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Abstract

Mycobacterium tuberculosis is one of the most consequential human bacterial pathogens, posing
a serious challenge to 21st century medicine. A key feature of its pathogenicity is its ability to adapt its
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transcriptional response to environmental stresses through its transcriptional regulatory network (TRN).
While many studies have sought to characterize specific portions of the M. tuberculosis TRN, a systems
level characterization and analysis of interactions among the controlling transcription factors remains to
be achieved. Here, we applied an unsupervised machine learning method to modularize the M.
tuberculosis transcriptome and describe the role of transcription factors (TFs) in the TRN. By applying
Independent Component Analysis (ICA) to over 650 transcriptomic samples, we obtained 80
independently modulated gene sets known as “iModulons,” many of which correspond to known regulons.
These iModulons explain 61% of the variance in the organism’s transcriptional response. We show that
iModulons: 1) reveal the function of previously unknown regulons, 2) describe the transcriptional shifts
that occur during environmental changes such as shifting carbon sources, oxidative stress, and virulence
events, and 3) identify intrinsic clusters of transcriptional regulons that link several important metabolic
systems, including lipid, cholesterol, and sulfur metabolism. This transcriptome-wide analysis of the M.
tuberculosis TRN informs future research on effective ways to study and manipulate its transcriptional
regulation, and presents a knowledge-enhanced database of all published high-quality RNA-seq data for
this organism to date.

Introduction

Mycobacterium tuberculosis is the leading cause of death from a single infectious agent and one
of the top 10 causes of death worldwide [1]. The evolutionary success of M. tuberculosis is, in part, due to
its adaptability to varying environments, which is largely driven by its transcriptional regulatory network
(TRN) [2—4]. The TRN coordinates the expression of genes across various environmental conditions such
as hypoxia, starvation, oxidative stress, and virulence. Given the global health impact of the pathogen, a
deep understanding of its TRN is of fundamental importance.

One approach to TRN elucidation, successfully applied to other microorganisms, is the
decomposition of a compendium of RNA-sequencing data (RNA-seq) using independent component
analysis (ICA) [5-7]. ICA decomposition of transcriptomic datasets has been shown to consistently
capture the underlying TRN structure in terms of sets of independently modulated genes, known as
iModulons. Unlike previously defined regulons from biomolecular data describing transcription factor-DNA
binding sites, iModulons are driven purely by statistical decomposition of transcriptomic data. The former
is a bottom-up molecular approach focusing on individual transcriptional regulators, while the latter is a
top-down global approach. ICA has already been performed on transcriptomic data compendia for E. coli,
S. aureus, and B. subtilis, and has enabled a dynamic reduction in the interpretation of complex TRN
responses and the discovery of new transcription factors [5—7]. While this statistical approach is useful for
providing structure to the complex interactions between transcription factors (TFs), the ICA approach is
heavily influenced by the volume of data available for analysis, as greater diversity of conditions in the
original dataset creates a more complete iModulon structure [8].

In order to gain deeper insight into the structure and operation of M. tuberculosis’ TRN, we
performed ICA decomposition using all publicly available RNA-Seq data. We compiled 657 high quality
RNA-seq expression profiles from NCBI Sequence Read Archives [9] for analysis, and extracted 80
robust iModulons. We then utilized iModulons to interpret transcriptional responses and discover
molecular actors in M. tuberculosis transcriptional regulation by: 1) quantitatively describing the
organization of the TRN and elucidating the function of new transcription factors, 2) defining
transcriptional shifts that occur across changes in carbon sources, oxygen levels, and virulence states, 4)
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clustering various transcription factors into a core stress response stimulon. All the work described in this
paper can be found at iModulonDB.org, an interactive portal for researchers to explore and download the
same data used in this study

Results

Independent component analysis of publicly available data reveals 80 transcriptional modules for
M. tuberculosis

In order to capture the spectrum of M. tuberculosis’s transcriptional response, we scraped all
publicly available transcriptomic data found in NCBI's Sequence Read Archive (SRA) and obtained 980
RNA-seq expression profiles from 53 separate studies [9] (Figure 1a). Each sample was processed
through a standardized data processing pipeline [citation forthcoming] to assess the dataset quality and
filter out poor quality profiles (See Methods, Figure 1b). The final dataset was composed of 657 samples,
spanning various conditions that describe M. tuberculosis’s response to various nutrient sources,
stressors, antibiotics, and virulence events. After the final dataset was obtained, a previously developed
ICA algorithm was used to decompose the data into 80 robust iModulons [10] (Figure 1b).

In order to provide biological interpretation of the results, iModulons were categorized by
associating the set of genes in each iModulon to knowledge types, including TF binding sites, KEGG
pathways, GO terms, or other associable knowledge found in the literature. An iModulon was considered
associated to a particular knowledge type if there was a statistically significant (FDR < .01) overlap
between the genes found in the iModulon and the knowledge type. Some iModulons were manually
annotated due to shared functions of constituent genes, or presence of deleted genes (See Methods). On
average, iModulons associated with transcriptional regulators could recall 66% of genes in the associated
regulon, whereas literature regulons could recall 40% of the genes in the associated iModulon (Figure
1d)

ICA also captured the activity of each iModulon across all 657 experimental conditions, which
were used to examine the response of M. tuberculosis to various environments. In order to minimize
batch effects between the 53 studies, activity levels for each project were centered to a reference
condition within the experimental subset [8]. The relative variance of iModulon activities can be
mathematically related to the amount of global gene expression variation that is explained by each
iModulon (Figure 1e). The iModulon with the highest contribution to expression variation is one of two
associated with DevR, a hypoxia onset transcriptional regulator. Altogether, the 80 iModulons account for
61% of the total variance in the dataset.

