

1 **Title Page**

2 A transferable IncC-IncX3 hybrid plasmid co-carrying *bla*_{NDM-4}, *tet*(X4), and
3 *tmexCD3-toprJ3* confers resistance to carbapenem and tigecycline

4

5 Aki Hirabayashi¹, Trung Duc Dao², Taichiro Takemura², Futoshi Hasebe², Le Thi
6 Trang³, Nguyen Ha Thanh³, Hoang Huy Tran³, Keigo Shibayama⁴, and Ikuro
7 Kasuga^{5,6*}, Masato Suzuki^{1*}

8

9 ¹Antimicrobial Resistance Research Center, National Institute of Infectious
10 Diseases, Tokyo, Japan

11 ²Vietnam Research Station, Center for Infectious Disease Research in Asia and
12 Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan

13 ³National Institute of Hygiene and Epidemiology, Hanoi, Vietnam

14 ⁴Nagoya University Graduate School of Medicine, Nagoya, Japan

15 ⁵Vietnam-Japan University, Vietnam National University, Hanoi, Vietnam

16 ⁶Department of Urban Engineering, Graduate School of Engineering, The
17 University of Tokyo, Tokyo, Japan

18

19 *Corresponding authors: E-mail address: kasuga@env.t.u-tokyo.ac.jp (I.
20 Kasuga); suzuki-m@nih.go.jp (M. Suzuki)

21 Running title: IncC-IncX3 plasmid confers near pan-resistance
22 Keywords: carbapenem, tigecycline, *bla*_{NDM-4}, *tex*(X4), *tmexCD3-toprJ3*

23

24 **Abstract**

25 Tigecycline is a last-resort antimicrobial that exhibits promising activity against
26 carbapenemase-producing Enterobacteriales (CPE). However, mobile tigecycline
27 resistance genes, *tet*(X) and *tmexCD-toprJ*, have emerged in China and have
28 spread possibly worldwide. *Tet*(X) family proteins, *Tet*(X3) to *Tet*(X14), function as
29 tigecycline-inactivating enzymes, and TMexCD-T OprJ complexes function as
30 efflux pumps for tigecycline. Here, we report a CPE isolate co-harboring both
31 emerging tigecycline resistance factors for the first time. A carbapenem- and
32 tigecycline-resistant *Klebsiella aerogenes* NUITM-VK5 was isolated from an
33 urban drainage in Vietnam in 2021 and a plasmid pNUITM-VK5_mdr co-carrying
34 *tet*(X4) and *tmexCD3-toprJ3* along with the carbapenemase gene *blaNDM-4* was
35 identified in NUITM-VK5. pNUITM-VK5_mdr was transferred to *Escherichia coli*
36 by conjugation and simultaneously conferred high-level resistance against
37 multiple antimicrobials, including carbapenems and tigecycline. An efflux pump
38 inhibitor canceled TMexCD3-T OprJ3-mediated tigecycline resistance,
39 suggesting that both tigecycline resistance factors independently and additively
40 contribute to the high-level resistance. The plasmid had the IncX3 and IncC
41 replicons and was estimated to be a hybrid of plasmids with different origins.
42 Unlike IncX3 plasmids, IncC plasmids are stably maintained in an extremely
43 broad range of bacterial hosts in humans, animals, and environment. Thus, future
44 global spread of multidrug-resistance plasmids such as pNUITM-VK5_mdr poses
45 a public health crisis.

46

47 **Material and methods**

48 **Bacterial isolation and antimicrobial susceptibility testing**

49 A carbapenem- and tigecycline-resistant *Klebsiella aerogenes* NUITM-VK5
50 was isolated from Kim-Nguu river in Hanoi, Vietnam in March 2021.
51 Environmental water samples were collected and cultured using Luria-Bertani
52 (LB) broth containing 4 mg/L of meropenem at 37°C overnight, and then further
53 selected and isolated using CHROMagar COL-APSE (CHROMagar
54 Microbiology) containing 4 mg/L of tigecycline. Bacterial species identification
55 was performed using MALDI Biotyper (Bruker). Antimicrobial susceptibility testing
56 (AST) using *Escherichia coli* ATCC 25922 as quality control was performed with
57 agar dilution (other than colistin) and broth dilution methods (for colistin)
58 according to the Clinical and Laboratory Standards Institute (CLSI) 2020
59 guidelines¹². The categorization as susceptible (S), intermediate (I), and resistant
60 (R) was determined according to the minimum inhibitory concentration (MIC)
61 breakpoints. For tigecycline, AST was additionally performed in the presence or
62 absence of 75 mg/L of the efflux pump inhibitor 1-(1-naphthylmethyl)-piperazine
63 (NMP).

