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Abstract

Microbiome data are becoming increasingly available in large health cohorts yet metabolomics
data are still scant. While many studies generate microbiome data, they lack matched
metabolomics data or have considerable missing proportions of metabolites. Since metabolomics
is key to understanding microbial and general biological activities, the possibility of imputing
individual metabolites or inferring metabolomics pathways from microbial taxonomy or
metagenomics is intriguing. Importantly, current metabolomics profiling methods such as the
HMP Unified Metabolic Analysis Network (HUMAnNN) have unknown accuracy and are limited
in their ability to predict individual metabolites. To address this gap, we developed a novel
metabolite prediction method, and we present its application and evaluation in an oral
microbiome study. We developed ENVIM based on the Elastic Net Model (ENM) to predict
metabolites using micorbiome data. ENVIM introduces an extra step to ENM to consider
variable importance scores and thus achieve better prediction power. We investigate the
metabolite prediction performance of ENVIM using metagenomic and metatranscriptomic data
in a supragingival biofilm multi-omics dataset of 297 children ages 3-5 who were participants of
a community-based study of early childhood oral health (ZOE 2.0) in North Carolina, United
States. We further validate ENVIM in two additional publicly available multi-omics datasets
generated from studies of gut health and vagina health. We select gene-family sets based on
variable importance scores and modify the existing ENM strategy used in the MelonnPan
prediction software to accommodate the unique features of microbiome and metabolome data.
We evaluate metagenomic and metatranscriptomic predictors and compare the prediction
performance of ENVIM to the standard ENM employed in MelonnPan. The newly-developed
ENVIM method showed superior metabolite predictive accuracy than MelonnPan using
metatranscriptomics data only, metagenomics data only, or both of these two. Both methods
perform better prediction using gut or vagina microbiome data than using oral microbiome data
for the samples' corresponding metabolites. The top predictable compounds have been reported
in all these three datasets from three different body sites. Enrichment of prediction some
contributing species has been detected.

Keywords: microbiome, metatranscriptome, metabolome, prediction, elastic net, random forest

INTRODUCTION

The importance of the human microbiome in health and disease is undeniable; site-specific
microbial communities interact both with the environment and the host and influence numerous
biological processes (1). Aside from the logical interest in understanding the microbiome’s
composition, measuring and understanding its associated metabolic activities is arguably of
utmost biological relevance. Recent studies have linked the metabolome with several important
health conditions including inflammatory bowel disease (IBD)(2), obesity and type II diabetes
(3), cholesterol levels (4), and early childhood dental caries (ECC)(5). Despite the rapidly
increasing availability of microbiome data in large health cohorts, metabolomics data are still
scant. This is an important limitation because the lack of, or considerable missingness of,
metabolite information in microbiome studies can diminish their potential in inferring functions
and important biological targets.
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90 It follows that methods that help fill in the functional information gaps in microbiome studies are
91  valuable and necessary. Because “matched” microbiome and metabolome datasets are extremely
92  scant, most current methods rely on metabolic pathway inferences from taxonomic and
93  metagenomic data, such as in the HMP Unified Metabolic Analysis Network (HUMAnN) (6).
94  While the value of this approach is well-documented for the analysis of some microbial consortia
95 (e.g., the human gut) (2, 7), HUMAnN cannot make predictions for individual metabolites.
96  Moreover, its accuracy has not been benchmarked and its performance in other microbial
97  communities with distinct ecology and function (e.g., the oral cavity) remains unknown. This is
98 important because measured metabolomes at different body sites may include, besides the
99  products of microbial metabolism, biochemical contributions from the host and the environment
100 (e.g., dietary sugars in the study of dental biofilm(5)). Although an accurate determination of
101  metabolite sources may not always be possible, predictions of these biofilm metabolites using
102  microbiome information are highly desirable.
103  Along these lines, in 2016, Noecker and colleagues (8) added to the available analytical toolbox
104 by leveraging 16S rRNA data. Their method enabled model-based integration of metabolite
105  observations and species abundances using taxonomy and paired metabolomics data from ~70
106  vaginal samples. More recently, MelonnPan (9) was developed to obtain metabolomic profiling
107  of microbial communities using amplicon or metagenomic sequences. This new method was
108  motivated and applied in the context of paired microbiome and metabolome data in the context
109  ofan IBD cohort.
110  The motivation for the present new method development is to improve existing analytical
111 approaches available for metabolite prediction and functions using microbiome data (10). To this
112 end, we leverage existing microbiome and metabolome data from a study of early childhood oral
113  health investigating ECC, a study of the human gut investigating IBD, and a study of vaginal
114  health. The elastic net model (ENM, also used in MelonnPan), compared to LASSO or ridge
115  regression, benefits from keeping both the singularities at the vertices, which is necessary to
116  accommodate data sparsity, and the strict convex edges for grouping among correlated variables.
117  Inspired by MelonnPan and MIMOSA, we propose an improved prediction method for
118  individual metabolites using microbiome information in the same biological samples (as matched
119  samples or paired samples), called "Elastic Net Variable Importance Model (ENVIM)". It
120  improves upon ENM algorithms by weighing microbial gene features using random forest
121 variable importance (VI) to enhance the contribution of most prediction-informative genes.
122 ENVIM outputs predicted metabolites from matched microbiome samples, as well as genes and
123  their weights informing metabolite prediction.
124 In this paper, we present the development, application, and evaluation of the new method
125  ENVIM. We compare it against MelonnPan in three datasets generated from oral, gut, and
126  vaginal samples, so that we can also compare the metabolite prediction among different body
127  sites. The preditors can be three different gene family data types, e.g., metagenome only,
128  metatranscriptome only, and the combination of both metagenome and metatranscriptome data.
129  The top predictable coumpounds have been reported in all these three datasets from three
130  different body sites. Enrichment of some prediction contributing species has been detected.
131
132
133 MATERIAL AND METHODS
134
135 1. Cohort and data description
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136  In the following section, we describe the microbiome and metabolome data used for the new
137  method development and application, alongside the three contributing studies.

