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Abstract 44 
 45 
Microbiome data are becoming increasingly available in large health cohorts yet metabolomics 46 
data are still scant. While many studies generate microbiome data, they lack matched 47 
metabolomics data or have considerable missing proportions of metabolites. Since metabolomics 48 
is key to understanding microbial and general biological activities, the possibility of imputing 49 
individual metabolites or inferring metabolomics pathways from microbial taxonomy or 50 
metagenomics is intriguing. Importantly, current metabolomics profiling methods such as the 51 
HMP Unified Metabolic Analysis Network (HUMAnN) have unknown accuracy and are limited 52 
in their ability to predict individual metabolites. To address this gap, we developed a novel 53 
metabolite prediction method, and we present its application and evaluation in an oral 54 
microbiome study. We developed ENVIM based on the Elastic Net Model (ENM) to predict 55 
metabolites using micorbiome data. ENVIM introduces an extra step to ENM to consider 56 
variable importance scores and thus achieve better prediction power. We investigate the 57 
metabolite prediction performance of ENVIM using metagenomic and metatranscriptomic data 58 
in a supragingival biofilm multi-omics dataset of 297 children ages 3-5 who were participants of 59 
a community-based study of early childhood oral health (ZOE 2.0) in North Carolina, United 60 
States. We further validate ENVIM in two additional publicly available multi-omics datasets 61 
generated from studies of gut health and vagina health. We select gene-family sets based on 62 
variable importance scores and modify the existing ENM strategy used in the MelonnPan 63 
prediction software to accommodate the unique features of microbiome and metabolome data. 64 
We evaluate metagenomic and metatranscriptomic predictors and compare the prediction 65 
performance of ENVIM to the standard ENM employed in MelonnPan. The newly-developed 66 
ENVIM method showed superior metabolite predictive accuracy than MelonnPan using 67 
metatranscriptomics data only, metagenomics data only, or both of these two. Both methods 68 
perform better prediction using gut or vagina microbiome data than using oral microbiome data 69 
for the samples' corresponding metabolites. The top predictable compounds have been reported 70 
in all these three datasets from three different body sites. Enrichment of prediction some 71 
contributing species has been detected. 72 
 73 
Keywords: microbiome, metatranscriptome, metabolome, prediction, elastic net, random forest 74 
 75 
 76 
INTRODUCTION 77 
 78 
The importance of the human microbiome in health and disease is undeniable; site-specific 79 
microbial communities interact both with the environment and the host and influence numerous 80 
biological processes (1). Aside from the logical interest in understanding the microbiome’s 81 
composition, measuring and understanding its associated metabolic activities is arguably of 82 
utmost biological relevance. Recent studies have linked the metabolome with several important 83 
health conditions including inflammatory bowel disease (IBD)(2), obesity and type II diabetes 84 
(3), cholesterol levels (4), and early childhood dental caries (ECC)(5). Despite the rapidly 85 
increasing availability of microbiome data in large health cohorts, metabolomics data are still 86 
scant. This is an important limitation because the lack of, or considerable missingness of, 87 
metabolite information in microbiome studies can diminish their potential in inferring functions 88 
and important biological targets.  89 
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It follows that methods that help fill in the functional information gaps in microbiome studies are 90 
valuable and necessary. Because “matched” microbiome and metabolome datasets are extremely 91 
scant, most current methods rely on metabolic pathway inferences from taxonomic and 92 
metagenomic data, such as in the HMP Unified Metabolic Analysis Network (HUMAnN) (6). 93 
While the value of this approach is well-documented for the analysis of some microbial consortia 94 
(e.g., the human gut) (2, 7), HUMAnN cannot make predictions for individual metabolites. 95 
Moreover, its accuracy has not been benchmarked and its performance in other microbial 96 
communities with distinct ecology and function (e.g., the oral cavity) remains unknown. This is 97 
important because measured metabolomes at different body sites may include, besides the 98 
products of microbial metabolism, biochemical contributions from the host and the environment 99 
(e.g., dietary sugars in the study of dental biofilm(5)). Although an accurate determination of 100 
metabolite sources may not always be possible, predictions of these biofilm metabolites using 101 
microbiome information are highly desirable.  102 
Along these lines, in 2016, Noecker and colleagues (8) added to the available analytical toolbox 103 
by leveraging 16S rRNA data. Their method enabled model-based integration of metabolite 104 
observations and species abundances using taxonomy and paired metabolomics data from ~70 105 
vaginal samples. More recently, MelonnPan (9) was developed to obtain metabolomic profiling 106 
of microbial communities using amplicon or metagenomic sequences. This new method was 107 
motivated and applied in the context of paired microbiome and metabolome data in the context 108 
of an IBD cohort.  109 
The motivation for the present new method development is to improve existing analytical 110 
approaches available for metabolite prediction and functions using microbiome data (10). To this 111 
end, we leverage existing microbiome and metabolome data from a study of early childhood oral 112 
health investigating ECC, a study of the human gut investigating IBD, and a study of vaginal 113 
health. The elastic net model (ENM, also used in MelonnPan), compared to LASSO or ridge 114 
regression, benefits from keeping both the singularities at the vertices, which is necessary to 115 
accommodate data sparsity, and the strict convex edges for grouping among correlated variables. 116 
Inspired by MelonnPan and MIMOSA, we propose an improved prediction method for 117 
individual metabolites using microbiome information in the same biological samples (as matched 118 
samples or paired samples), called "Elastic Net Variable Importance Model (ENVIM)". It 119 
improves upon ENM algorithms by weighing microbial gene features using random forest 120 
variable importance (VI) to enhance the contribution of most prediction-informative genes. 121 
ENVIM outputs predicted metabolites from matched microbiome samples, as well as genes and 122 
their weights informing metabolite prediction.  123 
In this paper, we present the development, application, and evaluation of the new method 124 
ENVIM. We compare it against MelonnPan in three datasets generated from oral, gut, and 125 
vaginal samples, so that we can also compare the metabolite prediction among different body 126 
sites. The preditors can be three different gene family data types, e.g., metagenome only, 127 
metatranscriptome only, and the combination of both metagenome and metatranscriptome data.  128 
The top predictable coumpounds have been reported in all these three datasets from three 129 
different body sites. Enrichment of some prediction contributing species has been detected. 130 
 131 
 132 
MATERIAL AND METHODS 133 
 134 
1. Cohort and data description 135 
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In the following section, we describe the microbiome and metabolome data used for the new 136 
method development and application, alongside the three contributing studies.  137 
 138 
ZOE 2.0 study data 139 
ZOE 2.0 is a community-based molecular epidemiologic study of early childhood oral health in 140 
North Carolina (11, 12). The study collected clinical information on preschool-age children’s 141 
(ages 3-5) dental cavities (i.e., referred to early childhood caries or ECC) (13) and supragingival 142 
biofilm samples from a sample of over 6,000 children (14). A subset of participants’ biofilm 143 
samples underwent metagenomics, metatranscriptomics, and metabolomics analyses, under the 144 
umbrella Trans-Omics for Precision Dentistry and Early Childhood Caries or TOPDECC 145 
(accession: phs002232.v1.p1) (11). As such, metagenomics (i.e., shotgun whole genome 146 
sequencing or WGS), metatranscriptomics (i.e., RNA-seq), and global metabolomics data (i.e., 147 
ultra-performance liquid chromatography-tandem mass spectrometry) (5, 15, 16) from 148 
supragingival biofilm samples of ~300 children, paired with clinical information on ECC are 149 
available. After exclusions due to phenotype and metabolite missingness described in a previous 150 
publication (5), the joint microbiome-metabolome data include 289 participants. There are 503 151 
known metabolites included in the ZOE 2.0 dataset. Metagenomics and metatranscriptomics data 152 
in reads per kilobase (RPK) were generated using HUMAnN 2.0. Here, we use species-level 153 
(205 species), gene-family (403K gene families), pathway (397 pathways), and metabolome (503 154 
metabolites) data. 155 
 156 
Lloyd-Price study data 157 
