belong73

to a region of interest or not.74

On top of the signal processing challenge, another technical problems arises: By introducing75

additional dimensions of separation (such as LC and IMS), the sizes of single data sets76

increase. Combined with a growth in the number of data sets measured, the storage used77

for mass spectrometry data has thus grown tremendously over the past years (cf. Figure 2)78

and is expected to grow further. Consequently, dealing with mass spectrometry raw data79

will eventually make the usage of Big Data technologies necessary. This means that data80

will be stored and processed in a distributed manner, which in turn restricts the algorithms81

applicable.82

Locality-sensitive hashing83

An often used Big Data method for the comparison of high-dimensional data is locality-84

sensitive hashing (LSH) [12][13]. In particular, it is a generic algorithm for finding similar85

pairs of data points (by some measure) in linear runtime. However, this reduction of runtime86

comes at the prices that the algorithm is probabilistic in nature.87

Owing to its wide applicability, the technique is widely used in different fields, including88

image retrieval [14], pattern recognition [15], and genome analysis [16][17].89

Related work90

In the particular context of mass spectrometry, LSH has been used for looking up peptide91

sequences in databases [18][19], to cluster different spectra for MS1 spectra on LC-MS data92

[20], and for fast database lookup on MS2 spectra [21].93

Previous approaches to signal detection in mass spectrometry raw data either rely on94

assumptions concerning the isotopic distribution [22] or are based on deep learning [23] and95

thus lack interpretability.96

Concerning the processing of larger data sets, established tools like MaxQuant [24] partially97

bypass large data sizes by using only parts of the data, i.e., by only looking at every 4th98

spectrum by default [25].99

To the best of our knowledge, signal classification by means of LSH for mass spectrometry100

raw data has not been treated publicly.101

Results102

Approach103

Our approach exploits the fact that all signals from a given region of interest are expected104

to be similar to each other [25], while noise is assumed to be much more random. Thus,105

classification of the signal is achieved by deciding whether there are similar signals present.106
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Finding similar objects is achieved by locality-sensitive hashing, as it allows to leverage parallel107

computation.108

The overall scheme of the approach, see Figure 3 for illustration, is the following: A109

mass spectrometry raw data set is considered to be a set of mass axes for each possible110

replicated measurement, that is, each retention time for LC-MS data or each retention time111

and mobility measurement for LC-IMS-MS data, respectively. These mass axes are then cut112

into small intervals, called windows. For each window several hash values are computed. If113

two windows have the same hash value they are said to collide. The classification into “true”114

signal and noise used the following criterion: If a peak lies within a window that collided with115

any other window it is considered “true” signal, otherwise noise. To facilitate the lookup of116

collisions, a second map structure is used that maps hash values to their respective number117

of occurrences.118

Advantages of the approach119

As the hash function of each window can be computed and checked independently of the120

other windows, the algorithm is embarrassingly parallel in nature. By using an augmented121

LSH with n AND connectives and m OR connectives, the algorithm allows for tuning of122

false-positive and false-negative rates.123

In particular, our approach assumes no model or distributions for the signal shapes, only124

similarity. Thus, we are able to distinguish different isotopic patterns as true signal, regardless125

of the composition, size and charge of the ionized molecule.126

Signal classification capability127

Figure 4 shows the receiver operating characteristic (ROC) of a classification task on synthetic128

data. By varying the amplification parameters m and n1 of the LSH, different types of129

discrimination can be achieved, depending on the goal of the user2.130

The achieved performance is in accordance with expected behaviour when comparing the131

implied similarity thresholds in Figure 5. When setting a low threshold, e.g., (m,n) = (30, 22)132

(corresponding to the blue line in Figure 5), almost all windows are considered signal, resulting133

in a true-positive and false-positive rate of almost one.134

A stricter discrimination with (m,n) = (30, 32) improves the performance significantly.135

This in turn indicates that the typical similarity measure of the data is in the area where the136

orange line in Figure 5 has a high slope.137

Using a very high threshold, e.g., (m,n) = (30, 64) (corresponding to the green line in138

Figure 5), some windows are lost, resulting in a lower true-positive rate. As the false-positive139

rate shrinks as well, this setting may be employed as a strong filter to reduce large data sets.140

The performance of our approach was compared to the common approach of filtering signal141

by an intensity threshold. While the overall behavior of its ROC curve is similar to the one142

of our approach, the performance is considerably better.143

1A plot with more pairs of m and n can be found in the Supplementary Information. The best parameters
still lie on the implied ROC curve.