138

139  ZOE 2.0 study data

140  ZOE 2.0 is a community-based molecular epidemiologic study of early childhood oral health in
141 North Carolina (11, 12). The study collected clinical information on preschool-age children’s
142 (ages 3-5) dental cavities (i.e., referred to early childhood caries or ECC) (13) and supragingival
143  Dbiofilm samples from a sample of over 6,000 children (14). A subset of participants’ biofilm
144  samples underwent metagenomics, metatranscriptomics, and metabolomics analyses, under the
145  umbrella Trans-Omics for Precision Dentistry and Early Childhood Caries or TOPDECC

146  (accession: phs002232.v1.pl) (11). As such, metagenomics (i.e., shotgun whole genome

147  sequencing or WGS), metatranscriptomics (i.e., RNA-seq), and global metabolomics data (i.e.,
148  ultra-performance liquid chromatography-tandem mass spectrometry) (5, 15, 16) from

149  supragingival biofilm samples of ~300 children, paired with clinical information on ECC are
150  available. After exclusions due to phenotype and metabolite missingness described in a previous
151  publication (5), the joint microbiome-metabolome data include 289 participants. There are 503
152  known metabolites included in the ZOE 2.0 dataset. Metagenomics and metatranscriptomics data
153  in reads per kilobase (RPK) were generated using HUMAnN 2.0. Here, we use species-level
154 (205 species), gene-family (403K gene families), pathway (397 pathways), and metabolome (503
155  metabolites) data.

156

157  Lloyd-Price study data

158  The Lloyd-Price dataset (2) was obtained from the Inflammatory Bowel Disease multi-omics
159  database (https://ibdmdb.org). It is derived from a longitudinal study that sought to generate

160  profiles of different types of omics data among 132 participants for one year and up to 24 time
161  points. The study’s several different types of omics data include WGS shotgun metagenomics,
162  RNA-seq metatranscriptomics, and metabolomics. The corresponding metadata include

163  demographic information such as occupation, education level, and age. These gut microbiome
164  data are in counts per million (CPM) and were derived using functional profiles 3.0 in

165 HUMAnNN3.0. For this study, we merged data of individual gene families for 1638 samples for
166 130 subjects, and individual metatranscriptomics gene families for 817 samples for 109 subjects,
167  respectively. The merged metagenomics gene families data include about 2,741K gene families
168  and 1580 samples. Merged metatranscriptomics gene families data include about 1,079K gene
169  families and 795 samples. The metabolomics data were generated using LC-MS and include
170 81,867 metabolites and 546 samples for 106 subjects. Most metabolites have not been annotated
171 into known biochemicals and thus were excluded from prediction. After limiting the dataset to
172 known metabolites and removing “redundant ions” in "HMDB" ID, there remained 526

173  metabolites to be predicted.

174

175  Mallick study data

176  The Mallick data (9) comprised the main real-life dataset used in the development of the

177  MelonnPan method (9). They are derived from gut microbiome WGS shotgun sequencing from
178  two cross-sectional IBD cohort studies, namely the Prospective Registry cohort for IBD Studies
179  at the Massachusetts General Hospital (PRISM) and the Netherlands IBD cohort (NLIBD).

180  Gene-family data in RPK units were derived using HUMANN2.0 and normalized to reads per
181  kilobase per million sample reads (RPKM). The raw metagenomics gene-family dataset includes
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182 1 million gene families. The investigators (9) filtered out genes with low abundance and

183  prevalence resulting in a processed dataset of 811 genes available in the R package Melonnpan
184  (melonnpan.training.data and melonnpan.test.data) for 222 total subjects. The microbiome data
185  have been pre-processed and normalized into relative abundance. The metabolite abundance data
186 (8,848 metabolites and 220 subjects) have been made available by Franzosa et al (17). Those
187  authors used 466 metabolites for analyses, a subset that was confirmed experimentally against
188  laboratory standards prior to application in Melonnpan. In the present study, we use information
189  from these 466 metabolites to compare the power of the new ENVIM method against

190  Melonnpan. To accomplish this, we normalized the metabolite abundance data for all 8848

191  metabolites into relative abundance (compositional format). Among them, we used the same 466
192  metabolites with laboratory standards as selected in the paper of Melonnpan (9). Data

193  missingness is not an issue in the Mallick metabolome data.

194

195 2. Metabolomics data pre-processing and normalization

196  An overview of the approach for metabolome data is presented in Figure 1 and elaborated in
197  detail below.

198

199  Metabolomics missing data imputation: ZOE 2.0 and Lloyd-Price studies. The proportions of
200 missing metabolite data are small in the ZOE 2.0 and Lloyd-Price studies. In ZOE 2.0, 87% of
201  metabolites have some missing data whereas 58% have missing values in Lloyd-Price. To

202  address missingness in these two cohorts, we applied a rigorous feature-wise Quantile

203  Regression Imputation of Left-Censored data (QRILC)(18) to impute missing metabolite values
204  and avoid underestimated metabolite-level variance, as in a previous publication (5). All 503
205 metabolites in ZOE 2.0 have <90% missing data among the 289 included participants. We

206  applied a similar preprocessing filter for the Lloyd-Price data (i.e., removing outlier subjects,
207  SuppFigure 1), resulting in the exclusion of 15 outlier subjects with the largest numbers of
208  missing metabolite values, as well as outlier metabolites with >90% missing values.

209  Consequently, we carried forward to analyze 522 metabolites in 531 samples from the Lloyd-
210  Price data.

211 The application of the QRILC imputation method departed from a natural log data

212 transformation for the imputation step and an exponentiation to back transform the data to RPK
213  (in ZOE 2.0) or CPM (in Lloyd-Price) scales. Because MelonnPan requires metabolite data to be
214 inputted as compositional, we converted RPK and CPM imputed data to a compositional format
215  before predictive modeling.