After examining the mapped knowledge types and iModulon activities, each iModulon was
assigned a functional category (Figure 1f). While most categories indicated a specific biological function,
some categories indicated specific properties of the dataset. For example, the ‘Unknown Function’
category contains iModulons that have been mapped to an established TF regulon, but the function of the
TF remains unclear. ‘Uncharacterized’ iModulons are those which had little overlap with known TFs or
knowledge types, but still contained a significant number of genes. Finally, ‘Single Gene’ iModulons are
those that track the expression of a single gene, and are treated as an artifact of the ICA decomposition
[10].

We generated searchable, interactive dashboards for each iModulon and gene in our dataset,
which are available at iModulonDB.org [11]. Since this genome-scale TRN covers all publicly-available
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high quality transcriptomic data as of August 20, 2020, other researchers are encouraged to use this site
to explore the genes and regulators of interest to them.

The ICA decomposition resulted in: 1) the identification of 80 sets of independently modulated
sets of genes across the entire data set (i.e., the iModulons) dramatically reducing the dimensionality of
interpretation of the 3,906-gene transcriptomic response, 2) the cataloging of the activity of the iModulons
under the 657 conditions, and 3) the functional annotations to the iModulons, resulting in a 61%
knowledge-based description of the variation in the data set (Figure 1e).

iModulons Capture the Activity of Known Transcriptional Regulators Zur and Lsr2

Two iModulons captured the action of the Zur and Lsr2 regulons, respectively. These iModulons
provide a good example of how iModulons complement regulons by recapitulating expected regulator
activity as well as suggesting roles under unexpected conditions. Zur is a zinc-responsive transcription
factor that is activated under conditions of low zinc concentrations, such as those found in virulence
conditions [12]. We found that the genes in one iModulon had significant overlap with genes in the known
Zur regulon, leading us to name it the Zur iModulon (Figure 2a). The iModulon was found to be highly
upregulated in macrophage infection conditions when compared to non-virulent controls, showing that the
Zur iModulon captures the same activation conditions as the Zur TF (Figure 2a) [13]. Interestingly, while
Zur is typically activated by zinc ions, the Zur iModulon exhibited high activities in both high and low iron
concentrations. This would suggest that Zur may also be sensitive to iron ions and may play a role in the
establishment of iron homeostasis together with the iron uptake regulator, IdeR. [14]

The Lsr2 TF acts as a global transcriptional repressor that controls the expression of genes that
are required for DNA organization, adaptation to oxygen levels, and chronic infections in mouse lung
models [15,16]. We examined the iModulon activity under virulence virulence conditions, and found that
Lsr2 may have two distinct responses depending on the cellular host (Figure 2b). During in vivo infection
of murine neutrophils, the activity of the Lsr2 iModulon significantly decreased. However, during infections
of mice macrophages (bone marrow derived (BMDM) or THP-1), the iModulon had significantly increased
activity [13,17]. This confirmed that the iModulon activity recapitulated the prior knowledge of the TF
under virulence conditions, but also suggested that Lsr2 regulation is dependent on the host cell type. We
also confirmed that the iModulon was activated during hypoxia conditions, which mirrors the expected
behavior of the TF [13].

iModulons Reveal New Function of Novel Transcription Factors

Since iModulons successfully capture the structure and function of the known M. tuberculosis
TRN, we further investigated if iModulons could discover new TF functions. Therefore, we examined the
activity of the Rv0681 iModulon to determine the function of the associated TF.

Rv0681 is an uncharacterized HTH-type transcriptional regulator that has been experimentally
shown to be phosphorylated by the PknH kinase [18,19]. The Rv0681 iModulon had significant overlap
with the predicted Rv0681 regulon, and thus was an ideal candidate for functional discovery (Figure 3a)
[2,4]. Upon examination, we found that a large proportion of the genes in the Rv0681 iModulon were
functionally annotated to the COG classification of “lipid transport and metabolism” (Figure 3b).
Additionally, the KstR TF, which is an important regulator for cholesterol metabolism in M. tuberculosis,
was also found within the iModulon [20]. Given these genes, we hypothesized that Rv0681 may be
involved in the regulation of lipid and cholesterol metabolism.
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To add additional insight to the possible function of the iModulon, we examined the activity of the
iModulon across three projects. In the first project, M. tuberculosis was grown on either dextrose or lipid-
only media, during exponential phase, stationary phase, or hypoxic exposure (BioProject: PRINA390669)
[21]. We found that a switch from a dextrose media to a lipid-only media led to a significant upregulation
in the Rv0681 iModulon activity, regardless of the growth phase at which the switch occurred (Figure 3c).
This would be consistent with a function in lipid catabolism.

In a second project, M. tuberculosis was first induced into a persistence state via hypoxia. The
bacteria was then reactivated via reaeration, and RNA-Seq was performed once a day for 4 days
(BioProject: PRINA327080) [22]. The Rv0681 iModulon had significantly decreased activity when
reactivating from dormancy (Figure 3c), suggesting that Rv0681 is important for hypoxia and dormancy
response, but is unnecessary when ample oxygen is available.