64

65 **Whole-genome sequencing and subsequent bioinformatics analysis**

66 Whole-genome sequencing of *K. aerogenes* NUITM-VK5 was performed using
67 MiSeq (Illumina) with MiSeq Reagent Kit v2 (300-cycle) and MinION (Oxford
68 Nanopore Technologies) with the R9.4.1 flow cell. The library for Illumina
69 sequencing (paired-end, insert size of 300-800 bp) was prepared using Nextera
70 XT DNA Library Prep Kit and the library for MinION sequencing was prepared

71 using Rapid Barcoding Kit (SQK-RBK004). Illumina reads were assembled de
72 novo using Shovill v1.1.0 (<https://github.com/tseemann/shovill>) with default
73 parameters, resulting in the draft genome (accession no.: [BPFV01000000](#)).
74 MinION reads were basecalled using Guppy v4.2.2 with the high-accuracy mode
75 and were assembled de novo using Canu v2.1.1 (<https://github.com/marbl/canu>)
76 with default parameters. The overlap region in the assembled contig was
77 detected using LAST (<http://last.cbrc.jp>) and was trimmed manually. Sequencing
78 errors were corrected by Racon v1.4.13 (<https://github.com/isovic/racon>) twice
79 with default parameters using MinION reads, and then corrected by Pilon v1.20.1
80 (<https://github.com/broadinstitute/pilon/wiki>) twice with default parameters using
81 Illumina reads, resulting in a circular plasmid pNUITM-VK5_mdr (accession no.:
82 [LC633285](#)).

83 Genome and plasmid sequences were annotated using the DFAST server
84 (<https://dfast.nig.ac.jp>). Sequence type (ST) by multilocus sequence typing
85 (MLST) analysis was determined according to the PubMLST protocol and
86 database (<https://pubmlst.org/organisms/klebsiella-aerogenes>). Plasmid replicon
87 type and antimicrobial resistance (AMR) genes were detected using
88 PlasmidFinder v2.1 and ResFinder v4.1 with default parameters, respectively, on
89 the CGE server (<http://www.genomicepidemiology.org>). Type IV secretion system
90 (T4SS)-associated genes involved in conjugation were detected by TXSScan
91 v1.0 (<https://github.com/macsy-models/TXSS>) with default parameters. Mobile
92 gene elements (MGEs) were detected using BLAST with the ISfinder database
93 updated on Oct 2020 (<https://github.com/thanhleviet/ISfinder-sequences>).
94 Circular representation of plasmid was visualized using the CGView server

95 (http://cgview.ca). Linear comparison of sequence alignment was performed
96 using BLAST and visualized by Easyfig v.2.2.2 (http://mjsull.github.io/Easyfig/).

97

98 **Bacterial conjugation assay**

99 A bacterial conjugation assay was performed as follows. LB broth cultures of
100 the donor *K. aerogenes* NUITM-VK5 and the recipient azide-resistant *E. coli* J53
101 (*F*⁻ *met pro AzI*^r) were mixed in a 1:10 ratio, spotted onto MacConkey agar, and
102 then incubated at 37°C overnight. Subsequently, the mixed cells, including
103 transconjugants, were suspended in LB broth and then plated onto MacConkey
104 agar containing 1 mg/L of tigecycline and 100 mg/L of sodium azide after 10-fold
105 serial dilution, and incubated at 37°C overnight. AMR genes, *bla*_{NDM}, *tet*(X), and
106 *tmexCD-toprJ*, of transconjugants were detected by colony PCR using the
107 following primer sets. NDM_F: GGTTTGGCGATCTGGTTTC, NDM_R:
108 CGGAATGGCTCATCACGATC, tetX_F: CCCGAAAATCGWTTGACAATCCTG,
109 tetX_R: GTTTCTTCAACTTSCGTGTCGGTAAC, tmexC_F:
110 TGGCGGGATCGTGCTCAAGCGCAC, tmexC_R:
111 CAGCGTGCCCTTGCKCTCGATATCG.