216

217  Metabolites Filtered by Metabolic Pathways (ZOE 2.0, Lloyd-Price and Mallick)

218

219  We used the MetaCyc database to retain only “reactive” metabolites. To achieve this, we

220  considered metabolites” membership in any MetaCyc metabolic pathway, reflecting reactions
221  between bacteria and metabolites, and carried out the following steps:

222

223  (1). In the MetaCyc database, we identify metabolites in each of the pathways predicted by

224  metagenomics data in Functional Profile 2.0 generated by HUMAnN 2.0 (ZOE 2.0 and Mallick
225  data) and Functional Profile 3.0 generated by HUMAnN 3.0 (Lloyd-Price data).

226
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227  (2). We used metabolites labels (KEGG id, HMDB, PUBCHEM, and metabolite name, provided
228  in Metabolome data annotation, provided by manufacturer) in each of the three datasets, as the
229  mapping IDs for each metabolite.

230

231 (3). In MetaCyc, regardless of the metabolite label, only one unique MetaCyc “weblink” or

232 universal mapping id is returned if the metabolite is in the database. This way, reactive

233  metabolites identified in step 1 can be matched with metabolites identified in step 2.

234  This way, we identify metabolites that are in the observed pathways. Finally, we filter out

235  metabolites with low abundance (metabolites with mean relative abundance <10™*) and low

236  prevalence (metabolites with >10% non-zero values). Consequently, there were 149 metabolites
237  inpathways in ZOE 2.0, 125 in Lloyd-Price, and 251 in the Mallick data. Of note, no pathway
238 information exists in the Mallick data. To compare the prediction of metabolites in pathways
239  with the prediction of all metabolites, we considered both sets of metabolites in our analyses.
240

241 3. Microbiome data pre-processing and normalization

242  An overview of the approach for microbiome data is presented in Figure 1 and elaborated in
243  detail below. First, we matched gene family-level microbiome data with metabolome data by
244 participant or sample unique identifier. Then, the scaled (RPK, RPKM, or CPM) gene family
245  abundances were converted to compositional data, relative to the total per sample. Then, we

246 filtered out gene family features with low relative abundance (mean relative abundance <5x107)
247  and low prevalence (percentage of zeros in >90% of the samples) and thus kept 0.5% - 5% of
248  gene family features. The same procedures were performed for both metatranscriptomics (briefly
249  referred to as “RNA” thereafter) and metagenomics data (briefly referred to as “DNA” hereafter)
250 thereafter, respectively. When both DNA and RNA data (briefly as "BOTH" hereafter) are

251  considered predictors, a gene name may correspond to two “gene features”, one for each data
252  type. The same data pre-processing and normalization procedures were followed for three

253  cohorts, with sample sizes and feature numbers presented in Table 1. To prevent overfitting

254  when evaluating ENM and ENVIM, we divided samples into training (75% of subjects) and

255  testing datasets (25% of subjects).

256

257 4. The existing ENM method for microbiome data-based metabolite prediction

258

259  As mentioned previously, the existing method available for predicting metabolite abundance
260 using metagenomics data is MelonnPan(9) (Model-based Genomically Informed High-

261  dimensional Predictor of Microbial Community Metabolic Profiles). In this study, in MelonnPan
262  we used all filtered metagenomic gene family features in the 10-fold cross-validated elastic net
263  model (ENM)(19) to predict metabolite abundance (Equation 1).

264

265 However, using all filtered metagenomic gene family features in the model may dilute the effect
266  of some important gene family features contributing to the prediction of metabolite abundance.
267  This limitation can be improved upon, and therefore, in this paper, we set out to improve the
268 ENM and develop a new algorithm.

269

270  The MelonnPan software was downloaded from Github

271 (https://github.com/biobakery/melonnpan) or in Melonnpan Package in R, the CSV output file
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272 “Predicted Metabolites.txt” (Train) and “MelonnPan_Predicted Metabolites.txt” (Test) are used
273  as the prediction results of MelonnPan.
274
275
276  Elastic net model (ENM) assumes the model,
Vi = xi, ﬁ + €,
277  where f = (ﬂo, By o) ﬁp)’ and f, the ENM estimator of §3, is found by minimizing the objective
278  function of ENM,

N p
1 l1-«a
Leww =557 2 Ot = XiB)* + 2 Y {=— 5} + alf}
i=1 =1

279

280 Equation 1

281

282

283 5. Evaluation Methods

284

285  We used Cohen’s criterion (20), to define Well-Predicted (WP) metabolites as those with

286  Spearman correlation >0.3, and those with correlation <0.3 as poorly predicted. The predictive
287  performance of the new method ENVIM is evaluated by comparing it against MelonnPan.

288  Additionally, we compare Spearman correlations and mean square error (MSE) between the
289  predicted and observed metabolites in both the training stage and the testing stage for all the
290 three datasets and both methods.

291

292 RESULTS

293

294 1. The improved ENM based on variable importance score (ENVIM)

295

296  The new algorithm is based on ENM, as the Elastic Net Variable Importance Model (ENVIM)
297  (Equation 2). The strategy in ENVIM and the comparison between ENM and ENVIM are

298  shown in Figure 2. Because ENM assumes that both independent and dependent variables

299  follow a normal distribution, we rank-transform each gene family’s feature to a normal

300 distribution by using the rntransform (21) function in the R package GENABEL for training data
301 and testing data, respectively. The training metabolite abundance data are transformed to a

302 normal distribution by Box-Cox transformation. After fitting the model in the training data,
303 predicted metabolite abundances are transformed back to relative abundance with 1 being

304  determined by the training metabolite abundance data.