Due to the close relationship between lipids, hypoxia, and virulence, we examined a third project
that tested the infection of mouse BMDM (BioProject: PRINA478245) [3]. The iModulon was significantly
upregulated during infection of the macrophage when compared to non-infection controls at all time
points, confirming that the iModulon is involved with virulence as well. Altogether, we propose that
Rv068L is a transcription factor that regulates lipid metabolism (likely lipid catabolism) to promote survival
in stressful conditions such as hypoxia and infection.

Redefining the Core Lipid Response in M. tuberculosis

While individual iModulons can provide information about a single TF, one of their most useful
functions is to simplify organism-wide transcriptional responses. Given the associated role of Rv0681 to
lipid metabolism, we were interested in determining which other iModulons were activated under lipid
conditions. Within the dataset, a study examined the differentially expressed genes between dextrose-
and lipid-fed M. tuberculosis across 3 metabolic states (exponential growth, stationary phase, hypoxia)
(BioProject: PRINA390669) [21]. The study then defined a “core lipid response”, which contained genes
that were found to be differentially expressed between dextrose and lipid media across all three metabolic
states. This core lipid response was composed of 6 genes: Rv3161c, Rv3160c, Rv0678, Rv1217c,
PPES3 and chel [21]. Since a core lipid response can be crucial for identifying potential targets to combat
M. tuberculosis infections, we were interested in seeing if iModulons could be used to define a more
comprehensive core lipid response utilizing the same RNA-seq data.

iModulon activities were examined between lipid and dextrose conditions, and iModulons with
significant differential expression (iModulon activity change > 5 and FDR < .01) across all three metabolic
states were labeled as part of the new core lipid response (Figure 4a). While the original study identified
a core lipid response composed of only 6 genes, our analysis of the same data identified a core lipid
response of four iModulons, spanning a total of 80 unique genes: Mce3R, Rv0681, Rv2488c, and Positive
Regulation of Growth (PROG). The Rv0681 and Rv2488c iModulons had consistent activation across all
three cell states, as Mce3R and PROG were found to have both increased and decreased activity. While
the reason for this is unclear, we maintain that all four of these iModulons are important systems for M.
tuberculosis in a lipid rich environment.

Upon close examination, we found that five of the six genes previously identified as part of the
core lipid response were captured by the Rv2488c iModulon, whereas chel was not found in any of the
computed iModulons. Besides the five core lipid genes, the Rv2488c iModulon was also found to regulate
the expression of various transcriptional regulators and membrane-associated proteins such as the
MmpS/L efflux pump. Given the function of the clustered genes, we propose that the Rv2488c controls an
essential, lipid-activated cellular defense [23]. Taken together, the results show that iModulons provide a
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clear definition of a core lipid response that adds to our knowledge on how M. tuberculosis responds to
lipids.

iModulons Elucidate Transcriptional Responses to Shifts in Carbon Sources

Given the transcriptomic response M. tuberculosis exhibited in a sole lipid environment, we were
interested to see how the organism would respond to other carbon sources. In order to study such
effects, we utilized data obtained from a study where either glucose, lactate, or pyruvate was used as a
sole carbon source (BioProject: PRINA480455) [24]. In total, the study contained six different conditions,
representing the three carbon source conditions (glucose, lactate, and pyruvate) with two time points
each (6 hours and 24 hours). The original study found that genes associated with the glyoxylate shunt
and Krebs cycle, such as pckA and icll, were essential and highly expressed in lactate and pyruvate
conditions. To assess if iModulons could capture the upregulation of the genes highlighted in the previous
findings, we created several DIMA (Differential iModulon Activity) plots to examine which iModulons were
significantly changed between the glucose and the alternate carbon source (Figure 4b-e). Four
iModulons were of particular interest: Fumarate Reductase, Sulfur Metabolism, PrpR, and Blal.

For cells growing on both lactate and pyruvate, the Fumarate Reductase iModulon was
upregulated at all time points compared to the glucose-fed conditions. The Fumarate Reductase iModulon
contains 33 genes associated with the TCA cycle and fatty acid synthesis, including icl2, pckA, and fad
genes (Figure 4b). Many of the genes in this iModulon were also highlighted by the original study for
survival in lactate and pyruvate media, which include genes that regulate the glyoxylate shunt. However,
the Fumarate Reductase iModulon also captures the expression dynamics of many genes not found in
the original research. These include the fad genes, which code for various enzymes in fatty acid
synthesis, the yrbE1 putative permeases, and the mcelR transcription factor, which is a vital regulator for
virulence [25,26]. Many of these genes are important for maintaining lipid homeostasis, which suggests
that the systems that help metabolize pyruvate and lactate are transcriptionally connected to the same
systems that metabolize or synthesize lipids. Additionally, the inclusion of the virulence regulator McelR
suggests that high levels of lactate and pyruvate may trigger the virulence response in M. tuberculosis.

Further evidence of a connection between alternate carbon sources, fatty acid synthesis, and
virulence can be found in the significant upregulation of the Sulfur Metabolism iModulon during growth in
L-lactate media. Using the iEK1008 metabolic reconstruction, we found that the Sulfur Metabolism
iModulon controlled reactions for sulfate and thiosulfate import (Figure 4f) [27]. The presence of these
sulfur-related genes in conjunction with fatty acid genes in the Fumarate Reductase iModulon strongly
suggest that these pathways are involved in the synthesis of sulfolipids [27—-29]. Sulfolipids are a family of
sulfated acyl trehalose that aid in mycobacterium macrophage infection, and because upregulation of
these pathways only occurs under lactate conditions, we propose that lactate is a cellular cue of a host
cell environment.