The Lloyd-Price dataset (2) was obtained from the Inflammatory Bowel Disease multi-omics 158 
database (https://ibdmdb.org). It is derived from a longitudinal study that sought to generate 159 
profiles of different types of omics data among 132 participants for one year and up to 24 time 160 
points. The study’s several different types of omics data include WGS shotgun metagenomics, 161 
RNA-seq metatranscriptomics, and metabolomics. The corresponding metadata include 162 
demographic information such as occupation, education level, and age. These gut microbiome 163 
data are in counts per million (CPM) and were derived using functional profiles 3.0 in 164 
HUMAnN3.0. For this study, we merged data of individual gene families for 1638 samples for 165 
130 subjects, and individual metatranscriptomics gene families for 817 samples for 109 subjects, 166 
respectively. The merged metagenomics gene families data include about 2,741K gene families 167 
and 1580 samples. Merged metatranscriptomics gene families data include about 1,079K gene 168 
families and 795 samples. The metabolomics data were generated using LC-MS and include 169 
81,867 metabolites and 546 samples for 106 subjects. Most metabolites have not been annotated 170 
into known biochemicals and thus were excluded from prediction. After limiting the dataset to 171 
known metabolites and removing “redundant ions” in "HMDB" ID, there remained 526 172 
metabolites to be predicted.  173 
 174 
Mallick study data 175 
The Mallick data (9) comprised the main real-life dataset used in the development of the 176 
MelonnPan method (9). They are derived from gut microbiome WGS shotgun sequencing from 177 
two cross-sectional IBD cohort studies, namely the Prospective Registry cohort for IBD Studies 178 
at the Massachusetts General Hospital (PRISM) and the Netherlands IBD cohort (NLIBD). 179 
Gene-family data in RPK units were derived using HUMAnN2.0 and normalized to reads per 180 
kilobase per million sample reads (RPKM). The raw metagenomics gene-family dataset includes 181 
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1 million gene families. The investigators (9) filtered out genes with low abundance and 182 
prevalence resulting in a processed dataset of 811 genes available in the R package Melonnpan 183 
(melonnpan.training.data and melonnpan.test.data) for 222 total subjects. The microbiome data 184 
have been pre-processed and normalized into relative abundance. The metabolite abundance data 185 
(8,848 metabolites and 220 subjects) have been made available by Franzosa et al (17). Those 186 
authors used 466 metabolites for analyses, a subset that was confirmed experimentally against 187 
laboratory standards prior to application in Melonnpan. In the present study, we use information 188 
from these 466 metabolites to compare the power of the new ENVIM method against 189 
Melonnpan. To accomplish this, we normalized the metabolite abundance data for all 8848 190 
metabolites into relative abundance (compositional format). Among them, we used the same 466 191 
metabolites with laboratory standards as selected in the paper of Melonnpan (9). Data 192 
missingness is not an issue in the Mallick metabolome data. 193 
 194 
2. Metabolomics data pre-processing and normalization  195 
An overview of the approach for metabolome data is presented in Figure 1 and elaborated in 196 
detail below.  197 
 198 
Metabolomics missing data imputation: ZOE 2.0 and Lloyd-Price studies. The proportions of 199 
missing metabolite data are small in the ZOE 2.0 and Lloyd-Price studies. In ZOE 2.0, 87% of 200 
metabolites have some missing data whereas 58% have missing values in Lloyd-Price. To 201 
address missingness in these two cohorts, we applied a rigorous feature-wise Quantile 202 
Regression Imputation of Left-Censored data (QRILC)(18) to impute missing metabolite values 203 
and avoid underestimated metabolite-level variance, as in a previous publication (5). All 503 204 
metabolites in ZOE 2.0 have <90% missing data among the 289 included participants. We 205 
applied a similar preprocessing filter for the Lloyd-Price data (i.e., removing outlier subjects, 206 
SuppFigure 1), resulting in the exclusion of 15 outlier subjects with the largest numbers of 207 
missing metabolite values, as well as outlier metabolites with >90% missing values. 208 
Consequently, we carried forward to analyze 522 metabolites in 531 samples from the Lloyd-209 
Price data.  210 
The application of the QRILC imputation method departed from a natural log data 211 
transformation for the imputation step and an exponentiation to back transform the data to RPK 212 
(in ZOE 2.0) or CPM (in Lloyd-Price) scales. Because MelonnPan requires metabolite data to be 213 
inputted as compositional, we converted RPK and CPM imputed data to a compositional format 214 
before predictive modeling.  215 
 216 
Metabolites Filtered by Metabolic Pathways (ZOE 2.0, Lloyd-Price and Mallick) 217 
 218 
We used the MetaCyc database to retain only “reactive” metabolites. To achieve this, we 219 
considered metabolites’ membership in any MetaCyc metabolic pathway, reflecting reactions 220 
between bacteria and metabolites, and carried out the following steps:  221 
 222 
(1). In the MetaCyc database, we identify metabolites in each of the pathways predicted by 223 
metagenomics data in Functional Profile 2.0 generated by HUMAnN 2.0 (ZOE 2.0 and Mallick 224 
data) and Functional Profile 3.0 generated by HUMAnN 3.0 (Lloyd-Price data). 225 
 226 
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(2). We used metabolites labels (KEGG id, HMDB, PUBCHEM, and metabolite name, provided 227 
in Metabolome data annotation, provided by manufacturer) in each of the three datasets, as the 228 
mapping IDs for each metabolite.  229 
 230 
(3). In MetaCyc, regardless of the metabolite label, only one unique MetaCyc “weblink” or 231 
universal mapping id is returned if the metabolite is in the database. This way, reactive 232 
metabolites identified in step 1 can be matched with metabolites identified in step 2.  233 
This way, we identify metabolites that are in the observed pathways. Finally, we filter out 234 
metabolites with low abundance (metabolites with mean relative abundance <10-4) and low 235 
prevalence (metabolites with >10% non-zero values). Consequently, there were 149 metabolites 236 
in pathways in ZOE 2.0, 125 in Lloyd-Price, and 251 in the Mallick data. Of note, no pathway 237 
information exists in the Mallick data. To compare the prediction of metabolites in pathways 238 
with the prediction of all metabolites, we considered both sets of metabolites in our analyses.  239 
 240 
3. Microbiome data pre-processing and normalization 241 
An overview of the approach for microbiome data is presented in Figure 1 and elaborated in 242 
detail below. First, we matched gene family-level microbiome data with metabolome data by 243 
participant or sample unique identifier. Then, the scaled (RPK, RPKM, or CPM) gene family 244 
abundances were converted to compositional data, relative to the total per sample. Then, we 245 
filtered out gene family features with low relative abundance (mean relative abundance <5x10-5) 246 
and low prevalence (percentage of zeros in >90% of the samples) and thus kept 0.5% - 5% of 247 
gene family features. The same procedures were performed for both metatranscriptomics (briefly 248 
referred to as “RNA” thereafter) and metagenomics data (briefly referred to as “DNA” hereafter) 249 
thereafter, respectively. When both DNA and RNA data (briefly as "BOTH" hereafter) are 250 
considered predictors, a gene name may correspond to two “gene features”, one for each data 251 
type. The same data pre-processing and normalization procedures were followed for three 252 
cohorts, with sample sizes and feature numbers presented in Table 1. To prevent overfitting 253 
when evaluating ENM and ENVIM, we divided samples into training (75% of subjects) and 254 
testing datasets (25% of subjects). 255 
 256 
4. The existing ENM method for microbiome data-based metabolite prediction  257 
 258 
As mentioned previously, the existing method available for predicting metabolite abundance 259 
using metagenomics data is MelonnPan(9) (Model-based Genomically Informed High-260 
dimensional Predictor of Microbial Community Metabolic Profiles). In this study, in MelonnPan 261 
we used all filtered metagenomic gene family features in the 10-fold cross-validated elastic net 262 
model (ENM)(19) to predict metabolite abundance (Equation 1). 263 
 264 
However, using all filtered metagenomic gene family features in the model may dilute the effect 265 
of some important gene family features contributing to the prediction of metabolite abundance. 266 
This limitation can be improved upon, and therefore, in this paper, we set out to improve the 267 
ENM and develop a new algorithm. 268 
 269 
The MelonnPan software was downloaded from Github 270 
(https://github.com/biobakery/melonnpan) or in Melonnpan Package in R, the CSV output file 271 
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“Predicted_Metabolites.txt” (Train) and “MelonnPan_Predicted_Metabolites.txt” (Test) are used 272 
as the prediction results of MelonnPan. 273 
 274 
 275 
Elastic net model (ENM) assumes the model, 276 