305

306 Including all gene families into the model could make the cross-validated MSE larger, whereas
307 including only a small part could make the error larger. Therefore, to identify a model with the
308 minimum cross-validated error one needs to iterate different numbers of gene families. Because
309  we prioritize gene families with high importance relative to metabolites, we use a nonlinear
310  regression model to determine the importance of gene families for each metabolite. We train a
311  cross-validated random forest model(22) by using the training data and use var/mp function in
312 the caret package(23)in R to find the scaled importance score (0-100) between each independent
313  feature and the metabolite abundance. We introduce a unique step that uses the scaled variable
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314  importance score to classify gene families in different category intervals into the ENM, for
315  example, gene families from 90 to 100. We use glmnet (24) package in R to run cross-validated
316 ENM and choose penalty parameters for each model.
317
318  In the training stage, we divide the importance score from 0-100 into 10 category intervals (90-
319 100, 80-100,..., 10-100, 0-100) and remove the intervals without gene families. We consider
320 different sets of gene families with different importance scores into the ENM. Gene families are
321  the independent variables, and metabolite abundances are the dependent variables. For each set
322  of gene families, we conduct a 10-fold cross-validated ENM and build 10 models with different
323  values of the tuning parameter 4, ranging from 0 to 1. For each model, we measure the MSE
324  between the measured metabolite abundance and the predicted values to determine the best
325 model (i.e., the model with the lowest MSE). To maintain reproducibility, we maintain the same
326  random seed and permute the same fold index number in the ENM.
327
328  In the testing stage, for the prediction of each metabolite, we use a weight matrix of coefficients
329  of gene families from the best model with the lowest MSE identified during the training stage.
330 Because we previously transformed the compositional metabolite abundance data into
331  compositional metabolite abundance per hundred and used Box-Cox transformation, we
332  transform the predicted metabolite abundance data back to the original scale based on 4
333  calculated in the training step. We evaluate the prediction of testing metabolite abundance by
334  using the Spearman correlation between measured and predicted metabolite abundance data.
335
336 ENVIM assumes the following model:

Vi = xi, ﬁ + €
337 where B = (Bo, By, - ﬁp)’ and BENVIM = argming mingeg Lgyyim (k) , the ENVIM estimator
338 of
339  f,is found by minimizing over k and £ the objective function,

1 N l 2 p 1-«a 2
Lenyim (k) = ﬁZ()’i —x;MB)* + Az Sk,j {T,BJ + a|ﬁj|}-
i=1 j=1

340  where we define VI; as the variable importance score for the jth variable given by a random
341  forest, S, = {Sk' j};} =1 {VI]- > k}j;l is the variable selection indicator vector giving 1 if the

342  importance score for the jth variable is larger than the importance score k, M, = diag{(1, S)} is
343  the corresponding diagonal variable selection matrix that includes the intercept term, and € is a
344  set of the candidate k values. € is defined adaptively so that it covers the range of the variable
345  importance scores reasonably. In our analysis, we set £ = {0,10,20,...,90}.

346

347  Equation 2

348

349  In the following sections, we present three key differences between MelonnPan and

350 ENVIM for predicting individual metabolites (Figure2).

351

352 (1) Transformation of metabolite abundance data into a normal distribution.

353  To meet the assumption of ENM, MelonnPan transforms relative metabolite abundances with the
354  arcsin square root operator, whereas we use Box-Cox transformation in ENVIM. To test
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355  normality, we compare the p-values of the Shapiro test statistics for both Box-Cox (Equation 3)
356  and the arcsin square root transformations of metabolite abundances. In Figure 3a, the boxplots
357 illustrate the distribution of -log10 of the p-values for all three data sets transformed by Box-Cox
358  and arcsin square root and demonstrate that -log10 p-values for the Box-Cox transformation are
359  greater than those applied with the arcsin square root transformation. In Figure 3b, in the scatter
360 plot, -logl0 p-values of almost all the metabolites applied with the Box-Cox transformation are
361 more normally distributed than those applied with the arcsin square root transformation,

362  implying that Box-Cox transformation yields better normal approximation than the arcsin square
363  root transformation for most of the metabolites.

364

365

366  Box-Cox transformation

y = PR x #* 0,

log(y), x=0
367  where y is the relative abundance.
368
369 Equation 3
370
371 (2) Different sets of gene families are carried forward to the prediction model.
372  MelonnPan uses all gene families in the training data in the ENM and ultimately predicts
373  metabolites in the testing stage using the same features. However, regressing against all gene
374  families may dilute the effect of important gene families. Thus, unlike MelonnPan, we use a
375  variable importance criterion to select different sets of gene families and include them in the
376  prediction models.
377
378  (3) a range in ENM
379  Alpha (@) is the weight between L, and L, penalty terms in the ENM, and in combination with A
380  values, the set of values that minimizes the 10-fold cross-validated MSE (Equation 1) is chosen.
381  When «a is 0, the model reduces to a ridge regression model which has the advantage of dealing
382  with highly correlated independent variables; when « is 1, the model becomes a lasso regression
383  model which has a variable selection capacity; when the a is between 0 to 1, the model includes
384  the advantages of ridge regression and lasso regression. In MelonnPan, the range of a values
385  does not include 0 and 1, which excludes either the Ridge or LASSO regression models, and it
386  may not consider variables with high importance. The penalty term alpha in our ENVIM
387 includes 0 and 1. By allowing a larger range of @ we can include the case that is the Ridge
388  regression model that does not exclude variables with high importance.
389
390 The ENVIM software written in R statistical language is available in Github
391 (https://github.com/jialiux22/ENVIM). The "ENVIM_predict " function is for metabolite
392  prediction only, and the ENVIM function is for metabolite prediction and evaluation given
393  metabolomics data in the testing set is also available. Both will output weight matrix. The weight
394  matrix in testing has the same values as in training if they have the same number of genes.
395  Usually, testing has a smaller number of genes to be used for prediction, so the weight matrix in
396 testing can be a subset of the weight matrix in the training set due to the smaller number of genes
397 in the testing set.
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398