We also found evidence of time-dependent iModulon responses during exposure to alternative
carbon sources. At 24 hours, we found significant upregulation of the PrpR iModulon under both lactate
and pyruvate conditions (Figure b,d). In M. tuberculosis, the PrpR TF is responsible for control of the prp
operon, which codes for several key enzymes that break down Propionyl-CoA into pyruvate and
succinate, which can be used in the methylcitrate cycle to produce NADH [30]. The appearance of the
PrpR iModulon at 24 hours and not at 6 hours suggests that this is a starvation response, and we
hypothesize that the iModulon is activated to supplement the production of NADH and ATP from solely
lactate or carbon sources. In addition, the Blal iModulon was significantly downregulated at 24 hours, but
only under lactate conditions. The Blal TF regulates genes involved in antibiotic resistance and ATP
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synthesis, and the metabolic reconstruction of M. tuberculosis reveal that the only relevant reaction
regulated by Blal was a conversion of L-glutamate into lysine and alpha-ketoglutarate [31]. While the full
function of this iModulon in response to alternative carbon sources remains unclear, its presence
suggests amino acids may be involved in the synthesis of methyicitrate cycle intermediates.

iModulon Analysis of Time-Course Data Validates Prior Models of TF Responses to Hypoxia

Hypoxia is an important signal for the TRN of M. tuberculosis, as the bacterium enters an altered
metabolic state when exposed to reduced oxygen levels in vitro and in vivo [2,32]. While many studies
have examined hypoxic response in M. tuberculosis by utilizing tools such as differential gene expression,
here we utilized iModulons to provide additional insight on the organism'’s hypoxic response.

We analyzed the important iModulons and significant activities during a hypoxia time course
study in our dataset by Galagan, et al. (BioProject: PRINA478238) [13]. During this study, the organism
was exposed to changing dissolved oxygen levels, and we categorized the changes into four temporal
phases: 1) Decreasing Oxygen, 2) Hypoxia Onset, 3) Stable Hypoxia, and 4) Reaeration. (Figure 5a).
The transcriptional changes associated with hypoxia are relatively well-characterized in M. tuberculosis,
and thus we assessed if the activities of the iModulons would recapitulate previous studies [2]. The study
proposed a model of the M. tuberculosis TRN and determined that the DosR and Rv0081 TFs serve as
the primary regulators for the hypoxic response, while other TFs such as Rv2034, Rv3249c, KstR, and
PhoP can alter the response. In order to confirm that the iModulons recapitulate the prior model, we
examined iModulons mapped to hypoxia-associated transcriptional factors and examined their activities
throughout the hypoxic time course study. We found that the DevR (DosR), PhoP, KstR2, and Lsr2
iModulons had increased activity during the hypoxia time course (Figure 5b). The two DevR iModulons
showed the highest activity during the Hypoxia Onset phase, which confirms the previous understanding
that the DosR/DevR TF controls the hypoxia onset response (Figure 5a) [33].

Additionally, the increase in activity of the Lsr2, KstR2, and PhoP iModulons also capture the
known transcriptional changes associated with hypoxia, though the change in activity was relatively small
compared to the DevR iModulons. Due to the lack of a KstR iModulon, KstR2 activity was examined
instead as both iModulons are thought to regulate cholesterol metabolism, and thus implicate that such
metabolism is important for a hypoxia response [2]. The Rv0078+Rv2034 and MbcA+Rv3249c+Rv3066
iModulons were not significantly expressed at any point in the time course.

Different Levels of Oxygen Lead to Distinct Transcriptional States

After confirming that our iModulons are consistent with our current understanding of hypoxia, we
examined the activities of the iModulons in a phase-specific manner across three of the four phases.
DIMA plots were created to compare the iModulon activities from the first and last time point of each
phase, and the significant iModulons were examined (Figure 5c,d). We chose not to analyze the
iModulons during stable hypoxia given the limited data.

Here, we define the Decreasing Oxygen phase to represent the time when dissolved oxygen
levels transition from 81% to 11%. Examination of significant iModulons during this phase reveals a three
part response (Figure 5b). The first response is the significant increase in the production of enzymes
associated with central carbon metabolism and energy production, and is captured by the Central Carbon
Metabolism and Fumarate Reductase iModulons. The second response was an increased activity in cell
replication systems, which was captured by the upregulation of the Rv1828/SigH, GroEL-ES complex,
and WhiB1 iModulons. Rv1828/SigH contains genes that encode a wide range of proteins, including cell
division proteins (SepF, FtsZ), DNA helicases (RuvA/B/C), and DNA polymerases [34]. Additionally, we
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found both the WhiB1 and GroEL/ES complex iModulons play a role in protein synthesis. WhiB1 also
contains several genes that code for RNA polymerase, suggesting an additional role in transcription. All
these iModulons have some connection with growth and replication, which suggests that cell division is
an important response in M. tuberculosis in a decreasing oxygen environment.

The final response of the Decreasing Oxygen phase was a shift in the mammalian cell entry
(Mce) proteins produced within the cell. This response is captured by increased activity in the McelR
iModulon and a decrease in activity for the Mce3R iModulon. The Mce proteins are invasive/adhesive cell
surface proteins that promote virulence in M. tuberculosis, and play a role in invasion of host cells
[25,35,36]. Further examination of the McelR and Mce3R iModulons indicates that as the time course
proceeds and the cell enters Hypoxia Onset and Stable Hypoxia, the activities of the two iModulons
returned to their original reference state; the activity of Mce3R significantly increases while the activity of
McelR significantly decreases. Given the close relationship between hypoxia and virulence, we theorize
that Mcel proteins help facilitate the initial stages of infections while Mce3 proteins facilitate cell entry into
a dormant state.