112

113 **Introduction**

114 Tigecycline, a semisynthetic glycylcycline, is considered a last-resort
115 antimicrobial against infections caused by multidrug-resistant (MDR) gram-
116 negative bacteria, including carbapenemase-producing Enterobacterales (CPE)¹,
117 ². Carbapenemases genes, including *bla*_{NDM}, *bla*_{KPC}, *bla*_{IMP}, *bla*_{VIM}, and *bla*_{OXA-48},
118 are often carried on plasmids, which are self-transmissible via bacterial
119 conjugation³. Recently, mobile tigecycline resistance genes, *tet*(X3), *tet*(X4), and
120 other variants, *tet*(X5) to *tet*(X14), encoding flavin-dependent monooxygenases
121 that catalyze tigecycline degradation were emerged in Enterobacterales and
122 *Acinetobacter* species in China and other countries⁴⁻⁶. Furthermore, a mobile
123 tigecycline resistance gene cluster, *tmexCD-toprJ*, encoding the resistance–
124 nodulation–cell division (RND) efflux pump that excretes multiple antimicrobials,
125 such as tetracyclines including tigecycline, cephalosporins, fluoroquinolones, and
126 aminoglycosides, emerged predominantly in Enterobacterales: *tmexCD1-toprJ1*
127 was identified in plasmids in *Klebsiella* species isolated from humans and
128 livestock in China and Vietnam⁷⁻⁹. *tmexCD2-toprJ2* was identified in the plasmid
129 and chromosome of *Raoultella ornithinolytica* isolated from a human in China¹⁰.
130 *tmexCD3-toprJ3* was identified in the chromosome of *Proteus mirabilis* isolated
131 from livestock feces in China¹¹. In this study, we identified a CPE isolate co-
132 harboring both mobile tigecycline resistance genes, *tet*(X) and *tmexCD-toprJ*, for
133 the first time and characterized a transferable IncC-IncX3 hybrid plasmid co-
134 carrying *bla*_{NDM-4}, *tet*(X4), and *tmexCD3-toprJ3* in *K. aerogenes* isolated in
135 Vietnam.

136

137 **Results and discussion**

138 A carbapenem- and tigecycline-resistant *K. aerogenes* isolate NUITM-VK5 was
139 obtained from an urban drainage in Hanoi, Vietnam, in March 2021. *K. aerogenes*
140 (former *Enterobacter aerogenes*) is an important human opportunistic pathogen
141 and a frequent cause of nosocomial infections. The result of AST of *K. aerogenes*
142 NUITM-VK5 showed that NUITM-VK5 was resistant to almost all antimicrobials
143 tested (Table 1). The MICs of tigecycline, tetracyclines, carbapenems,
144 cephalosporins, fluoroquinolone, and aminoglycosides (other than amikacin)
145 were more than 128 mg/L (R) and that of colistin was 4 mg/L (R), whereas that of
146 amikacin was 32 mg/L (I).