399 2. Method Comparison for Prediction of Individual Metabolites in Three Datasets

400

401  Correlation-based method comparison. We used microbial gene family data to predict the

402  individual metabolites in the matched samples (that are from the same biological sample in that
403  one proportion is for microbiome and the other is for metabolome). We compared the prediction
404  results between ENVIM and MelonnPan, in terms of Spearman correlation and mean square

405  error (MSE) between predicted and observed values of each of the filtered metabolites, in three
406  datasets (ZOE 2.0, Mallick data, and Lloyd-Price data) at each of the three data types of

407  microbial gene families as the DNAseq, RNAseq, and BOTH (of RNA and DNA). MSE in the
408  testing set is for comparison between methods (Supplemental Figure 2).

409

410  We have summarized the prediction results (Table 2, Figure 4) for all metabolites in terms of
411 Spearman’s correlation according to three aspects: method comparison, modality comparison,
412  and microbial community (i.e., body site) comparison. Overall, ENVIM produces higher

413  percentages of well-predicted metabolites than MelonnPan in all three data cohorts, in both

414  testing and training sets, and for DNA, RNA, and BOTH when available (Table 2).

415

416  In general, RNA gene family data produce higher percentages of well-predicted metabolites than
417  DNA data. In Lloyd-Price data, RNA-only data typically give higher percentages of well-

418  predicted metabolites. In ZOE 2.0 and Lloyd-Price data, both DNA and RNA predictors produce
419  similar percentages but are not always superior to the DNA-only or RNA-only data-based

420  predictors. However, results emanating from both DNA and RNA predictors are never the worst.
421  Not surprisingly, the well-predicted percentage of metabolites in testing sets is lower than in the
422  training set (Table 2). The boxplots of Spearman correlations between the predicted and

423  observed metabolites for all metabolites (Figure 4) show the overall distribution of Spearman
424  correlation and suggest that the correlation between the ENVIM-predicted and the observed

425  metabolites is higher in RNA than in DNA, but slightly lower than in both DNA and RNA. In
426  testing, MelonnPan only predicts the predictable metabolites (defined as Well-Predicted

427  metabolites in Training set, last columns in Table 2); while it is not appropriate to compare the
428  correlation distribution for all metabolites as in Figure 4 for MelonnPan. When comparing the
429  distribution of correlation (Figure 4) between the ENVIM-predicted and the observed

430  metabolites in ZOE2.0 and Lloyd-Price, the combination of both DNA and RNA appears to have
431  higher correlations than the DNA only or RNA only in the training set. In testing, RNA data

432  produce the highest median correlation. All three gene family data result in similar correlations
433  in ZOE 2.0. It must also be noted that the highest proportion of well-predicted metabolites is
434  found in the gut microbiome (Lloyd-Price) study, then in the vagina microbiome (Mallick study),
435  and the lowest was in the supragingival dental biofilm (ZOE 2.0 study) (Table 2). Because in
436  both the Lloyd-Price and Mallick datasets prediction correlations are higher than in ZOE 2.0
437  (Figure 4), it is reasonable to suggest better metabolite prediction in these sites and microbial
438  communities than in the oral cavity.

439

440  Besides comparing MelonnPan and ENVIM in terms of percentages of well-predicted

441  metabolites, one can directly compare the correlations of each predictable metabolite that is

442  predicted by both methods (Figures 5 and 6). In the training set (Figure 5), all DNA, RNA,

443 BOTH DNA, and RNA, and in all three datasets, we find that the majority of these metabolites
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444  have higher correlations in ENVIM compared to MelonnPan. The same holds in the testing set
445  (Figure 6): most points are along the diagonal line but slightly above it, suggesting that

446  metabolites predicted by ENVIM have higher correlations with the observed ones compared to
447  those predicted by MelonnPan. We also find that there are more metabolites in the

448  "ENVIM>0.3" category (blue) than in the "MelonnPan>0.3" category (red). This is a reflection
449  of more well-predicted metabolites found after ENVIM than after MelonnPan prediction.

450

451 3. Methods comparison for prediction of individual metabolites in three datasets and the
452  context of observed metabolic pathways

453

454  Metabolites may be associated with the microbiome in the context of metabolic pathways that
455 involve interactions between host, microbiome, and environment. We further test the methods’
456  predictive power for metabolites that are found in microbiome data-based metabolic pathways
457  generated by metagenomics and metatranscriptomics analysis in HUMANN?2. Gene families are
458 filtered by metabolic pathways as previously described in the methods section. All conclusions
459  regarding the prediction of metabolites still hold in this scenario. Additionally, when comparing
460 the percentages of well-predicted metabolites among all metabolites (first four columns of Table
461  2) and the metabolites found in pathways (Table 3), we find higher predicted percentages for the
462 latter.

463

464 4. Methods comparison based on MSE

465

466  We use boxplots to compare the mean square errors (MSE) between measured and predicted
467  metabolite abundance between ENVIM and MelonnPan both for training and testing models,
468  with application to training data and testing data for all three studies. We only compare well-
469  predicted metabolites identified by MelonnPan in training because MelonnPan only generates
470  results for these metabolites. The boxplot demonstrates that the distribution of MSE in the

471  MelonnPan model is approximately the same as the distribution of MSE in ENVIM

472  (Supplemental Figures 2). There is no significant MSE difference between ENVIM and

473  MelonnPan suggesting that both models predict these metabolites well, but the advantage of
474  ENVIM is that we can predict substantially more well-predicted metabolites than MelonnPan—a
475  consequence of MelonnPan’s inability to build a well-performing model in the training step.
476

477

478 5. Prediction Results of Individual Metabolites and Gene Weights in ENVIM

479

480  The top 50 predicted metabolite compounds from ENVIM across three datasets are shown in
481  Figure 7. For Lloyd-Price and ZOE 2.0, we choose the gene family data that has the best

482  ENVIM prediction power to show their top predicted metabolites, which are the DNA gene

483  family data (124 metabolites as 25% among NM, Table 2) in ZOE 2.0, and the RNA gene family
484  data (393 metabolites as 75% among NM, Table 2) in Lloyd-Price. The Mallick study only has
485  DNA data available for metabolite prediction. Lloyd-Price data and Mallick data have measured
486  metabolites in >1 metabolome LC-MS flatforms (see Data Description Section) so that one

487  metabolite may appear >1 time in the top list, for example, the metabolite so-called Urobilin
488  appeared in the top 50 for >1 time.