The next phase of the hypoxia time course was the Hypoxia Onset phase, where the dissolved
oxygen levels move from 11% to 0% (Figure 5c¢). Apart from the previously described activities of both
DevR iModoulons, we also found that a few of the iModulons had inverted activities during Hypoxia Onset
when compared to the Decreasing Oxygen phase. The McelR, WhiB1, and Central Carbon Metabolism
iModulons showed decreased activity over the course of the Hypoxia Onset phase, indicating that high
activity in these systems are either unhelpful or even detrimental to the organism during complete
hypoxia. On the other hand, the IdeR iModulon moved from a decrease in activity in the prior phase to a
significant increase in activity during Hypoxia Onset. Additionally, we found two new iModulons, the
WhiB7 and PDIM;PGL Synthesis iModulons, with significant changes in activity during this phase. WhiB7
is a redox homeostasis transcriptional regulator that has also played a role in drug resistance [37]. The
PDIM;PGL Synthesis iModulon captures genes associated with the production of phthiocerol
dimycocerosate (PDIM) and phenolic glycolipids (PGL). These families of molecules have been
associated with cell wall impermeability, phagocytosis, defense against nitrosative and oxidative stress
and, possibly, biofilm formation [38]. The presence of both these systems during hypoxia is expected,
though we did not expect PDIM;PGL Synthesis to have decreased activity during Hypoxia Onset. This
would suggest that while PDIM and PGL molecules are important for oxidative stress defense, their
production in a completely anaerobic environment may be detrimental to the survival of the cell.

The final phase of the hypoxia time course was the Reaeration phase (Figure 5d). During this
phase, the cell returns to an aerobic environment as dissolved oxygen levels increase from 0% to 47%,
and we found significant changes in several new iModulons. Most interesting among these are the
Peptidoglycan Biosynthesis and Polyketide Synthase Complex. In M. tuberculosis, both polyketides and
peptidoglycans are cell membrane bound molecules that play a role in cell virulence and persistence.
Peptidoglycans are involved in cell growth and host response manipulation, while polyketides are
essential in the formation of biofilms and are likely to improve persistence [39,40]. The increased
activation of these iModulons under Reaeration suggests that M. tuberculosis attempts to defend itself
from a possible host response during this phase. We also found that the Fatty Acid Biosynthesis iModulon
had increased activity while KstR2 had decreased activity. Thus, we can conclude that under reaeration
conditions, M. tuberculosis moves from the consumption of lipids and cholesterol to production. Taken
together, the hypoxia time course and iModulons allow us to describe the complex transcriptional
response that M. tuberculosis undergoes throughout large shifts in oxygen concentration.
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M. tuberculosis has Host Cell-Specific Transcriptional Responses

Due to the broad pathological impact of M. tuberculosis, we additionally examined the
transcriptional response of M. tuberculosis during infection of two different host cells. In one dataset, M.
tuberculosis was grown in vitro during infection of mice bone marrow-derived macrophages (BMDM), and
RNA-Seq was performed at 2, 8, and 24 hours after infection (BioProject: PRINA478245) [13]. In the
other dataset, M. tuberculosis was grown in vivo in mice neutrophils, and RNA-Seq was performed at a
single time point after infection (BioProject: PRINA588440) [41]. DIMA plots were created comparing
each infection condition to a control at the same time point (Figure 6a).

Examination of the significant iModulons under the three time points of the mice BMDM
conditions resulted in consistent patterns. Across all time points, the acid sensing MarR iModulon was
found to have increased activity. MarR is a transcriptional repressor that allows M. tuberculosis to adapt
to acidic intracellular environments [42]. In addition, we found that PrpR and lipid metabolism iModulons,
along with the metal sensing Zur, M-box, and IdeR iModulons, were also consistently upregulated
throughout the infection time course. All of these iModulons have been shown to play a role in either
starvation or hypoxia response, indicating that residence within a macrophage requires distinct
adaptations to multiple stresses [43,44].

A similar analysis of M. tuberculosis under in vivo neutrophil conditions revealed an alteredTRN
response when compared to in vitro mice BMDM infections (Figure 6b). Given this difference, we
investigated whether M. tuberculosis displayed host-cell type dependent responses. Comparison of
differentially activated iModulons revealed 25 additional iModulons that were significant during infection of
mice neutrophils, but not of mice BMDM. These neutrophil specific iModulons include some large
regulators such as PhoP and SigK. However, we also discovered five iModulons that exhibited
consistently significant activities across all experiments (KstR2, MarR, PrpR, Rv0681, Uncharacterized 2)
(Figure 6¢). All of these iModulons, with the exception of the Uncharacterized 2 iModulon, were activated
in the same direction (positive activity) across the BMDM and neutrophil conditions. Overall, these results
show how M. tuberculosis does have different transcriptional responses depending on the host cell type,
but a core virulence response is required for all infection events.

Clustering of iModulon Activities Across All Conditions Reveal Coordinated Stress Responses

By investigating the iModulons across various conditions, we noticed that certain sets of
iModulons activated together. To investigate which iModulons had similar activities to one another, we
clustered the iModulon activities[citation forthcoming], resulting in several clusters with biologically
relevant implications. One such cluster contains the DevR-1, DevR-2, and LysG iModulons (Figure 6d).
Given the function of DevR and the presence of the gene Rv0081 in LysG, it is clear that this cluster of
iModulons captures the main hypoxic response in M. tuberculosis [2].