147 Short-read sequence analysis of *K. aerogenes* NUITM-VK5 with MiSeq
148 constructed the draft genome consisting of 181 contigs (5.9 Mbp, accession no.:
149 [BPFV01000000](#)). MLST analysis showed that NUITM-VK5 belonged to sequence
150 type 4 (ST4). Detection of AMR genes using ResFinder v4.0 with the modified
151 library including nucleotide sequences of known variants of *tmexCD-toprJ*
152 revealed that NUITM-VK5 harbored *bla*_{NDM-4}, *tet*(X4), and *tmexCD3-toprJ3* along
153 with multiple clinically relevant AMR genes, such as *bla*_{CTX-M-14} (extended-
154 spectrum β-lactamase gene), *qnrS1* (fluoroquinolone resistance gene), *aac(6')*-
155 *lb-cr* (aminoglycoside resistance gene), and *cfr* (phenicol/lincosamide resistance
156 gene). NUITM-VK5 was colistin-resistant, but did not harbor known mobile colistin
157 resistance genes, such as *mcr*. The coding sequences of *tet*(X4) and *tmexCD3-*
158 *toprJ3* in NUITM-VK5 were highly identical to those of *tet*(X4) in *E. coli* 47EC
159 (accession no.: [MK134376](#)) isolated from a pig in China in 2018 and *tmexCD3-*
160 *toprJ3* in *P. mirabilis* RGF134-1 (accession no.: [CP066833](#)) isolated from a pig in

161 China in 2019, respectively (Fig. S1). The identity for *tet*(X4) was 97.7%
162 (1131/1158 nt), resulting in 12 amino acid substitutions (I356A, K359R, E363A,
163 T366I, Q367I, I370T, K374S, P375L, T378S, Q381K, L383M, and V385L). For
164 *tmexC3*, the identity was 99.7% (1161/1164 nt), resulting in three amino acid
165 substitutions (Q187H, T256M, and A386T); For *tmexD3*, the identity was 99.9%
166 (3133/3135 nt), resulting in two amino acid substitutions (V610L and L611F). For
167 *toprJ3*, the identity was 100% (1434/1434 nt).

168 The subsequent long-read sequence analysis of *K. aerogenes* NUITM-VK5
169 with MinION successfully constructed a circular plasmid pNUITM-VK5_mdr
170 (240.5 kbp, accession no.: [LC633285](https://www.ncbi.nlm.nih.gov/nuccore/LC633285)) co-carrying the aforementioned AMR
171 genes detected in the draft genome (Fig. 1). Detection of plasmid replicons with
172 PlasmidFinder v2.1 revealed that pNUITM-VK5_mdr had two replicons classified
173 to incompatibility groups C (IncC) and X3 (IncX3). *bla*_{NDM-4}, *tet*(X4), and
174 *tmexCD3-toprJ3* were encoded on different locations on pNUITM-VK5_mdr, and
175 the GC contents of the regions surrounding those AMR genes (61.6% for *bla*_{NDM-4},
176 37.4% for *tet*(X4), and 66.0% for *tmexCD3-toprJ3*) were different from the
177 average of the whole plasmid (51.4%), suggesting that these regions were
178 acquired via horizontal gene transfer (HGT) mediated by mobile gene elements
179 (MGEs) (Fig. 1)^{7, 13}. *tmexCD3-toprJ3* was flanked by two MGEs, ISL3 and IS1182,
180 in pNUITM-VK5_mdr; this genetic structure was different from the *tmexCD3*-
181 *toprJ3*-surrounding region in the chromosomal SXT/R391 integrative conjugative
182 element (ICE) in *P. mirabilis* RGF134-1 (Fig. 1, lower)¹¹. *bla*_{NDM-4} and *tet*(X4) in
183 pNUITM-VK5_mdr were estimated to be acquired via HGT mediated by MGEs,
184 IS26 and ISVs_a3, respectively, as previously reported^{14, 15}.