11
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489  The summarized prediction results can be seen in Supplemental Table 1. To interpret the

490  results, we take the carbohydrate pathway as an example that may provide the bacteria nutrition,
491  so a few compounds have been well-predicted by the RNA gene data. We are aware the

492  prediction in this paper is not about longitudinal causal relation but for mathematical prediction.
493  Here we show four examples (Figure 8A, B, C, D for Trehalose, Maltose, Ribose Stachyose)
494  that also have high Spearman correlation in the log10 scale of compositional data.

495

496  Gene list (Weight matrix) comparison across three datasets, in ENVIM (Supplemental Table
497  2). We extract gene names that are non-zero in the weight matrix for each metabolite, dataset,
498  and data type. We aim to compare gene names among three datasets and find the probability of
499  predicting metabolites by using a different dataset. We find that there are not many overlapped
500 genes (n < 10) between ZOE 2.0 data and Lloyd-Price data (Data not shown).

501

502  Gene set enrichment analysis (GSEA) within Species in ZOE 2.0. We perform gene set

503  enrichment analysis to find the over-represented species of the gene families when we build the
504  prediction model on metabolite abundance. We extract the weight matrix, merge the important
505  gene families with non-zero values among all well-predicted metabolites. We get the summation
506  of the rank of each gene family in the weight matrix based on the absolute value of the

507  coefficient for each gene family. We use gene families data at the species level to find the

508  species corresponding to those important gene families. For each species of bacteria, we compare
509 the general difference in the cumulative distributions of gene families’ rank scores between each
510  species and background species and find Kolmogorov—Smirnov (KS) p-values. We use the

511  Benjamini—Hochberg false discovery rate (FDR) approach to correct the p-values and get g-

512  values. There are 36 species in ZOE 2.0 DNA data and 73 species of bacteria in ZOE 2.0 RNA
513  data that show significantly (q<0.05) over-represented species during the gene set enrichment
514  analysis (Figure 9).

515

516  Here, we used a different procedure for the gene set enrichment tests compared to what

517  MelonnPan (9) used. They pooled genes in genera instead of species, due to the small number of
518  genes in each species in their prediction procedure. We keep many more genes than MelonnPan
519  so that we can address the ranks of genes instead of the binary prediction power of genes (i.e.,
520  whether a gene is used for prediction or not). Our GSEA strategy also can help avoid the bias to
521  pick up the species that have larger numbers of genes.

522

523

524 6. Computational speed (compare to others):

525

526  Our developed method of improving ENM could run on the software on R and accurately predict
527  metabolites. The mean prediction time for each metabolite for DNA gene families data is 5.2
528  minutes for ZOE2 data (6.1 minutes for Lloyd-Price Data, 2 minutes for Mallick data); mean
529  prediction time for RNA gene families data is 4.2 minutes for ZOE2 data (3.7 minutes for Lloyd-
530  Price Data); mean prediction time for both DNA and RNA gene families data is 4.5 minutes for
531  ZOE2 data (3.6 minutes for Lloyd-Price Data) with MacOS Big Sur Version 11.4.

532

533

534  DISCUSSION

12
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535

536  We propose a new computational method for metabolite prediction using microbiome data-based
537  improved Elastic Net Models. We chose different gene-family sets based on SVM-based variable
538  importance scores and modified the existing ENM to accommodate the unique features of

539  microbiome and metabolome data. The newly developed method ENVIM predicts metabolites
540  using metagenomics, metatranscriptomics, or both data types. We apply the algorithm in three
541  datasets, i.e., ZOE 2.0, Mallick, and Lloyd-Price studies. These three studies are mostly all we
542  can find that have both microbiome and metabolome data in the same matched samples, with
543  reasonably large sample sizes. Our work is the first time that researchers can use microbiome
544  data to predict metabolites in more than one study, and different body sites. In addition, ZOE 2.0
545  and Lloyd-Price studies have both metagenomics and metatranscriptomics, so that we can for the
546  first time, compare the prediction performance using the different gene family modalities (or
547  called data types).

548

549  We evaluated metagenomic and metatranscriptomic predictors and compared the prediction

550  performance between the previously developed MelonnPan and ENVIM, among DNA, RNA,
551  and Both DNA and RNA gene families data using (1) the proportion of “well-predicted”

552  metabolites defined as those with Spearman correlation between measured and predicted

553  metabolite values > 0.3, (2) distribution of Spearman correlation and (3) MSE. The correlation
554  suggests Both (using DNA and RNA jointly) provides robust prediction results that are never the
555  worst among the three data types. Whether DNA or RNA have better prediction performance
556  depends on the studies. The percentage of well-predicted metabolites is higher for metabolites
557  that are in a metabolic pathway that is observed in microbiome data, and this supports the

558 interaction between microbiome and metabolites may highly be related in known metabolic

559  pathways. Across all datasets and data types, with or without the pathway filter, we find ENVIM
560 always outperforms MelonnPan. We also find the prediction performance is better in Lloyd-Price
561  and Mallick than in ZOE 2.0, which may suggest the association between microbiome and

562  metabolites are stronger in the gut than in the oral cavity since oral metabolites may be more

563 affected by environmental factors like food intake. More microbial omics studies are needed to
564  compare the prediction power across different body sites and to understand how microbiome
565 interact with metabolites differently at different body sites.