2Note that the number of windows in the data set influences the collision probabilities as well.
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Several synthetic data sets with different noise characteristics were created and all main144

findings persisted, see Supplementary Information.145

Scalability146

Figure 6 shows the scalability of the approach for different choices of m and n on parts of a147

measured data set. In this double-logarithmic plot, the wall-clock time of the implementation148

roughly follows a linearly decreasing function of the number of threads used. This shows that149

the implementation scales out well.150

Discussion151

While the evaluation on synthetic data showed that locality-sensitive hashing could be used in152

a promising way to detect signals in mass spectrometry raw data, two challenges are expected153

when applying the method to real world data.154

First, in some mass spectrometry setups so-called chemical noise is present. These are sig-155

nals that originate in chemical impurities in the measurement workflow and are characterized156

by repeated occurrences. Thus, the chemical noise is self-similar and would be classified as a157

“true” signal accordingly by this approach.158

Finally, signals with a low relative intensity to noise peaks could be lost, as the similarity159

measure on which the LSH is based drops.160

The inability to remove noise peaks from within an isotopic pattern is typically mitigated by161

the fact that subsequent processing steps like feature finding can take the multidimensional162

signal shape into account which facilitates the removal of remaining noise peaks.163

Testing the approach on real world data is desirable, but we could not find a gold-standard164

ground-truth peak-level annotation of data.165

Conclusions166

Due to the rapidly growing amount of mass spectrometry data, the analysis of mass spectrom-167

etry raw data could greatly benefit from Big Data methods, most notably implying distributed168

data storage and highly scalable algorithms.169

In this study we showed that locality-sensitive hashing is a desirable approach for signal170

classification in mass spectrometry raw data. It allows for scalability and provides an approach171

to signal classification that has a strong focus on self-similarity rather than model assumptions172

as an intrinsic property of the data.173

We propose an implementation using a Big Data framework, such as Apache Spark [26],174

to facilitate testing on many large data sets from different types of mass spectrometry mea-175

surements.176
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Methods177

Mass axis windows178

For the types of mass spectrometry data considered here, the setup of the mass spectrom-179

eter gives rise to a hierarchical structure of the data. In the case of LC-IMS-MS, data is180

continuously acquired as individual scans across the three dimensions. For each retention181

time several mobility bins are recorded and in turn for each mobility bin the full spectrum182

along the mass axis is acquired. In order to allow detection of smaller regions of interest, the183

algorithm works on short compact subsets (intervals) of the mass axis, henceforth referred to184

as windows. One such window, represented by a list of tuples (m/z, i), is the single datum185

considered by the algorithm for similarity search.186

Window generation187

The set of windows is created by dividing all recorded mass axes into windows. In order to188

avoid missing an isotopic pattern by distributing it into two windows, a second set of windows189

that is offset by half a window length is created, such that the mass axes are covered in an190

overlapping fashion.191

The length of the windows should be wide enough to capture a whole isotopic pattern, if192

the windows are applied in an overlapping fashion and small enough such that the chance of193

having several isotopic patterns in a window is small. For an assumed pattern length of up194

to 5Da a window length of 10Da is considered useful.195

Binning196

The calculation of a window’s hash value requires the mass axis in a binned form with equally197

spaced bins. Finding an optimal binning scheme is by no means trivial: A very fine binning198

resolution makes the algorithm less robust and increases the computational cost, while a199

very coarse binning resolution yields an increased loss of information. A binning resolution of200

0.1m/z was considered suitable as, on the one hand, it still resolves isotopic pattern with up201

to charge state five (corresponding to a spacing of 0.2m/z) and, on the other hand, keeps202

the computational load feasible.203

Locality-sensitive hashing204

Used similarity measure205

Two windows Wi and Wj shall be considered similar when their mass spectra have the same
shape but not necessarily the same overall scale. Therefore, the similarity function s(Wi,Wj)
used is the cosine similarity

s(Wi,Wj) =
〈Ii, Ij〉
‖Ii‖‖Ij‖

, (1)

where I denotes the intensity array of a binned window, 〈·, ·〉 the standard scalar product and
‖ · ‖ the Euclidean norm. As a direct consequence from the linearity of the scalar product
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and norm, the cosine similarity is scale invariant:

s(αWi, βWj) =
〈αIi, βIj〉
‖αIi‖‖βIj‖

=
〈Ii, Ij〉
‖Ii‖‖Ij‖

= s(Wi,Wj), (2)