Clusters also described global responses in the M. tuberculosis TRN, as shown by the General
Stress Response Cluster (Figure 6e). This cluster contained virulence iModulons such as McelR, metal
related iModulons like RicR, and lipid metabolism iModulons such as Rv0681. We found that while six of
the iModulons within the cluster were positively correlated with each other, McelR was found to be
negatively correlated with the others. To help visualize which systems were controlled by this cluster, we
mapped the genes within each associated iModulon to known pathways using a metabolic reconstruction
[27]. The reactions encoded by the iModulons in the cluster linked cholesterol-catabolism pathways to
propionyl-CoA biosynthesis. Propionyl-CoA is an important precursor to sulfolipids, and we found that the
General Stress Response Cluster also controls pathways associated with sulfur import and the formation
of sulfolipids. The cluster also controls the production of mcel proteins, the type 1 NADH-dehydrogenase,
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and metal sensing systems. Type 1 NADH-dehydrogenase is known to produce ROS species and
increase oxidative stress, while metal sensing systems such as those encoded by RicR are important for
protection against oxidative stress [45,46]. Given the function of these genes, we propose that this cluster
represents a general stress response in M. tuberculosis, most likely related to intra-host survival. Though
the General Stress Response Cluster represents a commonly co-transcribed set of iModulons, each one
is still independently modulated; there are instances where one part of the cluster is not needed and its
iModulon’s activity diverges from the rest. This example demonstrates that iModulon clustering can create
a complex, hierarchical understanding of the TRN.

Discussion

Here, we utilized ICA to decompose 657 distinct RNA-Seq profiles of M. tuberculosis into 80
independently modulated sets of genes, termed iModulons. Many of these iModulons correspond to
important transcription factors in the organism. Using these iModulons, we 1) revealed the function of
previously unknown regulons, 2) described the transcriptional shifts that occurred during environmental
changes such as carbon source shifts, oxidative stress induction, and infections, and 3) demonstrated the
presence of large clusters of transcriptional regulons that link several important metabolic systems,
including lipid, cholesterol, and sulfur metabolism.

In contrast to standard molecular biology approaches , which build knowledge of the
transcriptome in a bottom-up fashion by observing biomolecular binding events, ICA decomposition
builds understanding in a top-down fashion by extracting signals from large datasets. ICA can thus extract
coherent regulation without knowledge of an associated TF, leading to the discovery of unknown
regulons and regulon functions, and ultimately elucidating a more complete TRN.

We demonstrated that iModulons are effective at providing mechanistic insights into complex
transcriptional changes in the TRN. Lipid metabolism, hypoxia protection, and host cell responses are all
vital factors in the success of M. tuberculosis as a pathogen. iModulons provided a clear model of the
transcriptome changes occurring under these conditions. Such mechanistic breakdown of TRN
responses can also be applied to antibiotic exposure and resistance, providing further understanding on
how to combat M. tuberculosis infections.

Additionally, the M. tuberculosis iModulons were clustered together based on their activities,
revealing system-wide stress responses. These clusters suggest the presence of transcriptional
stimulons, or clusters of genes that all respond to the same stimulus. Such stimulons, especially ones that
respond to antibiotics, can also provide better understanding on ways to combat the pathogen.

All results presented in this manuscript are reproducible at [add github]. In addition, we have
provided an interactive portal for any researcher to investigate iModulon structure of M. tuberculosis, the
iModulon activities, and the original gene expression compendium at iModulonDB.com. Given the size of
the dataset, this data still has potential to reveal new insights into the function of uncharacterized
transcription factors and the TRN behavior of M. tuberculosis under different conditions. With the
elucidation of the iModulon structure of M. tuberculosis, it is now possible to decompose other
Mycobacterium strains that are used to study H37Rv, such as H37Ra and M. Smegmatis [cite]. Such
analysis can reveal the differences in the transcriptomic organization of these related strains and provide
further information of the . In summary, the ICA decomposition on mycobacterium and other bacterial
transcriptomics data is still rich with new discoveries.
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Data Availability

The iModulons composition, activities, and the code used to generate figures and results are
available on Github (https://github.com/Reosu/modulome _mtb). Detailed, curated dashboards for each
iModulon and gene can be searched or browsed on iModulonDB.org under the “M. tuberculosis
Modulome” dataset (https://imodulondb.org/).

Methods

The functions used in this study and description of the methods for compiling and processing RNA-Seq
data, running ICA, and computing iModulon enrichments were adapted from the Pymodulon methods
paper from Sastry et al. [citation forthcoming].

Compiling all public transcriptomics data

Using the script from Sastry et al. [citation forthcoming],
(https://github.com/avsastry/modulome_workflow/tree/main/download metadata), we found all RNA-seq
data for M. tuberculosis on NCBI SRA as of August 20, 2020. We manually selected samples that used
the strain M. tuberculosis H37Rv.

Processing prokaryotic RNA-seq data
To process the complete M. tuberculosis RNA-seq dataset, we used Amazon Web Services (AWS) Batch
to run a Nextflow pipeline.

The first step in the pipeline is to download the raw FASTQ files from NCBI using fasterg-dump
(https://github.com/ncbi/sra-tools/wiki/HowTo:-fasterg-dump). Next, read trimming is performed using Trim
Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the default options,
followed by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) on the trimmed reads.
Next, reads are aligned to the genome using Bowtie [47]. The read direction is inferred using RSEQC [48]
before generating read counts using featureCounts [49]. Finally, all quality control metrics are compiled
using MultiQC [50] and the final expression dataset is reported in units of log-transformed Transcripts per
Million (log-TPM).