185 A bacterial conjugation assay using *E. coli* J53 as the recipient strain showed
186 that *K. aerogenes* NUITM-VK5 transferred pNUITM-VK5_mdr to J53 at a
187 frequency of 1.0×10^{-6} after overnight co-culture at 37°C. The transconjugant
188 strain (J53/pNUITM-VK5_mdr) was confirmed to co-harbor *bla*_{NDM-4}, *tet*(X4), and
189 *tmexCD3-toprJ3* by PCR and was resistant to almost all antimicrobials, including
190 carbapenems and tigecycline (Table 1). The transconjugant strain was only
191 susceptible to colistin, although parental NUITM-VK5 was resistant, suggesting
192 that colistin resistance of NUITM-VK5 was due to other factors, including
193 chromosomal gene mutations, other than pNUITM-VK5_mdr. The addition of the
194 efflux pump inhibitor NMP reduced the MIC of tigecycline from 128 mg/L or higher
195 to 32 mg/L in NUITM-VK5 and the transconjugant strain () (Table 1). Since the
196 MIC of tigecycline against *E. coli* J53 was 0.5 mg/L, 32 mg/L for the MIC against
197 J53/pNUITM-VK5_mdr in the presence of NMP was still high, suggesting that
198 TMexCD3-TOprJ3 and Tet(X4) contributed to tigecycline resistance
199 independently and additively and Tet(X4) remained active even when the RND
200 efflux pump was inhibited. On the other hand, the addition of NMP did not affect
201 the MIC of meropenem against NUITM-VK5 and J53/pNUITM-VK5_mdr,
202 indicating that TMexCD3-TOprJ3 does not contribute to carbapenem resistance
203 (data not shown).

204 BLASTn analysis using megablast showed that no plasmid showed more than
205 90% identity in more than 80% regions with the IncC-IncX3 hybrid plasmid
206 pNUITM-VK5_mdr in the NCBI database of Nucleotide collection (nr/nt). A
207 comparison with the known IncC plasmids showed that the IncX3 backbone of
208 pNUITM-VK5_mdr might include the 83.5-kb region between IS3000 and

209 ISKpn19 and the IncC backbone might include the remaining region (Fig. 1). In
210 this case, *bla*_{NDM-4} and *tet*(X4) were derived from the IncX3 and IncC backbones,
211 respectively, and *tmexCD3-toprJ3* located at the boundary of both backbones.
212 IncC (former IncA/C₂) is divided into type 1 and type 2^{16, 17}. The IncC backbone
213 of pNUTM-VK5_mdr would belong to type 2 as it had *rhs2* and *orf1847*, which
214 are characteristic genetic makers of type 2 (Fig. 1).

215 IncC, which is involved in the spread of AMR genes, has an extremely broad
216 host range of Gammaproteobacteria¹⁸, whereas IncX3, which is also involved in
217 the spread of AMR genes, such as *bla*_{NDM}, has a narrow host range of
218 Enterobacterales¹⁹. The combination of two incompatibility groups resulted in an
219 IncC-IncX3 hybrid plasmid, which is expected to possess an increased risk of
220 carrying more AMR genes and spreading more stably and efficiently among
221 various bacterial species in humans, animals, and environment. Moreover, the
222 acquisition of an additional RND efflux pump TMexCD3-TOprJ3 could allow the
223 bacterial host to survive in a variety of conditions such as antimicrobial exposure,
224 leading to further accumulation of AMR genes into the host genome via HGT²⁰.

225

226 **Conclusions**

227 The future global spread of such a broad-host-range self-transferable MDR
228 plasmid among human pathogens poses a public health crisis and needs to be
229 continuously monitored according to the One-Health approach.

230

231 **Funding**

232 This work was supported by grants (JP21fk0108093, JP21fk0108139,
233 JP21fk0108133, JP21wm0325003, JP21wm0325022, JP21wm0225004, and
234 JP21wm0225008 for M. Suzuki; JP21fk0108132 and JP21wm0225008 for I.
235 Kasuga; JP21wm0125006 and JP21wm0225008 for T. Takemura;
236 JP21wm0125006 for F. Hasebe; JP21fk0108604 for K. Shibayama) from the
237 Japan Agency for Medical Research and Development (AMED), grants
238 (20K07509 for M. Suzuki; 19K21984 for I. Kasuga; 21K15440 for A. Hirabayashi)
239 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT),
240 Japan, and a grant (MS.108.02-2017.320 for H. H. Tran) from the National
241 Foundation for Science and Technology Development (NAFOSTED), Vietnam.

242

243 **Transparency declarations**

244 None to declare.

245

246 **References**

247 1. Pournaras S, Koumaki V, Spanakis N et al. Current perspectives on
248 tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and
249 mechanisms of resistance. *Int J Antimicrob Agents* 2016; **48**: 11-8.

250 2. Doi Y. Treatment Options for Carbapenem-resistant Gram-negative
251 Bacterial Infections. *Clin Infect Dis* 2019; **69**: S565-S75.