𝑦! = 𝑥!!𝛽 +  𝜖! , 
where 𝛽 = 𝛽!,𝛽!,… ,𝛽!

!
 and 𝛽, the ENM estimator of 𝛽, is found by minimizing the objective 277 

function of ENM, 278 

𝐿!"! =
1
2𝑁 𝑦! − 𝑥!!𝛽 !

!

!!!

+ 𝜆
1− 𝛼
2 𝛽!! + 𝛼|𝛽!|

!

!!!

.  

 279 
Equation 1 280 
 281 
 282 
5. Evaluation Methods 283 
 284 
We used Cohen’s criterion (20), to define Well-Predicted (WP) metabolites as those with 285 
Spearman correlation ≥0.3, and those with correlation <0.3 as poorly predicted. The predictive 286 
performance of the new method ENVIM is evaluated by comparing it against MelonnPan. 287 
Additionally, we compare Spearman correlations and mean square error (MSE) between the 288 
predicted and observed metabolites in both the training stage and the testing stage for all the 289 
three datasets and both methods.  290 
 291 
RESULTS 292 
 293 
1. The improved ENM based on variable importance score (ENVIM) 294 
 295 
The new algorithm is based on ENM, as the Elastic Net Variable Importance Model (ENVIM) 296 
(Equation 2). The strategy in ENVIM and the comparison between ENM and ENVIM are 297 
shown in Figure 2. Because ENM assumes that both independent and dependent variables 298 
follow a normal distribution, we rank-transform each gene family’s feature to a normal 299 
distribution by using the rntransform (21) function in the R package GENABEL for training data 300 
and testing data, respectively. The training metabolite abundance data are transformed to a 301 
normal distribution by Box-Cox transformation. After fitting the model in the training data, 302 
predicted metabolite abundances are transformed back to relative abundance with 𝜆  being 303 
determined by the training metabolite abundance data. 304 
 305 
Including all gene families into the model could make the cross-validated MSE larger, whereas 306 
including only a small part could make the error larger. Therefore, to identify a model with the 307 
minimum cross-validated error one needs to iterate different numbers of gene families. Because 308 
we prioritize gene families with high importance relative to metabolites, we use a nonlinear 309 
regression model to determine the importance of gene families for each metabolite. We train a 310 
cross-validated random forest model(22) by using the training data and use varImp function in 311 
the caret package(23) in R to find the scaled importance score (0-100) between each independent 312 
feature and the metabolite abundance. We introduce a unique step that uses the scaled variable 313 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.07.01.450697doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450697
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