566

567  We are aware the data-preprocessing step has larger effects on the prediction performance. The
568  distribution assumption, normalization, transformation, outlier filtering, and how to handle

569  missing data are important to be considered before performing prediction. We have touched base
570  on that, but potential further exploration may be needed.

571

572  The numbers of the measured metabolites and the numbers of the to-be predicted metabolites in
573  each of the three studies are very different due to the difference of the technology platforms, and
574  the available data. As what we proposed is not for causality but for mathematic prediction, we
575  show examples of four metabolites (Figure 8) that may provide nutrition to species.

576

577  As a limitation, same as MelonnPan, the experimental design hasn't been considered in this

578  framework for ENVIM, including time course or disease statuses. As the purpose of this study is
579  prediction, it's reasonable to think that prediction is not necessary to be conditional on the

580  experimental design. Instead, different disease statuses may have different microbiome profiles

13
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581  and have corresponding different metabolomes. Therefore, this is a limitation but not a drawback
582  of prediction performance. Another future direction is more of the metabolite set tests (or

583  pathways analysis) according to the predicted metabolites.

584

585  As asummary, we anticipate the newly developed ENVIM method for microbiome-based

586  metabolite prediction provides good prediction performance and will be used to infer individual
587  metabolites experimental design when only microbiome data are available, or in the condition
588  that a proportion of samples in a study have no metabolome profile.

589
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599  Contribution to the Field Statement

600 Microbiome data are becoming increasingly available in large health cohorts yet metabolomics
601  data are still scant. While many studies generate microbiome data, they lack matched

602  metabolomics data or have considerable missing proportions of metabolites. Since metabolomics
603 is key to understanding microbial and general biological activities, the possibility of imputing
604  individual metabolites from microbial taxonomy or metagenomics is intriguing. Importantly,
605 current metabolomics profiling methods have unknown accuracy and are limited in their ability
606  to predict individual metabolites. To address this gap, we developed a novel metabolite

607  prediction method (ENVIM) based on the Elastic Net Model (ENM) using metagenomics,

608  metatranscriptomics, or both data types. ENVIM introduces an extra step to ENM to consider
609  variable importance scores and thus achieve better prediction power. The better prediction

610  capability of ENVIM than the existing MelonnPan in three datasets generated from oral, gut, and
611  vaginal samples, suggest the potential usage in a variaty of studies from different body sites. As a
612  summary, we anticipate ENVIM provides good prediction performance, and will be used to infer
613  individual metabolites experimental design when only microbiome data are available, or in the
614  condition that a proportion of samples in a study have no metabolome data profile.

615

616

617  Figure and Table legend for main content

618

619  Figure 1. Flowchart of data preprocessing in microbiome and metabolome

620  Mallick didn't use QRILC, the other two used.

621

622  Figure 2. Flowchart of Melonnpan and ENVIM. The three differences between them include
623  (red text) (1) Transformation of metabolite data (2) Gene family weights and (3) Penalty score.
624  The predictable metabolites are defined as the metabolites that have a significant Spearman

625  correlation with the adjusted g-value (testing whether the correlation is zero) below the default
626  threshold in the training set.
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627

628  Figure 3. (a) Boxplot of -log10 of shapiro test p-values for relative metabolites abundances in all
629 three data applied with box-cox transformation (we used) and arcsin square root transformation
630 (Melonnpan used). (b) Scatter plot for comparing -log10 of p-values made by shapiro test

631  (normality) between box-cox transformation (x-axis) and arcsin sqrt (y-axis) transformation.

632  Almost all of the points are above the y = x line, which means that the -log10 of p-value after
633  box-cox transformation is smaller than after arcsin sqrt transformation, and normality after box-
634  cox transformation is better.

635

636  Figure 4. Evaluation using Spearman correlation in training stage and testing stage between

637  predicted values and the observed values by using DNAseq data only, RNAseq data only, and
638  both for ZOE2.0 data, Lloyd-Price Data, and Mallick data.

639

640  Figure 5. For DNA, RNA, and both in each study and the training set, this shows the scatter plot
641  of Spearman correlation in ENVIM (y-axis) and Melonnpan (x-axis). Spearman correlation is
642  based on observed metabolite abundance and predicted values. If our calculated correlation is
643  NA, the metabolites will be included in this figure.

644

645  Figure 6. For DNA, RNA, and both in each study and the testing set, this shows the scatter plot
646  of Spearman correlation in ENVIM (y-axis) and Melonnpan (x-axis). Spearman correlation is
647  based on observed metabolite abundance and predicted values.

648

649  Figure 7. The best predicted 50 metabolite compounds (x-axis) in the three studies by ENVIM in
650 the testing set. For Lloyd-Price and ZOE2.0, we choose the gene family data types that have the
651  best ENVIM prediction power to show their top predicted metabolites, based on Table 2.

652

653  Figure 8. Scatter plots of examples of well-predicted metabolites in ZOE 2.0 by ENVIM. The X-
654  axis is observed metabolites; the y-axis is for predicted metabolites. Both are in log10 scale of
655  the compositional data for normality. ECC is for Early Childhood Caries, ECC =0 (about 50% of
656  total samples in ZOE 2.0) is for the healthy group, and ECC=1 (about 50% of total samples in
657  ZOE 2.0) is for the ECC case group. r is for Spearman correlation.

658

659  Figure 9. Taxonomic enrichment of metabolite predictive species for the most contributing

660  species to metabolite prediction, based on ZOE2.0 DNA or RNA by ENVIM. The top 20

661  significant over-represented bacteria with the smallest Q values (Q < 0.05) for ZOE 2.0 data. The
662  Q-value is based on the Kolmogorov-Smirnov (KS) test p values after FDR correction. (a) DNA
663  data (b) RNA data.