252 3. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in
253 Enterobacteriaceae: here is the storm! *Trends Mol Med* 2012; **18**: 263-72.

254 4. Fang LX, Chen C, Cui CY et al. Emerging High-Level Tigecycline
255 Resistance: Novel Tetracycline Destructases Spread via the Mobile Tet(X).
256 *Bioessays* 2020; **42**: e2000014.

257 5. Gasparrini AJ, Markley JL, Kumar H et al. Tetracycline-inactivating
258 enzymes from environmental, human commensal, and pathogenic bacteria
259 cause broad-spectrum tetracycline resistance. *Commun Biol* 2020; **3**: 241.

260 6. Cheng Y, Chen Y, Liu Y et al. Identification of novel tetracycline resistance
261 gene tet(X14) and its co-occurrence with tet(X2) in a tigecycline-resistant and
262 colistin-resistant *Empedobacter stercoris*. *Emerg Microbes Infect* 2020; **9**: 1843-
263 52.

264 7. Lv L, Wan M, Wang C et al. Emergence of a Plasmid-Encoded
265 Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple
266 Drugs, Including Tigecycline, in *Klebsiella pneumoniae*. *mBio* 2020; **11**.

267 8. He R, Yang Y, Wu Y et al. Characterization of a Plasmid-Encoded
268 Resistance-Nodulation-Division Efflux Pump in *Klebsiella pneumoniae* and
269 *Klebsiella quasipneumoniae* from Patients in China. *Antimicrob Agents*

270 270 *Chemother* 2021; **65**.

271 271 9. Hirabayashi A, Ha VTT, Nguyen AV et al. Emergence of a plasmid-borne

272 272 tigecycline resistance in *Klebsiella pneumoniae* in Vietnam. *J Med Microbiol*

273 273 2021; **70**.

274 274 10. Wang CZ, Gao X, Yang QW et al. A Novel Transferable Resistance-

275 275 Nodulation-Division Pump Gene Cluster, tmexCD2-toprJ2, Confers Tigecycline

276 276 Resistance in *Raoultella ornithinolytica*. *Antimicrob Agents Chemother* 2021; **65**.

277 277 11. Wang Q, Peng K, Liu Y et al. Characterization of TMexCD3-TOprJ3, an

278 278 RND-type efflux system conferring resistance to tigecycline in *Proteus mirabilis*,

279 279 and its associated Integrative Conjugative Element. *Antimicrob Agents*

280 280 *Chemother* 2021.

281 281 12. CLSI. Performance Standards for Antimicrobial Susceptibility Testing.

282 282 30th ed. CLSI guideline M100. 2020.

283 283 13. Nishida H. Genome DNA Sequence Variation, Evolution, and Function in

284 284 Bacteria and Archaea. *Curr Issues Mol Biol* 2013; **15**: 19-24.

285 285 14. Weber RE, Pietsch M, Fruhauf A et al. IS26-Mediated Transfer of bla

286 286 NDM-1 as the Main Route of Resistance Transmission During a Polyclonal,

287 287 Multispecies Outbreak in a German Hospital. *Front Microbiol* 2019; **10**: 2817.

288 288 15. Bai L, Du P, Du Y et al. Detection of plasmid-mediated tigecycline-

289 289 resistant gene tet(X4) in *Escherichia coli* from pork, Sichuan and Shandong

290 290 Provinces, China, February 2019. *Euro Surveill* 2019; **24**.

291 291 16. Ambrose SJ, Harmer CJ, Hall RM. Compatibility and entry exclusion of

292 292 IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible.

293 293 *Plasmid* 2018; **96-97**: 7-12.

294 17. Harmer CJ, Hall RM. The A to Z of A/C plasmids. *Plasmid* 2015; **80**: 63-

295 82.

296 18. Yano H, Shintani M, Tomita M et al. Reconsidering plasmid maintenance

297 factors for computational plasmid design. *Comput Struct Biotechnol J* 2019; **17**:

298 70-81.