importance score to classify gene families in different category intervals into the ENM, for 314 
example, gene families from 90 to 100. We use glmnet (24) package in R to run cross-validated 315 
ENM and choose penalty parameters for each model. 316 
 317 
In the training stage, we divide the importance score from 0-100 into 10 category intervals (90-318 
100, 80-100,..., 10-100, 0-100) and remove the intervals without gene families. We consider 319 
different sets of gene families with different importance scores into the ENM. Gene families are 320 
the independent variables, and metabolite abundances are the dependent variables. For each set 321 
of gene families, we conduct a 10-fold cross-validated ENM and build 10 models with different 322 
values of the tuning parameter 𝜆, ranging from 0 to 1. For each model, we measure the MSE 323 
between the measured metabolite abundance and the predicted values to determine the best 324 
model (i.e., the model with the lowest MSE). To maintain reproducibility, we maintain the same 325 
random seed and permute the same fold index number in the ENM. 326 
 327 
In the testing stage, for the prediction of each metabolite, we use a weight matrix of coefficients 328 
of gene families from the best model with the lowest MSE identified during the training stage. 329 
Because we previously transformed the compositional metabolite abundance data into 330 
compositional metabolite abundance per hundred and used Box-Cox transformation, we 331 
transform the predicted metabolite abundance data back to the original scale based on 𝜆 332 
calculated in the training step. We evaluate the prediction of testing metabolite abundance by 333 
using the Spearman correlation between measured and predicted metabolite abundance data.  334 
 335 
ENVIM assumes the following model:  336 

𝑦! = 𝑥!!𝛽 +  𝜖! , 
where 𝛽 = 𝛽!,𝛽!,… ,𝛽!

!
 and 𝛽!"#$% = argmin!min!∈ℰ 𝐿!"#$% 𝑘  , the ENVIM estimator 337 

of 338 
𝛽, is found by minimizing over 𝑘 and 𝛽 the objective function, 339 

𝐿!"#$% 𝑘 =
1
2𝑁 𝑦! − 𝑥!!𝑀!𝛽 !

!

!!!

+ 𝜆 𝑠!,!
1− 𝛼
2 𝛽!! + 𝛼|𝛽!|

!

!!!

.  

where we define 𝑉𝐼! as the variable importance score for the 𝑗th variable given by a random 340 

forest, 𝑆! = 𝑠!,! !
! = 𝐼 𝑉𝐼! ≥ 𝑘

!!!
!

 is the variable selection indicator vector giving 1 if the 341 

importance score for the jth variable is larger than the importance score 𝑘, 𝑀! = diag 1, 𝑆!!  is 342 
the corresponding diagonal variable selection matrix that includes the intercept term, and ℰ is a 343 
set of the candidate 𝑘 values. ℰ is defined adaptively so that it covers the range of the variable 344 
importance scores reasonably. In our analysis, we set ℰ = 0,10,20, . . . ,90 .  345 
 346 
Equation 2 347 
 348 
In the following sections, we present three key differences between MelonnPan and 349 
ENVIM for predicting individual metabolites (Figure2). 350 
 351 
(1) Transformation of metabolite abundance data into a normal distribution. 352 
To meet the assumption of ENM, MelonnPan transforms relative metabolite abundances with the 353 
arcsin square root operator, whereas we use Box-Cox transformation in ENVIM. To test 354 
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normality, we compare the p-values of the Shapiro test statistics for both Box-Cox (Equation 3) 355 
and the arcsin square root transformations of metabolite abundances. In Figure 3a, the boxplots 356 
illustrate the distribution of -log10 of the p-values for all three data sets transformed by Box-Cox 357 
and arcsin square root and demonstrate that -log10 p-values for the Box-Cox transformation are 358 
greater than those applied with the arcsin square root transformation. In Figure 3b, in the scatter 359 
plot, -log10 p-values of almost all the metabolites applied with the Box-Cox transformation are 360 
more normally distributed than those applied with the arcsin square root transformation, 361 
implying that Box-Cox transformation yields better normal approximation than the arcsin square 362 
root transformation for most of the metabolites. 363 
 364 
 365 
Box-Cox transformation 366 