664

665 Table 1. Sample size and number of selected gene family features.

666  Testing genes: genes can be used in the testing set.

667  Training genes: genes can be used in the training set.

668  Genes in both: genes are in both training and testing sets.

669

670  Table 2. Prediction results (first four columns of numbers) in terms of Spearman correlation for
671  all metabolites to be predicated. Based on the “well-prediction” criterion, defined as Spearman
672  correlation > 0.3 between the observed and the predicted metabolites, the numbers of well-
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673  predicted metabolites with different prediction methods, datasets, and modality levels (DNA,
674 RNA, and BOTH), are presented for comparing MelonnPan and ENVIM. NM is the number of
675  metabolites to be predicted. Percentages in parentheses (%) represent the number of well-

676  predicted metabolites divided by the total number of metabolites (NM) to be predicted in each
677  study. The Mallick cohort has only metagenomics data available.

678  The last column of numbers is for the numbers of "predicable metabolites", that are defined by
679  MelonnPan, also seen in the Figure 2 legend.

680

681  Table 3. Prediction results via Spearman correlation for metabolites that are found in metabolic
682  pathways. Based on the criterion of Spearman correlation >0.3 between observed and predicted
683  metabolites, we present the numbers of well-predicted metabolites with different prediction

684  methods, datasets, and modality levels (DNA, RNA, and both), and comparing between

685 MelonnPan and ENVIM. NM is the number of metabolites to be predicted. Percentages in

686  parentheses (%) represent the numbers of well-predicted metabolites divided by the total number
687  of metabolites (NM) to be predicted in each study. The Mallick cohort has only metagenomics
688 (DNA) data available and no pathway RNA data. The results from the Mallick cohort here are
689  only based on filters (filtering out metabolites with mean relative abundance <10*) and low

690 prevalence (metabolites with >10% non-zero). In ZOE 2.0 and Lloyd-Price, metabolite data

691  presented in this table have been selected according to membership in pathways and also satisfy
692  the above-mentioned filtering criteria.

693

694

695  Figure and Table legend for supplemental files

696

697  Supplemental Figure 1. Boxplot of -log10 of mean square error for DNA, RNA, and Both in
698  each of the three studies. None of the nominal p values to compare ENVIM and MelonnPan are
699  significant as all of them >0.1.

700

701 Supplemental Figure 2. Diagnosis for outlier samples. The X-axis is the cumulative proportion
702  of samples, and the y-axis is number of non-missing values. The left lower tail dots that are far
703  from the rest may be considered as sample outliers. For ZOE 2.0 data and Lloyd-Price data, we
704  need to remove the 10 outliers subjects from ZOE 2.0 data and 15 outliers from Lloyd-Price data
705  to ensure the distribution of non-missing values is continuous.

706

707  Supplemental Table 1. Overall prediction results, for all gene family data types, all three

708  datasets, and both methods, in Spearman correlation and MSE.

709

710  Supplemental Table 2. The gene lists in DNA or RNA, based on the highest rank or the average
711 rank among metabolites, that contribute to metabolite prediction in ZOE 2.0 by ENVIM. Rank is
712 based on the weight matrix in ENVIM. A larger number of ranks suggests more important gene
713  families.

714

715

716

717

718
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Figure 1 .
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Training | Testing | Genes | Subjects | Metabolites | Metabolites
genes genes in both (in
pathways)
ZOE | DNA (total 1355 1276 1214 289 503 149
2.0 403k genes)
RNA (total 1805 1826 1667 287 503 149
403k genes)
BOTH (total 3158 3183 2948 287 503 149
806k genes)
Lloyd- | DNA (total 726 712 633 359 522 125
Price | 2741k genes)
RNA (total 726 704 600 282 522 125
1079k genes)
BOTH (total 1424 1508 1211 269 522 125
3820k genes)
Mallic | DNA (total 811 811 811 220 466 251
k 1000k genes) (Filter
Only)
Table 1
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ZOE 2.0
(NM=503)

DNA only

RNA only

BOTH DNA and
RNA

Mallick Cohort
(NM=466)

DNA only

Lloyd-Price
Cohort
(NM=522)

DNA only

RNA only

BOTH DNA and
RNA

Table 2

Training
(ENVIM)

356 (71%)

409 (81%)

423 (84%)

408 (88%)

501
(96%)

521
(100%)

518
(99%)

Training

(MelonnPan)

63 (13%)

157 (31%)

146 (29%)

239 (51%)

271 (52%)

298 (57%)

306 (59%)

Testing
(ENVIM)

124

(25%)

106 (21%)

110 (22%)

225 (48%)

322
(62%)

393
(75%)

381
(73%)

Testing

(MelonnPan)

47 (9%)

68 (14%)

73 (15%)

178 (38%)

193 (37%)

236 (45%)

232 (44%)

Predictable
metabolites
(Defined by
MelonnPan)

70

163

154

249

305

318

323
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ZOE 2.0 (NM=149) Training Training Testing Testing
(ENVIM) (MelonnPan) | (ENVIM) (MelonnPan)
DNA only 128 (86%) 44 (30%) 46 (31%) 24 (16%)
RNA only 140 (94%) 83 (56%) 59 (40%) 43 (29%)
Both DNA and RNA 143 (96%) 81 (54%) 64 (43%) 45 (30%)
Mallick Cohort (NM=251)
DNA only 231 (92%) 132 (53%) 94 (37%) 71 (28%)
Lloyd-Price Cohort (NM=125)
DNA only 123 (98%) 102 (82%) 75 (60%) 74 (59%)
RNA only 125 (100%) | 110 (88%) 102 (82%) | 93 (74%)
Both DNA and RNA 125 (100%) | 110 (88%) 107 (86%) | 96 (77%)
Table 3
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