Quality Control and Data Normalization

To guarantee a high quality expression dataset for M. tuberculosis, data that failed any of the following
four FASTQC metrics were discarded: per base sequence quality, per sequence quality scores, per base
n content, and adapter content. Samples that contained under 500,000 reads mapped to coding
sequences were also discarded. Hierarchical clustering was used to identify samples that did not conform
to a typical expression profile..

Manual metadata curation was performed on the data that passed the first four quality control steps.
Information including the strain description, base media, carbon source, treatments, and temperature
were pulled from the literature. Each project was assigned a short unique name, and each condition
within a project was also assigned a unique name to identify biological and technical replicates. After
curation, samples were discarded if (a) metadata was not available, (b) samples did not have replicates,
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or (c) the Pearson R correlation between replicates was below 0.95. Finally, the log-TPM data within each
project was centered to a project-specific reference condition.

Computing the optimal number of robust Independent Components

To compute the optimal independent components, an extension of ICA was performed on the RNA-seq
dataset as described in McConn et al. [10].

Briefly, the scikit-learn (v0.23.2) [51] implementation of FastICA [52] was executed 100 times with random
seeds and a convergence tolerance of 10”. The resulting independent components (ICs) were clustered
using DBSCAN [53] to identify robust ICs, using an epsilon of 0.1 and minimum cluster seed size of 50.
To account for identical with opposite signs, the following distance metric was used for computing the
distance matrix:

Onn =1—=11000ll

where py, is the Pearson correlation between components x and y. The final robust ICs were defined as
the centroids of the cluster.

Since the number of dimensions selected in ICA can alter the results, we applied the above procedure to
the M. tuberculosis dataset multiple times, ranging the number of dimensions from 10 to 320 with a step
size of 20. To identify the optimal dimensionality, we compared the number of ICs with single genes to the
number of ICs that were correlated (Pearson R > 0.7) with the ICs in the largest dimension. We selected
the number of dimensions where the number of non-single gene ICs was equal to the number of final
components in that dimension.

Compiling gene annotations

The gene annotation pipeline can be found at
https://github.com/SBRG/pymodulon/blob/master/docs/tutorials/creating_the_gene_table.ipynb. Gene
annotations were pulled from AL009126.3. Additionally, KEGG [54] and Cluster of Orthologous Groups
(COG) information were obtained using EQgNOG mapper [55]. Uniprot IDs were obtained using the
Uniprot ID mapper [56], and operon information was obtained from Biocyc [57]. Gene ontology (GO)
annotations were obtained from AmiGO2 [58]. The known transcriptional regulatory network was obtained
primarily from the Galagan predicted binding database and MTB Network portal databases. [2,4]

Computing iModulon enrichments

iModulon enrichments against known regulons were computed using Fisher’'s Exact Test, with the false
discovery rate (FDR) controlled at 10° using the Benjamini-Hochberg correction. Fisher’'s Exact Test was
used to identify GO and KEGG annotations as well, with an FDR < 0.01.

Additional functions for gene set enrichment analysis are located in the enrichment package, including a
generalized gene set enrichment function and an implementation of the Bonferroni-Hochberg false
discovery rate (FDR).


https://doi.org/10.1101/2021.07.01.450045
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.01.450045; this version posted July 2, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Calculating Differentially Expressed iModulons Across Conditions

The difference in activity of iModulons were compared across relevant conditions and significantly
changed iModulons were calculated utilizing a lognormal probability distribution. For each comparison, we
computed the absolute difference in the mean iModulon activity and compared it to an iModulon's log-
normal distribution (calculated between biological replicates). P-value statistics was obtained for a given
pair of conditions across all iModulons and a FDR was calculated. iModulon changes were considered
significant if the difference was greater than 5 and FDR < .01.

DIMA scatter plots plot the activities of iModulons under one condition versus another, and allow for the
visualization of significantly changed iModulons. 1D DIMA plots plot iModulons under one condition to a
reference condition. Reference conditions have been normalized to have 0 activity across all iModulons,
and thus a bar plot is used instead of a scatter plot.

Calculating iModulon Activity Clusters

The activities of iModulons were clustered using a Seaborn clustermap. [59] Pearson R correlation was
used as a distance metric, and pairwise distances for each iModulon were calculated. After creation of the
clustermap, the scikit-learn agglomerative clustering function was performed on the clustermap [51].
Optimal cluster sizes were obtained by computing the varying the threshold statistic for agglomerative
clustering and finding the optimal silhouette score. Once iModulons clusters were calculated, clusters that
had above average Pearson R correlation between iModulons were manually inspected to determine
physiological function.

Generating iModulonDB Dashboards

iModulonDB dashboards were generated using the PyModulon package [citation forthcoming], [11]]; the
pipeline for doing so can be found at
https://pymodulon.readthedocs.io/en/latest/tutorials/creating_an_imodulondb_dashboard.html. Where
applicable, we provide links to gene information in Mycobrowser [60].
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Figure 1: QC/QA, ICA Decomposition, and iModulon Characterization of M. tuberculosis RNA-seq Data from Sequence
Read Archive