𝑦 =
𝑦! − 1
𝜆

, 𝑥 ≠ 0

log 𝑦 , 𝑥 = 0
, 

where 𝑦 is the relative abundance. 367 
 368 
Equation 3 369 
 370 
(2) Different sets of gene families are carried forward to the prediction model. 371 
MelonnPan uses all gene families in the training data in the ENM and ultimately predicts 372 
metabolites in the testing stage using the same features. However, regressing against all gene 373 
families may dilute the effect of important gene families. Thus, unlike MelonnPan, we use a 374 
variable importance criterion to select different sets of gene families and include them in the 375 
prediction models.  376 
 377 
(3) 𝛼 range in ENM 378 
𝐴𝑙𝑝ℎ𝑎 (𝛼) is the weight between L1 and L2 penalty terms in the ENM, and in combination with 𝜆 379 
values, the set of values that minimizes the 10-fold cross-validated MSE (Equation 1) is chosen. 380 
When 𝛼 is 0, the model reduces to a ridge regression model which has the advantage of dealing 381 
with highly correlated independent variables; when 𝛼 is 1, the model becomes a lasso regression 382 
model which has a variable selection capacity; when the 𝛼 is between 0 to 1, the model includes 383 
the advantages of ridge regression and lasso regression. In MelonnPan, the range of 𝛼 values 384 
does not include 0 and 1, which excludes either the Ridge or LASSO regression models, and it 385 
may not consider variables with high importance. The penalty term alpha in our ENVIM 386 
includes 0 and 1. By allowing a larger range of 𝛼 we can include the case that is the Ridge 387 
regression model that does not exclude variables with high importance. 388 
  389 
The ENVIM software written in R statistical language is available in Github 390 
(https://github.com/jialiux22/ENVIM). The "ENVIM_predict " function is for metabolite 391 
prediction only, and the ENVIM function is for metabolite prediction and evaluation given 392 
metabolomics data in the testing set is also available. Both will output weight matrix. The weight 393 
matrix in testing has the same values as in training if they have the same number of genes. 394 
Usually, testing has a smaller number of genes to be used for prediction, so the weight matrix in 395 
testing can be a subset of the weight matrix in the training set due to the smaller number of genes 396 
in the testing set. 397 
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 398 
2. Method Comparison for Prediction of Individual Metabolites in Three Datasets  399 
 400 
Correlation-based method comparison. We used microbial gene family data to predict the 401 
individual metabolites in the matched samples (that are from the same biological sample in that 402 
one proportion is for microbiome and the other is for metabolome). We compared the prediction 403 
results between ENVIM and MelonnPan, in terms of Spearman correlation and mean square 404 
error (MSE) between predicted and observed values of each of the filtered metabolites, in three 405 
datasets (ZOE 2.0, Mallick data, and Lloyd-Price data) at each of the three data types of 406 
microbial gene families as the DNAseq, RNAseq, and BOTH (of RNA and DNA). MSE in the 407 
testing set is for comparison between methods (Supplemental Figure 2). 408 
 409 
We have summarized the prediction results (Table 2, Figure 4) for all metabolites in terms of 410 
Spearman’s correlation according to three aspects: method comparison, modality comparison, 411 
and microbial community (i.e., body site) comparison. Overall, ENVIM produces higher 412 
percentages of well-predicted metabolites than MelonnPan in all three data cohorts, in both 413 
testing and training sets, and for DNA, RNA, and BOTH when available (Table 2). 414 
  415 
In general, RNA gene family data produce higher percentages of well-predicted metabolites than 416 
DNA data. In Lloyd-Price data, RNA-only data typically give higher percentages of well-417 
predicted metabolites. In ZOE 2.0 and Lloyd-Price data, both DNA and RNA predictors produce 418 
similar percentages but are not always superior to the DNA-only or RNA-only data-based 419 
predictors. However, results emanating from both DNA and RNA predictors are never the worst. 420 
Not surprisingly, the well-predicted percentage of metabolites in testing sets is lower than in the 421 
training set (Table 2). The boxplots of Spearman correlations between the predicted and 422 
observed metabolites for all metabolites (Figure 4) show the overall distribution of Spearman 423 
correlation and suggest that the correlation between the ENVIM-predicted and the observed 424 
metabolites is higher in RNA than in DNA, but slightly lower than in both DNA and RNA. In 425 
testing, MelonnPan only predicts the predictable metabolites (defined as Well-Predicted 426 
metabolites in Training set, last columns in Table 2); while it is not appropriate to compare the 427 
correlation distribution for all metabolites as in Figure 4 for MelonnPan. When comparing the 428 
distribution of correlation (Figure 4) between the ENVIM-predicted and the observed 429 
metabolites in ZOE2.0 and Lloyd-Price, the combination of both DNA and RNA appears to have 430 
higher correlations than the DNA only or RNA only in the training set. In testing, RNA data 431 
produce the highest median correlation. All three gene family data result in similar correlations 432 
in ZOE 2.0. It must also be noted that the highest proportion of well-predicted metabolites is 433 
found in the gut microbiome (Lloyd-Price) study, then in the vagina microbiome (Mallick study), 434 
and the lowest was in the supragingival dental biofilm (ZOE 2.0 study) (Table 2). Because in 435 
both the Lloyd-Price and Mallick datasets prediction correlations are higher than in ZOE 2.0 436 
(Figure 4), it is reasonable to suggest better metabolite prediction in these sites and microbial 437 
communities than in the oral cavity.  438 
 439 
Besides comparing MelonnPan and ENVIM in terms of percentages of well-predicted 440 
metabolites, one can directly compare the correlations of each predictable metabolite that is 441 
predicted by both methods (Figures 5 and 6). In the training set (Figure 5), all DNA, RNA, 442 
BOTH DNA, and RNA, and in all three datasets, we find that the majority of these metabolites 443 
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have higher correlations in ENVIM compared to MelonnPan. The same holds in the testing set 444 
(Figure 6): most points are along the diagonal line but slightly above it, suggesting that 445 
metabolites predicted by ENVIM have higher correlations with the observed ones compared to 446 
those predicted by MelonnPan. We also find that there are more metabolites in the 447 
"ENVIM>0.3" category (blue) than in the "MelonnPan>0.3" category (red). This is a reflection 448 
of more well-predicted metabolites found after ENVIM than after MelonnPan prediction.  449 
 450 
3. Methods comparison for prediction of individual metabolites in three datasets and the 451 
context of observed metabolic pathways 452 
 453 
Metabolites may be associated with the microbiome in the context of metabolic pathways that 454 
involve interactions between host, microbiome, and environment. We further test the methods’ 455 
predictive power for metabolites that are found in microbiome data-based metabolic pathways 456 
generated by metagenomics and metatranscriptomics analysis in HUMANN2. Gene families are 457 
filtered by metabolic pathways as previously described in the methods section. All conclusions 458 
regarding the prediction of metabolites still hold in this scenario. Additionally, when comparing 459 
the percentages of well-predicted metabolites among all metabolites (first four columns of Table 460 
2) and the metabolites found in pathways (Table 3), we find higher predicted percentages for the 461 
latter. 462 
 463 
4. Methods comparison based on MSE  464 
 465 
We use boxplots to compare the mean square errors (MSE) between measured and predicted 466 
metabolite abundance between ENVIM and MelonnPan both for training and testing models, 467 
with application to training data and testing data for all three studies. We only compare well-468 
predicted metabolites identified by MelonnPan in training because MelonnPan only generates 469 
results for these metabolites. The boxplot demonstrates that the distribution of MSE in the 470 
MelonnPan model is approximately the same as the distribution of MSE in ENVIM 471 
(Supplemental Figures 2). There is no significant MSE difference between ENVIM and 472 
MelonnPan suggesting that both models predict these metabolites well, but the advantage of 473 
ENVIM is that we can predict substantially more well-predicted metabolites than MelonnPan—a 474 
consequence of MelonnPan’s inability to build a well-performing model in the training step. 475 