299 19. Johnson TJ, Bielak EM, Fortini D et al. Expansion of the IncX plasmid

300 family for improved identification and typing of novel plasmids in drug-resistant

301 Enterobacteriaceae. *Plasmid* 2012; **68**: 43-50.

302 20. Nolivos S, Cayron J, Dedieu A et al. Role of AcrAB-TolC multidrug efflux

303 pump in drug-resistance acquisition by plasmid transfer. *Science* 2019; **364**: 778-

304 82.

305

Strain	MIC (mg/L)													
	TGC (+NMP)	MIN	DOX	TET	IPM	MEM	CTX	CAZ	CIP	AMK	GEN	TOB	STR	CST
<i>K. aerogenes</i> NUITM-VK5	>128 (32)	>128	>128	>128	>128	>128	>128	>128	32	>128	>128	>128	>128	4
<i>E. coli</i> J53	0.5 (0.5)	4	4	1	0.125	0.064	0.125	0.25	0.016	0.5	0.125	0.5	1	0.25
<i>E. coli</i> J53/pNUITM-VK5_mdr	128 (32)	128	128	>128	16	16	>128	128	32	16	2	32	128	0.25
<i>E. coli</i> ATCC 25922	0.125 (0.125)	1	1	2	0.25	0.032	0.125	0.5	0.008	2	0.5	1	0.5	0.25

306

307 **Table 1.** Minimum inhibitory concentrations (MICs) of antimicrobials against *K.*
308 *aerogenes* NUITM-VK5 and its transconjugant of *E. coli* J53 harboring the
309 plasmid pNUITM-VK5_mdr (J53/pNUITM-VK5_mdr). The efflux pump inhibitor 1-
310 (1-naphthylmethyl)-piperazine (NMP) was used at 75 mg/L.

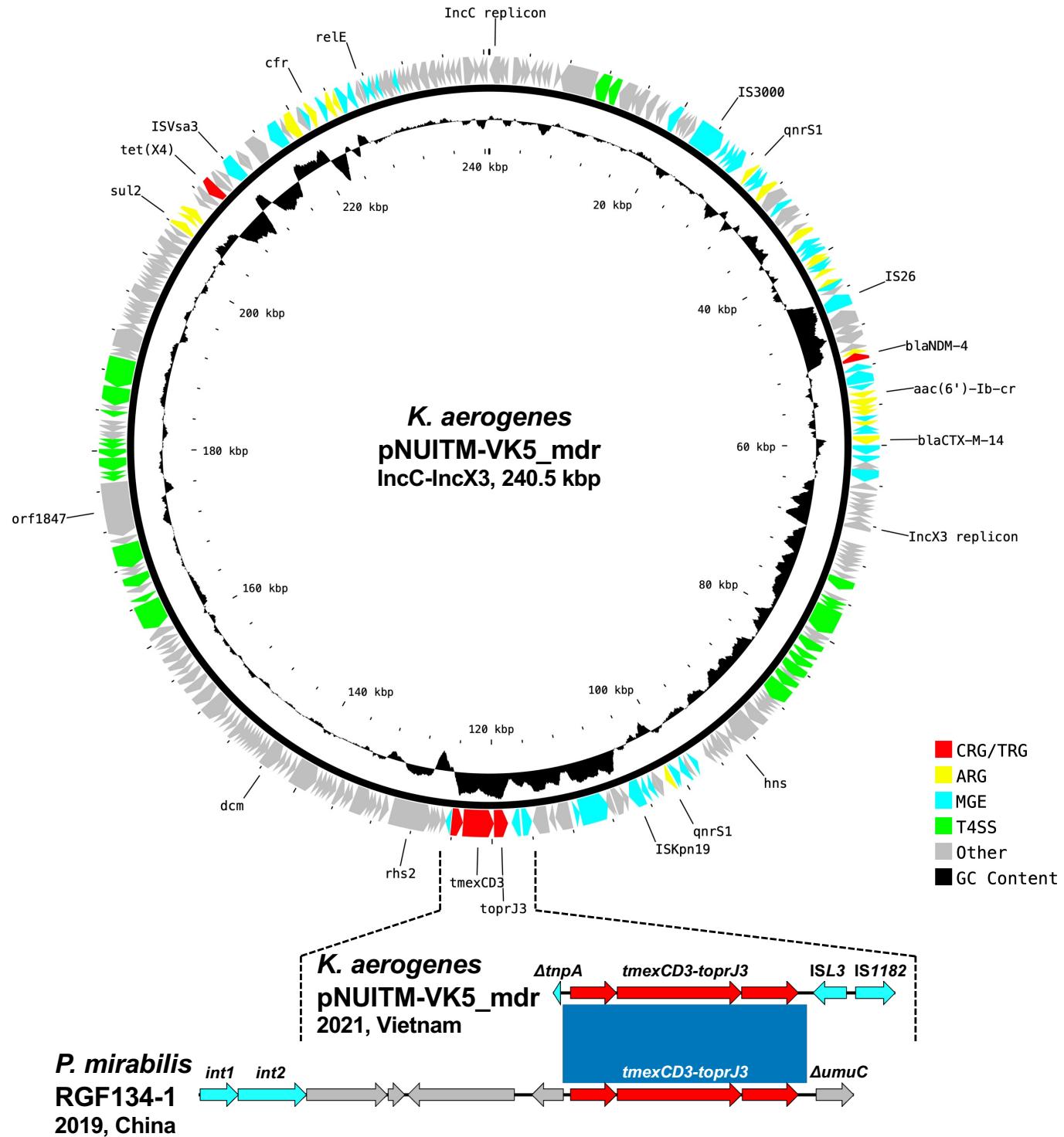
311 TGC, tigecycline; MIN, minocycline; DOX, doxycycline; TET, tetracycline; IPM,
312 imipenem; MEM, meropenem; CTX, cefotaxime; CAZ, ceftazidime; CIP,
313 ciprofloxacin; AMK, amikacin; GEN, gentamicin; TOB, tobramycin; STR,
314 streptomycin; CST, colistin.