(a) iModulons are clusters of genes computed by decomposing RNA-Seq data into independently modulated sets (Sastry et al.
2019). (b) Percentage of samples with metadata that passed and failed the QC/QA process. The RNA-seq data and associated
metadata from 980 H37Rv SRA samples were processed, and 647 samples passed all QC/QA metrics (c) A timeline of the number
of high quality samples (samples that passed QC/QA) used in this study added to the Sequence Read Archive. (d) Scatter plot
comparing the Regulon Recall to the iModulon Recall. iModulon Recall is defined as the number of shared genes divided by all
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genes in the iModulon, while Regulon Recall is defined as the number of shared genes divided by all the genes found in the regulon.
iModulons in green are considered well matched, those in red contain mostly uncharacterized genes, those in blue are considered
to be subsets of the regulon (i.e regulons can have multiple iModulons showing the dynamic dimensionality of the regulon), and
those in grey only have a slight match. (e) Plot detailing how much explained variance is captured by each iModulon. Most
iModulons capture relatively small amounts of explained variance, with the DevR-1 capturing the most variance in M. tuberculosis.
(f) A treemap that organizes the iModulons by category. The size of each iModulon box corresponds with how many genes were
found within that iModulon.
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Figure 2: iModulons Capture Activity of Known Transcriptional Regulators Zur and Lsr2

(a) Left: Bar plot representing the activity of the Zur iModulon across virulence, high iron, and low iron conditions; Right: Venn
diagram showing the genes that overlap between the established Zur regulon and the calculated iModulon (b) Left: Bar plot
representing the activity of the Lsr2 iModulon across three different infection conditions (THP-1 macrophages, BMDM, and
neutrophils); Right: Venn diagram showing the genes that overlap between the established Lsr2 regulon and the calculated
iModulon. For activity bar plots, error bars represent mean and standard deviation of all other samples, black dots represent the
activity of each replicate for a condition, and vertical gray bars separate the samples into projects. Each project is normalized to a
reference condition within that project such that the reference condition represents zero activity.
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Figure 3: Discovery of Rv0681 as encoding a TF

(a) Venn diagram displaying the genes that overlap between the predicted Rv0681 regulon and the calculated Rv0681 iModulon. (b)
Barplot displaying the activities of the Rv0618 iModulon across lipid, hypoxic reactivation, and virulence conditions. (c) A diagram
that characterizes the position and function of the genes found in the Rv0681 iModulons. Many of these genes are related to fatty
acids and cholesterol, including the KstR transcription factor [20]. Single jagged lines indicate a small skip between two iModulon

genes (less than 10 genes), while double jagged lines indicate larger skips.
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Figure 4: iModulons llluminate Metabolic Shifts from Changes in Carbon Source

(a) A three-way venn displaying the differentially activated iModulons between dextrose and lipid conditions across three metabolic
states (exponential, stationary, and hypoxia). The iModulons that were differentially activated across all three states represent the
core lipid response. (b) A 1D DIMA plot representing the differentially activated iModulons at 6 hours between L-lactate and
dextrose conditions. (c) DIMA plot representing the differentially activated iModulons at 24 hours between L-lactate and dextrose
conditions. (d) A 1D DIMA plot representing the differentially activated iModulons at 6 hours between pyruvate and dextrose
conditions. (e) DIMA plot representing the differentially activated iModulons at 24 hours between pyruvate and dextrose conditions.
(f) A metabolic map representing the reactions controlled by differentially activated iModulons across carbon source shifts. Arrows
represent reactions between metabolites, and reactions with bars represent transport from the environment. Map displays how
reactions controlled by the significant iModulons are connected to one another.
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Figure 5: iModulons help Categorize the Phases of Hypoxia Response, including Metabolic Anticipation

(a) Time Course of M. tuberculosis undergoing Decreasing Oxygen, Hypoxia Onset, and Reaeration. The top plot displays the
dissolved oxygen concentration in the environment, and the bottom plot displays the activities over time for iModulons controlled by
TFs previously identified to be highly involved in hypoxic response. [2] The TF Rv2034 is represented by the iModulon
Rv0078+Rv2034 and Rv3249c is represented by MbcA+Rv3249c+Rv3066 iModulons. (b) DIMA plots of hypoxia phases were
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created by comparing the iModulon activities between the first and last time point of each phase. The bar graph represents a 1D
DIMA plot for the decreasing oxygen phase, since the original t=0 timepoint served as the reference condition. (c) DIMA plot for the
Hypoxia Onset Phase. (d) DIMA plot for the Reaeration phase.
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Figure 6: iModulon Response to Infection of Mice Macrophages and Neutrophils and Pearson R iModulon Clusters

(a) A time course of the iModulon activities during infection of mice BMDM. The iModulons with differential activities at each time
point are displayed as upregulated (green) or down regulated (red). Peptidoglycan, Mycofactocin, and MceR1 are displayed outside
of the cell to indicate regulation of secretory pathways. (b) 1D DIMA plot of differential iModulons between control non-infectious
condition and in-vivo infection condition. Surprisingly, the most upregulated and most downregulated iModulons both regulate
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different portions of central carbon metabolism, which suggests that central carbon metabolism plays a large role in infection. (c) A
core virulence response was constructed by examining the iModulons with differential activity across all virulence conditions (3
timepoints in mice macrophage infection and 1 neutrophil condition). The core virulence response was found to consist of KstR2,
MarR, PrpR, Rv0681, Uncharacterized 2, and Zur. (d) Hypoxia Response iModulon cluster calculated using Pearson R score and
agglomerative clustering. Scatter plots that provide pairwise comparison of the activities of the iModulons across all experimental
conditions is provided to indicate the relatively high correlation between these three iMoudlons. Color bar indicates pairwise Pearson
R score. (e) General Stress Response iModulon cluster calculated from Pearson R score and agglomerative clustering.
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