for α, β > 0. Thus, the findings of the algorithm are independent of the absolute intensity206

values.207

Hash function and amplification208

The appropriate family of hash functions for the cosine similarity is the random projection209

hashing [27]. The hash function is given by h(·) = sign(〈·, r〉) with the components of the210

vector r being random samples from a standard normal distribution.211

To control for false positives or false negatives, an augmented LSH with n AND connectives212

and m OR connectives is used. This means that instead of computing a single hash function213

m × n hash functions are calculated and divided into m arrays of length n. Two objects214

xi and xj are now considered collided if all n hash functions of a block yield the same215

value. By choosing m and n appropriately, a sharp sigmoid shape of the collision probability216

Pm,n([xi, xj ]) can be achieved, which effectively translates into a similarity threshold. Figure217

5 shows Pm,n([xi, xj ]) for different values of m and n.218

Intensity thresholding219

A very simple and general approach to signal classification is by means of thresholding with220

respect to a signal-to-noise ratio [28]. If one assumes a global noise estimate, this reduces to221

a thresholding with respect to the intensity of each peak.222

Data generation223

The synthetic data sets consist of windows of length of 10m/z, with a binning resolution of224

0.1m/z.225

In each set, two types of data were created: Firstly, windows containing no isotopic patterns226

and noise only. Secondly, windows containing both isotopic patterns and noise. The label of227

each peak (“signal”, if it is part of an isotopic pattern, “noise_2”, if it is a noise peak in a228

window that contains an isotopic pattern, and “noise_1”, if it is a noise peak inside a window229

without an isotopic pattern being present) was stored for later evaluation. In total 18445230

windows per data set were created, of which 14107 contained noise only and 4338 contained231

both signal and noise.232

In the different data sets the intensities of the “true” signals were scaled differently, such233

that the maximum signal peak has an intensity of 1000, 500, 250, 125, 64, or 32, respectively.234

Modeling noise235

The noise signal is assumed to consist of independently sampled peaks that share the following
properties: The number of peaks per window, k, is given as

k ∼ Pois(λp) + 1,
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where Pois denotes a Poisson distribution with mean λp. Our data was generated using236

λp = 4.237

The location of each peak was sampled uniformly within the window and the intensity value
i of each peak was sampled from

i ∼ Exp(λe),

where Exp denotes a exponential distribution with mean λ−1
e . Our data was generated using238

λe = 15.239

Modeling isotopic patterns240

For the “true” signal the averagine model [11] was used. The monoisotopic peak was placed241

in the middle of the window and the contribution of the next five peaks was considered. In242

order to model the repeated occurrences of patterns, two copies with all peaks scaled to half243

intensities were added. Finally, a noise signal, individually sampled according to description244

above, was added to every true pattern window.245

The monoisotopic masses were ranged from 150u to 5000u in steps of 10u. Charge states246

from 1e up to 5e were included if the resulting m/z was in the interval [150m/z, 2000m/z].247

Classification by collision248

In order to classify windows into “noise” or “signal”, for each window in the data set (several)249

hash values are computed. Then the number of occurrences of each hash value is counted250

and all hash values that occurred more then one time are stored in a table, the so-called251

collision table. A window in question is called “signal” if at least one of its hash values can252

be found in the collision table, otherwise it is called “noise”.253

A single peak in the data set is classified by whether there was a collided window that254

contains the peak. This is especially important as peaks can be part of several windows due255

to the overlapping window approach.256

Evaluation257

Although the synthetic data provides ground truth labels, a meaningful computation of true-258

positive and false-negative rates is not straightforward.259

Since in our approach all peaks in a window will be assigned the same label, the following260

problem is caused: When signal and noise is present in a window, peaks with label “noise_2”261

will be considered “true” as well, which would result in a high false classification rate. For262

work on real world data however, the inability to remove noise peaks among isotope patterns263

is typically cured by the fact that subsequent processing steps like feature finding can take264

the multidimensional signal shape into account, which facilitates the removal of remaining265

noise peaks.266

Thus, in order to learn about the false classification rate of actual interest, peaks with267

label “noise_2” were not considered for the computation of classification rates both for the268

intensity thresholding and our approach.269
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The presence of peaks with label “noise_2” is nevertheless important to test whether whole270

patterns are missed due to noise in the same window.271

Scalability study272

For parallel computing, the algorithm was implemented in C++ with multithreading enabled273

by usage of openMP [29]. The scalability study was performed on a single Ubuntu 20.04 LTS274

machine with two Intel Xeon Gold 6238 CPUs, each featuring 22 physical cores @2.1 GHz.275