  476 
 477 
5. Prediction Results of Individual Metabolites and Gene Weights in ENVIM 478 
 479 
The top 50 predicted metabolite compounds from ENVIM across three datasets are shown in 480 
Figure 7. For Lloyd-Price and ZOE 2.0, we choose the gene family data that has the best 481 
ENVIM prediction power to show their top predicted metabolites, which are the DNA gene 482 
family data (124 metabolites as 25% among NM, Table 2) in ZOE 2.0, and the RNA gene family 483 
data (393 metabolites as 75% among NM, Table 2) in Lloyd-Price. The Mallick study only has 484 
DNA data available for metabolite prediction. Lloyd-Price data and Mallick data have measured 485 
metabolites in >1 metabolome LC-MS flatforms (see Data Description Section) so that one 486 
metabolite may appear >1 time in the top list, for example, the metabolite so-called Urobilin 487 
appeared in the top 50 for >1 time.  488 
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The summarized prediction results can be seen in Supplemental Table 1. To interpret the 489 
results, we take the carbohydrate pathway as an example that may provide the bacteria nutrition, 490 
so a few compounds have been well-predicted by the RNA gene data. We are aware the 491 
prediction in this paper is not about longitudinal causal relation but for mathematical prediction. 492 
Here we show four examples (Figure 8A, B, C, D for Trehalose, Maltose, Ribose Stachyose) 493 
that also have high Spearman correlation in the log10 scale of compositional data. 494 
  495 
Gene list (Weight matrix) comparison across three datasets, in ENVIM (Supplemental Table 496 
2). We extract gene names that are non-zero in the weight matrix for each metabolite, dataset, 497 
and data type. We aim to compare gene names among three datasets and find the probability of 498 
predicting metabolites by using a different dataset. We find that there are not many overlapped 499 
genes (n < 10) between ZOE 2.0 data and Lloyd-Price data (Data not shown).  500 
 501 
Gene set enrichment analysis (GSEA) within Species in ZOE 2.0. We perform gene set 502 
enrichment analysis to find the over-represented species of the gene families when we build the 503 
prediction model on metabolite abundance. We extract the weight matrix, merge the important 504 
gene families with non-zero values among all well-predicted metabolites. We get the summation 505 
of the rank of each gene family in the weight matrix based on the absolute value of the 506 
coefficient for each gene family. We use gene families data at the species level to find the 507 
species corresponding to those important gene families. For each species of bacteria, we compare 508 
the general difference in the cumulative distributions of gene families’ rank scores between each 509 
species and background species and find Kolmogorov–Smirnov (KS) p-values. We use the 510 
Benjamini–Hochberg false discovery rate (FDR) approach to correct the p-values and get q-511 
values. There are 36 species in ZOE 2.0 DNA data and 73 species of bacteria in ZOE 2.0 RNA 512 
data that show significantly (q<0.05) over-represented species during the gene set enrichment 513 
analysis (Figure 9).  514 
 515 
Here, we used a different procedure for the gene set enrichment tests compared to what 516 
MelonnPan (9) used. They pooled genes in genera instead of species, due to the small number of 517 
genes in each species in their prediction procedure. We keep many more genes than MelonnPan 518 
so that we can address the ranks of genes instead of the binary prediction power of genes (i.e., 519 
whether a gene is used for prediction or not). Our GSEA strategy also can help avoid the bias to 520 
pick up the species that have larger numbers of genes. 521 
  522 
 523 
6. Computational speed (compare to others): 524 
 525 
Our developed method of improving ENM could run on the software on R and accurately predict 526 
metabolites. The mean prediction time for each metabolite for DNA gene families data is 5.2 527 
minutes for ZOE2 data (6.1 minutes for Lloyd-Price Data, 2 minutes for Mallick data); mean 528 
prediction time for RNA gene families data is 4.2 minutes for ZOE2 data (3.7 minutes for Lloyd-529 
Price Data); mean prediction time for both DNA and RNA gene families data is 4.5 minutes for 530 
ZOE2 data (3.6 minutes for Lloyd-Price Data) with MacOS Big Sur Version 11.4.  531 
  532 
 533 
DISCUSSION 534 
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 535 
We propose a new computational method for metabolite prediction using microbiome data-based 536 
improved Elastic Net Models. We chose different gene-family sets based on SVM-based variable 537 
importance scores and modified the existing ENM to accommodate the unique features of 538 
microbiome and metabolome data. The newly developed method ENVIM predicts metabolites 539 
using metagenomics, metatranscriptomics, or both data types. We apply the algorithm in three 540 
datasets, i.e., ZOE 2.0, Mallick, and Lloyd-Price studies. These three studies are mostly all we 541 
can find that have both microbiome and metabolome data in the same matched samples, with 542 
reasonably large sample sizes. Our work is the first time that researchers can use microbiome 543 
data to predict metabolites in more than one study, and different body sites. In addition, ZOE 2.0 544 
and Lloyd-Price studies have both metagenomics and metatranscriptomics, so that we can for the 545 
first time, compare the prediction performance using the different gene family modalities (or 546 
called data types). 547 
 548 
We evaluated metagenomic and metatranscriptomic predictors and compared the prediction 549 
performance between the previously developed MelonnPan and ENVIM, among DNA, RNA, 550 
and Both DNA and RNA gene families data using (1) the proportion of “well-predicted” 551 
metabolites defined as those with Spearman correlation between measured and predicted 552 
metabolite values > 0.3, (2) distribution of Spearman correlation and (3) MSE. The correlation 553 
suggests Both (using DNA and RNA jointly) provides robust prediction results that are never the 554 
worst among the three data types. Whether DNA or RNA have better prediction performance 555 
depends on the studies. The percentage of well-predicted metabolites is higher for metabolites 556 
that are in a metabolic pathway that is observed in microbiome data, and this supports the 557 
interaction between microbiome and metabolites may highly be related in known metabolic 558 
pathways. Across all datasets and data types, with or without the pathway filter, we find ENVIM 559 
always outperforms MelonnPan. We also find the prediction performance is better in Lloyd-Price 560 
and Mallick than in ZOE 2.0, which may suggest the association between microbiome and 561 
metabolites are stronger in the gut than in the oral cavity since oral metabolites may be more 562 
affected by environmental factors like food intake. More microbial omics studies are needed to 563 
compare the prediction power across different body sites and to understand how microbiome 564 
interact with metabolites differently at different body sites. 565 
 566 
We are aware the data-preprocessing step has larger effects on the prediction performance. The 567 
distribution assumption, normalization, transformation, outlier filtering, and how to handle 568 
missing data are important to be considered before performing prediction. We have touched base 569 
on that, but potential further exploration may be needed. 570 
 571 
The numbers of the measured metabolites and the numbers of the to-be predicted metabolites in 572 
each of the three studies are very different due to the difference of the technology platforms, and 573 
the available data. As what we proposed is not for causality but for mathematic prediction, we 574 
show examples of four metabolites (Figure 8) that may provide nutrition to species. 575 
 576 
As a limitation, same as MelonnPan, the experimental design hasn't been considered in this 577 
framework for ENVIM, including time course or disease statuses. As the purpose of this study is 578 
prediction, it's reasonable to think that prediction is not necessary to be conditional on the 579 
experimental design. Instead, different disease statuses may have different microbiome profiles 580 
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and have corresponding different metabolomes. Therefore, this is a limitation but not a drawback 581 
of prediction performance. Another future direction is more of the metabolite set tests (or 582 
pathways analysis) according to the predicted metabolites. 583 
 584 
As a summary, we anticipate the newly developed ENVIM method for microbiome-based 585 