315

316 **Figure Legend**

317 **Fig. 1.**

318 Upper: Circular representation of a 240.5-kbp IncC-IncX3 hybrid plasmid,
319 pNUITM-VK5_mdr, co-carrying multiple antimicrobial resistance genes including
320 *bla*_{NDM-4}, *tet*(X4), and *tmexCD3-toprJ3* in *K. aerogenes* NUITM-VK5 isolated in
321 Vietnam in 2021. Lower: Linear comparison of *tmexCD3-toprJ3*-containing
322 regions in *K. aerogenes* pNUITM-VK5_mdr and in a chromosome of *P. mirabilis*
323 RFG134-1 isolated in China in 2019. Red, yellow, cyan, green, gray, and black
324 indicate carbapenem and tetracycline resistance genes (CRG/TRG), other AMR
325 genes (ARG), mobile gene elements (MGE), type IV secretion system (T4SS)-
326 associated genes involved in conjugation, other coding sequences (Other), and
327 GC content, respectively. The blue color in comparison of sequences indicates
328 almost 100% identity.


329

330 **Fig. S1.**

331 Multiple sequence alignment analyzed by MAFFT v7.480. (A) Comparison
332 between gene products of *tet*(X4) in *K. aerogenes* NUITM-VK5 (accession no.:
333 [BPFV01000000](#)) and the reference gene in *E. coli* 47EC (accession no.:
334 [MK134376](#)). Twelve amino acid substitutions (I356A, K359R, E363A, T366I,
335 Q367I, I370T, K374S, P375L, T378S, Q381K, L383M, and V385L) were found.
336 (B) Comparison between gene products of *tmexC3* in *K. aerogenes* NUITM-VK5
337 and the reference sequence in *P. mirabilis* RGF134-1 (accession no.: [CP066833](#)).
338 Three amino acid substitutions (Q187H, T256M, and A386T) were found. (C)
339 Comparison between gene products of *tmexD3* in *K. aerogenes* NUITM-VK5 and

340 the reference sequence in *P. mirabilis* RGF134-1. Two amino acid substitutions
341 (V610L and L611F) were found.

Fig. 1