Overall, enabled hyper-threading allows for the parallel execution of 88 threads. The machine276

is further equipped with 192 GiB (12x 16 GiB) of DIMM DDR4 @2933 MHz main memory.277

Our C++ package was compiled using GCC 9.3 and optimization level -O3.278

As test data a single MS1 frame of a nanoLC-TIMS-MS/MS (DDA-PASEF [8]) analysis279

of HeLa whole proteome digest was used and raw data access was enabled by OpenTIMS280

[30]. HeLa cells were lysed in a urea-based lysis buffer (7 M urea, 2 M thiourea, 5 mM281

dithiothreitol (DTT), 2% (w/v) CHAPS) assisted by sonication for 15 min at 4°C in high282

potency using a Bioruptor instrument (Diagenode). Proteins were digested with Trypsin using283

a filter-aided sample preparation (FASP) [31] as previously detailed [32]. 200 ng of peptide284

digest were analyzed using a nanoElute UPLC coupled to a TimsTOF PRO MS (Bruker).285

Peptides injected directly in an Aurora 25 cm x 75 µm ID, 1.6 µm C18 column (Ionopticks)286

and separated using a 120 min. gradient method at 400 nL/min. Phase A consisted on287

water with 0.1% formic acid and phase B on acetonitrile with 0.1% formic acid. Sample was288

injected at 2% B, lineally increasing to 20% B at 90 min., 35% B at 105 min., 95% at 115289

min. and hold at 95% until 120 min. before re-equilibrating the column at 2%B. The MS290

was operated in DDA-PASEF mode [8], scanning from 100 to 1700 m/z at the MS dimension291

and 0.60 to 1.60 1/k0 at the IMS dimension with a 100 ms TIMS ramp. Each 1.17 sec MS292

cycle comprised one MS1 and 10 MS2 PASEF ramps (frames). The source was operated293

at 1600 V, with dry gas at 3 L/min and 200°C, without nanoBooster gas. The instrument294

was operated using Compass Hystar version 5.1 and timsControl version 1.1.15 (Bruker). All295

reagents and solvents used were MS-grade.296
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Figure 1: Experimental workflow in an LC-IMS-MS setup and resulting signal of interest.
a) Chemical separation by high-performance liquid chromatography (HPLC) and
resulting intensity distribution along retention time. b) Subsequent ion-mobility
separation (IMS) and resulting intensity distribution along the mobility dimension.
c) Time-of-flight mass spectrometry (TOF-MS) and resulting isotopic pattern, i.e.,
evenly spaced peaks with a certain distribution of the peaks envelope. The column
on the right shows the signal as a function of two variables, drift time and retention
time on the top and mass-over-charge ratio and drift time on the bottom. Note the
repeated occurrence of these isotopic patterns in the 3D plot on the bottom right.

Figure 2: Size of recorded data at the European Bioinformatics Institute (EMBL-EBI) over
time for different platforms in life sciences. Mass spectrometry and other data has
shown an exponential growth. Plot recreated after [33].
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Figure 3: Schematic overview of the approach: Short intervals (windows) of the several mass
axes are considered as smallest building blocks of the data set and generated from
the raw data. Then for each window the (several) hash functions h map into the
hash buckets. Finally, if more than one window is mapped in a given hash box, all
windows inside the box are considered “true” signal.
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Figure 4: Receiver operating characteristic. Single points mark the results of our approach
and the tuples denote the number of AND and OR amplifications used. The solid
line shows the performance of the intensity-threshold approach and the dashed line
the results of random guessing.
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Figure 5: Controlling typical similarity of pairs: Probability Pm,n([xi, xj ]) to retrieve a pair
for several combined hashes as a function of similarity s(xi, xj). By appropriate
choice of m and n, found pairs have a high probability of having at least a certain
similarity. Note that the x-axis starts at s(xi, xj) = 0.55, for values smaller than
that all curves are almost zero.

101 102

Number of threads used

101

102

Ru
nt

im
e 

[s
]

Amplification
(30,22)
(30,30)
(30,64)

Figure 6: Scalability for different m and n: Wall-clock time of the implementation in seconds
as a function of the number of threads used. Note the logarithmic scales on both
axes. The approximately linear trend shows that the implementation scales out well.
See text for the setup used.
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