metabolite prediction provides good prediction performance and will be used to infer individual 586 
metabolites experimental design when only microbiome data are available, or in the condition 587 
that a proportion of samples in a study have no metabolome profile.  588 
 589 
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Microbiome data are becoming increasingly available in large health cohorts yet metabolomics 600 
data are still scant. While many studies generate microbiome data, they lack matched 601 
metabolomics data or have considerable missing proportions of metabolites. Since metabolomics 602 
is key to understanding microbial and general biological activities, the possibility of imputing 603 
individual metabolites from microbial taxonomy or metagenomics is intriguing. Importantly, 604 
current metabolomics profiling methods have unknown accuracy and are limited in their ability 605 
to predict individual metabolites. To address this gap, we developed a novel metabolite 606 
prediction method (ENVIM) based on the Elastic Net Model (ENM) using metagenomics, 607 
metatranscriptomics, or both data types. ENVIM introduces an extra step to ENM to consider 608 
variable importance scores and thus achieve better prediction power. The better prediction 609 
capability of ENVIM than the existing MelonnPan in three datasets generated from oral, gut, and 610 
vaginal samples, suggest the potential usage in a variaty of studies from different body sites. As a 611 
summary, we anticipate ENVIM provides good prediction performance, and will be used to infer 612 
individual metabolites experimental design when only microbiome data are available, or in the 613 
condition that a proportion of samples in a study have no metabolome data profile. 614 
  615 
 616 
Figure and Table legend for main content 617 
 618 
Figure 1. Flowchart of data preprocessing in microbiome and metabolome 619 
Mallick didn't use QRILC, the other two used. 620 
 621 
Figure 2. Flowchart of Melonnpan and ENVIM. The three differences between them include 622 
(red text) (1) Transformation of metabolite data (2) Gene family weights and (3) Penalty score. 623 
The predictable metabolites are defined as the metabolites that have a significant Spearman 624 
correlation with the adjusted q-value (testing whether the correlation is zero) below the default 625 
threshold in the training set. 626 
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 627 
Figure 3. (a) Boxplot of -log10 of shapiro test p-values for relative metabolites abundances in all 628 
three data applied with box-cox transformation (we used) and arcsin square root transformation 629 
(Melonnpan used). (b) Scatter plot for comparing -log10 of p-values made by shapiro test 630 
(normality) between box-cox transformation (x-axis) and arcsin sqrt (y-axis) transformation. 631 
Almost all of the points are above the y = x line, which means that the -log10 of p-value after 632 
box-cox transformation is smaller than after arcsin sqrt transformation, and normality after box-633 
cox transformation is better. 634 
 635 
Figure 4. Evaluation using Spearman correlation in training stage and testing stage between 636 
predicted values and the observed values by using DNAseq data only, RNAseq data only, and 637 
both for ZOE2.0 data, Lloyd-Price Data, and Mallick data. 638 
 639 
Figure 5. For DNA, RNA, and both in each study and the training set, this shows the scatter plot 640 
of Spearman correlation in ENVIM (y-axis) and Melonnpan (x-axis). Spearman correlation is 641 
based on observed metabolite abundance and predicted values. If our calculated correlation is 642 
NA, the metabolites will be included in this figure.  643 
 644 
Figure 6. For DNA, RNA, and both in each study and the testing set, this shows the scatter plot 645 
of Spearman correlation in ENVIM (y-axis) and Melonnpan (x-axis). Spearman correlation is 646 
based on observed metabolite abundance and predicted values. 647 
 648 
Figure 7. The best predicted 50 metabolite compounds (x-axis) in the three studies by ENVIM in 649 
the testing set. For Lloyd-Price and ZOE2.0, we choose the gene family data types that have the 650 
best ENVIM prediction power to show their top predicted metabolites, based on Table 2. 651 
 652 
Figure 8. Scatter plots of examples of well-predicted metabolites in ZOE 2.0 by ENVIM. The X-653 
axis is observed metabolites; the y-axis is for predicted metabolites. Both are in log10 scale of 654 
the compositional data for normality. ECC is for Early Childhood Caries, ECC =0 (about 50% of 655 
total samples in ZOE 2.0) is for the healthy group, and ECC=1 (about 50% of total samples in 656 
ZOE 2.0) is for the ECC case group. r is for Spearman correlation. 657 
 658 
Figure 9. Taxonomic enrichment of metabolite predictive species for the most contributing 659 
species to metabolite prediction, based on ZOE2.0 DNA or RNA by ENVIM. The top 20 660 
significant over-represented bacteria with the smallest Q values (Q < 0.05) for ZOE 2.0 data. The 661 
Q-value is based on the Kolmogorov-Smirnov (KS) test p values after FDR correction. (a) DNA 662 
data (b) RNA data.  663 
 664 
Table 1. Sample size and number of selected gene family features.  665 
Testing genes: genes can be used in the testing set. 666 
Training genes: genes can be used in the training set. 667 
Genes in both: genes are in both training and testing sets. 668 
 669 
Table 2. Prediction results (first four columns of numbers) in terms of Spearman correlation for 670 
all metabolites to be predicated. Based on the “well-prediction” criterion, defined as Spearman 671 
correlation > 0.3 between the observed and the predicted metabolites, the numbers of well-672 
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predicted metabolites with different prediction methods, datasets, and modality levels (DNA, 673 
RNA, and BOTH), are presented for comparing MelonnPan and ENVIM. NM is the number of 674 
metabolites to be predicted. Percentages in parentheses (%) represent the number of well-675 
predicted metabolites divided by the total number of metabolites (NM) to be predicted in each 676 
study. The Mallick cohort has only metagenomics data available. 677 
The last column of numbers is for the numbers of "predicable metabolites", that are defined by 678 
MelonnPan, also seen in the Figure 2 legend. 679 
 680 
Table 3. Prediction results via Spearman correlation for metabolites that are found in metabolic 681 
pathways. Based on the criterion of Spearman correlation >0.3 between observed and predicted 682 
metabolites, we present the numbers of well-predicted metabolites with different prediction 683 
methods, datasets, and modality levels (DNA, RNA, and both), and comparing between 684 
MelonnPan and ENVIM. NM is the number of metabolites to be predicted. Percentages in 685 
parentheses (%) represent the numbers of well-predicted metabolites divided by the total number 686 
of metabolites (NM) to be predicted in each study. The Mallick cohort has only metagenomics 687 
(DNA) data available and no pathway RNA data. The results from the Mallick cohort here are 688 
only based on filters (filtering out metabolites with mean relative abundance <10-4) and low 689 
prevalence (metabolites with >10% non-zero). In ZOE 2.0 and Lloyd-Price, metabolite data 690 
presented in this table have been selected according to membership in pathways and also satisfy 691 
the above-mentioned filtering criteria. 692 
 693 
 694 
Figure and Table legend for supplemental files 695 
 696 
Supplemental Figure 1. Boxplot of -log10 of mean square error for DNA, RNA, and Both in 697 
each of the three studies. None of the nominal p values to compare ENVIM and MelonnPan are 698 
significant as all of them >0.1.  699 
 700 
Supplemental Figure 2. Diagnosis for outlier samples. The X-axis is the cumulative proportion 701 
of samples, and the y-axis is number of non-missing values. The left lower tail dots that are far 702 
from the rest may be considered as sample outliers. For ZOE 2.0 data and Lloyd-Price data, we 703 
need to remove the 10 outliers subjects from ZOE 2.0 data and 15 outliers from Lloyd-Price data 704 
to ensure the distribution of non-missing values is continuous. 705 
 706 
Supplemental Table 1. Overall prediction results, for all gene family data types, all three 707 
datasets, and both methods, in Spearman correlation and MSE. 708 
 709 
Supplemental Table 2. The gene lists in DNA or RNA, based on the highest rank or the average 710 
rank among metabolites, that contribute to metabolite prediction in ZOE 2.0 by ENVIM. Rank is 711 
based on the weight matrix in ENVIM. A larger number of ranks suggests more important gene 712 
families. 713 
 714 
 715 
 716 
 717 
 718 
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Figure 8 774 

 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
 783 
 784 
 785 
 786 
 787 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.07.01.450697doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.01.450697
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Figure 9 788 
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 Training 
genes 

Testing 
genes 

Genes 
in both 

Subjects Metabolites 
 

Metabolites 
(in 
pathways) 

ZOE 
2.0 
  

DNA (total 
403k genes) 

1355 1276 1214 289 503 149 

RNA (total 
403k genes) 

1805 1826 1667 287 503 149 

BOTH (total 
806k genes) 

3158 3183 2948 287 503 149 

Lloyd-
Price  

DNA (total 
2741k genes) 

726 712 633 359 522 125 

RNA (total 
1079k genes) 

726 704 600 282 522 125 

BOTH (total 
3820k genes) 

1424 1508 1211 269 522 125 

Mallic
k 

DNA (total 
1000k genes) 

811 811 811 220 466 251 
(Filter 
Only) 

Table 1  813 
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ZOE 2.0 
(NM=503) 

Training 
 (ENVIM) 

Training 
(MelonnPan) 

Testing 
(ENVIM) 

Testing 
(MelonnPan) 

Predictable 
metabolites 
(Defined by 
MelonnPan)  

DNA only 356 (71%) 63 (13%) 124 
(25%) 

47 (9%) 
 

70 

RNA only 409 (81%) 157 (31%) 106 (21%) 68 (14%) 163 

BOTH DNA and 
RNA 

423 (84%) 146 (29%) 110 (22%) 73 (15%) 154 

Mallick Cohort 
(NM=466) 

 

DNA only 408 (88%) 239 (51%) 225 (48%) 178 (38%) 249 

Lloyd-Price 
Cohort 
(NM=522) 

 

DNA only 501 
(96%) 

271 (52%) 322 
(62%) 

193 (37%) 305 

RNA only 521 
(100%) 

298 (57%) 393 
(75%) 

236 (45%) 318 

BOTH DNA and 
RNA 

518 
(99%) 

306 (59%) 381 
(73%) 

232 (44%) 323 

Table 2 833 
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ZOE 2.0 (NM=149)  
 

Training 
 (ENVIM) 

Training 
(MelonnPan) 

Testing 
(ENVIM) 

Testing 
(MelonnPan) 

DNA only 128 (86%) 44 (30%) 46 (31%) 24 (16%) 

RNA only 140 (94%) 83 (56%) 59 (40%) 43 (29%) 

Both DNA and RNA 143 (96%) 81 (54%) 64 (43%) 45 (30%) 

Mallick Cohort (NM=251)   

DNA only 231 (92%) 132 (53%) 94 (37%) 71 (28%) 

Lloyd-Price Cohort (NM=125) 
 

  

DNA only 123 (98%) 102 (82%) 75 (60%) 74 (59%) 

RNA only 125 (100%) 110 (88%) 102 (82%) 93 (74%) 

Both DNA and RNA 125 (100%) 110 (88%) 107 (86%) 96 (77%) 

Table 3  842 
 843 
  844 
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